‘® redhat.

Red Hat JBoss A-MQ 6.2

Connection Reference

A reference for all of the options for creating connections to a broker

Last Updated: 2018-06-15

Red Hat JBoss A-MQ 6.2 Connection Reference

A reference for all of the options for creating connections to a broker

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2015 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

.In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is areqgistered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat JBoss A-MQ supports a number of different wire protocols and message formats. In
addition, it overlays reconnection logic and discovery logic over these options. This guide provides
a quick reference for understanding how to configure connections between brokers, clients, and
other brokers.

Table of Contents

Table of Contents

CHAPTER 1. OPENWIRE OVER TC P ittt ittt ittt ieieeeineeetnneennseesanccnnnees 4
URI SYNTAX 4
SETTING TRANSPORT OPTIONS 4
TRANSPORT OPTIONS 5

CHAPTER 2. OPENWIRE OVER SSL 1.ttt iiiii ittt ieiieeeineeetnseesnsccsnnccnnnees 8
URI SYNTAX 8
SETTING TRANSPORT OPTIONS 8
SSL TRANSPORT OPTIONS 9
CONFIGURING BROKER SSL OPTIONS 10
CONFIGURING CLIENT SSL OPTIONS 10

CHAPTER 3. OPENWIRE OVER HTTP(S) . iiuitiiiiiiiii ittt ittt ieiiieiteeeiseennneennnes n
URI SYNTAX "
DEPENDENCIES "

CHAPTER 4. OPENWIRE OVER UDP/IP .ottt ittt ittt ittt eeiaseeinseetnseennneennnen 12
URI SYNTAX 12
SETTING TRANSPORT OPTIONS 12
TRANSPORT OPTIONS 13

CHAPTER 5. STOMP PROTOCOL ..ottt iiiiitiitetenneeenneeennscennscennncannns 14
OVERVIEW 14
URI SYNTAX 14
TRANSPORT OPTIONS 15
SSL TRANSPORT OPTIONS 15
CONFIGURING BROKER SSL OPTIONS 16
CONFIGURING CLIENT SSL OPTIONS 16

CHAPTER 6. MULTICAST PROTOCOL ..ottt it ittt ieiteeeineeetnneennneennnee 17
URI SYNTAX 17
TRANSPORT OPTIONS 17

CHAPTER 7.MQ TELEMETRY TRANSPORT(MQTT) PROTOCOL ...ciiitiiiiiiiiiiiiiiiiiiiiieiieennnen, 19
URI SYNTAX 19
TRANSPORT OPTIONS 19
SSL TRANSPORT OPTIONS 20
CONFIGURING BROKER SSL OPTIONS 20
CONFIGURING CLIENT SSL OPTIONS 20

CHAPTER 8. ADVANCED MESSAGE QUEUING PROTOCOL (AMQP) ...ttt iiiiiiinnnns 22
URI SYNTAX 22
IDLETIMEOUT 22
SECURITY 22
SSL TRANSPORT OPTIONS 23
CONFIGURING BROKER SSL OPTIONS 23
CONFIGURING CLIENT SSL OPTIONS 23
MAPPING FROM AMQP TO JMS 23
AMQP-TO-JMS TRANSFORMERS 24
HEADER MAPPING FOR ALL TRANSFORMERS 24
HEADER MAPPING FOR NATIVE OR JMS TRANSFORMERS 24
DEFAULT HEADER VALUES 26
PROPERTY TYPE MAPPING 26

Red Hat JBoss A-MQ 6.2 Connection Reference

MESSAGE BODY MAPPING

CHAPTER 9. VM TRANSPORT

9.1. SIMPLE VM URI SYNTAX
9.2. ADVANCED VM URI SYNTAX

CHAPTER 10. DISCOVERING BROKERS

10.1. DISCOVERY AGENTS
10.2. DYNAMIC DISCOVERY PROTOCOL
10.3. FANOUT PROTOCOL

CHAPTER 11. PEER PROTOCOL

URI SYNTAX
BROKER OPTIONS
DEPENDENCIES

APPENDIX A. OPENWIRE FORMAT OPTIONS
FORMAT OPTIONS TABLE

APPENDIX B. CLIENT CONNECTION OPTIONS
OVERVIEW
OPTIONS
BLOB HANDLING
PREFETCH LIMITS
REDELIVERY POLICY

APPENDIX C. SERVER OPTIONS

SERVER OPTIONS TABLE

27

29
29
31

33
33
38
40

44
44
44
44

46
46

48
48
48
51
51
52

54
54

Table of Contents

Red Hat JBoss A-MQ 6.2 Connection Reference

CHAPTER 1. OPENWIRE OVER TCP

URISYNTAX

A vanilla TCP URI has the syntax shown in Example 1.1, “Syntax for a vanilla TCP Connection”.

Example 1.1. Syntax for a vanilla TCP Connection

I tcp://Host[:Port]?transportOptions

An NIO URI has the syntax shown in Example 1.2, “Syntax for NIO Connection”.

Example 1.2. Syntax for NIO Connection

I nio://Host[:Port]?transportOptions

SETTING TRANSPORT OPTIONS

OpenWire transport options, transportOptions, are specified as a list of matrix parameters. How you
specify the options to use differs between a client-side URI and a broker-side URI:

e When using a URI to open a connection between a client and a broker, you just specify the
name of the option as shown.

Example 1.3. Setting an Option on a Client-Side TCP URI

I tcp://fusesource.com:61616?trace=true

e When using a URI to open a broker listener socket, you prefix the option name with
transport. as shown.

Example 1.4. Specifying Transport Options for a Listener Socket

I tcp://fusesource.com:61616?transport.trace=true

e When using a URI to open a broker connection socket, you just specify the name of the option
as shown.

Example 1.5. Setting an Option on a Client-Side TCP URI

I tcp://fusesource.com:61616?trace=true

IMPORTANT

TRANSPORT OPTIONS

Example 1.6. Transport Options in XML

CHAPTER 1. OPENWIRE OVER TCP

In XML configuration, you must escape the & symbol, replacing it with & as shown.

I ?option=value&option=value& . ..

Table 1.1, “TCP and NIO Transport Options” shows the options supported by the TCP and the NIO URlIs.

Table 1.1. TCP and NIO Transport Options

Option

minmumWireFormatVersion

trace

daemon

useLocalHost

socketBufferSize

keepAlive

soTimeout

soWriteTimeout

Default

0

false

false

true

64*1024

false

Description

Specifies the minimum wire
format version that is allowed.

Causes all commands sent over
the transport to be logged.

Specifies whether the transport
thread runs as a daemon or not.
Useful to enable when embedding
in a Spring container or in a web
container, to allow the container
to shut down properly.

When true, causes the local
machine's name to resolve to
localhost.

Sets the socket buffer size in
bytes.

When true, enables TCP
KeepAlive on the broker
connection. Useful to ensure that
inactive consumers do not time
out.

Specifies, in milliseconds, the
socket timeout.

Specifies, in milliseconds, the
timeout for socket write
operations.

http://tldp.org/HOWTO/TCP-Keepalive-HOWTO/overview.html

Red Hat JBoss A-MQ 6.2 Connection Reference

Option

connectionTimeout

closeAsync

soLinger

maximumConnections

diffServ

typeOfService

wireFormat

Default

30000

true

MIN_INTEGER

MAX_VALUE

Description

Specifies, in milliseconds, the
connection timeout. Zero means
wait forever for the connection to
be established.

The false value causes all
sockets to be closed
synchronously.

When > -1, enables the
SoLinger socket option with
this value. When equal to -1,
disables SoLinger.

The maximum number of sockets
the broker is allowed to create.

(Client only) The preferred
Differentiated Services traffic
class to be set on outgoing
packets, as described in RFC
2475. Valid integer values are
[0, 64). Valid string values are
EF,AF[1-3][1-4] orCS[0-
7]. With JDK 6, only works when
the Java Runtime uses the IPv4
stack, which can be done by
setting the
java.net.preferIPv4Stac
k system property to true.
Cannot be used at the same time
as the typeOfService option.

(Client only) The preferred type of
service value to be set on
outgoing packets. Valid integer
values are [0, 256). With JDK 6,
only works when the Java
Runtime uses the IPv4 stack,
which can be done by setting the
java.net.preferIPv4Stac
k system property to true.
Cannot be used at the same time
as the diffServ option.

The name of the wire format to
use.

Option

wireFormat.*

jms.*

CHAPTER 1. OPENWIRE OVER TCP

Description

All the properties with this prefix
are used to configure the
wireFormat. See Table A1, “Wire
Format Options Supported by
OpenWire Protocol” for more
information.

All the properties with this prefix
are used to configure client
connections to a broker. See
Appendix B, Client Connection
Options for more information.

Red Hat JBoss A-MQ 6.2 Connection Reference

CHAPTER 2. OPENWIRE OVER SSL

URISYNTAX

”

A vanilla SSL URI has the syntax shown in Example 2.1, “Syntax for a vanilla SSL Connection”.

Example 2.1. Syntax for a vanilla SSL Connection

I ssl://Host[:Port]?transportOptions

An SSL URI for using NIO has the syntax shown in Example 2.2, “Syntax for NIO Connection”.

