
Red Hat Integration 2019-12

Data Virtualization

Data Virtualization

Last Updated: 2019-12-05

Red Hat Integration 2019-12 Data Virtualization

Data Virtualization

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Combine data from multiple sources so that applications can connect to a single, virtual data model

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. HIGH-LEVEL OVERVIEW OF DATA VIRTUALIZATION

CHAPTER 2. VIRTUAL DATABASE CREATION

CHAPTER 3. DATA VIRTUALIZATION OPERATOR
3.1. INSTALLING THE DATA VIRTUALIZATION OPERATOR ON OPENSHIFT
3.2. RUNNING THE DATA VIRTUALIZATION OPERATOR TO DEPLOY A VIRTUAL DATABASE
3.3. CREATING A VIRTUAL DATABASE FROM THE OPENSHIFT WEB CONSOLE
3.4. CUSTOM RESOURCES TO SUPPORT DATA SOURCES

3.4.1. Settings to configure relational databases as data sources
3.4.2. Settings to configure MongoDB as a data source
3.4.3. Settings to configure REST, OData, and OpenAPI data sources
3.4.4. Settings to configure Salesforce as a data source
3.4.5. Setting up an OAuth connection to Salesforce

CHAPTER 4. USING MAVEN SPRING BOOT TO CREATE VIRTUAL DATABASES
4.1. USING MAVEN TO CREATE A JAVA SHELL PROJECT FOR YOUR VIRTUAL DATABASE
4.2. CREATING AND DEPLOYING SECRETS
4.3. SECRET OBJECTS FOR STORING DATA SOURCE INFORMATION
4.4. SPECIFYING PROJECT DEPENDENCIES IN THE POM.XML FILE
4.5. DEFINING THE STRUCTURE FOR VIRTUAL DATABASES IN A DDL FILE
4.6. DDL FILES
4.7. ADDING JAVA APPLICATION AND CLASS FILES
4.8. SAMPLE DATASOURCES.JAVA FILE
4.9. SPECIFYING APPLICATION PROPERTIES
4.10. SAMPLE APPLICATION.PROPERTIES FILE
4.11. DEPLOYMENT CONFIGURATION FILES (DEPLOYMENTCONFIG.YML)
4.12. SETTING THE DEPLOYMENT CONFIGURATION
4.13. CONNECTION SETTINGS FOR OTHER DATA SOURCES

4.13.1. Settings to connect to Salesforce as a data source
4.13.2. Settings to connect to Google Sheets as a data source

4.14. BUILDING A DATA VIRTUALIZATION PROJECT

CHAPTER 5. MAKING VIRTUAL DATABASES AVAILABLE TO API CONSUMERS
5.1. CONFIGURING ACCESS FOR ODATA CLIENTS
5.2. CONFIGURING ACCESS FOR JDBC CLIENTS
5.3. IDENTIFYING THE ODATA ENDPOINT OF A VIRTUAL DATABASE

CHAPTER 6. SECURING ODATA APIS FOR A VIRTUAL DATABASE BY USING 3SCALE AND RH-SSO
6.1. UPDATING THE VIRTUAL DATABASE CONFIGURATION

6.1.1. Adding SSO dependencies to pom.xml
6.1.2. Adding SSO settings to application.properties
6.1.3. Creating a configuration map
6.1.4. Updating SSO environment variables in the deploymentconfig.yml file
6.1.5. Defining user roles in the DDL file

6.2. UPDATING THE 3SCALE CONFIGURATION

CHAPTER 7. CREATING AND WORKING WITH VIRTUAL DATABASES IN FUSE ONLINE
7.1. CREATING VIRTUAL DATABASES IN FUSE ONLINE
7.2. ADDING A VIEW TO A VIRTUAL DATABASE IN FUSE ONLINE
7.3. USING THE VIEW EDITOR IN FUSE ONLINE TO MODIFY THE DDL THAT DEFINES A VIRTUAL DATABASE

7.4. PREVIEWING A VIRTUAL DATABASE IN FUSE ONLINE BY SUBMITTING SQL TEST QUERIES

4

5

6
6
8

10
11

12
13
14
16
17

19
19

20
21
22
23
24
25
26
26
27
28
29
30
31

33
34

36
36
37
38

40
40
41
41

42
42
43
43

45
45
46

47
48

Table of Contents

1

. .

7.5. PUBLISHING VIRTUAL DATABASES IN FUSE ONLINE TO MAKE THEM AVAILABLE FOR ACCESS
7.6. DELETING A VIRTUAL DATABASE IN FUSE ONLINE

CHAPTER 8. MIGRATING LEGACY VIRTUAL DATABASE FILES TO DDL FORMAT
8.1. VALIDATING A LEGACY VIRTUAL DATABASE XML FILE AND VIEWING IT IN DDL FORMAT
8.2. CONVERTING A LEGACY VIRTUAL DATABASE XML FILE AND SAVING IT AS A DDL FILE

49
49

51
51
52

Red Hat Integration 2019-12 Data Virtualization

2

Table of Contents

3

CHAPTER 1. HIGH-LEVEL OVERVIEW OF DATA
VIRTUALIZATION

Data virtualization is a container-native service that provides integrated access to multiple diverse data
sources, including relational and noSQL databases, files, web services, and SaaS repositories through a
single uniform API. Applications and users connect to a virtual database over standard interfaces
(OData REST, or JDBC/ODBC) and can interact with data from all configured data sources as if the
data were served from a single relational database.

The Red Hat data virtualization technology is based on Teiid, the open source data virtualization project.
For more information about Teiid, see the Teiid community documentation.

IMPORTANT

Data virtualization is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview/.

Red Hat Integration 2019-12 Data Virtualization

4

http://teiid.github.io/teiid-documents/master/content/
https://access.redhat.com/support/offerings/techpreview/

CHAPTER 2. VIRTUAL DATABASE CREATION
You design and create a virtual database and then deploy it to an OpenShift container. After you create
the virtual database, you can make it available to API consumers, which can connect to it as if it were a
single relational database.

You can create virtual databases by using a data virtualization operator, by using Fabric8 and Maven
Spring Boot, or in Fuse Online.

In this Technology Preview release, the preferred method for deploying virtual databases to OpenShift
is to use the data-virtualization operator. The method of using creating and deploying virtual databases
with Fabric8 and the Spring Boot Maven plugin is deprecated.

You can create a virtual database in Fuse Online. However, in the current Technology Preview, virtual
database created in Fuse Online provide a more limited set of features. Most developers are expected
to use the data virtualization operator to deploy virtual databases directly on OpenShift.

Additional resources

Chapter 3, Data virtualization operator

Chapter 4, Using Maven Spring Boot to create virtual databases

Chapter 7, Creating and working with virtual databases in Fuse Online

CHAPTER 2. VIRTUAL DATABASE CREATION

5

CHAPTER 3. DATA VIRTUALIZATION OPERATOR
The data-virtualization operator helps to automate the configuration and deployment of virtual
databases. After you add the operator to your OpenShift cluster, you can use it to build and deploy
virtual database images from a range of data sources.

In this Technology Preview release, the preferred method for deploying virtual databases to OpenShift
is to use the data-virtualization operator. The method of using creating and deploying virtual databases
with Fabric8 and the Spring Boot Maven plugin is deprecated. Currently, virtual databases that you
create from the data virtualization operator are not available in Fuse Online.

You can install the data virtualization operator on OpenShift 3.11 or greater. On OpenShift 4.2 and later
the Operator is available in the OperatorHub.

Prerequisites

You are a cluster administrator. You must have cluster-admin rights to add operators to the
OpenShift cluster.

You have the 2019-12 release of Red Hat Integration.

You have Developer access to an OpenShift server and you are familiar with using the
OpenShift console and CLI.

You have a DDL file for the virtual database that you want to create, or you know how to write
SQL code and create DDL files.

You have Maven 3.0 installed.

You have JDK 8 (Java Platform, Standard Edition 8 Development Kit) or greater installed.

You can connect to one of the following types of data sources:

Relational database

mongoDB

Salesforce

REST

OData

OpenAPI

You have administrator access to the configured data source.

3.1. INSTALLING THE DATA VIRTUALIZATION OPERATOR ON
OPENSHIFT

Install the data virtualization operator so that you can use it to deploy virtual database images to
OpenShift from YAML-based custom resources (CRs).

Prerequisites

You have cluster-admin access to an OpenShift 3.11 or 4.2 or greater cluster.

Red Hat Integration 2019-12 Data Virtualization

6

1

1

You can use the oc command-line tool to connect to interact with your OpenShift 3.11 cluster,
or you have access to the OpenShift 4.2 or greater web console.

Procedure

Install the operator using one of the following methods, depending on the version of OpenShift
that you are running.

Installing on OpenShift 3.11

1. From a terminal window, log in to the OpenShift cluster as a cluster administrator.

oc login

2. Create or open a project where you want to deploy a virtual database.

3. Type the following commands:

If you previously created a CRD in the cluster, the command returns an error, reporting that
the CRD already exists. You can ignore the message.

4. Type the following commands to create a pull secret that you can use to access the Red Hat
image registry:

Substitute the user name and password that you use to log in to the Red Hat Customer
Portal.

If the command completes with no errors, the operator is deployed to your OpenShift instance
within the current OpenShift project.

5. To enable the data virtualization operator to retrieve images from the Red Hat registry so that
you can create virtual databases, link the secret that you created in Step 4 to the service
account for the operator.

Installing on OpenShift 4.2 or greater

export OP_ROOT=https://raw.githubusercontent.com/teiid/teiid-operator/7.5-0.0.x/deploy
oc create -f $OP_ROOT/crds/virtualdatabase.crd.yaml 1
oc create -f $OP_ROOT/service_account.yaml
oc create -f $OP_ROOT/role.yaml
oc create -f $OP_ROOT/role_binding.yaml
oc create -f $OP_ROOT/operator.yaml

oc create secret docker-registry dv-pull-secret /
--docker-server=registry.redhat.io /
--docker-username=$username / 1
--docker-password=$password /
--docker-email=$email_address
oc secrets link builder dv-pull-secret
oc secrets link builder dv-pull-secret --for=pull

oc secrets link dv-operator dv-pull-secret --for=pull

CHAPTER 3. DATA VIRTUALIZATION OPERATOR

7

1

1. From a terminal window, type the following commands to log in to the OpenShift cluster and
create a pull secret that you can use to access the Red Hat image registry:

Use your Red Hat Customer Portal login credentials.

2. Log in to the OpenShift web console as a cluster administrator.

3. From the OpenShift menu, expand Operators and click OperatorHub.

4. Click Data Virtualization Operator 7.5.0 provided by Red Hat, Inc., and then click Install.

5. From the Create Operator Subscription page, verify that the selected namespace matches
the name of the project where you want to install the operator, and then click Subscribe.
The Installed Operators page lists the Data Virtualization Operator and reports the status of
the installation.

6. From the OpenShift menu, expand Workloads and click Pods to check the status of the
operator pod. After a few minutes, the pod for the operator service begins to run.

7. To enable the data virtualization operator to retrieve images from the Red Hat registry so that
you can create virtual databases, link the secret that you created in Step 1 to the service account
for the operator.

Additional resources

Section 3.2, “Running the data virtualization operator to deploy a virtual database” .

3.2. RUNNING THE DATA VIRTUALIZATION OPERATOR TO DEPLOY A
VIRTUAL DATABASE

After a cluster administrator adds the data virtualization operator to an OpenShift cluster, other users
can run the operator to create a virtual database.

