
Red Hat Fuse 7.13

Migration Guide

Migrate to Red Hat Fuse 7.13

Last Updated: 2024-06-14

Red Hat Fuse 7.13 Migration Guide

Migrate to Red Hat Fuse 7.13

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use this guide to help you when upgrading your Fuse installation to the latest version of Red Hat
Fuse.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. UPGRADING FUSE ON OPENSHIFT

CHAPTER 2. UPGRADING FUSE ONLINE

CHAPTER 3. UPGRADE TO SPRING BOOT 2
3.1. BEFORE YOU BEGIN
3.2. UPGRADE FROM SPRING BOOT 1 TO SPRING BOOT 2

CHAPTER 4. MIGRATING FROM FABRIC8 MAVEN PLUGIN TO OPENSHIFT MAVEN PLUGIN

CHAPTER 5. UPGRADING FUSE APPLICATIONS ON SPRING BOOT STANDALONE
5.1. CAMEL MIGRATION CONSIDERATIONS
5.2. ABOUT MAVEN DEPENDENCIES
5.3. UPDATING YOUR FUSE PROJECT’S MAVEN DEPENDENCIES

CHAPTER 6. UPGRADING FUSE APPLICATIONS ON JBOSS EAP STANDALONE
6.1. CAMEL MIGRATION CONSIDERATIONS
6.2. ABOUT MAVEN DEPENDENCIES
6.3. UPDATING YOUR FUSE PROJECT’S MAVEN DEPENDENCIES
6.4. UPGRADING YOUR JAVA EE DEPENDENCIES
6.5. UPGRADING AN EXISTING FUSE ON JBOSS EAP INSTALLATION
6.6. UPGRADING FUSE AND JBOSS EAP SIMULTANEOUSLY

CHAPTER 7. UPGRADING FUSE APPLICATIONS ON KARAF STANDALONE
7.1. CAMEL MIGRATION CONSIDERATIONS
7.2. ABOUT MAVEN DEPENDENCIES
7.3. UPDATING YOUR FUSE PROJECT’S MAVEN DEPENDENCIES

CHAPTER 8. UPGRADING FUSE STANDALONE ON KARAF
8.1. IMPACT OF UPGRADING FUSE ON KARAF
8.2. UPGRADING FUSE STANDALONE ON KARAF
8.3. ROLLING BACK AN UPGRADE FOR FUSE ON KARAF

3

4

5

6

7
7
7

9

10
10
12
13

15
15
18
18
19

20
20

21
21
23
24

26
26
26
28

Table of Contents

1

Red Hat Fuse 7.13 Migration Guide

2

PREFACE
This guide provides information on updating Red Hat Fuse and Fuse applications:

NOTE

If you want to migrate from Fuse 6 to the latest Fuse 7 release, before you follow the
instructions in this guide, you should follow the instructions in the Red Hat Fuse 7.0
Migration Guide.

Chapter 2, Upgrading Fuse Online

Chapter 5, Upgrading Fuse applications on Spring Boot standalone

Chapter 4, Migrating from Fabric8 Maven plugin to Openshift Maven plugin

Chapter 6, Upgrading Fuse applications on JBoss EAP standalone

Chapter 7, Upgrading Fuse applications on Karaf standalone

Chapter 8, Upgrading Fuse Standalone on Karaf

PREFACE

3

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.0/html/migration_guide/index

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Fuse 7.13 Migration Guide

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. UPGRADING FUSE ON OPENSHIFT
Fuse 7.12 contains updates that enable it to work with OpenShift Container Platform (OCP) 4.9 or later.
If you plan to upgrade to OCP 4.10, you must upgrade Fuse to version 7.11 before you upgrade OCP to
version 4.10. Earlier versions of Fuse (prior to 7.10) do not support OCP 4.9 or later.

For more information, see Fuse on OpenShift Guide.

CHAPTER 1. UPGRADING FUSE ON OPENSHIFT

5

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.13/html-single/fuse_on_openshift_guide

CHAPTER 2. UPGRADING FUSE ONLINE
From time to time, fresh application images, which incorporate patches and security fixes, are released
for Fuse. You are notified of these updates through Red Hat’s errata update channel. You can then
upgrade your Fuse images.

For OCP 4.x, use the OpenShift OperatorHub to upgrade from Fuse 7.10 to 7.11, by following the steps
in Upgrading Fuse by using the OperatorHub (OCP 4.x).

You should determine whether upgrading to Fuse 7.11 requires you to make changes to your existing
integrations. Even if no changes are required, you must republish any running integration when you
upgrade Fuse.

Upgrading Fuse by using the OperatorHub (OCP 4.x)

Use the OpenShift OperatorHub to upgrade from Fuse Online 7.10 to 7.11.

1. If you want to upgrade from Fuse 7.9.x to Fuse Online 7.10.1, you must first manually upgrade to
Fuse 7.10.0 as described in the Upgrading from Fuse Online 7.9.x to 7.10.1 requires manual
upgrade steps release note.

2. Fuse 7.11 requires OpenShift Container Platform (OCP) 4.6 or later. If you are using OCP 4.5 or
earlier, you must upgrade to OCP 4.6 or later, if you want to upgrade to Fuse 7.11 .

3. On OCP 4.9, When you upgrade to 7.11, the following warning is displayed during the Fuse
Operator upgrade process:
W1219 18:38:58.064578 1 warnings.go:70] extensions/v1beta1 Ingress is deprecated in
v1.14+, unavailable in v1.22+; use networking.k8s.io/v1 Ingress

This warning appears because clients (that Fuse uses for the Kubernetes/OpenShift API
initialization code) access a deprecated Ingress version. This warning is not an indicator of
complete use of deprecated APIs and there is no issue with upgrading to Fuse 7.11.

The upgrade process from a Fuse Online 7.10 or an earlier version to a newer Fuse Online 7.11 version
depends on the Approval Strategy that you selected when you installed Fuse Online:

For Automatic updates, when a new version of the Fuse operator is available, the OpenShift
Operator Lifecycle Manager (OLM) automatically upgrades the running instance of the Fuse
Online without human intervention.

For Manual updates, when a newer version of an Operator is available, the OLM creates an
update request. As a cluster administrator, you must then manually approve that update request
to have the Fuse Online operator updated to the new version as described in the Manually
approving a pending Operator upgrade section of the OpenShift documentation.

