
Red Hat JBoss A-MQ 6.3

Client Connectivity Guide

Creating and tuning clients connections to message brokers

Last Updated: 2020-07-30

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

Creating and tuning clients connections to message brokers

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2016 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat JBoss A-MQ supports a number of different wire protocols and message formats. This
guide provides a quick reference for understanding how to configure connections between clients
and message brokers.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. JBOSS A-MQ CLIENT APIS
1.2. PREPARING TO USE MAVEN
1.3. PREPARING TO USE AMQ WITH SSL

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS
2.1. GENERAL APPROACH TO ESTABLISHING A CONNECTION
2.2. OPENWIRE JMS CLIENT API
2.3. OPENWIRE C++ CLIENT API
2.4. OPENWIRE .NET CLIENT API
2.5. CONFIGURING NMS.ACTIVEMQ
2.6. STOMP HEARTBEATS
2.7. STOMP COMPOSITE DESTINATIONS
2.8. INTRA-JVM CONNECTIONS
2.9. PEER PROTOCOL
2.10. MESSAGE PREFETCH BEHAVIOR
2.11. MESSAGE REDELIVERY
2.12. JMS MESSAGE SELECTORS

CHAPTER 3. AMQP 1.0 CLIENT APIS
3.1. INTRODUCTION TO AMQP
3.2. JMS AMQP 1.0 CLIENT API
3.3. .NET AMQP 1.0 CLIENT API
3.4. PYTHON AMQP 1.0 CLIENT API
3.5. C++ AMQP 1.0 CLIENT API
3.6. INTEROPERABILITY BETWEEN AMQP 1.0 CLIENT APIS

INDEX

3
3
4
8

9
9
9
11

15
16
22
23
24
27
29
32
35

37
37
37
51

54
70
82

82

Table of Contents

1

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

2

https://github.com/Azure/amqpnetlite

CHAPTER 1. INTRODUCTION

Abstract

Red Hat JBoss A-MQ clients can connect to a broker using a variety of transports and APIs. The
connections are highly configurable and can be tuned for the majority of use cases.

1.1. JBOSS A-MQ CLIENT APIS

Transports and protocols

Red Hat JBoss A-MQ uses OpenWire as its default on the wire message protocol. OpenWire is a JMS
compliant wire protocol that is designed to be fully-featured and highly performant. It is the default
protocol of JBoss A-MQ. OpenWire can use a number of transports including TCP, SSL, and HTTP.

In addition to OpenWire, JBoss A-MQ clients can also use a number of other transports including:

Simple Text Orientated Messaging Protocol(STOMP)—allows developers to use a wide variety
of client APIs to connect to a broker.

Discovery—allows clients to connect to one or more brokers without knowing the connection
details for a specific broker. See Using Networks of Brokers .

VM—allows clients to directly communicate with other clients in the same virtual machine. See
Section 2.8, “Intra-JVM Connections”.

Peer—allows clients to communicate with each other without using an external message broker.
See Section 2.9, “Peer Protocol” .

For details of using the different the transports see the Connection Reference.

Supported Client APIs

JBoss A-MQ provides a standard JMS client library. In addition to the standard JMS APIs the Java client
library has a few implementation specific APIs.

JBoss A-MQ also has a C++ client library and .Net client library that are developed as part of the Apache
ActiveMQ project.

NOTE

This guide only deals with the JBoss A-MQ client libraries.

The STOMP protocol allows you to use a number of other clients including:

C clients

C++ clients

C# and .NET clients

Delphi clients

CHAPTER 1. INTRODUCTION

3

Flash clients

Perl clients

PHP clients

Pike clients

Python clients

The AMQP client are currently available for the following clients:

C++ Clients

Python clients

.NET clients

Configuration

There are two types of properties that affect client connections:

transport options—configured on the connection. These options are configured using the
connection URI and may be set by the broker. They apply to all clients using the connection.

destination options—configured on a per destination basis. These options are configured when
the destination is created and impact all of the clients that send or receive messages using the
destination. They are always set by clients.

Some properties, like prefect and redelivery, can be configured as both connection options and
destination oprions.

1.2. PREPARING TO USE MAVEN

Overview

This section gives a brief overview of how to prepare Maven for building Red Hat JBoss A-MQ projects
and introduces the concept of Maven coordinates, which are used to locate Maven artifacts.

Prerequisites

In order to build a project using Maven, you must have the following prerequisites:

Maven installation—Maven is a free, open source build tool from Apache. You can download the
latest version from the Maven download page .

Network connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. By default, Maven looks for
repositories that are accessed over the Internet. You can change this behavior so that Maven
will prefer searching repositories that are on a local network.

NOTE

Maven can run in an offline mode. In offline mode Maven will only look for
artifacts in its local repository.

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

4

http://maven.apache.org/download.html

Adding the Red Hat JBoss A-MQ repository

In order to access artifacts from the Red Hat JBoss A-MQ Maven repository, you need to add it to
Maven's settings.xml file. Maven looks for your settings.xml file in the .m2 directory of the user's home
directory. If there is not a user specified settings.xml file, Maven will use the system-level settings.xml
file at M2_HOME/conf/settings.xml.

To add the JBoss A-MQ repository to Maven's list of repositories, you can either create a new
.m2/settings.xml file or modify the system-level settings. In the settings.xml file, add the repository
element for the JBoss A-MQ repository as shown in bold text in Example 1.1, “Adding the Red Hat JBoss
A-MQ Repositories to Maven”.

Example 1.1. Adding the Red Hat JBoss A-MQ Repositories to Maven

<?xml version="1.0"?>
<settings>

 <profiles>
 <profile>
 <id>extra-repos</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>jboss-public</id>
 <name>JBoss Public Repository Group</name>
 <url>https://repository.jboss.org/nexus/content/groups/public/</url>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>

CHAPTER 1. INTRODUCTION

5

Artifacts

The basic building block in the Maven build system is an artifact. The output of an artifact, after
performing a Maven build, is typically an archive, such as a JAR or a WAR.

Maven coordinates

A key aspect of Maven functionality is the ability to locate artifacts and manage the dependencies
between them. Maven defines the location of an artifact using the system of Maven coordinates, which
uniquely define the location of a particular artifact. A basic coordinate tuple has the form, {groupId,
artifactId, version}. Sometimes Maven augments the basic set of coordinates with the additional
coordinates, packaging and classifier. A tuple can be written with the basic coordinates, or with the
additional packaging coordinate, or with the addition of both the packaging and classifier coordinates, as
follows:

Each coordinate can be explained as follows:

groupdId

Defines a scope for the name of the artifact. You would typically use all or part of a package name as

 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>jboss-public</id>
 <name>JBoss Public Repository Group</name>
 <url>https://repository.jboss.org/nexus/content/groups/public</url>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>

 <activeProfiles>
 <activeProfile>extra-repos</activeProfile>
 </activeProfiles>

</settings>

groupdId:artifactId:version
groupdId:artifactId:packaging:version
groupdId:artifactId:packaging:classifier:version

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

6

Defines a scope for the name of the artifact. You would typically use all or part of a package name as
a group ID—for example, org.fusesource.example.

artifactId

Defines the artifact name (relative to the group ID).

version

Specifies the artifact's version. A version number can have up to four parts: n.n.n.n, where the last
part of the version number can contain non-numeric characters (for example, the last part of 1.0-
SNAPSHOT is the alphanumeric substring, 0-SNAPSHOT).

packaging

Defines the packaged entity that is produced when you build the project. For OSGi projects, the
packaging is bundle. The default value is jar.

classifier

Enables you to distinguish between artifacts that were built from the same POM, but have different
content.

The group ID, artifact ID, packaging, and version are defined by the corresponding elements in an
artifact's POM file. For example:

For example, to define a dependency on the preceding artifact, you could add the following
dependency element to a POM:

NOTE

<project ... >
 ...
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <packaging>bundle</packaging>
 <version>1.0-SNAPSHOT</version>
 ...
</project>

<project ... >
 ...
 <dependencies>
 <dependency>
 <groupId>org.fusesource.example</groupId>
 <artifactId>bundle-demo</artifactId>
 <version>1.0-SNAPSHOT</version>
 </dependency>
 </dependencies>
 ...
</project>

CHAPTER 1. INTRODUCTION

7

NOTE

It is not necessary to specify the bundle package type in the preceding dependency,
because a bundle is just a particular kind of JAR file and jar is the default Maven package
type. If you do need to specify the packaging type explicitly in a dependency, however,
you can use the type element.

1.3. PREPARING TO USE AMQ WITH SSL

Overview

This section gives a brief overview of how to secure A-MQ using SSL to run the clients with security
features enabled. To setup SSL for server authentication, you require broker certificates and password
configuration.

To generate a certificate for the amq broker, create a directory on your system to hold the
generated files. For example, mkdir certificates_dir

To generate the certificates, navigate to the certificates directory and run the following
command.

where, general_passwd is the value of the password that you need to specify and hostname
specify the hostname as per the settings on your system

Setting up A-MQ for listening to amqp+ssl connection

To enable server authentication, client authentication, and to skip SASL authentication, modify the
activemq.xml file to include the authentication settings

For Server authentication, add the amqp+ssl connector to the list if transportConnectors in
activemq.xml.

For Client authentication, add the amqp+ssl connector to the list if transportConnectors in
activemq.xml

For skip SASL authentication, enable the anonymous access property for the
simpleAuthenticationPlugin in activemq.xml

keytool -genkey -alias broker -keyalg RSA -keystore broker.ks \ -storepass
${general_passwd} -dname "O=RedHat Inc.,CN=$(hostname)" \ -keypass
${general_passwd} -validity 99999

<transportConnector name="amqp+ssl" uri="amqp+ssl://<hostname>:5671"/>

<transportConnector name="amqp+ssl" uri="amqp+ssl://<hostname>:5671?
needClientAuth=true"/>

<simpleAuthenticationPlugin anonymousAccessAllowed="true"/>

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

8

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

Abstract

OpenWire is a cross language Wire Protocol that allows native access to ActiveMQ from different
languages and platforms. It provides higher performance and reduced network bandwidth.

2.1. GENERAL APPROACH TO ESTABLISHING A CONNECTION

Steps to establish a connection

Regardless of the API in use, the pattern for establishing a connection between a messaging client and a
message broker is the same. You must:

1. Get an instance of the Red Hat JBoss A-MQ connection factory.

Depending on the environment, the application can create a new instance of the connection
factory or use JNDI, or another mechanism, to look up the connection factory.

2. Use the connection factory to create a connection.

3. Get an instance of the destination used for sending or receiving messages.

Destinations are administered objects that are typically created by the broker. The JBoss A-MQ
allows clients to create destinations on-demand. You can also look up destinations using JNDI
or another mechanism.

4. Use the connection to create a session.

The session is the factory for creating producers and consumers. The session also is a factory
for creating messages.

5. Use the session to create the message consumer or message producer.

6. Start the connection.

NOTE

You can add configuration information when creating connections and destinations.

2.2. OPENWIRE JMS CLIENT API

Overview

Red Hat JBoss A-MQ clients use the standard JMS APIs to interact with the message broker. Most of
the configuration properties can be set using the connection URI and the destination specification used.

Developers can also use the JBoss A-MQ specific implementations to access JBoss A-MQ
configuration features. Using these APIs will make your client non-portable.

The connection factory

The connection factory is an administered object that is created by the broker and used by clients

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

9

The connection factory is an administered object that is created by the broker and used by clients
wanting to connect to the broker. Each JMS provider is responsible for providing an implementation of
the connection factory and the connection factory is stored in JNDI and retrieved by clients using a JNDI
lookup.

The JBoss A-MQ connection factory, ActiveMQConnectionFactory, is used to create connections to
brokers and does not need to be looked up using JNDI. Instances are created using a broker URI that
specifies one of the transport connectors configured on a broker and the connection factory will do the
heavy lifting.

Example 2.1, “Connection Factory Constructors” shows the syntax for the available
ActiveMQConnectionFactory constructors.

Example 2.1. Connection Factory Constructors

ActiveMQConnectionFactory(String brokerURI);
ActiveMQConnectionFactory(URI brokerURI);
ActiveMQConnectionFactory(String username,
 String password,
 String brokerURI);
ActiveMQConnectionFactory(String username,
 String password,
 URI brokerURI);
The broker URI also specifies connection configuration information. For details on how to construct a
broker URI see the Connection Reference.

The connection

The connection object is created from the connection factory and is the object responsible for
maintaining the link between the client and the broker. The connection object is used to create session
objects that manage the resources used by message producers and message consumers.

For more applications the standard JMS Connection object will suffice. However, JBoss A-MQ does
provide an implementation, ActiveMQConnection, that provides a number of additional methods for
working with the broker. Using ActiveMQConnection will make your client code less portable between
JMS providers.

The session

The session object is responsible for managing the resources for the message consumers and message
producers implemented by a client. It is created from the connection, and is used to create message
consumers, message producers, messages, and other objects involved in sending and receiving
messages from a broker.

Example

Example 2.2, “JMS Producer Connection” shows code for creating a message producer that sends
messages to the queue EXAMPLE.FOO.

Example 2.2. JMS Producer Connection

import org.apache.activemq.ActiveMQConnectionFactory;

import javax.jms.Connection;

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

10

2.3. OPENWIRE C++ CLIENT API

Overview

The CMS API is a C++ corollary to the JMS API. The CMS makes every attempt to maintain parity with
the JMS API as possible. It only diverges when a JMS feature depended on features in the Java
programming language. Even though there are some differences most are minor and for the most part
CMS adheres to the JMS spec. Having a firm grasp on how JMS works should make using the C++ API
easier.

NOTE

In order to use the CMS API, you will need to download the source and build it for your
environment.

The connection factory

The first interface you will use in the CMS API is the ConnectionFactory. A ConnectionFactory allows
you to create connections which maintain a connection to a message broker.

The simplest way to obtain an instance of a ConnectionFactory is to use the static

import javax.jms.DeliveryMode;
import javax.jms.Destination;
import javax.jms.ExceptionListener;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;

...

// Create a ConnectionFactory
ActiveMQConnectionFactory connectionFactory = new
ActiveMQConnectionFactory("tcp://localhost:61616");

// Create a Connection
Connection connection = connectionFactory.createConnection();

// Create a Session
Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

// Create the destination
Destination destination = session.createQueue("EXAMPLE.FOO");

// Create a MessageProducer from the Session to the Queue
MessageProducer producer = session.createProducer(destination);

// Start the connection
connection.start();

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

11

The simplest way to obtain an instance of a ConnectionFactory is to use the static
createCMSConnectionFactory() method that all CMS provider libraries are required to implement.
Example 2.3, “Creating a Connection Factory” demonstrates how to obtain a new ConnectionFactory.

Example 2.3. Creating a Connection Factory

The createCMSConnectionFactory() takes a single string parameter which a URI that defines the
connection that will be created by the factory. Additionally configuration information can be encoded in
the URI. For details on how to construct a broker URI see the Connection Reference.

The connection

Once you've created a connection factory, you need to create a connection using the factory. A
Connection is a object that manages the client's connection to the broker. Example 2.4, “Creating a
Connection” shows the code to create a connection.

Example 2.4. Creating a Connection

Upon creation the connection object attempts to connect to the broker, if the connection fails then an
CMSException is thrown with a description of the error that occurred stored in its message property.

The connection interface defines an object that is the client's active connection to the CMS provider. In
most cases the client will only create one connection object since it is considered a heavyweight object.

A connection serves several purposes:

It encapsulates an open connection with a JMS provider. It typically represents an open TCP/IP
socket between a client and a provider service daemon.

Its creation is where client authentication takes place.

It can specify a unique client identifier.

It provides a ConnectionMetaData object.

It supports an optional ExceptionListener object.

The session

After creating the connection the client must create a Session in order to create message producers and
consumers. Example 2.5, “Creating a Session” shows how to create a session object from the
connection.

Example 2.5. Creating a Session

std::auto_ptr<cms::ConnectionFactory> connectionFactory(
 cms::ConnectionFactory::createCMSConnectionFactory("tcp://127.0.0.1:61616"));

std::auto_ptr<cms::Connection> connection(connectionFactory->createConnection());

std::auto_ptr<cms::Session> session(connection-
>createSession(cms::Session::CLIENT_ACKNOWLEDGE));

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

12

When a client creates a session it must specify the mode in which the session will acknowledge the
messages that it receives and dispatches. The modes supported are summarized in Table 2.1, “Support
Acknowledgement Modes”.

Table 2.1. Support Acknowledgement Modes

Acknowledge Mode Description

AUTO_ACKNOWLEDGE The session automatically acknowledges a client's
receipt of a message when the session returns
successfully from a recieve call or when the message
listener of the session returns successfully.

CLIENT_ACKNOWLEDGE The client acknowledges a consumed message by
calling the message's acknowledge method.
Acknowledging a consumed message acknowledges
all messages that the session has consumed.