The data virtualization operator processes a virtual database custom resource (CR) to create and
deploy a virtual database object on OpenShift. You specify the configuration properties for the data
source in the CR. Each type of data source requires a specific set of configuration properties. When you
run the operator, you provide it with a .yaml file that contains the CR. By running the operator with
different CRs, you can create virtual databases from a range of data sources. For more information
about specifying data source properties, see Section 3.4, “Custom resources to support data sources”

NOTE

oc login
oc create secret docker-registry dv-pull-secret /
--docker-server=registry.redhat.io /
--docker-username=$username / 1
--docker-password=$password /
--docker-email=$email_address
oc secrets link builder dv-pull-secret
oc secrets link builder dv-pull-secret --for=pull

oc secrets link dv-operator dv-pull-secret --for=pull

Red Hat Integration 2019-12 Data Virtualization

8

NOTE

In this Technology Preview, the data virtualization operator can create virtual databases
from the following data sources only:

Relational databases

Salesforce databases

MongoDB

Open API

OData

Prerequisites

You have access to an OpenShift cluster in which the data virtualization operator is installed.

The operator has access to the Maven repositories that contain the dependencies that the build
requires.

OpenShift can access a supported data source that runs on your network.

You have the login credentials to access the data source.

You have a CR in .yaml format that provides information about how to create the virtual
database.

Procedure

1. From a terminal window, log in to OpenShift and open the project where you want to create the
virtual database.

2. On you computer, change to the directory that contains the .yaml file that contains the CR.

3. Type the following command to run the operator to create the virtual database:

oc create -f <cr_filename.yaml>

Replace <cr_filename.yaml> with the name of the CR file for your data source. For example,

oc create -f dv-customer.yaml

After the deployment completes, a service is added to the OpenShift cluster. The name of the
service matches the name of the custom resource.

4. Type the following command to verify that the virtual database is created:

oc get vdbs

OpenShift returns the list of virtual databases in the project.

The deployed service supports connections from the following clients:

JDBC clients through port 31000.

CHAPTER 3. DATA VIRTUALIZATION OPERATOR

9

postgreSQL clients, including ODBC clients, through port 35432.

OData clients, through an HTTP endpoint and route.

NOTE

For OpenShift to create an HTTP endpoint, the value of the property
spec/exposeVia3scale must be set to false in the CR. If the value is set to true it is
assumed that 3scale manages the endpoint, and no HTTP endpoint is created.

3.3. CREATING A VIRTUAL DATABASE FROM THE OPENSHIFT WEB
CONSOLE

After a cluster administrator adds the data virtualization operator from the OperatorHub, other users
can run the operator from web console to create a virtual database.

When you run the operator from the web console, you can use the embedded editor to create the
custom resource (CR) that defines the virtual database. The CR includes properties that specify how to
connect to the data source, and a DDL section that determines how information in the data source is
used in your virtual database. You use YAML or JSON to define connection properties, and you use
SQL-MED in the DDL section to specify the virtual database schema.

The editor includes a sample CR that you can edit in-place, or download to edit it off-line. You can also
use drag and drop to upload local copies of properties definitions or DDL files. For information about the
properties to use for different data sources, see Section 3.4, “Custom resources to support data
sources”

NOTE

In this Technology Preview, the data virtualization operator can create virtual databases
from the following data sources only:

Relational databases

Salesforce databases

MongoDB

Open API

OData

Prerequisites

You have web console access to an OpenShift cluster in which the data virtualization operator is
installed.

The operator has access to the Maven repositories that contain the dependencies that the build
requires.

OpenShift can access a supported data source that runs on your network.

You have the login credentials to access the data source.

You have a CR in .yaml format that provides information about how to create the virtual

Red Hat Integration 2019-12 Data Virtualization

10

You have a CR in .yaml format that provides information about how to create the virtual
database.

Procedure

1. From the OpenShift menu, expand Operators and click Installed Operators.

2. Click Data Virtualization Operator.

3. Click the VirtualDatabase tab.

4. Click Create Virtual Database.
OpenShift displays a sample custom resource.

5. Edit the sample CR as needed to specify the details of the virtualization, and then click Create.
OpenShift lists the virtual database service on the VirtualDatabase tab.

6. From the OpenShift menu, expand Workloads and click Pods to check the status of the pod
that runs the new virtualization. After it is running, you are ready to use the new virtualization.

7. To view the protocols that the virtualization exposes, from the Openshift menu, expand
Networking, click Services, and then click the service with the name of the virtualization.
The deployed service automatically supports the following connection types:

JDBC - Provides access for SQL clients over port 31000.

postgreSQL - Provides access for ODBC clients and other postgreSQL clients over port
35432.

HTTP - Provides access for OData and REST clients over port 8080.

3.4. CUSTOM RESOURCES TO SUPPORT DATA SOURCES

Before you can use the data virtualization operator to create a virtual database, you must specify
properties for the data source in a custom resource (CR) file.

By providing configuration information in a CR, you provide the operator with directions for how to
create virtual databases from any of multiple types of data sources. When you run the data virtualization
operator, it reads information from the CR to determine the type of the data source, its schema
structure, and how to connect to it and authenticate with it.

The CR uses SQL Data Definition Language (DDL) commands to describe the schema of the virtual
database and the data source, the data that you want to import into the virtual database, and the
mapping between the source schema and the virtual schema. The CR also specifies the translator to use
to convert the format of commands and data that pass between the virtual database and the data
source.

You can specify the values of configuration properties directly in the CR file, or you can reference values
that you define in OpenShift secrets. For more information about creating secrets, see Section 4.2,
“Creating and deploying secrets”.

NOTE

Period characters (.) are not valid for use in environment variables. When you add
variables to the CR, replace period characters with underscore characters (_). At runtime,
underscores in the variables are converted automatically to periods.

CHAPTER 3. DATA VIRTUALIZATION OPERATOR

11

3.4.1. Settings to configure relational databases as data sources

The custom resource (CR) for a relational database management system (RDBMS), such as
PostgreSQL or Microsoft SQL Server, must contains specific information so that the data virtualization
operator can create a virtual database from the database.

The following tables list some of the properties that are required in a CR to create a virtual database
that is based on a relational database. The values that you assign to these properties vary according to
your environment and the specific database technology that you use.

Table 3.1. Connection properties in the spec/env section of an RDBMS CR

Property Name Description Required Default value

SPRING_DATASOURCE
_<NAME>_JDBCURL

URL For the connection Yes n/a

SPRING_DATASOURCE
_<NAME>_USERNAME

User Name Yes n/a

SPRING_DATASOURCE
_<NAME>_PASSWORD

Password Yes n/a

SPRING_DATASOURCE
_<NAME>_DRIVER_CLA

SS_NAME∗

Driver Name No n/a

SPRING_DATASOURCE
_<NAME>_IMPORTER_S
CHEMA_NAME

Schema Name for
import

Yes n/a

In the preceding table, NAME specifies a name, in upper case, that refers to the data source. This same
name string is used in the DDL that defines the virtual database to represent the data source server.

∗The JDBC driver class that you reference must be available as a Maven artifact from a repository that
is listed in the spec/dependencies section of the CR file. The virtualization operator must have access
to download artifacts from the specified repository.

Along with the connection properties You can define properties to control the behavior of the JDBC
translator and to provide more control over how you import data from the source database.

Table 3.2. Foreign data wrapper settings in the build/source/ddl section of an RDBMS CR

Property Name Description Required Value

FOREIGN DATA
WRAPPER

Translator Yes <translator-name>∗

∗The translator value depends on the type of database. Translators are available for the following
relational databases.

db2

Red Hat Integration 2019-12 Data Virtualization

12

derby

h2

hana (Connects to SAP HANA through a JDBC driver)

hive*jdbc (Connects to Apache Hive through the Hive JDBC driver)

hsql

impala (Connects to Apache Impala)

informix

ingres

jtds (Connects to Microsoft SQL Server through Java tabular data stream (JTDS) drivers)

mysql5

netezza

oracle

osisoft-pi (Connects to an OSIsoft PI Data Archive through the OSIsoft JDBC driver)

phoenix (Connects to Apache Phoenix using the Phoenix JDBC driver)

postgresql

presto-jdbc (Connects to PrestoDB through a JDBC driver)

sqlserver (Connects to Microsoft SQL Server)

sybase

teradata

teiid (Connecting to a Teiid virtual database through a JDBC driver)

vertica

For a complete list of the translator properties that you can define for JDBC data sources, see JDBC
Translators in the Teiid Reference Guide.

3.4.2. Settings to configure MongoDB as a data source

The custom resource (CR) for a MongoDB database must contain specific information so that the data
virtualization operator can create a virtual database from the database.

NOTE

The current release supports MongoDB release 3.

The following tables list the properties that are required in the CR to create a virtual database that is
based on a MongoDB database:

CHAPTER 3. DATA VIRTUALIZATION OPERATOR

13

http://teiid.github.io/teiid-documents/master/content/reference/JDBC_Translators.html

Table 3.3. Connection properties in the spec/env section of the MongoDB CR

Property Name Description Required Default value

SPRING_TEIID_DATA_
MONGODB_{NAME}_R
EMOTE_SERVER_LIST

List of MongoDb
servers ex:
(localhost:27012)

Yes n/a

SPRING_TEIID_DATA_
MONGODB_{NAME}_U
SER

User Name Yes n/a

SPRING_TEIID_DATA_
MONGODB_{NAME}_P
ASSWORD

Password Yes n/a

SPRING_TEIID_DATA_
MONGODB_{NAME}_D
ATABASE

Database name to
connect to

Yes n/a

SPRING_TEIID_DATA_
MONGODB_{NAME}_A
UTH_DATABASE

Database name for
authorization

No n/a

SPRING_TEIID_DATA_
MONGODB_{NAME}_S
SL

Use SSL Connection No n/a

In the preceding table, NAME specifies a name, in upper case, that refers to the data source. This same
name string is used in the DDL that defines the virtual database to represent the data source server.

Table 3.4. Foreign data wrapper settings in the build/source/ddl section of the MongoDB CR

Property Name Description Required Value

FOREIGN DATA
WRAPPER

Translator Yes mongodb

For a complete list of the properties that you can set to control how data is translated between
MongoDB and a virtual database, see the Teiid Reference Guide.

NOTE

You are not required to list any build dependencies in the CR for a MongoDB virtual
database.

3.4.3. Settings to configure REST, OData, and OpenAPI data sources

The custom resource (CR) for a REST-based data source must contain specific information so that the
data virtualization operator can create a virtual database from the source.

Red Hat Integration 2019-12 Data Virtualization

14

http://teiid.github.io/teiid-documents/master/content/reference/MongoDB_Translator.html

The set of connection properties that are required for all REST-based data sources is the same.
However, services that are based on standard specifications, such as OData or OpenAPI, require specific
translators. For information about translator properties, see Table 3.6, “Foreign data wrapper settings in
the build/source/ddl section of a REST-based CR” .

For generic REST web services that are not based on a standard specification, the data virtualization
service cannot automatically convert query criteria into a query parameter. Because these services lack
built-in mechanisms to pass SQL query conditions to a REST API endpoint, you must use the
invokeHttp procedure to pass the query as an XML or JSON payload, and you must specify all query
strings and headers.

By default, translators are unable to parse the security configuration of a secured API. To enable
translators to access data for a secured API, the CR must specify the security properties for the API.