During and after an infrastructure upgrade, existing integrations continue to run with the older versions
of Fuse libraries and dependencies.

To have existing integrations run with the updated Fuse Online version, you must republish the
integrations.

Red Hat Fuse 7.13 Migration Guide

6

CHAPTER 3. UPGRADE TO SPRING BOOT 2
This chapter explains how to upgrade your applications to Spring Boot 2.0 from Spring Boot 1.

3.1. BEFORE YOU BEGIN

Before you start the migration to Spring Boot 2, you must review the system requirements and
dependencies.

Upgrade to the latest 1.5.x version

Before you start, upgrade to the latest 1.5.x available version. This is to ensure that you are
building against the most recent dependencies of that line.

Review dependencies

The migration to Spring Boot 2 will result in upgrading a number of dependencies. Review
the dependency management for 1.5.x with the dependency management for 2.0.x to assess
how your project is affected.

Identify the compatible versions for the dependencies that are not managed by Spring Boot
and then define the explicit versions for these.

Review custom configuration

Any custom configuration that your project defines might need to be reviewed on upgrade.
If this can be replaced by the use of standard auto-configuration, do it so before upgrading.

Review system requirements

Spring Boot 2.0 requires Java 8 or later.

It also requires Spring Framework 5.0.

Java 6 and 7 are no longer supported.

3.2. UPGRADE FROM SPRING BOOT 1 TO SPRING BOOT 2

Once you have reviewed the state of your project and its dependencies, upgrade to the latest
maintenance release of Spring Boot 2.x. It is recommended to upgrade in the phases. For example, first
upgrade from Spring Boot 1.5 to Spring Boot 2.0 and then upgrade to 2.1 and then to the latest
maintenance release of Spring Boot 2.

Migrating configuration properties

With Spring Boot 2.0, many configuration properties were renamed or removed. Hence you need to
update the application.properties/application.yml accordingly. You can achieve that with the help of a
new spring-boot-properties-migrator module. Once added as a dependency to your project, this will
not only analyze your application’s environment and print diagnostics at startup, but also temporarily
migrate properties at runtime for you.

Procedure

1. Add spring-boot-properties-migrator module to dependency section of your project’s
pom.xml.

CHAPTER 3. UPGRADE TO SPRING BOOT 2

7

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-properties-migrator</artifactId>
 <scope>runtime</scope>
</dependency>

runtime("org.springframework.boot:spring-boot-properties-migrator")

NOTE

Once you’re done with the migration, please make sure to remove this module from your
project’s dependencies.

Red Hat Fuse 7.13 Migration Guide

8

CHAPTER 4. MIGRATING FROM FABRIC8 MAVEN PLUGIN TO
OPENSHIFT MAVEN PLUGIN

The fabric8-maven-plugin has been completely removed from Fuse 7.11. We recommend that you use
the openshift-maven-plugin instead for building and deploying Maven projects in Fuse on OpenShift.

Procedure

Use the following instructions to update your application so that it can use the openshift-maven plugin.

1. Rename the src/main/fabric8 directories in your applications to src/main/jkube.

2. Locate the org.jboss.redhat-fuse:fabric8-maven-plugin dependency in your project’s
pom.xml and change it to org.jboss.redhat-fuse:openshift-maven-plugin. See the Sample
pom.xml.

3. Check the dependencies. For example, org.arquillian.cube:arquillian-cube-openshift,
org.jboss.arquillian.junit:arquillian-junit-container, io.fabric8:kubernetes-assertions are no
longer used in our examples and may no longer be needed.

4. You can create some sample tests that can be used to reflect the API changes after the
migration. For more information see the sample tests in the Spring Boot Camel quickstart .

Additional resources

OpenShift Maven plugin .

CHAPTER 4. MIGRATING FROM FABRIC8 MAVEN PLUGIN TO OPENSHIFT MAVEN PLUGIN

9

https://github.com/fabric8-quickstarts/spring-boot-camel/blob/fuse-7.x.sb2.redhat/pom.xml#L164
https://github.com/fabric8-quickstarts/spring-boot-camel/blob/fuse-7.x.sb2.redhat/src/test/java/io/fabric8/tests/integration/KubernetesIntegrationKT.java
https://www.eclipse.org/jkube/docs/openshift-maven-plugin

CHAPTER 5. UPGRADING FUSE APPLICATIONS ON SPRING
BOOT STANDALONE

To upgrade your Fuse applications on Spring Boot:

You should consider Apache Camel updates as described in Section 5.1, “Camel migration
considerations”.

You must update your Fuse project’s Maven dependencies to ensure that you are using the
correct version of Fuse.

Typically, you use Maven to build Fuse applications. Maven is a free and open source build tool from
Apache. Maven configuration is defined in a Fuse application project’s pom.xml file. While building a
Fuse project, the default behavior is that Maven searches external repositories and downloads the
required artifacts. You add a dependency for the Fuse Bill of Materials (BOM) to the pom.xml file so
that the Maven build process picks up the correct set of Fuse supported artifacts.

The following sections provide information on Maven dependencies and how to update them in your
Fuse projects.

Section 5.2, “About Maven dependencies”

Section 5.3, “Updating your Fuse project’s Maven dependencies”

5.1. CAMEL MIGRATION CONSIDERATIONS

Creating a connection to MongoDB using the MongoClients factory

From Fuse 7.12, use com.mongodb.client.MongoClient instead of com.mongodb.MongoClient to
create a connection to MongoDB (note the extra .client sub-package in the full path).

If any of your existing Fuse applications use the camel-mongodb component, you must:

Update your applications to create the connection bean as a
com.mongodb.client.MongoClient instance.
For example, create a connection to MongoDB as follows:

import com.mongodb.client.MongoClient;

You can then create the MongoClient bean as shown in following example:

return MongoClients.create("mongodb://admin:password@192.168.99.102:32553");

Evaluate and, if needed, refactor any code related to the methods exposed by the MongoClient
class.

Camel 2.23

Red Hat Fuse uses Apache Camel 2.23. You should consider the following updates to Camel 2.22 and
2.23 when you upgrade to Fuse 7.8.

Camel 2.22 updates

Camel has upgraded from Spring Boot v1 to v2 and therefore v1 is no longer supported.