DUPS_OK_ACKNOWLEDGE The session to lazily acknowledges the delivery of
messages. This is likely to result in the delivery of
some duplicate messages if the broker fails, so it
should only be used by consumers that can tolerate
duplicate messages. Use of this mode can reduce
session overhead by minimizing the work the session
does to prevent duplicates.

SESSION_TRANSACTED The session is transacted and the acknowledge of
messages is handled internally.

INDIVIDUAL_ACKNOWLEDGE Acknowledges are applied to a single message only.

NOTE

If you do not specify an acknowledgement mode, the default is AUTO_ACKNOWLEDGE.

A session serves several purposes:

It is a factory for producers and consumers.

It supplies provider-optimized message factories.

It is a factory for temporary topics and temporary queues.

It provides a way to create a queue or a topic for those clients that need to dynamically
manipulate provider-specific destination names.

It supports a single series of transactions that combine work spanning its producers and
consumers into atomic units.

It defines a serial order for the messages it consumes and the messages it produces.

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

13

It retains messages it consumes until they have been acknowledged.

It serializes execution of message listeners registered with its message consumers.

NOTE

A session can create and service multiple producers and consumers.

Resources

The API reference documentation for the A-MQ C++ API can be found at
http://activemq.apache.org/cms/api.html.

Example

Example 2.6, “CMS Producer Connection” shows code for creating a message producer that sends
messages to the queue EXAMPLE.FOO.

Example 2.6. CMS Producer Connection

#include <decaf/lang/Thread.h>
#include <decaf/lang/Runnable.h>
#include <decaf/util/concurrent/CountDownLatch.h>
#include <decaf/lang/Integer.h>
#include <decaf/util/Date.h>
#include <activemq/core/ActiveMQConnectionFactory.h>
#include <activemq/util/Config.h>
#include <cms/Connection.h>
#include <cms/Session.h>
#include <cms/TextMessage.h>
#include <cms/BytesMessage.h>
#include <cms/MapMessage.h>
#include <cms/ExceptionListener.h>
#include <cms/MessageListener.h>
...

using namespace activemq::core;
using namespace decaf::util::concurrent;
using namespace decaf::util;
using namespace decaf::lang;
using namespace cms;
using namespace std;

...

// Create a ConnectionFactory
auto_ptr<ConnectionFactory> connectionFactory(
 ConnectionFactory::createCMSConnectionFactory("tcp://127.1.0.1:61616?
wireFormat=openwire"));

// Create a Connection
connection = connectionFactory->createConnection();
connection->start();

// Create a Session

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

14

http://activemq.apache.org/cms/api.html

2.4. OPENWIRE .NET CLIENT API

Overview

The Red Hat JBoss A-MQ NMS client is a .Net client that communicates with the JBoss A-MQ broker
using the Openwire protocol. This client supports advanced features such as failover, discovery, SSL,
and message compression.

For complete details of using the .Net API see http://activemq.apache.org/nms/index.html.

NOTE

In order to use the NMS API, you can download the product and the binaries from Red
Hat Customer Portal
https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?
softwareId=47011&product=jboss.amq.clients&version=1.0.0&downloadType=distributions.

Resources

The API reference documentation for the A-MQ .Net API can be found at
http://activemq.apache.org/nms/nms-api.html.

You can find examples of using the A-MQ .Net API at http://activemq.apache.org/nms/nms-
examples.html.

Example

Example 2.7, “NMS Producer Connection” shows code for creating a message producer that sends
messages to the queue EXAMPLE.FOO.

Example 2.7. NMS Producer Connection

session = connection->createSession(Session::AUTO_ACKNOWLEDGE);
destination = session->createQueue("EXAMPLE.FOO");

// Create a MessageProducer from the Session to the Queue
producer = session->createProducer(destination);

...

using System;
using Apache.NMS;
using Apache.NMS.Util;
...

// NOTE: ensure the nmsprovider-activemq.config file exists in the executable folder.
IConnectionFactory factory = new ActiveMQ.ConnectionFactory("tcp://localhost:61616);

// Create a Connection
IConnection connection = factory.CreateConnection();

// Create a Session

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

15

http://activemq.apache.org/nms/index.html
https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=47011&product=jboss.amq.clients&version=1.0.0&downloadType=distributions
http://activemq.apache.org/nms/nms-api.html
http://activemq.apache.org/nms/nms-examples.html

2.5. CONFIGURING NMS.ACTIVEMQ

Abstract

All configuration settings can be accessed through URI-encoded options, which can be set either on a
connection or on a destination. Using the URI syntax, you can configure virtually every facet of an
NMS.ActiveMQ client.

Connection configuration using the generic NMSConnectionFactory class

Using the Generic NMSConnectionFactory class, you can configure an ActiveMQ endpoint as follows:

Connection configuration using the ActiveMQ ConnectionFactory class

Using the ActiveMQ ConnectionFactory class, you can configure an ActiveMQ endpoint as follows:

Protocol variants

The following variants of the OpenWire protocol are supported:

Option Name Description

tcp Uses TCP/IP Sockets to connect to the Broker.

ssl Uses TCP/IP Sockets to connect to the Broker with
an added SSL layer.

discovery Uses The Discovery Transport to find a Broker.

ISession session = connection.CreateSession();

// Create the destination
IDestination destination = SessionUtil.GetDestination(session, "queue://EXAMPLE.FOO");

// Create a message producer from the Session to the Queue
IMessageProducer producer = session.CreateProducer(destination);

// Start the connection
connection.Start();
...

var cf = new NMSConnectionFactory(
 "activemq:tcp://localhost:61616?wireFormat.tightEncodingEnabled=true");

var cf = new Apache.NMS.ActiveMQ.ConnectionFactory(
 "tcp://localhost:61616?wireFormat.tightEncodingEnabled=true");

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

16

failover Uses the Failover Transport to connect and
reconnect to one or more Brokers.

TCP transport options

The tcp transport supports the following options:

Option Name Default Description

transport.useLogging false Log data that is sent across the
Transport.

transport.receiveBufferSize 8192 Amount of Data to buffer from
the Socket.

transport.sendBufferSize 8192 Amount of Data to buffer before
writing to the Socket.

transport.receiveTimeout 0 Time to wait for more data, zero
means wait infinitely.

transport.sendTimeout 0 Timeout on sends, 0 means wait
forever for completion.

transport.requestTimeout 0 Time to wait before a Request
Command is considered to have
failed.

Failover transport options

The failover transport supports the following options:

Option Name Default Description

transport.timeout -1 Time that a send operation blocks
before failing.

transport.initialReconnectDe
lay

10 Time in Milliseconds that the
transport waits before attempting
to reconnect the first time.

transport.maxReconnectDel
ay

30000 The max time in Milliseconds that
the transport will wait before
attempting to reconnect.

transport.backOffMultiplier 2 The amount by which the
reconnect delay will be multiplied
by if useExponentialBackOff is
enabled.

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

17

transport.useExponentialBa
ckOff

true Should the delay between
connection attempt grow on each
try up to the max reconnect delay.

transport.randomize true Should the Uri to connect to be
chosen at random from the list of
available Uris.

transport.maxReconnectAtte
mpts

0 Maximum number of time the
transport will attempt to
reconnect before failing (0 means
infinite retries)

transport.startupMaxReconn
ectAttempts

0 Maximum number of time the
transport will attempt to
reconnect before failing when
there has never been a
connection made. (0 means
infinite retries) (included in
NMS.ActiveMQ v1.5.0+)

transport.reconnectDelay 10 The delay in milliseconds that the
transport waits before attempting
a reconnection.

transport.backup false Should the Failover transport
maintain hot backups.

transport.backupPoolSize 1 If enabled, how many hot backup
connections are made.

transport.trackMessages false keep a cache of in-flight
messages that will flushed to a
broker on reconnect

transport.maxCacheSize 256 Number of messages that are
cached if trackMessages is
enabled.

transport.updateURIsSuppor
ted

true Update the list of known brokers
based on BrokerInfo messages
sent to the client.

Connection Options

Connection options can either be set using either the connection. prefix or the nms. prefix (in a similar
way to the Java client's jms. prefixed settings).

Option Name Default Description

connection.AsyncSend false Are message sent
Asynchronously.

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

18

connection.AsyncClose true Should the close command be
sent Asynchronously

connection.AlwaysSyncSen
d

false Causes all messages a Producer
sends to be sent Asynchronously.

connection.CopyMessageOn
Send

true Copies the Message objects a
Producer sends so that the client
can reuse Message objects
without affecting an in-flight
message.

connection.ProducerWindow
Size

0 The ProducerWindowSize is the
maximum number of bytes in
memory that a producer will
transmit to a broker before
waiting for acknowledgement
messages from the broker that it
has accepted the previously sent
messages. In other words, this how
you configure the producer flow
control window that is used for
async sends where the client is
responsible for managing memory
usage. The default value of 0
means no flow control at the
client. See also Producer Flow
Control

connection.useCompression false Should message bodies be
compressed before being sent.

connection.sendAcksAsync false Should message acks be sent
asynchronously

connection.messagePriority
Supported

true Should messages be delivered to
the client based on the value of
the Message Priority header.

connection.dispatchAsync false Should the broker dispatch
messages asynchronously to the
connection's consumers.

connection.watchTopicAdvis
ories

true Should the client watch for
advisory messages from the
broker to track the creation and
deletion of temporary
destinations.

OpenWire options

The following options are used to configure the OpenWire protocol:

Option Name Default Description

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

19

http://activemq.apache.org/producer-flow-control.html
http://activemq.apache.org/consumer-dispatch-async.html

wireFormat.stackTraceEnabl
ed

false Should the stack trace of
exception that occur on the
broker be sent to the client? Only
used by openwire protocol.

wireFormat.cacheEnabled false Should commonly repeated values
be cached so that less marshalling
occurs? Only used by openwire
protocol.

wireFormat.tcpNoDelayEnab
led

false Does not affect the wire format,
but provides a hint to the peer
that TCP nodelay should be
enabled on the communications
Socket. Only used by openwire
protocol.

wireFormat.sizePrefixDisable
d

false Should serialized messages
include a payload length prefix?
Only used by openwire protocol.

wireFormat.tightEncodingEn
abled

false Should wire size be optimized
over CPU usage? Only used by
the openwire protocol.

wireFormat.maxInactivityDur
ation

30000 The maximum inactivity duration
(before which the socket is
considered dead) in milliseconds.
On some platforms it can take a
long time for a socket to appear
to die, so we allow the broker to
kill connections if they are inactive
for a period of time. Use by some
transports to enable a keep alive
heart beat feature. Set to a value
<= 0 to disable inactivity
monitoring.

maxInactivityDurationInitalD
elay

10000 The initial delay in starting the
maximum inactivity checks (and,
yes, the word 'Inital' is supposed to
be misspelled like that)

Destination configuration

A destination URI can be configured as shown in the following example:

General options

The following destination URI options are generally supported for all protocols:

Option Name Default Description

d = session.CreateTopic("com.foo?consumer.prefetchSize=2000&consumer.noLocal=true");

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

20

consumer.prefetchSize 1000 The number of message the
consumer will prefetch.

consumer.maximumPending
MessageLimit

0 Use to control if messages are
dropped if a slow consumer
situation exists.

consumer.noLocal false Same as the noLocal flag on a
Topic consumer. Exposed here so
that it can be used with a queue.

consumer.dispatchAsync false Should the broker dispatch
messages asynchronously to the
consumer.

consumer.retroactive false Is this a Retroactive Consumer.

consumer.selector null JMS Selector used with the
consumer.

consumer.exclusive false Is this an Exclusive Consumer.

consumer.priority 0 Allows you to configure a
Consumer Priority.

OpenWire specific options

The following destination URI options are supported only for the OpenWire protocol:

Option Name Default Description

consumer.browser false

consumer.networkSubscripti
on

false

consumer.optimizedAcknowl
edge

false Enables an optimised
acknowledgement mode where
messages are acknowledged in
batches rather than individually.
Alternatively, you could use
Session.DUPS_OK_ACKNO
WLEDGE acknowledgement
mode for the consumers which
can often be faster. WARNING:
enabling this issue could cause
some issues with auto-
acknowledgement on
reconnection

consumer.noRangeAcks false

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

21

http://activemq.apache.org/what-is-the-prefetch-limit-for.html
http://activemq.apache.org/slow-consumer-handling.html
http://activemq.apache.org/consumer-dispatch-async.html
http://activemq.apache.org/retroactive-consumer.html
http://activemq.apache.org/exclusive-consumer.html
http://activemq.apache.org/consumer-priority.html

consumer.retroactive false Sets whether or not retroactive
consumers are enabled.
Retroactive consumers allow non-
durable topic subscribers to
receive old messages that were
published before the non-durable
subscriber started.

2.6. STOMP HEARTBEATS

Abstract

The Stomp 1.1 protocol support a heartbeat policy that allows clients to send keepalive messages to the
broker.

Stomp 1.1 heartbeats

Stomp 1.1 adds support for heartbeats (keepalive messages) on Stomp connections. Negotiation of a
heartbeat policy is normally initiated by the client (Stomp 1.1 clients only) and the client must be
configured to enable heartbeats. No broker settings are required to enable support for heartbeats,
however.

At the level of the Stomp wire protocol, heartbeats are negotiated when the client establishes the
Stomp connection and the following messages are exchanged between client and server:

The CltSend, CltRecv, SrvSend, and SrvRecv fields are interpreted as follows:

CltSend

Indicates the minimum frequency of messages sent from the client , expressed as the maximum time
between messages in units of milliseconds. If the client does not send a regular Stomp message
within this time limit, it must send a special heartbeat message, in order to keep the connection alive.

A value of zero indicates that the client does not send heartbeats.

CltRecv

Indicates how often the client expects to receive message from the server, expressed as the
maximum time between messages in units of milliseconds. If the client does not receive any
messages from the server within this time limit, it would time out the connection.

A value of zero indicates that the client does not expect heartbeats and will not time out the
connection.

SrvSend

Indicates the minimum frequency of messages sent from the server , expressed as the maximum time

CONNECT
heart-beat:CltSend,CltRecv

CONNECTED:
heart-beat:SrvSend,SrvRecv

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

22

Indicates the minimum frequency of messages sent from the server , expressed as the maximum time
between messages in units of milliseconds. If the server does not send a regular Stomp message
within this time limit, it must send a special heartbeat message, in order to keep the connection alive.

A value of zero indicates that the server does not send heartbeats.

SrvRecv

Indicates how often the server expects to receive message from the client, expressed as the
maximum time between messages in units of milliseconds. If the server does not receive any
messages from the client within this time limit, it would time out the connection.

A value of zero indicates that the server does not expect heartbeats and will not time out the
connection.

In order to ensure that the rates of sending and receiving required by the client and the server are
mutually compatible, the client and the server negotiate the heartbeat policy, adjusting their sending
and receiving rates as needed.

Stomp 1.0 heartbeat compatibility

A difficulty arises, if you want to support an inactivity timeout on your Stomp connections when legacy
Stomp 1.0 clients are connected to your broker. The Stomp 1.0 protocol does not support heartbeats, so
Stomp 1.0 clients are not capable of negotiating a heartbeat policy.

To get around this limitation, you can specify the transport.defaultHeartBeat option in the broker's
transportConnector element, as follows:

The effect of this setting is that the broker now behaves as if the Stomp 1.0 client had sent the
following Stomp frame when it connected:

This means that the broker will expect the client to send a message at least once every 5000
milliseconds (5 seconds). The second integer value, 0, indicates that the client does not expect to
receive any heartbeats from the server (which makes sense, because Stomp 1.0 clients do not
understand heartbeats).

Now, if the Stomp 1.0 client does not send a regular message after 5 seconds, the connection will time
out, because the Stomp 1.0 client is not capable of sending out a heartbeat message to keep the
connection alive. Hence, you should choose the value of the timeout in transport.defaultHeartBeat
such that the connection will stay alive, as long as the Stomp 1.0 clients are sending messages at their
normal rate.

2.7. STOMP COMPOSITE DESTINATIONS

Abstract

You can specify composite destinations between Stomp and A-MQ.

<transportConnector name="stomp" uri="stomp://0.0.0.0:0?transport.defaultHeartBeat=5000,0" />

CONNECT
heart-beat:5000,0

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

23

Specify Composite Destinatons for Stomp in A-MQ

Stomp can be used to subscribe to A-MQ topics or to pull from queues. Comma separated lists of
multiple topics or queues can be used to ensure that all messages are receieved. These are composite
destination lists.

The format of a composite destination list is as follows:

NOTE

The dest-type must be specified for each entry in the composite definition list, even
though all the entries are for the same destination type.

For example, a composite destination list of topics can be defined as:

A composite destination list of queues can be defined as:

You can combine queue and topic destinations on the same line in the following way:

NOTE

Be aware that if a message is published to more than one of the elements in your
composite definition list, you will only recieve one copy of it. You will not receive duplicate
messages.

2.8. INTRA-JVM CONNECTIONS

Abstract

Red Hat JBoss A-MQ uses a VM transport to allow clients to connect to each other inside the Java
Virtual Machine (JVM) without the overhead of network communication.

