
Red Hat Hyperconverged Infrastructure
for Virtualization 1.8

Replacing failed hosts

How to replace a failed host and restore data and configuration

Last Updated: 2022-02-10

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing
failed hosts

How to replace a failed host and restore data and configuration

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document explains how to replace a failed host and restore data and configuration in a Red Hat
Hyperconverged Infrastructure for Virtualization cluster.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. OVERVIEW

CHAPTER 2. BACKING UP IMPORTANT FILES

PART I. USING THE SAME HOST FQDN

CHAPTER 3. REUSING BRICKS AND RESTORING CONFIGURATION FROM BACKUPS
3.1. HOST REPLACEMENT PREREQUISITES
3.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT
3.3. RESTORING DISK CONFIGURATION FROM BACKUPS
3.4. CREATING THE NODE_REPLACE_INVENTORY.YML FILE
3.5. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE
3.6. FINALIZING HOST REPLACEMENT
3.7. VERIFYING HEALING IN PROGRESS

CHAPTER 4. REUSING BRICKS AND RECONSTRUCTING EXISTING BRICK CONFIGURATION
4.1. HOST REPLACEMENT PREREQUISITES
4.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT
4.3. RECREATING DISK CONFIGURATION WITHOUT BACKUPS

4.3.1. Reconfiguring encryption during host replacement
4.3.2. Reconfiguring deduplication and compression during host replacement
4.3.3. Restoring disk mount configuration

4.4. CREATING THE NODE_PREP_INVENTORY.YML FILE
4.5. CREATING THE NODE_REPLACE_INVENTORY.YML FILE
4.6. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE
4.7. FINALIZING HOST REPLACEMENT
4.8. VERIFYING HEALING IN PROGRESS

CHAPTER 5. CREATING NEW BRICKS AND CONFIGURATION
5.1. HOST REPLACEMENT PREREQUISITES
5.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT
5.3. CREATING THE NODE_PREP_INVENTORY.YML FILE
5.4. CREATING THE NODE_REPLACE_INVENTORY.YML FILE
5.5. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE
5.6. FINALIZING HOST REPLACEMENT
5.7. VERIFYING HEALING IN PROGRESS

PART II. USING A DIFFERENT HOST FQDN

CHAPTER 6. REPLACING A PRIMARY HOST USING NEW BRICKS
6.1. HOST REPLACEMENT PREREQUISITES
6.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT
6.3. CREATING THE NODE_PREP_INVENTORY.YML FILE
6.4. CREATING THE NODE_REPLACE_INVENTORY.YML FILE
6.5. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE
6.6. UPDATING THE CLUSTER FOR A NEW PRIMARY HOST
6.7. REMOVING A FAILED HOST FROM THE CLUSTER
6.8. VERIFYING HEALING IN PROGRESS

CHAPTER 7. REPLACING A NON-PRIMARY HOST USING NEW BRICKS
7.1. HOST REPLACEMENT PREREQUISITES
7.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT

4

5

6

8

9
9
9

10
12
12
12
13

14
14
14
15
15
17
18
19
19
19

20
20

22
22
22
23
23
24
24
25

26

27
27
27
28
28
29
29
30
31

32
32
32

Table of Contents

1

. .

. .

. .

. .

7.3. CREATING THE NODE_PREP_INVENTORY.YML FILE
7.4. CREATING THE NODE_REPLACE_INVENTORY.YML FILE
7.5. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE
7.6. REMOVING A FAILED HOST FROM THE CLUSTER
7.7. VERIFYING HEALING IN PROGRESS

PART III. REFERENCE MATERIAL

APPENDIX A. UNDERSTANDING THE LUKS_TANG_INVENTORY.YML FILE
A.1. CONFIGURATION PARAMETERS FOR DISK ENCRYPTION
A.2. EXAMPLE LUKS_TANG_INVENTORY.YML

APPENDIX B. UNDERSTANDING THE NODE_PREP_INVENTORY.YML FILE
B.1. CONFIGURATION PARAMETERS FOR PREPARING A REPLACEMENT NODE

B.1.1. Hosts to configure
B.1.2. Multipath devices
B.1.3. Deduplication and compression
B.1.4. Storage infrastructure
B.1.5. Firewall and network infrastructure

B.2. EXAMPLE NODE_PREP_INVENTORY.YML

APPENDIX C. UNDERSTANDING THE NODE_REPLACE_INVENTORY.YML FILE
C.1. CONFIGURATION PARAMETERS FOR NODE REPLACEMENT
C.2. EXAMPLE NODE_REPLACE_INVENTORY.YML

33
33
34
34
34

36

37
37
39

42
42
42
42
43
43
47
47

51
51
52

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. OVERVIEW
In the event of a hardware issue or some other serious problem, you may need to replace a failed host.

Minimize restore time by backing up disk configuration: Chapter 2, Backing up important files . This is not
required to restore brick contents, but it does make the process faster.

The process differs depending on the following factors:

Is data on the disks intact?

Have you backed up or can you safely back up host configuration details?

Is the failed host a primary volfile server (the server whose FQDN is used to mount gluster
volumes, usually the first host in the cluster)?

Follow the process that best fits your situation:

If your disks are intact, you can reinstall the same host and use the same FQDN regardless of
whether the server is the primary volfile server.

If you can back up configuration details, follow Chapter 3, Reusing bricks and restoring
configuration from backups.

If you cannot back up configuration details, follow Chapter 4, Reusing bricks and
reconstructing existing brick configuration.

If your disks are not intact or you want the replacement host to use a different FQDN:

If the host that failed was the primary volfile server, use Chapter 6, Replacing a primary host
using new bricks.

IMPORTANT

This process requires that virtual machines are taken offline.

If the host that failed was not the primary volfile server, use Chapter 7, Replacing a non-
primary host using new bricks.

CHAPTER 1. OVERVIEW

5

CHAPTER 2. BACKING UP IMPORTANT FILES
Backing up important configuration files, inventory files, and modified playbooks makes it easy to
restore or redeploy your cluster.

Red Hat recommends backing up your configuration after initial deployment, and after confirming the
success of any major changes in your cluster. You can also take backups after a node has failed if
necessary.

Prerequisites

Example playbooks and inventory files are stored in the
/etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment directory. If you have
manually created or modified inventory and playbook files and you are not storing them in this
directory, ensure that you know the path to their location.

Procedure

1. Log in to a hyperconverged host as the root user.

2. Change into the hc-ansible-deployment directory and back up the default
archive_config_inventory.yml file.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment
cp archive_config_inventory.yml archive_config_inventory.yml.bk

3. Edit the archive_config_inventory.yml file with details of the cluster you want to back up.

hosts

The backend FQDN of each host in the cluster that you want to back up.

backup_dir

The directory in which to store backup files.

nbde_setup

If you use Network-Bound Disk Encryption, set this to true. Otherwise, set to false.

upgrade

Set to false.

For example:

all:
 hosts:
 host1-backend.example.com:
 host2-backend.example.com:
 host3-backend.example.com:
 vars:
 backup_dir: /rhhi-backup
 nbde_setup: true
 upgrade: false

4. Run the archive_config.yml playbook using your updated inventory file with the backupfiles
tag.

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

6

ansible-playbook -i archive_config_inventory.yml archive_config.yml --tags=backupfiles

This creates an archive in the /root directory specific to each host FQDN in the hosts section of
the inventory, for example, /root/rhvh-node-host1-backend.example.com-backup.tar.gz.

5. Transfer the backup archives to a different machine.

scp /root/rhvh-node-host1-backend.example.com-backup.tar.gz backup-
host.example.com:/backups/

CHAPTER 2. BACKING UP IMPORTANT FILES

7

PART I. USING THE SAME HOST FQDN

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

8

CHAPTER 3. REUSING BRICKS AND RESTORING
CONFIGURATION FROM BACKUPS

3.1. HOST REPLACEMENT PREREQUISITES

Determine which node to use as the Ansible controller node (the node from which all Ansible
playbooks are executed). Red Hat recommends using a healthy node in the same cluster as the
failed node as the Ansible controller node.

If possible, locate a recent backup or create a new backup of the important files (disk
configuration or inventory files). See Backing up important files for details.

Stop brick processes and unmount file systems on the failed host, to avoid file system
inconsistency issues.

pkill glusterfsd
umount /gluster_bricks/{engine,vmstore,data}

Check which operating system is running on your hyperconverged hosts by running the
following command:

$ nodectl info

Reinstall the same operating system on the failed hyperconverged host.

3.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT

1. Verify host state in the Administrator Portal.

a. Log in to the Red Hat Virtualization Administrator Portal.
The host is listed as NonResponsive in the Administrator Portal. Virtual machines that
previously ran on this host are in the Unknown state.

b. Click Compute → Hosts and click the Action menu (⋮).

c. Click Confirm host has been rebooted and confirm the operation.

d. Verify that the virtual machines are now listed with a state of Down.

2. Update the SSH fingerprint for the failed node.

a. Log in to the Ansible controller node as the root user.

b. Remove the existing SSH fingerprint for the failed node.

sed -i `/failed-host-frontend.example.com/d` /root/.ssh/known_hosts
sed -i `/failed-host-backend.example.com/d` /root/.ssh/known_hosts

c. Copy the public key from the Ansible controller node to the freshly installed node.

ssh-copy-id root@new-host-backend.example.com
ssh-copy-id root@new-host-frontend.example.com

d. Verify that you can log in to all hosts in the cluster, including the Ansible controller node,

CHAPTER 3. REUSING BRICKS AND RESTORING CONFIGURATION FROM BACKUPS

9

https://access.redhat.com/documentation/en-us/red_hat_hyperconverged_infrastructure_for_virtualization/1.8/html/replacing_failed_hosts/backing-up-important-files

d. Verify that you can log in to all hosts in the cluster, including the Ansible controller node,
using key-based SSH authentication without a password. Test access using all network
addresses. The following example assumes that the Ansible controller node is host1.

ssh root@host1-backend.example.com
ssh root@host1-frontend.example.com
ssh root@host2-backend.example.com
ssh root@host2-frontend.example.com
ssh root@new-host-backend.example.com
ssh root@new-host-frontend.example.com

Use ssh-copy-id to copy the public key to any host you cannot log into without a password
using this method.

ssh-copy-id root@host-frontend.example.com
ssh-copy-id root@host-backend.example.com

3.3. RESTORING DISK CONFIGURATION FROM BACKUPS

Prerequisites

This procedure assumes you have already performed the backup process in Chapter 2, Backing
up important files and know the location of your backup files and the address of the backup
host.

