& RedHat

Red Hat Fuse 7.11

Getting Started with Fuse on Apache Karaf

Get started quickly with Red Hat Fuse on Karaf

Last Updated: 2023-07-24

Red Hat Fuse 7.11 Getting Started with Fuse on Apache Karaf

Get started quickly with Red Hat Fuse on Karaf

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Get started building an application with Fuse on Apache Karaf.

Table of Contents

Table of Contents

[{3 N O PP 3
MAKING OPEN SOURCE MORE INCLUSIVE ... ittt ettt e eiii e eaennnneenn, 4
CHAPTER 1. GETTING STARTED WITH FUSE ON KARAF ..ottt ettt eeiieieeeennnns 5
1.1. ABOUT FUSE ON KARAF 5
1.2. INSTALLING FUSE ON KARAF 5
1.3. BUILDING YOUR FIRST FUSE APPLICATION ON KARAF 6
CHAPTER 2. SETTING UP MAVEN LOCALLY ..ttt ettt ettt e eiiieeeaennneeenannnns 9
2.1. PREPARING TO SET UP MAVEN 9
2.2. ADDING RED HAT REPOSITORIES TO MAVEN 9
2.3. USING LOCAL MAVEN REPOSITORIES 1
2.4. SETTING MAVEN MIRROR USING ENVIRONMENTAL VARIABLES OR SYSTEM PROPERTIES 1
2.4.1. About Maven mirror 1
2.4.2. Adding Maven mirror to settings.xml 12
2.4.3. Setting Maven mirror using environmental variable or system property 12
2.4.4. Using Maven options to specify Maven mirror url 12

2.5. ABOUT MAVEN ARTIFACTS AND COORDINATES 12

Red Hat Fuse 7.11 Getting Started with Fuse on Apache Karaf

PREFACE

PREFACE

To get started with Fuse, you need to download and install the files for your Apache Karaf container. The
information and instructions here guide you in installing, developing, and building your first Fuse
application.

® Chapter 1, Getting started with Fuse on Karaf

® Chapter 2, Setting up Maven locally

Red Hat Fuse 7.11 Getting Started with Fuse on Apache Karaf

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. GETTING STARTED WITH FUSE ON KARAF

CHAPTER 1. GETTING STARTED WITH FUSE ON KARAF

To learn about Fuse on Karaf as well as install, develop, and build your first Fuse application on a Karaf
container, the information and instructions here assist you with this. See the following topics for details:

® Section 1.1, “About Fuse on Karaf”
® Section 1.2, “Installing Fuse on Karaf”

® Section 1.3, “Building your first Fuse application on Karaf”

1.1. ABOUT FUSE ON KARAF
Apache Karaf is based on the OSGi standard from the OSGi Alliance. OSGi originated in the
telecommunications industry, where it was used to develop gateway servers that could be upgraded on
the fly, without needing to shut down the server (a feature known as hot code swapping). Subsequently,
OSGi container technology has found a variety of other uses and is popular for modularised applications
(for example, the Eclipse IDE).
Distinctive features of this container technology are:

® Particularly suited to running in standalone mode.

® Strong support for modularisation (OSGi bundles), with sophisticated class-loading support.

® Multiple versions of a dependency can be deployed side by side in a container (but this requires
some care in practice).

® Hot code swapping, enabling you to upgrade or replace a module without shutting down the
container. This is a unique feature, but requires significant effort to make it work properly.

Note: Spring Dynamic Modules (Spring-DM) (which integrates Spring XML with the OSGi service layer
in Apache Karaf) is not supported. Instead, you should use the Blueprint framework. Using Blueprint XML

does not prevent you from using the Java libraries from the Spring framework: the latest version of
Spring is compatible with Blueprint.

1.2. INSTALLING FUSE ON KARAF
The standard installation package for Fuse 7.11 on Karaf is available for download from the Red Hat

Customer Portal. It installs the standard assembly of the Karaf container, and provides the full Fuse
technology stack.

