
Red Hat Integration 2023.q4

Installing and deploying Service Registry on
OpenShift

Install, deploy, and configure Service Registry 2.5

Last Updated: 2024-02-22

Red Hat Integration 2023.q4 Installing and deploying Service Registry on
OpenShift

Install, deploy, and configure Service Registry 2.5

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide explains how to install and deploy Service Registry on OpenShift with data storage
options in AMQ Streams or a PostgreSQL database. This guide also shows how to secure,
configure, and manage your Service Registry deployment, and provides configuration reference for
Service Registry and the Service Registry Operator.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. SERVICE REGISTRY OPERATOR QUICKSTART
1.1. QUICKSTART SERVICE REGISTRY OPERATOR INSTALLATION
1.2. QUICKSTART SERVICE REGISTRY INSTANCE DEPLOYMENT

CHAPTER 2. INSTALLING SERVICE REGISTRY ON OPENSHIFT
2.1. INSTALLING SERVICE REGISTRY FROM THE OPENSHIFT OPERATORHUB

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS
3.1. INSTALLING AMQ STREAMS FROM THE OPENSHIFT OPERATORHUB
3.2. CONFIGURING SERVICE REGISTRY WITH KAFKA STORAGE ON OPENSHIFT
3.3. CONFIGURING KAFKA STORAGE WITH TLS SECURITY
3.4. CONFIGURING KAFKA STORAGE WITH SCRAM SECURITY
3.5. CONFIGURING OAUTH AUTHENTICATION FOR KAFKA STORAGE

CHAPTER 4. DEPLOYING SERVICE REGISTRY STORAGE IN A POSTGRESQL DATABASE
4.1. INSTALLING A POSTGRESQL DATABASE FROM THE OPENSHIFT OPERATORHUB
4.2. CONFIGURING SERVICE REGISTRY WITH POSTGRESQL DATABASE STORAGE ON OPENSHIFT
4.3. BACKING UP SERVICE REGISTRY POSTGRESQL STORAGE
4.4. RESTORING SERVICE REGISTRY POSTGRESQL STORAGE

CHAPTER 5. SECURING SERVICE REGISTRY DEPLOYMENTS
5.1. SECURING SERVICE REGISTRY USING THE RED HAT SINGLE SIGN-ON OPERATOR
5.2. CONFIGURING SERVICE REGISTRY AUTHENTICATION AND AUTHORIZATION WITH RED HAT SINGLE
SIGN-ON
5.3. CONFIGURING SERVICE REGISTRY AUTHENTICATION AND AUTHORIZATION WITH MICROSOFT AZURE
ACTIVE DIRECTORY
5.4. SERVICE REGISTRY AUTHENTICATION AND AUTHORIZATION CONFIGURATION OPTIONS

Service Registry authentication by using OpenID Connect with Red Hat Single Sign-On
Service Registry authentication by using HTTP basic

Service Registry HTTP basic client credentials cache expiry
Service Registry role-based authorization

Use roles assigned in Red Hat Single Sign-On
Manage roles directly in Service Registry
Service Registry admin-override configuration

Service Registry owner-only authorization
Service Registry authenticated read access
Service Registry anonymous read-only access

5.5. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY FROM INSIDE THE OPENSHIFT
CLUSTER
5.6. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY FROM OUTSIDE THE OPENSHIFT
CLUSTER

CHAPTER 6. CONFIGURING AND MANAGING SERVICE REGISTRY DEPLOYMENTS
6.1. CONFIGURING SERVICE REGISTRY HEALTH CHECKS ON OPENSHIFT
6.2. ENVIRONMENT VARIABLES FOR SERVICE REGISTRY HEALTH CHECKS

Liveness environment variables
Readiness environment variables

6.3. MANAGING SERVICE REGISTRY ENVIRONMENT VARIABLES
6.4. CONFIGURING SERVICE REGISTRY DEPLOYMENT USING PODTEMPLATE

4
4
4

5
5
6

8
8

10
10
11

13
17

20

22
22
23
24
25

26
26

30

33
36
36
37
37
38
38
39
39
40
40
41

41

43

45
45
46
46
47
48
49

Table of Contents

1

. .

. .

. .

6.5. CONFIGURING THE SERVICE REGISTRY WEB CONSOLE
Configuring the web console deployment environment
Configuring the web console in read-only mode

6.6. CONFIGURING SERVICE REGISTRY LOGGING
6.7. CONFIGURING SERVICE REGISTRY EVENT SOURCING

Service Registry event types
Configuring Service Registry event sourcing by using HTTP
Configuring Service Registry event sourcing by using Apache Kafka

CHAPTER 7. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE
7.1. SERVICE REGISTRY CUSTOM RESOURCE
7.2. SERVICE REGISTRY CR SPEC
7.3. SERVICE REGISTRY CR STATUS
7.4. SERVICE REGISTRY MANAGED RESOURCES
7.5. SERVICE REGISTRY OPERATOR LABELS

CHAPTER 8. SERVICE REGISTRY CONFIGURATION REFERENCE
8.1. SERVICE REGISTRY CONFIGURATION OPTIONS

8.1.1. api
8.1.2. auth
8.1.3. cache
8.1.4. ccompat
8.1.5. download
8.1.6. events
8.1.7. health
8.1.8. import
8.1.9. kafka
8.1.10. limits
8.1.11. log
8.1.12. redirects
8.1.13. rest
8.1.14. store
8.1.15. ui

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing your account
Activating a subscription
Downloading ZIP and TAR files

51
51
51
51
52
53
53
53

55
55
56
61

63
64

65
65
65
65
67
67
68
68
68
70
70
70
71
72
72
73
73

75
75
75
75

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

2

Table of Contents

3

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation.

To propose improvements, open a Jira issue and describe your suggested changes. Provide as much
detail as possible to enable us to address your request quickly.

Prerequisite

You have a Red Hat Customer Portal account. This account enables you to log in to the Red Hat
Jira Software instance.
If you do not have an account, you will be prompted to create one.

Procedure

1. Click the following link: Create issue.

2. In the Summary text box, enter a brief description of the issue.

3. In the Description text box, provide the following information:

The URL of the page where you found the issue.

A detailed description of the issue.
You can leave the information in any other fields at their default values.

4. Click Create to submit the Jira issue to the documentation team.

Thank you for taking the time to provide feedback.

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12323824&issuetype=1&components=12334781&priority=3&description=URL where issue was found%3A%C2%A0%0A%0ADescription of issue%3A%C2%A0&12368953

CHAPTER 1. SERVICE REGISTRY OPERATOR QUICKSTART
You can quickly install the Service Registry Operator on the command line by using Custom Resource
Definitions (CRDs).

The quickstart example deploys your Service Registry instance with storage in an SQL database:

Section 1.1, “Quickstart Service Registry Operator installation”

Section 1.2, “Quickstart Service Registry instance deployment”

NOTE

The recommended installation option for production environments is the OpenShift
OperatorHub. The recommended storage option is an SQL database for performance,
stability, and data management.

1.1. QUICKSTART SERVICE REGISTRY OPERATOR INSTALLATION

You can quickly install and deploy the Service Registry Operator on the command line, without the
Operator Lifecycle Manager, by using a downloaded set of installation files and example CRDs.

Prerequisites

You are logged in to an OpenShift cluster with administrator access.

You have the OpenShift oc command-line client installed. For more details, see the OpenShift
CLI documentation.

Procedure

1. Browse to Red Hat Software Downloads , select the product version, and download the
examples in the Service Registry CRDs .zip file.

2. Extract the downloaded CRDs .zip file and change to the apicurio-registry-install-examples
directory.

3. Create an OpenShift project for the Service Registry Operator installation, for example:

4. Enter the following command to apply the example CRD in the install/install.yaml file:

5. Enter oc get deployment to check the readiness of the Service Registry Operator. For
example, the output should be as follows:

export NAMESPACE="apicurio-registry"
oc new-project "$NAMESPACE"

cat install/install.yaml | sed "s/apicurio-registry-operator-namespace/$NAMESPACE/g" | oc
apply -f -

NAME READY UP-TO-DATE AVAILABLE AGE
apicurio-registry-operator 1/1 1 1 XmYs

CHAPTER 1. SERVICE REGISTRY OPERATOR QUICKSTART

5

https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration

1.2. QUICKSTART SERVICE REGISTRY INSTANCE DEPLOYMENT

To create your Service Registry instance deployment, use the SQL database storage option to connect
to an existing PostgreSQL database.

Prerequisites

Ensure that the Service Registry Operator is installed.

You have a PostgreSQL database that is reachable from your OpenShift cluster.

Procedure

1. Open the examples/apicurioregistry_sql_cr.yaml file in an editor and view the
ApicurioRegistry custom resource (CR):

Example CR for SQL storage

2. In the dataSource section, replace the example settings with your database connection details.
For example:

3. Enter the following commands to apply the updated ApicurioRegistry CR in the namespace
with the Service Registry Operator, and wait for the Service Registry instance to deploy:

4. Enter oc get deployment to check the readiness of the Service Registry instance. For example,
the output should be as follows:

5. Enter oc get routes to get the HOST/PORT URL to launch the Service Registry web console in
your browser. For example:

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry-sql
spec:
 configuration:
 persistence: "sql"
 sql:
 dataSource:
 url: "jdbc:postgresql://<service name>.<namespace>.svc:5432/<database name>"
 userName: "postgres"
 password: "<password>" # Optional

dataSource:
 url: "jdbc:postgresql://postgresql.apicurio-registry.svc:5432/registry"
 userName: "pgadmin"
 password: "pgpass"

oc project "$NAMESPACE"
oc apply -f ./examples/apicurioregistry_sql_cr.yaml

NAME READY UP-TO-DATE AVAILABLE AGE
example-apicurioregistry-sql-deployment 1/1 1 1 XmYs

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

6

example-apicurioregistry-sql.apicurio-registry.router-
default.apps.mycluster.myorg.mycompany.com

CHAPTER 1. SERVICE REGISTRY OPERATOR QUICKSTART

7

CHAPTER 2. INSTALLING SERVICE REGISTRY ON OPENSHIFT
This chapter explains how to install Service Registry on OpenShift Container Platform:

Section 2.1, “Installing Service Registry from the OpenShift OperatorHub”

Prerequisites

Read the introduction in the Service Registry User Guide .

2.1. INSTALLING SERVICE REGISTRY FROM THE OPENSHIFT
OPERATORHUB

You can install the Service Registry Operator on your OpenShift cluster from the OperatorHub. The
OperatorHub is available from the OpenShift Container Platform web console and provides an interface
for cluster administrators to discover and install Operators. For more details, see Understanding
OperatorHub.

NOTE

You can install more than one instance of Service Registry depending on your
environment. The number of instances depends on the number and type of artifacts
stored in Service Registry and on your chosen storage option.

Prerequisites

You must have cluster administrator access to an OpenShift cluster.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Create a new OpenShift project:

a. In the left navigation menu, click Home, Project, and then Create Project.

b. Enter a project name, for example, my-project, and click Create.

3. In the left navigation menu, click Operators and then OperatorHub.

4. In the Filter by keyword text box, enter registry to find the Red Hat Integration - Service
Registry Operator.

5. Read the information about the Operator, and click Install to display the Operator subscription
page.

6. Select your subscription settings, for example:

Update Channel: Select one of the following:

2.x: Includes all minor and patch updates, such as 2.3.0 and 2.0.3. For example, an
installation on 2.0.x will upgrade to 2.3.x.

2.0.x: Includes patch updates only, such as 2.0.1 and 2.0.2. For example, an installation

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

8

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/service_registry_user_guide/index
https://docs.openshift.com/container-platform/latest/operators/understanding/olm-understanding-operatorhub.html

2.0.x: Includes patch updates only, such as 2.0.1 and 2.0.2. For example, an installation
on 2.0.x will ignore 2.3.x.

Installation Mode: Select one of the following:

All namespaces on the cluster (default)

A specific namespace on the cluster and then my-project

Approval Strategy: Select Automatic or Manual

7. Click Install, and wait a few moments until the Operator is ready for use.

Additional resources

Adding Operators to an OpenShift cluster

Apicurio Registry Operator community in GitHub

CHAPTER 2. INSTALLING SERVICE REGISTRY ON OPENSHIFT

9

https://docs.openshift.com/container-platform/latest/operators/admin/olm-adding-operators-to-cluster.html
https://github.com/Apicurio/apicurio-registry-operator

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN
AMQ STREAMS

This chapter explains how to install and configure Service Registry data storage in AMQ Streams.

Section 3.1, “Installing AMQ Streams from the OpenShift OperatorHub”

Section 3.2, “Configuring Service Registry with Kafka storage on OpenShift”

Section 3.3, “Configuring Kafka storage with TLS security”

Section 3.4, “Configuring Kafka storage with SCRAM security”

Section 3.5, “Configuring OAuth authentication for Kafka storage”

Prerequisites

Chapter 2, Installing Service Registry on OpenShift

3.1. INSTALLING AMQ STREAMS FROM THE OPENSHIFT
OPERATORHUB

If you do not already have AMQ Streams installed, you can install the AMQ Streams Operator on your
OpenShift cluster from the OperatorHub. The OperatorHub is available from the OpenShift Container
Platform web console and provides an interface for cluster administrators to discover and install
Operators. For more details, see Understanding OperatorHub.

Prerequisites

You must have cluster administrator access to an OpenShift cluster

See Deploying and Managing AMQ Streams on OpenShift for detailed information on installing
AMQ Streams. This section shows a simple example of installing using the OpenShift
OperatorHub.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Change to the OpenShift project in which you want to install AMQ Streams. For example, from
the Project drop-down, select my-project.