Example 2.2. Syntax for NIO Connection

I nio+ssl://Host[:Port]?transportOptions

SETTING TRANSPORT OPTIONS

OpenWire transport options, transportOptions, are specified as a list of matrix parameters. How you
specify the options to use differs between a client-side URI and a broker-side URI:

e When using a URI to open a connection between a client and a broker, you just specify the
name of the option as shown.

Example 2.3. Setting an Option on a Client-Side TCP URI

I tcp://fusesource.com:61616?trace=true

e When using a URI to open a broker listener socket, you prefix the option name with
transport. as shown.

Example 2.4. Specifying Transport Options for a Listener Socket

I tcp://fusesource.com:61616?transport.trace=true

e When using a URI to open a broker connection socket, you just specify the name of the option
as shown.

Example 2.5. Setting an Option on a Client-Side TCP URI

I tcp://fusesource.com:61616?trace=true

CHAPTER 2. OPENWIRE OVER SSL

IMPORTANT

In XML configuration, you must escape the & symbol, replacing it with & as shown.

Example 2.6. Transport Options in XML

I ?option=value&option=value& . ..

SSL TRANSPORT OPTIONS

In addition to the options supported by the non-secure TCP/NIO transport listed in Table 1.1, “TCP and
NIO Transport Options”, the SSL transport also supports the options for configuring the
SSLServerSocket created for the connection. These options are listed in Table 2.1, “SSL Transport
Options”.

Table 2.1. SSL Transport Options

Option Default Description

enabledCipherSuites Specifies the cipher suites
accepted by this endpoint, in the
form of a comma-separated list.

enabledProtocols Specifies the secure socket
protocols accepted by this
endpoint, in the form of a comma-
separated list. If using Oracle's
JSSE provider, possible values
are: TLSv1,TLSv1.1,0r
TLSv1.2 (do notuse
SSLv2Hello or SSLv3,
because of the POODLE security
vulnerability, which affects
SSLv3).

wantClientAuth (broker only)If true, the server
requests (but does not require)
the client to send a certificate.

needClientAuth false (broker only)If true, the server
requires the client to send its
certificate. If the client fails to
send a certificate, the server will
throw an error and close the
session.

Red Hat JBoss A-MQ 6.2 Connection Reference

Option Default Description

enableSessionCreation true (broker only)1f true, the server
socket creates a new SSL session
every time it accepts a
connection and spawns a new
socket. If false, an existing SSL
session must be resumed when
the server socket accepts a
connection.

' WARNING
A If you are planning to enable SSL/TLS security, you must ensure that you explicitly

disable the SSLv3 protocol, in order to safequard against the Poodle vulnerability
(CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and
JBoss A-MQ 6.x.

CONFIGURING BROKER SSL OPTIONS

On the broker side, you must specify an SSL transport option using the syntax
transport.OptionName. For example, to enable an OpenWire SSL port on a broker, you would add
the following transport element:

<transportConnector name="ssl" uri="ssl:localhost:61617?
transport.enabledProtocols=TLSv1,TLSv1.1,TLSv1.2" />

TIP

Remember, if you are specifying more than one option in the context of XML, you need to escape the
ampersand, &, between options as &.

CONFIGURING CLIENT SSL OPTIONS

On the client side, you must specify an SSL transport option using the syntax socket .0OptionName.
For example, to connect to an OpenWire SSL port, you would use a URL like the following:

I ssl:localhost:61617?socket.enabledProtocols=TLSv1,TLSv1.1,TLSv1.2

10

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

CHAPTER 3. OPENWIRE OVER HTTP(S)

CHAPTER 3. OPENWIRE OVER HTTP(S)

URISYNTAX

An HTTP URI has the syntax shown in Example 3.1, “Syntax for an HTTP Connection”.

Example 3.1. Syntax for an HTTP Connection

I tcp://Host[:Port]

An HTTPS URI has the syntax shown in Example 3.2, “Syntax for an HTTPS Connection”.

Example 3.2. Syntax for an HTTPS Connection

I https://Host[:Port]

DEPENDENCIES

To use the HTTP(S) transport requires that the following JARs from the 1ib/optional folder are
included on the classpath:

e activemq-http-x.x.x.jar
e Xxstream-x.x.x.jar

e commons-logging-x.x.x.jar
e commons-codec-x.X.X.jar
e httpcore-x.x.x.jar

e httpclient-x.x.x.jar

1

Red Hat JBoss A-MQ 6.2 Connection Reference

CHAPTER 4. OPENWIRE OVER UDP/IP

URISYNTAX

A UDP URI has the syntax shown in Example 4.1, “Syntax for a UDP Connection”.

Example 4.1. Syntax for a UDP Connection

I udp://Host[:Port]?transportOptions

SETTING TRANSPORT OPTIONS

OpenWire transport options, transportOptions, are specified as a list of matrix parameters. How you
specify the options to use differs between a client-side URI and a broker-side URI:

e When using a URI to open a connection between a client and a broker, you just specify the
name of the option as shown.

Example 4.2. Setting an Option on a Client-Side TCP URI

I tcp://fusesource.com:61616?trace=true

e When using a URI to open a broker listener socket, you prefix the option name with
transport. as shown.

Example 4.3. Specifying Transport Options for a Listener Socket

I tcp://fusesource.com:61616?transport.trace=true

e When using a URI to open a broker connection socket, you just specify the name of the option
as shown.

Example 4.4. Setting an Option on a Client-Side TCP URI

I tcp://fusesource.com:61616?trace=true

IMPORTANT

In XML configuration, you must escape the & symbol, replacing it with & as shown.

Example 4.5. Transport Options in XML

I ?option=value&option=value& . ..

12

CHAPTER 4. OPENWIRE OVER UDP/IP

TRANSPORT OPTIONS

The UDP transport supports the options listed in Table 4.1, “UDP Transport Options”.

Table 4.1. UDP Transport Options

Option Default Description

minmumWireFormatVersion 0 The minimum version wire format
that is allowed.

trace false Causes all commands sent over
the transport to be logged.

useLocalHost true When true, causes the local
machine's name to resolve to
localhost.

datagramSize 4*1024 Specifies the size of a datagram.

wireFormat The name of the wire format to
use.

wireFormat.* All options with this prefix are

used to configure the wire format.
See Table A.1, “Wire Format
Options Supported by OpenWire
Protocol” for more information.

jms.* All the properties with this prefix
are used to configure client
connections to a broker. See
Appendix B, Client Connection
Options for more information.

13

Red Hat JBoss A-MQ 6.2 Connection Reference

CHAPTER 5. STOMP PROTOCOL

Abstract

The Stomp protocol is a simplified messaging protocol that is specially designed for implementing
clients using scripting languages. This chapter provides a brief introduction to the protocol.

OVERVIEW

The Stomp protocol is a simplified messaging protocol that is being developed as an open source
project (http://stomp.codehaus.org/). The advantage of the stomp protocol is that you can easily
improvise a messaging client—even when a specific client APl is not available—because the protocol is
so simple.

IMPORTANT

Apache ActiveMQ implements the Stomp v1.2 specification, except for the treatment of
spaces that appear at the beginning or end of message header keys. The ActiveMQ
implementation of Stomp trims leading and trailing spaces in message header keys (but
preserves leading and trailing spaces in the header values). This behaviour is liable to
change in a future release.

URISYNTAX

Example 5.1, “Vanilla Stop URI” shows the syntax for a vanilla Stomp connection.

Example 5.1. Vanilla Stop URI

I stomp://Host:[Port]?transportOptions

An NIO URI has the syntax shown in Example 5.2, “Syntax for Stomp+NIO Connection”.

Example 5.2. Syntax for Stomp+NIO Connection

I stomp+nio://Host[:Port]?transportOptions

”

A secure Stomp URI has the syntax shown in Example 5.3, “Syntax for a Stomp SSL Connection”.

Example 5.3. Syntax for a Stomp SSL Connection

I stomp+ssl://Host[:Port]?transportOptions

A secure Stomp+NIO URI has the syntax shown in Example 5.4, “Syntax for a Stomp+NIO SSL
Connection”.

I Example 5.4. Syntax for a Stomp+NIO SSL Connection

14

http://stomp.codehaus.org/

CHAPTER 5. STOMP PROTOCOL

I I stomp+nio+ssl://Host[:Port]?transportOptions

TRANSPORT OPTIONS
The Stomp protocol supports the following transport options:

Table 5.1. Transport Options Supported by Stomp Protocol

Property Default Description
transport.defaultHeartB 0,0 Specifies how the broker
eat simulates the heartbeat policy

when working with legacy Stomp
1.0 clients. The first value in the
pair specifies, in milliseconds, the
server will wait between
messages before timing out the
connection. The second value
specifies, in milliseconds, the the
client will wait between messages
received from the server.
Because Stomp 1.0 clients do not
understand heartbeat messages,
the second value should always
be 0. This option is setintheuri
attribute of a broker's
transportConnector
element to enable backward
compatibility with Stomp 1.0
clients.

jms.* All the properties with this prefix
are used to configure client
connections to a broker. See
Appendix B, Client Connection
Options for more information.

