
Red Hat Integration 2023.q4

Installing Debezium on OpenShift

For use with Red Hat Integration 2.3.4 on OpenShift Container Platform

Last Updated: 2023-11-17

Red Hat Integration 2023.q4 Installing Debezium on OpenShift

For use with Red Hat Integration 2.3.4 on OpenShift Container Platform

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install Red Hat Integration on OpenShift Container Platform with AMQ
Streams.

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. DEBEZIUM OVERVIEW

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS
2.1. KAFKA TOPIC CREATION RECOMMENDATIONS
2.2. DEBEZIUM DEPLOYMENT ON AMQ STREAMS

2.2.1. Deploying Debezium with AMQ Streams
2.2.2. Verifying that the Debezium connector is running

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing your account
Activating a subscription
Downloading zip and tar files

3
3
3

4

5
5
5
6

12

17
17
17
17

Table of Contents

1

Red Hat Integration 2023.q4 Installing Debezium on OpenShift

2

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation.

To propose improvements, open a Jira issue and describe your suggested changes. Provide as much
detail as possible to enable us to address your request quickly.

Prerequisite

You have a Red Hat Customer Portal account. This account enables you to log in to the Red Hat
Jira Software instance.
If you do not have an account, you will be prompted to create one.

Procedure

1. Click the following link: Create issue.

2. In the Summary text box, enter a brief description of the issue.

3. In the Description text box, provide the following information:

The URL of the page where you found the issue.

A detailed description of the issue.
You can leave the information in any other fields at their default values.

4. Click Create to submit the Jira issue to the documentation team.

Thank you for taking the time to provide feedback.

PREFACE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12317320&issuetype=1&components=12333058&priority=3&description=URL where issue was found%3A%C2%A0%0A%0ADescription of issue%3A%C2%A0&12368953

CHAPTER 1. DEBEZIUM OVERVIEW
Debezium for Red Hat Integration is a distributed platform that captures database operations, creates
data change event records for row-level operations, and streams change event records to Apache
Kafka topics. Debezium is built on Apache Kafka and is deployed and integrated with AMQ Streams.

Debezium captures row-level changes to a database table and passes corresponding change events to
AMQ Streams. Applications can read these change event streams and access the change events in the
order in which they occurred.

Debezium is the upstream community project for Debezium for Red Hat Integration.

Debezium has multiple uses, including:

Data replication

Updating caches and search indexes

Simplifying monolithic applications

Data integration

Enabling streaming queries

Debezium provides Apache Kafka Connect connectors for the following common databases:

Db2

MySQL

MongoDB

Oracle

PostgreSQL

SQL Server

Red Hat Integration 2023.q4 Installing Debezium on OpenShift

4

https://github.com/debezium/debezium
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-db2
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-mysql
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-mongodb
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-oracle
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-postgresql
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#debezium-connector-for-sql-server

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS
Install Debezium connectors through AMQ Streams by extending Kafka Connect with connector plug-
ins. Following a deployment of AMQ Streams, you can deploy Debezium as a connector configuration
through Kafka Connect.

2.1. KAFKA TOPIC CREATION RECOMMENDATIONS

Debezium stores data in multiple Apache Kafka topics. The topics must either be created in advance by
an administrator, or you can configure Kafka Connect to configure topics automatically .

The following list describes limitations and recommendations to consider when creating topics:

Database schema history topics for the Debezium Db2, MySQL, Oracle, and SQL Server connectors

For each of the preceding connectors a database schema history topic is required. Whether you
manually create the database schema history topic, use the Kafka broker to create the topic
automatically, or use Kafka Connect to create the topic , ensure that the topic is configured with the
following settings:

Infinite or very long retention.

Replication factor of at least three in production environments.

Single partition.

Other topics

When you enable Kafka log compaction so that only the last change event for a given record
is saved, set the following topic properties in Apache Kafka:

min.compaction.lag.ms

delete.retention.ms
To ensure that topic consumers have enough time to receive all events and delete
markers, specify values for the preceding properties that are larger than the maximum
downtime that you expect for your sink connectors. For example, consider the downtime
that might occur when you apply updates to sink connectors.