Overview

Red Hat JBoss A-MQ's VM transport enables Java clients running inside the same JVM to communicate
with each other without having to resort to a using a network connection. The VM transport does this by
implicitly creating an embedded broker the first time it is accessed. Figure 2.1, “Clients Connected
through the VM Transport” shows the basic architecture of the VM protocol.

Figure 2.1. Clients Connected through the VM Transport

/dest-type/dest-name01,/dest-type/dest-name02,/dest-type/dest-name79

/topic/test01,/topic/test02,/topic/test15A

/queue/queuename01,/queue/queuename02,/queue/queuename31C

/queue/queuename01,/topic/test01,/queue/queuename31C

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

24

Figure 2.1. Clients Connected through the VM Transport

Embedded brokers

The VM transport uses a broker embedded in the same JVM as the clients to facilitate communication
between the clients. The embedded broker can be created in several ways:

explicitly defining the broker in the application's configuration

explicitly creating the broker using the Java APIs

automatically when the first client attempts to connect to it using the VM transport

The VM transport uses the broker name to determine if an embedded broker needs to be created. When
a client uses the VM transport to connect to a broker, the transport checks to see if an embedded
broker by that name already exists. If it does exist, the client is connected to the broker. If it does not
exist, the broker is created and then the client is connected to it.

IMPORTANT

When using explicitly created brokers there is a danger that your clients will attempt to
connect to the embedded broker before it is started. If this happens, the VM transport
will auto-create an instance of the broker for you. To avoid this conflict you can set the
waitForStart option or the create=false option to manage how the VM transport
determines when to create a new embedded broker.

Using the VM transport

The URI used to specify the VM transport comes in two flavors to provide maximum control over how
the embedded broker is configured:

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

25

simple

The simple VM URI is used in most situations. It allows you to specify the name of the embedded
broker to which the client will connect. It also allows for some basic broker configuration.

Example 2.8, “Simple VM URI Syntax” shows the syntax for a simple VM URI.

Example 2.8. Simple VM URI Syntax

BrokerName specifies the name of the embedded broker to which the client connects.

TransportOptions specifies the configuration for the transport. They are specified in the
form of a query list. For details about the available options see the Connection Reference.

IMPORTANT

The broker configuration options specified on the VM URI are only
meaningful if the client is responsible for instantiating the embedded broker.
If the embedded broker is already started, the transport will ignore the
broker configuration properties.

advanced

The advanced VM URI provides you full control over how the embedded broker is configured. It
uses a broker configuration URI similar to the one used by the administration tool to configure
the embedded broker.

Example 2.9, “Advanced VM URI Syntax” shows the syntax for an advanced VM URI.

Example 2.9. Advanced VM URI Syntax

BrokerConfigURI is a broker configuration URI.

TransportOptions specifies the configuration for the transport. They are specified in the
form of a query list. For details about the available options see the Connection Reference.

Examples

Example 2.10, “Basic VM URI” shows a basic VM URI that connects to an embedded broker named
broker1.

Example 2.10. Basic VM URI

Example 2.11, “Simple URI with broker options” creates and connects to an embedded broker that uses a

vm://BrokerName?TransportOptions

vm://(BrokerConfigURI)?TransportOptions

vm://broker1

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

26

Example 2.11, “Simple URI with broker options” creates and connects to an embedded broker that uses a
non-persistent message store.

Example 2.11. Simple URI with broker options

Example 2.12, “Advanced VM URI” creates and connects to an embedded broker configured using a
broker configuration URI.

Example 2.12. Advanced VM URI

2.9. PEER PROTOCOL

Abstract

The peer protocol enables messaging clients to communicate with each other directly, eliminating the
requirement to route messages through an external message broker. It does this by embedding a
message broker in each client and using the embedded brokers to mediate the interactions.

Overview

The peer protocol enables messaging clients to communicate without the need for a separate message
broker. It creates a peer-to-peer network by creating an embedded broker inside each peer endpoint
and setting up a network connector between them. The messaging clients are formed into a network-of-
brokers.

Figure 2.2, “Peer Protocol Endpoints with Embedded Brokers” illustrates the peer-to-peer network
topology for a simple two-peer network.

Figure 2.2. Peer Protocol Endpoints with Embedded Brokers

vm://broker1?broker.persistent=false

vm:(broker:(tcp://localhost:6000)?persistent=false)?marshal=false

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

27

Figure 2.2. Peer Protocol Endpoints with Embedded Brokers

The producer sends messages to its embedded broker, broker1, by connecting to the local VM endpoint,
vm://broker1. The embedded brokers, broker1 and broker2, are linked together using a network
connector which allows messages to flow in either direction between the brokers. When the producer
sends a message to the queue, broker1 pushes the message across the network connector to broker2.
The consumer receives the message from broker2.

Peer endpoint discovery

The peer protocol uses multicast discovery to locate active peers on the network. As the embedded
brokers are instantiated they use a multicast discovery agent to locate other embedded brokers in the
same multicast group. The multicast group ID is provided as part of the peer URI.

IMPORTANT

To use the peer protocol, you must ensure that the IP multicast protocol is enabled on
your operating system.

For more information about using multicast discovery and network connectors see Using
Networks of Brokers.

URI syntax

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

28

A peer URI must conform to the following syntax:

Where the group name, PeerGroup, identifies the set of peers that can communicate with each other. A
given peer can connect only to the set of peers that specify the same PeerGroup name in their URLs.
The BrokerName specifies the broker name for the embedded broker. The broker options,
BrokerOptions, are specified in the form of a query list.

Sample URI

The following is an example of a peer URL that belongs to the peer group, groupA, and creates an
embedded broker with broker name, broker1:

2.10. MESSAGE PREFETCH BEHAVIOR

Overview

Figure 2.3, “Consumer Prefetch Limit” illustrates the behavior of a broker, as it waits to receive
acknowledgments for the messages it has already sent to a consumer.

Figure 2.3. Consumer Prefetch Limit

If a consumer is slow to acknowledge messages, the broker may send it another message before the
previous message is acknowledged. If the consumer continues to be slow, the number of
unacknowledged messages can grow continuously larger. The broker does not continue to send
messages indefinitely. When the number of unacknowledged messages reaches a set limit—the prefetch
limit—the server ceases sending new messages to the consumer. No more messages will be sent until the
consumer starts sending back some acknowledgments.

NOTE

peer://PeerGroup/BrokerName?BrokerOptions

peer://groupA/broker1?persistent=false

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

29

NOTE

The broker relies on acknowledgement of delivery to determine if it can dispatch
additional messages to a consumer's prefetch buffer. So, if a consumer's prefetch buffer
is set to 1 and it is slow to acknowledge the processing of the message, it is possible that
the broker will dispatch an additional message to the consumer and the pending message
count will be 2.

Red Hat JBoss A-MQ provides various options for fine tuning prefetch limits for specific circumstances.
The prefetch limits can be specified for different types of consumers. You can also set the prefetch limit
on a per broker, per connection, or per destination basis.

Consumer specific prefetch limits

Different prefetch limits can be set for each consumer type. Table 2.2, “Prefetch Limit Defaults” list the
property name and default value for each consumer type's prefetch limit.

Table 2.2. Prefetch Limit Defaults

Consumer Type Property Default

Queue consumer queuePrefetch 1000

Queue browser queueBrowserPrefetch 500

Topic consumer topicPrefetch 32766

Durable topic subscriber durableTopicPrefetch 100

Setting prefetch limits per broker

You can define the prefetch limits for all consumers that attach to a particular broker by setting a
destination policy on the broker. To set the destination policy, add a destinationPolicy element as a
child of the broker element in the broker's configuration, as shown in Example 2.13, “Configuring a
Destination Policy”.

Example 2.13. Configuring a Destination Policy

<broker ... >
 ...
 <destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry queue="queue.>" queuePrefetch=”1”/>
 <policyEntry topic="topic.>" topicPrefetch=”1000”/>
 </policyEntries>
 </policyMap>
 </destinationPolicy>
 ...
</broker>

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

30

In Example 2.13, “Configuring a Destination Policy” , the queue prefetch limit for all queues whose names
start with queue. is set to 1 (the > character is a wildcard symbol that matches one or more name
segments); and the topic prefetch limit for all topics whose names start with topic. is set to 1000.

Setting prefetch limits per connection

In a consumer, you can specify the prefetch limits on a connection by setting properties on the
ActiveMQConnectionFactory instance. Example 2.14, “Setting Prefetch Limit Properties Per
Connection” shows how to specify the prefetch limits for all consumer types on a connection factory.

Example 2.14. Setting Prefetch Limit Properties Per Connection

NOTE

You can also set the prefetch limits using the consumer properties as part of the broker
URI used when creating the connection factory.

Setting prefetch limits per destination

At the finest level of granularity, you can specify the prefetch limit on each destination instance that you
create in a consumer. Example 2.15, “Setting the Prefetch Limit on a Destination” shows code create the
queue TEST.QUEUE with a prefetch limit of 10. The option is set as a destination option as part of the
URI used to create the queue.

Example 2.15. Setting the Prefetch Limit on a Destination

Disabling the prefetch extension logic

The default behavior of a broker is to use delivery acknowledgements to determine the state of a
consumer's prefetch buffer. For example, if a consumer's prefetch limit is configured as 1 the broker will
dispatch 1 message to the consumer and when the consumer acknowledges receiving the message, the
broker will dispatch a second message. If the initial message takes a long time to process, the message
sitting in the prefetch buffer cannot be processed by a faster consumer.

This behavior can also cause issues when using the JCA resource adapter and transacted clients.

If the behavior is causing issues, it can be changed such that the broker will wait for the consumer to

ActiveMQConnectionFactory factory = new ActiveMQConnectionFactory();

Properties props = new Properties();
props.setProperty("prefetchPolicy.queuePrefetch", "1000");
props.setProperty("prefetchPolicy.queueBrowserPrefetch", "500");
props.setProperty("prefetchPolicy.durableTopicPrefetch", "100");
props.setProperty("prefetchPolicy.topicPrefetch", "32766");

factory.setProperties(props);

Queue queue = new ActiveMQQueue("TEST.QUEUE?consumer.prefetchSize=10");

MessageConsumer consumer = session.createConsumer(queue);

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

31

If the behavior is causing issues, it can be changed such that the broker will wait for the consumer to
acknowledge that the message is processed before refilling the prefetch buffer. This is accomplished by
setting a destination policy on the broker to disable the prefetch extension for specific destinations.

Example 2.16, “Disabling the Prefetch Extension” shows configuration for disabling the prefetch
extension on all of a broker's queues.

Example 2.16. Disabling the Prefetch Extension

2.11. MESSAGE REDELIVERY

Overview

Messages are redelivered to a client when any of the following occurs:

A transacted session is used and rollback() is called.

A transacted session is closed before commit is called.

A session is using CLIENT_ACKNOWLEDGE and Session.recover() is called.

The policy used to control how messages are redelivered and when they are determined dead can be
configured in a number of ways:

On the broker, using the broker's redelivery plug-in,

On the connection factory, using the connection URI,

On the connection, using the RedeliveryPolicy,

On destinations, using the connection's RedeliveryPolicyMap.

Redelivery properties

The following table list the properties that control message redelivery.

Table 2.3. Redelivery Policy Options

<broker ... >
 ...
 <destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry queue=">" usePrefetchExtension=”false”/>
 </policyEntries>
 </policyMap>
 </destinationPolicy>
 ...
</broker>

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

32

Option Default Description

collisionAvoidanceFactor 0.15 Specifies the percentage of range
of collision avoidance.

maximumRedeliveries 6 Specifies the maximum number of
times a message will be
redelivered before it is considered
a poisoned pill and returned to the
broker so it can go to a dead
letter queue. -1 specifies an
infinite number of redeliveries.

maximumRedeliveryDelay -1 Specifies the maximum delivery
delay that will be applied if the
useExponentialBackOff
option is set. -1 specifies that no
maximum be applied.

initialRedeliveryDelay 1000 Specifies the initial redelivery
delay in milliseconds.

redeliveryDelay 1000 Specifies the delivery delay, in
milliseconds.

useCollisionAvoidance false Specifies if the redelivery policy
uses collision avoidance.

useExponentialBackOff false Specifies if the redelivery time out
should be increased exponentially.

backOffMultiplier 5 Specifies the back-off multiplier.

Configuring the broker's redelivery plug-in

Configuring a broker's redelivery plug-in is a good way to tune the redelivery of messages to all of the
consumer's that use the broker. When using the broker's redelivery plug-in, it is recommended that you
disable redelivery on the consumer side (if necessary, by setting maximumRedeliveries to 0 on the
destination).

The broker's redelivery policy configuration is done through the redeliveryPlugin element. As shown in
the following example this element is a child of the broker's plugins element and contains a policy map
defining the desired behavior.

Example 2.17. Configuring the Redelivery Plug-In

<broker xmlns="http://activemq.apache.org/schema/core" ... >

 <plugins>
 <redeliveryPlugin ... >
 <redeliveryPolicyMap>

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

33

1

2

The redeliveryPolicyEntries element contains a list of redeliveryPolicy elements that configures
redelivery policies on a per-destination basis.

The defaultEntry element contains a single redeliveryPolicy element that configures the
redelivery policy used by all destinations that do not match the one with a specific policy.

Configuring the redelivery using the broker URI

Clients can specify their preferred redelivery by adding redelivery policy information as part of the
connection URI used when getting the connection factory. The following example shows code for
setting the maximum number of redeliveries to 4.

Example 2.18. Setting the Redelivery Policy using a Connection URI

For more information on connection URIs see the Connection Reference.

Setting the redelivery policy on a connection

The ActiveMQConnection class' getRedeliveryPolicy() method allows you to configure the redelivery
policy for all consumer's using that connection.

getRedeliveryPolicy() returns a RedeliveryPolicy object that controls the redelivery policy for the
connection. The RedeliveryPolicy object has setters for each of the properties listed in Table 2.3,
“Redelivery Policy Options”.

The following example shows code for setting the maximum number of redeliveries to 4.

Example 2.19. Setting the Redelivery Policy for a Connection

1

2

 <redeliveryPolicyMap>
 <redeliveryPolicyEntries>
 <!-- a destination specific policy -->

 <redeliveryPolicy queue="SpecialQueue"
 maximumRedeliveries="3"
 initialRedeliveryDelay="3000" />
 </redeliveryPolicyEntries>
 <!-- the fallback policy for all other destinations -->

 <defaultEntry>
 <redeliveryPolicy maximumRedeliveries="3"

 initialRedeliveryDelay="3000" />
 </defaultEntry>
 </redeliveryPolicyMap>
 </redeliveryPolicyMap>
 </redeliveryPlugin>
 </plugins>
 ...
</broker>

ActiveMQConnectionFactory connectionFactory =
 new ActiveMQConnectionFactory("tcp://localhost:61616?
jms.redeliveryPolicy.maximumRedeliveries=4");

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

34

Setting the redelivery policy on a destination

For even more fine grained control of message redelivery, you can set the redelivery policy on a per-
destination basis. The ActiveMQConnection class' getRedeliveryPolicyMap() method returns a
RedeliveryPolicyMap object that is a map of RedeliveryPolicy objects with destination names as the
key.

NOTE

You can also specify destination names using wildcards.

Each RedeliveryPolicy object controls the redelivery policy for all destinations whose name match the
destination name specified in the map's key.

NOTE

If a destination does not match one of the entries in the map, the destination will use the
redelivery policy set on the connection.

The following example shows code for specifying that messages in the queue FRED.JOE can only be
redelivered 4 times.

Example 2.20. Setting the Redelivery Policy for a Destination

2.12. JMS MESSAGE SELECTORS

A JMS message selector enables you to filter the messages that a MessageConsumer receives. To
filter a message, a selector uses all the message headers and properties for filtering. However, it does
not use the message content. Depending on the type of destination, a message selector works in the
following ways:

ActiveMQConnection connection =
 connectionFactory.createConnetion();

// Get the redelivery policy
RedeliveryPolicy policy = connection.getRedeliveryPolicy();

// Set the policy
policy.setMaximumRedeliveries(4);

ActiveMQConnection connection =
 connectionFactory.createConnetion();

// Get the redelivery policy
RedeliveryPolicy policy = new RedeliveryPolicy();
policy.setMaximumRedeliveries(4);

//Get the policy map
RedeliveryPolicyMap map = connection.getRedeliveryPolicyMap();
map.put(new ActiveMQQueue("FRED.JOE"), queuePolicy);

CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS

35

1. On the Queue, it returns only those messages whose header and property values match the
selector. For example, if a message has a JMSType header with value fred, then the following
selector is a match:

whereas, others stay in the queue and can be read by a MessageConsumer with different
selector.