Procedure

1. If the new host does not have multipath configuration, blacklist the devices.

a. Create an inventory file for the new host that defines the devices to blacklist.

hc_nodes:
 hosts:
 new-host-backend-fqdn.example.com:
 blacklist_mpath_devices:
 - sda
 - sdb
 - sdc
 - sdd

b. Run the gluster_deployment.yml playbook on this inventory file using the
blacklistdevices tag.

ansible-playbook -i blacklist-inventory.yml
/etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-
deployment/tasks/gluster_deployment.yml --tags=blacklistdevices

2. Copy backed up configuration details to the new host.

mkdir /rhhi-backup
scp backup-host.example.com:/backups/rhvh-node-host1-backend.example.com-
backup.tar.gz /rhhi-backup
tar -xvf /rhhi-backup/rhvh-node-host1-backend.example.com-backup.tar.gz -C /rhhi-backup

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

10

3. Create an inventory file for host restoration.

a. Change into the hc-ansible-deployment directory and back up the default
archive_config_inventory.yml file.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment
cp archive_config_inventory.yml archive_config_inventory.yml.bk

b. Edit the archive_config_inventory.yml file with details of the cluster you want to back up.

hosts

The backend FQDN of the host that you want to restore (this host).

backup_dir

The directory in which to store extracted backup files.

nbde_setup

If you use Network-Bound Disk Encryption, set this to true. Otherwise, set to false.

upgrade

Set to false.

For example:

all:
 hosts:
 host1-backend.example.com:
 vars:
 backup_dir: /rhhi-backup
 nbde_setup: true
 upgrade: false

4. Execute the archive_config.yml playbook.
Run the archive_config.yml playbook using your updated inventory file with the restorefiles
tag.

ansible-playbook -i archive_config_inventory.yml archive_config.yml --tags=restorefiles

5. (Optional) Configure Network-Bound Disk Encryption (NBDE) on the root disk.

a. Create an inventory file for the new host that defines devices to encrypt.

hc_nodes:
 hosts:
 new-node-frontend-fqdn.example.com:
 blacklist_mpath_devices:
 - sda
 - sdb
 - sdc
 rootpassphrase: stronGpa55
 rootdevice: /dev/sda2
 networkinterface: eth1
vars:
 ip_version: IPv4
 ip_config_method: dhcp

CHAPTER 3. REUSING BRICKS AND RESTORING CONFIGURATION FROM BACKUPS

11

 gluster_infra_tangservers:
 - url: http://tang-server.example.com:80

See Understanding the luks_tang_inventory.yml file for more information about these
parameters.

b. Run the luks_tang_setup.yml playbook using your inventory file and the bindtang tag.

ansible-playbook -i inventory.yml /etc/ansible/roles/gluster.ansible/playbooks/hc-
ansible-deployment/tasks/luks_tang_setup.yml --tags=bindtang

3.4. CREATING THE NODE_REPLACE_INVENTORY.YML FILE

Define your cluster hosts by creating a node_replacement_inventory.yml file.

Procedure

1. Back up the node_replace_inventory.yml file.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment
cp node_replace_inventory.yml node_replace_inventory.yml.bk

2. Edit the node_replace_inventory.yml file to define your cluster.
See Appendix C, Understanding the node_replace_inventory.yml file for more information
about this inventory file and its parameters.

3.5. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE

The replace_node.yml playbook reconfigures a Red Hat Hyperconverged Infrastructure for
Virtualization cluster to use a new node after an existing cluster node has failed.

Procedure

1. Execute the playbook.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment/
ansible-playbook -i node_replace_inventory.yml tasks/replace_node.yml --tags=restorepeer

3.6. FINALIZING HOST REPLACEMENT

After you have replaced a failed host with a new host, follow these steps to ensure that the cluster is
connected to the new host and properly activated.

Procedure

1. Activate the host.

a. Log in to the Red Hat Virtualization Administrator Portal.

b. Click Compute → Hosts and observe that the replacement host is listed with a state of
Maintenance.

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

12

c. Select the host and click Management → Activate.

d. Wait for the host to reach the Up state.

2. Attach the gluster network to the host.

a. Click Compute → Hosts and select the host.

b. Click Network Interfaces → Setup Host Networks.

c. Drag and drop the newly created network to the correct interface.

d. Ensure that the Verify connectivity between Host and Engine checkbox is checked.

e. Ensure that the Save network configuration checkbox is checked.

f. Click OK to save.

g. Verify the health of the network.
Click the Network Interfaces tab and check the state of the host’s network.

If the network interface enters an "Out of sync" state or does not have an IP Address, click
Management → Refresh Capabilities.

3.7. VERIFYING HEALING IN PROGRESS

After replacing a failed host with a new host, verify that your storage is healing as expected.

Procedure

Verify that healing is in progress.
Run the following command on any hyperconverged host:

for vol in `gluster volume list`; do gluster volume heal $vol info summary; done

The output shows a summary of healing activity on each brick in each volume, for example:

Brick brick1
Status: Connected
Total Number of entries: 3
Number of entries in heal pending: 2
Number of entries in split-brain: 1
Number of entries possibly healing: 0

Depending on brick size, volumes can take a long time to heal. You can still run and migrate
virtual machines using this node while the underlying storage heals.

CHAPTER 3. REUSING BRICKS AND RESTORING CONFIGURATION FROM BACKUPS

13

CHAPTER 4. REUSING BRICKS AND RECONSTRUCTING
EXISTING BRICK CONFIGURATION

4.1. HOST REPLACEMENT PREREQUISITES

Determine which node to use as the Ansible controller node (the node from which all Ansible
playbooks are executed). Red Hat recommends using a healthy node in the same cluster as the
failed node as the Ansible controller node.

If the failed host used Network-Bound Disk Encryption, ensure that you know the passphrase
used for the existing disks.

Take note of the disks that comprise the gluster volumes hosted by the server you are replacing.

If possible, locate a recent backup or create a new backup of the important files (disk
configuration or inventory files). See Backing up important files for details.

Stop brick processes and unmount file systems on the failed host, to avoid file system
inconsistency issues.

pkill glusterfsd
umount /gluster_bricks/{engine,vmstore,data}

Check which operating system is running on your hyperconverged hosts by running the
following command:

$ nodectl info

Reinstall the same operating system on the failed hyperconverged host.

4.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT

1. Verify host state in the Administrator Portal.

a. Log in to the Red Hat Virtualization Administrator Portal.
The host is listed as NonResponsive in the Administrator Portal. Virtual machines that
previously ran on this host are in the Unknown state.

b. Click Compute → Hosts and click the Action menu (⋮).

c. Click Confirm host has been rebooted and confirm the operation.

d. Verify that the virtual machines are now listed with a state of Down.

2. Update the SSH fingerprint for the failed node.

a. Log in to the Ansible controller node as the root user.

b. Remove the existing SSH fingerprint for the failed node.

sed -i `/failed-host-frontend.example.com/d` /root/.ssh/known_hosts
sed -i `/failed-host-backend.example.com/d` /root/.ssh/known_hosts

c. Copy the public key from the Ansible controller node to the freshly installed node.

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

14

https://access.redhat.com/documentation/en-us/red_hat_hyperconverged_infrastructure_for_virtualization/1.8/html/replacing_failed_hosts/backing-up-important-files

ssh-copy-id root@new-host-backend.example.com
ssh-copy-id root@new-host-frontend.example.com

d. Verify that you can log in to all hosts in the cluster, including the Ansible controller node,
using key-based SSH authentication without a password. Test access using all network
addresses. The following example assumes that the Ansible controller node is host1.

ssh root@host1-backend.example.com
ssh root@host1-frontend.example.com
ssh root@host2-backend.example.com
ssh root@host2-frontend.example.com
ssh root@new-host-backend.example.com
ssh root@new-host-frontend.example.com

Use ssh-copy-id to copy the public key to any host you cannot log into without a password
using this method.

ssh-copy-id root@host-frontend.example.com
ssh-copy-id root@host-backend.example.com

4.3. RECREATING DISK CONFIGURATION WITHOUT BACKUPS

If you do not have backup configuration files available for your cluster, you can recreate configuration
using the following sections to ensure you are still able to use existing bricks and their data.

4.3.1. Reconfiguring encryption during host replacement

If the failed host used encryption, but you do not have backup encryption configuration available, you
need to recreate your encryption configuration when you replace a failed host. Follow these steps to
create encryption configuration files on the replacement host to match the other hosts in your existing
cluster.