SSL TRANSPORT OPTIONS

In addition to the options supported by the non-secure Stomp transports, the SSL transport also
supports the options for configuring the SSLServerSocket created for the connection. These options
are listed in Table 2.1, “SSL Transport Options”.

' WARNING
A If you are planning to enable SSL/TLS security, you must ensure that you explicitly

disable the SSLv3 protocol, in order to safequard against the Poodle vulnerability
(CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and
JBoss A-MQ 6.x.

15

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

Red Hat JBoss A-MQ 6.2 Connection Reference

CONFIGURING BROKER SSL OPTIONS

On the broker side, you must specify an SSL transport option using the syntax
transport.OptionName. For example, to enable a Stomp SSL port on a broker, you would add the
following transport element:

<transportConnector name="stompssl" uri="stomp+ssl://localhost:61617?
transport.enabledProtocols=TLSv1,TLSv1.1,TLSv1.2" />

TIP

Remember, if you are specifying more than one option in the context of XML, you need to escape the
ampersand, &, between options as &.

CONFIGURING CLIENT SSL OPTIONS

On the client side, you must specify an SSL transport option using the syntax socket .0OptionName.
For example, to connect to a Stomp SSL port, you would use a URL like the following:

I stomp+ssl://localhost:61617?socket.enabledProtocols=TLSv1l, TLSv1l.1,TLSv1l.2

16

CHAPTER 6. MULTICAST PROTOCOL

CHAPTER 6. MULTICAST PROTOCOL

Abstract

Multicast is an unreliable protocol that allows clients to connect to brokers using IP multicast.

URISYNTAX

Example 6.1, “Multicast URI” shows the syntax for a Multicast connection.

Example 6.1. Multicast URI

I multicast://Host:[Port]?transportOptions

TRANSPORT OPTIONS

The Multicast protocol supports the following transport options:

Table 6.1. Transport Options Supported by Multicast Protocol

Property Default Description

group default Specifies a unique group name
that can segregate multicast
traffic.

minmumWireFormatVersion 0 Specifies the minimum wire

format version that is allowed.

trace false Causes all commands sent over
the transport to be logged.

useLocalHost true When true, causes the local
machine's name to resolve to
localhost.

datagramSize 4 * 1024 Specifies the size of a datagram.

timeToLive -1 Specifies the time to live of

datagrams. Set greater than 1 to
send packets beyond the local
network. [al

loopBackMode false Specifies whether loopback mode
is used.

17

Red Hat JBoss A-MQ 6.2 Connection Reference

Property Default Description

wireFormat The name of the wire format to
use.

wireFormat. * All the properties with this prefix

are used to configure the
wireFormat. See Table A.1, “Wire
Format Options Supported by
OpenWire Protocol” for more
information.

jms.* All the properties with this prefix
are used to configure client
connections to a broker. See
Appendix B, Client Connection
Options for more information.

[a] This won't work for IPv4 addresses without setting the property java.net.preferIPv4Stack=true.

18

CHAPTER 7. MQ TELEMETRY TRANSPORT(MQTT) PROTOCOL

CHAPTER 7.MQ TELEMETRY TRANSPORT(MQTT) PROTOCOL

Abstract

MQTT is a machine-to-machine (M2M)/"Internet of Things" connectivity protocol. It was designed as a
lightweight publish/subscribe messaging transport.

URISYNTAX

Example 7.1, “MQTT URI” shows the syntax for an MQTT connection.

Example 7.1. MQTT URI

I mgtt://Host:[Port]?transportOptions

An NIO URI has the syntax shown in Example 7.2, “Syntax for MQTT+NIO Connection”.

Example 7.2. Syntax for MQTT+NIO Connection

I mgtt+nio://Host[:Port]?transportOptions

”

A secure MQTT URI has the syntax shown in Example 7.3, “Syntax for an MQTT SSL Connection”.

Example 7.3. Syntax for an MQTT SSL Connection

I mgtt+ssl://Host[:Port]?transportOptions

A secure MQTT+NIO URI has the syntax shown in Example 7.4, “Syntax fora MQTT+NIO SSL
Connection”.

Example 7.4. Syntax for a MQTT+NIO SSL Connection

I mgtt+nio+ssl://Host[:Port]?transportOptions

TRANSPORT OPTIONS

The MQTT protocol supports the following transport options:

Table 7.1. MQTT Transport Options

Property Default Description

19

Red Hat JBoss A-MQ 6.2 Connection Reference

Property Default Description
transport.defaultKeepAl 0 Specifies, in milliseconds, the
ive broker will allow a connection to

be silent before it is closed. If a
client specifies a keep-alive
duration, this setting is ignored.
This option is set in the uri
attribute of a broker's
transportConnector
element.

jms.* All the properties with this prefix
are used to configure client
connections to a broker. See
Appendix B, Client Connection
Options for more information.

SSL TRANSPORT OPTIONS

In addition to the options supported by the non-secure MQTT transports, the SSL transport also
supports the options for configuring the SSLServerSocket created for the connection. These options
are listed in Table 2.1, “SSL Transport Options”.

' WARNING
A If you are planning to enable SSL/TLS security, you must ensure that you explicitly

disable the SSLv3 protocol, in order to safequard against the Poodle vulnerability
(CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and
JBoss A-MQ 6.x.

CONFIGURING BROKER SSL OPTIONS

On the broker side, you must specify an SSL transport option using the syntax
transport.OptionName. For example, to enable an MQTT SSL port on a broker, you would add the
following transport element:

<transportConnector name="mqttssl" uri="mqgtt+ssl://localhost:61617?
transport.enabledProtocols=TLSv1,TLSv1.1,TLSv1.2" />

TIP

Remember, if you are specifying more than one option in the context of XML, you need to escape the
ampersand, &, between options as &.

CONFIGURING CLIENT SSL OPTIONS

20

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

CHAPTER 7. MQ TELEMETRY TRANSPORT(MQTT) PROTOCOL

On the client side, you must specify an SSL transport option using the syntax socket .0OptionName.
For example, to connect to a MQTT SSL port, you would use a URL like the following:

I mgtt+ssl://localhost:61617?socket.enabledProtocols=TLSv1, TLSv1.1,TLSv1.2

21

Red Hat JBoss A-MQ 6.2 Connection Reference

CHAPTER 8. ADVANCED MESSAGE QUEUING PROTOCOL
(AMQP)

Abstract

Oasis AMQP is an open standard application protocol for messaging. In contrast to JMS, AMQP
standardizes the wire protocol, not the programming API, thus facilitating interoperability at the
transport level.

URISYNTAX

The URI syntax given here is valid only for specifying the endpoint in a transport connector element
(broker endpoint).

A basic AMQP endpoint has the following URI syntax:

I amgp://Host:[Port]?transportOptions

An AMQP endpoint with NIO support has the following syntax:
I amgp+nio://Host:[Port]?transportOptions

A secure AMQP endpoint has the following URI syntax:

I amgp+ssl://Host:[Port]?transportOptions

IDLETIMEOUT

Connections are subject to a configurable idle timeout threshold. The idle timeout is measured in
milliseconds.

To configure the timeout threshold, use the following URI option:
I transport.wireFormat.idleTimeout=10000
It can be used in the following way:

<transportConnector name="amqgp"
uri="amgp://0.0.0.0:5672?transport.wireFormat.idleTimeout=10000&...."/>

Replace 10000 in the example with the number of milliseconds after which the connection will timeout
due to inactivity.

SECURITY
The AMQP adapter is fully integrated with Apache ActiveMQ security. This means that the broker
accepts SASL (Simple Authentication and Security Layer) authentication and any authorization

settings configured on the broker will be applied.

SSL security can also be enabled for AMQP. To enable SSL, configure the broker's ss1Context

22

CHAPTER 8. ADVANCED MESSAGE QUEUING PROTOCOL (AMQP]

element in the XML configuration and use the secure AMQP scheme, amgp+ss1, to define the AMQP
URIl in the broker's transportConnector element. For more details about SSL security, see the
"Security Guide".

SSL TRANSPORT OPTIONS

In addition to the options supported by the non-secure AMQP transports, the SSL transport also
supports the options for configuring the SSLServerSocket created for the connection. These options
are listed in Table 2.1, “SSL Transport Options”.

WARNING
A If you are planning to enable SSL/TLS security, you must ensure that you explicitly

disable the SSLv3 protocol, in order to safequard against the Poodle vulnerability
(CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and
JBoss A-MQ 6.x.

CONFIGURING BROKER SSL OPTIONS
On the broker side, you must specify an SSL transport option using the syntax

transport.OptionName. For example, to enable an AMQP SSL port on a broker, you would add the
following transport element:

<transportConnector name="amgpssl" uri="amqp+ssl://localhost:61617?
transport.enabledProtocols=TLSv1,TLSv1.1,TLSv1.2" />

TIP

Remember, if you are specifying more than one option in the context of XML, you need to escape the
ampersand, &, between options as &.

CONFIGURING CLIENT SSL OPTIONS

On the client side, you must specify an SSL transport option using the syntax socket .0OptionName.
For example, to connect to an AMQP SSL port, you would use a URL like the following:

I amgp+ssl://localhost:61617?socket.enabledProtocols=TLSv1, TLSv1.1,TLSv1.2

MAPPING FROM AMQP TO JMS

Because AMQP is not a JMS compliant protocol, the AMQP messages and their headers are defined in
a different format from JMS. It is therefore necessary to map AMQP messages to JMS format. The
mapping is implemented by a transformer and the transformer type can be selected by specifying the
transport.transformer option on the AMQP endpoint.