2. On the Topic, it ignores the messages that do not match the selector.

In Red Hat JBoss AMQ 6.2 release, a selector expression does not match if you apply it to a non-existent
header. For example, if the selector message displays

, ensure that the header exists with defined values. If not, the selector does not match the undefined
values. Now, if a non-existent header exists, use the following expression:

JMSType=fred

JMSType<> fred

JMSType is NULL or JMSType <> fred

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

36

CHAPTER 3. AMQP 1.0 CLIENT APIS

Abstract

AMQP 1.0 is approved International standard approved by the International Standards Organization
(ISO) and the International Electrotechnical Commission (IEC).

The Advanced Message Queuing Protocol is an open Internet Protocol for Business Messaging. AMQP
is separated into layers. The lowest level defines a binary peer-to-peer protocol for transporting
messages between two processes over a network. the second layer defines an abstract message format,
with concrete standard encoding. Every compliant AMQP process must be able to send and receive
messages in this standard encoding.

3.1. INTRODUCTION TO AMQP

What is AMQP?

The Advanced Message Queuing Protocol (AMQP) is an open standard messaging system, which has
been designed to facilitate interoperability between messaging systems. The key features of AMQP are:

Open standard (defined by the OASIS AMQP Technical Committee)

Defines a wire protocol

Defines APIs for multiple languages (C++, Java)

Interoperability between different AMQP implementations

JMS is an API

It is interesting to contrast the Java Message Service (JMS) with AMQP. The JMS is first and foremost
an API and is designed to enable Java code to be portable between different messaging products. JMS
does not describe how to implement a messaging service (although it imposes significant constraints on
the messaging behaviour), nor does JMS specify any details of the wire protocol for transmitting
messages. Consequently, different JMS implementations are generally not interoperable.

AMQP is a wire protocol

AMQP, on the other hand, does specify complete details of a wire protocol for messaging (in an open
standard). Moreover, AMQP also specifies APIs in several different programming languages (for
example, Java and C++). An implementation of AMQP is therefore much more constrained than a
comparable JMS implementation. One of the benefits of this is that different AMQP implementations
ought to be interoperable with each other.

AMQP-to-JMS requires message conversion

If you want to bridge from an AMQP messaging system to a JMS messaging system, the messages must
be converted from AMQP format to JMS format. Usually, this involves a fairly lightweight conversion,
because the message body can usually be left intact while message headers are mapped to equivalent
headers.

3.2. JMS AMQP 1.0 CLIENT API

CHAPTER 3. AMQP 1.0 CLIENT APIS

37

http://www.amqp.org/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=amqp

JMS AMQP 1.0 Client API is based on the Apache Qpid JMS AMQP 1.0 Client API.

NOTE

This is an initial version of documentation for the JMS client. Regular updates and
enhancements of the documentation can be expected after the GA release of Fuse 6.2.0

3.2.1. Getting Started with AMQP

Getting started with AMQP

To run a simple demonstration of AMQP in JBoss A-MQ, you need to set up the following parts of the
application:

Configure the broker to use AMQP —to enable AMQP in the broker, add an AMQP endpoint to
the broker's configuration. This implicitly activates the broker's AMQP integration, ensuring that
incoming messages are converted from AMQP message format to JMS message format, as
required.

Implement the AMQP clients —the AMQP clients are based on the Apache Qpid JMS client
libraries.

3.2.2. Configuring the Broker for AMQP

Overview

Configuring the broker to use AMQP is relatively straightforward in JBoss A-MQ, because the required
AMQP packages are pre-installed in the container. There are essentially two main points you need to
pay attention to:

Make sure that you have appropriate user entries in the etc/users.properties file, so that the
AMQP clients will be able to log on to the broker.

Add an AMQP endpoint to the broker (by inserting a transportConnector element into the
broker's XML configuration).

Steps to configure the broker

Perform the following steps to configure the broker with an AMQP endpoint:

1. This example assumes that you are working with a fresh install of a standalone JBoss A-MQ
broker, InstallDir.

2. Define a JAAS user for the AMQP clients, so that the AMQP clients can authenticate
themselves to the broker using JAAS security (security is enabled by default in the broker). Edit
the InstallDir/etc/users.properties file and add a new user entry, as follows:

#
This file contains the valid users who can log into JBoss A-MQ.
Each line has to be of the format:
#
USER=PASSWORD,ROLE1,ROLE2,...
#
All users and roles entered in this file are available after JBoss A-MQ startup

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

38

At this point, you can add entries for any other secure users you want. In particular, it is advisable
to have at least one user with the admin role, so that you can log into the secure container
remotely (remembering to choose a secure password for the admin user).

NOTE

To avoid authentication issue, include the user guest in the list of
authorizationEntries for jaasAuthenticationPlugin in activemq.xml

3. Add an AMQP endpoint to the broker configuration. Edit the broker configuration file,
InstallDir/etc/activemq.xml. As shown in the following XML fragment, add the highlighted
transportConnector element as a child of the transportConnectors element in the broker
configuration:

4. To start the broker, open a new command prompt, change directory to InstallDir/bin, and enter
the following command:

Message conversion

The AMQP endpoint in the broker implicitly converts incoming AMQP format messages into JMS format
messages (which is the format in which messages are stored in the broker). The endpoint configuration
shown here uses the default options for this conversion.

Reference

For full details of how to configure an AMQP endpoint in the broker, see the "Advanced Message
Queueing Protocol (AMQP)" chapter from the Connection Reference. This also includes details of how
to customize the message conversion from AMQP format to JMS format.

3.2.3. AMQP Example Clients

and modifiable via the JAAS command group. These users reside in a JAAS domain
with the name "karaf"..
#
You must have at least one users to be able to access JBoss A-MQ resources

#admin=admin,admin
guest=guest

<beans ...>
 ...
 <broker ...>
 ...
 <transportConnectors>
 <transportConnector name="amqp" uri="amqp://127.0.0.1:5672"/>
 <transportConnector name="openwire" uri="tcp://${bindAddress}:${bindPort}"/>
 </transportConnectors>
 </broker>

</beans>

./amq

CHAPTER 3. AMQP 1.0 CLIENT APIS

39

Overview

This section explains how to implement two basic AMQP clients: an AMQP sender client, which sends
messages to a queue on the broker; and an AMQP reciever client, which pulls messages off the queue on
the broker. The clients themselves use generic JMS code to access the messaging system. The key
details of the AMQP configuration are retrieved using JNDI properties.

Prerequisites

Before building the example clients, you must install and configure the Apache Maven build tool, as
described in Section 1.2, “Preparing to use Maven” .

Ensure A-MQ broker is running.

The Qpid client and the example packages are downloaded from the repository Qpid-JMS and build.

Steps to implement and run the AMQP clients

Perform the following steps to implement and run an AMQP producer client and an AMQP consumer
client:

1. At any convenient location, download and extract the qpid-jms code for example examples, to
hold the example code:

2. The extracted files should have the following directory structure for the examples project:

mkdir example

├── apache-qpid-jms
│ ├── pom.xml
│ └── src
├── LICENSE
├── NOTICE
├── pom.xml
├── qpid-jms-client
│ ├── pom.xml
│ └── src
├── qpid-jms-discovery
│ ├── pom.xml
│ └── src
├── qpid-jms-docs
│ ├── Configuration.md
│ ├── pom.xml
│ └── README.txt
├── qpid-jms-examples
│ ├── pom.xml
│ ├── README.txt
│ └── src
├── qpid-jms-interop-tests
│ ├── pom.xml
│ ├── qpid-jms-activemq-tests
│ └── README.md
├── README.md
└── target
 └── maven-shared-archive-resources

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

40

https://maven.apache.org/
https://github.com/apache/qpid-jms/tree/0.2.0/qpid-jms-client

3. On the console, run the command mvn clean package dependency:copy-dependencies -
DincludeScope=runtime -DskipTests

After building the code (and downloading any packages required by Maven), if the build is
successful, you should see output like the following in the console window:

4. Run the following java command:

After building the code, this target proceeds to run the consumer client, which reads messages
from the queue queue. You should see output like the following in the console window:

A Simple Messaging Program in Java JMS

The following program shows how to send and receive a message using the Qpid JMS client. JMS
programs typically use JNDI to obtain connection factory and destination objects which the application
needs. In this way the configuration is kept separate from the application code itself.

In this example, we create a JNDI context using a properties file, use the context to lookup a connection
factory, create and start a connection, create a session, and lookup a destination from the JNDI context.
Then we create a producer and a consumer, send a message with the producer and receive it with the
consumer. This code should be straightforward for anyone familiar with Java JMS.

NOTE

The example uses a Queue named "queue". You need to create this before running the
example, depending on the broker/peer you are using.

Example 3.1. "Hello world!" in Java

[INFO] --
[INFO] Reactor Summary:
[INFO]
[INFO] QpidJMS .. SUCCESS [05:36 min]
[INFO] QpidJMS Client SUCCESS [01:04 min]
[INFO] QpidJMS Discovery Library SUCCESS [33.068 s]
[INFO] QpidJMS Broker Interop Tests SUCCESS [0.024 s]
[INFO] QpidJMS ActiveMQ Interop Tests SUCCESS [18.120 s]
[INFO] QpidJMS Examples SUCCESS [0.144 s]
[INFO] QpidJMS Docs SUCCESS [0.017 s]
[INFO] Apache Qpid JMS SUCCESS [22.253 s]
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 08:33 min
[INFO] Finished at: 2015-06-15T21:24:01+05:30
[INFO] Final Memory: 35M/200M
[INFO] --

java -cp "target/classes/:target/dependency/*" org.apache.qpid.jms.example.HelloWorld

Hello world!

CHAPTER 3. AMQP 1.0 CLIENT APIS

41

1

2

3

4

5
6

7

8

 package org.apache.qpid.jms.example;

 import javax.jms.Connection;
 import javax.jms.ConnectionFactory;
 import javax.jms.DeliveryMode;
 import javax.jms.Destination;
 import javax.jms.ExceptionListener;
 import javax.jms.JMSException;
 import javax.jms.Message;
 import javax.jms.MessageConsumer;
 import javax.jms.MessageProducer;
 import javax.jms.Session;
 import javax.jms.TextMessage;
 import javax.naming.Context;
 import javax.naming.InitialContext;

 public class HelloWorld {

 private static final String USER = "guest";
 private static final String PASSWORD = "guest";\

 public static void main(String[] args) throws Exception {

 try {

 // The configuration for the Qpid InitialContextFactory has been supplied in
 // a jndi.properties file in the classpath, which results in it being picked
 // up automatically by the InitialContext constructor.

 Context context = new InitialContext();

 ConnectionFactory factory = (ConnectionFactory) context.lookup("myFactoryLookup");
 Destination queue = (Destination) context.lookup("myQueueLookup");

 Connection connection = factory.createConnection(USER, PASSWORD);
 connection.setExceptionListener(new MyExceptionListener());

 connection.start();

 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 MessageProducer messageProducer = session.createProducer(queue);

 MessageConsumer messageConsumer = session.createConsumer(queue);

 TextMessage message = session.createTextMessage("Hello world!");
 messageProducer.send(message, DeliveryMode.NON_PERSISTENT,
Message.DEFAULT_PRIORITY, Message.DEFAULT_TIME_TO_LIVE);
 TextMessage receivedMessage = (TextMessage) messageConsumer.receive(2000L);

 if (receivedMessage != null) {

 System.out.println(receivedMessage.getText());
 } else {
 System.out.println("No message received within the given timeout!");
 }

 connection.close();

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

42

1

2

3

4

5

6

7

8

1

Creates the JNDI initial context.

Creates a JMS connection factory for Qpid.

Creates a JMS connection.

Creates a session. This session is not transactional (transactions='false'), and messages are
automatically acknowledged.

Creates a producer that sends messages to the topic exchange.

Creates a consumer that reads messages from the topic exchange.

Reads the next available message.

Closes the connection, all sessions managed by the connection, and all senders and receivers
managed by each session.

The contents of the jndi.properties file are shown below.

Example 3.2. JNDI Properties File for "Hello world!" example

Defines a connection factory from which connections can be created. The syntax of a
ConnectionURL is given in the section called “Apache Qpid JMS Client Configuration” .

 } catch (Exception exp) {
 System.out.println("Caught exception, exiting.");
 exp.printStackTrace(System.out);
 System.exit(1);
 }
 }

 private static class MyExceptionListener implements ExceptionListener {
 @Override
 public void onException(JMSException exception) {
 System.out.println("Connection ExceptionListener fired, exiting.");
 exception.printStackTrace(System.out);
 System.exit(1);
 }
 }
 }

1

2

 java.naming.factory.initial = org.apache.qpid.jms.jndi.JmsInitialContextFactory

 connectionfactory.myFactoryLookup = amqp://localhost:5672

 queue.myQueueLookup = queue
 topic.myTopicLookup = topic

CHAPTER 3. AMQP 1.0 CLIENT APIS

43

2 Defines a destination for which MessageProducers and/or MessageConsumers can be created to
send and receive messages. The value for the destination in the properties file is an address string.

Apache Qpid JMS Client Configuration

Apache Qpid JMS 0.5.0 provides various configuration options for the client such as, configuring and
creating a JNDI InitialContext, configuration syntax, and URI options that can be set when defining a
ConnectionFactory.

Configuring a JNDI InitialContext

JNDI InitialContext is used to to look up JMS objects such as ConnectionFactory and is obtained from
an InitialContextFactory. The Qpid JMS client provides an implementation of the InitialContextFactory
in class org.apache.qpid.jms.jndi.JmsInitialContextFactory. You can configure JNDI InitialContext in
three ways.

Using jndi.properties file on the Java Classpath.

To configure JNDI InitialContext using the properties file, Include the file jndi.properties on the
Classpath and set the java.naming.factory.initial property to value
org.apache.qpid.jms.jndi.JmsInitialContextFactory. The Qpid InitialContextFactory
implementation is discovered while instantiating InitialContext object.

javax.naming.Context ctx = new javax.naming.InitialContext();

The ConnectionFactory, Queue and Topic objects contained in the context are configured using
properties, either directly within the jndi.properties file, or in a separate file which is referenced
in jndi.properties using the java.naming.provider.url property.

Using system properties.

To configure JNDI InitialContext using the system properties, set the
java.naming.factory.initial to value org.apache.qpid.jms.jndi.JmsInitialContextFactory. The
Qpid InitialContextFactory implementation is discovered while instantiating InitialContext
object.

javax.naming.Context ctx = new javax.naming.InitialContext();

The ConnectionFactory, Queue and Topic objects contained in the context are configured using
properties, which is passed using the java.naming.provider.url system property.

Programmatically using an environment Hashtable.

The InitialContext can be configured by passing an environment during creation:

The ConnectionFactory, Queue and Topic objects contained in the context are configured using
properties, either directly within the environment Hashtable or a seperate file which is
referenced using the java.naming.provider.url property within the environment Hashtable.

Hashtable<Object, Object> env = new Hashtable<Object, Object>();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"org.apache.qpid.jms.jndi.JmsInitialContextFactory");
javax.naming.Context context = new javax.naming.InitialContext(env);

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

44

Syntax of the Properties file

The property syntax used in the properties file or environment Hashtable is as follows:

For ConnectionFactory, use connectionfactory.lookupName = URI, for example,
connectionfactory.myFactoryLookup = amqp://localhost:5672

For a Queue, use queue.lookupName = queueName , for example, queue.myQueueLookup =
queueA

For a Topic, use topic.lookupName = topicName,for example, topic.myTopicLookup =
topicA

These objects could then be looked up from a Context as follows:

Connection URI

The basic format of the clients Connection URI is as follows:

The client can be configured in different settings using the URI while defining the ConnectionFactory,
these settings are detailed in the following sections.

JMS Configuration options

The options are applicable to the JMS objects such as Connection, Session, MessageConsumer, and
MessageProducer.

Option Name Description

jms.username User name value used to authenticate the
connection

jms.password Password value used to authenticate the connection.

jms.clientID The ClientID value that is applied to the connection.

jms.forceAsyncSend Configures whether all Messages sent from a
MessageProducer are sent asynchronously or only
those Message that qualify such as Messages inside
a transaction or non-persistent messages.

jms.alwaysSyncSend Override all asynchronous send conditions and
always sends every Message from a
MessageProducer synchronously.

ConnectionFactory factory = (ConnectionFactory) context.lookup("myFactoryLookup");
Queue queue = (Queue) context.lookup("myQueueLookup");
Topic topic = (Topic) context.lookup("myTopicLookup");

amqp://hostname:port[?option=value[&option2=value...]]