3. In the left navigation menu, click Operators and then OperatorHub.

4. In the Filter by keyword text box, enter AMQ Streams to find the Red Hat Integration - AMQ
Streams Operator.

5. Read the information about the Operator, and click Install to display the Operator subscription
page.

6. Select your subscription settings, for example:

Update Channel and then amq-streams-2.6.x

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

10

https://docs.openshift.com/container-platform/latest/operators/understanding/olm-understanding-operatorhub.html
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index

Installation Mode: Select one of the following:

All namespaces on the cluster (default)

A specific namespace on the cluster > my-project

Approval Strategy: Select Automatic or Manual

7. Click Install, and wait a few moments until the Operator is ready for use.

Additional resources

Adding Operators to an OpenShift cluster

Deploying and Managing AMQ Streams on OpenShift

3.2. CONFIGURING SERVICE REGISTRY WITH KAFKA STORAGE ON
OPENSHIFT

This section explains how to configure Kafka-based storage for Service Registry using AMQ Streams on
OpenShift. The kafkasql storage option uses Kafka storage with an in-memory H2 database for caching.
This storage option is suitable for production environments when persistent storage is configured for
the Kafka cluster on OpenShift.

You can install Service Registry in an existing Kafka cluster or create a new Kafka cluster, depending on
your environment.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry. See Chapter 2, Installing Service Registry on
OpenShift.

You must have already installed AMQ Streams. See Section 3.1, “Installing AMQ Streams from
the OpenShift OperatorHub”.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. If you do not already have a Kafka cluster configured, create a new Kafka cluster using AMQ
Streams. For example, in the OpenShift OperatorHub:

a. Click Installed Operators and then Red Hat Integration - AMQ Streams.

b. Under Provided APIs and then Kafka, click Create Instance to create a new Kafka cluster.

c. Edit the custom resource definition as appropriate, and click Create.

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

11

https://docs.openshift.com/container-platform/latest/operators/admin/olm-adding-operators-to-cluster.html
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index

WARNING

The default example creates a cluster with 3 Zookeeper nodes and 3
Kafka nodes with ephemeral storage. This temporary storage is
suitable for development and testing only, and not for production. For
more details, see Deploying and Managing AMQ Streams on
OpenShift.

3. After the cluster is ready, click Provided APIs > Kafka > my-cluster > YAML.

4. In the status block, make a copy of the bootstrapServers value, which you will use later to
deploy Service Registry. For example:

5. Click Installed Operators > Red Hat Integration - Service Registry > ApicurioRegistry >
Create ApicurioRegistry.

6. Paste in the following custom resource definition, but use your bootstrapServers value that
you copied earlier:

7. Click Create and wait for the Service Registry route to be created on OpenShift.

8. Click Networking > Route to access the new route for the Service Registry web console. For
example:

http://example-apicurioregistry-kafkasql.my-project.my-domain-name.com/

9. To configure the Kafka topic that Service Registry uses to store data, click Installed Operators



status:
 ...
 conditions:
 ...
 listeners:
 - addresses:
 - host: my-cluster-kafka-bootstrap.my-project.svc
 port: 9092
 bootstrapServers: 'my-cluster-kafka-bootstrap.my-project.svc:9092'
 type: plain
 ...

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry-kafkasql
spec:
 configuration:
 persistence: 'kafkasql'
 kafkasql:
 bootstrapServers: 'my-cluster-kafka-bootstrap.my-project.svc:9092'

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

12

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index

9. To configure the Kafka topic that Service Registry uses to store data, click Installed Operators
> Red Hat Integration - AMQ Streams > Provided APIs > Kafka Topic > kafkasql-journal >
YAML. For example:

WARNING

You must configure the Kafka topic used by Service Registry (named
kafkasql-journal by default) with a compaction cleanup policy, otherwise a
data loss might occur.

Additional resources

For more details on creating Kafka clusters and topics using AMQ Streams, see Deploying and
Managing AMQ Streams on OpenShift.

3.3. CONFIGURING KAFKA STORAGE WITH TLS SECURITY

You can configure the AMQ Streams Operator and Service Registry Operator to use an encrypted
Transport Layer Security (TLS) connection.

Prerequisites

You have installed the Service Registry Operator using the OperatorHub or command line.

You have installed the AMQ Streams Operator or have Kafka accessible from your OpenShift
cluster.

NOTE

This section assumes that the AMQ Streams Operator is available, however you can use
any Kafka deployment. In that case, you must manually create the Openshift secrets that
the Service Registry Operator expects.

Procedure

1. In the OpenShift web console, click Installed Operators, select the AMQ Streams Operator

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:
 name: kafkasql-journal
 labels:
 strimzi.io/cluster: my-cluster
 namespace: ...
spec:
 partitions: 3
 replicas: 3
 config:
 cleanup.policy: compact



CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

13

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.6/html-single/deploying_and_managing_amq_streams_on_openshift/index

1. In the OpenShift web console, click Installed Operators, select the AMQ Streams Operator
details, and then the Kafka tab.

2. Click Create Kafka to provision a new Kafka cluster for Service Registry storage.

3. Configure the authorization and tls fields to use TLS authentication for the Kafka cluster, for
example:

The default Kafka topic name automatically created by Service Registry to store data is
kafkasql-journal. You can override this behavior or the default topic name by setting
environment variables. The default values are as follows:

REGISTRY_KAFKASQL_TOPIC_AUTO_CREATE=true

REGISTRY_KAFKASQL_TOPIC=kafkasql-journal

If you decide not to create the Kafka topic manually, skip the next step.

4. Click the Kafka Topic tab, and then Create Kafka Topic to create the kafkasql-journal topic:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: registry-example-kafkasql-tls
 # Change or remove the explicit namespace
spec:
 kafka:
 config:
 offsets.topic.replication.factor: 3
 transaction.state.log.replication.factor: 3
 transaction.state.log.min.isr: 2
 log.message.format.version: '2.7'
 inter.broker.protocol.version: '2.7'
 version: 2.7.0
 storage:
 type: ephemeral
 replicas: 3
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 authorization:
 type: simple
 entityOperator:
 topicOperator: {}
 userOperator: {}
 zookeeper:
 storage:
 type: ephemeral
 replicas: 3

apiVersion: kafka.strimzi.io/v1beta1

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

14

5. Create a Kafka User resource to configure authentication and authorization for the Service
Registry user. You can specify a user name in the metadata section or use the default my-user.

NOTE

This simple example assumes admin permissions and creates the Kafka topic
automatically. You must configure the authorization section specifically for the
topics and resources that the Service Registry requires.

kind: KafkaTopic
metadata:
 name: kafkasql-journal
 labels:
 strimzi.io/cluster: my-cluster
 namespace: registry-example-kafkasql-tls
spec:
 partitions: 2
 replicas: 1
 config:
 cleanup.policy: compact

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
 namespace: registry-example-kafkasql-tls
spec:
 authentication:
 type: tls
 authorization:
 acls:
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: topic
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: cluster
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: transactionalId
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: group
 type: simple

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

15

The following example shows the minimum configuration required when the Kafka topic is
created manually:

6. Click Workloads and then Secrets to find two secrets that AMQ Streams creates for Service
Registry to connect to the Kafka cluster:

my-cluster-cluster-ca-cert - contains the PKCS12 truststore for the Kafka cluster

my-user - contains the user’s keystore

NOTE

The name of the secret can vary based on your cluster or user name.

7. If you create the secrets manually, they must contain the following key-value pairs:

my-cluster-ca-cert

ca.p12 - truststore in PKCS12 format

ca.password - truststore password

my-user

user.p12 - keystore in PKCS12 format

user.password - keystore password

8. Configure the following example configuration to deploy the Service Registry.

 ...
 authorization:
 acls:
 - operations:
 - Read
 - Write
 resource:
 name: kafkasql-journal
 patternType: literal
 type: topic
 - operations:
 - Read
 - Write
 resource:
 name: apicurio-registry-
 patternType: prefix
 type: group
 type: simple

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry-kafkasql-tls
spec:
 configuration:
 persistence: "kafkasql"

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

16

IMPORTANT

You must use a different bootstrapServers address than in the plain insecure use case.
The address must support TLS connections and is found in the specified Kafka resource
under the type: tls field.

3.4. CONFIGURING KAFKA STORAGE WITH SCRAM SECURITY

You can configure the AMQ Streams Operator and Service Registry Operator to use Salted Challenge
Response Authentication Mechanism (SCRAM-SHA-512) for the Kafka cluster.

Prerequisites

You have installed the Service Registry Operator using the OperatorHub or command line.

You have installed the AMQ Streams Operator or have Kafka accessible from your OpenShift
cluster.

NOTE

This section assumes that AMQ Streams Operator is available, however you can use any
Kafka deployment. In that case, you must manually create the Openshift secrets that the
Service Registry Operator expects.

Procedure

1. In the OpenShift web console, click Installed Operators, select the AMQ Streams Operator
details, and then the Kafka tab.

2. Click Create Kafka to provision a new Kafka cluster for Service Registry storage.

3. Configure the authorization and tls fields to use SCRAM-SHA-512 authentication for the Kafka
cluster, for example:

 kafkasql:
 bootstrapServers: "my-cluster-kafka-bootstrap.registry-example-kafkasql-tls.svc:9093"
 security:
 tls:
 keystoreSecretName: my-user
 truststoreSecretName: my-cluster-cluster-ca-cert

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: registry-example-kafkasql-scram
 # Change or remove the explicit namespace
spec:
 kafka:
 config:
 offsets.topic.replication.factor: 3
 transaction.state.log.replication.factor: 3
 transaction.state.log.min.isr: 2
 log.message.format.version: '2.7'

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

17

The default Kafka topic name automatically created by Service Registry to store data is
kafkasql-journal. You can override this behavior or the default topic name by setting
environment variables. The default values are as follows:

REGISTRY_KAFKASQL_TOPIC_AUTO_CREATE=true

REGISTRY_KAFKASQL_TOPIC=kafkasql-journal

If you decide not to create the Kafka topic manually, skip the next step.

4. Click the Kafka Topic tab, and then Create Kafka Topic to create the kafkasql-journal topic:

5. Create a Kafka User resource to configure SCRAM authentication and authorization for the
Service Registry user. You can specify a user name in the metadata section or use the default
my-user.

 inter.broker.protocol.version: '2.7'
 version: 2.7.0
 storage:
 type: ephemeral
 replicas: 3
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: scram-sha-512
 authorization:
 type: simple
 entityOperator:
 topicOperator: {}
 userOperator: {}
 zookeeper:
 storage:
 type: ephemeral
 replicas: 3

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaTopic
metadata:
 name: kafkasql-journal
 labels:
 strimzi.io/cluster: my-cluster
 namespace: registry-example-kafkasql-scram
spec:
 partitions: 2
 replicas: 1
 config:
 cleanup.policy: compact

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaUser
metadata:
 name: my-user
 labels:

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

18

NOTE

This simple example assumes admin permissions and creates the Kafka topic
automatically. You must configure the authorization section specifically for the
topics and resources that the Service Registry requires.

The following example shows the minimum configuration required when the Kafka topic is
created manually:

 strimzi.io/cluster: my-cluster
 namespace: registry-example-kafkasql-scram
spec:
 authentication:
 type: scram-sha-512
 authorization:
 acls:
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: topic
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: cluster
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: transactionalId
 - operation: All
 resource:
 name: '*'
 patternType: literal
 type: group
 type: simple

 ...
 authorization:
 acls:
 - operations:
 - Read
 - Write
 resource:
 name: kafkasql-journal
 patternType: literal
 type: topic
 - operations:
 - Read
 - Write
 resource:
 name: apicurio-registry-

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

19

6. Click Workloads and then Secrets to find two secrets that AMQ Streams creates for Service
Registry to connect to the Kafka cluster:

my-cluster-cluster-ca-cert - contains the PKCS12 truststore for the Kafka cluster

my-user - contains the user’s keystore

NOTE

The name of the secret can vary based on your cluster or user name.

7. If you create the secrets manually, they must contain the following key-value pairs:

my-cluster-ca-cert

ca.p12 - the truststore in PKCS12 format

ca.password - truststore password

my-user

password - user password

8. Configure the following example settings to deploy the Service Registry:

IMPORTANT

You must use a different bootstrapServers address than in the plain insecure use case.
The address must support TLS connections, and is found in the specified Kafka resource
under the type: tls field.

3.5. CONFIGURING OAUTH AUTHENTICATION FOR KAFKA STORAGE

When using Kafka-based storage in AMQ Streams, Service Registry supports accessing a Kafka cluster

 patternType: prefix
 type: group
 type: simple

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry-kafkasql-scram
spec:
 configuration:
 persistence: "kafkasql"
 kafkasql:
 bootstrapServers: "my-cluster-kafka-bootstrap.registry-example-kafkasql-
scram.svc:9093"
 security:
 scram:
 truststoreSecretName: my-cluster-cluster-ca-cert
 user: my-user
 passwordSecretName: my-user

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

20

When using Kafka-based storage in AMQ Streams, Service Registry supports accessing a Kafka cluster
that requires OAuth authentication. To enable this support, you must to set some environment variables
in your Service Registry deployment.

When you set these environment variables, the Kafka producer and consumer applications in Service
Registry will use this configuration to authenticate to the Kafka cluster over OAuth.

Prerequisites

You must have already configured Kafka-based storage of Service Registry data in AMQ
Streams. See Section 3.2, “Configuring Service Registry with Kafka storage on OpenShift” .

Procedure

Set the following environment variables in your Service Registry deployment:

Environment variable Description Default value

ENABLE_KAFKA_SASL Enables SASL OAuth
authentication for Service
Registry storage in Kafka. You
must set this variable to true
for the other variables to have
effect.

false

CLIENT_ID The client ID used to
authenticate to Kafka.

-

CLIENT_SECRET The client secret used to
authenticate to Kafka.

-

OAUTH_TOKEN_ENDPOI
NT_URI

The URL of the OAuth identity
server.

http://localhost:8090

Additional resources

For an example of how to set Service Registry environment variables on OpenShift, see
Section 6.1, “Configuring Service Registry health checks on OpenShift”

CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS

21

CHAPTER 4. DEPLOYING SERVICE REGISTRY STORAGE IN A
POSTGRESQL DATABASE

This chapter explains how to install, configure, and manage Service Registry data storage in a
PostgreSQL database.