Upgraded to Spring Framework 5. Camel should work with Spring 4.3.x as well, but going

Red Hat Fuse 7.13 Migration Guide

10

Upgraded to Spring Framework 5. Camel should work with Spring 4.3.x as well, but going
forward Spring 5.x will be the minimum Spring version in future releases.

Upgraded to Karaf 4.2. You may run Camel on Karaf 4.1 but we only officially support Karaf 4.2 in
this release.

Optimized using toD DSL to reuse endpoints and producers for components where it is possible.
For example, HTTP based components will now reuse producer (HTTP clients) with dynamic
URIs sending to the same host.

The File2 consumer with read-lock idempotent/idempotent-changed can now be configured to
delay the release tasks to expand the window when a file is regarded as in-process, which is
usable in active/active cluster settings with a shared idempotent repository to ensure other
nodes don’t too quickly see a processed file as a file they can process (only needed if you have
readLockRemoveOnCommit=true).

Allow to plugin a custom request/reply correlation id manager implementation on Netty4
producer in request/reply mode. The Twitter component now uses extended mode by default
to support tweets greater than 140 characters

Rest DSL producer now supports being configured in REST configuration by using
endpointProperties.

The Kafka component now supports HeaderFilterStrategy to plugin custom implementations
for controlling header mappings between Camel and Kafka messages.

REST DSL now supports client request validation to validate that Content-Type/Accept
headers are possible for the REST service.

Camel now has a Service Registry SPI which allows you to register routes to a service registry
(such as consul, etcd, or zookeeper) by using a Camel implementation or Spring Cloud.

The SEDA component now has a default queue size of 1000 instead of unlimited.

The following noteworthy issues have been fixed:

Fixed a CXF continuation timeout issue with camel-cxf consumer that could cause the
consumer to return a response with data instead of triggering a timeout to the calling SOAP
client.

Fixed camel-cxf consumer doesn’t release UoW when using a robust one-way operation.

Fixed using AdviceWith and using weave methods on onException etc. not working.

Fixed Splitter in parallel processing and streaming mode may block, while iterating message
body when the iterator throws an exception in the first invoked next() method call.

Fixed Kafka consumer to not auto commit if autoCommitEnable=false.

Fixed file consumer was using markerFile as read-lock by default, which should have been
none.

Fixed using manual commit with Kafka to provide the current record offset and not the
previous (and -1 for first).

Fixed Content Based Router in Java DSL may not resolve property placeholders in when
predicates.

CHAPTER 5. UPGRADING FUSE APPLICATIONS ON SPRING BOOT STANDALONE

11

Camel 2.23 updates

Upgraded to Spring Boot 2.1.

Additional component-level options can now be configured by using spring-boot auto-
configuration. These options are included in the spring-boot component metadata JSON file
descriptor for tooling assistance.

Added a documentation section that includes all the Spring Boot auto configuration options for
all the components, data-formats, and languages.

All the Camel Spring Boot starter JARs now include META-INF/spring-autoconfigure-
metadata.properties file in their JARs to optimize Spring Boot auto-configuration.

The Throttler now supports correlation groups based on dynamic expression so that you can
group messages into different throttled sets.

The Hystrix EIP now allows inheritance for Camel’s error handler so that you can retry the entire
Hystrix EIP block again if you have enabled error handling with redeliveries.

SQL and ElSql consumers now support dynamic query parameters in route form. Note that this
feature is limited to calling beans by using simple expressions.

The swagger-restdsl maven plugin now supports generating DTO model classes from the
Swagger specification file.

The following noteworthy issues have been fixed:

The Aggregator2 has been fixed to not propagate control headers for forcing completion of
all groups, so it will not happen again if another aggregator EIP is in use later during routing.

Fixed Tracer not working if redelivery was activa†ed in the error handler.

The built-in type converter for XML Documents may output parsing errors to stdout, which
has now been fixed to output by using the logging API.

Fixed SFTP writing files by using the charset option would not work if the message body was
streaming-based.

Fixed Zipkin root id to not be reused when routing over multiple routes to group them
together into a single parent span.

Fixed optimized toD when using HTTP endpoints had a bug when the hostname contains an
IP address with digits.

Fixed issue with RabbitMQ with request/reply over temporary queues and using manual
acknowledge mode. It would not acknowledge the temporary queue (which is needed to
make request/reply possible).

Fixed various HTTP consumer components that may not return all allowed HTTP verbs in
Allow header for OPTIONS requests (such as when using rest-dsl).

Fixed the thread-safety issue with FluentProducerTemplate.

5.2. ABOUT MAVEN DEPENDENCIES

The purpose of a Maven Bill of Materials (BOM) file is to provide a curated set of Maven dependency

Red Hat Fuse 7.13 Migration Guide

12

The purpose of a Maven Bill of Materials (BOM) file is to provide a curated set of Maven dependency
versions that work well together, saving you from having to define versions individually for every Maven
artifact.

There is a dedicated BOM file for each container in which Fuse runs.

NOTE

You can find these BOM files here: https://github.com/jboss-fuse/redhat-fuse.
Alternatively, go to the latest Release Notes for information on BOM file updates.

The Fuse BOM offers the following advantages:

Defines versions for Maven dependencies, so that you do not need to specify the version when
you add a dependency to your pom.xml file.

Defines a set of curated dependencies that are fully tested and supported for a specific version
of Fuse.

Simplifies upgrades of Fuse.

IMPORTANT

Only the set of dependencies defined by a Fuse BOM are supported by Red Hat.

5.3. UPDATING YOUR FUSE PROJECT’S MAVEN DEPENDENCIES

To upgrade your Fuse application for Spring Boot, update your project’s Maven dependencies.

Procedure

1. Open your project’s pom.xml file.

2. Add a dependencyManagement element in your project’s pom.xml file (or, possibly, in a parent
pom.xml file), as shown in the following example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <fuse.version>7.13.0.fuse-7_13_0-00012-redhat-00001</fuse.version>

 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${fuse.version}</version>
 <type>pom</type>
 <scope>import</scope>

CHAPTER 5. UPGRADING FUSE APPLICATIONS ON SPRING BOOT STANDALONE

13

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://github.com/jboss-fuse/redhat-fuse
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.13/html-single/release_notes_for_red_hat_fuse_7.13#StandaloneDistrib-BOMs

NOTE

Ensure you update your Spring Boot version as well. This is typically found under
the Fuse version in the pom.xml file:

3. Save your pom.xml file.

After you specify the BOM as a dependency in your pom.xml file, it becomes possible to add Maven
dependencies to your pom.xml file without specifying the version of the artifact. For example, to add a
dependency for the camel-velocity component, you would add the following XML fragment to the
dependencies element in your pom.xml file:

Note how the version element is omitted from this dependency definition.