Table 3.5. Properties in the spec/env section of REST-based CRs

Property Name Description Required Default value

SPRING_TEIID_REST_<
NAME>_ENDPOINT

Endpoint for the service Yes n/a

SPRING_TEIID_REST_<
NAME>_SECURITY_TYP
E

Security type used.
Available options are
http-basic, openid-
connect or empty

No no security

SPRING_TEIID_REST_<
NAME>_USER_NAME

User Name Yes n/a

SPRING_TEIID_REST_<
NAME>_PASSWORD

Password Yes n/a

SPRING_TEIID_REST_<
NAME>_CLIENT_ID

ClientId from connected
app

Yes, when the security
type is defined as
openid-connect

n/a

SPRING_TEIID_REST_<
NAME>_CLIENT_SECRE
T

clientSecret from
connected app

Yes, when the security
type is defined as
openid-connect

n/a

SPRING_TEIID_REST_<
NAME>_AUTHORIZE_U
RL

clientSecret from
connected app

Yes, when the security
type is defined as
openid-connect

n/a

SPRING_TEIID_REST_<
NAME>_ACCESS_TOKE
N_URL

clientSecret from
connected app

Yes, when the security
type is defined as
openid-connect

n/a

SPRING_TEIID_REST_<
NAME>_SCOPE

clientSecret from
connected app

No. Applies when the
security type is defined
as openid-connect

n/a

CHAPTER 3. DATA VIRTUALIZATION OPERATOR

15

SPRING_TEIID_REST_<
NAME>_REFRESH_TOK

EN∗

Refresh token for the
virtual database service

No n/a

Property Name Description Required Default value

∗ When security is set to openid-connect, you can use refresh tokens to authenticate, instead of using
name and password authentication. Information about obtaining refresh tokens is beyond the scope of
this document.

In the Table 3.5, “Properties in the spec/env section of REST-based CRs” , NAME indicates the name, in
upper case, that represents the data source. The NAME value is also used in lower case in the
build/source/ddl section of the CR to represent the data source server.

Table 3.6. Foreign data wrapper settings in the build/source/ddl section of a REST-based CR

Data source Description Required Value

REST Translator Yes rest

OData Translator Yes odata

OData4 Translator Yes odata4

OpenAPI Translator Yes openapi

For a complete list of the properties that you can set to control how data is translated between REST-
based services and a virtual database, see the OData, OData V4, OpenAPI, and Web Services Translator
sections in the Translators section of the Teiid Reference Guide .

The OpenAPI translator assumes that the endpoint in the API document is set to the target location
/openapi, and it builds a source model that is based on that assumption. If the API endpoint is set to a
different target, a configuration setting must be specified to enable the translator to locate the
endpoint and import data correctly. The following examples show a DDL schema statement and an
environment variable that you can set to specify a non-standard endpoint.

Sample DDL statement to specify a non-standard OpenAPI endpoint

CREATE SCHEMA sourceModel SERVER oService OPTIONS ("importer.metadataUrl"
'/swagger.json');

Sample environment property to specify a non-standard OpenAPI endpoint

SPRING_TEIID_REST_OSERVICE_IMPORTER_METADATAURL=/swagger.json

3.4.4. Settings to configure Salesforce as a data source

The custom resource (CR) for a Salesforce database must contain specific information so that the data
virtualization operator can create a virtual database from the database.

Red Hat Integration 2019-12 Data Virtualization

16

http://teiid.github.io/teiid-documents/master/content/reference/Translators.html

Salesforce uses OAuth 2.0 for authentication and authorization. Before a virtual database can import
and query Salesforce data, you must obtain OAuth credentials for the virtual database from Salesforce.
For information about how to set up OAuth, see Section 3.4.5, “Setting up an OAuth connection to
Salesforce”

The following tables list the properties that are required in the CR to create a virtual database that is
based on a Salesforce database:

Table 3.7. Properties in the spec/env section of the Salesforce CR

Property Name Description Required Default value

SPRING_TEIID_DATA_S
ALESFORCE_<NAME>_

USER_NAME∗

User for salesforce.com Yes n/a

SPRING_TEIID_DATA_S
ALESFORCE_<NAME>_

PASSWORD∗

Password for
salesforce.com

Yes n/a

SPRING_TEIID_DATA_S
ALESFORCE_<NAME>_
CLIENT_ID

ClientId from connected
app

Yes n/a

SPRING_TEIID_DATA_S
ALESFORCE_<NAME>_
CLIENT_SECRET

clientSecret from
connected app

No n/a

SPRING_TEIID_DATA_S
ALESFORCE_<NAME>_

REFRESH_TOKEN∗

Refresh token for
connected app

No n/a

∗If your connected app uses refresh tokens to authenticate, rather than name and password, your CR
must specify the refresh token property, in place of the user name and password properties.
Information about obtaining refresh tokens is beyond the scope of this document. For information about
how to obtain a refresh token for your connected app, see the Salesforce documentation.

In Table 1, NAME indicates the name, in upper case, that refers to the data source. The NAME value is
also used in lower case in the build/source/ddl section of the CR to represent the data source server.

Table 3.8. Properties in the build/source/ddl section of the Salesforce CR

Property Name Description Required Value

FOREIGN DATA
WRAPPER

Translator Yes salesforce

For a complete list of the properties that you can set to control how data is translated between
Salesforce and a virtual database, see the Teiid Reference Guide.

3.4.5. Setting up an OAuth connection to Salesforce

CHAPTER 3. DATA VIRTUALIZATION OPERATOR

17

http://teiid.github.io/teiid-documents/master/content/reference/Salesforce_Translators.html

Before the data virtualization service can retrieve data from a Salesforce database, you must enable
configure it as a connected app in Salesforce that is OAuth-enabled. After you configure OAuth,
Salesforce generates a client ID and client secret that you must add to the CR file that defines the
connection from the virtual database to Salesforce.

To configure OAuth you create a connected app in Salesforce that can request access to Salesforce
data on behalf of the data virtualization service. In the settings for the connected app, you enable
integration with the Salesforce API by using the OAuth 2.0.

Prerequisites

You have a Salesforce.com account that has access to the data that you want to integrate in a
virtual database.

NOTE

The following steps are based on Salesforce Classic. If you use a different version of
Salesforce, you might use a different procedure. For more information about creating
connected apps in Salesforce, see the Salesforce documentation.

Procedure

1. From Salesforce, log into your account.

2. Click SetUp in the profile menu.

3. In the Build section of the navigation sidebar, expand Create, and then click Apps.

4. In the Connected Apps section, click New.

5. Complete the required fields.

6. In the section API (Enable OAuth Settings), select Enable OAuth Settings to display the
OAuth settings.

7. Complete the required OAuth fields. In the OAuth Scopes field, you must select the following
scopes:

Access and manage your data (api).

Access your basic information (id, profile, email, address, phone).

Allow access to your unique identifier (openid).

Full access (full).

Perform requests on your behalf at any time (refresh_token, offline_access).

8. Select Require Secret for Web Server Flow.

9. Click Save and then click Continue.

10. Make a note of the values in the Consumer Key and Consumer Secret fields. These values are
required for properties in the CR that specifies how the virtual database connects to Salesforce.

Red Hat Integration 2019-12 Data Virtualization

18

https://help.salesforce.com/articleView?id=connected_app_create.htm&type=5

CHAPTER 4. USING MAVEN SPRING BOOT TO CREATE
VIRTUAL DATABASES

You can use Maven Spring Boot to create, build, and deploy a virtual database on OpenShift.

NOTE

The method of using Fabric8 and Maven Spring Boot plugins to build and deploy virtual
databases is deprecated in this release.

The Spring Boot Maven plugin converts the data virtualization library into an executable Spring Boot
JAR file. The Fabric8 Maven plugin helps to build a container image that is based on the Spring Boot
executable and optionally deploy that container to OpenShift. Both plugins are available from the public
Red Hat Maven repository, and they are downloaded on demand at build time after you specify
dependencies in your pom.xml file. For information about specifying build dependencies, see
Section 4.4, “Specifying project dependencies in the pom.xml file” .

Prerequisites

You have the 2019-07 release of Red Hat Integration, and you are running Fuse 7.5.

You have a DDL file for the virtual database that you want to create, or you know how to write
SQL code and create DDL files.

You have Maven 3.0 installed.

You have JDK 8 (Java Platform, Standard Edition 8 Development Kit) or greater installed.

You can connect to one of the following types of data sources:

Relational database

mongoDB

Salesforce

REST

OData

OpenAPI

Google Sheets∗

You have administrator access to the configured data source.

4.1. USING MAVEN TO CREATE A JAVA SHELL PROJECT FOR YOUR
VIRTUAL DATABASE

Use Maven to generate a Java shell project that you can then modify.

Prerequisites

You have Maven 3.0 installed.

CHAPTER 4. USING MAVEN SPRING BOOT TO CREATE VIRTUAL DATABASES

19

You have Java JDK 11 or greater installed.

Procedure

1. On your local workstation, change to a directory where you want to create the Java project for
your virtual database.

2. Run the following Maven command to generate a plain Java shell project:

 mvn archetype:generate -DgroupID=<domainSuffix>.<domainName> -DartifactID=
<virtualDbName> -DarchetypeArtifactId=maven-archetype-quickstart -
DinteractiveMode=false

For example:

 mvn archetype:generate -DgroupId=com.example -DartifactId=sampledb -
DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

All of the artifacts that you need to create a Java project are saved to the project directory.

4.2. CREATING AND DEPLOYING SECRETS

Create and deploy secret objects to store values for your environment variables.

Although secrets exist primarily to protect sensitive data by obscuring the value of a property, you can
use them to store the value of any property.

Prerequisites

You have the login credentials and other information that are required to access the data
source.

Procedure

1. Create a secrets file to contain the credentials for your data source, and save it locally as a .yml
file. For example,

Sample secrets.yml file

2. Deploy the secret object on OpenShift.

a. Log in to OpenShift, and open the project that you want to use for your virtual database.
For example,
oc login --token=<token> --server=https://<server>oc project <projectName>

apiVersion: v1
kind: Secret
metadata:
 name: postgresql
type: Opaque
stringData:
 database-user: bob
 database-name: sampledb
 database-password: bob_password

Red Hat Integration 2019-12 Data Virtualization

20

b. Run the following command to deploy the secret file:
oc create -f ./secret.yaml

3. Set an environment variable to retrieve its value from the secret.

a. In the environment variable, use the format valueFrom:/secretKeyRef to specify that the
variable retrieves it value from a key in the secret that you created in Step 1.
For example, in the following excerpt, the
SPRING_DATASOURCE_SAMPLEDB_PASSWORD retrieves its value from a reference
to the database-password key of the postgresql secret:

- name: SPRING_DATASOURCE_SAMPLEDB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: postgresql
 key: database-password

Additional resources

For more information about how to use secrets on OpenShift, see Providing sensitive data to
pods in the OpenShift documentation.

4.3. SECRET OBJECTS FOR STORING DATA SOURCE INFORMATION

Use secret objects to securely store sensitive information about how your virtual database connects to
its data sources.

For OpenShift to open a connection to a data source on behalf your virtual database application, it must
pass login credentials and other information to the data source. Typically, to maintain security
administrators limit access to database credentials, and do not expose credentials to developers
directly. To enable developers indirect access to credentials, it’s possible to deploy secret objects on
OpenShift to securely store and pass credentials.

Use secrets in combination with environment variables. Rather than specify static values directly in your
configuration files, you can configure OpenShift to retrieve values for environment variables from secret
objects. When a key in an environment variable refers to a secret object, to obtain the key value,
OpenShift examines the secret to find a token that has a name that matches the key name. It extracts
the token value and then passes it to the environment variable.

For example, the following environment variable is set to retrieve the value for the database-user key
from a secret object that has the name postgresql.

When the data virtualization service needs to retrieve the value for the preceding environment variable,
it accesses the secret object with the name postgresql and reads the value of the database-user key.

In the following secret object, the database-user token is assigned the value bob. OpenShift passes
that value to the environment variable.

Sample secrets.yml file

- name: SPRING_DATASOURCE_SAMPLEDB_USERNAME
 valueFrom:
 secretKeyRef:
 name: postgresql
 key: database-user

CHAPTER 4. USING MAVEN SPRING BOOT TO CREATE VIRTUAL DATABASES

21

https://docs.openshift.com/container-platform/4.1/nodes/pods/nodes-pods-secrets.html

4.4. SPECIFYING PROJECT DEPENDENCIES IN THE POM.XML FILE

To provide your Java shell project with the details that are required to build the project, edit the
pom.xml file to specify project dependencies, plugins to run, and build profiles.