Section 4.1, “Installing a PostgreSQL database from the OpenShift OperatorHub”

Section 4.2, “Configuring Service Registry with PostgreSQL database storage on OpenShift”

Section 4.3, “Backing up Service Registry PostgreSQL storage”

Section 4.4, “Restoring Service Registry PostgreSQL storage”

Prerequisites

Chapter 2, Installing Service Registry on OpenShift

4.1. INSTALLING A POSTGRESQL DATABASE FROM THE OPENSHIFT
OPERATORHUB

If you do not already have a PostgreSQL database Operator installed, you can install a PostgreSQL
Operator on your OpenShift cluster from the OperatorHub. The OperatorHub is available from the
OpenShift Container Platform web console and provides an interface for cluster administrators to
discover and install Operators. For more details, see Understanding OperatorHub.

Prerequisites

You must have cluster administrator access to an OpenShift cluster.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Change to the OpenShift project in which you want to install the PostgreSQL Operator. For
example, from the Project drop-down, select my-project.

3. In the left navigation menu, click Operators and then OperatorHub.

4. In the Filter by keyword text box, enter PostgreSQL to find an Operator suitable for your
environment, for example, Crunchy PostgreSQL for OpenShift.

5. Read the information about the Operator, and click Install to display the Operator subscription
page.

6. Select your subscription settings, for example:

Update Channel: stable

Installation Mode: A specific namespace on the cluster and then my-project

Approval Strategy: Select Automatic or Manual

7. Click Install, and wait a few moments until the Operator is ready for use.

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

22

https://docs.openshift.com/container-platform/latest/operators/understanding/olm-understanding-operatorhub.html

IMPORTANT

You must read the documentation from your chosen PostgreSQL Operator for
details on how to create and manage your database.

Additional resources

Adding Operators to an OpenShift cluster

Crunchy PostgreSQL Operator QuickStart

4.2. CONFIGURING SERVICE REGISTRY WITH POSTGRESQL
DATABASE STORAGE ON OPENSHIFT

This section explains how to configure storage for Service Registry on OpenShift using a PostgreSQL
database Operator. You can install Service Registry in an existing database or create a new database,
depending on your environment. This section shows a simple example using the PostgreSQL Operator
by Dev4Ddevs.com.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry. See Chapter 2, Installing Service Registry on
OpenShift.

You must have already installed a PostgreSQL Operator on OpenShift. For example, see
Section 4.1, “Installing a PostgreSQL database from the OpenShift OperatorHub” .

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Change to the OpenShift project in which Service Registry and your PostgreSQL Operator are
installed. For example, from the Project drop-down, select my-project.

3. Create a PostgreSQL database for your Service Registry storage. For example, click Installed
Operators, PostgreSQL Operator by Dev4Ddevs.com, and then Create database.

4. Click YAML and edit the database settings as follows:

name: Change the value to registry

image: Change the value to centos/postgresql-12-centos7

5. Edit any other database settings as needed depending on your environment, for example:

apiVersion: postgresql.dev4devs.com/v1alpha1
kind: Database
metadata:
 name: registry
 namespace: my-project
spec:
 databaseCpu: 30m

CHAPTER 4. DEPLOYING SERVICE REGISTRY STORAGE IN A POSTGRESQL DATABASE

23

https://docs.openshift.com/container-platform/latest/operators/admin/olm-adding-operators-to-cluster.html
https://access.crunchydata.com/documentation/postgres-operator/4.3.2/quickstart/

6. Click Create, and wait until the database is created.

7. Click Installed Operators > Red Hat Integration - Service Registry > ApicurioRegistry >
Create ApicurioRegistry.

8. Paste in the following custom resource definition, and edit the values for the database url and
credentials to match your environment:

9. Click Create and wait for the Service Registry route to be created on OpenShift.

10. Click Networking > Route to access the new route for the Service Registry web console. For
example:

http://example-apicurioregistry-sql.my-project.my-domain-name.com/

Additional resources

Crunchy PostgreSQL Operator QuickStart

Apicurio Registry Operator QuickStart

4.3. BACKING UP SERVICE REGISTRY POSTGRESQL STORAGE

When using storage in a PostgreSQL database, you must ensure that the data stored by Service Registry
is backed up regularly.

SQL Dump is a simple procedure that works with any PostgreSQL installation. This uses the pg_dump

 databaseCpuLimit: 60m
 databaseMemoryLimit: 512Mi
 databaseMemoryRequest: 128Mi
 databaseName: example
 databaseNameKeyEnvVar: POSTGRESQL_DATABASE
 databasePassword: postgres
 databasePasswordKeyEnvVar: POSTGRESQL_PASSWORD
 databaseStorageRequest: 1Gi
 databaseUser: postgres
 databaseUserKeyEnvVar: POSTGRESQL_USER
 image: centos/postgresql-12-centos7
 size: 1

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry-sql
spec:
 configuration:
 persistence: 'sql'
 sql:
 dataSource:
 url: 'jdbc:postgresql://<service name>.<namespace>.svc:5432/<database name>'
 # e.g. url: 'jdbc:postgresql://acid-minimal-cluster.my-project.svc:5432/registry'
 userName: 'postgres'
 password: '<password>' # Optional

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

24

https://access.crunchydata.com/documentation/postgres-operator/4.3.2/quickstart/
https://github.com/Apicurio/apicurio-registry-operator

SQL Dump is a simple procedure that works with any PostgreSQL installation. This uses the pg_dump
utility to generate a file with SQL commands that you can use to recreate the database in the same
state that it was in at the time of the dump.

pg_dump is a regular PostgreSQL client application, which you can execute from any remote host that
has access to the database. Like any other client, the operations that can perform are limited to the user
permissions.

Procedure

Use the pg_dump command to redirect the output to a file:

You can specify the database server that pg_dump connects to using the -h host and -p port
options.

You can reduce large dump files using a compression tool, such as gzip, for example:

Additional resources

For details on client authentication, see the PostgreSQL documentation.

For details on importing and exporting registry content, see Managing Service Registry content
using the REST API.

4.4. RESTORING SERVICE REGISTRY POSTGRESQL STORAGE

You can restore SQL Dump files created by pg_dump using the psql utility.

Prerequisites

You must have already backed up your PostgreSQL datbase using pg_dump. See Section 4.3,
“Backing up Service Registry PostgreSQL storage”.

All users who own objects or have permissions on objects in the dumped database must already
exist.

Procedure

1. Enter the following command to create the database:

2. Enter the following command to restore the SQL dump

3. Run ANALYZE on each database so the query optimizer has useful statistics.

 $ pg_dump dbname > dumpfile

 $ pg_dump dbname | gzip > filename.gz

 $ createdb -T template0 dbname

 $ psql dbname < dumpfile

CHAPTER 4. DEPLOYING SERVICE REGISTRY STORAGE IN A POSTGRESQL DATABASE

25

https://www.postgresql.org/docs/12/backup-dump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/client-authentication.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html/service_registry_user_guide/managing-registry-artifacts-api_registry
https://www.postgresql.org/docs/12/sql-analyze.html

CHAPTER 5. SECURING SERVICE REGISTRY DEPLOYMENTS
Service Registry provides authentication and authorization by using Red Hat Single Sign-On based on
OpenID Connect (OIDC) and HTTP basic. You can configure the required settings automatically using
the Red Hat Single Sign-On Operator, or manually configure them in Red Hat Single Sign-On and
Service Registry.

Service Registry also provides authentcation and authorization by using Microsoft Azure Active
Directory based on OpenID Connect (OIDC) and the OAuth Authorization Code Flow. You can
configure the required settings manually in Azure AD and Service Registry.

In addition to role-based authorization options with Red Hat Single Sign-On or Azure AD, Service
Registry also provides content-based authorization at the schema or API level, where only the artifact
creator has write access. You can also configure an HTTPS connection to Service Registry from inside or
outside an OpenShift cluster.

This chapter explains how to configure the following security options for your Service Registry
deployment on OpenShift:

Section 5.1, “Securing Service Registry using the Red Hat Single Sign-On Operator”

Section 5.2, “Configuring Service Registry authentication and authorization with Red Hat Single
Sign-On”

Section 5.3, “Configuring Service Registry authentication and authorization with Microsoft
Azure Active Directory”

Section 5.4, “Service Registry authentication and authorization configuration options”

Section 5.5, “Configuring an HTTPS connection to Service Registry from inside the OpenShift
cluster”

Section 5.6, “Configuring an HTTPS connection to Service Registry from outside the OpenShift
cluster”

Additional resources

For details on security configuration for Java client applications, see the following:

Service Registry Java client configuration

Service Registry serializer/deserializer configuration

5.1. SECURING SERVICE REGISTRY USING THE RED HAT SINGLE
SIGN-ON OPERATOR

The following procedure shows how to configure a Service Registry REST API and web console to be
protected by Red Hat Single Sign-On.

Service Registry supports the following user roles:

Table 5.1. Service Registry user roles

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

26

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/service_registry_user_guide/index#registry-client-config_registry
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/service_registry_user_guide/index#configuring-kafka-client-serdes_registry

Name Capabilities

sr-admin Full access, no restrictions.

sr-developer Create artifacts and configure artifact rules. Cannot
modify global rules, perform import/export, or use
/admin REST API endpoint.

sr-readonly View and search only. Cannot modify artifacts or
rules, perform import/export, or use /admin REST
API endpoint.

NOTE

There is a related configuration option in the ApicurioRegistry CRD that you can use to
set the web console to read-only mode. However, this configuration does not affect the
REST API.

Prerequisites

You must have already installed the Service Registry Operator.

You must install the Red Hat Single Sign-On Operator or have Red Hat Single Sign-On
accessible from your OpenShift cluster.

IMPORTANT

The example configuration in this procedure is intended for development and testing
only. To keep the procedure simple, it does not use HTTPS and other defenses
recommended for a production environment. For more details, see the Red Hat Single
Sign-On documentation.

Procedure

1. In the OpenShift web console, click Installed Operators and Red Hat Single Sign-On
Operator, and then the Keycloak tab.

2. Click Create Keycloak to provision a new Red Hat Single Sign-On instance for securing a
Service Registry deployment. You can use the default value, for example:

apiVersion: keycloak.org/v1alpha1
kind: Keycloak
metadata:
 name: example-keycloak
 labels:
 app: sso
spec:
 instances: 1
 externalAccess:
 enabled: True
 podDisruptionBudget:
 enabled: True

CHAPTER 5. SECURING SERVICE REGISTRY DEPLOYMENTS

27

3. Wait until the instance has been created, and click Networking and then Routes to access the
new route for the keycloak instance.

4. Click the Location URL and copy the displayed URL value for later use when deploying Service
Registry.

5. Click Installed Operators and Red Hat Single Sign-On Operator, and click the Keycloak
Realm tab, and then Create Keycloak Realm to create a registry example realm:

apiVersion: keycloak.org/v1alpha1
kind: KeycloakRealm
metadata:
 name: registry-keycloakrealm
 labels:
 app: registry
spec:
 instanceSelector:
 matchLabels:
 app: sso
 realm:
 displayName: Registry
 enabled: true
 id: registry
 realm: registry
 sslRequired: none
 roles:
 realm:
 - name: sr-admin
 - name: sr-developer
 - name: sr-readonly
 clients:
 - clientId: registry-client-ui
 implicitFlowEnabled: true
 redirectUris:
 - '*'
 standardFlowEnabled: true
 webOrigins:
 - '*'
 publicClient: true
 - clientId: registry-client-api
 implicitFlowEnabled: true
 redirectUris:
 - '*'
 standardFlowEnabled: true
 webOrigins:
 - '*'
 publicClient: true
 users:
 - credentials:
 - temporary: false
 type: password
 value: changeme
 enabled: true
 realmRoles:
 - sr-admin
 username: registry-admin

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

28

IMPORTANT

You must customize this KeycloakRealm resource with values suitable for your
environment if you are deploying to production. You can also create and manage
realms using the Red Hat Single Sign-On web console.

6. If your cluster does not have a valid HTTPS certificate configured, you can create the following
HTTP Service and Ingress resources as a temporary workaround:

a. Click Networking and then Services, and click Create Service using the following example:

b. Click Networking and then Ingresses, and click Create Ingress using the following
example::

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: keycloak-http

 - credentials:
 - temporary: false
 type: password
 value: changeme
 enabled: true
 realmRoles:
 - sr-developer
 username: registry-developer
 - credentials:
 - temporary: false
 type: password
 value: changeme
 enabled: true
 realmRoles:
 - sr-readonly
 username: registry-user

apiVersion: v1
kind: Service
metadata:
 name: keycloak-http
 labels:
 app: keycloak
spec:
 ports:
 - name: keycloak-http
 protocol: TCP
 port: 8080
 targetPort: 8080
 selector:
 app: keycloak
 component: keycloak
 type: ClusterIP
 sessionAffinity: None
status:
 loadBalancer: {}

CHAPTER 5. SECURING SERVICE REGISTRY DEPLOYMENTS

29

 labels:
 app: keycloak
spec:
 rules:
 - host: KEYCLOAK_HTTP_HOST
 http:
 paths:
 - path: /
 pathType: ImplementationSpecific
 backend:
 service:
 name: keycloak-http
 port:
 number: 8080

Modify the host value to create a route accessible for the Service Registry user, and use it
instead of the HTTPS route created by Red Hat Single Sign-On Operator.

7. Click the Service Registry Operator, and on the ApicurioRegistry tab, click Create
ApicurioRegistry, using the following example, but replace your values in the keycloak section.

5.2. CONFIGURING SERVICE REGISTRY AUTHENTICATION AND
AUTHORIZATION WITH RED HAT SINGLE SIGN-ON

This section explains how to manually configure authentication and authorization options for Service
Registry and Red Hat Single Sign-On.

NOTE

Alternatively, for details on how to configure these settings automatically, see
Section 5.1, “Securing Service Registry using the Red Hat Single Sign-On Operator” .