Procedure

1. Set new keys and key files.

a. Store the passphrase for the LUKS encrypted disk in a temporary file in the /root directory.

echo passphrase /root/key

If each disk has a separate passphrase, save them separately.

echo passphraseA /root/sda_key
echo passphraseB /root/sdb_key
echo passphraseC /root/sdc_key
echo passphraseD /root/sdd_key

b. Generate new key files.

i. Generate a random key file for each disk.

for disk in sda sdb sdc sdd; do dd if=/dev/urandom of=/etc/${disk}_keyfile bs=1024
count=8192

CHAPTER 4. REUSING BRICKS AND RECONSTRUCTING EXISTING BRICK CONFIGURATION

15

ii. Set appropriate permissions on the new keyfiles.

chown 400 /etc/*_keyfile

c. Set the new key for each disk.

cryptsetup luksAddKey /etc/sda_keyfile --key-file /root/sda_key
cryptsetup luksAddKey /etc/sdb_keyfile --key-file /root/sdb_key
cryptsetup luksAddKey /etc/sdc_keyfile --key-file /root/sdc_key
cryptsetup luksAddKey /etc/sdd_keyfile --key-file /root/sdd_key

2. Verify each device can be opened with its key file.

a. Determine the LUKS UUID for each device.

cryptsetup luksUUID /dev/sdX

b. Open each device using its key file and UUID.

cryptsetup luksOpen UUID=sdX-UUID luks_sdX -d /etc/sdX_keyfile

For example:

cryptsetup luksOpen UUID=a28a19c7-6028-44df-b0b8-e5245944710c luks_sda -d
/etc/sda_keyfile

3. Configure automatic decryption at boot time.
Add a line for each device to the /etc/crypttab file using the following format.

echo luks_sdX UUID=sdX-UUID /etc/sdX_keyfile >> /etc/crypttab

For example:

echo luks_sda UUID=a28a19c7-6028-44df-b0b8-e5245944710c /etc/sda_keyfile >>
/etc/crypttab

4. Set up Network-Bound Disk Encryption on the root disk.

a. Change into the hc-ansible-deployment directory:

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment

b. Create the inventory file.

i. Make a copy of the luks_tang_inventory.yml file for future reference.

cp luks_tang_inventory.yml luks_tang_inventory.yml.backup

ii. Define your configuration in the luks_tang_inventory.yml file.
Use the example luks_tang_inventory.yml file to define the details of disk encryption
on each host. A complete outline of this file is available in Understanding the
luks_tang_inventory.yml file.

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

16

c. Encrypt the luks_tang_inventory.yml file and specify a password using ansible-vault.
The required variables in luks_tang_inventory.yml include password values, so it is
important to encrypt the file to protect the password values.

ansible-vault encrypt luks_tang_inventory.yml

Enter and confirm a new vault password when prompted.

d. Execute the luks_tang_setup.yml playbook with the bindtang tag.

ansible-playbook -i luks_tang_inventory.yml tasks/luks_tang_setup.yml --
tags=bindtang --ask-vault-pass

Enter the vault password for this file when prompted to start disk encryption configuration.

4.3.2. Reconfiguring deduplication and compression during host replacement

If the failed host used deduplication and compression (VDO), but you do not have backup configuration
information available, you need to recreate the deduplication and compression configuration when you
replace a failed host. Follow these steps to create deduplication and compression configuration files on
the replacement host to match the other hosts in your existing cluster.

Procedure

1. Copy the /etc/vdoconf.yml file from a healthy node to the replacement node.

scp /etc/vdoconf.yml root@new-node.example.com:/etc/

2. Edit the indicated values in the /etc/vdoconf.yml file to provide the correct values for your
replacement node.

IMPORTANT

Be careful when editing this file. Editing this file by hand is supported only when
reconstructing deduplication and compression configuration without a backup
file.

vdo_sd*

Change this parameter to match the name of your VDO device.

device

Specify the VDO device using its by-id path. For normal volumes, this is something like
/dev/disk/by-id/scsi-xxx. For encrypted volumes, this is something like /dev/disk/by-id/dm-
uuid-CRYPT-LUKS2-xxxxx.

For example:

cat /etc/vdoconf.yml

config: !Configuration
 vdos:
 vdo_sdc: !VDOService
 ...

CHAPTER 4. REUSING BRICKS AND RECONSTRUCTING EXISTING BRICK CONFIGURATION

17

 device: /dev/disk/by-id/scsi-360030480197f830125618adb17bac04c
 ...
 logicalSize: 180T
 ...
 physicalSize: 18625G
 ...

3. Restart the VDO service.

systemctl restart vdo.service

4.3.3. Restoring disk mount configuration

If you do not have backup disk mount configuration, you need to recreate your configuration when you
replace a host. Follow these steps to reconstruct disk mount configuration.

Procedure

1. Scan existing physical volumes, volume groups, and logical volumes.

pvscan
vgscan
lvscan

2. Determine the UUID of each gluster brick.

blkid lv_name

3. Add a line to the /etc/fstab file for each gluster brick, using the UUID.

echo "UUID=64dfd1b1-4333-4ef6-8835-1053c6904d93 /gluster_bricks/engine xfs
inode64,noatime,nodiratime,_netdev,x-systemd.device-timeout=0 0 0" >> /etc/fstab

Volumes that use deduplication and compression need additional mount options, as shown:

echo "UUID=64dfd1b1-4333-4ef6-8835-1053c6904d93 /gluster_bricks/vmstore xfs
inode64,noatime,nodiratime,_netdev,x-systemd.device-timeout=0,x-
systemd.requires=vdo.service 0 0" >> /etc/fstab

4. Create mount directories based on information from volumes.

mkdir -p /gluster_bricks/{engine,vmstore,data}

5. Mount all bricks.

mount -a

6. Set the required SELinux labels on all brick mount points.

semanage fcontext -a -t glusterd_brick_t /gluster_bricks/engine
semanage fcontext -a -t glusterd_brick_t /gluster_bricks/vmstore
semanage fcontext -a -t glusterd_brick_t /gluster_bricks/data

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

18

restorecon -Rv /gluster_bricks/engine
restorecon -Rv /gluster_bricks/vmstore
restorecon -Rv /gluster_bricks/data

4.4. CREATING THE NODE_PREP_INVENTORY.YML FILE

Define the replacement node in the node_prep_inventory.yml file.

Procedure

1. Familiarize yourself with your Gluster configuration.
The configuration that you define in your inventory file must match the existing Gluster volume
configuration. Use gluster volume info to check where your bricks should be mounted for each
Gluster volume, for example:

gluster volume info engine | grep -i brick
Number of Bricks: 1 x 3 = 3
Bricks:
Brick1: host1.example.com:/gluster_bricks/engine/engine
Brick2: host2.example.com:/gluster_bricks/engine/engine
Brick3: host3.example.com:/gluster_bricks/engine/engine

2. Back up the node_prep_inventory.yml file.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment
cp node_prep_inventory.yml node_prep_inventory.yml.bk

3. Edit the node_prep_inventory.yml file to define your node preparation.
See Appendix B, Understanding the node_prep_inventory.yml file for more information about
this inventory file and its parameters.

4.5. CREATING THE NODE_REPLACE_INVENTORY.YML FILE

Define your cluster hosts by creating a node_replacement_inventory.yml file.

Procedure

1. Back up the node_replace_inventory.yml file.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment
cp node_replace_inventory.yml node_replace_inventory.yml.bk

2. Edit the node_replace_inventory.yml file to define your cluster.
See Appendix C, Understanding the node_replace_inventory.yml file for more information
about this inventory file and its parameters.

4.6. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE

The replace_node.yml playbook reconfigures a Red Hat Hyperconverged Infrastructure for
Virtualization cluster to use a new node after an existing cluster node has failed.

CHAPTER 4. REUSING BRICKS AND RECONSTRUCTING EXISTING BRICK CONFIGURATION

19

Procedure

1. Execute the playbook.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment/
ansible-playbook -i node_prep_inventory.yml -i node_replace_inventory.yml
tasks/replace_node.yml

4.7. FINALIZING HOST REPLACEMENT

After you have replaced a failed host with a new host, follow these steps to ensure that the cluster is
connected to the new host and properly activated.

Procedure

1. Activate the host.

a. Log in to the Red Hat Virtualization Administrator Portal.

b. Click Compute → Hosts and observe that the replacement host is listed with a state of
Maintenance.

c. Select the host and click Management → Activate.

d. Wait for the host to reach the Up state.

2. Attach the gluster network to the host.

a. Click Compute → Hosts and select the host.

b. Click Network Interfaces → Setup Host Networks.

c. Drag and drop the newly created network to the correct interface.

d. Ensure that the Verify connectivity between Host and Engine checkbox is checked.

e. Ensure that the Save network configuration checkbox is checked.

f. Click OK to save.

g. Verify the health of the network.
Click the Network Interfaces tab and check the state of the host’s network.

If the network interface enters an "Out of sync" state or does not have an IP Address, click
Management → Refresh Capabilities.

4.8. VERIFYING HEALING IN PROGRESS

After replacing a failed host with a new host, verify that your storage is healing as expected.

Procedure

Verify that healing is in progress.
Run the following command on any hyperconverged host:

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

20

for vol in `gluster volume list`; do gluster volume heal $vol info summary; done

The output shows a summary of healing activity on each brick in each volume, for example:

Brick brick1
Status: Connected
Total Number of entries: 3
Number of entries in heal pending: 2
Number of entries in split-brain: 1
Number of entries possibly healing: 0

Depending on brick size, volumes can take a long time to heal. You can still run and migrate
virtual machines using this node while the underlying storage heals.

CHAPTER 4. REUSING BRICKS AND RECONSTRUCTING EXISTING BRICK CONFIGURATION

21

CHAPTER 5. CREATING NEW BRICKS AND CONFIGURATION

5.1. HOST REPLACEMENT PREREQUISITES

Determine which node to use as the Ansible controller node (the node from which all Ansible
playbooks are executed). Red Hat recommends using a healthy node in the same cluster as the
failed node as the Ansible controller node.

Stop brick processes and unmount file systems on the failed host, to avoid file system
inconsistency issues.

pkill glusterfsd
umount /gluster_bricks/{engine,vmstore,data}

Check which operating system is running on your hyperconverged hosts by running the
following command:

$ nodectl info

Reinstall the same operating system on the failed hyperconverged host.