Prerequisites

® You need a full-subscription account on the Red Hat Customer Portal .
® You must be logged into the customer portal.
® You must have downloaded the CodeReady Studio installer.

® You must have downloaded the Fuse on Karaf installer.

Procedure

https://www.osgi.org/
https://www.eclipse.org/downloads/
https://access.redhat.com/login
https://developers.redhat.com/content-gateway/file/codereadystudio-12.21.3.GA-installer-standalone.jar
https://access.redhat.com/jbossnetwork/restricted/softwareDownload.html?softwareId=104906

Red Hat Fuse 7.11 Getting Started with Fuse on Apache Karaf

1. Unpack the downloaded .zip archive file for Fuse on Apache Karaf to a convenient location on
your file system, FUSE_INSTALL.

2. Add an administrator user to the Fuse runtime.
a. Open the FUSE_INSTALL/etc/users.properties file in a text editor.
b. Delete the # character at the start of the line that starts with #admin = admin.
c. Delete the # character at the start of the line that starts with #_g_\:admingroup.
d. Customize the username, USERNAME, and password, PASSWORD, of the user entry, so

that you have a user entry and an admin group entry like the following (on consecutive
lines):

USERNAME = PASSWORD,_g_:admingroup
g\:admingroup = group,admin,manager,viewer,systembundles,ssh

e. Save the etc/users.properties file.

3. Run the CodeReady Studio installer as follows:

I java -jar DOWNLOAD_LOCATION/codereadystudio-12.21.3.GA-installer-standalone.jar

4. During installation:

a. Accept the terms and conditions.
b. Choose your preferred installation path.
c. Select the Java 8 JVM.

d. Atthe Select Platforms and Serversstep, configure the Fuse on Karaf runtime by clicking
Add and browsing to the location of the FUSE_INSTALL directory.

e. At the Select Additional Features to Installstep, select Red Hat Fuse Tooling

5. CodeReady Studio starts up. When the Searching for runtimes dialog appears, click OK to
create the Fuse on Karaf runtime.

6. (Optional) In order to use Apache Maven from the command line, you need to install and
configure Maven as described in Setting up Maven locally).

NOTE

If you are using CodeReady Studio exclusively, it is not strictly necessary to install
Maven, because CodeReady Studio has Maven pre-installed and configured for
you. However, if you plan to invoke Maven from the command line, it is necessary
to perform this step.

1.3. BUILDING YOUR FIRST FUSE APPLICATION ON KARAF

This set of instructions assists you in building your first Fuse application on Karaf.

Prerequisites

https://developers.redhat.com/content-gateway/file/codereadystudio-12.21.3.GA-installer-standalone.jar
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/getting_started_karaf/index#set-up-maven-locally

CHAPTER 1. GETTING STARTED WITH FUSE ON KARAF

® You need a full-subscription account on the Red Hat Customer Portal.
® You must be logged into the customer portal.
® You must have downloaded the CodeReady Studio installer.

® You must have downloaded and successfully installed Fuse on Karaf.

Procedure
1. In CodeReady Studio, create a new project, as follows:
a. Select File=New=Fuse Integration Project.
b. Enter fuse-camel-cbr in the Project Name field.
c. Click Next.
d. Inthe Select a Target Environmentpane, choose the following settings:

® Select Standalone as the deployment platform.

® Select Karaf/Fuse on Karaf as the runtime environment and use the Runtime
(optional) dropdown menu to select the fuse-karaf-7.11.1.fuse-7_11_1-00013-redhat-
00003 Runtime server as the target runtime.

e. After selecting the target runtime, the Camel Version is automatically selected for you and
the field is grayed out.

f. Click Next.

g. Inthe Advanced Project Setup pane, select the Beginner-»Content Based Router -
Blueprint DSL template.

h. Click Finish.
i. If prompted to open the associated Fuse Integration perspective, click Yes.

j. Wait while CodeReady Studio downloads required artifacts and builds the project in the
background.