The Service Registry web console and core REST API support authentication in Red Hat Single Sign-On
based on OAuth and OpenID Connect (OIDC). The same Red Hat Single Sign-On realm and users are

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry-kafkasql-keycloak
spec:
 configuration:
 security:
 keycloak:
 url: "http://keycloak-http-<namespace>.apps.<cluster host>"
 # ^ Required
 # Use an HTTP URL in development.
 realm: "registry"
 # apiClientId: "registry-client-api"
 # ^ Optional (default value)
 # uiClientId: "registry-client-ui"
 # ^ Optional (default value)
 persistence: 'kafkasql'
 kafkasql:
 bootstrapServers: '<my-cluster>-kafka-bootstrap.<my-namespace>.svc:9092'

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

30

federated across the Service Registry web console and core REST API using OpenID Connect so that
you only require one set of credentials.

Service Registry provides role-based authorization for default admin, write, and read-only user roles.
Service Registry provides content-based authorization at the schema or API level, where only the
creator of the registry artifact can update or delete it. Service Registry authentication and authorization
settings are disabled by default.

Prerequisites

Red Hat Single Sign-On is installed and running. For more details, see the Red Hat Single Sign-
On user documentation.

Service Registry is installed and running.

Procedure

1. In the Red Hat Single Sign-On Admin Console, create a Red Hat Single Sign-On realm for
Service Registry. By default, Service Registry expects a realm name of registry. For details on
creating realms, see the the Red Hat Single Sign-On user documentation .

2. Create a Red Hat Single Sign-On client for the Service Registry API. By default, Service Registry
expects the following settings:

Client ID: registry-api

Client Protocol: openid-connect

Access Type: bearer-only
You can use the defaults for the other client settings.

NOTE

If you are using Red Hat Single Sign-On service accounts, the client Access
Type must be confidential instead of bearer-only.

3. Create a Red Hat Single Sign-On client for the Service Registry web console. By default, Service
Registry expects the following settings:

Client ID: apicurio-registry

Client Protocol: openid-connect

Access Type: public

Valid Redirect URLs: http://my-registry-url:8080/*

Web Origins: +
You can use the defaults for the other client settings.

4. In your Service Registry deployment on OpenShift, set the following Service Registry
environment variables to configure authentication using Red Hat Single Sign-On:

Table 5.2. Configuration for Service Registry authentication with Red Hat Single Sign-On

CHAPTER 5. SECURING SERVICE REGISTRY DEPLOYMENTS

31

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6

Environment variable Description Type Default

AUTH_ENABLED Enables authentication for
Service Registry. When set to
true, the environment variables
that follow are required for
authentication using Red Hat
Single Sign-On.

String false

KEYCLOAK_URL The URL of the Red Hat Single
Sign-On authentication server.
For example,
http://localhost:8080.

String -

KEYCLOAK_REALM The Red Hat Single Sign-On
realm for authentication. For
example, registry.

String -

KEYCLOAK_API_CLIE
NT_ID

The client ID for the Service
Registry REST API.

String registry-api

KEYCLOAK_UI_CLIEN
T_ID

The client ID for the Service
Registry web console.

String apicurio-registry

TIP

For an example of setting environment variables on OpenShift, see Section 6.1, “Configuring
Service Registry health checks on OpenShift”.

5. Set the following option to true to enable Service Registry user roles in Red Hat Single Sign-On:

Table 5.3. Configuration for Service Registry role-based authorization

Environment variable Java system property Type Default value

ROLE_BASED_AUTHZ_E
NABLED

registry.auth.role-based-
authorization

Boolean false

6. When Service Registry user roles are enabled, you must assign Service Registry users to at least
one of the following default user roles in your Red Hat Single Sign-On realm:

Table 5.4. Default user roles for registry authentication and authorization

Role Read
artifacts

Write
artifacts

Global rules Summary

sr-admin Yes Yes Yes Full access to all create, read,
update, and delete
operations.

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

32

sr-
developer

Yes Yes No Access to create, read,
update, and delete
operations, except
configuring global rules. This
role can configure artifact-
specific rules.

sr-readonly Yes No No Access to read and search
operations only. This role
cannot configure any rules.

Role Read
artifacts

Write
artifacts

Global rules Summary

7. Set the following to true to enable owner-only authorization for updates to schema and API
artifacts in Service Registry:

Table 5.5. Configuration for owner-only authorization

Environment variable Java system property Type Default value

REGISTRY_AUTH_OBAC_
ENABLED

registry.auth.owner-only-
authorization

Boolean false

Additional resources

For details on configuring non-default user role names, see Section 5.4, “Service Registry
authentication and authorization configuration options”.

For an open source example application and Keycloak realm, see Docker Compose example of
Apicurio Registry with Keycloak.

For details on how to use Red Hat Single Sign-On in a production environment, see the Red Hat
Single Sign-On documentation.

5.3. CONFIGURING SERVICE REGISTRY AUTHENTICATION AND
AUTHORIZATION WITH MICROSOFT AZURE ACTIVE DIRECTORY

This section explains how to manually configure authentication and authorization options for Service
Registry and Microsoft Azure Active Directory (Azure AD).

The Service Registry web console and core REST API support authentication in Azure AD based on
OpenID Connect (OIDC) and the OAuth Authorization Code Flow. Service Registry provides role-based
authorization for default admin, write, and read-only user roles. Service Registry authentication and
authorization settings are disabled by default.

To secure Service Registry with Azure AD, you require a valid directory in Azure AD with specific
configuration. This involves registering the Service Registry application in the Azure AD portal with
recommended settings and configuring environment variables in Service Registry.

CHAPTER 5. SECURING SERVICE REGISTRY DEPLOYMENTS

33

https://github.com/Apicurio/apicurio-registry/tree/2.5.x/distro/docker-compose
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/

Prerequisites

Azure AD is installed and running. For more details, see the Microsoft Azure AD user
documentation.

Service Registry is installed and running.

Procedure

1. Log in to the Azure AD portal using your email address or GitHub account.

2. In the navigation menu, select Manage > App registrations > New registration, and complete
the following settings:

Name: Enter your application name. For example: apicurio-registry-example

Supported account types: Click Accounts in any organizational directory.

Redirect URI: Select Single-page application from the list, and enter your Service Registry
web console application host. For example: https://test-registry.com/ui/

IMPORTANT

You must register your Service Registry application host as a Redirect URI.
When logging in, users are redirected from Service Registry to Azure AD for
authentication, and you want to send them back to your application
afterwards. Azure AD does not allow any redirect URLs that are not
registered.

3. Click Register. You can view your app registration details by selecting Manage > App
registrations > apicurio-registry-example.

4. Select Manage > Authentication and ensure that the application is configured with your
redirect URLs and tokens as follows:

Redirect URIs: For example: https://test-registry.com/ui/

Implicit grant and hybrid flows: Click ID tokens (used for implicit and hybrid flows)

5. Select Azure AD > Admin > App registrations > Your app > Application (client) ID. For
example: 123456a7-b8c9-012d-e3f4-5fg67h8i901

6. Select Azure AD > Admin > App registrations > Your app > Directory (tenant) ID. For
example: https://login.microsoftonline.com/1a2bc34d-567e-89f1-g0hi-1j2kl3m4no56/v2.0

7. In Service Registry, configure the following environment variables with your Azure AD settings:

Table 5.6. Configuration for Azure AD settings in Service Registry

Environment variable Description Setting

KEYCLOAK_API_CLIENT_ID The client application
ID for the Service
Registry REST API

Your Azure AD Application (client)
ID obtained in step 5. For example:
123456a7-b8c9-012d-e3f4-
5fg67h8i901

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

34

https://learn.microsoft.com/en-us/azure

REGISTRY_OIDC_UI_CLIENT_
ID

The client application
ID for the Service
Registry web console.

Your Azure AD Application (client)
ID obtained in step 5. For example:
123456a7-b8c9-012d-e3f4-
5fg67h8i901

REGISTRY_AUTH_URL_CONF
IGURED

The URL for
authentication in
Azure AD.

Your Azure AD Application (tenant)
ID obtained in step 6. For example:
https://login.microsoftonline.c
om/1a2bc34d-567e-89f1-g0hi-
1j2kl3m4no56/v2.0.

Environment variable Description Setting

8. In Service Registry, configure the following environment variables for Service Registry-specific
settings:

Table 5.7. Configuration for Service Registry-specific settings

Environment variable Description Setting

REGISTRY_AUTH_ENABLED Enables authentication for
Service Registry.

true

REGISTRY_UI_AUTH_TYPE The Service Registry
authentication type.

oidc

CORS_ALLOWED_ORIGINS The host for your Service
Registry deployment for
cross-origin resource sharing
(CORS).

For example:
https://test-
registry.com

REGISTRY_OIDC_UI_REDIRECT
_URL

The host for your Service
Registry web console.

For example:
https://test-
registry.com/ui

ROLE_BASED_AUTHZ_ENABLE
D

Enables role-based
authorization in Service
Registry.

true

QUARKUS_OIDC_ROLES_ROLE
_CLAIM_PATH

The name of the claim in which
Azure AD stores roles.

roles

NOTE

When you enable roles in Service Registry, you must also create the same roles in
Azure AD as application roles. The default roles expected by Service Registry are
sr-admin, sr-developer, and sr-readonly.

Additional resources

CHAPTER 5. SECURING SERVICE REGISTRY DEPLOYMENTS

35

For details on configuring non-default user role names, see Section 5.4, “Service Registry
authentication and authorization configuration options”.

For more details on using Azure AD, see the Microsoft Azure AD user documentation.

5.4. SERVICE REGISTRY AUTHENTICATION AND AUTHORIZATION
CONFIGURATION OPTIONS

Service Registry provides authentication options for OpenID Connect with Red Hat Single Sign-On and
HTTP basic authentication.

Service Registry provides authorization options for role-based and content-based approaches:

Role-based authorization for default admin, write, and read-only user roles.

Content-based authorization for schema or API artifacts, where only the owner of the artifacts
or artifact group can update or delete artifacts.

IMPORTANT

All authentication and authorization options in Service Registry are disabled by default.
Before enabling any of these options, you must first set the AUTH_ENABLED option to
true.

This chapter provides details on the following configuration options:

Service Registry authentication by using OpenID Connect with Red Hat Single Sign-On

Service Registry authentication by using HTTP basic

Service Registry role-based authorization

Service Registry owner-only authorization

Service Registry authenticated read access

Service Registry anonymous read-only access

Service Registry authentication by using OpenID Connect with Red Hat Single Sign-On
You can set the following environment variables to configure authentication for the Service Registry
web console and API with Red Hat Single Sign-On:

Table 5.8. Configuration for Service Registry authentication with Red Hat Single Sign-On

Environment variable Description Type Default

AUTH_ENABLED Enables authentication for Service
Registry. When set to true, the
environment variables that follow
are required for authentication
using Red Hat Single Sign-On.

String false

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

36

https://learn.microsoft.com/en-us/azure

KEYCLOAK_URL The URL of the Red Hat Single
Sign-On authentication server. For
example, http://localhost:8080.

String -

KEYCLOAK_REALM The Red Hat Single Sign-On realm
for authentication. For example,
registry.

String -

KEYCLOAK_API_CLIEN
T_ID

The client ID for the Service
Registry REST API.

String registry-api

KEYCLOAK_UI_CLIENT_
ID

The client ID for the Service
Registry web console.

String apicurio-registry

Environment variable Description Type Default

Service Registry authentication by using HTTP basic
By default, Service Registry supports authentication by using OpenID Connect. Users or API clients must
obtain an access token to make authenticated calls to the Service Registry REST API. However, because
some tools do not support OpenID Connect, you can also configure Service Registry to support HTTP
basic authentication by setting the following configuration options to true:

Table 5.9. Configuration for Service Registry HTTP basic authentication

Environment variable Java system property Type Defaul
t value

AUTH_ENABLED registry.auth.enabled Boolea
n

false

CLIENT_CREDENTIALS_BASIC_AU
TH_ENABLED

registry.auth.basic-auth-client-
credentials.enabled

Boolea
n

false

Service Registry HTTP basic client credentials cache expiry
You can also configure the HTTP basic client credentials cache expiry time. By default, when using HTTP
basic authentication, Service Registry caches JWT tokens, and does not issue a new token when there is
no need. You can configure the cache expiry time for JWT tokens, which is set to 10 mins by default.

When using Red Hat Single Sign-On, it is best to set this configuration to your Red Hat Single Sign-On
JWT expiry time minus one minute. For example, if you have the expiry time set to 5 mins in Red Hat
Single Sign-On, you should set the following configuration option to 4 mins:

Table 5.10. Configuration for HTTP basic client credentials cache expiry

Environment variable Java system property Type Defaul
t value

CLIENT_CREDENTIALS_BASIC_CA
CHE_EXPIRATION

registry.auth.basic-auth-client-
credentials.cache-expiration

Integer 10

CHAPTER 5. SECURING SERVICE REGISTRY DEPLOYMENTS

37

Service Registry role-based authorization
You can set the following options to true to enable role-based authorization in Service Registry:

Table 5.11. Configuration for Service Registry role-based authorization

Environment variable Java system property Type Defaul
t value

AUTH_ENABLED registry.auth.enabled Boolea
n

false

ROLE_BASED_AUTHZ_ENABLED registry.auth.role-based-
authorization

Boolea
n

false

You can then configure role-based authorization to use roles included in the user’s authentication token
(for example, granted when authenticating by using Red Hat Single Sign-On), or to use role mappings
managed internally by Service Registry.

Use roles assigned in Red Hat Single Sign-On
To enable using roles assigned by Red Hat Single Sign-On, set the following environment variables:

Table 5.12. Configuration for Service Registry role-based authorization by using Red Hat Single
Sign-On

Environment variable Description Type Default

ROLE_BASED_AUTHZ_SOUR
CE

When set to token, user roles are
taken from the authentication
token.

String token

REGISTRY_AUTH_ROLES_AD
MIN

The name of the role that indicates
a user is an admin.

String sr-admin

REGISTRY_AUTH_ROLES_DE
VELOPER

The name of the role that indicates
a user is a developer.

String sr-developer

REGISTRY_AUTH_ROLES_RE
ADONLY

The name of the role that indicates
a user has read-only access.

String sr-readonly

When Service Registry is configured to use roles from Red Hat Single Sign-On, you must assign Service
Registry users to at least one of the following user roles in Red Hat Single Sign-On. However, you can
configure different user role names by using the environment variables in Table 5.12, “Configuration for
Service Registry role-based authorization by using Red Hat Single Sign-On”.