5.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT

1. Verify host state in the Administrator Portal.

a. Log in to the Red Hat Virtualization Administrator Portal.
The host is listed as NonResponsive in the Administrator Portal. Virtual machines that
previously ran on this host are in the Unknown state.

b. Click Compute → Hosts and click the Action menu (⋮).

c. Click Confirm host has been rebooted and confirm the operation.

d. Verify that the virtual machines are now listed with a state of Down.

2. Update the SSH fingerprint for the failed node.

a. Log in to the Ansible controller node as the root user.

b. Remove the existing SSH fingerprint for the failed node.

sed -i `/failed-host-frontend.example.com/d` /root/.ssh/known_hosts
sed -i `/failed-host-backend.example.com/d` /root/.ssh/known_hosts

c. Copy the public key from the Ansible controller node to the freshly installed node.

ssh-copy-id root@new-host-backend.example.com
ssh-copy-id root@new-host-frontend.example.com

d. Verify that you can log in to all hosts in the cluster, including the Ansible controller node,
using key-based SSH authentication without a password. Test access using all network
addresses. The following example assumes that the Ansible controller node is host1.

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

22

ssh root@host1-backend.example.com
ssh root@host1-frontend.example.com
ssh root@host2-backend.example.com
ssh root@host2-frontend.example.com
ssh root@new-host-backend.example.com
ssh root@new-host-frontend.example.com

Use ssh-copy-id to copy the public key to any host you cannot log into without a password
using this method.

ssh-copy-id root@host-frontend.example.com
ssh-copy-id root@host-backend.example.com

5.3. CREATING THE NODE_PREP_INVENTORY.YML FILE

Define the replacement node in the node_prep_inventory.yml file.

Procedure

1. Familiarize yourself with your Gluster configuration.
The configuration that you define in your inventory file must match the existing Gluster volume
configuration. Use gluster volume info to check where your bricks should be mounted for each
Gluster volume, for example:

gluster volume info engine | grep -i brick
Number of Bricks: 1 x 3 = 3
Bricks:
Brick1: host1.example.com:/gluster_bricks/engine/engine
Brick2: host2.example.com:/gluster_bricks/engine/engine
Brick3: host3.example.com:/gluster_bricks/engine/engine

2. Back up the node_prep_inventory.yml file.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment
cp node_prep_inventory.yml node_prep_inventory.yml.bk

3. Edit the node_prep_inventory.yml file to define your node preparation.
See Appendix B, Understanding the node_prep_inventory.yml file for more information about
this inventory file and its parameters.

5.4. CREATING THE NODE_REPLACE_INVENTORY.YML FILE

Define your cluster hosts by creating a node_replacement_inventory.yml file.

Procedure

1. Back up the node_replace_inventory.yml file.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment
cp node_replace_inventory.yml node_replace_inventory.yml.bk

2. Edit the node_replace_inventory.yml file to define your cluster.

See Appendix C, Understanding the node_replace_inventory.yml file for more information

CHAPTER 5. CREATING NEW BRICKS AND CONFIGURATION

23

See Appendix C, Understanding the node_replace_inventory.yml file for more information
about this inventory file and its parameters.

5.5. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE

The replace_node.yml playbook reconfigures a Red Hat Hyperconverged Infrastructure for
Virtualization cluster to use a new node after an existing cluster node has failed.

Procedure

1. Execute the playbook.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment/
ansible-playbook -i node_prep_inventory.yml -i node_replace_inventory.yml
tasks/replace_node.yml

5.6. FINALIZING HOST REPLACEMENT

After you have replaced a failed host with a new host, follow these steps to ensure that the cluster is
connected to the new host and properly activated.

Procedure

1. Activate the host.

a. Log in to the Red Hat Virtualization Administrator Portal.

b. Click Compute → Hosts and observe that the replacement host is listed with a state of
Maintenance.

c. Select the host and click Management → Activate.

d. Wait for the host to reach the Up state.

2. Attach the gluster network to the host.

a. Click Compute → Hosts and select the host.

b. Click Network Interfaces → Setup Host Networks.

c. Drag and drop the newly created network to the correct interface.

d. Ensure that the Verify connectivity between Host and Engine checkbox is checked.

e. Ensure that the Save network configuration checkbox is checked.

f. Click OK to save.

g. Verify the health of the network.
Click the Network Interfaces tab and check the state of the host’s network.

If the network interface enters an "Out of sync" state or does not have an IP Address, click
Management → Refresh Capabilities.

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

24

5.7. VERIFYING HEALING IN PROGRESS

After replacing a failed host with a new host, verify that your storage is healing as expected.

Procedure

Verify that healing is in progress.
Run the following command on any hyperconverged host:

for vol in `gluster volume list`; do gluster volume heal $vol info summary; done

The output shows a summary of healing activity on each brick in each volume, for example:

Brick brick1
Status: Connected
Total Number of entries: 3
Number of entries in heal pending: 2
Number of entries in split-brain: 1
Number of entries possibly healing: 0

Depending on brick size, volumes can take a long time to heal. You can still run and migrate
virtual machines using this node while the underlying storage heals.

CHAPTER 5. CREATING NEW BRICKS AND CONFIGURATION

25

PART II. USING A DIFFERENT HOST FQDN

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

26

CHAPTER 6. REPLACING A PRIMARY HOST USING NEW
BRICKS

6.1. HOST REPLACEMENT PREREQUISITES

Determine which node to use as the Ansible controller node (the node from which all Ansible
playbooks are executed). Red Hat recommends using a healthy node in the same cluster as the
failed node as the Ansible controller node.

Power off all virtual machines in the cluster.

Stop brick processes and unmount file systems on the failed host, to avoid file system
inconsistency issues.

pkill glusterfsd
umount /gluster_bricks/{engine,vmstore,data}

Check which operating system is running on your hyperconverged hosts by running the
following command:

$ nodectl info

Install the same operating system on a replacement host.

6.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT

1. Verify host state in the Administrator Portal.

a. Log in to the Red Hat Virtualization Administrator Portal.
The host is listed as NonResponsive in the Administrator Portal. Virtual machines that
previously ran on this host are in the Unknown state.

b. Click Compute → Hosts and click the Action menu (⋮).

c. Click Confirm host has been rebooted and confirm the operation.

d. Verify that the virtual machines are now listed with a state of Down.

2. Update the SSH fingerprint for the failed node.

a. Log in to the Ansible controller node as the root user.

b. Remove the existing SSH fingerprint for the failed node.

sed -i `/failed-host-frontend.example.com/d` /root/.ssh/known_hosts
sed -i `/failed-host-backend.example.com/d` /root/.ssh/known_hosts

c. Copy the public key from the Ansible controller node to the freshly installed node.

ssh-copy-id root@new-host-backend.example.com
ssh-copy-id root@new-host-frontend.example.com

d. Verify that you can log in to all hosts in the cluster, including the Ansible controller node,

CHAPTER 6. REPLACING A PRIMARY HOST USING NEW BRICKS

27

d. Verify that you can log in to all hosts in the cluster, including the Ansible controller node,
using key-based SSH authentication without a password. Test access using all network
addresses. The following example assumes that the Ansible controller node is host1.

ssh root@host1-backend.example.com
ssh root@host1-frontend.example.com
ssh root@host2-backend.example.com
ssh root@host2-frontend.example.com
ssh root@new-host-backend.example.com
ssh root@new-host-frontend.example.com

Use ssh-copy-id to copy the public key to any host you cannot log into without a password
using this method.

ssh-copy-id root@host-frontend.example.com
ssh-copy-id root@host-backend.example.com

6.3. CREATING THE NODE_PREP_INVENTORY.YML FILE

Define the replacement node in the node_prep_inventory.yml file.

Procedure

1. Familiarize yourself with your Gluster configuration.
The configuration that you define in your inventory file must match the existing Gluster volume
configuration. Use gluster volume info to check where your bricks should be mounted for each
Gluster volume, for example:

gluster volume info engine | grep -i brick
Number of Bricks: 1 x 3 = 3
Bricks:
Brick1: host1.example.com:/gluster_bricks/engine/engine
Brick2: host2.example.com:/gluster_bricks/engine/engine
Brick3: host3.example.com:/gluster_bricks/engine/engine

2. Back up the node_prep_inventory.yml file.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment
cp node_prep_inventory.yml node_prep_inventory.yml.bk

3. Edit the node_prep_inventory.yml file to define your node preparation.
See Appendix B, Understanding the node_prep_inventory.yml file for more information about
this inventory file and its parameters.

6.4. CREATING THE NODE_REPLACE_INVENTORY.YML FILE

Define your cluster hosts by creating a node_replacement_inventory.yml file.

Procedure

1. Back up the node_replace_inventory.yml file.

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

28

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment
cp node_replace_inventory.yml node_replace_inventory.yml.bk

2. Edit the node_replace_inventory.yml file to define your cluster.
See Appendix C, Understanding the node_replace_inventory.yml file for more information
about this inventory file and its parameters.

6.5. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE

The replace_node.yml playbook reconfigures a Red Hat Hyperconverged Infrastructure for
Virtualization cluster to use a new node after an existing cluster node has failed.

Procedure

1. Execute the playbook.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment/
ansible-playbook -i node_prep_inventory.yml -i node_replace_inventory.yml
tasks/replace_node.yml

6.6. UPDATING THE CLUSTER FOR A NEW PRIMARY HOST

When you replace a failed host using a different FQDN, you need to update configuration in the cluster
to use the replacement host.

Procedure

1. Change into the hc-ansible-deployment directory.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment/

2. Make a copy of the reconfigure_storage_inventory.yml file.

cp reconfigure_storage_inventory.yml reconfigure_storage_inventory.yml.bk

3. Edit the reconfigure_storage_inventory.yml file to identify the following:

hosts

Two active hosts in the cluster that have been configured to host the Hosted Engine virtual
machine.

gluster_maintenance_old_node

The backend network FQDN of the failed node.

gluster_maintenance_new_node

The backend network FQDN of the replacement node.

ovirt_engine_hostname

The FQDN of the Hosted Engine virtual machine.