IMPORTANT

If this is the first time you are building a Fuse project in CodeReady Studio, it
will take several minutes for the wizard to finish generating the project, as it
downloads dependencies from remote Maven repositories. Do not attempt
to interrupt the wizard or close CodeReady Studio while the project is
building in the background.

2. Deploy the project to the server, as follows:

a. Inthe Servers view (bottom left corner of the Fuse Integration perspective), if the server is
not already started, select the fuse-karaf-7.11.1.fuse-7_11_1-00013-redhat-00003
Runtime Server server and click the green arrow to start it.

https://access.redhat.com/login
https://developers.redhat.com/content-gateway/file/codereadystudio-12.21.3.GA-installer-standalone.jar
https://access.redhat.com/jbossnetwork/restricted/softwareDownload.html?softwareId=104906

Red Hat Fuse 7.11 Getting Started with Fuse on Apache Karaf

NOTE

If you see the dialog, Warning: The authenticity of host 'localhost’ can’t be
established., click Yes to connect to the server and access the Karaf
console.

Wait until you see a message like the following in the Console view:

I Karaf started in 1s. Bundle stats: 12 active, 12 total

. After the server has started, switch back to the Servers view, right-click on the server and

select Add and Remove from the context menu.

In the Add and Removedialog, select the fuse-camel-cbr project and click the Add >
button.

Click Finish.

You can check whether the project’s OSGi bundle has started up by going to the Terminal
view and entering bundle:list | tail. You should see some output like the following:

228 | Active | 80 | 1.0.0.201505202023 | org.osgi:org.osgi.service.j
232 | Active | 80 | 1.0.0.SNAPSHOT | Fuse CBR Quickstart
NOTE

As soon as the Camel route starts up, it will create a directory,
work/cbr/input, in your Fuse installation (not in the fuse-camel-cbr project).

3. Copy the files you find in the project’s sre/main/data directory to the
FUSE_INSTALL/work/cbr/input directory. You can do this in your system file browser (outside
of Eclipse).

4. Wait a few moments and then look in the FUSE_INSTALL/work/cbr/output directory to see the
same files organized by country:

a.

b.

C.

order1.xml in work/cbr/output/others
order2.xml and order4.xml in work/cbr/output/uk

order3.xml and order5.xml in work/cbr/output/us

5. Undeploy the project, as follows:

a.

b.

In the Servers view, select the Red Hat Fuse 7+ Runtime Server server.
Right-click on the server and select Add and Remove from the context menu.

In the Add and Removedialog, select your fuse-camel-cbr project and click the < Remove
button.

Click Finish.

CHAPTER 2. SETTING UP MAVEN LOCALLY

CHAPTER 2. SETTING UP MAVEN LOCALLY

Typical Fuse application development uses Maven to build and manage projects.
The following topics describe how to set up Maven locally:

® Section 2.1, “Preparing to set up Maven”

Section 2.2, "Adding Red Hat repositories to Maven”

Section 2.3, "Using local Maven repositories”

Section 2.4, “Setting Maven mirror using environmental variables or system properties”

Section 2.5, “About Maven artifacts and coordinates”

2.1. PREPARING TO SET UP MAVEN

Maven is a free, open source, build tool from Apache. Typically, you use Maven to build Fuse
applications.

Procedure

1. Download the latest version of Maven from the Maven download page.

2. Ensure that your system is connected to the Internet.
While building a project, the default behavior is that Maven searches external repositories and
downloads the required artifacts. Maven looks for repositories that are accessible over the
Internet.

You can change this behavior so that Maven searches only repositories that are on a local
network. That is, Maven can run in an offline mode. In offline mode, Maven looks for artifacts in
its local repository. See Section 2.3, “Using local Maven repositories”.

2.2. ADDING RED HAT REPOSITORIES TO MAVEN

To access artifacts that are in Red Hat Maven repositories, you need to add those repositories to
Maven's settings.xml file. Maven looks for the settings.xml file in the .m2 directory of the user’'s home
directory. If there is not a user specified settings.xml file, Maven uses the system-level settings.xml
file at M2_HOME/conf/settings.xml.