For example, the following transport connector selects the jms transformer type:

23

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.2/html/Security_Guide/
https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

Red Hat JBoss A-MQ 6.2 Connection Reference

<transportConnector name="amgp" uri="amqgp://localhost:5672?
transport.transformer=jms"/>

AMQP-TO-JMS TRANSFORMERS

Table 8.1, “AMQP-to-JMS Transformer Types” lists the available transformer types and describes the
basic characteristics of each mapping.

Table 8.1. AMQP-to-JMS Transformer Types

Transformer Description

native (Default) Wraps the bytes of the AMQP message into
a JMS BytesMessage, and maps the AMQP
message headers to JMS message headers.

raw Wraps the bytes of the AMQP message into a JMS
BytesMessage.
jms Maps the body of the AMQP message to JMS body,

and maps the AMQP message headers to JMS
message headers.

HEADER MAPPING FOR ALL TRANSFORMERS

The JMS headers shown in the following table are always created, no matter which transformer type is
selected.

AMQP Header JMS Header

JMS_AMQP_NATIVE

message-format JMS_AMQP_MESSAGE_FORMAT

The JMS_AMQP_NATIVE headeris a boolean type, which indicates whether or not the JMS message
body is a direct copy of the raw AMQP message body. It is set to true for the native and jms
transformer types and false for the jms transformer type.

HEADER MAPPING FOR NATIVE OR JMS TRANSFORMERS

The JMS headers shown in the following table are mapped from AMQP headers, if the native or jms
transformer type is selected.

AMQP Header JMS Header

header.durable JMSDeliveryMode

24

CHAPTER 8. ADVANCED MESSAGE QUEUING PROTOCOL (AMQP]

AMQP Header JMS Header

header.priority

header.ttl

header.first-acquirer

header.deliveryCount

delivery-annotations.name

message-annotations.x-opt-jms-type

message-annotations.x-opt-to-type

message-annotations.x-opt-reply-type

message-annotations.name

application-properties.JMSXGroupID

application-
properties.JMSXGroupSequence

application-properties.JMSXUserID

application-properties.name

properties.message-id

properties.user-id

properties.to

properties.subject

properties.reply-to

properties.correlation-id

properties.content-type

properties.content-encoding

properties.creation-time

JMSPriority

JMSExpiration

JMS_AMQP_FirstAcquirer

JMSXDeliveryCount

JMS_AMQP_DA_name

JMSType

Type of the JMSDestination

Type of the JMSReplyTo

JMS_AMQP_MA_name

JMSXGroupID

JMSXGroupSequence

JMSXUserID

name

JMSMessageID

JMSXUserID

JMSDestination

JMS_AMQP_Subject

JMSReplyTo

JMSCorrelationID

JMS_AMQP_ContentType

JMS_AMQP_ContentEncoding

JMSTimestamp

25

Red Hat JBoss A-MQ 6.2 Connection Reference

AMQP Header JMS Header

properties.group-sequence JMSXGroupSequence
properties.reply-to-group-id JMS_AMQP_ReplyToGroupID
footer.name JMS_AMQP_FT_name

NOTE

The properties.user-id property is decoded as a UTF-8 String.

DEFAULT HEADER VALUES

When mapping AMQP message properties to JMS header values, the following default JMS header
values are used:

JMS_AMQP_NATIVE

Defaults to true, if the transformer is native or raw, otherwise false.

JMSDeliveryMode
Defaults to javax.jms.Message .DEFAULT_DELIVERY_MODE.

JMSPriority
Defaults to javax.jms.Message .DEFAULT_PRIORITY.

JMSExpiration
Defaults to javax.jms.Message .DEFAULT_TIME_TO_LIVE.

JMSDestination type

Defaults to queue.

JMSReplyTo type

Defaults to queue.

JMSMessageID

Auto-generated, if not set.

PROPERTY TYPE MAPPING

AMQP property types are converted to Java types as shown in the following table:

AMQP Type Java Type Notes

bool Boolean

26

CHAPTER 8. ADVANCED MESSAGE QUEUING PROTOCOL (AMQP]

AMQP Type Java Type Notes

byte Byte

short Short

int Integer

long Long

ubyte ByteorShort Short is used, ifvalue >

Byte.MAX_VALUE

ushort Short or Integer Integerisusedifvalue >
Short.MAX_VALUE

uint Integer orLong Longis used, ifvalue >
Integer.MAX_VALUE

ulong Long

double Double

float Float

symbol String

binary String Hex encoding of the binary value

MESSAGE BODY MAPPING

When the jms transformer type is selected, the AMQP message body is mapped to a JMS message
type, as shown in the following table:

AMQP Body Type JMS Message Type

null Message

Data BytesMessage
AmqpSequence StreamMessage
AmgpValue holding anull Message

27

Red Hat JBoss A-MQ 6.2 Connection Reference

AMQP Body Type JMS Message Type

AmgpValue holdingaString TextMessage
AmgpValue holding abinary BytesMessage
AmgpValue holdingalist StreamMessage
AmgpValue ObjectMessage

28

CHAPTER 9. VM TRANSPORT

CHAPTER 9. VM TRANSPORT

Abstract

The VM transport allows clients to connect to each other inside the Java Virtual Machine (JVM)
without the overhead of network communication.

The URI used to specify the VM transport comes in two flavors to provide maximum control over how
the embedded broker is configured:

e simple—specifies the name of the embedded broker to which the client connects and allows for
some basic broker configuration

e advanced-uses a broker URI to configure the embedded broker

9.1. SIMPLE VM URI SYNTAX

URI syntax

The simple VM URI is used in most situations. It allows you to specify the name of the embedded
broker to which the client will connect. It also allows for some basic broker configuration.

Example 9.1, “Simple VM URI Syntax” shows the syntax for a simple VM URI.

Example 9.1. Simple VM URI Syntax

I vm://BrokerName?TransportOptions

o BrokerName specifies the name of the embedded broker to which the client connects.

e TransportOptions specifies the configuration for the transport. They are specified in the form of
a query list. Table 9.2, “VM Transport Options” lists the available options.

Broker options

In addition to the transport options listed in Table 9.2, “VM Transport Options”, the simple VM URI can
use the options described in Table 9.1, “VM Transport Broker Configuration Options” to configure the
embedded broker.

Table 9.1. VM Transport Broker Configuration Options

Option Description

broker .useJdmx Specifies if JMX is enabled. Default istrue.

broker.persistent Specifies if the broker uses persistent storage.
Default is true.

29

Red Hat JBoss A-MQ 6.2 Connection Reference

Option Description

broker.populateJMSXUserID Specifies if the broker populates theJMSXUserID
message property with the sender’s authenticated
username. Default is false.

broker .useShutdownHook Specifies if the broker installs a shutdown hook, so
that it can shut down properly when it receives a
JVM Kill. Default is true.

broker .brokerName Specifies the broker name. Default islocalhost.

broker.deleteAllMessagesOnStartup Specifies if all the messages in the persistent store
are deleted when the broker starts up. Default is
false.

broker.enableStatistics Specifies if statistics gathering is enabled in the

broker. Default is true.

brokerConfig Specifies an external broker configuration file. For
example, to pick up the broker configuration file,
activemq.xml, you would setbrokerConfig
as follows:
brokerConfig=xbean:activemq.xml.

IMPORTANT

The broker configuration options specified on the VM URI are only meaningful if the
client is responsible for instantiating the embedded broker. If the embedded broker is
already started, the transport will ignore the broker configuration properties.

Example

Example 9.2, “Basic VM URI” shows a basic VM URI that connects to an embedded broker named
broker1.

Example 9.2. Basic VM URI

I vm://brokeri

Example 9.3, “Simple URI with broker options” creates and connects to an embedded broker that uses
a non-persistent message store.

Example 9.3. Simple URI with broker options

I vm://brokerl1?broker.persistent=false

30

CHAPTER 9. VM TRANSPORT

9.2. ADVANCED VM URI SYNTAX

URI syntax

The advanced VM URI provides you full control over how the embedded broker is configured. It uses a
broker configuration URI similar to the one used by the administration tool to configure the embedded
broker.

Example 9.4, “Advanced VM URI Syntax” shows the syntax for an advanced VM URI.

Example 9.4. Advanced VM URI Syntax

I vm://(BrokerConfigURI)?TransportOptions

o BrokerConfigURI is a broker configuration URI.

e TransportOptions specifies the configuration for the transport. They are specified in the form of
a query list. Table 9.2, “VM Transport Options” lists the available options.

Transport options

Table 9.2, “VM Transport Options” shows options for configuring the VM transport.

Table 9.2. VM Transport Options

Option Description

marshal If true, forces each command sent over the
transport to be marshalled and unmarshalled using
the specified wire format. Default is false.

wireFormat The name of the wire format to use.

wireFormat.* All options with this prefix are used to configure the
wire format. See Table A.1, “Wire Format Options
Supported by OpenWire Protocol” for more
information.

jms.* All the properties with this prefix are used to
configure client connections to a broker. See
Appendix B, Client Connection Optionsfor more

information.