For example:

all:

CHAPTER 6. REPLACING A PRIMARY HOST USING NEW BRICKS

29

 hosts:
 host2-backend.example.com:
 host3-backend.example.com:

 vars:
 gluster_maintenance_old_node: host1-backend.example.com
 gluster_maintenance_new_node: host4-backend.example.com
 ovirt_engine_hostname: engine.example.com

4. Execute the reconfigure_he_storage.yml playbook with your updated inventory file.

ansible-playbook -i reconfigure_he_storage_inventory.yml
tasks/reconfigure_he_storage.yml

6.7. REMOVING A FAILED HOST FROM THE CLUSTER

When a replacement host is ready, remove the existing failed host from the cluster.

Procedure

1. Remove the failed host.

a. Log in into the Administrator Portal.

b. Click Compute → Hosts.
The failed host is in the NonResponsive state. Virtual machines running on the failed host
are in the Unknown state.

c. Select the failed host.

d. Click the main Action menu (⋮) for the Hosts page and select Confirm host has been
rebooted.

e. Click OK to confirm the operation.
Virtual machines move to the Down state.

f. Select the failed host and click Management → Maintenance.

g. Click the Action menu (⋮) beside the failed host and click Remove.

2. Update the storage domains.
For each storage domain:

a. Click Storage → Domains.

b. Click the storage domain name, then click Data Center → Maintenance and confirm the
operation.

c. Click Manage Domain.

i. Edit the Path field to match the new FQDN.

ii. Click OK.

NOTE

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

30

NOTE

A dialog box with an Operation Cancelled error appears as a result of
Bug 1853995, but the path is updated as expected.

d. Click the Action menu (⋮) beside the storage domain and click Activate.

3. Add the replacement host to the cluster.

4. Attach the gluster logical network to the replacement host.

5. Restart all virtual machines.

a. For highly available virtual machines, disable and re-enable high-availability.

i. Click Compute → Virtual Machines and select a virtual machine.

ii. Click Edit → High Availability → uncheck the High Availability check box and click OK.

iii. Click Edit → High Availability → check the High Availability check box and click OK.

b. Start all the virtual machines.

i. Click Compute → Virtual Machines and select a virtual machine.

ii. Click the Action menu (⋮) → Start.

6.8. VERIFYING HEALING IN PROGRESS

After replacing a failed host with a new host, verify that your storage is healing as expected.

Procedure

Verify that healing is in progress.
Run the following command on any hyperconverged host:

for vol in `gluster volume list`; do gluster volume heal $vol info summary; done

The output shows a summary of healing activity on each brick in each volume, for example:

Brick brick1
Status: Connected
Total Number of entries: 3
Number of entries in heal pending: 2
Number of entries in split-brain: 1
Number of entries possibly healing: 0

Depending on brick size, volumes can take a long time to heal. You can still run and migrate
virtual machines using this node while the underlying storage heals.

CHAPTER 6. REPLACING A PRIMARY HOST USING NEW BRICKS

31

https://bugzilla.redhat.com/show_bug.cgi?id=1853995

CHAPTER 7. REPLACING A NON-PRIMARY HOST USING NEW
BRICKS

7.1. HOST REPLACEMENT PREREQUISITES

Determine which node to use as the Ansible controller node (the node from which all Ansible
playbooks are executed). Red Hat recommends using a healthy node in the same cluster as the
failed node as the Ansible controller node.

Stop brick processes and unmount file systems on the failed host, to avoid file system
inconsistency issues.

pkill glusterfsd
umount /gluster_bricks/{engine,vmstore,data}

Check which operating system is running on your hyperconverged hosts by running the
following command:

$ nodectl info

Install the same operating system on a replacement host.

7.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT

1. Verify host state in the Administrator Portal.

a. Log in to the Red Hat Virtualization Administrator Portal.
The host is listed as NonResponsive in the Administrator Portal. Virtual machines that
previously ran on this host are in the Unknown state.

b. Click Compute → Hosts and click the Action menu (⋮).

c. Click Confirm host has been rebooted and confirm the operation.

d. Verify that the virtual machines are now listed with a state of Down.

2. Update the SSH fingerprint for the failed node.

a. Log in to the Ansible controller node as the root user.

b. Remove the existing SSH fingerprint for the failed node.

sed -i `/failed-host-frontend.example.com/d` /root/.ssh/known_hosts
sed -i `/failed-host-backend.example.com/d` /root/.ssh/known_hosts

c. Copy the public key from the Ansible controller node to the freshly installed node.

ssh-copy-id root@new-host-backend.example.com
ssh-copy-id root@new-host-frontend.example.com

d. Verify that you can log in to all hosts in the cluster, including the Ansible controller node,
using key-based SSH authentication without a password. Test access using all network
addresses. The following example assumes that the Ansible controller node is host1.

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

32

ssh root@host1-backend.example.com
ssh root@host1-frontend.example.com
ssh root@host2-backend.example.com
ssh root@host2-frontend.example.com
ssh root@new-host-backend.example.com
ssh root@new-host-frontend.example.com

Use ssh-copy-id to copy the public key to any host you cannot log into without a password
using this method.

ssh-copy-id root@host-frontend.example.com
ssh-copy-id root@host-backend.example.com

7.3. CREATING THE NODE_PREP_INVENTORY.YML FILE

Define the replacement node in the node_prep_inventory.yml file.

Procedure

1. Familiarize yourself with your Gluster configuration.
The configuration that you define in your inventory file must match the existing Gluster volume
configuration. Use gluster volume info to check where your bricks should be mounted for each
Gluster volume, for example:

gluster volume info engine | grep -i brick
Number of Bricks: 1 x 3 = 3
Bricks:
Brick1: host1.example.com:/gluster_bricks/engine/engine
Brick2: host2.example.com:/gluster_bricks/engine/engine
Brick3: host3.example.com:/gluster_bricks/engine/engine

2. Back up the node_prep_inventory.yml file.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment
cp node_prep_inventory.yml node_prep_inventory.yml.bk

3. Edit the node_prep_inventory.yml file to define your node preparation.
See Appendix B, Understanding the node_prep_inventory.yml file for more information about
this inventory file and its parameters.

7.4. CREATING THE NODE_REPLACE_INVENTORY.YML FILE

Define your cluster hosts by creating a node_replacement_inventory.yml file.

Procedure

1. Back up the node_replace_inventory.yml file.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment
cp node_replace_inventory.yml node_replace_inventory.yml.bk

2. Edit the node_replace_inventory.yml file to define your cluster.

See Appendix C, Understanding the node_replace_inventory.yml file for more information

CHAPTER 7. REPLACING A NON-PRIMARY HOST USING NEW BRICKS

33

See Appendix C, Understanding the node_replace_inventory.yml file for more information
about this inventory file and its parameters.

7.5. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE

The replace_node.yml playbook reconfigures a Red Hat Hyperconverged Infrastructure for
Virtualization cluster to use a new node after an existing cluster node has failed.

Procedure

1. Execute the playbook.

cd /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-deployment/
ansible-playbook -i node_prep_inventory.yml -i node_replace_inventory.yml
tasks/replace_node.yml

7.6. REMOVING A FAILED HOST FROM THE CLUSTER

When a replacement host is ready, remove the existing failed host from the cluster.

Procedure

1. Remove the failed host.

a. Log in to the Administrator Portal.

b. Click Compute → Hosts.
The replacement host is in the NonResponsive state. Virtual machines running on that
host are in the Unknown state.

c. Select the replacement host.

d. Click the main Action menu (⋮) for the Hosts page and select Confirm host has been
rebooted.

e. Click OK to confirm.

f. Click the Action menu (⋮) beside the failed host and click Remove.

2. Clean stale Hosted Engine metadata.

a. Determine the identifier of the failed node.

hosted-engine --vm-status | grep failed-node.example.com
--== Host server1-frontend.example.com (id: 1) status ==--
Hostname : failed-node.example.com

b. Remove the metadata associated with that host identifier.

hosted-engine --clean-metadata --host-id=1 --force

7.7. VERIFYING HEALING IN PROGRESS

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

34

After replacing a failed host with a new host, verify that your storage is healing as expected.

Procedure

Verify that healing is in progress.
Run the following command on any hyperconverged host:

for vol in `gluster volume list`; do gluster volume heal $vol info summary; done

The output shows a summary of healing activity on each brick in each volume, for example:

Brick brick1
Status: Connected
Total Number of entries: 3
Number of entries in heal pending: 2
Number of entries in split-brain: 1
Number of entries possibly healing: 0

Depending on brick size, volumes can take a long time to heal. You can still run and migrate
virtual machines using this node while the underlying storage heals.