Some properties in pom.xml are common to all data source types. For example, the Teiid Spring Boot
starter and the Spring Boot Maven plugin are required to connect to both a postgreSQL database and a
Salesforce database. Other properties, such as the drivers that a data source requires, are specific to
individual data sources.

Use the sample pom.xml file in the Teiid OpenShift repository as the basis for your own file. The sample
file contains settings for a postgreSQL database, but the settings in the <dependencyManagement>,
<build>, and <profiles> elements apply to any data source. The build resource must be set to the
Spring Boot Maven plugin. This plugin, spring-boot-maven-plugin, converts the virtual database
schema project into a Spring Boot executable Uber JAR file that becomes the basis for an OpenShift
container image. The OpenShift profile element must be set to use the Fabric8 Maven plugin
(<artifactId>fabric8-maven-plugin</artifactId>), which helps to build a container image from the
executable JAR, and optionally deploy it into OpenShift.

Modify the values in the <dependencies> element as needed to enable connectivity to the data
sources that you want to use.

NOTE

Driver modules for most databases are included in the Red Hat Maven repository. At build
time, the drivers are downloaded automatically based on the dependency statements in
pom.xml. For some proprietary data sources, drivers might not be publicly available. If a
driver is not available in the repository, download the driver from a third-party site, and
deploy it to your local Maven repository.

Prerequisites

You have a Java shell project for your virtual database application.

You are familiar with editing Maven pom.xml files.

Download the sample pom.xml file from the Teiid OpenShift repository.

If the driver for your database is not available from the public Maven repository, you have
downloaded the driver and deployed it to your local Maven repository.

Procedure

1. Replace the default pom.xml file that you created in your Java shell project with the file that
you download from the Teiid OpenShift repository.

2. Edit the pom.xml to specify the name of the OpenShift project in the <fabric8 namespace>

apiVersion: v1
kind: Secret
metadata:
 name: postgresql
type: Opaque
stringData:
 database-user: bob

Red Hat Integration 2019-12 Data Virtualization

22

https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/rdbms-example/pom.xml
https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/rdbms-example/pom.xml

2. Edit the pom.xml to specify the name of the OpenShift project in the <fabric8 namespace>
element.

3. Set the value of the properties version element to the data virtualization version that you are
using. For example,

${ version.teiid.spring-boot} represents the build version of the code that is available in the
Maven repository. Substitute the value of the build version for the product that you are working
with.

4. Specify your data source dependencies in the <dependencies> element. If you want to connect
a postgreSQL database, you can use the values in the <dependencies> element as they are.

Additional resources

For information about changes that you must make to the <dependencies> element of the
pom.xml file to support Google Sheets or Salesforce, see Section 4.13, “Connection settings
for other data sources”.

4.5. DEFINING THE STRUCTURE FOR VIRTUAL DATABASES IN A DDL
FILE

After you complete changes to the pom.xml file, you’re ready to define the structure of your virtual
database. You define a virtual database through a text-based DDL file. You can supply an existing DDL
file, if you have one, or you can create one.

NOTE

If you have a .vdb or .xml file from an earlier data-virtualization product that you want to
reuse, you must convert the file into DDL format before you can use it. For more
information about how to convert legacy virtual database files to DDL format, see
Chapter 8, Migrating legacy virtual database files to DDL format .

If you want to create your own DDL file you can use the sample DDL file in the Teiid OpenShift
repository as a guide. But be mindful that the entries in your DDL file are unique to your environment
and must include settings that are specific to the data sources that you use.

The design of a DDL file can be complex and is beyond the scope of this documentation. For more
information about using SQL in DDL files that support data virtualization, see the Teiid Reference
Guide.

Prerequisites

You have a DDL file for the virtual database that you want to create.

You know how to write SQL code and you are familiar with creating DDL files.

Procedure

1. Add your DDL file to the src/main/resources directory. You can create a new file from scratch,

<properties>
 <version.teiid.spring.boot>${ version.teiid.spring-boot} </version.teiid.spring.boot>
</properties>

CHAPTER 4. USING MAVEN SPRING BOOT TO CREATE VIRTUAL DATABASES

23

https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/rdbms-example/src/main/resources/customer-vdb.ddl
http://teiid.github.io/teiid-documents/master/content/reference/SQL_Support.html

1. Add your DDL file to the src/main/resources directory. You can create a new file from scratch,
modify the sample DDL file , or use an existing file.

2. Use SQL statements to specify the structural elements of your virtual database.

4.6. DDL FILES

DDL files contain SQL commands that describe and define the structure of the virtual database, such as
its views or schema, procedures, functions, tables, records, columns, and other fields.

When you are ready to build your virtual database, the data virtualization service reads the information in
the DDL file and uses that information to generate the virtual database image.

Structures that you define in the DDL file are converted to relational database tables. Translators in the
data virtualization service import and convert data from your data sources, and use the data to create
views in the virtual database.

A typical DDL file define database elements by using statements similar to those in the following list:

The name of the virtual database. For example:

The name of the translator, or foreign data wrapper, that is needed to interpret data from the
data source. For example,

The name of the data source server, and the name of the resource adapter that provides the
connections details for the external data source. For example,

NOTE

Several of the files that you use to configure your virtual database refer to the
name of the data source that is defined in the CREATE SERVER statement of
the DDL file. For example, the name of the data source appears in the
Datasources.java file, in the application.properties file, and in the names of
environment variables in the deploymentconfig.yml file. To wire the various
configuration files together, it’s important to use the data source name
consistently.

The names of the foreign schema from which you want to import metadata, and the virtual
schema into which you want to import that metadata. For example:

CREATE DATABASE customer OPTIONS (ANNOTATION 'Customer VDB');
USE DATABASE customer;

CREATE FOREIGN DATA WRAPPER postgresql;

CREATE SERVER sampledb TYPE 'NONE' FOREIGN DATA WRAPPER postgresql
OPTIONS ("resource-name" 'sampledb');

CREATE SCHEMA accounts SERVER sampledb;
CREATE VIRTUAL SCHEMA portfolio;

SET SCHEMA accounts;
IMPORT FOREIGN SCHEMA public FROM SERVER sampledb INTO accounts
OPTIONS("importer.useFullSchemaName" 'false');

Red Hat Integration 2019-12 Data Virtualization

24

https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/rdbms-example/src/main/resources/customer-vdb.ddl

Views in the virtual database and the mapping between data in the data source and in the virtual
database view. For example,

4.7. ADDING JAVA APPLICATION AND CLASS FILES

In the application library of your virtual database project, create a Java application file, Application.java,
and a data source class file, DataSources.java.

Application.java is the main Spring Boot application file that bootstraps the virtual database
application. DataSources.java adds @Bean methods for each data source that you want to use as an
input to your virtual database. The Java class serves as a resource adapter, which provides access to the
data source.

When the virtual database starts, the virtualization service reads the metadata and generates an internal
model from it. The service then uses that model to read and write to the virtual database. Entities within
a data source become available in the virtual database for users to access as tables. For example, if you
use a Salesforce database as a data source, then SObjects in Salesforce become available as tables in
the virtual database.

Prerequisites

You have Java 11 or greater installed.

You have a Java shell project that you generated with Maven.

Procedure

1. Create the following Application.java file in your Java class folder (for example,
src/main/java/com/example).

You can remove the default app.java file that Maven generates when you create the project.

2. Create a Datasources.java file in the class folder, and add a bean method for each data source
that you want to connect to your virtual database. For an example of a Datasources.java file
that is designed to work with a postgreSQL database, see the Section 4.8, “Sample
Datasources.java file”.

CREATE VIEW CustomerZip(id bigint PRIMARY KEY, name string, ssn string, zip string) AS
 SELECT c.ID as id, c.NAME as name, c.SSN as ssn, a.ZIP as zip
 FROM accounts.CUSTOMER c LEFT OUTER JOIN accounts.ADDRESS a
 ON c.ID = a.CUSTOMER_ID;

package com.example;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

CHAPTER 4. USING MAVEN SPRING BOOT TO CREATE VIRTUAL DATABASES

25

1

2

4.8. SAMPLE DATASOURCES.JAVA FILE

The Datasources.java file adds a class to represent a connection to a data source. The file also
establishes a prefix in the ConfigurationProperties argument (spring.datasource.sampledb). This
prefix must be used in the names of data source properties that you specify in the
application.properties file.

You can define multiple data sources in Datasources.java by adding multiple classes, each with its own
prefix designation. In each case you must add corresponding entries to the DDL file and to the
properties or deployment configuration files.

To associate the Java bean with the data source that is defined in your DDL file, the bean name must be
the same as the name of the SERVER and resource-name properties in the DDL file. For example, the
following sample file establishes a connection to a PostgreSQL database called sampledb, which is the
name that is assigned in the DDL file to the data source SERVER object and to its resource-name
definition.

The prefix must match the prefix that you assign to properties that you define in the
application.properties file.

The name sampledb in the prefix definition and in the method name must match the name in the
SERVER and resource-name objects that are defined in the virtual database DDL file. The Spring
Boot framework automatically associates the names of methods in the Datasources.java file with
the names of data sources in the DDL file.

NOTE

The preceding sample file is designed to work with a postgreSQL database. For
information about how to adapt the file for use with other data sources, see Section 4.13,
“Connection settings for other data sources”.

4.9. SPECIFYING APPLICATION PROPERTIES

You define static properties for your virtual database application in an application.properties file in the

package com.example;

import javax.sql.DataSource;

import org.springframework.boot.jdbc.DataSourceBuilder;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class DataSources {

 @ConfigurationProperties(prefix = "spring.datasource.sampledb") 1
 @Bean
 public DataSource sampledb() { 2
 return DataSourceBuilder.create().build();
 }

}

Red Hat Integration 2019-12 Data Virtualization

26

/src/main/resource directory. Static properties are configuration settings that remain constant across
different environments. After you deploy a virtual database on OpenShift, any modifications that you
make to the application.properties file are not effective unless you rebuild and redeploy your virtual
database.

At minimum the application.properties file must contain a value for the teiid.vdb-file property, which
names the DDL file that defines the structure of the the virtual database. For example, teiid.vdb-
file=customer-vdb.ddl.

You can also use the application.properties file to define other properties, such as data source
properties, including their names, their drivers, and the URLs, user names, and passwords that are
required to connect to them. Using static properties to assign values for these can be useful in a test
environment. But if you deploy your virtual database in multiple OpenShift environments, it’s best to use
environment variables to dynamically assign unique values for each environment. For more information
about using environment variables in your virtual database configuration, see Section 4.12, “Setting the
deployment configuration”.

If you define data source properties in the application.properties file, you must prefix the configuration
properties string that you specified in the Datasources.java file. The prefix establishes a connection
between the properties and the Java class. For example, if you establish the configuration properties
prefix spring.datasource.sampledb in the Datasources.java file, then you must precede the names of
the properties that you define in your application.properties file with that string. For example,

spring.datasource.sampledb.username=<username>
spring.datasource.sampledb.password=<password>

Prerequisites

You have a DDL file in /src/main/resources that defines your virtual database structure.

You have a Datasources.java file in your Java class folder that specifies an application prefix.

Procedure

1. Add the file application.properties to the src/main/resources folder of your Java project.

2. In the file, add the property teiid.vdb-file and set its value to the name of the DDL file in the
src/main/resources folder of your Java project, for example, customer-vdb.ddl.

3. (Optional) Add properties to specify connection information for your data source, such as its
name, URL, login credentials, and drivers. For an example of an application.properties file for a
postgreSQL data source, see Section 4.10, “Sample application.properties file”

4.10. SAMPLE APPLICATION.PROPERTIES FILE

The following application.properties file includes settings for connecting to a postgreSQL database.
You might use a file similar to this for testing purposes, but for an OpenShift deployment, it’s best to
specify data source properties in a deploymentconfig.yml file.