Table 5.13. Service Registry roles for authentication and authorization

Role name Read artifacts Write artifacts Global rules Description

sr-admin Yes Yes Yes Full access to all create, read,
update, and delete operations.

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

38

sr-developer Yes Yes No Access to create, read, update,
and delete operations, except
configuring global rules and
import/export. This role can
configure artifact-specific rules
only.

sr-readonly Yes No No Access to read and search
operations only. This role cannot
configure any rules.

Role name Read artifacts Write artifacts Global rules Description

Manage roles directly in Service Registry
To enable using roles managed internally by Service Registry, set the following environment variable:

Table 5.14. Configuration for Service Registry role-based authorization by using internal role
mappings

Environment variable Description Type Default

ROLE_BASED_AUTHZ_SOUR
CE

When set to application, user roles
are managed internally by Service
Registry.

String token

When using internally managed role mappings, users can be assigned a role by using the
/admin/roleMappings endpoint in the Service Registry REST API. For more details, see Apicurio
Registry REST API documentation.

Users can be granted exactly one role: ADMIN, DEVELOPER, or READ_ONLY. Only users with admin
privileges can grant access to other users.

Service Registry admin-override configuration
Because there are no default admin users in Service Registry, it is usually helpful to configure another
way for users to be identified as admins. You can configure this admin-override feature by using the
following environment variables:

Table 5.15. Configuration for Service Registry admin-override

Environment variable Description Type Default

REGISTRY_AUTH_ADMIN_OV
ERRIDE_ENABLED

Enables the admin-override feature. String false

REGISTRY_AUTH_ADMIN_OV
ERRIDE_FROM

Where to look for admin-override
information. Only token is currently
supported.

String token

CHAPTER 5. SECURING SERVICE REGISTRY DEPLOYMENTS

39

files/registry-rest-api.htm

REGISTRY_AUTH_ADMIN_OV
ERRIDE_TYPE

The type of information used to
determine if a user is an admin.
Values depend on the value of the
FROM variable, for example, role or
claim when FROM is token.

String role

REGISTRY_AUTH_ADMIN_OV
ERRIDE_ROLE

The name of the role that indicates
a user is an admin.

String sr-admin

REGISTRY_AUTH_ADMIN_OV
ERRIDE_CLAIM

The name of a JWT token claim to
use for determining admin-override.

String org-admin

REGISTRY_AUTH_ADMIN_OV
ERRIDE_CLAIM_VALUE

The value that the JWT token claim
indicated by the CLAIM variable
must be for the user to be granted
admin-override.

String true

Environment variable Description Type Default

For example, you can use this admin-override feature to assign the sr-admin role to a single user in Red
Hat Single Sign-On, which grants that user the admin role. That user can then use the
/admin/roleMappings REST API (or associated UI) to grant roles to additional users (including
additional admins).

Service Registry owner-only authorization
You can set the following options to true to enable owner-only authorization for updates to artifacts or
artifact groups in Service Registry:

Table 5.16. Configuration for owner-only authorization

Environment variable Java system property Type Defaul
t value

AUTH_ENABLED registry.auth.enabled Boolea
n

false

REGISTRY_AUTH_OBAC_ENABLE
D

registry.auth.owner-only-
authorization

Boolea
n

false

REGISTRY_AUTH_OBAC_LIMIT_G
ROUP_ACCESS

registry.auth.owner-only-
authorization.limit-group-access

Boolea
n

false

When owner-only authorization is enabled, only the user who created an artifact can modify or delete
that artifact.

When owner-only authorization and group owner-only authorization are both enabled, only the user who
created an artifact group has write access to that artifact group, for example, to add or remove artifacts
in that group.

Service Registry authenticated read access

When the authenticated read access option is enabled, Service Registry grants at least read-only access

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

40

When the authenticated read access option is enabled, Service Registry grants at least read-only access
to requests from any authenticated user in the same organization, regardless of their user role.

To enable authenticated read access, you must first enable role-based authorization, and then ensure
that the following options are set to true:

Table 5.17. Configuration for authenticated read access

Environment variable Java system property Type Defaul
t value

AUTH_ENABLED registry.auth.enabled Boolea
n

false

REGISTRY_AUTH_AUTHENTICATE
D_READS_ENABLED

registry.auth.authenticated-read-
access.enabled

Boolea
n

false

For more details, see the section called “Service Registry role-based authorization” .

Service Registry anonymous read-only access
In addition to the two main types of authorization (role-based and owner-based authorization), Service
Registry supports an anonymous read-only access option.

To allow anonymous users, such as REST API calls with no authentication credentials, to make read-only
calls to the REST API, set the following options to true:

Table 5.18. Configuration for anonymous read-only access

Environment variable Java system property Type Defaul
t value

AUTH_ENABLED registry.auth.enabled Boolea
n

false

REGISTRY_AUTH_ANONYMOUS_R
EAD_ACCESS_ENABLED

registry.auth.anonymous-read-
access.enabled

Boolea
n

false

Additional resources

For an example of how to set environment variables in your Service Registry deployment on
OpenShift, see Section 6.1, “Configuring Service Registry health checks on OpenShift”

For details on configuring custom authentication for Service Registry, the see Quarkus Open ID
Connect documentation

5.5. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY
FROM INSIDE THE OPENSHIFT CLUSTER

The following procedure shows how to configure Service Registry deployment to expose a port for
HTTPS connections from inside the OpenShift cluster.

CHAPTER 5. SECURING SERVICE REGISTRY DEPLOYMENTS

41

https://quarkus.io/guides/security-openid-connect-web-authentication

WARNING

This kind of connection is not directly available outside of the cluster. Routing is
based on hostname, which is encoded in the case of an HTTPS connection.
Therefore, edge termination or other configuration is still needed. See Section 5.6,
“Configuring an HTTPS connection to Service Registry from outside the OpenShift
cluster”.

Prerequisites

You must have already installed the Service Registry Operator.

Procedure

1. Generate a keystore with a self-signed certificate. You can skip this step if you are using your
own certificates.

2. Create a new secret to hold the certificate and the private key.

a. In the left navigation menu of the OpenShift web console, click Workloads > Secrets >
Create Key/Value Secret.

b. Use the following values:
Name: https-cert-secret
Key 1: tls.key
Value 1: tls.key (uploaded file)
Key 2: tls.crt
Value 2: tls.crt (uploaded file)

or create the secret using the following command:

3. Edit the spec.configuration.security.https section of the ApicurioRegistry CR for your
Service Registry deployment, for example:

4. Verify that the connection is working:

a. Connect into a pod on the cluster using SSH (you can use the Service Registry pod):



openssl req -newkey rsa:2048 -new -nodes -x509 -days 3650 -keyout tls.key -out tls.crt

oc create secret generic https-cert-secret --from-file=tls.key --from-file=tls.crt

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry
spec:
 configuration:
 # ...
 security:
 https:
 secretName: https-cert-secret

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

42

a. Connect into a pod on the cluster using SSH (you can use the Service Registry pod):

b. Find the cluster IP of the Service Registry pod from the Service resource (see the Location
column in the web console). Afterwards, execute a test request (we are using self-signed
certificate, so an insecure flag is required):

NOTE

In the Kubernetes secret containing the HTTPS certificate and key, the names tls.crt and
tls.key must be used for the provided values. This is currently not configurable.

Disabling HTTP

If you enabled HTTPS using the procedure in this section, you can also disable the default HTTP
connection by setting the spec.security.https.disableHttp to true. This removes the HTTP port 8080
from the Service Registry pod container, Service, and the NetworkPolicy (if present).

Importantly, Ingress is also removed because the Service Registry Operator currently does not support
configuring HTTPS in Ingress. Users must create an Ingress for HTTPS connections manually.

Additional resources

How to enable HTTPS and SSL termination in a Quarkus app

5.6. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY
FROM OUTSIDE THE OPENSHIFT CLUSTER

The following procedure shows how to configure Service Registry deployment to expose an HTTPS
edge-terminated route for connections from outside the OpenShift cluster.

Prerequisites

You must have already installed the Service Registry Operator.

Read the OpenShift documentation for creating secured routes .

Procedure

1. Add a second Route in addition to the HTTP route created by the Service Registry Operator.
For example:

oc rsh example-apicurioregistry-deployment-6f788db977-2wzpw

curl -k https://172.30.230.78:8443/health

kind: Route
apiVersion: route.openshift.io/v1
metadata:
 [...]
 labels:
 app: example-apicurioregistry
 [...]
spec:

CHAPTER 5. SECURING SERVICE REGISTRY DEPLOYMENTS

43

https://developers.redhat.com/blog/2021/01/06/how-to-enable-https-and-ssl-termination-in-a-quarkus-app
https://docs.openshift.com/container-platform/latest/networking/routes/secured-routes.html

NOTE

Make sure the insecureEdgeTerminationPolicy: Redirect configuration
property is set.

If you do not specify a certificate, OpenShift will use a default. Alternatively, you can generate a
custom self-signed certificate using the following commands:

Then create a route using the OpenShift CLI:

 host: example-apicurioregistry-default.apps.example.com
 to:
 kind: Service
 name: example-apicurioregistry-service-9whd7
 weight: 100
 port:
 targetPort: 8080
 tls:
 termination: edge
 insecureEdgeTerminationPolicy: Redirect
 wildcardPolicy: None

openssl genrsa 2048 > tls.key &&
openssl req -new -x509 -nodes -sha256 -days 365 -key tls.key -out tls.crt

oc create route edge \
 --service=example-apicurioregistry-service-9whd7 \
 --cert=tls.crt --key=tls.key \
 --hostname=example-apicurioregistry-default.apps.example.com \
 --insecure-policy=Redirect \
 -n default

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

44

CHAPTER 6. CONFIGURING AND MANAGING SERVICE
REGISTRY DEPLOYMENTS

This chapter explains how to configure and manage optional settings for your Service Registry
deployment on OpenShift:

Section 6.1, “Configuring Service Registry health checks on OpenShift”

Section 6.2, “Environment variables for Service Registry health checks”

Section 6.3, “Managing Service Registry environment variables”

Section 6.4, “Configuring Service Registry deployment using PodTemplate”

Section 6.5, “Configuring the Service Registry web console”

Section 6.6, “Configuring Service Registry logging”

Section 6.7, “Configuring Service Registry event sourcing”

6.1. CONFIGURING SERVICE REGISTRY HEALTH CHECKS ON
OPENSHIFT

You can configure optional environment variables for liveness and readiness probes to monitor the
health of the Service Registry server on OpenShift:

Liveness probes test if the application can make progress. If the application cannot make
progress, OpenShift automatically restarts the failing Pod.

Readiness probes test if the application is ready to process requests. If the application is not
ready, it can become overwhelmed by requests, and OpenShift stops sending requests for the
time that the probe fails. If other Pods are OK, they continue to receive requests.

IMPORTANT

The default values of the liveness and readiness environment variables are designed for
most cases and should only be changed if required by your environment. Any changes to
the defaults depend on your hardware, network, and amount of data stored. These values
should be kept as low as possible to avoid unnecessary overhead.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry on OpenShift.

You must have already installed and configured your chosen Service Registry storage in AMQ
Streams or PostgreSQL.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

CHAPTER 6. CONFIGURING AND MANAGING SERVICE REGISTRY DEPLOYMENTS

45

2. Click Installed Operators > Red Hat Integration - Service Registry Operator.

3. On the ApicurioRegistry tab, click the Operator custom resource for your deployment, for
example, example-apicurioregistry.

4. In the main overview page, find the Deployment Name section and the corresponding
DeploymentConfig name for your Service Registry deployment, for example, example-
apicurioregistry.

5. In the left navigation menu, click Workloads > Deployment Configs, and select your
DeploymentConfig name.

6. Click the Environment tab, and enter your environment variables in the Single values env
section, for example:

NAME: LIVENESS_STATUS_RESET

VALUE: 350

7. Click Save at the bottom.
Alternatively, you can perform these steps using the OpenShift oc command. For more details,
see the OpenShift CLI documentation.

Additional resources

Section 6.2, “Environment variables for Service Registry health checks”

OpenShift documentation on monitoring application health

6.2. ENVIRONMENT VARIABLES FOR SERVICE REGISTRY HEALTH
CHECKS

This section describes the available environment variables for Service Registry health checks on
OpenShift. These include liveness and readiness probes to monitor the health of the Service Registry
server on OpenShift. For an example procedure, see Section 6.1, “Configuring Service Registry health
checks on OpenShift”.

IMPORTANT

The following environment variables are provided for reference only. The default values
are designed for most cases and should only be changed if required by your environment.
Any changes to the defaults depend on your hardware, network, and amount of data
stored. These values should be kept as low as possible to avoid unnecessary overhead.

Liveness environment variables

Table 6.1. Environment variables for Service Registry liveness probes

Name Description Type Default

LIVENESS_ERROR_THR
ESHOLD

Number of liveness issues or
errors that can occur before
the liveness probe fails.

Integer 1

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

46

https://docs.openshift.com/container-platform/4.14/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/4.14/applications/application-health.html

LIVENESS_COUNTER_R
ESET

Period in which the threshold
number of errors must occur.
For example, if this value is
60 and the threshold is 1, the
check fails after two errors
occur in 1 minute

Seconds 60

LIVENESS_STATUS_RES
ET

Number of seconds that
must elapse without any
more errors for the liveness
probe to reset to OK status.

Seconds 300

LIVENESS_ERRORS_IGN
ORED

Comma-separated list of
ignored liveness exceptions.

String io.grpc.StatusRuntimeEx
ception,org.apache.kafk
a.streams.errors.InvalidS
tateStoreException

Name Description Type Default

NOTE

Because OpenShift automatically restarts a Pod that fails a liveness check, the liveness
settings, unlike readiness settings, do not directly affect behavior of Service Registry on
OpenShift.

Readiness environment variables

Table 6.2. Environment variables for Service Registry readiness probes

Name Description Type Default

READINESS_ERROR_THR
ESHOLD

Number of readiness issues or errors
that can occur before the readiness
probe fails.