 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

 <properties>
 <!-- configure the versions you want to use here -->
 <fuse.version>7.13.0.fuse-7_13_0-00012-redhat-00001</fuse.version>
 <spring-boot.version>2.7.18</spring-boot.version>
 </properties>

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-velocity</artifactId>
 <scope>provided</scope>
</dependency>

Red Hat Fuse 7.13 Migration Guide

14

CHAPTER 6. UPGRADING FUSE APPLICATIONS ON JBOSS
EAP STANDALONE

To upgrade your Fuse applications on JBoss EAP:

You should consider Apache Camel updates as described in Section 6.1, “Camel migration
considerations”.

You must update your Fuse project’s Maven dependencies to ensure that you are using the
correct version of Fuse.
Typically, you use Maven to build Fuse applications. Maven is a free and open source build tool
from Apache. Maven configuration is defined in a Fuse application project’s pom.xml file. While
building a Fuse project, the default behavior is that Maven searches external repositories and
downloads the required artifacts. You add a dependency for the Fuse Bill of Materials (BOM) to
the pom.xml file so that the Maven build process picks up the correct set of Fuse supported
artifacts.

The following sections provide information on Maven dependencies and how to update them in
your Fuse projects.

Section 6.2, “About Maven dependencies”

Section 6.3, “Updating your Fuse project’s Maven dependencies”

You must update your Fuse project’s Maven dependencies to ensure that you are using the
upgraded versions of the Java EE dependencies as described in Section 6.4, “Upgrading your
Java EE dependencies”.

6.1. CAMEL MIGRATION CONSIDERATIONS

Creating a connection to MongoDB using the MongoClients factory

From Fuse 7.12, use com.mongodb.client.MongoClient instead of com.mongodb.MongoClient to
create a connection to MongoDB (note the extra .client sub-package in the full path).

If any of your existing Fuse applications use the camel-mongodb component, you must:

Update your applications to create the connection bean as a
com.mongodb.client.MongoClient instance.
For example, create a connection to MongoDB as follows:

import com.mongodb.client.MongoClient;

You can then create the MongoClient bean as shown in following example:

return MongoClients.create("mongodb://admin:password@192.168.99.102:32553");

Evaluate and, if needed, refactor any code related to the methods exposed by the MongoClient
class.

Camel 2.23

Red Hat Fuse uses Apache Camel 2.23. You should consider the following updates to Camel 2.22 and
2.23 when you upgrade to Fuse 7.8.

CHAPTER 6. UPGRADING FUSE APPLICATIONS ON JBOSS EAP STANDALONE

15

Camel 2.22 updates

Camel has upgraded from Spring Boot v1 to v2 and therefore v1 is no longer supported.

Upgraded to Spring Framework 5. Camel should work with Spring 4.3.x as well, but going
forward Spring 5.x will be the minimum Spring version in future releases.

Upgraded to Karaf 4.2. You may run Camel on Karaf 4.1 but we only officially support Karaf 4.2 in
this release.

Optimized using toD DSL to reuse endpoints and producers for components where it is possible.
For example, HTTP based components will now reuse producer (HTTP clients) with dynamic
URIs sending to the same host.

The File2 consumer with read-lock idempotent/idempotent-changed can now be configured to
delay the release tasks to expand the window when a file is regarded as in-process, which is
usable in active/active cluster settings with a shared idempotent repository to ensure other
nodes don’t too quickly see a processed file as a file they can process (only needed if you have
readLockRemoveOnCommit=true).

Allow to plugin a custom request/reply correlation id manager implementation on Netty4
producer in request/reply mode. The Twitter component now uses extended mode by default
to support tweets greater than 140 characters

Rest DSL producer now supports being configured in REST configuration by using
endpointProperties.

The Kafka component now supports HeaderFilterStrategy to plugin custom implementations
for controlling header mappings between Camel and Kafka messages.

REST DSL now supports client request validation to validate that Content-Type/Accept
headers are possible for the REST service.

Camel now has a Service Registry SPI which allows you to register routes to a service registry
(such as consul, etcd, or zookeeper) by using a Camel implementation or Spring Cloud.

The SEDA component now has a default queue size of 1000 instead of unlimited.

The following noteworthy issues have been fixed:

Fixed a CXF continuation timeout issue with camel-cxf consumer that could cause the
consumer to return a response with data instead of triggering a timeout to the calling SOAP
client.

Fixed camel-cxf consumer doesn’t release UoW when using a robust one-way operation.

Fixed using AdviceWith and using weave methods on onException etc. not working.

Fixed Splitter in parallel processing and streaming mode may block, while iterating message
body when the iterator throws an exception in the first invoked next() method call.

Fixed Kafka consumer to not auto commit if autoCommitEnable=false.

Fixed file consumer was using markerFile as read-lock by default, which should have been
none.

Fixed using manual commit with Kafka to provide the current record offset and not the
previous (and -1 for first).

Red Hat Fuse 7.13 Migration Guide

16

Fixed Content Based Router in Java DSL may not resolve property placeholders in when
predicates.

Camel 2.23 updates

Upgraded to Spring Boot 2.1.

Additional component-level options can now be configured by using spring-boot auto-
configuration. These options are included in the spring-boot component metadata JSON file
descriptor for tooling assistance.

Added a documentation section that includes all the Spring Boot auto configuration options for
all the components, data-formats, and languages.

All the Camel Spring Boot starter JARs now include META-INF/spring-autoconfigure-
metadata.properties file in their JARs to optimize Spring Boot auto-configuration.

The Throttler now supports correlation groups based on dynamic expression so that you can
group messages into different throttled sets.

The Hystrix EIP now allows inheritance for Camel’s error handler so that you can retry the entire
Hystrix EIP block again if you have enabled error handling with redeliveries.