Create Specifies if the VM transport will create an
embedded broker if one does not exist. The default is
true.

31

Red Hat JBoss A-MQ 6.2 Connection Reference

Option Description

waitForStart Specifies the time, in milliseconds, the VM transport
will wait for an embedded broker to start before
creating one. The default is -1 which specifies that
the transport will not wait.

Example

Example 9.5, “Advanced VM URI” creates and connects to an embedded broker configured using a
broker configuration URI.

Example 9.5. Advanced VM URI

I vm: (broker: (tcp://localhost:6000)?persistent=false)?marshal=false

32

CHAPTER 10. DISCOVERING BROKERS

CHAPTER 10. DISCOVERING BROKERS

Abstract

One of the main strengths of Red Hat JBoss A-MQ is that brokers can be located dynamically through
out your infrastructure. In order for clients and other brokers to be able to interact with a broker, they
need some way of discovering that the broker exists. JBoss A-MQ does this using a combination of
discovery agents and special URI schemes. In order for location transparency to work, the members of
a messaging application need a way for discovering each other. In Red Hat JBoss A-MQ this is
accomplished using two pieces: discovery agents, components that advertise the brokers available to
other members of a messaging application; and discovery URI, a URI that looks up all of the
discoverable brokers and presents them as a list of actual URIs for use by the client or network
connector.

10.1. DISCOVERY AGENTS

Abstract

A discovery agent is a mechanism that advertises available brokers to clients and other brokers.

10.1.1. Introduction to Discovery Agents

What is a discovery agent?

A discovery agent is a mechanism that advertises available brokers to clients and other brokers. When
a client, or broker, using a discovery URI starts up it will look for any brokers that are available using
the specified discovery agent. The clients will update their lists periodically using the same mechanism.

Discovery mechanisms

How a discovery agent learns about the available brokers varies between agents. Some agents use a
static list, some use a third party registry, and some rely on the brokers to provide the information. For
discovery agents that rely on the brokers for information, it is necessary to enable the discovery agent
in the message broker configuration. For example, to enable the multicast discovery agent on an
Openwire endpoint, you edit the relevant transportConnector element as shown in Example 10.1,
“Enabling a Discovery Agent on a Broker”.

<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://default" />

<transportConnectors>
</transportConnectors>

| Example 10.1. Enabling a Discovery Agent on a Broker

Where the discoveryUri attribute on the transportConnector element is initialized to
multicast://default.

33

Red Hat JBoss A-MQ 6.2 Connection Reference

IMPORTANT

If a broker uses multiple transport connectors, you need to configure each transport
connector to use a discovery agent individually. This means that different connectors
can use different discovery mechanisms or that one or more of the connectors can be
undiscoverable.

Discovery agent types

Red Hat JBoss A-MQ currently supports the following discovery agents:
e Fuse Fabric Discovery Agent
e Static Discovery Agent
e Multicast Discovery Agent

e Zeroconf Discovery Agent

10.1.2. Fuse Fabric Discovery Agent

Abstract

The Fuse Fabric discovery agent uses Fuse Fabric to discovery brokers that are deployed into a fabric.

Overview

The Fuse Fabric discovery agentuses Fuse Fabric to discover the brokers in a specified group. The
discovery agent requires that all of the discoverable brokers be deployed into a single fabric. When the
client attempts to connect to a broker the agent looks up all of the available brokers in the fabric's
registry and returns the ones in the specified group.

URI

The Fuse Fabric discovery agent URI conforms to the syntax in Example 10.2, “Fuse Fabric Discovery
Agent URI Format”.

Example 10.2. Fuse Fabric Discovery Agent URI Format

I fabric://GID

Where GIDis the ID of the broker group from which the client discovers the available brokers.

Configuring a broker

The Fuse Fabric discovery agent requires that the discoverable brokers are deployed into a single
fabric.

The best way to deploy brokers into a fabric is using the management console. For information on using
the management console see "Management Console User Guide".

34

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.2/html/Management_Console_User_Guide/

CHAPTER 10. DISCOVERING BROKERS

You can also use the console to deploy brokers into a fabric. See chapter "Fabric Console Commands"
in "Console Reference".

Configuring a client
To use the agent a client must be configured to connect to a broker using a discovery protocol that

uses a Fuse Fabric agent URI as shown in Example 10.3, “Client Connection URL using Fuse Fabric
Discovery”.

Example 10.3. Client Connection URL using Fuse Fabric Discovery

I discovery:(fabric://nwBrokers)

A client using the URL in Example 10.3, “Client Connection URL using Fuse Fabric Discovery” will
discover all the brokers in the nwBrokers broker group and generate a list of brokers to which it can
connect.

10.1.3. Static Discovery Agent

Abstract

The static discovery agent uses an explicit list of broker URLs to specify the available brokers.

Overview

The static discovery agentdoes not truly discover the available brokers. It uses an explicit list of broker
URLs to specify the available brokers. Brokers are not involved with the static discovery agent. The
client only knows about the brokers that are hard coded into the agent's URI.

Using the agent

The static discovery agent is a client-side only agent. It does not require any configuration on the
brokers that will be discovered.

To use the agent, you simply configure the client to connect to a broker using a discovery protocol that
uses a static agent URI.

The static discovery agent URI conforms to the syntax in Example 10.4, “Static Discovery Agent URI
Format”.

Example 10.4. Static Discovery Agent URI Format

I static://(URI1,URI2,URI3, ...)

Example

Example 10.5, “Discovery URI using the Static Discovery Agent” shows a discovery URI that configures
a client to use the static discovery agent to connect to one member of a broker pair.

35

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.2/html/Console_Reference/Consolefabric.html

Red Hat JBoss A-MQ 6.2 Connection Reference

Example 10.5. Discovery URI using the Static Discovery Agent

I discovery:(static://(tcp://localhost:61716,tcp://localhost:61816))

10.1.4. Multicast Discovery Agent

Abstract

The multicast discovery agent uses the IP multicast protocol to find any message brokers currently
active on the local network.

Overview

The multicast discovery agent uses the IP multicast protocol to find any message brokers currently
active on the local network. The agent requires that each broker you want to advertise is configured to
use the multicast agent to publish its details to a multicast group. Clients using the multicast agent as
part of the discovery URI they use for connecting to a broker will use the agent to receive the list of
available brokers advertising in the specified multicast group.

IMPORTANT

Your local network (LAN) must be configured appropriately for the IP/multicast
protocol to work.

URI

The multicast discovery agent URI conforms to the syntax in Example 10.6, “Multicast Discovery
Agent URI Format”.

Example 10.6. Multicast Discovery Agent URI Format

I multicast://GroupID

Where GrouplD is an alphanumeric identifier. All participants in the same discovery group must use the
same GrouplD.

Configuring a broker

For a broker to be discoverable using the multicast discovery agent, you must enable the discovery
agent in the broker's configuration. To enable the multicast discovery agent you set the
transportConnector element's discoveryUri attribute to a mulitcast discovery agent URI as
shown in Example 10.7, “Enabling a Multicast Discovery Agent on a Broker” .

<transportConnector name="openwire"

Example 10.7. Enabling a Multicast Discovery Agent on a Broker
uri="tcp://localhost:61716"

‘ <transportConnectors>

36

CHAPTER 10. DISCOVERING BROKERS

discoveryUri="multicast://default" />
</transportConnectors>

The broker configured in Example 10.7, “Enabling a Multicast Discovery Agent on a Broker” is
discoverable as part of the multicast group default.
Configuring a client

To use the multicast agent a client must be configured to connect to a broker using a discovery URI
that uses a multicast agent URI as shown in Example 10.8, “Client Connection URL using Multicast
Discovery”.

Example 10.8. Client Connection URL using Multicast Discovery

I discovery:(multicast://default)

A client using the URI in Example 10.8, “Client Connection URL using Multicast Discovery” will discover
all the brokers advertised in the default multicast group and generate a list of brokers to which it can
connect.

10.1.5. Zeroconf Discovery Agent

Abstract

The zeroconf discovery agent uses an open source implementation of Apple's Bonjour networking
technology to find any brokers currently active on the local network.

Overview

The zeroconf discovery agentis derived from Apple’s Bonjour Networking technology, which defines the
zeroconf protocol as a mechanism for discovering services on a network. Red Hat JBoss A-MQ bases
its implementation of the zeroconf discovery agent on JmDSN, which is a service discovery protocol
that is layered over IP/multicast and is compatible with Apple Bonjour.

The agent requires that each broker you want to advertise is configured to use a multicast discovery
agent to publish its details to a multicast group. Clients using the zeroconf agent as part of the
discovery URI they use for connecting to a broker will use the agent to receive the list of available
brokers advertising in the specified multicast group.

IMPORTANT

Your local network (LAN) must be configured to use IP/multicast for the zeroconf agent
to work.

URI

The zeroconf discovery agent URI conforms to the syntax in Example 10.9, “Zeroconf Discovery Agent
URI Format”.