CHAPTER 7. REPLACING A NON-PRIMARY HOST USING NEW BRICKS

35

PART III. REFERENCE MATERIAL

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

36

APPENDIX A. UNDERSTANDING THE LUKS_TANG_INVENTORY.YML FILE

A.1. CONFIGURATION PARAMETERS FOR DISK ENCRYPTION

hc_nodes (required)

A list of hyperconverged hosts that uses the back-end FQDN of the host, and the configuration
details of those hosts. Configuration that is specific to a host is defined under that host’s back-end
FQDN. Configuration that is common to all hosts is defined in the vars: section.

hc_nodes:
 hosts:
 host1backend.example.com:
 [configuration specific to this host]
 host2backend.example.com:
 host3backend.example.com:
 host4backend.example.com:
 host5backend.example.com:
 host6backend.example.com:
 vars:
 [configuration common to all hosts]

blacklist_mpath_devices (optional)

By default, Red Hat Virtualization Host enables multipath configuration, which provides unique
multipath names and worldwide identifiers for all disks, even when disks do not have underlying
multipath configuration. Include this section if you do not have multipath configuration so that the
multipath device names are not used for listed devices. Disks that are not listed here are assumed to
have multipath configuration available, and require the path format /dev/mapper/<WWID> instead of
/dev/sdx when defined in subsequent sections of the inventory file.
On a server with four devices (sda, sdb, sdc and sdd), the following configuration blacklists only two
devices. The path format /dev/mapper/<WWID> is expected for devices not in this list.

hc_nodes:
 hosts:
 host1backend.example.com:
 blacklist_mpath_devices:
 - sdb
 - sdc

gluster_infra_luks_devices (required)

A list of devices to encrypt and the encryption passphrase to use for each device.

hc_nodes:
 hosts:
 host1backend.example.com:
 gluster_infra_luks_devices:
 - devicename: /dev/sdb
 passphrase: Str0ngPa55#

devicename

The name of the device in the format /dev/sdx.

passphrase

APPENDIX A. UNDERSTANDING THE LUKS_TANG_INVENTORY.YML FILE

37

The password to use for this device when configuring encryption. After disk encryption with
Network-Bound Disk Encryption (NBDE) is configured, a new random key is generated, providing
greater security.

rootpassphrase (required)

The password that you used when you selected Encrypt my data during operating system
installation on this host.

hc_nodes:
 hosts:
 host1backend.example.com:
 rootpassphrase: h1-Str0ngPa55#

rootdevice (required)

The root device that was encrypted when you selected Encrypt my data during operating system
installation on this host.

hc_nodes:
 hosts:
 host1backend.example.com:
 rootdevice: /dev/sda2

networkinterface (required)

The network interface this host uses to reach the NBDE key server.

hc_nodes:
 hosts:
 host1backend.example.com:
 networkinterface: ens3s0f0

ip_version (required)

Whether to use IPv4 or IPv6 networking. Valid values are IPv4 and IPv6. There is no default value.
Mixed networks are not supported.

hc_nodes:
 vars:
 ip_version: IPv4

ip_config_method (required)

Whether to use DHCP or static networking. Valid values are dhcp and static. There is no default
value.

hc_nodes:
 vars:
 ip_config_method: dhcp

The other valid value for this option is static, which requires the following additional parameters and
is defined individually for each host:

hc_nodes:
 hosts:
 host1backend.example.com:

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

38

 ip_config_method: static
 host_ip_addr: 192.168.1.101
 host_ip_prefix: 24
 host_net_gateway: 192.168.1.100
 host2backend.example.com:
 ip_config_method: static
 host_ip_addr: 192.168.1.102
 host_ip_prefix: 24
 host_net_gateway: 192.168.1.100
 host3backend.example.com:
 ip_config_method: static
 host_ip_addr: 192.168.1.102
 host_ip_prefix: 24
 host_net_gateway: 192.168.1.100

gluster_infra_tangservers

The address of your NBDE key server or servers, including http://. If your servers use a port other
than the default (80), specify a port by appending :_port_ to the end of the URL.

hc_nodes:
 vars:
 gluster_infra_tangservers:
 - url: http://key-server1.example.com
 - url: http://key-server2.example.com:80

A.2. EXAMPLE LUKS_TANG_INVENTORY.YML

Dynamically allocated IP addresses

hc_nodes:
 hosts:
 host1-backend.example.com:
 blacklist_mpath_devices:
 - sda
 - sdb
 - sdc
 gluster_infra_luks_devices:
 - devicename: /dev/sdb
 passphrase: dev-sdb-encrypt-passphrase
 - devicename: /dev/sdc
 passphrase: dev-sdc-encrypt-passphrase
 rootpassphrase: host1-root-passphrase
 rootdevice: /dev/sda2
 networkinterface: eth0
 host2-backend.example.com:
 blacklist_mpath_devices:
 - sda
 - sdb
 - sdc
 gluster_infra_luks_devices:
 - devicename: /dev/sdb
 passphrase: dev-sdb-encrypt-passphrase
 - devicename: /dev/sdc

APPENDIX A. UNDERSTANDING THE LUKS_TANG_INVENTORY.YML FILE

39

 passphrase: dev-sdc-encrypt-passphrase
 rootpassphrase: host2-root-passphrase
 rootdevice: /dev/sda2
 networkinterface: eth0
 host3-backend.example.com:
 blacklist_mpath_devices:
 - sda
 - sdb
 - sdc
 gluster_infra_luks_devices:
 - devicename: /dev/sdb
 passphrase: dev-sdb-encrypt-passphrase
 - devicename: /dev/sdc
 passphrase: dev-sdc-encrypt-passphrase
 rootpassphrase: host3-root-passphrase
 rootdevice: /dev/sda2
 networkinterface: eth0
 vars:
 ip_version: IPv4
 ip_config_method: dhcp
 gluster_infra_tangservers:
 - url: http://key-server1.example.com:80
 - url: http://key-server2.example.com:80

Static IP addresses

hc_nodes:
 hosts:
 host1-backend.example.com:
 blacklist_mpath_devices:
 - sda
 - sdb
 - sdc
 gluster_infra_luks_devices:
 - devicename: /dev/sdb
 passphrase: dev-sdb-encrypt-passphrase
 - devicename: /dev/sdc
 passphrase: dev-sdc-encrypt-passphrase
 rootpassphrase: host1-root-passphrase
 rootdevice: /dev/sda2
 networkinterface: eth0
 host_ip_addr: host1-static-ip
 host_ip_prefix: network-prefix
 host_net_gateway: default-network-gateway
 host2-backend.example.com:
 blacklist_mpath_devices:
 - sda
 - sdb
 - sdc
 gluster_infra_luks_devices:
 - devicename: /dev/sdb
 passphrase: dev-sdb-encrypt-passphrase
 - devicename: /dev/sdc
 passphrase: dev-sdc-encrypt-passphrase
 rootpassphrase: host2-root-passphrase
 rootdevice: /dev/sda2

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

40

 networkinterface: eth0
 host_ip_addr: host1-static-ip
 host_ip_prefix: network-prefix
 host_net_gateway: default-network-gateway
 host3-backend.example.com:
 blacklist_mpath_devices:
 - sda
 - sdb
 - sdc
 gluster_infra_luks_devices:
 - devicename: /dev/sdb
 passphrase: dev-sdb-encrypt-passphrase
 - devicename: /dev/sdc
 passphrase: dev-sdc-encrypt-passphrase
 rootpassphrase: host3-root-passphrase
 rootdevice: /dev/sda2
 networkinterface: eth0
 host_ip_addr: host1-static-ip
 host_ip_prefix: network-prefix
 host_net_gateway: default-network-gateway
 vars:
 ip_version: IPv4
 ip_config_method: static
 gluster_infra_tangservers:
 - url: http://key-server1.example.com:80
 - url: http://key-server2.example.com:80

APPENDIX A. UNDERSTANDING THE LUKS_TANG_INVENTORY.YML FILE

41

APPENDIX B. UNDERSTANDING THE NODE_PREP_INVENTORY.YML FILE

The node_prep_inventory.yml file is an example Ansible inventory file that you can use to prepare a
replacement host for your Red Hat Hyperconverged Infrastructure for Virtualization cluster.

You can find this file at /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-
deployment/node_prep_inventory.yml on any hyperconverged host.

B.1. CONFIGURATION PARAMETERS FOR PREPARING A
REPLACEMENT NODE

B.1.1. Hosts to configure

hc_nodes

A list of hyperconverged hosts that uses the back-end FQDN of the host, and the configuration
details of those hosts. Configuration that is specific to a host is defined under that host’s back-end
FQDN. Configuration that is common to all hosts is defined in the vars: section.

hc_nodes:
 hosts:
 new-host-backend-fqdn.example.com:
 [configuration specific to this host]
 vars:
 [configuration common to all hosts]

B.1.2. Multipath devices

blacklist_mpath_devices (optional)

By default, Red Hat Virtualization Host enables multipath configuration, which provides unique
multipath names and worldwide identifiers for all disks, even when disks do not have underlying
multipath configuration. Include this section if you do not have multipath configuration so that the
multipath device names are not used for listed devices. Disks that are not listed here are assumed to
have multipath configuration available, and require the path format /dev/mapper/<WWID> instead of
/dev/sdx when defined in subsequent sections of the inventory file.
On a server with four devices (sda, sdb, sdc and sdd), the following configuration blacklists only two
devices. The path format /dev/mapper/<WWID> is expected for devices not in this list.

hc_nodes:
 hosts:
 new-host-backend-fqdn.example.com:
 blacklist_mpath_devices:
 - sdb
 - sdc

IMPORTANT

Do not list encrypted devices (luks_* devices) in blacklist_mpath_devices, as they
require multipath configuration to work.

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

42

B.1.3. Deduplication and compression

gluster_infra_vdo (optional)

Include this section to define a list of devices to use deduplication and compression. These devices
require the /dev/mapper/<name> path format when you define them as volume groups in
gluster_infra_volume_groups. Each device listed must have the following information:

name

A short name for the VDO device, for example vdo_sdc.

device

The device to use, for example, /dev/sdc.

logicalsize

The logical size of the VDO volume. Set this to ten times the size of the physical disk, for example,
if you have a 500 GB disk, set logicalsize: '5000G'.

emulate512

If you use devices with a 4 KB block size, set this to on.

slabsize

If the logical size of the volume is 1000 GB or larger, set this to 32G. If the logical size is smaller
than 1000 GB, set this to 2G.

blockmapcachesize

Set this to 128M.

writepolicy

Set this to auto.