You can specify source-specfic properties for other types of data sources. For more information, see
Section 4.13, “Connection settings for other data sources” .

spring.datasource.sampledb.jdbc-url=jdbc:postgresql://localhost/sampledb 1 2
spring.datasource.sampledb.username=user 3

CHAPTER 4. USING MAVEN SPRING BOOT TO CREATE VIRTUAL DATABASES

27

1

2

3

4

5

6

7

spring.datasource.sampledb.password=user
spring.datasource.sampledb.driver-class-name=org.postgresql.Driver 4
spring.datasource.sampledb.platform=sampledb 5

VDB location
teiid.vdb-file=customer-vdb.ddl 6

true to allow JDBC connections
teiid.jdbc-enable=true

#logging.level.org.teiid=DEBUG 7

The JDBC URL that the virtual database uses to connect to a local postgreSQL database as its
data source.

The prefix that is used in each of these properties matches the prefix that is defined in the
Datasources.java file.

The user name and password values listed here are displayed in plain text. To secure these
credentials in a production deployment on OpenShift, use environment variables in a deployment
configuration file to reference the secret object that defines these values.

The driver that is required to connect to the data source. This driver is defined in the pom.xml file.

The name of the data source.

The name of the DDL file.

Uncomment this statement to enable debug logging. You can view the logs for a pod by running
the following command: oc logs <podname> Logs are also available on the Logs tab of the Pod
Overview page in the OpenShift web console.

4.11. DEPLOYMENT CONFIGURATION FILES (DEPLOYMENTCONFIG.YML)

A deployment configuration file stores settings that govern how the Fabric8 Maven plugin builds and
deploys the container image for your virtual database.

The deploymentconfig.yml file can also define environment variables for the properties that are
required to configure data sources for your virtual databases. The environment variables that you define
in the deploymentconfig.yml file map to properties in the application.properties file. But unlike
settings in the properties file, the settings that you define in the deploymentconfig.yml file are
dynamic. That is, if you add an environment variable or change its value, you do not have to rebuild the
virtual database service to put the change into effect.

Environment variables and their corresponding properties have similar names, but they are formatted
differently. Separators in the property names are converted from dots or dashes to underscores, and
alphabetic characters are converted to uppercase.

Table 4.1. Format of properties versus environment variables

Red Hat Integration 2019-12 Data Virtualization

28

Property in
application.properties

Environment variable in
deploymentconfig.yml

spring.datasource.sampledb.jdbc-
url

SPRING_DATASOURCE_SAMPL
EDB_JDBCURL

Because you commonly deploy virtual databases to multiple OpenShift environments, for example a
staging and a production environment, you typically specify different data source properties in each
environment. For example, the login credentials for accessing a data source in your staging environment
probably differ from the credentials that you need to access the data source in the production
environment. To define unique values in each environment, you can use environment variables.

The environment variables in deploymentconfig.yml replace any static properties that you might set in
the application.properties file. If a property is defined in both files, the value in the
deploymentconfig.yml file takes precedence.

You use a single version of the file across environments and use secret objects to isolate the unique
details of each environment. Instead of specifying static values for environment variables directly in the
file, you can store the values for each deployment environment in secret objects that are unique to each
environment. The value of each environment variable in the file contains only a key reference, which
specifies the name of a secret object, and the name of a token in the secret. The token stores the actual
value. At runtime, environment variables retrieve their values from the tokens.

By using secrets to store the values of your environment variables, you can use a single version of the
deploymentconfig.yml across environments. The secret objects that you deploy in each environment
must have the same name, but each secret object contains token values that are specific to its
environment.

Additional resources

For more information about using secrets, see Section 4.3, “Secret objects for storing data
source information”.

For information about adding a deploymentconfig.yml file, see Section 4.12, “Setting the
deployment configuration”.

4.12. SETTING THE DEPLOYMENT CONFIGURATION

You set the deployment configuration by editing a deploymentconfiguration.yml file. You can define
environment variables in the file for each data source that the virtual database uses.

Prerequisites

You have a copy of the sample deploymentconfiguration.yml file from the Teiid OpenShift
repository.

You have information about the connection settings for your data sources.

If you want to use secrets to store values for your environment variables, you have information
about the name of the secret for your virtual database and the names of the tokens that you
want to refer to in your environment variables.

Procedure

CHAPTER 4. USING MAVEN SPRING BOOT TO CREATE VIRTUAL DATABASES

29

https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/rdbms-example/src/main/fabric8/deploymentconfig.yml

1. In the /src/main/fabric8 folder of your Java project, create a deploymentconfiguration.yml
file.

2. Add environment variables and other settings that are consistent with your environment.

Additional resources

For more information about the deploymentconfiguration.yml file, see Section 4.11,
“Deployment configuration files (deploymentconfig.yml)”.

For more information about secrets, see Section 4.3, “Secret objects for storing data source
information”.

For information about deployment configuration settings for other data sources, see
Section 4.13, “Connection settings for other data sources” .

4.13. CONNECTION SETTINGS FOR OTHER DATA SOURCES

To enable a virtual database to connect to a data source, you must provide connection details such as
the name of the data source, the driver to use, the user credentials and so forth. You specify these
settings across several files.

The sample files in the Teiid OpenShift repository, or elsewhere in this documentation provide
configuration information that is consistent with using a postgreSQL database as the data source for
your virtual database. If you want to a different data source, you must modify settings in the postgreSQL
versions of the following files:

pom.xml file

Specifies the dependencies for a data source, such as the drivers that are required to connect to the
data source. At build time, if the driver for your database type is publically available, Teiid Spring
Boot downloads the required drivers automatically.

application.properties file

Defines static application properties that cannot be changed after you deploy the application to
OpenShift, for example the name of the DDL file.

Deploymentconfig.yml

Defines application properties through dynamic environment variables so that you can specify values
to correspond to a particular deployment environment

Datasources.java

Specifies a Java class to represent the connection to the data source. The service name that you
specify in the annotation and as the name of the method must match exactly the name of the
SERVER that is listed in the DDL file.

DDL file

Defines the virtual database structure including specific mapping from the source schema to the
virtual schema.

When the virtual database service starts, the data virtualization service scans the application’s packages
for dependency annotations and uses the information to build the metadata to create the virtual
database and deploy it to the OpenShift server.

Prerequisites

You have reviewed the postgreSQL versions of the files in the preceding list.

Red Hat Integration 2019-12 Data Virtualization

30

4.13.1. Settings to connect to Salesforce as a data source

If you want to use a Salesforce database as a data source for your virtual database, you must add some
source-specific settings. You can use the postgreSQL files in the Teiid OpenShift repository as a
starting point, but you’ll have to modify the files to adapt them for use with Salesforce.

The following files contain information that you must modify to use a Salesforce database as a data
source:

pom.xml

application.properties

deploymentconfig.yml

datasources.java

DDL file

pom.xml settings for using Salesforce as a data source

To support Salesforce as a data source, you must add the following dependencies in the pom.xml file:

teiid-spring-boot-starter

spring-data-salesforce

For example:

application.properties settings to add to use Salesforce as a data source

You can specify values in application.properties to configure Salesforce as a data source, as shown in
the following table. Each of the properties uses the prefix spring.teiid.data.salesforce

Property Name Description Default

url Login URL https://login.salesforce.com/servi
ces/Soap/u/45.0

requestTimeout Request timeout Integer.MAX_VALUE

connectTimeout Connection timeout Integer.MAX_VALUE

pollingInterval Polling interval for bulk results 500

<dependency>
 <groupId>org.teiid</groupId>
 <artifactId>teiid-spring-boot-starter</artifactId>
</dependency>
<dependency>
 <groupId>org.teiid.spring</groupId>
 <artifactId>spring-data-salesforce</artifactId>
</dependency>

CHAPTER 4. USING MAVEN SPRING BOOT TO CREATE VIRTUAL DATABASES

31

https://login.salesforce.com/services/Soap/u/45.0

clientId OAuth2 client ID N/A

clientSecret OAuth2 client secret N/A

refreshToken OAuth2 refresh token N/A

userName User name N/A

password Password N/A

Property Name Description Default

datasources.java file for connecting to Salesforce as a data source

The Datasources.java file creates a class that Teiid can recognize as a Salesforce data source. The
class acts as a resource adapter to enable the virtual database to access information in the data source.

The preceding class defines an accounts bean. When you create the virtual database, the data
virtualization service recognizes the class as a data source, reads its metadata, and generates an internal
model from it. The data virtualization service can then read from and write to it.

DDL file changes to connect a virtual database to Salesforce as a data source

Update the name of the SERVER object and the FOREIGN DATA WRAPPER to reflect the data
source. For example, assign the following values to objects in the DDL file:

Set the name of the SERVER object to salesforce

Set the name of the FOREIGN DATA WRAPPER to salesforce

package org.teiid.spring.example;

import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.teiid.spring.data.salesforce.SalesforceConfiguration;
import org.teiid.spring.data.salesforce.SalesforceConnectionFactory;

@Configuration
public class DataSources {

 @Bean
 public SalesforceConnectionFactory accounts(SalesforceConfiguration config) {
 return new SalesforceConnectionFactory(config);
 }

 @Bean
 @ConfigurationProperties("spring.teiid.data.salesforce")
 public SalesforceConfiguration salesforceConfig() {
 return new SalesforceConfiguration();
 }
}

Red Hat Integration 2019-12 Data Virtualization

32

4.13.2. Settings to connect to Google Sheets as a data source

If you want to use a Google Sheets as a data source for your virtual database, you must add some
source-specific settings. You can use the postgreSQL files in the Teiid OpenShift repository as a
starting point, but you’ll have to modify the files to adapt them for use with Google Sheets.

The following files contain information that you must modify to use Google Sheets as a data source:

pom.xml

application.properties

Deploymentconfig.yml

Datasources.java

DDL file

Pom.xml settings for using Google Sheets as a data source

To support Google Sheets as a data source, you must add the following dependencies in the pom.xml
file:

teiid-spring-boot-starter

spring-data-google

For example:

Application.properties settings to add to use Google Sheets as a data source.

You can specify values in application.properties to configure Google Sheets as a data source, as
shown in the following table. Each of the properties uses the prefix spring.teiid.data.google-sheets

Property Name Description Default

spread-sheet-name Name of the Google Spreadsheet N/A

spread-sheet-id Spreadsheet ID Sheet Id, Look in URL of the
spreadsheet. For more info see
https://developers.google.com/s
heets/api/guides/concepts#spre
adsheet_id

refresh-token OAuth2 refresh token N/A

<dependency>
 <groupId>org.teiid</groupId>
 <artifactId>teiid-spring-boot-starter</artifactId>
</dependency>
<dependency>
 <groupId>org.teiid.spring</groupId>
 <artifactId>spring-data-google</artifactId>
</dependency>

CHAPTER 4. USING MAVEN SPRING BOOT TO CREATE VIRTUAL DATABASES

33

https://developers.google.com/sheets/api/guides/concepts#spreadsheet_id

refresh-token OAuth2 refresh token N/A

client-id Client ID OAuth2 client ID

client-secret Client secret OAuth2 client secret

Property Name Description Default

Datasources.java file for connecting to Google Sheets as a data source

The Datasources.java file creates a class that Teiid can recognize as a Google Sheets data source. The
class acts as a resource adapter to enable the virtual database to access information in the data source.

The preceding class defines an accounts bean. When you create the virtual database, the data
virtualization service recognizes the class as a data source, reads its metadata, and generates an internal
model from it. The data virtualization service read from and write to it.

DDL file changes to connect a virtual database to Google Sheets as a data source

Update the name of the SERVER object and the FOREIGN DATA WRAPPER to reflect the data
source. For example, assign the following values to objects in the DDL file:

Set the name of the SERVER object to google-spreadsheet.