Replicated in production.

Single partition.
You can relax the single partition rule, but your application must handle out-of-order events
for different rows in the database. Events for a single row are still totally ordered. If you use
multiple partitions, the default behavior is that Kafka determines the partition by hashing the
key. Other partition strategies require the use of single message transformations (SMTs) to
set the partition number for each record.

2.2. DEBEZIUM DEPLOYMENT ON AMQ STREAMS

To set up connectors for Debezium on Red Hat OpenShift Container Platform, you use AMQ Streams to
build a Kafka Connect container image that includes the connector plug-in for each connector that you
want to use. After the connector starts, it connects to the configured database and generates change
event records for each inserted, updated, and deleted row or document.

Beginning with Debezium 1.7, the preferred method for deploying a Debezium connector is to use AMQ

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS

5

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#customization-of-kafka-connect-automatic-topic-creation
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#customization-of-kafka-connect-automatic-topic-creation
https://kafka.apache.org/documentation
https://kafka.apache.org/documentation#topicconfigs_min.compaction.lag.ms
https://kafka.apache.org/documentation#topicconfigs_delete.retention.ms

Beginning with Debezium 1.7, the preferred method for deploying a Debezium connector is to use AMQ
Streams to build a Kafka Connect container image that includes the connector plug-in.

During the deployment process, you create and use the following custom resources (CRs):

A KafkaConnect CR that defines your Kafka Connect instance and includes information about
the connector artifacts needs to include in the image.

A KafkaConnector CR that provides details that include information the connector uses to
access the source database. After AMQ Streams starts the Kafka Connect pod, you start the
connector by applying the KafkaConnector CR.

In the build specification for the Kafka Connect image, you can specify the connectors that are available
to deploy. For each connector plug-in, you can also specify other components that you want to make
available for deployment. For example, you can add Service Registry artifacts, or the Debezium scripting
component. When AMQ Streams builds the Kafka Connect image, it downloads the specified artifacts,
and incorporates them into the image.

The spec.build.output parameter in the KafkaConnect CR specifies where to store the resulting Kafka
Connect container image. Container images can be stored in a Docker registry, or in an OpenShift
ImageStream. To store images in an ImageStream, you must create the ImageStream before you deploy
Kafka Connect. ImageStreams are not created automatically.

NOTE

If you use a KafkaConnect resource to create a cluster, afterwards you cannot use the
Kafka Connect REST API to create or update connectors. You can still use the REST API
to retrieve information.

Additional resources

Configuring Kafka Connect in Using AMQ Streams on OpenShift.

Building a new container image automatically in Deploying and Managing AMQ Streams on
OpenShift.

2.2.1. Deploying Debezium with AMQ Streams

You follow the same steps to deploy each type of Debezium connector. The following section describes
how to deploy a Debezium MySQL connector.

With earlier versions of AMQ Streams, to deploy Debezium connectors on OpenShift, you were required
to first build a Kafka Connect image for the connector. The current preferred method for deploying
connectors on OpenShift is to use a build configuration in AMQ Streams to automatically build a Kafka
Connect container image that includes the Debezium connector plug-ins that you want to use.

During the build process, the AMQ Streams Operator transforms input parameters in a KafkaConnect
custom resource, including Debezium connector definitions, into a Kafka Connect container image. The
build downloads the necessary artifacts from the Red Hat Maven repository or another configured
HTTP server.

The newly created container is pushed to the container registry that is specified in .spec.build.output,
and is used to deploy a Kafka Connect cluster. After AMQ Streams builds the Kafka Connect image, you
create KafkaConnector custom resources to start the connectors that are included in the build.

Red Hat Integration 2023.q4 Installing Debezium on OpenShift

6

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/configuring_amq_streams_on_openshift/index#proc-kafka-connect-config-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#creating-new-image-using-kafka-connect-build-str

Prerequisites

You have access to an OpenShift cluster on which the cluster Operator is installed.