CHAPTER 3. AMQP 1.0 CLIENT APIS

45

jms.sendAcksAsync Causes all Message acknowledgments to be sent
asynchronously.

jms.localMessagePriority If enabled prefetched messages are reordered locally
based on their given Message priority value. Default
value is false

jms.localMessageExpiry Controls whether MessageConsumer instances
locally filter expired Messages or deliver them. By
default this value is set to true and expired messages
are filtered

jms.validatePropertyNames If message property names should be validated as
valid Java identifiers. Default is true.

jms.queuePrefix Optional prefix value added to the name of any
Queue created from a JMS Session.

jms.topicPrefix Optional prefix value added to the name of any Topic
created from a JMS Session.

jms.closeTimeout Timeout value that controls how long the client waits
on Connection close before returning. (By default the
client waits 15 seconds for a normal close completion
event).

jms.connectTimeout Timeout value that controls how long the client waits
on Connection establishment before returning with
an error. (By default the client waits 15 seconds for a
connection to be established before failing).

jms.clientIDPrefix Optional prefix value that is used for generated
Client ID values when a new Connection is created
for the JMS ConnectionFactory. The default prefix is
'ID:'.

jms.connectionIDPrefix Optional prefix value that is used for generated
Connection ID values when a new Connection is
created for the JMS ConnectionFactory. This
connection ID is used when logging some
information from the JMS Connection object so a
configurable prefix can make breadcrumbing the logs
easier. The default prefix is 'ID:'.

These values control how many messages the remote peer can send to the client and be held in a
prefetch buffer for each consumer instance.

jms.prefetchPolicy.queuePrefetch defaults to 1000

jms.prefetchPolicy.topicPrefetch defaults to 1000

jms.prefetchPolicy.queueBrowserPrefetch defaults to 1000

jms.prefetchPolicy.durableTopicPrefetch defaults to 1000

jms.prefetchPolicy.all used to set all prefetch values at once.

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

46

The RedeliveryPolicy controls how redelivered messages are handled to the client.
jms.redeliveryPolicy.maxRedeliveries controls when an incoming message is rejected based on the
number of times it has been redelivered, the default value is (-1) disabled. A value of zero would indicate
no message redeliveries are accepted, a value of five would allow a message to be redelivered five times,
and so on.

TCP Transport Configuration options

To use a remote connection using plain TCP these options configure the behavior of the underlying
socket. These options are appended to the connection URI along with the other configuration options,
for example:

The TCP Transport options are listed below:

Option Name Default Value

transport.sendBufferSize 64k

transport.receiveBufferSize 64k

transport.trafficClass 10

transport.connectTimeout 60 secs

transport.soTimeout -1

transport.soLinger -1

transport.tcpKeepAlive false

transport.tcpNoDelay true

SSL Transport Configuration options

The SSL Transport extends the TCP Transport and is enabled using the amqps URI scheme hence all
the TCP Transport options are valid on an SSL Transport URI.

A simple SSL based client URI is shown below:

SSL Transport options is listed below:

transport.keyStoreLocation default is to read from the system property
javax.net.ssl.keyStore.

transport.keyStorePassword default is to read from the system property
javax.net.ssl.keyStorePassword.

amqp://localhost:5672?jms.clientID=foo&transport.connectTimeout=30000

amqps://localhost:5673

CHAPTER 3. AMQP 1.0 CLIENT APIS

47

transport.trustStoreLocation default is to read from the system property
javax.net.ssl.trustStore.

transport.trustStorePassword default is to read from the system property
javax.net.ssl.trustStorePassword.

transport.storeType The type of trust store being used. Default is "JKS".

transport.contextProtocol The protocol argument used when getting an
SSLContext. Default is "TLS".

transport.enabledCipherSuites The cipher suites to enable, comma separated. The
context default ciphers are used. Any disabled
ciphers are removed.

transport.disabledCipherSuites The cipher suites to disable, comma separated.
Ciphers listed here are removed from the enabled
ciphers. No default.

transport.enabledProtocols The protocols to enable, comma separated, the
context default protocols are used. Any disabled
protocols are removed.

transport.disabledProtocols The protocols to disable, comma separated.
Protocols listed here are removed from the enabled
protocols. Default is "SSLv2Hello,SSLv3".

transport.trustAll Whether to trust the provided server certificate
implicitly, regardless of any configured trust store.
Defaults to false.

transport.verifyHost Whether to verify that the hostname being
connected to matches with the provided server
certificate. Defaults to true.

transport.keyAlias The alias to use when selecting a keypair from the
keystore to send a client certificate to the server. No
default.

Failover Configuration options

If failover is enabled the client can reconnect to a different broker automatically when the connection to
the current connection is lost. The failover URI is always initiated with the failover prefix and a list of URIs
for the brokers. The jms.* options are applied to the overall failover URI, outside the parentheses, and
affect the JMS Connection object for its lifetime.

The URI for failover is shown as follows:

The individual broker details within the parentheses can use the transport. or amqp. options defined
earlier, with these being applied as each host is connected to:

failover:(amqp://host1:5672,amqp://host2:5672)?
jms.clientID=foo&failover.maxReconnectAttempts=20

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

48

Failover configuration options are listed below:

failover.initialReconnectDelay The amount of time the client will wait before the
first attempt to reconnect to a remote peer. The
default value is zero.

failover.reconnectDelay Controls the delay between successive reconnection
attempts, defaults to 10 milliseconds. If the backoff
option is not enabled this value remains constant.

failover.maxReconnectDelay The maximum time that the client will wait before
attempting a reconnect. This value is used when the
backoff feature is enabled to ensure that the delay is
not too long. Defaults to 30 seconds.

failover.useReconnectBackOff Controls whether the time between reconnection
attempts should grow based on a configured
multiplier. Defaults value is true.

failover.reconnectBackOffMultiplier The multiplier used to grow the reconnection delay
value, defaults to 2.0d.

failover.maxReconnectAttempts The number of reconnection attempts allowed
before reporting the connection as failed to the
client. The default is no limit or (-1).

failover.startupMaxReconnectAttempts For a client that has never connected to a remote
peer. This option controls the number of attempts
made to connect before reporting the connection as
failed. The default value is maxReconnectAttempts.

failover.warnAfterReconnectAttempts Controls how often the client logs a message
indicating that failover reconnection is being
attempted. The default is to log every 10 connection
attempts.

transport.enabledProtocols The protocols to enable, the values are comma
separated and the context default protocols are
used. Any disabled protocols are removed.

The failover URI also supports defining nested options as a means of specifying AMQP and transport
option values applicable to all the individual nested broker URI's, which can be useful to avoid repetition.
This is accomplished using the same transport. and amqp. URI options outlined earlier for a non-failover
broker URI but prefixed with failover.nested.

For example, to apply the same value for the amqp.vhost option to every broker connected to you
might have a URI like:

failover:(amqp://host1:5672?amqp.option=value,amqp://host2:5672?transport.option=value)?
jms.clientID=foo

failover:(amqp://host1:5672,amqp://host2:5672)?
jms.clientID=foo&failover.nested.amqp.vhost=myhost

CHAPTER 3. AMQP 1.0 CLIENT APIS

49

AMQP Configuration options

The AMQP configuration options apply to certain functionality.

amqp.idleTimeout : The idle timeout in milliseconds, the connection fails if the peer sends no
AMQP frames. Default value 60000.

amqp.vhost : The vhost to connect to. Used to populate the Sasl and Open hostname fields.
Default is the main hostname from the Connection URI.

amqp.saslLayer: Controls whether connections should use a SASL layer or not. Default is true.

amqp.saslMechanisms: Which SASL mechanism(s) the client should allow selection of, if
offered by the server and usable with the configured credentials. Comma separated if
specifying more than 1 mechanism. Default is to allow selection from all the clients supported
mechanisms, which are currently EXTERNAL, CRAM-MD5, PLAIN, and ANONYMOUS.

amqp.maxFrameSize: The max-frame-size value in bytes that is advertised to the peer. Default
is 1048576.

Discovery Configuration options

The client has an optional Discovery module, which provides a customized failover layer where the
broker URIs to connect to are not given in the initial URI, but discovered as the client operates via
associated discovery agents. There are currently two discovery agent implementations, a file watcher
that loads URIs from a file, and a multicast listener that works with ActiveMQ 5 brokers which have been
configured to broadcast their broker addresses for listening clients.

The general set of failover related options when using discovery are the same as those detailed earlier,
with the main prefix updated from failover. to discovery., and with the 'nested' options prefix used to
supply URI options common to all the discovered broker URIs bring updated from failover.nested. to
discovery.discovered. For example, without the agent URI details, a general discovery URI might look like:

To use the file watcher discovery agent, utilise an agent URI of the form: discovery:
(file:///path/to/monitored-file?updateInterval=60000)

The URI options for the file watcher discovery agent are listed below:

updateInterval: Controls the frequency in milliseconds which the file is inspected for change.
The default value is 30000.

To use the multicast discovery agent with an ActiveMQ 5 broker, utilise an agent URI of the form:

NOTE

The use of default as the host in the multicast agent URI above is a special value (that is
substituted by the agent with the default "239.255.2.3:6155"). You may change this to
specify the actual IP and port in use with your multicast configuration.

The URI options for the multicast discovery agent are listed below:

 discovery:(<agent-uri>)?
discovery.maxReconnectAttempts=20&discovery.discovered.jms.clientID=foo

 discovery:(multicast://default?group=default)

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

50

 group: Controls which multicast group messages are listened for on. The default value is
"default".

JMS Client Logging

The JMS Client logging is handled using the Simple Logging Facade for Java (SLF4J). As the name
implies, slf4j is a facade that delegates to other logging systems like log4j or JDK 1.4 logging. For more
information on how to configure slf4j for specific logging systems, please consult the slf4j
documentation.

you can configure a logging implementation by using the org.apache.qpid.jms.

For debugging you can enable additional protocol trace logging from the Qpid Proton AMQP 1.0 library.
There are two options to enable the logging:

By setting the environment variable PN_TRACE_FRM to true, which enables Proton to emit
frame logging to stdout.

Add the option amqp.traceFrames=true to the connection URI. This enables the client to add a
protocol tracer to Proton, and configure the org.apache.qpid.jms.provider.amqp.FRAMES
Logger to TRACE level to include the output in the logs.

3.3. .NET AMQP 1.0 CLIENT API

.NET AMQP 1.0 Client API is based on the GitHub Azure Amqp.Net Lite Client API, see .

NOTE

This is an initial version of documentation for the .NET client. Regular updates and
enhancements of the documentation can be expected after the GA release of Fuse 6.2.0

3.3.1. Getting Started with .NET AMQP 1.0 Client API

3.3.1.1. Introduction to .NET AMQP 1.0 Client API

What is AMQPNet.Lite?

The Advanced Message Queuing Protocol Net Lite is a lightweight AMQP 1.0 client library for .Net
Framework 3.5 and 4.0 to support desktop clients. For detailed

NOTE

At present, Red Hat does not provide the libraries for Micro Framework, Compact
Framework, Windows Phone, Windows RT, nor Windows Store.

Hardware and Software Requirements to setup AMQPNet.Lite SDK

Visual Studio version 2012 or 2013

.NET Framework support for Common Language Runtime (CLR) versions 2.0 and 4.

Windows Desktop machine

CHAPTER 3. AMQP 1.0 CLIENT APIS

51

http://www.slf4j.org/

Installing the SDK

Unzip the amqpnetlite-sdk-1.1.0.2.zip file in a directory on a windows machine.

Contents of the AMQPNet.Lite SDK

The pre-compiled binary (.dll) files and the associated debug program database (.pdb) files.

Source files of examples which demonstrate using this SDK and AMQP.

Amqpnetlite API documentation,see InstallDir\doc\html\index.html

AMQPNet.Lite Examples

The following examples are available in the SDK

HelloWorld-simple Minimal send-receive through brokered topic.

HelloWorld-robust Send-receive with more features.

Interop.Drain, Interop.Spout-Interoperate with Apache Qpid using simple send and receive.

Interop.Client, Interop.Server - Interoperate with Apache Qpid C++ Messaging using request
and response.

PeertoPeer - Client and Server programs illustrate using the Amqpnetlite library to create peer-
to-peer connections without using an intermediate broker system.

Receive Selector - Receive messages matching filter criteria

Anonymous Relay - Like Interop.Client but detects and uses peer ANONYMOUS-RELAY
capability for sending all messages over a single link, regardless of destination address.

NOTE

For detailed information on the examples, see the README.txt file at in your installed
SDK directory at, InstallDir/amqpnetlite/Examples.

3.3.1.2. A Simple Messaging Program in AMQPNet.Lite

This section demonstrates the HelloWorld_simple example, it is a simple example that creates a Sender
and a Receiver for the same address, sends a message to the address, reads a message from the
address, and prints the result

By default, this example connects to a broker running on localhost:5672.

Building the Example

The extracted SDK contains two files, InstallDiramqpnetlite/amqp.sln and
InstallDiramqpnetlite/amqp-vs2012.sln. The amqp.sln is the project file for Visual Studio 2013
solution and the amqp-vs2012.sln is the project file for Visual Studio 2012 solution.

To build the examples, follow these steps:

Go to the directory where you extracted the SDK, open amqp.sln solution file with Visual
Studio 2013

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

52

In the Solution Explorer window, you can view all the examples.

To build the examples, click BUILD icon.

The Output window shows the build status.

Running the Example

To run the example, ensure that A-MQ Broker is running on the system. See Section 3.2.2, “Configuring
the Broker for AMQP” for details on setting up an A-MQ broker.

To run the HelloWorld_simple example using the DOS prompt follow these steps:

On the terminal, navigate to the directory where SDK is installed, i.e
InstallDir/amqpnetlite/bin/Debug

On the command prompt enter the Helloworld-simple.exe

By default, this program connects to a broker running on localhost:5672. You can specify a host
and port, and the AMQP endpoint address explicitly on the command line:, for example
HelloWorld_simple amqp://localhost:5672 amq.topic

By default, this program addresses its messages to amq.topic. In Amqp brokers amq.topic is a
predefined endpoint address and is immediately available with no broker configuration.

On Success, you can see the output on the DOS prompt as: HelloWorld!

To run the HelloWorld_simple example using Visual Studio 2013 follow these steps:

In Visual Studio 2013 Solution Explorer window, right-click on Helloworld-simple example.

Select Set as Startup Project option from the panel.

In Solution Explorer window, click on HelloWorld-simple.cs file and open the source code

using System;
using Amqp;

namespace HelloWorld_simple
{
 class HelloWorld_simple
 {
 static void Main(string[] args)
 {
 string broker = args.Length >= 1 ? args[0] : "amqp://localhost:5672";
 string address = args.Length >= 2 ? args[1] : "amq.topic";

 Address brokerAddr = new Address(broker);
 Connection connection = new Connection(brokerAddr);
 Session session = new Session(connection);

 SenderLink sender = new SenderLink(session, "helloworld-sender", address);
 ReceiverLink receiver = new ReceiverLink(session, "helloworld-receiver", address);

 Message helloOut = new Message("Hello World!");
 sender.Send(helloOut);

CHAPTER 3. AMQP 1.0 CLIENT APIS

53

Insert a breakpoint at the last line in the source file at connection.Close();,and click Start

On success, you can see the output on the console window as Hello World!

3.4. PYTHON AMQP 1.0 CLIENT API

Python AMQP 1.0 Client API is based on the Apache Qpid Proton Client API. The API is available at Qpid
Python API Reference

NOTE

This is an initial version of documentation for the Python client. Regular updates and
enhancements of the documentation can be expected after the GA release of Fuse 6.2.0

3.4.1. Getting Started with Qpid Proton Python Client

This chapter consists of Python Client tutorials with examples and API reference.

3.4.1.1. Introduction to Qpid Proton Python Client

What is Qpid Proton

Qpid Proton can be described as a AMQP messaging toolkit Qpid Proton is a messaging library used in
messaging applications, including brokers, client libraries, routers, bridges, proxies, and so on. Application
build across different platform, language, and environment can be integrated with AMQP using Proton.

Introduction to the Qpid Proton Python Client

Qpid Proton is a toolkit for messaging using AMQP. You can install Qpid Proton Python client using the
command yum install python-qpid-proton The API is event driven and centers on the Container class
which provides methods for establishing connections and creating senders and receivers as well as
dispatching events to application defined handlers.

The following examples use the pattern

 Container(name_of_a_handler_class(arguments)).run()

Where the logic of the application is defined as a class handling particular events. A Container
instance is created and passed an instance of that handler class.

The call to run() gives control to the Container, which performs the necessary IO operations and
informs the handler of the events.

The run() returns when there is nothing to do.

 Message helloIn = receiver.Receive();

 Console.WriteLine(helloIn.Body.ToString());

 connection.Close();
 }
 }
}

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

54

 http://qpid.apache.org/releases/qpid-proton-0.10/proton/python/api/index.html
http://qpid.apache.org/proton/index.html

3.4.2. Python Client Tutorials with examples

A Simple Sending and Receiving Program in Python

In this example, there are two parts, sending a fixed number of messages and receiving messages

This example demonstrates the reliable sending of messages. The sender sends a fixed number of
messages to a named queue on the broker (accessible on port 5672 on localhost). In case the sender is
disconnected after a message is sent and before it has been confirmed by the receiver, it is said to be in-
doubt. It is unknown whether the message was received, this scenario is handled by resending any in-
doubt messages. This is known as an at-least-once guarantee, since each message should eventually be
received at least once, though a given message may be received more than once.