SQL and ElSql consumers now support dynamic query parameters in route form. Note that this
feature is limited to calling beans by using simple expressions.

The swagger-restdsl maven plugin now supports generating DTO model classes from the
Swagger specification file.

The following noteworthy issues have been fixed:

The Aggregator2 has been fixed to not propagate control headers for forcing completion of
all groups, so it will not happen again if another aggregator EIP is in use later during routing.

Fixed Tracer not working if redelivery was activa†ed in the error handler.

The built-in type converter for XML Documents may output parsing errors to stdout, which
has now been fixed to output by using the logging API.

Fixed SFTP writing files by using the charset option would not work if the message body was
streaming-based.

Fixed Zipkin root id to not be reused when routing over multiple routes to group them
together into a single parent span.

Fixed optimized toD when using HTTP endpoints had a bug when the hostname contains an
IP address with digits.

Fixed issue with RabbitMQ with request/reply over temporary queues and using manual
acknowledge mode. It would not acknowledge the temporary queue (which is needed to
make request/reply possible).

Fixed various HTTP consumer components that may not return all allowed HTTP verbs in
Allow header for OPTIONS requests (such as when using rest-dsl).

Fixed the thread-safety issue with FluentProducerTemplate.

CHAPTER 6. UPGRADING FUSE APPLICATIONS ON JBOSS EAP STANDALONE

17

6.2. ABOUT MAVEN DEPENDENCIES

The purpose of a Maven Bill of Materials (BOM) file is to provide a curated set of Maven dependency
versions that work well together, saving you from having to define versions individually for every Maven
artifact.

There is a dedicated BOM file for each container in which Fuse runs.

NOTE

You can find these BOM files here: https://github.com/jboss-fuse/redhat-fuse.
Alternatively, go to the latest Release Notes for information on BOM file updates.

The Fuse BOM offers the following advantages:

Defines versions for Maven dependencies, so that you do not need to specify the version when
you add a dependency to your pom.xml file.

Defines a set of curated dependencies that are fully tested and supported for a specific version
of Fuse.

Simplifies upgrades of Fuse.

IMPORTANT

Only the set of dependencies defined by a Fuse BOM are supported by Red Hat.

6.3. UPDATING YOUR FUSE PROJECT’S MAVEN DEPENDENCIES

To upgrade your Fuse application for JBoss EAP, update your project’s Maven dependencies.

Procedure

1. Open your project’s pom.xml file.

2. Add a dependencyManagement element in your project’s pom.xml file (or, possibly, in a parent
pom.xml file), as shown in the following example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <fuse.version>7.13.0.fuse-7_13_0-00012-redhat-00001</fuse.version>

 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-eap-bom</artifactId>

Red Hat Fuse 7.13 Migration Guide

18

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://github.com/jboss-fuse/redhat-fuse
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.13/html-single/release_notes_for_red_hat_fuse_7.13#StandaloneDistrib-BOMs

3. Save your pom.xml file.

After you specify the BOM as a dependency in your pom.xml file, it becomes possible to add Maven
dependencies to your pom.xml file without specifying the version of the artifact. For example, to add a
dependency for the camel-velocity component, you would add the following XML fragment to the
dependencies element in your pom.xml file:

Note how the version element is omitted from this dependency definition.

6.4. UPGRADING YOUR JAVA EE DEPENDENCIES

In Fuse 7.8, some managed dependencies in the BOM file have updated groupId or artifactId
properties, therefore you must update your project’s pom.xml file accordingly.

Procedure

1. Open your project’s pom.xml file.

2. To change the org.jboss.spec.javax.transaction version from 1.2 to 1.3 and the
org.jboss.spec.javax.servlet version from 3.1 to 4.0, update the dependencies as shown in the
following example:

3. To migrate from Java EE API to Jakarta EE, replace javax.* with jakarta.* for each groupId and
modify the artifactId for individual dependencies as shown in the following example:

 <version>${fuse.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-velocity</artifactId>
 <scope>provided</scope>
</dependency>

<dependency>
 <groupId>org.jboss.spec.javax.transaction</groupId>
 <artifactId>jboss-transaction-api_1.3_spec</artifactId>
</dependency>

<dependency>
 <groupId>org.jboss.spec.javax.servlet</groupId>
 <artifactId>jboss-servlet-api_4.0_spec</artifactId>
</dependency>

<dependency>
 <groupId>jakarta.validation</groupId>
 <artifactId>jakarta.validation-api</artifactId>
</dependency>

CHAPTER 6. UPGRADING FUSE APPLICATIONS ON JBOSS EAP STANDALONE

19

6.5. UPGRADING AN EXISTING FUSE ON JBOSS EAP INSTALLATION

The following procedure describes how to upgrade an existing Fuse on JBoss EAP installation.

Procedure

1. To upgrade from one JBoss EAP minor release to another, you should follow the instructions in
the JBoss EAP Patching and Upgrading Guide guide.

2. To update Fuse, you must run the Fuse on JBoss EAP installer as described in the Installing on
JBoss EAP guide.

NOTE

You should not need to recompile or redploy your Fuse application.

6.6. UPGRADING FUSE AND JBOSS EAP SIMULTANEOUSLY

The following procedure describes how to upgrade a Fuse installation and the JBoss EAP runtime
simultanously, for example, if you are migrating from Fuse 7.7 on JBoss EAP 7.2 to Fuse 7.8 on JBoss
EAP 7.3.

WARNING

When upgrading both Fuse and the JBoss EAP runtime, Red Hat recommends that
you perform a fresh installation of both Fuse and the JBoss EAP runtime.

Procedure

1. To perform a new installation of the JBoss EAP runtime, follow the instructions in the Installing
on JBoss EAP guide.

2. To perform a new installation of Fuse, run the Fuse on JBoss EAP installer as described in the
Installing on JBoss EAP guide.

<dependency>
 <groupId>jakarta.enterprise</groupId>
 <artifactId>jakarta.enterprise.cdi-api</artifactId>
</dependency>

<dependency>
 <groupId>jakarta.inject</groupId>
 <artifactId>jakarta.inject-api</artifactId>
</dependency>

Red Hat Fuse 7.13 Migration Guide

20

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/patching_and_upgrading_guide/index#upgrading-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.13/html-single/installing_on_jboss_eap/index#installing-fuse-on-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.13/html-single/installing_on_jboss_eap/index#installing-fuse-on-jboss-eap
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.13/html-single/installing_on_jboss_eap/index#installing-fuse-on-jboss-eap

CHAPTER 7. UPGRADING FUSE APPLICATIONS ON KARAF
STANDALONE

To upgrade your Fuse applications on Karaf:

You should consider Apache Camel updates as described in Section 7.1, “Camel migration
considerations”.