Prerequisite

You know the location of the settings.xml file in which you want to add the Red Hat repositories.
Procedure
In the settings.xml file, add repository elements for the Red Hat repositories as shown in this example:

<?xml version="1.0"?>
<settings>

<profiles>
<profile>
<id>extra-repos</id>

http://maven.apache.org/download.html

Red Hat Fuse 7.11 Getting Started with Fuse on Apache Karaf

<activation>
<activeByDefault>true</activeByDefault>
</activation>
<repositories>
<repository>
<id>redhat-ga-repository</id>
<url>https://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>redhat-ea-repository</id>
<url>https://maven.repository.redhat.com/earlyaccess/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>jboss-public</id>
<name>JBoss Public Repository Group</name>
<url>https://repository.jboss.org/nexus/content/groups/public/</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>redhat-ga-repository</id>
<url>https://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
<pluginRepository>
<id>redhat-ea-repository</id>
<url>https://maven.repository.redhat.com/earlyaccess/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
<pluginRepository>
<id>jboss-public</id>
<name>JBoss Public Repository Group</name>
<url>https://repository.jboss.org/nexus/content/groups/public</url>
</pluginRepository>

10

CHAPTER 2. SETTING UP MAVEN LOCALLY

</pluginRepositories>
</profile>
</profiles>

<activeProfiles>

<activeProfile>extra-repos</activeProfile>
</activeProfiles>

</settings>

2.3. USING LOCAL MAVEN REPOSITORIES

If you are running a container without an Internet connection, and you need to deploy an application that
has dependencies that are not available offline, you can use the Maven dependency plug-in to download
the application’s dependencies into a Maven offline repository. You can then distribute this customized
Maven offline repository to machines that do not have an Internet connection.

Procedure

1. In the project directory that contains the pom.xml file, download a repository for a Maven
project by running a command such as the following:

mvn org.apache.maven.plugins:maven-dependency-plugin:3.1.0:go-offline -
Dmaven.repo.local=/tmp/my-project

In this example, Maven dependencies and plug-ins that are required to build the project are
downloaded to the /tmp/my-project directory.

2. Distribute this customized Maven offline repository internally to any machines that do not have
an Internet connection.

2.4. SETTING MAVEN MIRROR USING ENVIRONMENTAL VARIABLES
OR SYSTEM PROPERTIES

When running the applications you need access to the artifacts that are in the Red Hat Maven
repositories. These repositories are added to Maven's settings.xml file. Maven checks the following
locations for settings.xml file:

® |ooks for the specified url

e if not found looks for ${user.home}/.m2/settings.xml

e if not found looks for ${maven.home}/conf/settings.xml

e if not found looks for ${M2_HOME}/conf/settings.xml

e if no location is found, empty org.apache.maven.settings.Settings instance is created.

2.4.1. About Maven mirror

Maven uses a set of remote repositories to access the artifacts, which are currently not available in local
repository. The list of repositories almost always contains Maven Central repository, but for Red Hat
Fuse, it also contains Maven Red Hat repositories. In some cases where it is not possible or allowed to

1

Red Hat Fuse 7.11 Getting Started with Fuse on Apache Karaf

access different remote repositories, you can use a mechanism of Maven mirrors. A mirror replaces a
particular repository URL with a different one, so all HTTP traffic when remote artifacts are being
searched for can be directed to a single URL.

2.4.2. Adding Maven mirror to settings.xml

To set the Maven mirror, add the following section to Maven's settings.xmil:

<mirror>
<id>all</id>
<mirrorOf>*</mirrorOf>
<url>http://host:port/path</url>
</mirror>

No mirror is used if the above section is not found in the settings.xml file. To specify a global mirror
without providing the XML configuration, you can use either system property or environmental variables.