The AMQ Streams Operator is running.

An Apache Kafka cluster is deployed as documented in Deploying and Managing AMQ Streams
on OpenShift.

Kafka Connect is deployed on AMQ Streams

You have a Red Hat Integration license.

The OpenShift oc CLI client is installed or you have access to the OpenShift Container Platform
web console.

Depending on how you intend to store the Kafka Connect build image, you need registry
permissions or you must create an ImageStream resource:

To store the build image in an image registry, such as Red Hat Quay.io or Docker Hub

An account and permissions to create and manage images in the registry.

To store the build image as a native OpenShift ImageStream

An ImageStream resource is deployed to the cluster for storing new container images.
You must explicitly create an ImageStream for the cluster. ImageStreams are not
available by default. For more information about ImageStreams, see Managing image
streams in the OpenShift Container Platform documentation.

Procedure

1. Log in to the OpenShift cluster.

2. Create a Debezium KafkaConnect custom resource (CR) for the connector, or modify an
existing one. For example, create a KafkaConnect CR with the name dbz-connect.yaml that
specifies the metadata.annotations and spec.build properties. The following example shows
an excerpt from a dbz-connect.yaml file that describes a KafkaConnect custom resource.

Example 2.1. A dbz-connect.yaml file that defines a KafkaConnect custom resource that
includes a Debezium connector

In the example that follows, the custom resource is configured to download the following
artifacts:

The Debezium connector archive.

The Service Registry archive. The Service Registry is an optional component. Add the
Service Registry component only if you intend to use Avro serialization with the
connector.

The Debezium scripting SMT archive and the associated scripting engine that you want
to use with the Debezium connector. The SMT archive and scripting language
dependencies are optional components. Add these components only if you intend to use
the Debezium content-based routing SMT or filter SMT.

apiVersion: kafka.strimzi.io/v1beta2

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS

7

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#kafka-cluster-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#kafka-connect-str
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/cli_tools/index#installing-openshift-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/images/index#managing-image-streams
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#content-based-routing
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#message-filtering

Table 2.1. Descriptions of Kafka Connect configuration settings

Item Description

1 Sets the strimzi.io/use-connector-resources annotation to "true" to enable
the Cluster Operator to use KafkaConnector resources to configure connectors in
this Kafka Connect cluster.

2 The spec.build configuration specifies where to store the build image and lists the
plug-ins to include in the image, along with the location of the plug-in artifacts.

3 The build.output specifies the registry in which the newly built image is stored.

kind: KafkaConnect
metadata:
 name: debezium-kafka-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 1
spec:
 version: 3.5.0
 build: 2
 output: 3
 type: imagestream 4
 image: debezium-streams-connect:latest
 plugins: 5
 - name: debezium-connector-mysql
 artifacts:
 - type: zip 6
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-connector-
mysql/2.3.4.Final-redhat-00001/debezium-connector-mysql-2.3.4.Final-redhat-00001-
plugin.zip 7
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/apicurio/apicurio-registry-distro-
connect-converter/2.4.4.Final-redhat-<build-number>/apicurio-registry-distro-connect-
converter-2.4.4.Final-redhat-<build-number>.zip 8
 - type: zip
 url: https://maven.repository.redhat.com/ga/io/debezium/debezium-
scripting/2.3.4.Final-redhat-00001/debezium-scripting-2.3.4.Final-redhat-00001.zip 9
 - type: jar
 url: https://repo1.maven.org/maven2/org/codehaus/groovy/groovy/3.0.11/groovy-
3.0.11.jar 10
 - type: jar
 url: https://repo1.maven.org/maven2/org/codehaus/groovy/groovy-
jsr223/3.0.11/groovy-jsr223-3.0.11.jar
 - type: jar
 url: https://repo1.maven.org/maven2/org/codehaus/groovy/groovy-
json3.0.11/groovy-json-3.0.11.jar

 bootstrapServers: debezium-kafka-cluster-kafka-bootstrap:9093

 ...