For example:

hc_nodes:
 hosts:
 new-host-backend-fqdn.example.com:
 gluster_infra_vdo:
 - { name: 'vdo_sdc', device: '/dev/sdc', logicalsize: '5000G',
 emulate512: 'off', slabsize: '32G', blockmapcachesize: '128M',
 writepolicy: 'auto' }
 - { name: 'vdo_sdd', device: '/dev/sdd', logicalsize: '500G',
 emulate512: 'off', slabsize: '2G', blockmapcachesize: '128M',
 writepolicy: 'auto' }

B.1.4. Storage infrastructure

gluster_infra_volume_groups (required)

This section creates the volume groups that contain the logical volumes.

hc_nodes:
 hosts:
 new-host-backend-fqdn.example.com:
 gluster_infra_volume_groups:
 - vgname: gluster_vg_sdb
 pvname: /dev/sdb
 - vgname: gluster_vg_sdc
 pvname: /dev/mapper/vdo_sdc

APPENDIX B. UNDERSTANDING THE NODE_PREP_INVENTORY.YML FILE

43

gluster_infra_mount_devices (required)

This section creates the logical volumes that form Gluster bricks.

hc_nodes:
 hosts:
 new-host-backend-fqdn.example.com:
 gluster_infra_mount_devices:
 - path: /gluster_bricks/engine
 lvname: gluster_lv_engine
 vgname: gluster_vg_sdb
 - path: /gluster_bricks/data
 lvname: gluster_lv_data
 vgname: gluster_vg_sdc
 - path: /gluster_bricks/vmstore
 lvname: gluster_lv_vmstore
 vgname: gluster_vg_sdd

gluster_infra_thinpools (optional)

This section defines logical thin pools for use by thinly provisioned volumes. Thin pools are not
suitable for the engine volume, but can be used for the vmstore and data volume bricks.

vgname

The name of the volume group that contains this thin pool.

thinpoolname

A name for the thin pool, for example, gluster_thinpool_sdc.

thinpoolsize

The sum of the sizes of all logical volumes to be created in this volume group.

poolmetadatasize

Set to 16G; this is the recommended size for supported deployments.

hc_nodes:
 hosts:
 new-host-backend-fqdn.example.com:
 gluster_infra_thinpools:
 - {vgname: 'gluster_vg_sdc', thinpoolname: 'gluster_thinpool_sdc', thinpoolsize: '500G',
poolmetadatasize: '16G'}
 - {vgname: 'gluster_vg_sdd', thinpoolname: 'gluster_thinpool_sdd', thinpoolsize: '500G',
poolmetadatasize: '16G'}

gluster_infra_cache_vars (optional)

This section defines cache logical volumes to improve performance for slow devices. A fast cache
device is attached to a thin pool, and requires gluster_infra_thinpool to be defined.

vgname

The name of a volume group with a slow device that requires a fast external cache.

cachedisk

The paths of the slow and fast devices, separated with a comma, for example, to use a cache
device sde with the slow device sdb, specify /dev/sdb,/dev/sde.

cachelvname

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

44

A name for this cache logical volume.

cachethinpoolname

The thin pool to which the fast cache volume is attached.

cachelvsize

The size of the cache logical volume. Around 0.01% of this size is used for cache metadata.

cachemode

The cache mode. Valid values are writethrough and writeback.

hc_nodes:
 hosts:
 new-host-backend-fqdn.example.com:
 gluster_infra_cache_vars:
 - vgname: gluster_vg_sdb
 cachedisk: /dev/sdb,/dev/sde
 cachelvname: cachelv_thinpool_sdb
 cachethinpoolname: gluster_thinpool_sdb
 cachelvsize: '250G'
 cachemode: writethrough

gluster_infra_thick_lvs (required)

The thickly provisioned logical volumes that are used to create bricks. Bricks for the engine volume
must be thickly provisioned.

vgname

The name of the volume group that contains the logical volume.

lvname

The name of the logical volume.

size

The size of the logical volume. The engine logical volume requires 100G.

hc_nodes:
 hosts:
 new-host-backend-fqdn.example.com:
 gluster_infra_thick_lvs:
 - vgname: gluster_vg_sdb
 lvname: gluster_lv_engine
 size: 100G

gluster_infra_lv_logicalvols (required)

The thinly provisioned logical volumes that are used to create bricks.

vgname

The name of the volume group that contains the logical volume.

thinpool

The thin pool that contains the logical volume, if this volume is thinly provisioned.

lvname

The name of the logical volume.

size

The size of the logical volume. The engine logical volume requires 100G.

APPENDIX B. UNDERSTANDING THE NODE_PREP_INVENTORY.YML FILE

45

hc_nodes:
 hosts:
 new-host-backend-fqdn.example.com:
 gluster_infra_lv_logicalvols:
 - vgname: gluster_vg_sdc
 thinpool: gluster_thinpool_sdc
 lvname: gluster_lv_data
 lvsize: 200G
 - vgname: gluster_vg_sdd
 thinpool: gluster_thinpool_sdd
 lvname: gluster_lv_vmstore
 lvsize: 200G

gluster_infra_disktype (required)

Specifies the underlying hardware configuration of the disks. Set this to the value that matches your
hardware: RAID6, RAID5, or JBOD.

hc_nodes:
 vars:
 gluster_infra_disktype: RAID6

gluster_infra_diskcount (required)

Specifies the number of data disks in the RAID set. For a JBOD disk type, set this to 1.

hc_nodes:
 vars:
 gluster_infra_diskcount: 10

gluster_infra_stripe_unit_size (required)

The stripe size of the RAID set in megabytes.

hc_nodes:
 vars:
 gluster_infra_stripe_unit_size: 256

gluster_features_force_varlogsizecheck (required)

Set this to true if you want to verify that your /var/log partition has sufficient free space during the
deployment process. It is important to have sufficient space for logs, but it is not required to verify
space requirements at deployment time if you plan to monitor space requirements carefully.

hc_nodes:
 vars:
 gluster_features_force_varlogsizecheck: false

gluster_set_selinux_labels (required)

Ensures that volumes can be accessed when SELinux is enabled. Set this to true if SELinux is
enabled on this host.

hc_nodes:
 vars:
 gluster_set_selinux_labels: true

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

46

B.1.5. Firewall and network infrastructure

gluster_infra_fw_ports (required)

A list of ports to open between all nodes, in the format <port>/<protocol>.

hc_nodes:
 vars:
 gluster_infra_fw_ports:
 - 2049/tcp
 - 54321/tcp
 - 5900-6923/tcp
 - 16514/tcp
 - 5666/tcp
 - 16514/tcp

gluster_infra_fw_permanent (required)

Ensures the ports listed in gluster_infra_fw_ports are open after nodes are rebooted. Set this to
true for production use cases.

hc_nodes:
 vars:
 gluster_infra_fw_permanent: true

gluster_infra_fw_state (required)

Enables the firewall. Set this to enabled for production use cases.

hc_nodes:
 vars:
 gluster_infra_fw_state: enabled

gluster_infra_fw_zone (required)

Specifies the firewall zone to which these gluster_infra_fw_* parameters are applied.

hc_nodes:
 vars:
 gluster_infra_fw_zone: public

gluster_infra_fw_services (required)

A list of services to allow through the firewall. Ensure glusterfs is defined here.

hc_nodes:
 vars:
 gluster_infra_fw_services:
 - glusterfs

B.2. EXAMPLE NODE_PREP_INVENTORY.YML

Section for Host Preparation Phase
hc_nodes:

APPENDIX B. UNDERSTANDING THE NODE_PREP_INVENTORY.YML FILE

47

 hosts:
 # Host - The node which need to be prepared for replacement
 new-host-backend-fqdn.example.com:

 # Blacklist multipath devices which are used for gluster bricks
 # If you omit blacklist_mpath_devices it means all device will be whitelisted.
 # If the disks are not blacklisted, and then its taken that multipath configuration
 # exists in the server and one should provide /dev/mapper/<WWID> instead of /dev/sdx
 blacklist_mpath_devices:
 - sdb
 - sdc

 # Enable this section gluster_infra_vdo, if dedupe & compression is
 # required on that storage volume.
 # The variables refers to:
 # name - VDO volume name to be used
 # device - Disk name on which VDO volume to created
 # logicalsize - Logical size of the VDO volume.This value is 10 times
 # the size of the physical disk
 # emulate512 - VDO device is made as 4KB block sized storage volume(4KN)
 # slabsize - VDO slab size. If VDO logical size >= 1000G then
 # slabsize is 32G else slabsize is 2G
 #
 # Following VDO values are as per recommendation and treated as constants:
 # blockmapcachesize - 128M
 # writepolicy - auto
 #
 # gluster_infra_vdo:
 # - { name: vdo_sdc, device: /dev/sdc, logicalsize: 5000G, emulate512: off, slabsize: 32G,
 # blockmapcachesize: 128M, writepolicy: auto }
 # - { name: vdo_sdd, device: /dev/sdd, logicalsize: 3000G, emulate512: off, slabsize: 32G,
 # blockmapcachesize: 128M, writepolicy: auto }

 # When dedupe and compression is enabled on the device,
 # use pvname for that device as /dev/mapper/<vdo_device_name> # # The variables refers to: #
vgname - VG to be created on the disk # pvname - Physical disk (/dev/sdc) or VDO volume
(/dev/mapper/vdo_sdc) gluster_infra_volume_groups: - vgname: gluster_vg_sdb pvname: /dev/sdb -
vgname: gluster_vg_sdc pvname: /dev/mapper/vdo_sdc - vgname: gluster_vg_sdd pvname:
/dev/mapper/vdo_sdd gluster_infra_mount_devices: - path: /gluster_bricks/engine lvname:
gluster_lv_engine vgname: gluster_vg_sdb - path: /gluster_bricks/data lvname: gluster_lv_data
vgname: gluster_vg_sdc - path: /gluster_bricks/vmstore lvname: gluster_lv_vmstore vgname:
gluster_vg_sdd # 'thinpoolsize is the sum of sizes of all LVs to be created on that VG
 # In the case of VDO enabled, thinpoolsize is 10 times the sum of sizes
 # of all LVs to be created on that VG. Recommended values for
 # poolmetadatasize is 16GB and that should be considered exclusive of
 # thinpoolsize
 gluster_infra_thinpools:
 - {vgname: gluster_vg_sdc, thinpoolname: gluster_thinpool_sdc, thinpoolsize: 500G,
poolmetadatasize: 16G}
 - {vgname: gluster_vg_sdd, thinpoolname: gluster_thinpool_sdd, thinpoolsize: 500G,
poolmetadatasize: 16G}