You must update your Fuse project’s Maven dependencies to ensure that you are using the
correct version of Fuse.

Typically, you use Maven to build Fuse applications. Maven is a free and open source build tool from
Apache. Maven configuration is defined in a Fuse application project’s pom.xml file. While building a
Fuse project, the default behavior is that Maven searches external repositories and downloads the
required artifacts. You add a dependency for the Fuse Bill of Materials (BOM) to the pom.xml file so
that the Maven build process picks up the correct set of Fuse supported artifacts.

The following sections provide information on Maven dependencies and how to update them in your
Fuse projects.

Section 7.2, “About Maven dependencies”

Section 7.3, “Updating your Fuse project’s Maven dependencies”

7.1. CAMEL MIGRATION CONSIDERATIONS

Creating a connection to MongoDB using the MongoClients factory

From Fuse 7.12, use com.mongodb.client.MongoClient instead of com.mongodb.MongoClient to
create a connection to MongoDB (note the extra .client sub-package in the full path).

If any of your existing Fuse applications use the camel-mongodb component, you must:

Update your applications to create the connection bean as a
com.mongodb.client.MongoClient instance.
For example, create a connection to MongoDB as follows:

import com.mongodb.client.MongoClient;

You can then create the MongoClient bean as shown in following example:

return MongoClients.create("mongodb://admin:password@192.168.99.102:32553");

Evaluate and, if needed, refactor any code related to the methods exposed by the MongoClient
class.

Camel 2.23

Red Hat Fuse uses Apache Camel 2.23. You should consider the following updates to Camel 2.22 and
2.23 when you upgrade to Fuse 7.8.

Camel 2.22 updates

Camel has upgraded from Spring Boot v1 to v2 and therefore v1 is no longer supported.

Upgraded to Spring Framework 5. Camel should work with Spring 4.3.x as well, but going

CHAPTER 7. UPGRADING FUSE APPLICATIONS ON KARAF STANDALONE

21

Upgraded to Spring Framework 5. Camel should work with Spring 4.3.x as well, but going
forward Spring 5.x will be the minimum Spring version in future releases.

Upgraded to Karaf 4.2. You may run Camel on Karaf 4.1 but we only officially support Karaf 4.2 in
this release.

Optimized using toD DSL to reuse endpoints and producers for components where it is possible.
For example, HTTP based components will now reuse producer (HTTP clients) with dynamic
URIs sending to the same host.

The File2 consumer with read-lock idempotent/idempotent-changed can now be configured to
delay the release tasks to expand the window when a file is regarded as in-process, which is
usable in active/active cluster settings with a shared idempotent repository to ensure other
nodes don’t too quickly see a processed file as a file they can process (only needed if you have
readLockRemoveOnCommit=true).

Allow to plugin a custom request/reply correlation id manager implementation on Netty4
producer in request/reply mode. The Twitter component now uses extended mode by default
to support tweets greater than 140 characters

Rest DSL producer now supports being configured in REST configuration by using
endpointProperties.

The Kafka component now supports HeaderFilterStrategy to plugin custom implementations
for controlling header mappings between Camel and Kafka messages.

REST DSL now supports client request validation to validate that Content-Type/Accept
headers are possible for the REST service.

Camel now has a Service Registry SPI which allows you to register routes to a service registry
(such as consul, etcd, or zookeeper) by using a Camel implementation or Spring Cloud.

The SEDA component now has a default queue size of 1000 instead of unlimited.

The following noteworthy issues have been fixed:

Fixed a CXF continuation timeout issue with camel-cxf consumer that could cause the
consumer to return a response with data instead of triggering a timeout to the calling SOAP
client.

Fixed camel-cxf consumer doesn’t release UoW when using a robust one-way operation.

Fixed using AdviceWith and using weave methods on onException etc. not working.

Fixed Splitter in parallel processing and streaming mode may block, while iterating message
body when the iterator throws an exception in the first invoked next() method call.

Fixed Kafka consumer to not auto commit if autoCommitEnable=false.

Fixed file consumer was using markerFile as read-lock by default, which should have been
none.

Fixed using manual commit with Kafka to provide the current record offset and not the
previous (and -1 for first).

Fixed Content Based Router in Java DSL may not resolve property placeholders in when
predicates.

Red Hat Fuse 7.13 Migration Guide

22

Camel 2.23 updates

Upgraded to Spring Boot 2.1.

Additional component-level options can now be configured by using spring-boot auto-
configuration. These options are included in the spring-boot component metadata JSON file
descriptor for tooling assistance.

Added a documentation section that includes all the Spring Boot auto configuration options for
all the components, data-formats, and languages.

All the Camel Spring Boot starter JARs now include META-INF/spring-autoconfigure-
metadata.properties file in their JARs to optimize Spring Boot auto-configuration.

The Throttler now supports correlation groups based on dynamic expression so that you can
group messages into different throttled sets.

The Hystrix EIP now allows inheritance for Camel’s error handler so that you can retry the entire
Hystrix EIP block again if you have enabled error handling with redeliveries.

SQL and ElSql consumers now support dynamic query parameters in route form. Note that this
feature is limited to calling beans by using simple expressions.

The swagger-restdsl maven plugin now supports generating DTO model classes from the
Swagger specification file.

The following noteworthy issues have been fixed:

The Aggregator2 has been fixed to not propagate control headers for forcing completion of
all groups, so it will not happen again if another aggregator EIP is in use later during routing.

Fixed Tracer not working if redelivery was activa†ed in the error handler.

The built-in type converter for XML Documents may output parsing errors to stdout, which
has now been fixed to output by using the logging API.

Fixed SFTP writing files by using the charset option would not work if the message body was
streaming-based.

Fixed Zipkin root id to not be reused when routing over multiple routes to group them
together into a single parent span.

Fixed optimized toD when using HTTP endpoints had a bug when the hostname contains an
IP address with digits.