NOTE

The program uses the variables sent and total, where, sent keeps track of the number of
messages that are send and total maintains a count of number of messages to send.

Example 3.3. Sending reliable messages

1

2

3

4

5

import optparse
from proton import Message
from proton.handlers import MessagingHandler
from proton.reactor import Container

class Send(MessagingHandler):
 def __init__(self, url, messages):
 super(Send, self).__init__()
 self.url = url
 self.sent = 0
 self.confirmed = 0
 self.total = messages

 def on_start(self, event):
 event.container.create_sender(self.url)

 def on_sendable(self, event):
 while event.sender.credit and self.sent < self.total:

 msg = Message(id=(self.sent + 1),
 body={'sequence': (self.sent + 1)})

 event.sender.send(msg)
 self.sent += 1

 def on_accepted(self, event):
 self.confirmed += 1

 if self.confirmed == self.total:
 print "all messages confirmed"
 event.connection.close()

 def on_disconnected(self, event):
 self.sent = self.confirmed

parser = optparse.OptionParser(
 usage="usage: %prog [options]",

CHAPTER 3. AMQP 1.0 CLIENT APIS

55

1

2

3

4

5

On_start() method is called when the Container first starts to run.

In this example it is used to establish a sending link over which the messages are transferred.

On_sendable() method is called to known when the messages can be transferred.

The callback checks that the sender has credit before sending messages and if the sender has
already sent the required number of messages.

NOTE

AMQP provides flow control allowing any component receiving messages to avoid
being overwhelmed by the number of messages it is sent. In this example messages
are sent when the broker has enabled their flow.

Send() is an asynchronous call. The return of the call does not indicate that the messages has been
transferred yet.

on_accepted() notifies if the amq broker has received and accepted the message.

In this example, we use this event to track the confirmation of the messages sent. The connection
closes and exits when the amq broker has received all the messages.

NOTE

The on_accepted() call will be made by the Container when the amq broker accepts
the message and not the receiving client.

Resets the sent count to reflect the confirmed messages. The library automatically reconnects to
the sender and hence when the sender is ready, it can restart sending the remaining messages

Example 3.4. Receiving reliable messages

In this example, the receiver application subscribes to the examples queue on a broker accessible on
port 5672 on localhost. The program simply prints the body of the received messages.

 description="Send messages to the supplied address.")

parser.add_option(
 "-a", "--address",
 default="localhost:5672/examples",
 help="address to which messages are sent (default %default)")

parser.add_option(
 "-m", "--messages", type="int", default=100,
 help="number of messages to send (default %default)")

opts, args = parser.parse_args()

try:
 Container(Send(opts.address, opts.messages)).run()
except KeyboardInterrupt:
 pass

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

56

1

2

On_start() method is called when the Container first starts to run.

In this example it is used to establish a receiving link over which the messages are transferred.

On_message() method is called when a message is received. It simply prints the messages

In this example, the amq broker waits for a certain number of messages before closing and exiting
the connection. The method checks for duplicate messages and ignores them. The logic to ignore
duplicates is implement using the sequential id scheme

Sending and Receiving Program using SSL in Python

To run the examples using SSL, the Python client requires certain system configurations to enable SSL.
This section describes the SSL settings and prerequisites for the Python client

SSL Configuration

NOTE

1

2

import optparse
from proton.handlers import MessagingHandler
from proton.reactor import Container

class Recv(MessagingHandler):
 def __init__(self, url, count):
 super(Recv, self).__init__()
 self.url = url
 self.expected = count
 self.received = 0

 def on_start(self, event):
 event.container.create_receiver(self.url)

 def on_message(self, event):
 if event.message.id and event.message.id < self.received:

 # ignore duplicate message
 return
 if self.expected == 0 or self.received < self.expected:
 print event.message.body
 self.received += 1
 if self.received == self.expected:
 event.receiver.close()
 event.connection.close()

parser = optparse.OptionParser(usage="usage: %prog [options]")
parser.add_option("-a", "--address", default="localhost:5672/examples",
 help="address from which messages are received (default %default)")
parser.add_option("-m", "--messages", type="int", default=100,
 help="number of messages to receive; 0 receives indefinitely (default %default)")
opts, args = parser.parse_args()

try:
 Container(Recv(opts.address, opts.messages)).run()
except KeyboardInterrupt: pass

CHAPTER 3. AMQP 1.0 CLIENT APIS

57

NOTE

Before following the steps in this section, configure the broker in detailed in Section 1.3,
“Preparing to use AMQ with SSL”.

SSL settings for A-MQ to run Qpid Python client

Generate pem trust certificate for Qpid Python client

Adjust A-MQ broker to use the certificate by modifying the A-MQ environment

where, A_MQ_HOME is the installation path of the amq broker executable file.

Generate the client certificate

Add client certificate as trusted to the broker database

SSL certificate and keys settings for Qpid Python client

Set SLL to prevent the private key and the certificate to be send to output.

Adjust A-MQ broker to use the certificate

keytool -importkeystore -srckeystore broker.ks -srcalias broker \
-srcstoretype JKS -deststoretype PKCS12 -destkeystore broker.pkcs12 \
-srcstorepass ${general_passwd} -deststorepass ${general_passwd}
openssl pkcs12 -in broker.pkcs12 -out broker_cert.pem \
-passin pass:${general_passwd} -passout pass:${general_passwd}

sed -i '/KARAF_OPTS/d' ${A_MQ_HOME}/bin/setenv

echo "export KARAF_OPTS=\"-Djavax.net.ssl.keyStore=${certificates_dir}/broker.ks \ -
Djavax.net.ssl.keyStorePassword=${general_passwd}\"" >> ${A_MQ_HOME}/bin/setenv

 keytool -genkey -alias client -keyalg RSA -keystore client.ks \
-storepass ${general_passwd} -keypass ${general_passwd} \
-dname "O=Client,CN=client" -validity 99999

 keytool -export -alias client -keystore client.ks -file client_cert \
-storepass ${general_passwd}

 keytool -import -alias client -keystore broker.ts -file client_cert \
-storepass ${general_passwd} -v -trustcacerts -noprompt

openssl pkcs12 -nocerts -in client.pkcs12 -out client_private_key.pem \
 -passin pass:${general_passwd} -passout pass:${general_passwd}

openssl pkcs12 -nokeys -in client.pkcs12 -out client_cert.pem \
-passin pass:${general_passwd} -passout pass:${general_passwd}

 sed -i '/KARAF_OPTS/d' ${A_MQ_HOME}/bin/setenv

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

58

Example

Example 3.5. Sending reliable messages over a secured connection

In this example, we modify the sending program, as shown in Example 3.3, “Sending reliable
messages” to send messages over a secured connection. The connection is setup to use SSL. SSL
can be configured for outgoing connections using the client property of the Conatiner's ssl property
as shown in the program below.

 echo "export KARAF_OPTS=\"-Djavax.net.ssl.keyStore=${certificates_dir}/broker.ks \
-Djavax.net.ssl.keyStorePassword=${general_passwd} \
-Djavax.net.ssl.trustStore=${certificates_dir}/broker.ts \
-Djavax.net.ssl.trustStorePassword=${general_passwd}\"" >> ${A_MQ_HOME}/bin/setenv

1

2

import optparse
from proton import Message
from proton.handlers import MessagingHandler
from proton.reactor import Container

class Send(MessagingHandler):
 def __init__(self, url, messages):
 super(Send, self).__init__()
 self.url = url
 self.sent = 0
 self.confirmed = 0
 self.total = messages

 def on_start(self, event):
 event.container.ssl.client.set_trusted_ca_db("/path/to/ca-certificate.pem")

 event.container.ssl.client.set_peer_authentication(SSLDomain.VERIFY_PEER)
 event.container.ssl.client.set_credentials("/path/to/client-certificate.pem", "/path/to/client-
private-key.pem", "client-password")
 event.container.create_sender(self.url)

 def on_sendable(self, event):
 while event.sender.credit and self.sent < self.total:
 msg = Message(id=(self.sent+1), body={'sequence':(self.sent+1)})
 event.sender.send(msg)
 self.sent += 1

 def on_accepted(self, event):
 self.confirmed += 1
 if self.confirmed == self.total:
 print "all messages confirmed"
 event.connection.close()

 def on_disconnected(self, event):
 self.sent = self.confirmed

parser = optparse.OptionParser(usage="usage: %prog [options]",
 description="Send messages to the supplied address.")
parser.add_option("-a", "--address", default="localhost:5672/examples",
 help="address to which messages are sent (default %default)")
parser.add_option("-m", "--messages", type="int", default=100,
 help="number of messages to send (default %default)")

CHAPTER 3. AMQP 1.0 CLIENT APIS

59

1

2

set_trusted_ca_db("/path/to/ca-certificate.pem") call specifies the location of the CA's
certificate in pem file format

set_peer_authentication(SSLDomain.VERIFY_PEER) call requests the servers certificate to be
verified as valid using the specified CA's public key.

To verify if the hostname used matches which the name specified in the servers certificate, replace
the VERIFY_PEERmacro to VERIFY_PEER_NAME.

NOTE

Ensure to update the program with the path of the certificates as per your
environment before running the example.

set_credentials("/path/to/client-certificate.pem", "/path/to/client-private-key.pem", "client-
password") call is used if the client needs to authenticate itself. In such a case, you need to
mention the clients public certificate, private key file both in pem format, and also specify the
password required for the private key

NOTE

Ensure to update the program with the path of the client certificate, client private
key as per your environment and the correct client-password before running the
example.

NOTE

Similarly, you can modify the receiver program to receive messages over a secured
connection.

A Request/Response Server and Client Program

This example implements a Server handler that processes the incoming requests from the amq broker
and sends the response back to the amq broker. The program is implemented to receive the messages,
converts the body of the received message to uppercase and sends the converted messages as a
response.

NOTE

Ensure that the amq broker is running.

Example 3.6. A simple server program to send responses

opts, args = parser.parse_args()

try:
 Container(Send(opts.address, opts.messages)).run()
except KeyboardInterrupt: pass

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

60

1 On_message() method performs a lookup at the reply_to address on the message and creates a
sender over which the response can be send.

In case there are more requests with the same reply_to address, the method will store the senders.

Run python client over SSL

To run the python client over SSL you can use different options as follows

No server and client authentication

Server authentication enabled

1

from proton import Message
from proton.handlers import MessagingHandler
from proton.reactor import Container

class Server(MessagingHandler):
 def __init__(self, url, address):
 super(Server, self).__init__()
 self.url = url
 self.address = address
 self.senders = {}

 def on_start(self, event):
 print "Listening on", self.url
 self.container = event.container
 self.conn = event.container.connect(self.url)
 self.receiver = event.container.create_receiver(self.conn, self.address)
 self.relay = None

 def on_connection_opened(self, event):
 if event.connection.remote_offered_capabilities and 'ANONYMOUS-RELAY' in
event.connection.remote_offered_capabilities:
 self.relay = self.container.create_sender(self.conn, None)

 def on_message(self, event):
 print "Received", event.message

 sender = self.relay or self.senders.get(event.message.reply_to)

 if not sender:
 sender = self.container.create_sender(self.conn, event.message.reply_to)
 self.senders[event.message.reply_to] = sender
 sender.send(Message(address=event.message.reply_to, body=event.message.body.upper(),
 correlation_id=event.message.correlation_id))

try:
 Container(Server("0.0.0.0:5672", "examples")).run()
except KeyboardInterrupt: pass

 ./sender.py -b "amqps://$(hostname):5672/examples"

CHAPTER 3. AMQP 1.0 CLIENT APIS

61

Server and client authentication enabled

A simple client program to receive the messages from the Server

This example implements a Client handler that sends requests to the server and prints the responses.
The program uses the amq broker that supports AMQP dynamic nodes. The responses are received on
the amq broker examples broker.

NOTE

Ensure that the amq broker is running as this program uses the amq broker.

Example 3.7. A simple client program to receive the messages from the Server

 ./sender.py -b "amqps://$(hostname):5672/examples" --conn-ssl-trust-
store<certificates_dir>/broker_cert.pem --conn-ssl-verify-peer --conn-ssl-verify-peer-name

 ./sender.py -b "amqps://$(hostname):5672/examples" --conn-ssl-certificate
<certificates_dir>/client-certificate.pem --conn-ssl-private-key <certificates_dir>/client-private-
key.pem --conn-ssl-trust-store <certificates_dir>/broker_cert.pem --conn-ssl-verify-peer --
conn-ssl-verify-peer-name

1

2

import optparse
from proton import Message
from proton.handlers import MessagingHandler
from proton.reactor import Container, DynamicNodeProperties

class Client(MessagingHandler):
 def __init__(self, url, requests):
 super(Client, self).__init__()
 self.url = url
 self.requests = requests

 def on_start(self, event):
 self.sender = event.container.create_sender(self.url)
 self.receiver = event.container.create_receiver(self.sender.connection, None, dynamic=True)

 def next_request(self):
 if self.receiver.remote_source.address:
 req = Message(reply_to=self.receiver.remote_source.address, body=self.requests[0])
 self.sender.send(req)

 def on_link_opened(self, event):
 if event.receiver == self.receiver:

 self.next_request()

 def on_message(self, event):
 print "%s => %s" % (self.requests.pop(0), event.message.body)
 if self.requests:
 self.next_request()
 else:
 event.connection.close()

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

62

1

2

On_start() method creates a receiver to receive the responses from the server

In this example, instead of using the localhost, we set the dynamic option which informs the amq
broker that the client is connected to create a temporary address over which it can receive the
responses.

On_link_opened() method sends the first requests if the receiving link is setup and confirmed by
the broker

Here, we use the address allocated by the broker as the reply_to address of the requests hence the
broker needs to confirm that the receiving link is established.

Sending and Receiving using Transactions

The purpose of using transactions is to provide atomicity.So, for the sending application, either all the
messages in a transaction are sent or none of them are sent. The receiving application can accept a set
of messages transactionally and either the transaction will succeed and all messages will be consumed,
or it will fail and all messages will remain on the queue.

The example also uses the TransactionHandler in addition to MessagingHandler as a base class for
the handler definition.

Example 3.8. Sending messages using local transactions

This example implements a sender that sends messages in atomic batches using local transactions.

REQUESTS= ["Twas brillig, and the slithy toves",
 "Did gire and gymble in the wabe.",
 "All mimsy were the borogroves,",
 "And the mome raths outgrabe."]

parser = optparse.OptionParser(usage="usage: %prog [options]",
 description="Send requests to the supplied address and print responses.")
parser.add_option("-a", "--address", default="localhost:5672/examples",
 help="address to which messages are sent (default %default)")
opts, args = parser.parse_args()

Container(Client(opts.address, args or REQUESTS)).run()

import optparse
from proton import Message, Url
from proton.reactor import Container
from proton.handlers import MessagingHandler, TransactionHandler

class TxSend(MessagingHandler, TransactionHandler):
 def __init__(self, url, messages, batch_size):
 super(TxSend, self).__init__()
 self.url = Url(url)
 self.current_batch = 0
 self.committed = 0
 self.confirmed = 0
 self.total = messages

CHAPTER 3. AMQP 1.0 CLIENT APIS

63

1

2

3

4

5

 self.batch_size = batch_size

 def on_start(self, event):
 self.container = event.container
 self.conn = self.container.connect(self.url)
 self.sender = self.container.create_sender(self.conn, self.url.path)

 self.container.declare_transaction(self.conn, handler=self)
 self.transaction = None

 def on_transaction_declared(self, event):
 self.transaction = event.transaction

 self.send()

 def on_sendable(self, event):
 self.send()

 def send(self):
 while self.transaction and self.sender.credit and (self.committed + self.current_batch) <

self.total:
 seq = self.committed + self.current_batch + 1
 msg = Message(id=seq, body={'sequence':seq})
 self.transaction.send(self.sender, msg)
 self.current_batch += 1
 if self.current_batch == self.batch_size:

 self.transaction.commit()
 self.transaction = None

 def on_accepted(self, event):
 if event.sender == self.sender:
 self.confirmed += 1

 def on_transaction_committed(self, event):
 self.committed += self.current_batch

 if self.committed == self.total:
 print "all messages committed"
 event.connection.close()
 else:
 self.current_batch = 0
 self.container.declare_transaction(self.conn, handler=self)

 def on_disconnected(self, event):
 self.current_batch = 0

parser = optparse.OptionParser(usage="usage: %prog [options]",
 description="Send messages transactionally to the supplied address.")
parser.add_option("-a", "--address", default="localhost:5672/examples",
 help="address to which messages are sent (default %default)")
parser.add_option("-m", "--messages", type="int", default=100,
 help="number of messages to send (default %default)")
parser.add_option("-b", "--batch-size", type="int", default=10,
 help="number of messages in each transaction (default %default)")
opts, args = parser.parse_args()

try:
 Container(TxSend(opts.address, opts.messages, opts.batch_size)).run()
except KeyboardInterrupt: pass

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

64

1

2

5

3

4

on_transaction_declared() method requests a new transactional context, passing themselves as
the handler for the transaction

on_transaction_declared() method is notified when that context is in place

When the on_transaction_committed() method is called the committed count is incremented by
the size of the current batch. If the committed count after that is equal to the number of message it
was asked to send, it has completed all its work so closes the connection and the program will exit.
If not, it starts a new transaction and sets the current batch to 0.