Integer 1

READINESS_COUNTER_R
ESET

Period in which the threshold number of
errors must occur. For example, if this
value is 60 and the threshold is 1, the
check fails after two errors occur in 1
minute.

Seconds 60

READINESS_STATUS_RES
ET

Number of seconds that must elapse
without any more errors for the liveness
probe to reset to OK status. In this case,
this means how long the Pod stays not
ready, until it returns to normal
operation.

Seconds 300

CHAPTER 6. CONFIGURING AND MANAGING SERVICE REGISTRY DEPLOYMENTS

47

READINESS_TIMEOUT Readiness tracks the timeout of two
operations:

How long it takes for storage
requests to complete

How long it takes for HTTP
REST API requests to return a
response

If these operations take more time than
the configured timeout, this is counted
as a readiness issue or error. This value
controls the timeouts for both
operations.

Seconds 5

Name Description Type Default

Additional resources

Section 6.1, “Configuring Service Registry health checks on OpenShift”

OpenShift documentation on monitoring application health

6.3. MANAGING SERVICE REGISTRY ENVIRONMENT VARIABLES

Service Registry Operator manages most common Service Registry configuration, but there are some
options that it does not support yet. If a high-level configuration option is not available in the
ApicurioRegistry CR, you can use an environment variable to adjust it. You can update these by setting
an environment variable directly in the ApicurioRegistry CR, in the spec.configuration.env field.
These are then forwarded to the Deployment resource of Service Registry.

Procedure

You can manage Service Registry environment variables by using the OpenShift web console or CLI.

OpenShift web console

1. Select the Installed Operators tab, and then Red Hat Integration - Service Registry
Operator.

2. On the Apicurio Registry tab, click the ApicurioRegistry CR for your Service Registry
deployment.

3. Click the YAML tab and then edit the spec.configuration.env section as needed. The
following example shows how to set default global content rules:

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry
spec:
 configuration:
 # ...
 env:

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

48

https://docs.openshift.com/container-platform/4.14/applications/application-health.html

OpenShift CLI

1. Select the project where Service Registry is installed.

2. Run oc get apicurioregistry to get the list of ApicurioRegistry CRs

3. Run oc edit apicurioregistry on the CR representing the Service Registry instance that you
want to configure.

4. Add or modify the environment variable in the spec.configuration.env section.
The Service Registry Operator might attempt to set an environment variable that is already
explicitly specified in the spec.configuration.env field. If an environment variable
configuration has a conflicting value, the value set by Service Registry Operator takes
precedence.

You can avoid this conflict by either using the high-level configuration for the feature, or only
using the explicitly specified environment variables. The following is an example of a
conflicting configuration:

This configuration results in the Service Registry web console being in read-only mode.

6.4. CONFIGURING SERVICE REGISTRY DEPLOYMENT USING
PODTEMPLATE

IMPORTANT

This is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

 - name: REGISTRY_RULES_GLOBAL_VALIDITY
 value: FULL # One of: NONE, SYNTAX_ONLY, FULL
 - name: REGISTRY_RULES_GLOBAL_COMPATIBILITY
 value: FULL # One of: NONE, BACKWARD, BACKWARD_TRANSITIVE,
FORWARD, FORWARD_TRANSITIVE, FULL, FULL_TRANSITIVE

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry
spec:
 configuration:
 # ...
 ui:
 readOnly: true
 env:
 - name: REGISTRY_UI_FEATURES_READONLY
 value: false

CHAPTER 6. CONFIGURING AND MANAGING SERVICE REGISTRY DEPLOYMENTS

49

https://access.redhat.com/support/offerings/techpreview

The ApicurioRegistry CRD contains the spec.deployment.podTemplateSpecPreview field, which has
the same structure as the field spec.template in a Kubernetes Deployment resource (the
PodTemplateSpec struct).

With some restrictions, the Service Registry Operator forwards the data from this field to the
corresponding field in the Service Registry deployment. This provides greater configuration flexibility,
without the need for the Service Registry Operator to natively support each use case.

The following table contains a list of subfields that are not accepted by the Service Registry Operator,
and result in a configuration error:

Table 6.3. Restrictions on the podTemplateSpecPreview subfields

podTemplateSpecPreview
subfield

Status Details

metadata.annotations alternative exists spec.deployment.metadata.ann
otations

metadata.labels alternative exists spec.deployment.metadata.labe
ls

spec.affinity alternative exists spec.deployment.affinity

spec.containers[*] warning To configure the Service Registry
container, name: registry must be
used

spec.containers[name =
"registry"].env

alternative exists spec.configuration.env

spec.containers[name =
"registry"].image

reserved -

spec.imagePullSecrets alternative exists spec.deployment.imagePullSec
rets

spec.tolerations alternative exists spec.deployment.tolerations

WARNING

If you set a field in podTemplateSpecPreview, its value must be valid, as if you
configured it in the Service Registry Deployment directly. The Service Registry
Operator might still modify the values you provided, but it will not fix an invalid value
or make sure a default value is present.

Additional resources



Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

50

Kubernetes documentation on Pod templates

6.5. CONFIGURING THE SERVICE REGISTRY WEB CONSOLE

You can set optional environment variables to configure the Service Registry web console specifically
for your deployment environment or to customize its behavior.

Prerequisites

You have already installed Service Registry.

Configuring the web console deployment environment
When you access the Service Registry web console in your browser, some initial configuration settings
are loaded. The following configuration settings are important:

URL for core Service Registry server REST API

URL for Service Registry web console client

Typically, Service Registry automatically detects and generates these settings, but there are some
deployment environments where this automatic detection can fail. If this happens, you can configure
environment variables to explicitly set these URLs for your environment.

Procedure

Configure the following environment variables to override the default URLs:

REGISTRY_UI_CONFIG_APIURL: Specifies the URL for the core Service Registry server REST
API. For example, https://registry.my-domain.com/apis/registry

REGISTRY_UI_CONFIG_UIURL: Specifies the URL for the Service Registry web console client.
For example, https://registry.my-domain.com/ui

Configuring the web console in read-only mode
You can configure the Service Registry web console in read-only mode as an optional feature. This
mode disables all features in the Service Registry web console that allow users to make changes to
registered artifacts. For example, this includes the following:

Creating an artifact

Uploading a new artifact version

Updating artifact metadata

Deleting an artifact

Procedure

Configure the following environment variable:

REGISTRY_UI_FEATURES_READONLY: Set to true to enable read-only mode. Defaults to
false.

6.6. CONFIGURING SERVICE REGISTRY LOGGING

You can set Service Registry logging configuration at runtime. Service Registry provides a REST

CHAPTER 6. CONFIGURING AND MANAGING SERVICE REGISTRY DEPLOYMENTS

51

https://kubernetes.io/docs/concepts/workloads/pods/#pod-templates

You can set Service Registry logging configuration at runtime. Service Registry provides a REST
endpoint to set the log level for specific loggers for finer grained logging. This section explains how to
view and set Service Registry log levels at runtime using the Service Registry /admin REST API.

Prerequisites

Get the URL to access your Service Registry instance, or get your Service Registry route if you
have Service Registry deployed on OpenShift. This simple example uses a URL of
localhost:8080.

Procedure

1. Use this curl command to obtain the current log level for the logger
io.apicurio.registry.storage:

2. Use this curl command to change the log level for the logger io.apicurio.registry.storage to
DEBUG:

3. Use this curl command to revert the log level for the logger io.apicurio.registry.storage to its
default value:

6.7. CONFIGURING SERVICE REGISTRY EVENT SOURCING

IMPORTANT

This is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

You can configure Service Registry to send events when changes are made to registry content. For

$ curl -i localhost:8080/apis/registry/v2/admin/loggers/io.apicurio.registry.storage
HTTP/1.1 200 OK
[...]
Content-Type: application/json
{"name":"io.apicurio.registry.storage","level":"INFO"}

$ curl -X PUT -i -H "Content-Type: application/json" --data '{"level":"DEBUG"}'
localhost:8080/apis/registry/v2/admin/loggers/io.apicurio.registry.storage
HTTP/1.1 200 OK
[...]
Content-Type: application/json
{"name":"io.apicurio.registry.storage","level":"DEBUG"}

$ curl -X DELETE -i localhost:8080/apis/registry/v2/admin/loggers/io.apicurio.registry.storage
HTTP/1.1 200 OK
[...]
Content-Type: application/json
{"name":"io.apicurio.registry.storage","level":"INFO"}

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

52

https://access.redhat.com/support/offerings/techpreview

You can configure Service Registry to send events when changes are made to registry content. For
example, Service Registry can trigger events when schema or API artifacts, groups, or content rules are
created, updated, deleted, and so on. You can configure Service Registry to send events to your
applications and to third-party integrations for these kind of changes.

There are different protocols available for transporting events. The currently implemented protocols are
HTTP and Apache Kafka. However, regardless of the protocol, the events are sent by using the CNCF
CloudEvents specification. You can configure Service Registry event sourcing by using Java system
properties or the equivalent environment variables.

Service Registry event types
All of the event types are defined in io.apicurio.registry.events.dto.RegistryEventType. For example,
these include the following event types:

io.apicurio.registry.artifact-created

io.apicurio.registry.artifact-updated

io.apicurio.registry.artifact-state-changed

io.apicurio.registry.artifact-rule-created

io.apicurio.registry.global-rule-created

io.apicurio.registry.group-created

Prerequisites

You must have an application that you want to send Service Registry cloud events to. For
example, this can be a custom application or a third-party application.

Configuring Service Registry event sourcing by using HTTP
The example in this section shows a custom application running on http://my-app-host:8888/events.

Procedure

1. When using the HTTP protocol, set your Service Registry configuration to send events to a your
application as follows:

registry.events.sink.my-custom-consumer=http://my-app-host:8888/events

2. If required, you can configure multiple event consumers as follows:

registry.events.sink.my-custom-consumer=http://my-app-host:8888/events

registry.events.sink.other-consumer=http://my-consumer.com/events

Configuring Service Registry event sourcing by using Apache Kafka
The example in this section shows a Kafka topic named my-registry-events running on my-kafka-
host:9092.

Procedure

1. When using the Kafka protocol, set your Kafka topic as follows:

registry.events.kafka.topic=my-registry-events

CHAPTER 6. CONFIGURING AND MANAGING SERVICE REGISTRY DEPLOYMENTS

53

2. You can set the configuration for the Kafka producer by using the
KAFKA_BOOTSTRAP_SERVERS environment variable:

KAFKA_BOOTSTRAP_SERVERS=my-kafka-host:9092
Alternatively, you can set the properties for the kafka producer by using the
registry.events.kafka.config prefix, for example:
registry.events.kafka.config.bootstrap.servers=my-kafka-host:9092

3. If required, you can also set the Kafka topic partition to use to produce events:

registry.events.kafka.topic-partition=1

Additional resources

For more details, see the CNCF CloudEvents specification.

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

54

https://cloudevents.io/

CHAPTER 7. SERVICE REGISTRY OPERATOR
CONFIGURATION REFERENCE

This chapter provides detailed information on the custom resource used to configure the Service
Registry Operator to deploy Service Registry:

Section 7.1, “Service Registry Custom Resource”

Section 7.2, “Service Registry CR spec”

Section 7.3, “Service Registry CR status”

Section 7.4, “Service Registry managed resources”

Section 7.5, “Service Registry Operator labels”

7.1. SERVICE REGISTRY CUSTOM RESOURCE

The Service Registry Operator defines an ApicurioRegistry custom resource (CR) that represents a
single deployment of Service Registry on OpenShift.

These resource objects are created and maintained by users to instruct the Service Registry Operator
how to deploy and configure Service Registry.

Example ApicurioRegistry CR

The following command displays the ApicurioRegistry resource:

oc get apicurioregistry
oc edit apicurioregistry example-apicurioregistry

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry
 namespace: demo-kafka
 # ...
spec:
 configuration:
 persistence: kafkasql
 kafkasql:
 bootstrapServers: 'my-cluster-kafka-bootstrap.demo-kafka.svc:9092'
 deployment:
 host: >-
 example-apicurioregistry.demo-kafka.example.com
status:
 conditions:
 - lastTransitionTime: "2021-05-03T10:47:11Z"
 message: ""
 reason: Reconciled
 status: "True"
 type: Ready
 info:
 host: example-apicurioregistry.demo-kafka.example.com
 managedResources:

CHAPTER 7. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE

55

https://docs.openshift.com/container-platform/latest/operators/understanding/crds/crd-extending-api-with-crds.html

IMPORTANT

By default, the Service Registry Operator watches its own project namespace only.
Therefore, you must create the ApicurioRegistry CR in the same namespace, if you are
deploying the Operator manually. You can modify this behavior by updating
WATCH_NAMESPACE environment variable in the Operator Deployment resource.

Additional resources

Extending the Kubernetes API with Custom Resource Definitions

7.2. SERVICE REGISTRY CR SPEC

The spec is the part of the ApicurioRegistry CR that is used to provide the desired state or
configuration for the Operator to achieve.

ApicurioRegistry CR spec contents

The following example block contains the full tree of possible spec configuration options. Some fields
might not be required or should not be defined at the same time.