Fixed issue with RabbitMQ with request/reply over temporary queues and using manual
acknowledge mode. It would not acknowledge the temporary queue (which is needed to
make request/reply possible).

Fixed various HTTP consumer components that may not return all allowed HTTP verbs in
Allow header for OPTIONS requests (such as when using rest-dsl).

Fixed the thread-safety issue with FluentProducerTemplate.

7.2. ABOUT MAVEN DEPENDENCIES

The purpose of a Maven Bill of Materials (BOM) file is to provide a curated set of Maven dependency

CHAPTER 7. UPGRADING FUSE APPLICATIONS ON KARAF STANDALONE

23

The purpose of a Maven Bill of Materials (BOM) file is to provide a curated set of Maven dependency
versions that work well together, saving you from having to define versions individually for every Maven
artifact.

There is a dedicated BOM file for each container in which Fuse runs.

NOTE

You can find these BOM files here: https://github.com/jboss-fuse/redhat-fuse.
Alternatively, go to the latest Release Notes for information on BOM file updates.

The Fuse BOM offers the following advantages:

Defines versions for Maven dependencies, so that you do not need to specify the version when
you add a dependency to your pom.xml file.

Defines a set of curated dependencies that are fully tested and supported for a specific version
of Fuse.

Simplifies upgrades of Fuse.

IMPORTANT

Only the set of dependencies defined by a Fuse BOM are supported by Red Hat.

7.3. UPDATING YOUR FUSE PROJECT’S MAVEN DEPENDENCIES

To upgrade your Fuse application for Karaf, update your project’s Maven dependencies.

Procedure

1. Open your project’s pom.xml file.

2. Add a dependencyManagement element in your project’s pom.xml file (or, possibly, in a parent
pom.xml file), as shown in the following example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <fuse.version>7.13.0.fuse-7_13_0-00012-redhat-00001</fuse.version>

 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-karaf-bom</artifactId>
 <version>${fuse.version}</version>
 <type>pom</type>
 <scope>import</scope>

Red Hat Fuse 7.13 Migration Guide

24

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://github.com/jboss-fuse/redhat-fuse
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.13/html-single/release_notes_for_red_hat_fuse_7.13#StandaloneDistrib-BOMs

3. Save your pom.xml file.

After you specify the BOM as a dependency in your pom.xml file, it becomes possible to add Maven
dependencies to your pom.xml file without specifying the version of the artifact. For example, to add a
dependency for the camel-velocity component, you would add the following XML fragment to the
dependencies element in your pom.xml file:

Note how the version element is omitted from this dependency definition.

 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-velocity</artifactId>
 <scope>provided</scope>
</dependency>

CHAPTER 7. UPGRADING FUSE APPLICATIONS ON KARAF STANDALONE

25

CHAPTER 8. UPGRADING FUSE STANDALONE ON KARAF
The Fuse on Apache Karaf upgrade mechanism enables you to apply fixes to an Apache Karaf container
without needing to reinstall an updated version of Fuse on Karaf. It also allows you to roll back the
upgrade, if the upgrade causes problems with your deployed applications.

The upgrade installer file is the same file that you use to install Fuse on Apache Karaf.

NOTE

To obtain the upgrade installer file, go to the Downloads page of the Red Hat customer
portal and download the latest version of the installation archive for Fuse on Apache
Karaf (for example, fuse-karaf-7.13.0.fuse-7_13_0-00012-redhat-00001.zip).

Section 8.1, “Impact of upgrading Fuse on Karaf”

Section 8.2, “Upgrading Fuse Standalone on Karaf”

Section 8.3, “Rolling back an upgrade for Fuse on Karaf”

8.1. IMPACT OF UPGRADING FUSE ON KARAF

The upgrade mechanism can make updates to any installation files including bundle JARs and static
files (including, for example, configuration files under the etc/ directory). The Fuse on Apache Karaf
upgrade process:

Updates any files, including bundle JARs, configuration files, and any static files.

Patches both the current container instance (and its runtime storage under the data/ directory)
and the underlying installation. Hence, patches are preserved after deleting a container
instance.

Updates all of the files related to Karaf features, including the features repository files and the
features themselves. Hence, any features installed after the rollup patch will reference the
correct patched dependencies.

If necessary, updates configuration files (for example, files under etc/), automatically merging
any configuration changes you have made with the configuration changes made by the patch. If
merge conflicts occur, see the patch log for details of how they are handled.

Most of the merge conflicts are resolved automatically. For example, the patch mechanism
detects conflicts at property level for the property files. It detects whether it was a user or patch
that changed any property. The change is preserved, if only one side changed the property.

Tracks all of the changes made to the installation (including to static files), so that it is possible
to roll back the patch.

NOTE

The rollup patching mechanism uses an internal git repository (located under
patches/.management/history) to track the changes made.

8.2. UPGRADING FUSE STANDALONE ON KARAF

Red Hat Fuse 7.13 Migration Guide

26

The following instructions guide you through upgrading Fuse on Apache Karaf. Ensure all prerequisites
are completed before commencing the upgrade procedure.

Prerequisites

Ensure you have a full backup of your Fuse on Apache Karaf installation before upgrading.

Start the container, if it is not already running.

TIP

If the container is running in the background (or remotely), connect to the container using the SSH
console client, bin/client.

Add the upgrade installer file to the container’s environment by invoking the patch:add
command. For example, to add the fuse-karaf-7.13.0.fuse-7_13_0-00012-redhat-00001.zip
upgrade installer file:

patch:add file:///path/to/fuse-karaf-7.13.0.fuse-7_13_0-00012-redhat-00001.zip

NOTE

The patch:find command can only be used to find and add the latest hot fix
patches to the container’s environment; it cannot be used to apply full upgrade
patches.