The sender tracks the number of messages sent in the current_batch, as well as the number of
messages committed .

Messages are sent when the transaction context has been declared and there is credit. The send()
method of the transaction is invoked, rather than on the sender itself. This ensures that send
operation is tied to that transaction context.

The current_batch counter is incremented for each message. When that counter reaches the
preconfigured batch size, the commit() method is called on the transaction.

Example

This example implements a receiver that receives messages in atomic batches using local transactions.
The receiver tracks the number of messages received in the current_batch and the overall number
committed

NOTE

In this example the receiver turns off the prefetching of messages in order to control the
flow in batches and turns off auto_accept mode in order to explicitly accept the
messages under a given transactional context.

Example 3.9. Receiving using local transactions

import optparse
from proton import Url
from proton.reactor import Container
from proton.handlers import MessagingHandler, TransactionHandler

class TxRecv(MessagingHandler, TransactionHandler):
 def __init__(self, url, messages, batch_size):
 super(TxRecv, self).__init__(prefetch=0, auto_accept=False)
 self.url = Url(url)
 self.expected = messages
 self.batch_size = batch_size
 self.current_batch = 0
 self.committed = 0

 def on_start(self, event):
 self.container = event.container
 self.conn = self.container.connect(self.url)
 self.receiver = self.container.create_receiver(self.conn, self.url.path)

CHAPTER 3. AMQP 1.0 CLIENT APIS

65

1

2

3

on_message() method the receiver calls theaccept() method on the transaction object to tie the
acceptance to the context. It then increments the current_batch. If the current_batch is now
equal to the batch_size, the receiver calls the commit() method on the transaction.

on_transaction_declared() method controls the message flow. The receiver uses the flow()
method on the receiver to request an equal number of messages that match the batch_size

When the on_transaction_committed() method is called the committed count is incremented, the
application then tests whether it has received all expected messages. If all the messages are
received, the application exists. If all messages are not received a new transactional context is
declared and the batch is reset.

Using a Selector Filter

1

2

3

 self.container.declare_transaction(self.conn, handler=self)
 self.transaction = None

 def on_message(self, event):
 self.receiver.flow(self.batch_size)

 print event.message.body
 self.transaction.accept(event.delivery)
 self.current_batch += 1
 if self.current_batch == self.batch_size:
 self.transaction.commit()
 self.transaction = None

 def on_transaction_declared(self, event):
 self.receiver.flow(self.batch_size)

 self.transaction = event.transaction

 def on_transaction_committed(self, event):
 self.committed += self.current_batch

 self.current_batch = 0
 if self.expected == 0 or self.committed < self.expected:
 self.container.declare_transaction(self.conn, handler=self)
 else:
 event.connection.close()

 def on_disconnected(self, event):
 self.current_batch = 0

parser = optparse.OptionParser(usage="usage: %prog [options]")
parser.add_option("-a", "--address", default="localhost:5672/examples",
 help="address from which messages are received (default %default)")
parser.add_option("-m", "--messages", type="int", default=100,
 help="number of messages to receive; 0 receives indefinitely (default %default)")
parser.add_option("-b", "--batch-size", type="int", default=10,
 help="number of messages in each transaction (default %default)")
opts, args = parser.parse_args()

try:
 Container(TxRecv(opts.address, opts.messages, opts.batch_size)).run()
except KeyboardInterrupt: pass

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

66

1

Example 3.10. Filtering messages using a selector

This example implements a selector that filters messages based on particular values of the headers.

on_start() method implements a selector that filters messages based on the message header

While creating the receiver, specify the Selector object as an option. The options argument can be
a single object or a list.

Messages can be filtered using a message selector string. This is a conditional expression which will
cause the message to be selected if the condtion is satisfied.

The conditional expression can contain the following information:

Literals

A string literal must be enclosed in single quotes with an included single quote represented
by doubled single quote such as ‘literal’ and ‘literal’’s’

Numeric literals, both whole numbers and those with decimal points.

Boolean literals TRUE and FALSE.

Expressions

Expressions can contain logical expressions such as NOT, AND, OR and comparison
operators =, >, >=, <, <=, <> (not equal)

They can also contain arithmetic operators +, -, /, *,

Pattern values can also be used. These are string literals where _ stands for any single
character and % stands for any sequence of characters. You can escape the special
meaning of _ and % by using the escape character. For example:

1

from proton.reactor import Container, Selector
from proton.handlers import MessagingHandler

class Recv(MessagingHandler):
 def __init__(self):
 super(Recv, self).__init__()

 def on_start(self, event):
 conn = event.container.connect("localhost:5672")

 event.container.create_receiver(conn, "examples", options=Selector(u"colour = 'green'"))

 def on_message(self, event):
 print event.message.body

try:
 Container(Recv()).run()
except KeyboardInterrupt: pass

CHAPTER 3. AMQP 1.0 CLIENT APIS

67

Sending and Receiving Best-Effort Messages

Sending and receiving best-effort requires to add an instance of AtMostOnce to the options keyword
arguments to Container.create_sender and Container.create_receiver. For AtMostOnce, the sender
settles the message as soon as it sends it. If the connection is lost before the message is received by the
receiver, the message will not be delivered. The AtMostOnce link option type is defined in
proton.reactors.

Example 3.11. Receiving best-effort messages

The simple receiving example,Example 3.4, “Receiving reliable messages” is changed to include the
AtMostOnce link option.

number LIKE ‘12%3’ is true for ‘123’ ‘12993’ and false for ‘1234’
word LIKE ‘f_ll’ is true for ‘fall’ and 'full' but not for ‘fail’
variable LIKE ‘_%’ ESCAPE ‘_’ is true for ‘_thing’ and false for ‘thing’

1

import optparse
from proton.handlers import MessagingHandler
from proton.reactor import AtMostOnce, Container

class Recv(MessagingHandler):
 def __init__(self, url, count):
 super(Recv, self).__init__()
 self.url = url
 self.expected = count
 self.received = 0

 def on_start(self, event):
 event.container.create_receiver(self.url, options=AtMostOnce())

 def on_message(self, event):
 if event.message.id and event.message.id < self.received:
 # ignore duplicate message
 return
 if self.expected == 0 or self.received < self.expected:
 print event.message.body
 self.received += 1
 if self.received == self.expected:
 event.receiver.close()
 event.connection.close()

parser = optparse.OptionParser(usage="usage: %prog [options]")
parser.add_option("-a", "--address", default="localhost:5672/examples",
 help="address from which messages are received (default %default)")
parser.add_option("-m", "--messages", type="int", default=100,
 help="number of messages to receive; 0 receives indefinitely (default %default)")
opts, args = parser.parse_args()

try:
 Container(Recv(opts.address, opts.messages)).run()
except KeyboardInterrupt: pass

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

68

1

1

on_start() method uses the AtMostOnce option to receive the unacknowledged messages.

If the connection is lost before the message is received by the receiver, the message will not be
delivered.

The simple sending example,Example 3.3, “Sending reliable messages” is changed to include the
AtMostOnce link option. In this example, there will be no acknowledgments for the send messages,
hence the on_accepted method is redundant. There is no distinction between confirmed and sent
status and the on_disconnected method is redundant. Any shutdown would be triggered directly after
sending.

Example 3.12. Sending best-effort messages

on_start() method uses the AtMostOnce option to send the unacknowledged messages.

1

import optparse
from proton import Message
from proton.handlers import MessagingHandler
from proton.reactor import AtMostOnce, Container

class Send(MessagingHandler):
 def __init__(self, url, messages):
 super(Send, self).__init__()
 self.url = url
 self.sent = 0
 self.confirmed = 0
 self.total = messages

 def on_start(self, event):
 event.container.create_sender(self.url, options=AtMostOnce())

 def on_sendable(self, event):
 while event.sender.credit and self.sent < self.total:
 msg = Message(id=(self.sent+1), body={'sequence':(self.sent+1)})
 event.sender.send(msg)
 self.sent += 1
 if self.sent == self.total:
 print "all messages sent"
 event.connection.close()

parser = optparse.OptionParser(usage="usage: %prog [options]",
 description="Send messages to the supplied address.")
parser.add_option("-a", "--address", default="localhost:5672/examples",
 help="address to which messages are sent (default %default)")
parser.add_option("-m", "--messages", type="int", default=100,
 help="number of messages to send (default %default)")
opts, args = parser.parse_args()

try:
 Container(Send(opts.address, opts.messages)).run()
except KeyboardInterrupt: pass

CHAPTER 3. AMQP 1.0 CLIENT APIS

69

3.5. C++ AMQP 1.0 CLIENT API

C++ AMQP 1.0 Client API is based on the Apache Qpid C++ AMQP 1.0 Client API.

NOTE

This is an initial version of documentation for the C++ client. Regular updates and
enhancements of the documentation can be expected after the GA release of Fuse 6.2.0

3.5.1. Getting Started with C++ AMQP

Introduction to C++ AMQP 1.0 Client API

C++ Messaging Service (CMS) API is used for interfacing with Message Brokers such as A-MQ. A-MQ-
C++ is a client library that uses A-MQ as a message broker for clients to communicate. The architecture
of CMS supports pluggable transports and wire formats. At present, OpenWire and Stomp protocols are
supported over TCP and SSL. Failover Transport is also supported for reliable client operation. In
addition to CMS, A-MQ-C++ provides a set of classes that support platform independent constructs
such as threading, I/O, sockets.

CMS and JMS are similar with some minor differences, mostly CMS adheres to the JMS specifications.
To know more about CMS API, see CMS API Overview

Downloading A-MQ C++ Client

You can Download A-MQ C++ client from the Red Hat Customer Portal C++ Client

3.5.2. C++ Example Clients

A Simple Messaging Program in C++

The following program shows how to create a simple Asynchronous consumer that can receive
TextMessage objects from an A-MQ broker.

In this example, we create ConnectionFactory object. This object is used to create a CMS Connection
using the ConnectionFactory. A Connection is the Object that manages the client's connection to the
Provider. After creating a connection, the client creates a CMS Session to create message producers
and consumers.

Example 3.13. Simple Asynchronous Consumer

#include <decaf/lang/Thread.h>
#include <decaf/lang/Runnable.h >
#include <decaf/util/concurrent/CountDownLatch.h>
#include <activemq/core/ActiveMQConnectionFactory.h>
#include <activemq/core/ActiveMQConnection.h>
#include <activemq/transport/DefaultTransportListener.h>
#include <activemq/library/ActiveMQCPP.h>
#include <decaf/lang/Integer.h>
#include <activemq/util/Config.h>
#include <decaf/util/Date.h>
#include <cms/Connection.h>
#include <cms/Session.h>

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

70

http://activemq.apache.org/cms/cms-api-overview.html
https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=38633&product=jboss.amq&version=6.2.0&downloadType=distributions

1

#include <cms/TextMessage.h>
#include <cms/BytesMessage.h>
#include <cms/MapMessage.h>
#include <cms/ExceptionListener.h>
#include <cms/MessageListener.h>
#include <stdlib.h>
#include <stdio.h>
#include <iostream>

using namespace activemq;
using namespace activemq::core;
using namespace activemq::transport;
using namespace decaf::lang;
using namespace decaf::util;
using namespace decaf::util::concurrent;
using namespace cms;
using namespace std;

class SimpleAsyncConsumer : public ExceptionListener,
 public MessageListener,
 public DefaultTransportListener {
private:

 Connection* connection;
 Session* session;
 Destination* destination;
 MessageConsumer* consumer;
 bool useTopic;
 std::string brokerURI;
 std::string destURI;
 bool clientAck;

private:

 SimpleAsyncConsumer(const SimpleAsyncConsumer&);
 SimpleAsyncConsumer& operator= (const SimpleAsyncConsumer&);

public:

 SimpleAsyncConsumer(const std::string& brokerURI,
 const std::string& destURI,
 bool useTopic = false,
 bool clientAck = false) :
 connection(NULL),
 session(NULL),
 destination(NULL),
 consumer(NULL),
 useTopic(useTopic),
 brokerURI(brokerURI),
 destURI(destURI),

 clientAck(clientAck)
 {

 }

 virtual ~SimpleAsyncConsumer() {
 this->cleanup();

CHAPTER 3. AMQP 1.0 CLIENT APIS

71

2

3

 }

 void close() {
 this->cleanup();
 }

 void runConsumer()
 {

 try {

 // Create a ConnectionFactory
 ActiveMQConnectionFactory* connectionFactory =
 new ActiveMQConnectionFactory(brokerURI);

 // Create a Connection
 connection = connectionFactory->createConnection();
 delete connectionFactory;

 ActiveMQConnection* amqConnection = dynamic_cast<ActiveMQConnection*>(
connection);
 if(amqConnection != NULL) {
 amqConnection->addTransportListener(this);
 }

 connection->start();

 connection->setExceptionListener(this);

 // Create a Session
 if(clientAck) {
 session = connection->createSession(Session::CLIENT_ACKNOWLEDGE);
 } else {
 session = connection->createSession(Session::AUTO_ACKNOWLEDGE);
 }

 // Create the destination (Topic or Queue)
 if(useTopic) {
 destination = session->createTopic(destURI);
 } else {
 destination = session->createQueue(destURI);
 }

 // Create a MessageConsumer from the Session to the Topic or Queue
 consumer = session->createConsumer(destination);
 consumer->setMessageListener(this);

 } catch (CMSException& e) {
 e.printStackTrace();
 }
 }

 // Called from the consumer since this class is a registered MessageListener.

 virtual void onMessage(const Message* message)
 {

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

72

 static int count = 0;

 try
 {
 count++;
 const TextMessage* textMessage =
 dynamic_cast< const TextMessage* >(message);
 string text = "";

 if(textMessage != NULL) {
 text = textMessage->getText();
 } else {
 text = "NOT A TEXTMESSAGE!";
 }

 if(clientAck) {
 message->acknowledge();
 }

 printf("Message #%d Received: %s\n", count, text.c_str());
 } catch (CMSException& e) {
 e.printStackTrace();
 }
 }

 // If something bad happens you see it here as this class is also been
 // registered as an ExceptionListener with the connection.
 virtual void onException(const CMSException& ex AMQCPP_UNUSED) {
 printf("CMS Exception occurred. Shutting down client.\n");
 exit(1);
 }

 virtual void transportInterrupted() {
 std::cout << "The Connection's Transport has been Interrupted." << std::endl;
 }

 virtual void transportResumed() {
 std::cout << "The Connection's Transport has been Restored." << std::endl;
 }

private:

 void cleanup(){

 try {
 if(connection != NULL) {
 connection->close();
 }
 } catch (CMSException& e) {
 e.printStackTrace();
 }

 delete destination;
 delete consumer;
 delete session;
 delete connection;

CHAPTER 3. AMQP 1.0 CLIENT APIS

73

 }
};

//
int main(int argc AMQCPP_UNUSED, char* argv[] AMQCPP_UNUSED) {

 activemq::library::ActiveMQCPP::initializeLibrary();

 std::cout << "===\n";
 std::cout << "Starting the example:" << std::endl;
 std::cout << "---\n";

 // Set the URI to point to the IPAddress of your broker.
 // add any optional params to the url to enable things like
 // tightMarshalling or tcp logging etc. See the CMS web site for
 // a full list of configuration options.
 //
 // http://activemq.apache.org/cms/
 //
 std::string brokerURI =
 "failover:(tcp://127.0.0.1:61616)";

 //==
 // This is the Destination Name and URI options. Use this to
 // customize where the consumer listens, to have the consumer
 // use a topic or queue set the 'useTopics' flag.
 //==
 std::string destURI = "TEST.FOO"; //?consumer.prefetchSize=1";

 //==
 // set to true to use topics instead of queues
 // Note in the code above that this causes createTopic or
 // createQueue to be used in the consumer.
 //==
 bool useTopics = false;

 //==
 // set to true if you want the consumer to use client ack mode
 // instead of the default auto ack mode.
 //==
 bool clientAck = false;

 // Create the consumer
 SimpleAsyncConsumer consumer(brokerURI, destURI, useTopics, clientAck);

 // Start it up and it will listen forever.
 consumer.runConsumer();

 // Wait to exit.
 std::cout << "Press 'q' to quit" << std::endl;
 while(std::cin.get() != 'q') {}

 // All CMS resources should be closed before the library is shutdown.
 consumer.close();

 std::cout << "---\n";

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

74

1

2

3

The constructor of the SimpleAsyncConsumer class. This constructor allows the user to create
an instance of the class that connects to a particular broker and destination. It also identifies the
destination as a Queue or a Topic

The runConsumer method creates a Connection to the broker and start a new Session configured
with the configured Acknowledgment mode. Once a Session is created a new Consumer can then
be created and attached to the configured Destination. To listen asynchronously for new
messages the SimpleAsyncConsumer inherits from cms::MessageListener so that it can
register itself as a Message Listener with the MessageConsumer created in runConsumer
method.