Set the name of the FOREIGN DATA WRAPPER to google-spreadsheet.

4.14. BUILDING A DATA VIRTUALIZATION PROJECT

After you complete the configuration tasks for your virtual database, you are ready to run Maven to build
the project.

The Spring Boot Maven plugin creates a self-contained Uber JAR that includes all of the application
code and dependencies in a single JAR file. The resulting JAR file serves as the basis for an OpenShift
image. The OpenShift profile includes a Fabric8 Maven plugin that compiles the current build with the
Uber JAR to generate an image that you can deploy to OpenShift.

After you make certain changes to the virtual database configuration, for example adding protocol

@Configuration
public class DataSources {

 @Bean
 public SpreadsheetConnectionFactory accounts(SpreadSheetConfiguration config) {
 return new SpreadsheetConnectionFactory(config);
 }

 @Bean
 @ConfigurationProperties("spring.teiid.data.google.sheets")
 public SpreadSheetConfiguration sheetsConfig() {
 return new SpreadSheetConfiguration();
 }
}

Red Hat Integration 2019-12 Data Virtualization

34

After you make certain changes to the virtual database configuration, for example adding protocol
services or routes for the virtual database, you must re-compile the project to update the deployed
image.

Prerequisites

You have completed all of the configuration tasks listed in Chapter 2, Virtual database creation.

Procedure

Log in to OpenShift and run the following command:

mvn clean install -Popenshift -Dfabric8.namespace=`oc project -q`

CHAPTER 4. USING MAVEN SPRING BOOT TO CREATE VIRTUAL DATABASES

35

CHAPTER 5. MAKING VIRTUAL DATABASES AVAILABLE TO
API CONSUMERS

To enable API consumers to access the virtual database, define services and routes for JDBC or OData
protocols for the virtual database service on OpenShift.

After you define a protocol service for a virtual database, any client in the same OpenShift cluster can
access the virtual database. Only applications that are in the same cluster have access. Remote clients
do not have access. To enable OData access for remote clients, you must define an OData route to the
virtual database service.

External JDBC clients do not use routes to access virtual database services. Instead, JDBC clients
depend on the OpenShift load balancer service to allocate external IP addresses that external clients
can use to access services in the cluster.

You configure services and routes by adding configuration files in /src/main/fabric8. Download the
sample Fabric8 configuration files from the Teiid OpenShift repository. The following table list the
configuration files to add in /src/main/fabric8 to configure services and routes for the virtual database.

Table 5.1. Fabric8 configuration files

Name Purpose Sample file

Deployment configuration Controls overall deployment deploymentconfig.yml

JDBC service configuration Specifies JDBC service jdbc-svc.yml

OData service configuation Specifies OData service odata-svc.yml

OData route configuration Specifies OData route odata-route.yml

If you choose not to create a service for one of the protocols, or to expose a route for that protocol,
omit the corresponding file from the /fabric8 directory.

The service and route configuration files specify default values for port numbers and timeout values.
Unless you have a specific reason for modifying those settings, you can retain the default values.

Prerequisites

You downloaded the sample configuration files that you need from the Teiid OpenShift
repository.

5.1. CONFIGURING ACCESS FOR ODATA CLIENTS

The relational model of the data in a virtual database is automatically mapped to JSON or XML to allow
applications to consume the data through OData APIs. However, if you want the virtual database to be
available to OData clients, you must explicitly define an OData service and route. The default settings in
the odata-svc.yml and odata-route.yml files that are available from the Teiid OpenShift sample
repository are configured to enable an OData service and route.

Do not edit instances of the variable ${project.artifactId} that appear in the configuration files. At build
time, these variables are replaced automatically with information from elements in the pom.xml file.

Red Hat Integration 2019-12 Data Virtualization

36

https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/rdbms-example/src/main/fabric8/deploymentconfig.yml
https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/rdbms-example/src/main/fabric8/jdbc-svc.yml
https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/rdbms-example/src/main/fabric8/odata-svc.yml
https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/rdbms-example/src/main/fabric8/odata-route.yml

NOTE

OData routes are created automatically for virtual databases that you create in Fuse
Online.

Prerequisites

You have the sample template odata-svc.yml and odata-route.yml files from the Teiid
OpenShift repository.

You have completed the configuration tasks that are summarized in Chapter 2, Virtual database
creation.

Procedure

1. Add the following dependency in your pom.xml file:

2. In the /src/main/fabric8 folder of your Java project, add an odata-svc.yml file to create an
OData service.

3. If you want to make the virtual database available to OData clients outside of the OpenShift
cluster, add an odata-route.yml file to create and OData route.

5.2. CONFIGURING ACCESS FOR JDBC CLIENTS

To enable JDBC client applications to access your virtual database, you must configure a JDBC service.
After the JDBC service is enabled, OpenShift applications that share the cluster with the virtual
database can access the database over JDBC. Third-party client applications that are outside of the
OpenShift cluster have no JDBC access to the virtual database.

To provide JDBC access to external clients, you do not create a JDBC route as you do to enable OData
access to external clients. Rather, you must configure an OpenShift load balancer service to configure
ingress cluster traffic. After that you must provide external applications with the IP address that the load
balancer service assigns to the virtual database.

Do not edit instances of the variable ${project.artifactId} that appear in the configuration files. At build
time, these variables are replaced automatically with information from elements in the pom.xml file.

Prerequisites

You have the sample jdbc-svc.yml file from the Teiid OpenShift repository.

You have completed the configuration tasks that are summarized in Chapter 2, Virtual database
creation.

Procedure

1. To create a JDBC service, add the file jdbc-svc.yml to the /src/main/fabric8 folder of your
Java project.

NOTE

<dependency>
 <groupId>org.teiid</groupId>
 <artifactId>spring-odata</artifactId>
</dependency>

CHAPTER 5. MAKING VIRTUAL DATABASES AVAILABLE TO API CONSUMERS

37

NOTE

If you add the jdbc-svc.yml file from the Teiid OpenShift sample repository, the JDBC
service is enabled by default.

1. Create a file with the name ingress and add the following contents to it:

2. Log in to OpenShift and run the following command to deploy the file to OpenShift:

$ oc create -f -ingress

3. Run the following command to determine the IP port:

$ oc get svc rdbms-example-ingress

4. Share the port number that is returned with your API clients.

Additional resources

For more information about Configuring ingress cluster traffic using a load balancer , see the
OpenShift documentation.

5.3. IDENTIFYING THE ODATA ENDPOINT OF A VIRTUAL DATABASE

After you deploy a virtual database, you can share the OData URL with application developers so that
they can use REST APIs to query and retrieve data from the virtual database.

NOTE

For virtual databases that you create in Fuse Online, OData routes are exposed
automatically on the Data Virtualizations page.

To retrieve the OData URL for virtual databases that you create using the Spring Boot Maven plugin,
you run an OpenShift command. You then append /odata to the URL that command returns to establish
the API endpoint for the service. .

NOTE

apiVersion: v1
kind: Service
metadata:
 name: rdbms-example-ingress
spec:
 ports:
 - name: teiid
 port: 31000
 type: LoadBalancer
 selector:
 app: rdbms-example
 sessionAffinity: ClientIP

Red Hat Integration 2019-12 Data Virtualization

38

https://docs.openshift.com/container-platform/4.1/networking/configuring-ingress-cluster-traffic/configuring-ingress-cluster-traffic-load-balancer.html

NOTE

In this Technology Preview release, there is no relationship between virtual databases
that you create by running the Maven Spring Boot plugin and those that you create in
Fuse Online. As a result, the Data virtualization page in Fuse Online does not show
virtual databases that you build and create outside of Fuse Online.

Prerequisites

You used Maven Spring Boot to deploy a virtual database service on OpenShift, and you
enabled OData access to the service.

Procedure

After you deploy the virtual database, log in to OpenShift and run the following command to
obtain the OData URL for the service:

$ oc describe route <virtual-database-service-name>

For example, oc describe route rdbms-example

The command returns the root URL for the service.

Additional resources

For information about how to enable OData access to a virtual database service, see see
Section 5.1, “Configuring access for OData clients” .

CHAPTER 5. MAKING VIRTUAL DATABASES AVAILABLE TO API CONSUMERS

39

CHAPTER 6. SECURING ODATA APIS FOR A VIRTUAL
DATABASE BY USING 3SCALE AND RH-SSO

You can integrate data virtualization with 3scale and Red Hat’s single sign-on technology to apply
advanced authorization and authentication controls to the OData endpoints for your virtual database
services. By using 3Scale as a gateway to your API, you ensure that only authorized users have access,
and you can control the level of access a user has based on who they are (role-based access).

By default, after you create a virtual database, the OData interface to it is discoverable by the 3Scale
API management system, as long as 3Scale system is defined to same cluster and namespace. Using
3scale’s API management features, you can control access to the OData API, and track usage. By further
securing access to the API through SSO, you can define user roles and implement role-based access to
the API endpoints. After you complete the configuration, you can control access in the virtual database
at the level of the view, column, or data source.

The Red Hat SSO technology uses OpenID-Connect as the authentication mechanism to secure the
API, and uses OAuth2 as the authorization mechanism. When a user logs in, 3scale negotiates
authentication with the Red Hat SSO package. If the authentication succeeds, 3scale passes a security
token to the OData API for verification. The OData API then reads permissions from the token and
applies them to the data roles that are defined for the virtual database.

Prerequisites

You have installed and configured Red Hat’s single sign-on technology. For more information
about how to configure SSO to secure OData APIs for a virtual database, see the Teiid
OpenShift documentation.

You have 3scale API Management installed in the OpenShift cluster that hosts your virtual
database.

You have configured integration between 3scale and SSO. For more information, see
Configuring Red Hat Single Sign-On integration in Using the Developer Portal.

You have configured the Red Hat SSO technology for OpenID Connect.

You have created SSO security realms.

You have specified an Admin client ID, protocol, and access type.

You have assigned the realm-management and manage-clients roles.

You created API users and specified credentials.

You configured 3scale to use OpenID-Connect as the authentication mechanism and
OAuth2 as the authorization mechanism.

6.1. UPDATING THE VIRTUAL DATABASE CONFIGURATION

After you finish setting up single sign-on in OpenShift, you must modify virtual database settings before
you can use SSO to secure your OData APIs. You must update the following artifacts:

pom.xml

application.properties

Red Hat Integration 2019-12 Data Virtualization

40

https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/keycloak/keycloak-odata-sso.adoc
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.5/html-single/using_the_developer_portal/#configure-oidc-rhsso-integration

Configuration map

deploymentconfig.yml

DDL file

After you update the virtual database configuration, update the 3scale configuration to complete the
integration.

Prerequisites

You completed the SSO configuration.

6.1.1. Adding SSO dependencies to pom.xml

Prerequisites

You completed the configuration to integrate 3scale with SSO.

Procedure

Edit the pom.xml file to add the following SSO dependencies:

6.1.2. Adding SSO settings to application.properties

Update properties in the application.properties file to support integration with SSO.

Procedure

1. Log in to the Red Hat Single Sign-On Admin Console to find the values for the following
authentication properties:

keycloak.realm

keycloak.auth-server-url

keycloak.resource

keycloak.ssl-required

keycloak.public-client

keycloak.principal-attribute

2. Open the application.properties file from src/main/resources/ and add values for the
preceding properties. For example:

keycloak.realm = 3scale-sso
keycloak.auth-server-url = http://keycloak-staging.dev.openshiftapps.com/auth

<dependency>
 <groupId>org.teiid</groupId>
 <artifactId>spring-keycloak</artifactId>
</dependency>

CHAPTER 6. SECURING ODATA APIS FOR A VIRTUAL DATABASE BY USING 3SCALE AND RH-SSO

41

keycloak.resource = di
keycloak.ssl-required = external
keycloak.public-client = true
keycloak.principal-attribute=preferred_username

6.1.3. Creating a configuration map

In application.properties you assign static properties that do not change between deployment
environments. For settings that can change between environments, such as authentication URLs and
credentials, you might want to apply different values depending on the environment. To make it easy to
apply different values for environment-specific settings, you can specify their values as properties in a
configuration map. In each environment in which you deploy a virtual database, use a configuration map
with the same name, but vary the map contents (the authentication URL and secret) to match the
environment. Then, in each environment where you deploy the virtual database, the virtual database
retrieves its version of the authentication values from the map.