Red Hat Integration 2023.q4 Installing Debezium on OpenShift

8

4 Specifies the name and image name for the image output. Valid values for
output.type are docker to push into a container registry such as Docker Hub or
Quay, or imagestream to push the image to an internal OpenShift ImageStream.
To use an ImageStream, an ImageStream resource must be deployed to the cluster.
For more information about specifying the build.output in the KafkaConnect
configuration, see the AMQ Streams Build schema reference in Configuring AMQ
Streams on OpenShift.

5 The plugins configuration lists all of the connectors that you want to include in the
Kafka Connect image. For each entry in the list, specify a plug-in name, and
information for about the artifacts that are required to build the connector.
Optionally, for each connector plug-in, you can include other components that you
want to be available for use with the connector. For example, you can add Service
Registry artifacts, or the Debezium scripting component.

6 The value of artifacts.type specifies the file type of the artifact specified in the
artifacts.url. Valid types are zip, tgz, or jar. Debezium connector archives are
provided in .zip file format. The type value must match the type of the file that is
referenced in the url field.

7 The value of artifacts.url specifies the address of an HTTP server, such as a Maven
repository, that stores the file for the connector artifact. Debezium connector
artifacts are available in the Red Hat Maven repository. The OpenShift cluster must
have access to the specified server.

8 (Optional) Specifies the artifact type and url for downloading the Service Registry
component. Include the Service Registry artifact, only if you want the connector to
use Apache Avro to serialize event keys and values with the Service Registry, instead
of using the default JSON converter.

9 (Optional) Specifies the artifact type and url for the Debezium scripting SMT
archive to use with the Debezium connector. Include the scripting SMT only if you
intend to use the Debezium content-based routing SMT or filter SMT To use the
scripting SMT, you must also deploy a JSR 223-compliant scripting implementation,
such as groovy.

Item Description

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS

9

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/configuring_amq_streams_on_openshift/index#type-Build-reference
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#content-based-routing
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#message-filtering

10 (Optional) Specifies the artifact type and url for the JAR files of a JSR 223-
compliant scripting implementation, which is required by the Debezium scripting
SMT.

IMPORTANT

If you use AMQ Streams to incorporate the connector plug-in into
your Kafka Connect image, for each of the required scripting
language components artifacts.url must specify the location of a
JAR file, and the value of artifacts.type must also be set to jar.
Invalid values cause the connector fails at runtime.

To enable use of the Apache Groovy language with the scripting SMT, the custom
resource in the example retrieves JAR files for the following libraries:

groovy

groovy-jsr223 (scripting agent)

groovy-json (module for parsing JSON strings)

As an alternative, the Debezium scripting SMT also supports the use of the JSR 223
implementation of GraalVM JavaScript.

Item Description

3. Apply the KafkaConnect build specification to the OpenShift cluster by entering the following
command:

Based on the configuration specified in the custom resource, the Streams Operator prepares a
Kafka Connect image to deploy.
After the build completes, the Operator pushes the image to the specified registry or
ImageStream, and starts the Kafka Connect cluster. The connector artifacts that you listed in
the configuration are available in the cluster.

4. Create a KafkaConnector resource to define an instance of each connector that you want to
deploy.
For example, create the following KafkaConnector CR, and save it as mysql-inventory-
connector.yaml

Example 2.2. mysql-inventory-connector.yaml file that defines the KafkaConnector
custom resource for a Debezium connector

oc create -f dbz-connect.yaml

 apiVersion: kafka.strimzi.io/v1beta2
 kind: KafkaConnector
 metadata:
 labels:
 strimzi.io/cluster: debezium-kafka-connect-cluster
 name: inventory-connector-mysql 1
 spec:
 class: io.debezium.connector.mysql.MySqlConnector 2
 tasksMax: 1 3