 - kind: Deployment
 name: example-apicurioregistry-deployment
 namespace: demo-kafka
 - kind: Service
 name: example-apicurioregistry-service
 namespace: demo-kafka
 - kind: Ingress
 name: example-apicurioregistry-ingress
 namespace: demo-kafka

spec:
 configuration:
 persistence: <string>
 sql:
 dataSource:
 url: <string>
 userName: <string>
 password: <string>
 kafkasql:
 bootstrapServers: <string>
 security:
 tls:
 truststoreSecretName: <string>
 keystoreSecretName: <string>
 scram:
 mechanism: <string>
 truststoreSecretName: <string>
 user: <string>
 passwordSecretName: <string>
 ui:
 readOnly: <string>
 logLevel: <string>
 registryLogLevel: <string>
 security:

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

56

https://docs.openshift.com/container-platform/4.6/operators/understanding/crds/crd-extending-api-with-crds.html

The following table describes each configuration option:

Table 7.1. ApicurioRegistry CR spec configuration options

Configuration option type Default value Description

configuration - - Section for configuration
of Service Registry
application

configuration/persistence string required Storage backend. One of
sql, kafkasql

configuration/sql - - SQL storage backend
configuration

configuration/sql/dataSource - - Database connection
configuration for SQL
storage backend

configuration/sql/dataSource/ur
l

string required Database connection URL
string

configuration/sql/dataSource/us
erName

string required Database connection user

configuration/sql/dataSource/pa
ssword

string empty Database connection
password

 keycloak:
 url: <string>
 realm: <string>
 apiClientId: <string>
 uiClientId: <string>
 https:
 disableHttp: <bool>
 secretName: <string>
 env: <k8s.io/api/core/v1 []EnvVar>
 deployment:
 replicas: <int32>
 host: <string>
 affinity: <k8s.io/api/core/v1 Affinity>
 tolerations: <k8s.io/api/core/v1 []Toleration>
 imagePullSecrets: <k8s.io/api/core/v1 []LocalObjectReference>
 metadata:
 annotations: <map[string]string>
 labels: <map[string]string>
 managedResources:
 disableIngress: <bool>
 disableNetworkPolicy: <bool>
 disablePodDisruptionBudget: <bool>
 podTemplateSpecPreview: <k8s.io/api/core/v1 PodTemplateSpec>

CHAPTER 7. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE

57

configuration/kafkasql - - Kafka storage backend
configuration

configuration/kafkasql/bootstra
pServers

string required Kafka bootstrap server
URL, for Streams storage
backend

configuration/kafkasql/security/
tls

- - Section to configure TLS
authentication for Kafka
storage backend

configuration/kafkasql/security/
tls/truststoreSecretName

string required Name of a secret
containing TLS truststore
for Kafka

configuration/kafkasql/security/
tls/keystoreSecretName

string required Name of a secret
containing user TLS
keystore

configuration/kafkasql/security/
scram/truststoreSecretName

string required Name of a secret
containing TLS truststore
for Kafka

configuration/kafkasql/security/
scram/user

string required SCRAM user name

configuration/kafkasql/security/
scram/passwordSecretName

string required Name of a secret
containing SCRAM user
password

configuration/kafkasql/security/
scram/mechanism

string SCRAM-SHA-
512

SASL mechanism

configuration/ui - - Service Registry web
console settings

configuration/ui/readOnly string false Set Service Registry web
console to read-only mode

configuration/logLevel string INFO Service Registry log level,
for non-Apicurio
components and libraries.
One of INFO, DEBUG

Configuration option type Default value Description

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

58

configuration/registryLogLevel string INFO Service Registry log level,
for Apicurio application
components (excludes
non-Apicurio components
and libraries). One of
INFO, DEBUG

configuration/security - - Service Registry web
console and REST API
security settings

configuration/security/keycloak - - Web console and REST API
security configuration
using Red Hat Single Sign-
On

configuration/security/keycloak/
url

string required Red Hat Single Sign-On
URL

configuration/security/keycloak/
realm

string required Red Hat Single Sign-On
realm

configuration/security/keycloak/
apiClientId

string registry-
client-api

Red Hat Single Sign-On
client for REST API

configuration/security/keycloak/
uiClientId

string registry-
client-ui

Red Hat Single Sign-On
client for web console

configuration/security/https - - Configuration for HTTPS.
For more details, see
Configuring an HTTPS
connection to Service
Registry from inside the
OpenShift cluster.

configuration/security/https/ser
cretName

string empty Name of a Kubernetes
Secret that contains the
HTTPS certificate and key,
which must be named
tls.crt and tls.key,
respectively. Setting this
field enables HTTPS, and
vice versa.

configuration/security/https/dis
ableHttp

bool false Disable HTTP port and
Ingress. HTTPS must be
enabled as a prerequisite.

Configuration option type Default value Description

CHAPTER 7. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE

59

configuration/env k8s.io/api/core/
v1 []EnvVar

empty Configure a list of
environment variables to
be provided to the Service
Registry pod. For more
details, see Managing
Service Registry
environment variables.

deployment - - Section for Service
Registry deployment
settings

deployment/replicas positive integer 1 Number of Service
Registry pods to deploy

deployment/host string auto-generated Host/URL where the
Service Registry console
and API are available. If
possible, Service Registry
Operator attempts to
determine the correct
value based on the
settings of your cluster
router. The value is auto-
generated only once, so
user can override it
afterwards.

deployment/affinity k8s.io/api/core/
v1 Affinity

empty Service Registry
deployment affinity
configuration

deployment/tolerations k8s.io/api/core/
v1 []Toleration

empty Service Registry
deployment tolerations
configuration

deployment/imagePullSecrets k8s.io/api/core/
v1
[]LocalObjectRe
ference

empty Configure image pull
secrets for Service
Registry deployment

deployment/metadata - - Configure a set of labels or
annotations for the Service
Registry pod.

deployment/metadata/labels map[string]strin
g

empty Configure a set of labels
for Service Registry pod

Configuration option type Default value Description

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

60

deployment/metadata/annotatio
ns

map[string]strin
g

empty Configure a set of
annotations for Service
Registry pod

deployment/managedResource
s

- - Section to configure how
the Service Registry
Operator manages
Kubernetes resources. For
more details, see Service
Registry managed
resources.

deployment/managedResource
s/disableIngress

bool false If set, the operator will not
create and manage an
Ingress resource for
Service Registry
deployment.

deployment/managedResource
s/disableNetworkPolicy

bool false If set, the operator will not
create and manage a
NetworkPolicy resource
for Service Registry
deployment.

deployment/managedResource
s/disablePodDisruptionBudget

bool false If set, the operator will not
create and manage an
PodDisruptionBudget
resource for Service
Registry deployment.

deployment/podTemplateSpecP
review

k8s.io/api/core/
v1
PodTemplateSp
ec

empty Configure parts of the
Service Registry
deployment resource. For
more details, see
Configuring Service
Registry deployment using
PodTemplate.

Configuration option type Default value Description

NOTE

If an option is marked as required, it might be conditional on other configuration options
being enabled. Empty values might be accepted, but the Operator does not perform the
specified action.

7.3. SERVICE REGISTRY CR STATUS

The status is the section of the CR managed by the Service Registry Operator that contains a
description of the current deployment and application state.

CHAPTER 7. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE

61

ApicurioRegistry CR status contents

The status section contains the following fields:

Table 7.2. ApicurioRegistry CR status fields

Status field Type Description

info - Section with information about the deployed Service
Registry.

info/host string URL where the Service Registry UI and REST API are
accessible.

conditions - List of conditions that report the status of the
Service Registry, or the Operator with respect to that
deployment.

conditions/type string Type of the condition.

conditions/status string Status of the condition, one of True, False,
Unknown.

conditions/reason string A programmatic identifier indicating the reason for
the condition’s last transition.

conditions/message string A human-readable message indicating details about
the transition.

conditions/lastTransitionTim
e

string The last time the condition transitioned from one
status to another.

managedResources - List of OpenShift resources managed by Service
Registry Operator

managedResources/kind string Resource kind.

status:
 info:
 host: <string>
 conditions: <list of:>
 - type: <string>
 status: <string, one of: True, False, Unknown>
 reason: <string>
 message: <string>
 lastTransitionTime: <string, RFC-3339 timestamp>
 managedResources: <list of:>
 - kind: <string>
 namespace: <string>
 name: <string>

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

62

managedResources/namesp
ace

string Resource namespace.

managedResources/name string Resource name.

Status field Type Description

7.4. SERVICE REGISTRY MANAGED RESOURCES

The resources managed by the Service Registry Operator when deploying Service Registry are as
follows:

Deployment

Ingress (and Route)

NetworkPolicy

PodDisruptionBudget

Service

You can disable the Service Registry Operator from creating and managing some resources, so they can
be configured manually. This provides greater flexibility when using features that the Service Registry
Operator does not currently support.

If you disable a resource type, its existing instance is deleted. If you enable a resource, the Service
Registry Operator attempts to find a resource using the app label, for example, app=example-
apicurioregistry, and starts managing it. Otherwise, the Operator creates a new instance.

You can disable the following resource types in this way:

Ingress (and Route)

NetworkPolicy

PodDisruptionBudget

For example:

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry
spec:
 deployment:
 managedResources:
 disableIngress: true
 disableNetworkPolicy: true
 disablePodDisruptionBudget: false # Can be omitted

CHAPTER 7. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE

63

7.5. SERVICE REGISTRY OPERATOR LABELS

Resources managed by the Service Registry Operator are usually labeled as follows:

Table 7.3. Service Registry Operator labels for managed resources

Label Description

app Name of the Service Registry deployment that the resource belongs to,
based on the name of the specified ApicurioRegistry CR.

apicur.io/type Type of the deployment: apicurio-registry or operator

apicur.io/name Name of the deployment: same value as app or apicurio-registry-
operator

apicur.io/version Version of the Service Registry or the Service Registry Operator

app.kubernetes.io/* A set of recommended Kubernetes labels for application deployments.

com.company and rht.*` Metering labels for Red Hat products.

Custom labels and annotations

You can provide custom labels and annotation for the Service Registry pod, using the
spec.deployment.metadata.labels and spec.deployment.metadata.annotations fields, for example:

Additional resources

Recommended Kubernetes labels for application deployments

apiVersion: registry.apicur.io/v1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry
spec:
 configuration:
 # ...
 deployment:
 metadata:
 labels:
 example.com/environment: staging
 annotations:
 example.com/owner: my-team

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

64

https://kubernetes.io/docs/concepts/overview/working-with-objects/common-labels/

CHAPTER 8. SERVICE REGISTRY CONFIGURATION
REFERENCE

This chapter provides reference information on the configuration options that are available for Service
Registry.

Section 8.1, “Service Registry configuration options”

Additional resources

For details on setting configuration options by using the Core Registry API, see the
/admin/config/properties endpoint in the Apicurio Registry REST API documentation .

For details on client configuration options for Kafka serializers and deserializers, see the Service
Registry User Guide.

8.1. SERVICE REGISTRY CONFIGURATION OPTIONS

The following Service Registry configuration options are available for each component category:

8.1.1. api

Table 8.1. api configuration options

Name Type Default Available
from

Description

registry.api.errors.include-
stack-in-response

boolean false 2.1.4.Final Include stack trace in
errors responses

registry.disable.apis optional<lis
t<string>>

 2.0.0.Final Disable APIs

8.1.2. auth

Table 8.2. auth configuration options

Name Type Default Available
from

Description

registry.auth.admin-
override.claim

string org-
admin

2.1.0.Final Auth admin override
claim

registry.auth.admin-
override.claim-value

string true 2.1.0.Final Auth admin override
claim value

registry.auth.admin-
override.enabled

boolean false 2.1.0.Final Auth admin override
enabled

CHAPTER 8. SERVICE REGISTRY CONFIGURATION REFERENCE

65

files/registry-rest-api.htm
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/service_registry_user_guide/index

registry.auth.admin-
override.from

string token 2.1.0.Final Auth admin override
from

registry.auth.admin-
override.role

string sr-
admin

2.1.0.Final Auth admin override role

registry.auth.admin-
override.type

string role 2.1.0.Final Auth admin override type

registry.auth.anonymous-
read-access.enabled

boolean
[dynamic]

false 2.1.0.Final Anonymous read access

registry.auth.audit.log.prefi
x

string audit 2.2.6 Prefix used for
application audit logging.

registry.auth.authenticated
-read-access.enabled

boolean
[dynamic]

false 2.1.4.Final Authenticated read
access

registry.auth.basic-auth-
client-credentials.cache-
expiration

integer 10 2.2.6.Final Client credentials token
expiration time.

registry.auth.basic-auth-
client-credentials.enabled

boolean
[dynamic]

false 2.1.0.Final Enable basic auth client
credentials

registry.auth.basic-
auth.scope

optional<str
ing>

 2.5.0.Final Client credentials scope.

registry.auth.client-id string 2.0.0.Final Client identifier used by
the server for
authentication.

registry.auth.client-secret optional<str
ing>

 2.1.0.Final Client secret used by the
server for authentication.

registry.auth.enabled boolean false 2.0.0.Final Enable auth

registry.auth.owner-only-
authorization

boolean
[dynamic]

false 2.0.0.Final Artifact owner-only
authorization

registry.auth.owner-only-
authorization.limit-group-
access

boolean
[dynamic]

false 2.1.0.Final Artifact group owner-
only authorization

registry.auth.role-based-
authorization

boolean false 2.1.0.Final Enable role based
authorization

Name Type Default Available
from

Description

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

66

registry.auth.role-source string token 2.1.0.Final Auth roles source

registry.auth.role-
source.header.name

string 2.4.3.Final Header authorization
name

registry.auth.roles.admin string sr-
admin

2.0.0.Final Auth roles admin

registry.auth.roles.develop
er

string sr-
develo
per

2.1.0.Final Auth roles developer

registry.auth.roles.readonl
y

string sr-
readon
ly

2.1.0.Final Auth roles readonly

registry.auth.tenant-owner-
is-admin.enabled

boolean true 2.1.0.Final Auth tenant owner admin
enabled

registry.auth.token.endpoi
nt

string 2.1.0.Final Authentication server url.