37

http://developer.apple.com/networking/bonjour/
http://sourceforge.net/projects/jmdns/

Red Hat JBoss A-MQ 6.2 Connection Reference

Example 10.9. Zeroconf Discovery Agent URI Format

I zeroconf://GroupID

Where the GrouplD is an alphanumeric identifier. All participants in the same discovery group must use
the same GrouplD.

Configuring a broker

For a broker to be discoverable using the zeroconf discovery agent, you must enable a multicast
discovery agent in the broker's configuration. To enable the multicast discovery agent you set the
transportConnector element's discoveryUri attribute to a mulitcast discovery agent URI as
shown in Example 10.10, “Enabling a Multicast Discovery Agent on a Broker” .

<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://NEGroup" />

<transportConnectors>
</transportConnectors>

| Example 10.10. Enabling a Multicast Discovery Agent on a Broker

The broker configured in Example 10.10, “Enabling a Multicast Discovery Agent on a Broker” is
discoverable as part of the multicast group NEGroup.

Configuring a client

To use the agent a client must be configured to connect to a broker using a discovery protocol that
uses a zeroconf agent URI as shown in Example 10.11, “Client Connection URL using Zeroconf
Discovery”.

Example 10.11. Client Connection URL using Zeroconf Discovery

I discovery:(zeroconf://NEGroup)

A client using the URL in Example 10.11, “Client Connection URL using Zeroconf Discovery” will
discover all the brokers advertised in the NEGroup multicast group and generate a list of brokers to
which it can connect.

10.2. DYNAMIC DISCOVERY PROTOCOL

Abstract

The dynamic discovery protocol combines reconnect logic with a discovery agent to dynamically
create a list of brokers to which the client can connect.

Overview

38

CHAPTER 10. DISCOVERING BROKERS

The dynamic discovery protocolcombines reconnect logic with a discovery agent to dynamically create
a list of brokers to which the client can connect. The discovery protocol invokes a discovery agent in
order to build up a list of broker URIs. The protocol then randomly chooses a URI from the list and
attempts to establish a connection to it. If it does not succeed, or if the connection subsequently fails, a
new connection is established to one of the other URIs in the list.

URI syntax

Example 10.12, “Dynamic Discovery URI” shows the syntax for a discovery URI.

Example 10.12. Dynamic Discovery URI

I discovery:(DiscoveryAgentUri)?0ptions

DiscoveryAgentUriis URI for the discovery agent used to build up the list of available brokers.
Discovery agents are described in Section 10.1, “Discovery Agents”.

The options, ?0ptions, are specified in the form of a query list. The discovery options are described in
Table 10.1, “Dynamic Discovery Protocol Options”. You can also inject transport options as described in
the section called “Setting options on the discovered transports”.

NOTE

If no options are required, you can drop the parentheses from the URI. The resulting URI
would take the form discovery:DiscoveryAgentUri

Transport options

The discovery protocol supports the options described in Table 10.1, “Dynamic Discovery Protocol
Options”.

Table 10.1. Dynamic Discovery Protocol Options

Option Default Description

initialReconnectDelay 10 Specifies, in milliseconds, how
long to wait before the first
reconnect attempt.

maxReconnectDelay 30000 Specifies, in milliseconds, the
maximum amount of time to wait
between reconnect attempts.

useExponentialBackOff true Specifies if an exponential back-
off is used between reconnect
attempts.

backOffMultiplier 2 Specifies the exponent used in
the exponential back-off
algorithm.

39

Red Hat JBoss A-MQ 6.2 Connection Reference

Option Default Description

maxReconnectAttempts 0] Specifies the maximum number of
reconnect attempts before an
error is sent back to the client. 0
specifies unlimited attempts.

Sample URI

Example 10.13, “Discovery Protocol URI” shows a discovery URI that uses a multicast discovery agent.

Example 10.13. Discovery Protocol URI

I discovery:(multicast://default)?initialReconnectDelay=100

Setting options on the discovered transports

The list of transport options, Options, in the discovery URI can also be used to set options on the
discovered transports. If you set an option not listed in the section called “Setting options on the
discovered transports”, the URI parser attempts to inject the option setting into every one of the
discovered endpoints.

Example 10.14, “Injecting Transport Options into a Discovered Transport” shows a discovery URI that
sets the TCP connectionTimeout option to 10 seconds.

Example 10.14. Injecting Transport Options into a Discovered Transport

I discovery:(multicast://default)?connectionTimeout=10000

The 10 second timeout setting is injected into every discovered TCP endpoint.

10.3. FANOUT PROTOCOL

Abstract

The fanout protocol allows clients to connect to multiple brokers at once and broadcast messages to
consumers connected to all of the brokers at once.

Overview

The fanout protocolenables a producer to auto-discover broker endpoints and broadcast topic
messages to all of the discovered brokers. The fanout protocol gives producers a convenient
mechanism for broadcasting messages to multiple brokers that are not part of a network of brokers.

The fanout protocol relies on a discovery agent to build up the list of broker URIs to which it connects.

URI syntax

40

CHAPTER 10. DISCOVERING BROKERS

Example 10.15, “Fanout URI Syntax” shows the syntax for a fanout URI.

Example 10.15. Fanout URI Syntax

I fanout://(DiscoveryAgentUri)?0ptions

DiscoveryAgentUriis URI for the discovery agent used to build up the list of available brokers.
Discovery agents are described in Section 10.1, “Discovery Agents”.

The options, ?0ptions, are specified in the form of a query list. The discovery options are described in
Table 10.2, “Fanout Protocol Options”. You can also inject transport options as described in the section
called “Setting options on the discovered transports”.

NOTE

If no options are required, you can drop the parentheses from the URI. The resulting URI
would take the form fanout://DiscoveryAgentUri

Transport options

The fanout protocol supports the transport options described in Table 10.2, “Fanout Protocol Options”.

Table 10.2. Fanout Protocol Options

Option Name Default Description

initialReconnectDelay 10 Specifies, in milliseconds, how
long the transport will wait before
the first reconnect attempt.

maxReconnectDelay 30000 Specifies, in milliseconds, the
maximum amount of time to wait
between reconnect attempts.

useExponentialBackOff true Specifies if an exponential back-
off is used between reconnect
attempts.

backOffMultiplier 2 Specifies the exponent used in
the exponential back-off
algorithm.

maxReconnectAttempts 0] Specifies the maximum number of
reconnect attempts before an
error is sent back to the client. 0
specifies unlimited attempts.

41

Red Hat JBoss A-MQ 6.2 Connection Reference

Option Name Default Description

fanOutQueues false Specifies whether queue
messages are replicated to every
connected broker. For more
information see the section called
“Applying fanout to queue
messages”.

minAckCount 2 Specifies the minimum number of
brokers to which the client must
connect before it sends out
messages. For more informaiton
see the section called “Minimum
number of brokers”.

Sample URI

Example 10.16, “Fanout Protocol URI” shows a discovery URI that uses a multicast discovery agent.

Example 10.16. Fanout Protocol URI

I fanout://(multicast://default)?initialReconnectDelay=100

Applying fanout to queue messages

The fanout protocol replicates topic messages by sending each topic message to all of the connected
brokers. By default, however, the fanout protocol does not replicate queue messages.

For queue messages, the fanout protocol picks one of the brokers at random and sends all of the queue
messages to that broker. This is a sensible default, because under normal circumstances, you would
not want to create more than one copy of a queue message.

It is possible to change the default behavior by setting the fanOutQueues option to true. This
configures the protocol so that it also replicates queue messages.

Minimum number of brokers

By default, the fanout protocol does not start sending messages until the producer has connected to a
minimum of two brokers You can customize this minimum value using the minAckCount option.

Setting minimum number of brokers equal to the expected number of discovered brokers ensures that

all of the available brokers start receiving messages at the same time. This ensures that no messages
are missed if a broker starts up after the producer has started sending messages.

Using fanout with a broker network

You have to be careful when using the fanout protocol with brokers that are joined in a network of
brokers.

The combination of the fanout protocol's broadcasting behavior and the nature of how messages are

42

CHAPTER 10. DISCOVERING BROKERS

propagated through a network of brokers makes it likely that consumers will receive duplicate
messages. If, for example, you joined four brokers into a network of brokers and connected a consumer
listening for messages on topic hello. jason to broker A and connected a producer to broker B to
send messages to topic hello. jason, the consumer would get one copy of the messages. If, on the
other hand, the producer connects to the network using the fanout protocol, the producer will connect
to every broker in the network simultaneously and start sending messages. Each of the four brokers
will receive a copy of every message and deliver its copy to the consumer. So, for each message, the
consumer will get four copies.

43

Red Hat JBoss A-MQ 6.2 Connection Reference

CHAPTER 11. PEER PROTOCOL

Abstract

The peer protocol uses embedded brokers to enable messaging clients to communicate with each
other directly.

URISYNTAX

A peer URI must conform to the following syntax:
I peer://PeerGroup/BrokerName?BrokerOptions

Where the group name, PeerGroup, identifies the set of peers that can communicate with each other.
That is, a given peer can connect only to the set of peers that specify the same PeerGroup name in their
URLs. The BrokerName specifies the broker name for the embedded broker. The broker options,
BrokerOptions, are specified in the form of a query list (for example, ?persistent=true).

BROKER OPTIONS

The peer URL supports the broker options described in Table 11.1, “Broker Options”.