Red Hat Integration 2023.q4 Installing Debezium on OpenShift

10

Table 2.2. Descriptions of connector configuration settings

Item Description

1 The name of the connector to register with the Kafka Connect cluster.

2 The name of the connector class.

3 The number of tasks that can operate concurrently.

4 The connector’s configuration.

5 The address of the host database instance.

6 The port number of the database instance.

7 The name of the account that Debezium uses to connect to the database.

8 The password that Debezium uses to connect to the database user account.

9 Unique numeric ID of the connector.

10 The topic prefix for the database instance or cluster.
The specified name must be formed only from alphanumeric characters or underscores.
Because the topic prefix is used as the prefix for any Kafka topics that receive change
events from this connector, the name must be unique among the connectors in the
cluster.
This namespace is also used in the names of related Kafka Connect schemas, and the
namespaces of a corresponding Avro schema if you integrate the connector with the
Avro connector.

11 The list of tables from which the connector captures change events.

5. Create the connector resource by running the following command:

 config: 4
 schema.history.internal.kafka.bootstrap.servers: debezium-kafka-cluster-kafka-
bootstrap.debezium.svc.cluster.local:9092
 schema.history.internal.kafka.topic: schema-changes.inventory
 database.hostname: mysql.debezium-mysql.svc.cluster.local 5
 database.port: 3306 6
 database.user: debezium 7
 database.password: dbz 8
 database.server.id: 184054 9
 topic.prefix: inventory-connector-mysql 10
 table.include.list: inventory.* 11

 ...

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS

11

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#avro-serialization

For example,

The connector is registered to the Kafka Connect cluster and starts to run against the database
that is specified by spec.config.database.dbname in the KafkaConnector CR. After the
connector pod is ready, Debezium is running.

You are now ready to verify the Debezium deployment.

2.2.2. Verifying that the Debezium connector is running

If the connector starts correctly without errors, it creates a topic for each table that the connector is
configured to capture. Downstream applications can subscribe to these topics to retrieve information
events that occur in the source database.

To verify that the connector is running, you perform the following operations from the OpenShift
Container Platform web console, or through the OpenShift CLI tool (oc):

Verify the connector status.

Verify that the connector generates topics.

Verify that topics are populated with events for read operations ("op":"r") that the connector
generates during the initial snapshot of each table.

Prerequisites

A Debezium connector is deployed to AMQ Streams on OpenShift.

The OpenShift oc CLI client is installed.

You have access to the OpenShift Container Platform web console.

Procedure

1. Check the status of the KafkaConnector resource by using one of the following methods:

From the OpenShift Container Platform web console:

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaConnector.

c. From the KafkaConnectors list, click the name of the connector that you want to
check, for example inventory-connector-mysql.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

oc create -n <namespace> -f <kafkaConnector>.yaml

oc create -n debezium -f mysql-inventory-connector.yaml

Red Hat Integration 2023.q4 Installing Debezium on OpenShift

12

For example,

The command returns status information that is similar to the following output:

Example 2.3. KafkaConnector resource status

2. Verify that the connector created Kafka topics:

From the OpenShift Container Platform web console.

a. Navigate to Home → Search.

b. On the Search page, click Resources to open the Select Resource box, and then type
KafkaTopic.

oc describe KafkaConnector <connector-name> -n <project>

oc describe KafkaConnector inventory-connector-mysql -n debezium

Name: inventory-connector-mysql
Namespace: debezium
Labels: strimzi.io/cluster=debezium-kafka-connect-cluster
Annotations: <none>
API Version: kafka.strimzi.io/v1beta2
Kind: KafkaConnector

...

Status:
 Conditions:
 Last Transition Time: 2021-12-08T17:41:34.897153Z
 Status: True
 Type: Ready
 Connector Status:
 Connector:
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Name: inventory-connector-mysql
 Tasks:
 Id: 0
 State: RUNNING
 worker_id: 10.131.1.124:8083
 Type: source
 Observed Generation: 1
 Tasks Max: 1
 Topics:
 inventory-connector-mysql.inventory
 inventory-connector-mysql.inventory.addresses
 inventory-connector-mysql.inventory.customers
 inventory-connector-mysql.inventory.geom
 inventory-connector-mysql.inventory.orders
 inventory-connector-mysql.inventory.products
 inventory-connector-mysql.inventory.products_on_hand
Events: <none>

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS

13

c. From the KafkaTopics list, click the name of the topic that you want to check, for
example, inventory-connector-mysql.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d.

d. In the Conditions section, verify that the values in the Type and Status columns are set
to Ready and True.