 # Enable the following section if LVM cache is to enabled
 # Following are the variables:
 # vgname - VG with the slow HDD device that needs caching
 # cachedisk - Comma separated value of slow HDD and fast SSD

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

48

 # In this example, /dev/sdb is the slow HDD, /dev/sde is fast SSD
 # cachelvname - LV cache name
 # cachethinpoolname - Thinpool to which the fast SSD to be attached
 # cachelvsize - Size of cache data LV. This is the SSD_size - (1/1000) of SSD_size
 # 1/1000th of SSD space will be used by cache LV meta
 # cachemode - writethrough or writeback
 # gluster_infra_cache_vars:
 # - vgname: gluster_vg_sdb
 # cachedisk: /dev/sdb,/dev/sde
 # cachelvname: cachelv_thinpool_sdb
 # cachethinpoolname: gluster_thinpool_sdb
 # cachelvsize: 250G
 # cachemode: writethrough

 # Only the engine brick needs to be thickly provisioned
 # Engine brick requires 100GB of disk space
 gluster_infra_thick_lvs:
 - vgname: gluster_vg_sdb
 lvname: gluster_lv_engine
 size: 100G

 gluster_infra_lv_logicalvols:
 - vgname: gluster_vg_sdc
 thinpool: gluster_thinpool_sdc
 lvname: gluster_lv_data
 lvsize: 200G
 - vgname: gluster_vg_sdd
 thinpool: gluster_thinpool_sdd
 lvname: gluster_lv_vmstore
 lvsize: 200G

 # Common configurations
 vars:
 # In case of IPv6 based deployment "gluster_features_enable_ipv6" needs to be enabled,below
line needs to be uncommented, like:
 # gluster_features_enable_ipv6: true

 # Firewall setup
 gluster_infra_fw_ports:
 - 2049/tcp
 - 54321/tcp
 - 5900-6923/tcp
 - 16514/tcp
 - 5666/tcp
 - 16514/tcp
 gluster_infra_fw_permanent: true
 gluster_infra_fw_state: enabled
 gluster_infra_fw_zone: public
 gluster_infra_fw_services:
 - glusterfs
 # Allowed values for gluster_infra_disktype - RAID6, RAID5, JBOD
 gluster_infra_disktype: RAID6

 # gluster_infra_diskcount is the number of data disks in the RAID set.
 # Note for JBOD its 1
 gluster_infra_diskcount: 10

APPENDIX B. UNDERSTANDING THE NODE_PREP_INVENTORY.YML FILE

49

 gluster_infra_stripe_unit_size: 256
 gluster_features_force_varlogsizecheck: false
 gluster_set_selinux_labels: true

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

50

APPENDIX C. UNDERSTANDING THE NODE_REPLACE_INVENTORY.YML

FILE
The node_replace_inventory.yml file is an example Ansible inventory file that you can use to prepare a
replacement host for your Red Hat Hyperconverged Infrastructure for Virtualization cluster.

You can find this file at /etc/ansible/roles/gluster.ansible/playbooks/hc-ansible-
deployment/node_replace_inventory.yml on any hyperconverged host.

C.1. CONFIGURATION PARAMETERS FOR NODE REPLACEMENT

hosts (required)

Defines one active host in the cluster using the back-end FQDN.

cluster_nodes:
 hosts:
 host2-backend-fqdn.example.com:
 vars:
 [common host configuration]

gluster_maintenance_old_node (required)

Defines the backend FQDN of the node being replaced.

cluster_nodes:
 hosts:
 host2-backend-fqdn.example.com:
 vars:
 gluster_maintenance_old_node: host1-backend-fqdn.example.com

gluster_maintenance_new_node (required)

Defines the backend FQDN of the replacement node.

cluster_nodes:
 hosts:
 host2-backend-fqdn.example.com:
 vars:
 gluster_maintenance_new_node: new-host-backend-fqdn.example.com

gluster_maintenance_cluster_node (required)

An active node in the cluster. Cannot be the same as gluster_maintenance_cluster_node_2.

cluster_nodes:
 hosts:
 host2-backend-fqdn.example.com:
 vars:
 gluster_maintenance_cluster_node: host2-backend-fqdn.example.com

gluster_maintenance_cluster_node_2 (required)

An active node in the cluster. Cannot be the same as gluster_maintenance_cluster_node.

APPENDIX C. UNDERSTANDING THE NODE_REPLACE_INVENTORY.YML FILE

51

cluster_nodes:
 hosts:
 host2-backend-fqdn.example.com:
 vars:
 gluster_maintenance_cluster_node_2: host3-backend-fqdn.example.com

C.2. EXAMPLE NODE_REPLACE_INVENTORY.YML

cluster_node:
 hosts:
 host2-backend-fqdn.example.com:

 vars:
 gluster_maintenance_old_node: host1-backend-fqdn.example.com
 gluster_maintenance_new_node: new-host-backend-fqdn.example.com
 gluster_maintenance_cluster_node: host2-backend-fqdn.example.com
 gluster_maintenance_cluster_node_2: host3-backend-fqdn.example.com

Red Hat Hyperconverged Infrastructure for Virtualization 1.8 Replacing failed hosts

52

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. OVERVIEW
	CHAPTER 2. BACKING UP IMPORTANT FILES
	PART I. USING THE SAME HOST FQDN
	CHAPTER 3. REUSING BRICKS AND RESTORING CONFIGURATION FROM BACKUPS
	3.1. HOST REPLACEMENT PREREQUISITES
	3.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT
	3.3. RESTORING DISK CONFIGURATION FROM BACKUPS
	3.4. CREATING THE NODE_REPLACE_INVENTORY.YML FILE
	3.5. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE
	3.6. FINALIZING HOST REPLACEMENT
	3.7. VERIFYING HEALING IN PROGRESS

	CHAPTER 4. REUSING BRICKS AND RECONSTRUCTING EXISTING BRICK CONFIGURATION
	4.1. HOST REPLACEMENT PREREQUISITES
	4.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT
	4.3. RECREATING DISK CONFIGURATION WITHOUT BACKUPS
	4.3.1. Reconfiguring encryption during host replacement
	4.3.2. Reconfiguring deduplication and compression during host replacement
	4.3.3. Restoring disk mount configuration

	4.4. CREATING THE NODE_PREP_INVENTORY.YML FILE
	4.5. CREATING THE NODE_REPLACE_INVENTORY.YML FILE
	4.6. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE
	4.7. FINALIZING HOST REPLACEMENT
	4.8. VERIFYING HEALING IN PROGRESS

	CHAPTER 5. CREATING NEW BRICKS AND CONFIGURATION
	5.1. HOST REPLACEMENT PREREQUISITES
	5.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT
	5.3. CREATING THE NODE_PREP_INVENTORY.YML FILE
	5.4. CREATING THE NODE_REPLACE_INVENTORY.YML FILE
	5.5. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE
	5.6. FINALIZING HOST REPLACEMENT
	5.7. VERIFYING HEALING IN PROGRESS

	PART II. USING A DIFFERENT HOST FQDN
	CHAPTER 6. REPLACING A PRIMARY HOST USING NEW BRICKS
	6.1. HOST REPLACEMENT PREREQUISITES
	6.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT
	6.3. CREATING THE NODE_PREP_INVENTORY.YML FILE
	6.4. CREATING THE NODE_REPLACE_INVENTORY.YML FILE
	6.5. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE
	6.6. UPDATING THE CLUSTER FOR A NEW PRIMARY HOST
	6.7. REMOVING A FAILED HOST FROM THE CLUSTER
	6.8. VERIFYING HEALING IN PROGRESS

	CHAPTER 7. REPLACING A NON-PRIMARY HOST USING NEW BRICKS
	7.1. HOST REPLACEMENT PREREQUISITES
	7.2. PREPARING THE CLUSTER FOR HOST REPLACEMENT
	7.3. CREATING THE NODE_PREP_INVENTORY.YML FILE
	7.4. CREATING THE NODE_REPLACE_INVENTORY.YML FILE
	7.5. EXECUTING THE REPLACE_NODE.YML PLAYBOOK FILE
	7.6. REMOVING A FAILED HOST FROM THE CLUSTER
	7.7. VERIFYING HEALING IN PROGRESS

	PART III. REFERENCE MATERIAL
	APPENDIX A. UNDERSTANDING THE LUKS_TANG_INVENTORY.YML FILE
	A.1. CONFIGURATION PARAMETERS FOR DISK ENCRYPTION
	A.2. EXAMPLE LUKS_TANG_INVENTORY.YML

	APPENDIX B. UNDERSTANDING THE NODE_PREP_INVENTORY.YML FILE
	B.1. CONFIGURATION PARAMETERS FOR PREPARING A REPLACEMENT NODE
	B.1.1. Hosts to configure
	B.1.2. Multipath devices
	B.1.3. Deduplication and compression
	B.1.4. Storage infrastructure
	B.1.5. Firewall and network infrastructure

	B.2. EXAMPLE NODE_PREP_INVENTORY.YML

	APPENDIX C. UNDERSTANDING THE NODE_REPLACE_INVENTORY.YML FILE
	C.1. CONFIGURATION PARAMETERS FOR NODE REPLACEMENT
	C.2. EXAMPLE NODE_REPLACE_INVENTORY.YML