Table 11.1. Broker Options

Option Description

useJmx If true, enables JMX. Default istrue.

persistent If true, the broker uses persistent storage. Default
is true.

populateJMSXUserID If true, the broker populates theJMSXUserID

message property with the sender’s authenticated
username. Default is false.

useShutdownHook If true, the broker installs a shutdown hook, so that
it can shut down properly when it receives a JVM Kkill.
Default is true.

brokerName Specifies the broker name. Default islocalhost.

deleteAllMessagesOnStartup If true, deletes all the messages in the persistent
store as the broker starts up. Default is false.

enableStatistics If true, enables statistics gathering in the broker.
Default is true.

DEPENDENCIES

44

CHAPTER 11. PEER PROTOCOL

The peer protocol uses multicast discovery to locate active peers on the network. In order for this to
work, you must ensure that the IP multicast protocol is enabled on your operating system.

45

Red Hat JBoss A-MQ 6.2 Connection Reference

FORMAT OPTIONS TABLE

APPENDIX A. OPENWIRE FORMAT OPTIONS

Table A.1, “Wire Format Options Supported by OpenWire Protocol” shows the wire format options

supported by the OpenWire protocol.

Table A.1. Wire Format Options Supported by OpenWire Protocol

46

Option

wireformat.stack
TraceEnabled

wireformat. tcpNo
DelayEnabled

wireformat.cache
Enabled

wireformat.cache
Size

wireformat. tight
EncodingEnabled

wireformat.prefi
xPacketSize

wireformat.maxIn
activityDuration

Default

true

false

true

1024

true

true

30000

Description

Specifies if the stack
trace of an exception
occurring on the broker
is sent to the client.

Specifies if a hint is
provided to the peer
that TCP nodelay
should be enabled on
the communications
socket.

Specifies that
commonly repeated
values are cached so
that less marshalling
occurs.

Specifies the maximum
number of values to
cache.

Specifies if wire size be
optimized over CPU
usage.

Specifies if the size of
the packet be prefixed
before each packet is

marshalled.

Specifies the maximum
inactivity duration, in
milliseconds, before the
broker considers the
connection dead and
Kills it. <= 0O disables
inactivity monitoring.

Negotiation Policy

false if either side is
false.

false if either side is
false.

false if either side is
false.

Use the smaller of the
two values.

false if either side is
false.

trueif both sides are
true.

Use the smaller of the
two values.

APPENDIX A. OPENWIRE FORMAT OPTIONS

Option Default Description Negotiation Policy
wireformat.maxIn 10000 Specifies the initial

activityDuration delay in starting

InitalDelay inactivity checks.

47

Red Hat JBoss A-MQ 6.2 Connection Reference

APPENDIX B. CLIENT CONNECTION OPTIONS

OVERVIEW

When creating a connection to a broker, a client can use the connection URI to configure a number of
the connection properties. The properties are added to the connection URI as matrix parameters on
the URI as shown in Example B.1, “Client Connection Options Syntax”.

Example B.1. Client Connection Options Syntax

I URI?jms.option?jms.option. ..

IMPORTANT

All of the client connection options are prefixed with jms.

OPTIONS
Table B.1, “Client Connection Options” shows the client connection options.

Table B.1. Client Connection Options

Option Default Description

alwaysSessionAsync true Specifies if a separate thread is
used for dispatching messages for
each Sessionin the
Connection. However, a
separate thread is always used if
there is more than one session, or
the session isn't in auto
acknowledge or dups ok mode.

clientID Specifies the JMS clientID to
use for the connection.

closeTimeout 15000 Specifies the timeout, in
milliseconds, before a connection
close is considered complete.
Normallyaclose() ona
connection waits for confirmation
from the broker; this allows that
operation to timeout and save the
client from hanging if there is no
broker.

48

Option

copyMessageOnSend

disableTimeStampsByDefa
ult

dispatchAsync

nestedMapAndListEnabled

objectMessageSerializat
ionDefered

optimizeAcknowledge

optimizeAcknowledgeTime
out

Default

true

false

false

true

false

false

300

APPENDIX B. CLIENT CONNECTION OPTIONS

Description

Specifies if a JMS message should
be copied to a new JMS
Message object as part of the
send () method in JMS. This is
enabled by default to be
compliant with the JMS
specification. Disabling this can
give you a performance, however
you must not mutate JMS
messages after they are sent.

Specifies whether or not
timestamps on messages should
be disabled or not. Disabling them
it adds a small performance
boost.

Specifies if the broker dispatches
messages to the consumer
asynchronously.

Enables/disables whether or not
structured message properties
and MapMessages are
supported so that Message
properties and MapMessage
entries can contain nested Map
and List objects.

Specifies that the serialization of
objects when they are set on an
ObjectMessage is deferred.
The object may subsequently get
serialized if the message needs to
be sent over a socket or stored to
disk.

Specifies if messages are
acknowledged in batches rather
than individually. Enabling this
could cause some issues with
auto-acknowledgement on
reconnection.

Specifies the maximum time, in
milliseconds, between batch
acknowledgements when
optimizeAcknowledge is
enabled.

49

Red Hat JBoss A-MQ 6.2 Connection Reference

Option

optimizedMessageDispatc
h

useAsyncSend

useCompression

useRetroactiveConsumer

warnAboutUnstartedConne
ctionTimeout

auditDepth

auditMaximumProducerNum
ber

alwaysSyncSend

blobTransferPolicy.*

50

Default

true

false

false

false

500

2048

64

false

Description

Specifies if a larger prefetch limit
is used for durable topic
subscribers.

Specifies in sends are performed
asynchronously. Asynchronous
sends provide a significant
performance boost. The tradeoff
is that the send () method will
return immediately whether the
message has been sent or not
which could lead to message loss.

Specifies if message bodies are
compressed.

Specifies whether or not
retroactive consumers are
enabled. Retroactive consumers
allow non-durable topic
subscribers to receive messages
that were published before the
non-durable subscriber started.

Specifies the timeout, in
milliseconds, from connection
creation to when a warning is
generated if the connection is not
properly started and a message is
received by a consumer. -1
disables the warnings.

Specifies the size of the message
window that will be audited for
duplicates and out of order
messages.

Specifies the maximum number of
producers that will be audited.

Specifies if a message producer
will always use synchronous
sends when sending a message.

Used to configure how the client
handles blob messages. See the
section called “Blob handling”.

APPENDIX B. CLIENT CONNECTION OPTIONS

Option Default Description

prefetchPolicy.* Used to configure the prefect
limits. See the section called
“Prefetch limits”.

redeliveryPolicy.* Used to configure the redelivery
policy. See the section called
“Redelivery policy”.

BLOB HANDLING

Blob messages allow the broker to use an out of band transport to pass large files between clients.
Table B.2, “Blob Message Properties” describes the connection URI options used to configure how a
client handles blob messages.

IMPORTANT

All of the prefetch options are prefixed with jms.blobTransferPolicy.

Table B.2. Blob Message Properties

Option Description

bufferSize Specifies the size of the buffer used when uploading
or downloading blobs.

uploadurl Specifies the URL to which blob messages are
stored for transfer. This value overrides the upload
URI configured by the broker.

PREFETCH LIMITS

The prefetch limits control how many messages can be dispatched to a consumer and waiting to be
acknowledged. Table B.3, “Connection URI Prefect Limit Options” describes the options used to
configure the prefetch limits of consumers using a connection.

IMPORTANT

All of the prefetch options are prefixed with jms . prefetchPolicy.

Table B.3. Connection URI Prefect Limit Options

Option Description
queuePrefetch Specifies the prefect limit for all consumers using
queues.

51

Red Hat JBoss A-MQ 6.2 Connection Reference

Option Description

queueBrowserPrefetch Specifies the prefect limit for all queue browsers.

topicPrefetch Specifies the prefect limit for non-durable topic
consumers.

durableTopicPrefetch Specifies the prefect limit for durable topic
consumers.

all Specifies the prefect limit for all types of message
consumers.

REDELIVERY POLICY

The redelivery policy controls the redelivery of messages in the event of connectivity issues.
Table B.4, “Redelivery Policy Options” describes the options used to configure the redelivery policy of
consumers using a connection.

IMPORTANT

All of the prefetch options are prefixed with jms.redeliveryPolicy.

Table B.4. Redelivery Policy Options

Option Default Description
collisionAvoidanceFacto 0.15 Specifies the percentage of range
r of collision avoidance.
maximumRedeliveries 6 Specifies the maximum number of

times a message will be
redelivered before it is
considered a poisoned pill and
returned to the broker so it can
go to a dead letter queue. -1
specifies an infinite number of
redeliveries.

maximumRedeliveryDelay -1 Specifies the maximum delivery
delay that will be applied if the
useExponentialBackOff
option is set. -1 specifies that no
maximum be applied.

initialRedeliveryDelay 1000 Specifies the initial redelivery
delay in milliseconds.

52

APPENDIX B. CLIENT CONNECTION OPTIONS

Option Default Description

redeliveryDelay 1000 Specifies the delivery delay, in
milliseconds, if
initialRedeliveryDelay
is 0.

useCollisionAvoidance false Specifies if the redelivery policy
uses collision avoidance.

useExponentialBackOff false Specifies if the redelivery time
out should be increased
exponentially.

backOffMultiplier 5 Specifies the back-off multiplier.