From a terminal window:

a. Enter the following command:

The command returns status information that is similar to the following output:

Example 2.4. KafkaTopic resource status

NAME CLUSTER
PARTITIONS REPLICATION FACTOR READY
connect-cluster-configs debezium-kafka-cluster 1
1 True
connect-cluster-offsets debezium-kafka-cluster 25
1 True
connect-cluster-status debezium-kafka-cluster 5
1 True
consumer-offsets---84e7a678d08f4bd226872e5cdd4eb527fadc1c6a
debezium-kafka-cluster 50 1 True
inventory-connector-mysql--a96f69b23d6118ff415f772679da623fbbb99421
debezium-kafka-cluster 1 1 True
inventory-connector-mysql.inventory.addresses---
1b6beaf7b2eb57d177d92be90ca2b210c9a56480 debezium-kafka-cluster
1 1 True
inventory-connector-mysql.inventory.customers---
9931e04ec92ecc0924f4406af3fdace7545c483b debezium-kafka-cluster 1
1 True
inventory-connector-mysql.inventory.geom---
9f7e136091f071bf49ca59bf99e86c713ee58dd5 debezium-kafka-cluster
1 1 True
inventory-connector-mysql.inventory.orders---
ac5e98ac6a5d91e04d8ec0dc9078a1ece439081d debezium-kafka-cluster
1 1 True
inventory-connector-mysql.inventory.products---
df0746db116844cee2297fab611c21b56f82dcef debezium-kafka-cluster 1
1 True
inventory-connector-mysql.inventory.products_on_hand---
8649e0f17ffcc9212e266e31a7aeea4585e5c6b5 debezium-kafka-cluster 1
1 True
schema-changes.inventory debezium-kafka-cluster
1 1 True
strimzi-store-topic---effb8e3e057afce1ecf67c3f5d8e4e3ff177fc55 debezium-
kafka-cluster 1 1 True
strimzi-topic-operator-kstreams-topic-store-changelog---
b75e702040b99be8a9263134de3507fc0cc4017b debezium-kafka-cluster 1 1
True

oc get kafkatopics

Red Hat Integration 2023.q4 Installing Debezium on OpenShift

14

3. Check topic content.

From a terminal window, enter the following command:

For example,

The format for specifying the topic name is the same as the oc describe command returns in
Step 1, for example, inventory-connector-mysql.inventory.addresses.

For each event in the topic, the command returns information that is similar to the following
output:

Example 2.5. Content of a Debezium change event

{"schema":{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"}],"optional":false,"name":"inventory-
connector-mysql.inventory.products_on_hand.Key"},"payload":{"product_id":101}}
{"schema":{"type":"struct","fields":[{"type":"struct","fields":
[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory-
connector-mysql.inventory.products_on_hand.Value","field":"before"},
{"type":"struct","fields":[{"type":"int32","optional":false,"field":"product_id"},
{"type":"int32","optional":false,"field":"quantity"}],"optional":true,"name":"inventory-
connector-mysql.inventory.products_on_hand.Value","field":"after"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"version"},
{"type":"string","optional":false,"field":"connector"},
{"type":"string","optional":false,"field":"name"},
{"type":"int64","optional":false,"field":"ts_ms"},
{"type":"string","optional":true,"name":"io.debezium.data.Enum","version":1,"parameters":
{"allowed":"true,last,false"},"default":"false","field":"snapshot"},
{"type":"string","optional":false,"field":"db"},
{"type":"string","optional":true,"field":"sequence"},
{"type":"string","optional":true,"field":"table"},
{"type":"int64","optional":false,"field":"server_id"},
{"type":"string","optional":true,"field":"gtid"},{"type":"string","optional":false,"field":"file"},
{"type":"int64","optional":false,"field":"pos"},{"type":"int32","optional":false,"field":"row"},
{"type":"int64","optional":true,"field":"thread"},
{"type":"string","optional":true,"field":"query"}],"optional":false,"name":"io.debezium.connecto
r.mysql.Source","field":"source"},{"type":"string","optional":false,"field":"op"},
{"type":"int64","optional":true,"field":"ts_ms"},{"type":"struct","fields":
[{"type":"string","optional":false,"field":"id"},
{"type":"int64","optional":false,"field":"total_order"},