Name Type Default Available
from

Description

8.1.3. cache

Table 8.3. cache configuration options

Name Type Default Available
from

Description

registry.config.cache.enabl
ed

boolean true 2.2.2.Final Registry cache enabled

8.1.4. ccompat

Table 8.4. ccompat configuration options

Name Type Default Available
from

Description

registry.ccompat.legacy-id-
mode.enabled

boolean
[dynamic]

false 2.0.2.Final Legacy ID mode
(compatibility API)

CHAPTER 8. SERVICE REGISTRY CONFIGURATION REFERENCE

67

registry.ccompat.max-
subjects

integer
[dynamic]

1000 2.4.2.Final Maximum number of
Subjects returned
(compatibility API)

registry.ccompat.use-
canonical-hash

boolean
[dynamic]

false 2.3.0.Final Canonical hash mode
(compatibility API)

Name Type Default Available
from

Description

8.1.5. download

Table 8.5. download configuration options

Name Type Default Available
from

Description

registry.download.href.ttl long
[dynamic]

30 2.1.2.Final Download link expiry

8.1.6. events

Table 8.6. events configuration options

Name Type Default Available
from

Description

registry.events.ksink optional<str
ing>

 2.0.0.Final Events Kafka sink
enabled

8.1.7. health

Table 8.7. health configuration options

Name Type Default Available
from

Description

registry.liveness.errors.ign
ored

optional<lis
t<string>>

 1.2.3.Final Ignored liveness errors

registry.metrics.Persistenc
eExceptionLivenessCheck.
counterResetWindowDurati
onSec

integer 60 1.0.2.Final Counter reset window
duration of persistence
liveness check

registry.metrics.Persistenc
eExceptionLivenessCheck.
disableLogging

boolean false 2.0.0.Final Disable logging of
persistence liveness
check

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

68

registry.metrics.Persistenc
eExceptionLivenessCheck.
errorThreshold

integer 1 1.0.2.Final Error threshold of
persistence liveness
check

registry.metrics.Persistenc
eExceptionLivenessCheck.
statusResetWindowDuratio
nSec

integer 300 1.0.2.Final Status reset window
duration of persistence
liveness check

registry.metrics.Persistenc
eTimeoutReadinessCheck.
counterResetWindowDurati
onSec

integer 60 1.0.2.Final Counter reset window
duration of persistence
readiness check

registry.metrics.Persistenc
eTimeoutReadinessCheck.
errorThreshold

integer 5 1.0.2.Final Error threshold of
persistence readiness
check

registry.metrics.Persistenc
eTimeoutReadinessCheck.
statusResetWindowDuratio
nSec

integer 300 1.0.2.Final Status reset window
duration of persistence
readiness check

registry.metrics.Persistenc
eTimeoutReadinessCheck.t
imeoutSec

integer 15 1.0.2.Final Timeout of persistence
readiness check

registry.metrics.Response
ErrorLivenessCheck.count
erResetWindowDurationSe
c

integer 60 1.0.2.Final Counter reset window
duration of response
liveness check

registry.metrics.Response
ErrorLivenessCheck.disabl
eLogging

boolean false 2.0.0.Final Disable logging of
response liveness check

registry.metrics.Response
ErrorLivenessCheck.errorT
hreshold

integer 1 1.0.2.Final Error threshold of
response liveness check

registry.metrics.Response
ErrorLivenessCheck.status
ResetWindowDurationSec

integer 300 1.0.2.Final Status reset window
duration of response
liveness check

registry.metrics.Response
TimeoutReadinessCheck.c
ounterResetWindowDurati
onSec

instance<int
eger>

60 1.0.2.Final Counter reset window
duration of response
readiness check

Name Type Default Available
from

Description

CHAPTER 8. SERVICE REGISTRY CONFIGURATION REFERENCE

69

registry.metrics.Response
TimeoutReadinessCheck.er
rorThreshold

instance<int
eger>

1 1.0.2.Final Error threshold of
response readiness
check

registry.metrics.Response
TimeoutReadinessCheck.st
atusResetWindowDuration
Sec

instance<int
eger>

300 1.0.2.Final Status reset window
duration of response
readiness check

registry.metrics.Response
TimeoutReadinessCheck.ti
meoutSec

instance<int
eger>

10 1.0.2.Final Timeout of response
readiness check

registry.storage.metrics.ca
che.check-period

long 30000 2.1.0.Final Storage metrics cache
check period

Name Type Default Available
from

Description

8.1.8. import

Table 8.8. import configuration options

Name Type Default Available
from

Description

registry.import.url optional<url
>

 2.1.0.Final The import URL

8.1.9. kafka

Table 8.9. kafka configuration options

Name Type Default Available
from

Description

registry.events.kafka.topic optional<str
ing>

 2.0.0.Final Events Kafka topic

registry.events.kafka.topic-
partition

optional<int
eger>

 2.0.0.Final Events Kafka topic
partition

8.1.10. limits

Table 8.10. limits configuration options

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

70

Name Type Default Available
from

Description

registry.limits.config.max-
artifact-labels

long -1 2.2.3.Final Max artifact labels

registry.limits.config.max-
artifact-properties

long -1 2.1.0.Final Max artifact properties

registry.limits.config.max-
artifacts

long -1 2.1.0.Final Max artifacts

registry.limits.config.max-
description-length

long -1 2.1.0.Final Max artifact description
length

registry.limits.config.max-
label-size

long -1 2.1.0.Final Max artifact label size

registry.limits.config.max-
name-length

long -1 2.1.0.Final Max artifact name length

registry.limits.config.max-
property-key-size

long -1 2.1.0.Final Max artifact property key
size

registry.limits.config.max-
property-value-size

long -1 2.1.0.Final Max artifact property
value size

registry.limits.config.max-
requests-per-second

long -1 2.2.3.Final Max artifact requests per
second

registry.limits.config.max-
schema-size-bytes

long -1 2.2.3.Final Max schema size (bytes)

registry.limits.config.max-
total-schemas

long -1 2.1.0.Final Max total schemas

registry.limits.config.max-
versions-per-artifact

long -1 2.1.0.Final Max versions per
artifacts

registry.storage.metrics.ca
che.max-size

long 1000 2.4.1.Final Storage metrics cache
max size.

8.1.11. log

Table 8.11. log configuration options

CHAPTER 8. SERVICE REGISTRY CONFIGURATION REFERENCE

71

Name Type Default Available
from

Description

quarkus.log.level string 2.0.0.Final Log level

8.1.12. redirects

Table 8.12. redirects configuration options

Name Type Default Available
from

Description

registry.enable-redirects boolean 2.1.2.Final Enable redirects

registry.redirects map<string,
string>

 2.1.2.Final Registry redirects

registry.url.override.host optional<str
ing>

 2.5.0.Final Override the hostname
used for generating
externally-accessible
URLs. The host and port
overrides are useful
when deploying Registry
with HTTPS passthrough
Ingress or Route. In cases
like these, the request
URL (and port) that is
then re-used for
redirection does not
belong to actual external
URL used by the client,
because the request is
proxied. The redirection
then fails because the
target URL is not
reachable.

registry.url.override.port optional<int
eger>

 2.5.0.Final Override the port used
for generating
externally-accessible
URLs.

8.1.13. rest

Table 8.13. rest configuration options

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

72

Name Type Default Available
from

Description

registry.rest.artifact.deletio
n.enabled

boolean
[dynamic]

false 2.4.2-
SNAPSHOT

Enables artifact version
deletion

registry.rest.artifact.downl
oad.maxSize

int 100000
0

2.2.6-
SNAPSHOT

Max size of the artifact
allowed to be
downloaded from URL

registry.rest.artifact.downl
oad.skipSSLValidation

boolean false 2.2.6-
SNAPSHOT

Skip SSL validation when
downloading artifacts
from URL

8.1.14. store

Table 8.14. store configuration options

Name Type Default Available
from

Description

artifacts.skip.disabled.lates
t

boolean true 2.4.2-
SNAPSHOT

Skip artifact versions
with DISABLED state
when retrieving latest
artifact version

quarkus.datasource.db-
kind

string postgr
esql

2.0.0.Final Datasource Db kind

quarkus.datasource.jdbc.ur
l

string 2.1.0.Final Datasource jdbc URL

registry.sql.init boolean true 2.0.0.Final SQL init

8.1.15. ui

Table 8.15. ui configuration options

Name Type Default Available
from

Description

quarkus.oidc.tenant-
enabled

boolean false 2.0.0.Final UI OIDC tenant enabled

registry.ui.config.apiUrl string 1.3.0.Final UI APIs URL

CHAPTER 8. SERVICE REGISTRY CONFIGURATION REFERENCE

73

registry.ui.config.auth.oidc.
client-id

string none 2.2.6.Final UI auth OIDC client ID

registry.ui.config.auth.oidc.
redirect-url

string none 2.2.6.Final UI auth OIDC redirect
URL

registry.ui.config.auth.oidc.
url

string none 2.2.6.Final UI auth OIDC URL

registry.ui.config.auth.type string none 2.2.6.Final UI auth type

registry.ui.config.uiCodege
nEnabled

boolean true 2.4.2.Final UI codegen enabled

registry.ui.config.uiContext
Path

string /ui/ 2.1.0.Final UI context path

registry.ui.features.readOnl
y

boolean
[dynamic]

false 1.2.0.Final UI read-only mode

registry.ui.features.settings boolean false 2.2.2.Final UI features settings

registry.ui.root string 2.3.0.Final Overrides the UI root
context (useful when
relocating the UI context
using an inbound proxy)

Name Type Default Available
from

Description

Red Hat Integration 2023.q4 Installing and deploying Service Registry on OpenShift

74

APPENDIX A. USING YOUR SUBSCRIPTION
Service Registry is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing your account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading ZIP and TAR files
To access ZIP or TAR files, use the customer portal to find the relevant files for download. If you are
using RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat Integration entries in the Integration and Automation category.

3. Select the desired Service Registry product. The Software Downloads page opens.

4. Click the Download link for your component.

Revised on 2024-02-22 17:15:01 UTC

APPENDIX A. USING YOUR SUBSCRIPTION

75

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

	CHAPTER 1. SERVICE REGISTRY OPERATOR QUICKSTART
	1.1. QUICKSTART SERVICE REGISTRY OPERATOR INSTALLATION
	1.2. QUICKSTART SERVICE REGISTRY INSTANCE DEPLOYMENT

	CHAPTER 2. INSTALLING SERVICE REGISTRY ON OPENSHIFT
	2.1. INSTALLING SERVICE REGISTRY FROM THE OPENSHIFT OPERATORHUB

	CHAPTER 3. DEPLOYING SERVICE REGISTRY STORAGE IN AMQ STREAMS
	3.1. INSTALLING AMQ STREAMS FROM THE OPENSHIFT OPERATORHUB
	3.2. CONFIGURING SERVICE REGISTRY WITH KAFKA STORAGE ON OPENSHIFT
	3.3. CONFIGURING KAFKA STORAGE WITH TLS SECURITY
	3.4. CONFIGURING KAFKA STORAGE WITH SCRAM SECURITY
	3.5. CONFIGURING OAUTH AUTHENTICATION FOR KAFKA STORAGE

	CHAPTER 4. DEPLOYING SERVICE REGISTRY STORAGE IN A POSTGRESQL DATABASE
	4.1. INSTALLING A POSTGRESQL DATABASE FROM THE OPENSHIFT OPERATORHUB
	4.2. CONFIGURING SERVICE REGISTRY WITH POSTGRESQL DATABASE STORAGE ON OPENSHIFT
	4.3. BACKING UP SERVICE REGISTRY POSTGRESQL STORAGE
	4.4. RESTORING SERVICE REGISTRY POSTGRESQL STORAGE

	CHAPTER 5. SECURING SERVICE REGISTRY DEPLOYMENTS
	5.1. SECURING SERVICE REGISTRY USING THE RED HAT SINGLE SIGN-ON OPERATOR
	5.2. CONFIGURING SERVICE REGISTRY AUTHENTICATION AND AUTHORIZATION WITH RED HAT SINGLE SIGN-ON
	5.3. CONFIGURING SERVICE REGISTRY AUTHENTICATION AND AUTHORIZATION WITH MICROSOFT AZURE ACTIVE DIRECTORY
	5.4. SERVICE REGISTRY AUTHENTICATION AND AUTHORIZATION CONFIGURATION OPTIONS
	Service Registry authentication by using OpenID Connect with Red Hat Single Sign-On
	Service Registry authentication by using HTTP basic
	Service Registry HTTP basic client credentials cache expiry

	Service Registry role-based authorization
	Use roles assigned in Red Hat Single Sign-On
	Manage roles directly in Service Registry
	Service Registry admin-override configuration

	Service Registry owner-only authorization
	Service Registry authenticated read access
	Service Registry anonymous read-only access

	5.5. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY FROM INSIDE THE OPENSHIFT CLUSTER
	5.6. CONFIGURING AN HTTPS CONNECTION TO SERVICE REGISTRY FROM OUTSIDE THE OPENSHIFT CLUSTER

	CHAPTER 6. CONFIGURING AND MANAGING SERVICE REGISTRY DEPLOYMENTS
	6.1. CONFIGURING SERVICE REGISTRY HEALTH CHECKS ON OPENSHIFT
	6.2. ENVIRONMENT VARIABLES FOR SERVICE REGISTRY HEALTH CHECKS
	Liveness environment variables
	Readiness environment variables

	6.3. MANAGING SERVICE REGISTRY ENVIRONMENT VARIABLES
	6.4. CONFIGURING SERVICE REGISTRY DEPLOYMENT USING PODTEMPLATE
	6.5. CONFIGURING THE SERVICE REGISTRY WEB CONSOLE
	Configuring the web console deployment environment
	Configuring the web console in read-only mode

	6.6. CONFIGURING SERVICE REGISTRY LOGGING
	6.7. CONFIGURING SERVICE REGISTRY EVENT SOURCING
	Service Registry event types
	Configuring Service Registry event sourcing by using HTTP
	Configuring Service Registry event sourcing by using Apache Kafka

	CHAPTER 7. SERVICE REGISTRY OPERATOR CONFIGURATION REFERENCE
	7.1. SERVICE REGISTRY CUSTOM RESOURCE
	7.2. SERVICE REGISTRY CR SPEC
	7.3. SERVICE REGISTRY CR STATUS
	7.4. SERVICE REGISTRY MANAGED RESOURCES
	7.5. SERVICE REGISTRY OPERATOR LABELS

	CHAPTER 8. SERVICE REGISTRY CONFIGURATION REFERENCE
	8.1. SERVICE REGISTRY CONFIGURATION OPTIONS
	8.1.1. api
	8.1.2. auth
	8.1.3. cache
	8.1.4. ccompat
	8.1.5. download
	8.1.6. events
	8.1.7. health
	8.1.8. import
	8.1.9. kafka
	8.1.10. limits
	8.1.11. log
	8.1.12. redirects
	8.1.13. rest
	8.1.14. store
	8.1.15. ui

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading ZIP and TAR files