Procedure

1. Run the patch:update command. There is no need to restart the container.

karaf@root()> patch:update
Current patch mechanism version: 7.1.0.fuse-710023-redhat-00001
New patch mechanism version detected: 7.2.0.fuse-720035-redhat-00001
Uninstalling patch features in version 7.1.0.fuse-710023-redhat-00001
Installing patch features in version 7.2.0.fuse-720035-redhat-00001

2. Invoke the patch:list command to display a list of upgrade installers. In this list, the entries
under the [name] heading are upgrade IDs. For example:

karaf@root()> patch:list
[name] [installed] [rollup] [description]
fuse-karaf-7.2.0.fuse-720035-redhat-00001 false true fuse-karaf-7.2.0.fuse-
720035-redhat-00001

3. Simulate the upgrade by invoking the patch:simulate command and specifying the
upgrade ID for the upgrade that you want to apply, as follows:

karaf@root()> patch:simulate fuse-karaf-7.2.0.fuse-720035-redhat-00001
INFO : org.jboss.fuse.modules.patch.patch-management (226): Installing rollup patch
"fuse-karaf-7.2.0.fuse-720035-redhat-00001"
========== Repositories to remove (9):
 - mvn:io.hawt/hawtio-karaf/2.0.0.fuse-710018-redhat-00002/xml/features
...

CHAPTER 8. UPGRADING FUSE STANDALONE ON KARAF

27

========== Repositories to add (9):
 - mvn:io.hawt/hawtio-karaf/2.0.0.fuse-720044-redhat-00001/xml/features
...
========== Repositories to keep (10):
 - mvn:org.apache.activemq/artemis-features/2.4.0.amq-711002-redhat-1/xml/features
...
========== Features to update (100):
[name] [version] [new version]
aries-blueprint 4.2.0.fuse-710024-redhat-00002 4.2.0.fuse-720061-redhat-
00001
...
========== Bundles to update as part of features or core bundles (100):
[symbolic name] [version] [new location]
io.hawt.hawtio-log 2.0.0.fuse-710018-redhat-00002
mvn:io.hawt/hawtio-log/2.0.0.fuse-720044-redhat-00001
...
========== Bundles to reinstall as part of features or core bundles (123):
[symbolic name] [version] [location]
com.fasterxml.jackson.core.jackson-annotations 2.8.11
mvn:com.fasterxml.jackson.core/jackson-annotations/2.8.11
...
Simulation only - no files and runtime data will be modified.
karaf@root()>

This generates a log of the changes that will be made to the container when the upgrade is
performed, but will not make any actual changes to the container. Review the simulation log
to understand the changes that will be made to the container.

4. Upgrade the container by invoking the patch:install command and specifying the upgrade
ID for the upgrade that you want to apply. For example:

karaf@root()> patch:install fuse-karaf-7.13.0.fuse-7_13_0-00012-redhat-00001

5. Validate the upgrade, by searching for one of the upgrade artifacts. For example, if you had
just upgraded Fuse 7.1.0 to Fuse 7.2.0, you could search for bundles with the build number,
7.2.0.fuse-720035-redhat-00001, as follows:

karaf@root()> bundle:list -l | grep 7.2.0.fuse-720035-redhat-00001
 22 │ Active │ 80 │ 7.2.0.fuse-720035-redhat-00001 │
mvn:org.jboss.fuse.modules/fuse-pax-transx-tm-narayana/7.2.0.fuse-720035-redhat-
00001
188 │ Active │ 80 │ 7.2.0.fuse-720035-redhat-00001 │
mvn:org.jboss.fuse.modules.patch/patch-commands/7.2.0.fuse-720035-redhat-00001

NOTE

After upgrading, you also see the new version and build number in the Welcome banner
when you restart the container.

8.3. ROLLING BACK AN UPGRADE FOR FUSE ON KARAF

Occasionally an upgrade might not work or might introduce new issues to a container. In these cases, you
can easily roll back the upgrade and restore your system to its previous state using the patch:rollback
command. This set of instructions guides you through this procedure.

Red Hat Fuse 7.13 Migration Guide

28

Prerequisites

You have recently upgraded Fuse on Karaf.

You want to rollback the upgrade.

Procedure

1. Invoke the patch:list command to obtain the upgrade ID, UPGRADE_ID, of the most recently
installed patch.

2. Invoke the patch:rollback command, as follows:

patch:rollback UPGRADE_ID

NOTE

In some cases the container needs to restart to roll back the upgrade. In these
cases, the container restarts automatically. Due to the highly dynamic nature of
the OSGi runtime, during the restart you might see some occasional errors
related to incompatible classes. These errors are related to OSGi services that
have just started or stopped and can be safely ignored.

CHAPTER 8. UPGRADING FUSE STANDALONE ON KARAF

29

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. UPGRADING FUSE ON OPENSHIFT
	CHAPTER 2. UPGRADING FUSE ONLINE
	CHAPTER 3. UPGRADE TO SPRING BOOT 2
	3.1. BEFORE YOU BEGIN
	3.2. UPGRADE FROM SPRING BOOT 1 TO SPRING BOOT 2

	CHAPTER 4. MIGRATING FROM FABRIC8 MAVEN PLUGIN TO OPENSHIFT MAVEN PLUGIN
	CHAPTER 5. UPGRADING FUSE APPLICATIONS ON SPRING BOOT STANDALONE
	5.1. CAMEL MIGRATION CONSIDERATIONS
	5.2. ABOUT MAVEN DEPENDENCIES
	5.3. UPDATING YOUR FUSE PROJECT’S MAVEN DEPENDENCIES

	CHAPTER 6. UPGRADING FUSE APPLICATIONS ON JBOSS EAP STANDALONE
	6.1. CAMEL MIGRATION CONSIDERATIONS
	6.2. ABOUT MAVEN DEPENDENCIES
	6.3. UPDATING YOUR FUSE PROJECT’S MAVEN DEPENDENCIES
	6.4. UPGRADING YOUR JAVA EE DEPENDENCIES
	6.5. UPGRADING AN EXISTING FUSE ON JBOSS EAP INSTALLATION
	6.6. UPGRADING FUSE AND JBOSS EAP SIMULTANEOUSLY

	CHAPTER 7. UPGRADING FUSE APPLICATIONS ON KARAF STANDALONE
	7.1. CAMEL MIGRATION CONSIDERATIONS
	7.2. ABOUT MAVEN DEPENDENCIES
	7.3. UPDATING YOUR FUSE PROJECT’S MAVEN DEPENDENCIES

	CHAPTER 8. UPGRADING FUSE STANDALONE ON KARAF
	8.1. IMPACT OF UPGRADING FUSE ON KARAF
	8.2. UPGRADING FUSE STANDALONE ON KARAF
	8.3. ROLLING BACK AN UPGRADE FOR FUSE ON KARAF