oc exec -n <project> -it <kafka-cluster> -- /opt/kafka/bin/kafka-console-consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=<topic-name>

oc exec -n debezium -it debezium-kafka-cluster-kafka-0 -- /opt/kafka/bin/kafka-console-
consumer.sh \
> --bootstrap-server localhost:9092 \
> --from-beginning \
> --property print.key=true \
> --topic=inventory-connector-mysql.inventory.products_on_hand

CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS

15

{"type":"int64","optional":false,"field":"data_collection_order"}],"optional":true,"field":"transacti
on"}],"optional":false,"name":"inventory-connector-
mysql.inventory.products_on_hand.Envelope"},"payload":{"before":null,"after":
{"product_id":101,"quantity":3},"source":{"version":"2.3.4.Final-redhat-
00001","connector":"mysql","name":"inventory-connector-
mysql","ts_ms":1638985247805,"snapshot":"true","db":"inventory","sequence":null,"table":"p
roducts_on_hand","server_id":0,"gtid":null,"file":"mysql-
bin.000003","pos":156,"row":0,"thread":null,"query":null},"op":"r","ts_ms":1638985247805,"t
ransaction":null}}

In the preceding example, the payload value shows that the connector snapshot generated a
read ("op" ="r") event from the table inventory.products_on_hand. The "before" state of the
product_id record is null, indicating that no previous value exists for the record. The "after"
state shows a quantity of 3 for the item with product_id 101.

You can run Debezium with multiple Kafka Connect service clusters and multiple Kafka clusters. The
number of connectors that you can deploy to a Kafka Connect cluster depends on the volume and rate
of database events.

Next steps

For more information about deploying specific connectors, see the following topics in the Debezium
User Guide:

Deploying the Db2 connector

Deploying the MongoDB connector

Deploying the MySQL connector

Deploying the Oracle connector

Deploying the PostgreSQL connector

Deploying the SQL Server connector

Red Hat Integration 2023.q4 Installing Debezium on OpenShift

16

https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#deployment-of-debezium-db2-connectors
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#deployment-of-debezium-mongodb-connectors
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#deployment-of-debezium-mysql-connectors
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#deployment-of-debezium-oracle-connectors
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#deployment-of-debezium-postgresql-connectors
https://access.redhat.com/documentation/en-us/red_hat_integration/2023.q4/html-single/debezium_user_guide/index#deployment-of-debezium-sql-server-connectors

APPENDIX A. USING YOUR SUBSCRIPTION
Debezium is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing your account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading zip and tar files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Scroll down to INTEGRATION AND AUTOMATION.

3. Click Red Hat Integration to display the Red Hat Integration downloads page.

4. Click the Download link for your component.

Revised on 2023-11-17 04:10:54 UTC

APPENDIX A. USING YOUR SUBSCRIPTION

17

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

	CHAPTER 1. DEBEZIUM OVERVIEW
	CHAPTER 2. INSTALLING DEBEZIUM CONNECTORS
	2.1. KAFKA TOPIC CREATION RECOMMENDATIONS
	2.2. DEBEZIUM DEPLOYMENT ON AMQ STREAMS
	2.2.1. Deploying Debezium with AMQ Streams
	2.2.2. Verifying that the Debezium connector is running

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading zip and tar files