You run an OpenShift command to create a configuration map and add values for the following
properties:

keycloak.auth-server-url

keycloak.credentials.secret

Procedure

1. Run the following command:

oc create configmap my-config --from-literal=keycloak.auth-server-url=http://<keycloakURL>
--from-literal=keycloak.credentials.secret=<secretValue>

For example,

oc create configmap my-config --from-literal=keycloak.auth-server-url=http://keycloak-
staging.dev.example.com/auth --from-literal=keycloak.credentials.secret=xxxxxxxx-xxxx-
xxxx-xxxx-xxxxxxxxxxxx

The preceding command creates a configuration map in OpenShift with the name my-config,
which you can then reference from the deployment configuration file (deploymentconfig.yml).

6.1.4. Updating SSO environment variables in the deploymentconfig.yml file

In the deploymentconfig.yml file you can specify environment variables to apply different settings in
each environment where you deploy a virtual database. For example, if you are deploying a virtual
database to both a staging environment and a production environment, you can specify different
environment variables in each to customize the settings for that environment.

To support SSO, you must add environment variables to the deploymentconfig.yml file.

Procedure

From src/main/fabric8, open the deploymentconfig.yml file and add the following
environment variables:

- name: KEYCLOAK_AUTHSERVERURL

Red Hat Integration 2019-12 Data Virtualization

42

For example,

If you deploy a virtual database in multiple environments that use different realm or client
settings, be sure to specify unique realm and client properties in the SSO configuration that you
establish for each environment.

6.1.5. Defining user roles in the DDL file

To apply unique data roles to different users, you must define those roles in the DDL file.

Procedure

1. Add the following lines to the DDL file in src/main/resources:

For example,

In the preceding example, the first line creates a role with the name ReadRole. Map this role to a
role with the same name that you created in the SSO configuration, as described in Securing an
OData API with Keycloak in the Teiid OpenShift repository. You can use a different role name,
but for simplicity, it’s best to use the same name. The second line grants SELECT permission to
the portfolio.CustomerZip View to users who are assigned the ReadRole.

After you make changes to the project to integrate 3scale and enable SSO, rebuild the virtual
database image and deploy it to OpenShift. For information about how to build and deploy the
image, see Section 4.14, “Building a data virtualization project” .

6.2. UPDATING THE 3SCALE CONFIGURATION

 valueFrom:
 configMapKeyRef:
 name: <config-name>
 key: keycloak.auth-server-url
- name: KEYCLOAK_CREDENTIALS_SECRET
 valueFrom:
 configMapKeyRef:
 name: <config-name>
 key: keycloak.credentials.secret

- name: KEYCLOAK_AUTHSERVERURL
 valueFrom:
 configMapKeyRef:
 name: my-config
 key: keycloak.auth-server-url
- name: KEYCLOAK_CREDENTIALS_SECRET
 valueFrom:
 configMapKeyRef:
 name: my-config
 key: keycloak.credentials.secret

CREATE ROLE ReadRole WITH JAAS ROLE ReadRole;
GRANT SELECT ON TABLE "<tableName.fieldName>” TO ReadRole

CREATE ROLE ReadRole WITH JAAS ROLE ReadRole;
GRANT SELECT ON TABLE "portfolio.CustomerZip" TO ReadRole

CHAPTER 6. SECURING ODATA APIS FOR A VIRTUAL DATABASE BY USING 3SCALE AND RH-SSO

43

https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/keycloak/keycloak-odata-sso.adoc#securing-an-odata-api-with-keycloak

Prerequisites

You have configured SSO.

You have made updates to the virtual database service to support SSO.

Procedure

1. Log in to the 3scale admin portal, and from the page header, click the name of the API for which
you want to enable OpenId Connect integration with SSO.

2. From the Overview page, click Configuration in the Configuration, Methods and Settings
section.

3. Click edit integration settings.

4. In the Authentication section, click OpenID Connect, and click Update Service.

5. From the Configuration page, click the edit APIcast configuration.

6. Expand the Authentication Settings section to view the authentication options.

7. In the OpenID Connect Issuer field, type the URL of your SSO server, and the client ID and
client secret that you previously defined in Red Hat SSO Admin Console.

8. Click Update the Staging Environment.

9. Create a new application so that 3scale can synchronize it with SSO.

a. From the page header, click Audience, and then select a Developer account.

b. From the submenu, click Applications.

c. Click Create Application, and then type a name and description for the application.

d. For more information about creating applications, see Set up applications.

e. Select an application plan for the virtual database API that you want to secure. You can
select an existing application plan or create a new one. For information about how to create
an application plan, see How to create an application plan in the 3scale Admin Portal Guide.

f. From the API Credentials section, record the values of the client ID and client secret. You
must supply these credentials to access the API. If no value is displayed for the client secret,
click Add random key to populate the field.

g. Specify a redirect URL. You use the redirect URL to test the integration in Postman or other
REST clients.

h. In the Redirect URL field click Edit, type a callback link, for example,
https://openidconnect.net/callback, and then click Update.

Red Hat Integration 2019-12 Data Virtualization

44

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.5/html/admin_portal_guide/add-developers#set_up_applications
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.5/html-single/admin_portal_guide/index#how_to_create_an_application_plan
https://openidconnect.net/callback

CHAPTER 7. CREATING AND WORKING WITH VIRTUAL
DATABASES IN FUSE ONLINE

In Fuse Online, you can create a virtual database that integrates data from multiple data sources that
you choose. After you deploy the resulting virtual database service, application developers and other
database users can connect to as if it were a single physical database.

After you create a virtual database, you can use Fuse Online tools to:

Add or remove data sources.

Add or edit views of data from different tables or sources.

Submit SQL queries to test that views return the expected results.

Modify the schema that defines the virtual database.

Publish the virtual database to make it available on OpenShift.

Delete the virtual database.

Prerequisites

You have the 2019-07 release of Red Hat Integration, and you are running Fuse 7.4.

The data virtualization UI for Fuse 7.4 was enabled during installation. For more information, see
Enabling data virtualization in Fuse Online on OCP in the Installing and Operating Fuse Online
on OpenShift Container Platform.

7.1. CREATING VIRTUAL DATABASES IN FUSE ONLINE

In Fuse Online, you can create virtual databases that import views from applications or services that are
available from the Connections page.

For each virtual database that you create, you must import data sources, and select the tables from
each data source that you want to include. The views in the resulting virtual database map directly to the
database tables that you import. After the initial creation, you can add views to a virtual database that
join data from more than one table.

NOTE

In this Technology Preview, you can create virtual databases in Fuse Online only from
relational databases, MongoDB, and Salesforce.

Prerequisites

Your Fuse Online environment has a connection to one or more of the following data sources:

Relational database, such as postgreSQL or MySQL.

MongoDB database

Salesforce database

CHAPTER 7. CREATING AND WORKING WITH VIRTUAL DATABASES IN FUSE ONLINE

45

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.5/html-single/installing_and_operating_fuse_online_on_openshift_container_platform/#enabling-data-virtualization_install

Procedure

1. From the navigation sidebar in Fuse Online, click Data.

2. Click Create Data Virtualization.

3. On the Create New Data Virtualization page, type a name for the virtual database and click
Create.

Provide a name that informs people about the database contents or purpose, and that is
short enough for application developers and SQL users to easily insert in their code.

Names can include only alphanumeric ([a-z]|[A-Z], [0-9]), and hyphen (-) characters.

4. On the page for your virtualization, click Import Data Source.

5. On the Import Data Source page, click the tile for an active data source, and then click Next.

6. From the list of tables that are available, select one or more tables to include in your virtual
database and then click Done.
A confirmation message reports when the import completes. The Views tab for the draft
virtualization lists a view for each table that you imported.

You can now edit the existing views, create another view, or publish the virtual database to
make it available for use.

7.2. ADDING A VIEW TO A VIRTUAL DATABASE IN FUSE ONLINE

Add a view to a virtual database to provide a view of the data in a new table.

After you first create a virtual database, it contains only the views that you imported from the initial data
source. Add views to the virtual database if you want to incorporate data from other tables. You can add
views based on tables in the original data source, or from other data sources.

NOTE

In this Technology Preview release, you can only add one table to each view.

Prerequisites

The virtual database that you want to add a view to is available in Fuse Online in a Draft or
Published state. You cannot use Fuse Online to add views to virtual databases that were created
outside of Fuse Online.

A Fuse Online connection exists to the data source that contains the table that you want
integrate.

You know the name of the table that you want to use in the view.

Procedure

1. From the navigation sidebar in Fuse Online, click Data.

2. From the list on the Data Virtualizations page, find the virtual database that you want to
modify and click Edit.

Red Hat Integration 2019-12 Data Virtualization

46

3. Click Create a View.

4. Expand a data source to view the tables that it contains.

5. Select the table that you want to add to the virtual database, and then click Next.

6. On the Create a View page, type a name in the View Name field, and then click Done.
The View Editor displays the SQL for the view that you created. The Preview panel displays the
data in the view.

7. If no data displays, click Refresh.

8. Click Done to close the view.
If the virtual database was previously published, you must republish it to make the new view
available.

Additional resources

Experienced SQL programmers can also add views by directly editing the default SQL
statements for the virtual database. For more information, see Section 7.3, “Using the View
Editor in Fuse Online to modify the DDL that defines a virtual database”.

Section 7.5, “Publishing virtual databases in Fuse Online to make them available for access”

Section 7.4, “Previewing a virtual database in Fuse Online by submitting SQL test queries”

Section 7.3, “Using the View Editor in Fuse Online to modify the DDL that defines a virtual
database”

7.3. USING THE VIEW EDITOR IN FUSE ONLINE TO MODIFY THE DDL
THAT DEFINES A VIRTUAL DATABASE

The process of creating a virtual database in Fuse Online is designed to automate many tasks and hide
the complexities of the underlying SQL code.

When you create a view for a virtual database, Fuse Online automatically generates the data definition
language (DDL) that defines the view. The DDL is a set of SQL statements that describe the view’s
schema, tables, columns, and other fields.

Fuse Online provides tools to add basic views for a virtual database, but if you know SQL and you want
greater control in designing a view, you can directly edit the DDL for the view. In Fuse Online, developers
can use the embedded View Editor to modify these SQL statements. To assist you, this SQL editor
includes a code-completion feature that provides a list of SQL keywords.

After you save your changes, a built-in validation tool runs to ensure that the SQL code does not contain
syntax errors.

Prerequisites

You have experience using a data definition language (DDL) that is based on the SQL-MED
specification to define database structures and to integrate externally stored data.

Procedure

1. From the navigation sidebar in Fuse Online, click Data.

CHAPTER 7. CREATING AND WORKING WITH VIRTUAL DATABASES IN FUSE ONLINE

47

2. On the Data Virtualizations page, find the virtual database that you want to modify and click
Edit.

3. In the Views tab, find the view that you want to edit, and then click Edit.

4. Update the SQL as needed. As you edit, press Ctrl+Space to open the code completion tool.

5. After you complete your changes, click Save.
Fuse Online validates the SQL and returns an error if the view contains invalid code.

After the SQL validates, the preview panel shows the result of the updates that you made to the
view. The preview displays the first fifteen rows of the results set.