2.4.3. Setting Maven mirror using environmental variable or system property
To set the Maven mirror using either environmental variable or system property, you can add:
® [Environmental variable called MAVEN_MIRROR_URL to bin/setenv file

® System property called mavenMirrorUrl to etc/system.properties file

2.4.4. Using Maven options to specify Maven mirror url

To use an alternate Maven mirror url, other than the one specified by environmental variables or system
property, use the following maven options when running the application:

o -DmavenMirrorUrl=mirrorid::mirrorUrl
for example, -DmavenMirrorUrl=my-mirror::http://mirror.net/repository

e -DmavenMirrorUrl=mirrorUrl
for example, -DmavenMirrorUrl=http://mirror.net/repository. In this example, the <id> of the
<mirror> is just a mirror.

2.5. ABOUT MAVEN ARTIFACTS AND COORDINATES

In the Maven build system, the basic building block is an artifact. After a build, the output of an artifact is
typically an archive, such as a JAR or WAR file.

A key aspect of Maven is the ability to locate artifacts and manage the dependencies between them. A
Maven coordinate is a set of values that identifies the location of a particular artifact. A basic coordinate
has three values in the following form:

groupld:artifactld:version

Sometimes Maven augments a basic coordinate with a packaging value or with both a packaging value
and a classifier value. A Maven coordinate can have any one of the following forms:

groupld:artifactld:version
groupld:artifactld:packaging:version
groupld:artifactld:packaging:classifier:version

12

CHAPTER 2. SETTING UP MAVEN LOCALLY

Here are descriptions of the values:

groupdld

Defines a scope for the name of the artifact. You would typically use all or part of a package name as
a group ID. For example, org.fusesource.example.

artifactld
Defines the artifact name relative to the group ID.
version

Specifies the artifact’s version. A version number can have up to four parts: n.n.n.n, where the last
part of the version number can contain non-numeric characters. For example, the last part of 1.0-
SNAPSHOT is the alphanumeric substring, 0-SNAPSHOT.

packaging

Defines the packaged entity that is produced when you build the project. For OSGi projects, the
packaging is bundle. The default value is jar.

classifier

Enables you to distinguish between artifacts that were built from the same POM, but have different
content.

Elements in an artifact’s POM file define the artifact’s group ID, artifact ID, packaging, and version, as
shown here:

<project ... >

<groupld>org.fusesource.example</groupld>
<artifactld>bundle-demo</artifactld>
<packaging>bundle</packaging>
<version>1.0-SNAPSHOT</ersion>

</project>

To define a dependency on the preceding artifact, you would add the following dependency element to
a POM file:

<project ... >

<dependencies>
<dependency>
<groupld>org.fusesource.example</groupld>
<artifactld>bundle-demo</artifactld>
<version>1.0-SNAPSHOT</version>
</dependency>
</dependencies>

</project>

NOTE

It is not necessary to specify the bundle package type in the preceding dependency,
because a bundle is just a particular kind of JAR file and jar is the default Maven package
type. If you do need to specify the packaging type explicitly in a dependency, however,
you can use the type element.

13

Red Hat Fuse 7.11 Getting Started with Fuse on Apache Karaf

14

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. GETTING STARTED WITH FUSE ON KARAF
	1.1. ABOUT FUSE ON KARAF
	1.2. INSTALLING FUSE ON KARAF
	1.3. BUILDING YOUR FIRST FUSE APPLICATION ON KARAF

	CHAPTER 2. SETTING UP MAVEN LOCALLY
	2.1. PREPARING TO SET UP MAVEN
	2.2. ADDING RED HAT REPOSITORIES TO MAVEN
	2.3. USING LOCAL MAVEN REPOSITORIES
	2.4. SETTING MAVEN MIRROR USING ENVIRONMENTAL VARIABLES OR SYSTEM PROPERTIES
	2.4.1. About Maven mirror
	2.4.2. Adding Maven mirror to settings.xml
	2.4.3. Setting Maven mirror using environmental variable or system property
	2.4.4. Using Maven options to specify Maven mirror url

	2.5. ABOUT MAVEN ARTIFACTS AND COORDINATES