53

Red Hat JBoss A-MQ 6.2 Connection Reference

APPENDIX C. SERVER OPTIONS

SERVER OPTIONS TABLE

Table C.1, “ActiveMQ TransportConnector Server Options” shows the options to change the behavior of
TransportConnector in ActiveMQ broker configuration on the server.

Table C.1. ActiveMQ TransportConnector Server Options

Option Default Description

uri null Specifies the bind address for the
transport connector.

name null Specifies the name of the
transport connector instance.

discoveryURI null Specifies the multicast discovery
address for client connection to
find the broker.

enableStatusMonitor false Monitors the state of the
connections and determines
whether the connections are

blocked.
updateClusterClients false Updates the client connections
about the changes in the broker
status.
rebalanceClusterClients false Rebalances clients automatically
across the cluster on changes to
the topology.
updateClusterClientsOnR false Updates clients if a broker is
emove removed from the cluster.
updateClusterFilter null A comma separated list of regular

expressions that specifies the list
of brokers included for client
updates.

allowLinkStealing false Specifies that if the last two or
more connections have the same
id, for example clientID for JMS
then the last connection is
deemed as a valid connection and
the older connections are closed
by the broker. This property is
enable for default for MQTT
transport.

54

INDEX

Example C.1, “Server Options Configuration” shows the configuration of enableStatusMonitor
server option.

<transportConnector name="openwire" uri="tcp://0.0.0.0:61616"
enableStatusMonitor="true" >
<transportConnectors >

Example C.1. Server Options Configuration
<broker >
<transportConnectors >
<broker >

INDEX
o

connection socket, Setting transport options, Setting transport options, Setting transport options

D

discovery agent

Fuse Fabric, Fuse Fabric Discovery Agent
multicast, Multicast Discovery Agent
static, Static Discovery Agent

zeroconf, Zeroconf Discovery Agent

discovery protocol

backOffMultiplier, Transport options
initialReconnectDelay, Transport options
maxReconnectAttempts, Transport options
maxReconnectDelay, Transport options
URI, URI syntax

useExponentialBackOff, Transport options

discovery URI, URI syntax
discovery:, URI syntax

discoveryUri, Configuring a broker, Configuring a broker

E

embedded broker

brokerName, Broker options

55

Red Hat JBoss A-MQ 6.2 Connection Reference

deleteAllMessagesOnStartup, Broker options
enableStatistics, Broker options

persistent, Broker options
populateJMSXUserID, Broker options
useJmx, Broker options

useShutdownHook, Broker options

F
fabric://, URI

fanout protocol

backOffMultiplier, Transport options
fanOutQueues, Transport options
initialReconnectDelay, Transport options
maxReconnectAttempts, Transport options
maxReconnectDelay, Transport options
minAckCount, Transport options

URI, URI syntax

useExponentialBackOff, Transport options

fanout URI, URI syntax
fanout://, URI syntax

Fuse Fabric discovery agent
URI, URI

H

HTTP
URI, URI syntax

HTTPS
URI, URI syntax

L

listener socket, Setting transport options, Setting transport options, Setting transport options

M

MQTT, URI syntax

56

MQTT+NIO, URI syntax
MQTT+SSL, URI syntax
Multicast, URI syntax

multicast discovery agent

broker configuration, Configuring a broker

URI, URI

multicast://, URI

N

NIO
URI, URI syntax

NIO+SSL
URI, URI syntax

o

OpenWire
HTTP, URI syntax

HTTPS, URI syntax
NIO, URI syntax
NIO+SSL, URI syntax
SSL, URI syntax
TCP, URI syntax

transport options, Setting transport options, Setting transport options, Setting transport
options

UDP, URI syntax

S

SSL
URI, URI syntax

static discovery agent

URI, Using the agent

static://, Using the agent
STOMP, URI syntax

STOMP+NIO, URI syntax

INDEX

57

Red Hat JBoss A-MQ 6.2 Connection Reference

STOMP+SSL, URI syntax

T

TCP
URI, URI syntax

transport connector, Setting transport options, Setting transport options, Setting transport
options

transportConnector

discoveryUri, Configuring a broker, Configuring a broker

U

UDP
URI, URI syntax

URI
HTTP, URI syntax

HTTPS, URI syntax
MQTT, URI syntax
MQTT+NIO, URI syntax
MQTT+SSL, URI syntax
Multicast, URI syntax
NIO, URI syntax
NIO+SSL, URI syntax
SSL, URI syntax

STOMP, URI syntax
STOMP+NIO, URI syntax
STOMP+SSL, URI syntax
TCP, URI syntax

UDP, URI syntax

v

VM
advanced URI, URI syntax

broker configuration, Broker options

broker name, URI syntax

58

INDEX

brokerConfig, Broker options
create, Transport options
marshal, Transport options

simple URI, Simple VM URI Syntax
waitForStart, Transport options

wireFormat, Transport options

VM URI

advanced, URI syntax

simple, Simple VM URI Syntax

Y4

zeroconf discovery agent

broker configuration, Configuring a broker

URI, URI

zeroconf://, URI

59

	Table of Contents
	CHAPTER 1. OPENWIRE OVER TCP
	URI SYNTAX
	SETTING TRANSPORT OPTIONS
	TRANSPORT OPTIONS

	CHAPTER 2. OPENWIRE OVER SSL
	URI SYNTAX
	SETTING TRANSPORT OPTIONS
	SSL TRANSPORT OPTIONS
	CONFIGURING BROKER SSL OPTIONS
	CONFIGURING CLIENT SSL OPTIONS

	CHAPTER 3. OPENWIRE OVER HTTP(S)
	URI SYNTAX
	DEPENDENCIES

	CHAPTER 4. OPENWIRE OVER UDP/IP
	URI SYNTAX
	SETTING TRANSPORT OPTIONS
	TRANSPORT OPTIONS

	CHAPTER 5. STOMP PROTOCOL
	OVERVIEW
	URI SYNTAX
	TRANSPORT OPTIONS
	SSL TRANSPORT OPTIONS
	CONFIGURING BROKER SSL OPTIONS
	CONFIGURING CLIENT SSL OPTIONS

	CHAPTER 6. MULTICAST PROTOCOL
	URI SYNTAX
	TRANSPORT OPTIONS

	CHAPTER 7. MQ TELEMETRY TRANSPORT(MQTT) PROTOCOL
	URI SYNTAX
	TRANSPORT OPTIONS
	SSL TRANSPORT OPTIONS
	CONFIGURING BROKER SSL OPTIONS
	CONFIGURING CLIENT SSL OPTIONS

	CHAPTER 8. ADVANCED MESSAGE QUEUING PROTOCOL (AMQP)
	URI SYNTAX
	IDLETIMEOUT
	SECURITY
	SSL TRANSPORT OPTIONS
	CONFIGURING BROKER SSL OPTIONS
	CONFIGURING CLIENT SSL OPTIONS
	MAPPING FROM AMQP TO JMS
	AMQP-TO-JMS TRANSFORMERS
	HEADER MAPPING FOR ALL TRANSFORMERS
	HEADER MAPPING FOR NATIVE OR JMS TRANSFORMERS
	DEFAULT HEADER VALUES
	PROPERTY TYPE MAPPING
	MESSAGE BODY MAPPING

	CHAPTER 9. VM TRANSPORT
	9.1. SIMPLE VM URI SYNTAX
	URI syntax
	Broker options
	Example

	9.2. ADVANCED VM URI SYNTAX
	URI syntax
	Transport options
	Example

	CHAPTER 10. DISCOVERING BROKERS
	10.1. DISCOVERY AGENTS
	10.1.1. Introduction to Discovery Agents
	What is a discovery agent?
	Discovery mechanisms
	Discovery agent types

	10.1.2. Fuse Fabric Discovery Agent
	Overview
	URI
	Configuring a broker
	Configuring a client

	10.1.3. Static Discovery Agent
	Overview
	Using the agent
	Example

	10.1.4. Multicast Discovery Agent
	Overview
	URI
	Configuring a broker
	Configuring a client

	10.1.5. Zeroconf Discovery Agent
	Overview
	URI
	Configuring a broker
	Configuring a client

	10.2. DYNAMIC DISCOVERY PROTOCOL
	Overview
	URI syntax
	Transport options
	Sample URI
	Setting options on the discovered transports

	10.3. FANOUT PROTOCOL
	Overview
	URI syntax
	Transport options
	Sample URI
	Applying fanout to queue messages
	Minimum number of brokers
	Using fanout with a broker network

	CHAPTER 11. PEER PROTOCOL
	URI SYNTAX
	BROKER OPTIONS
	DEPENDENCIES

	APPENDIX A. OPENWIRE FORMAT OPTIONS
	FORMAT OPTIONS TABLE

	APPENDIX B. CLIENT CONNECTION OPTIONS
	OVERVIEW
	OPTIONS
	BLOB HANDLING
	PREFETCH LIMITS
	REDELIVERY POLICY

	APPENDIX C. SERVER OPTIONS
	SERVER OPTIONS TABLE

	INDEX