6. Click Done to close the View Editor and return to the list of views.
If the virtual database was previously published, you must republish it to put your changes into
effect.

Additional resources

Section 7.5, “Publishing virtual databases in Fuse Online to make them available for access”

For more information about using SQL in data virtualization DDL files, see the Teiid Reference
Guide.

You can modify the results set by altering the default query to specify different row limits or row
offsets. For more information, see Section 7.4, “Previewing a virtual database in Fuse Online by
submitting SQL test queries”

7.4. PREVIEWING A VIRTUAL DATABASE IN FUSE ONLINE BY
SUBMITTING SQL TEST QUERIES

Before you publish a virtual database and make it available to applications, you can run test queries
against its views to verify that it returns the information that you expect.

Although the default preview shows you the first 15 results returned when a SQL SELECT * FROM
statement is submitted to a virtual database view, you can use the embedded SQL client in Fuse Online
to send modified test queries to your views. You can adjust the default results set by specifying the row
limits and row offsets.

If the view that you query originates from a non-SQL data source, the data virtualization engine converts
the SQL query into a format that the data source can interpret.

Prerequisites

You have a valid virtual database that was created in Fuse Online.

Procedure

1. From the navigation sidebar in Fuse Online, click Data.

2. On the Data Virtualizations page, click Edit in the entry for the virtual database that contains
the view that you want to test.

3. Click the SQL Client tab.

Red Hat Integration 2019-12 Data Virtualization

48

http://teiid.github.io/teiid-documents/master/content/reference/SQL_Support.html

4. From the View field, select the view that you want to test.

5. In the Row Limit field, specify the number of rows to display.

6. In the Row Offset field, specify the number of rows to skip.

7. Click Submit. The Query Results table displays the result set.

7.5. PUBLISHING VIRTUAL DATABASES IN FUSE ONLINE TO MAKE
THEM AVAILABLE FOR ACCESS

After you define a virtual database in Fuse Online, you must publish it to make it available for users and
applications to access.

Publishing a virtual database builds the schema definition that you implemented by importing data
sources and views into a runtime image. Fuse Online deploys the runtime image to OpenShift as a
virtual database container image that you can scale independently.

After you publish the virtual database, it becomes available as a service and is represented on the Fuse
Online Connections page. The service behaves like any relational database, and clients can connect to
it over standard interfaces. It can be incorporated into Fuse Online integration workflows, and it is
available to JDBC and OData clients.

Prerequisites

You created a virtual database in Fuse Online.

You added any views that you want to the virtual database.

Procedure

1. From the navigation sidebar in Fuse Online, click Data.

2. On the Data Virtualizations page, find a virtual database that you want to publish, and from the
overflow menu, click Publish.
A confirmation message notifies you that the virtual database was submitted for publishing, and
a progress bar reports the status of the process.

If the publishing process succeeds, Fuse Online makes the following updates:

The status label of the virtual database entry on the Data virtualizations page changes
from Draft to Published.

The virtual database entry displays a URL link to the OData endpoint for the virtual
database.

The virtual database service is added to the Connections page, and a JDBC connection
to it is created.
You can verify the JDBC URL by opening the entry for the virtual database service from
the Connections page.

If the publishing process fails, the entry is flagged with the label Error.

7.6. DELETING A VIRTUAL DATABASE IN FUSE ONLINE

You can permanently delete virtual databases that you create in Fuse Online. You can delete virtual

CHAPTER 7. CREATING AND WORKING WITH VIRTUAL DATABASES IN FUSE ONLINE

49

You can permanently delete virtual databases that you create in Fuse Online. You can delete virtual
databases whether they are published or in draft.

The data sources that a virtual database consumes are not affected by the deletion. Connections
between Fuse Online and the data sources remain in place.

Prerequisites

You have a virtual database that was created in Fuse Online and you want to remove it.

Procedure

1. From the navigation sidebar in Fuse Online, click Data.

2. On the Data Virtualizations page, click the overflow menu for the virtual database that you
want to delete, and then click Delete.

3. When prompted, click Delete to confirm that you want to delete the virtual database.
A confirmation message reports when the virtualization is deleted.

Red Hat Integration 2019-12 Data Virtualization

50

CHAPTER 8. MIGRATING LEGACY VIRTUAL DATABASE FILES
TO DDL FORMAT

The data virtualization Technology Preview requires that you define the structure of virtual databases in
SQL-MED DDL (data definition language) format. By contrast, the structure of legacy Teiid virtual
databases, such as those that run on Wildfly, or on the Red Hat JBoss Data Virtualization offering, are
defined by using files that are in .xml or .vdb format.

You can reuse the virtual database designs that you developed for a legacy deployment, but you must
first update the format of the files. A migration tool is available to convert your files. After your convert
the files you can rebuild the virtual databases as container images and deploy them to OpenShift.

You can use the migration utility in the following two ways:

To validate a VDB file only

Use this method to check whether the utility can a successfully convert a VDB file. The utility
converts the VDB file and reports validation errors to the terminal. If there are no validation errors,
the utility displays the resulting DDL, but it does not save the converted DDL to a file.

To validate and a VDB file and save it to a DDL file

The file is saved only if there are no validation errors.

The migration tool works on .xml files only. Files with a .vdb file extension are file archives that contain
multiple folders. If you have legacy files in .vdb format, use Teiid Designer to export the files to .xml
format, and then run the migration tool to convert the resulting .xml files.

Prerequisites

You have a legacy virtual database file in .xml format.

You download the settings.xml file from the Teiid OpenShift repository. Maven uses the
information in the file to run the migration tool.

8.1. VALIDATING A LEGACY VIRTUAL DATABASE XML FILE AND
VIEWING IT IN DDL FORMAT

You can run a test conversion on a legacy virtual database to check for validation errors and view the
resulting DDL file. When you run the migration tool in this way, the converted DDL file is not saved.

Procedure

1. Open the directory that contains the settings.xml file that you downloaded from the Teiid
OpenShift repository, and type the following command:

$ mvn -s settings.xml exec:java -Dvdb=<path_to_vdb_xml_file>

For example:

$ mvn -s settings.xml exec:java -Dvdb=rdbms-example/src/main/resources/vdb.xml

The migration tool checks the specified .xml file, and reports any validation errors. If there are
no validation errors, the migration tool displays a .ddl version of the virtual database on the
screen.

CHAPTER 8. MIGRATING LEGACY VIRTUAL DATABASE FILES TO DDL FORMAT

51

https://github.com/teiid/teiid-openshift-examples/blob/7.4-1.1.x/settings.xml

8.2. CONVERTING A LEGACY VIRTUAL DATABASE XML FILE AND
SAVING IT AS A DDL FILE

You can run the migration tool to convert a legacy virtual database file to .ddl format, and then save the
.ddl file to a specified directory. The migration tool checks the .xml file that you provide for validation
errors. If there are no validation errors, the migration tool converts the file to .ddl format and saves it to
the file name and directory that you specify.

Procedure

Open the directory that contains the settings.xml file that you downloaded from the Teiid
OpenShift repository, and type the following command:

$ mvn -s settings.xml exec:java -Dvdb=<path_to_vdb_xml_file> -Doutput=
<path_to_save_ddl_file>

For example:

$ mvn -s settings.xml exec:java -Dvdb=rdbms-example/src/main/resources/vdb.xml -
Doutput=rdbms-example/src/main/resources/vdb.ddl

Red Hat Integration 2019-12 Data Virtualization

52

	Table of Contents
	CHAPTER 1. HIGH-LEVEL OVERVIEW OF DATA VIRTUALIZATION
	CHAPTER 2. VIRTUAL DATABASE CREATION
	CHAPTER 3. DATA VIRTUALIZATION OPERATOR
	3.1. INSTALLING THE DATA VIRTUALIZATION OPERATOR ON OPENSHIFT
	3.2. RUNNING THE DATA VIRTUALIZATION OPERATOR TO DEPLOY A VIRTUAL DATABASE
	3.3. CREATING A VIRTUAL DATABASE FROM THE OPENSHIFT WEB CONSOLE
	3.4. CUSTOM RESOURCES TO SUPPORT DATA SOURCES
	3.4.1. Settings to configure relational databases as data sources
	3.4.2. Settings to configure MongoDB as a data source
	3.4.3. Settings to configure REST, OData, and OpenAPI data sources
	3.4.4. Settings to configure Salesforce as a data source
	3.4.5. Setting up an OAuth connection to Salesforce

	CHAPTER 4. USING MAVEN SPRING BOOT TO CREATE VIRTUAL DATABASES
	4.1. USING MAVEN TO CREATE A JAVA SHELL PROJECT FOR YOUR VIRTUAL DATABASE
	4.2. CREATING AND DEPLOYING SECRETS
	4.3. SECRET OBJECTS FOR STORING DATA SOURCE INFORMATION
	4.4. SPECIFYING PROJECT DEPENDENCIES IN THE POM.XML FILE
	4.5. DEFINING THE STRUCTURE FOR VIRTUAL DATABASES IN A DDL FILE
	4.6. DDL FILES
	4.7. ADDING JAVA APPLICATION AND CLASS FILES
	4.8. SAMPLE DATASOURCES.JAVA FILE
	4.9. SPECIFYING APPLICATION PROPERTIES
	4.10. SAMPLE APPLICATION.PROPERTIES FILE
	4.11. DEPLOYMENT CONFIGURATION FILES (DEPLOYMENTCONFIG.YML)
	4.12. SETTING THE DEPLOYMENT CONFIGURATION
	4.13. CONNECTION SETTINGS FOR OTHER DATA SOURCES
	4.13.1. Settings to connect to Salesforce as a data source
	4.13.2. Settings to connect to Google Sheets as a data source

	4.14. BUILDING A DATA VIRTUALIZATION PROJECT

	CHAPTER 5. MAKING VIRTUAL DATABASES AVAILABLE TO API CONSUMERS
	5.1. CONFIGURING ACCESS FOR ODATA CLIENTS
	5.2. CONFIGURING ACCESS FOR JDBC CLIENTS
	5.3. IDENTIFYING THE ODATA ENDPOINT OF A VIRTUAL DATABASE

	CHAPTER 6. SECURING ODATA APIS FOR A VIRTUAL DATABASE BY USING 3SCALE AND RH-SSO
	6.1. UPDATING THE VIRTUAL DATABASE CONFIGURATION
	6.1.1. Adding SSO dependencies to pom.xml
	6.1.2. Adding SSO settings to application.properties
	6.1.3. Creating a configuration map
	6.1.4. Updating SSO environment variables in the deploymentconfig.yml file
	6.1.5. Defining user roles in the DDL file

	6.2. UPDATING THE 3SCALE CONFIGURATION

	CHAPTER 7. CREATING AND WORKING WITH VIRTUAL DATABASES IN FUSE ONLINE
	7.1. CREATING VIRTUAL DATABASES IN FUSE ONLINE
	7.2. ADDING A VIEW TO A VIRTUAL DATABASE IN FUSE ONLINE
	7.3. USING THE VIEW EDITOR IN FUSE ONLINE TO MODIFY THE DDL THAT DEFINES A VIRTUAL DATABASE
	7.4. PREVIEWING A VIRTUAL DATABASE IN FUSE ONLINE BY SUBMITTING SQL TEST QUERIES
	7.5. PUBLISHING VIRTUAL DATABASES IN FUSE ONLINE TO MAKE THEM AVAILABLE FOR ACCESS
	7.6. DELETING A VIRTUAL DATABASE IN FUSE ONLINE

	CHAPTER 8. MIGRATING LEGACY VIRTUAL DATABASE FILES TO DDL FORMAT
	8.1. VALIDATING A LEGACY VIRTUAL DATABASE XML FILE AND VIEWING IT IN DDL FORMAT
	8.2. CONVERTING A LEGACY VIRTUAL DATABASE XML FILE AND SAVING IT AS A DDL FILE