All the messages received by the application are dispatched to the onMessage method and if the
message is a TextMessage its contents are printed on the screen.

Example 3.14. A simple Asynchronous producer

 std::cout << "Finished with the example." << std::endl;
 std::cout << "===\n";

 activemq::library::ActiveMQCPP::shutdownLibrary();
}

#include <decaf/lang/Thread.h>
#include <decaf/lang/Runnable.h>
#include <decaf/util/concurrent/CountDownLatch.h>
#include <decaf/lang/Long.h>
#include <decaf/util/Date.h>
#include <activemq/core/ActiveMQConnectionFactory.h>
#include <activemq/util/Config.h>
#include <activemq/library/ActiveMQCPP.h>
#include <cms/Connection.h>
#include <cms/Session.h>
#include <cms/TextMessage.h>
#include <cms/BytesMessage.h>
#include <cms/MapMessage.h>
#include <cms/ExceptionListener.h>
#include <cms/MessageListener.h>
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <memory>

using namespace activemq;
using namespace activemq::core;
using namespace decaf;
using namespace decaf::lang;
using namespace decaf::util;
using namespace decaf::util::concurrent;
using namespace cms;
using namespace std;

//

CHAPTER 3. AMQP 1.0 CLIENT APIS

75

1

2

class SimpleProducer : public Runnable {
private:

 Connection* connection;
 Session* session;
 Destination* destination;
 MessageProducer* producer;
 bool useTopic;
 bool clientAck;
 unsigned int numMessages;
 std::string brokerURI;
 std::string destURI;

private:

 SimpleProducer(const SimpleProducer&);
 SimpleProducer& operator= (const SimpleProducer&);

public:

 SimpleProducer(const std::string& brokerURI, unsigned int numMessages,
 const std::string& destURI, bool useTopic = false, bool clientAck = false) :
 connection(NULL),
 session(NULL),
 destination(NULL),
 producer(NULL),
 useTopic(useTopic),
 clientAck(clientAck),
 numMessages(numMessages),
 brokerURI(brokerURI),

 destURI(destURI)
 {

 }

 virtual ~SimpleProducer(){
 cleanup();
 }

 void close() {
 this->cleanup();
 }

 virtual void run()
 {

 try {

 // Create a ConnectionFactory
 auto_ptr<ActiveMQConnectionFactory> connectionFactory(
 new ActiveMQConnectionFactory(brokerURI));

 // Create a Connection
 try{
 connection = connectionFactory->createConnection();
 connection->start();
 } catch(CMSException& e) {
 e.printStackTrace();

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

76

 throw e;
 }

 // Create a Session
 if(clientAck) {
 session = connection->createSession(Session::CLIENT_ACKNOWLEDGE);
 } else {
 session = connection->createSession(Session::AUTO_ACKNOWLEDGE);
 }

 // Create the destination (Topic or Queue)
 if(useTopic) {
 destination = session->createTopic(destURI);
 } else {
 destination = session->createQueue(destURI);
 }

 // Create a MessageProducer from the Session to the Topic or Queue
 producer = session->createProducer(destination);
 producer->setDeliveryMode(DeliveryMode::NON_PERSISTENT);

 // Create the Thread Id String
 string threadIdStr = Long::toString(Thread::currentThread()->getId());

 // Create a messages
 string text = (string)"Hello world! from thread " + threadIdStr;

 for(unsigned int ix=0; ix <numMessages; ++ix){
 TextMessage* message = session->createTextMessage(text);

 message->setIntProperty("Integer", ix);

 // Tell the producer to send the message
 printf("Sent message #%d from thread %s\n", ix+1, threadIdStr.c_str());
 producer->send(message);

 delete message;
 }

 }catch (CMSException& e) {
 e.printStackTrace();
 }
 }

private:

 void cleanup(){

 try {
 if(connection != NULL) {
 connection->close();
 }
 } catch (CMSException& e) {
 e.printStackTrace();
 }

CHAPTER 3. AMQP 1.0 CLIENT APIS

77

 delete destination;
 delete producer;
 delete session;
 delete connection;
 }
};

//
int main(int argc AMQCPP_UNUSED, char* argv[] AMQCPP_UNUSED) {

 activemq::library::ActiveMQCPP::initializeLibrary();

 std::cout << "===\n";
 std::cout << "Starting the example:" << std::endl;
 std::cout << "---\n";

 // Set the URI to point to the IPAddress of your broker.
 // add any optional params to the url to enable things like
 // tightMarshalling or tcp logging etc. See the CMS web site for
 // a full list of configuration options.
 //
 // http://activemq.apache.org/cms/
 //
 std::string brokerURI =
 "failover://(tcp://127.0.0.1:61616)";

 //==
 // Total number of messages for this producer to send.
 //==
 unsigned int numMessages = 2000;

 //==
 // This is the Destination Name and URI options. Use this to
 // customize where the Producer produces, to have the producer
 // use a topic or queue set the 'useTopics' flag.
 //==
 std::string destURI = "TEST.FOO";

 //==
 // set to true to use topics instead of queues
 // Note in the code above that this causes createTopic or
 // createQueue to be used in the producer.
 //==
 bool useTopics = false;

 // Create the producer and run it.
 SimpleProducer producer(brokerURI, numMessages, destURI, useTopics);

 // Publish the given number of Messages
 producer.run();

 // Before exiting we ensure that all CMS resources are closed.
 producer.close();

 std::cout << "---\n";
 std::cout << "Finished with the example." << std::endl;

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

78

1

2

The SimpleProducer class exposes a similar interface to the consumer example Example 3.13,
“Simple Asynchronous Consumer”. The constructor creates an instance with the configuration
options for the broker and destination and the number of messages to be send to the configured
destination.

The run method publishes the specified number of messages. Once the run method completes,
the client can close the SimpleProducer application by calling the close() method, which cleans up
the allocated CMS resource and exits the application.

3.5.3. C++ Client on RHEL for SSL based communication with A-MQ Broker

Overview

This section describes how to enable SSL/TLS security for the AMQP protocol, where the connection is
made between:

A-MQ broker, deployed on a RHEL host, and

Qpid C++ client, deployed on a RHEL host.

Configuring SSL/TLS for the broker on RHEL

Follow these steps to enable SSL/TLS security for the AMQP endpoint of a broker running on RHEL:

1. Create a certificate, test.jks, for testing purposes:

Store the new certificate file, test.jks, in the broker's ${A-MQ_HOME}/etc/ directory.

2. Configure the broker to use the test.jks certificate and enable SSL/TLS on the broker's AMQP
connector by editing the ${A-MQ_HOME}/etc/activemq.xml file as follows:

NOTE

 std::cout << "===\n";

 activemq::library::ActiveMQCPP::shutdownLibrary();
}

keytool -genkey -alias jboss -keyalg RSA -keystore test.jks -storepass password -dname
"CN=test,O=test"

<sslContext>
 <sslContext
 keyStore="${karaf.base}/etc/test.jks"
 keyStorePassword="password"
 />
</sslContext>

<transportConnectors>
 <transportConnector name="amqpssl" uri="amqp+ssl://0.0.0.0:61617?
transport.enabledProtocols=TLSv1,TLSv1.1,TLSv1.2" />

CHAPTER 3. AMQP 1.0 CLIENT APIS

79

NOTE

For more details about the broker configuration, see Securing a Broker using
SSL/TLS.

3. Export the certificate in a format that can be used by the Qpid C++ client running on RHEL (in
the next step):

You need to copy the resulting sample_cert.cer file to the client RHEL machine. One way of
doing this is to use the secure copy command, scp, to copy the sample_cert.cer file securely
across the network:

Where ${USER_NAME} is the relevant user name on the client RHEL machine and
${CLIENT_TARGET_PATH} is the location on the remote file system where you want to copy
the certificate.

Configuring SSL/TLS on the client side

Follow these steps to enable SSL/TLS security on a Qpid C++ client deployed on a remote RHEL
machine:

1. Install the Qpid C++ client packages, along with the qpid-send and qpid-receive packages for
testing:

2. The keytool command is needed for generating self-signed certificates. If it is not already
available, install OpenJDK as follows:

3. Set up the client environment, using the NSS (Network Security Services) database to install the
sample_cert.cer certificate:

4. Set the following environment variables:

5. Test the new configuration using the qpid-send command and the qpid-receive command:

keytool -exportcert -rfc -keystore test.jks -storepass password -alias jboss -file
./sample_cert.cer

scp sample_cert.cer ${USER_NAME}@0.0.0.0:${CLIENT_TARGET_PATH}

yum install qpid-cpp-client
yum install log4cpp
yum install qpid-cpp-client-devel
yum isntall log4cpp-devel

yum install java-1.8.0-openjdk-headless-1.8.0.51-0.b16.el6_6.x86_64

mkdir -p ~/nssdb
certutil -A -n selfsigned -d ~/nssdb -t "CT,," -i ./sample_cert.cer

export QPID_SSL_CERT_DB=${YOUR_WORK_PATH}/nssdb

qpid-send -b amqp:ssl:0.0.0.0:61617 -a TestQueue --connection-options "{protocol:amqp1.0,

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

80

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.2/html-single/Security_Guide/index.html#SecureBroker-SSL

3.5.4. C++ Client on Windows for SSL-Based Communication with A-MQ Broker

Overview

This section describes how to enable SSL/TLS security for the AMQP protocol, where the connection is
made between:

A-MQ broker, deployed on a Linux OS, and

Qpid C++ client, deployed on a Windows OS.

Configuring SSL/TLS for the broker on Linux

Follow these steps to enable SSL/TLS security for the AMQP endpoint of a broker running on a Linux
platform:

1. Create a new certificate, test.jks, for testing purposes:

Store the new certificate file, test.jks, in the broker's ${A-MQ_HOME}/etc/ directory.

2. Configure the broker to use the test.jks certificate and enable SSL/TLS on the broker's AMQP
connector by editing the ${A-MQ_HOME}/etc/activemq.xml file as follows:

NOTE

For more details about the broker configuration, see Securing a Broker using
SSL/TLS.

3. Export the certificate in a format that can be used by the Qpid C++ client running on Windows
(in the next step):

ssl_ignore_hostname_verification_failure:true, username:admin, password:admin}" --
content-string "hello world"

qpid-receive -b amqp:ssl:0.0.0.0:61617 -a TestQueue --connection-options "
{protocol:amqp1.0, ssl_ignore_hostname_verification_failure:true, username:admin,
password:admin}"

keytool -genkey -alias jboss -keyalg RSA -keystore test.jks -storepass password -dname
"CN=test,O=test"

<sslContext>
 <sslContext
 keyStore="${karaf.base}/etc/test.jks"
 keyStorePassword="password"
 />
</sslContext>

<transportConnectors>
 <transportConnector name="amqpssl" uri="amqp+ssl://0.0.0.0:61617?
transport.enabledProtocols=TLSv1,TLSv1.1,TLSv1.2" />

CHAPTER 3. AMQP 1.0 CLIENT APIS

81

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.2/html-single/Security_Guide/index.html#SecureBroker-SSL

You need to copy the resulting sample_cert.cer file to the Windows machine. One way of doing
this is to use the secure copy command, scp, to copy the sample_cert.cer file securely across
the network:

Where ${USER_NAME} is the relevant user name on the Windows machine and
${CLIENT_TARGET_PATH} is the location on the Windows file system where you want to copy
the certificate.

Configuring SSL/TLS on the client side

Follow these steps to enable SSL/TLS security on a Qpid C++ client deployed on a Windows machine:

1. Set up the client environment, using the MMC.exe utility to install the sample_cert.cer
certificate into "Trusted Root Certification Authorities", as follows:

2. Test the new configuration using the qpid-send command and the qpid-receive command:

3.6. INTEROPERABILITY BETWEEN AMQP 1.0 CLIENT APIS

INDEX
A

ActiveMQConnection, The connection, Setting the redelivery policy on a connection, Setting the
redelivery policy on a destination

ActiveMQConnectionFactory, The connection factory

B

backOffMultiplier, Redelivery properties

C

collisionAvoidanceFactor, Redelivery properties

Connection, The connection

keytool -exportcert -rfc -keystore test.jks -storepass password -alias jboss -file
./sample_cert.cer

scp sample_cert.cer ${USER_NAME}@0.0.0.0:${CLIENT_TARGET_PATH}

"Console Root" -> "Trusted Root Certification Authorities" -> "Certificates"
Right Click -> "All Tasks" -> "Import"

qpid-send -b amqp:ssl:0.0.0.0:61617 -a TestQueue --connection-options "{protocol:amqp1.0,
ssl_ignore_hostname_verification_failure:true, username:admin, password:admin}" --
content-string "hello world"

qpid-receive -b amqp:ssl:0.0.0.0:61617 -a TestQueue --connection-options "
{protocol:amqp1.0, ssl_ignore_hostname_verification_failure:true, username:admin,
password:admin}"

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

82

ConnectionFactory, The connection factory

D

durableTopicPrefetch, Consumer specific prefetch limits

E

embedded broker, Embedded brokers

G

getRedeliveryPolicy(), Setting the redelivery policy on a connection

getRedeliveryPolicyMap(), Setting the redelivery policy on a destination

I

initialRedeliveryDelay, Redelivery properties

M

maximumRedeliveries, Redelivery properties

maximumRedeliveryDelay, Redelivery properties

P

prefetch

per broker, Setting prefetch limits per broker

per connection, Setting prefetch limits per connection

per destination, Setting prefetch limits per destination

Q

queueBrowserPrefetch, Consumer specific prefetch limits

queuePrefetch, Consumer specific prefetch limits

R

redeliveryDelay, Redelivery properties

redeliveryPlugin, Configuring the broker's redelivery plug-in

RedeliveryPolicy, Setting the redelivery policy on a connection, Setting the redelivery policy on a
destination

RedeliveryPolicyMap, Setting the redelivery policy on a destination

T

topicPrefetch, Consumer specific prefetch limits

INDEX

83

U

useCollisionAvoidance, Redelivery properties

useExponentialBackOff, Redelivery properties

usePrefetchExtension, Disabling the prefetch extension logic

V

VM

advanced URI, Using the VM transport

broker name, Using the VM transport

create, Embedded brokers

embedded broker, Embedded brokers

simple URI, Using the VM transport

waitForStart, Embedded brokers

VM URI

advanced, Using the VM transport

simple, Using the VM transport

Red Hat JBoss A-MQ 6.3 Client Connectivity Guide

84

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. JBOSS A-MQ CLIENT APIS
	Transports and protocols
	Supported Client APIs
	Configuration

	1.2. PREPARING TO USE MAVEN
	Overview
	Prerequisites
	Adding the Red Hat JBoss A-MQ repository
	Artifacts
	Maven coordinates

	1.3. PREPARING TO USE AMQ WITH SSL
	Overview
	Setting up A-MQ for listening to amqp+ssl connection

	CHAPTER 2. OPENWIRE ACTIVEMQ CLIENT APIS
	2.1. GENERAL APPROACH TO ESTABLISHING A CONNECTION
	Steps to establish a connection

	2.2. OPENWIRE JMS CLIENT API
	Overview
	The connection factory
	The connection
	The session
	Example

	2.3. OPENWIRE C++ CLIENT API
	Overview
	The connection factory
	The connection
	The session
	Resources
	Example

	2.4. OPENWIRE .NET CLIENT API
	Overview
	Resources
	Example

	2.5. CONFIGURING NMS.ACTIVEMQ
	Connection configuration using the generic NMSConnectionFactory class
	Connection configuration using the ActiveMQ ConnectionFactory class
	Protocol variants
	TCP transport options
	Failover transport options
	Connection Options
	OpenWire options
	Destination configuration
	General options
	OpenWire specific options

	2.6. STOMP HEARTBEATS
	Stomp 1.1 heartbeats
	Stomp 1.0 heartbeat compatibility

	2.7. STOMP COMPOSITE DESTINATIONS
	Specify Composite Destinatons for Stomp in A-MQ

	2.8. INTRA-JVM CONNECTIONS
	Overview
	Embedded brokers
	Using the VM transport
	Examples

	2.9. PEER PROTOCOL
	Overview
	Peer endpoint discovery
	URI syntax
	Sample URI

	2.10. MESSAGE PREFETCH BEHAVIOR
	Overview
	Consumer specific prefetch limits
	Setting prefetch limits per broker
	Setting prefetch limits per connection
	Setting prefetch limits per destination
	Disabling the prefetch extension logic

	2.11. MESSAGE REDELIVERY
	Overview
	Redelivery properties
	Configuring the broker's redelivery plug-in
	Configuring the redelivery using the broker URI
	Setting the redelivery policy on a connection
	Setting the redelivery policy on a destination

	2.12. JMS MESSAGE SELECTORS

	CHAPTER 3. AMQP 1.0 CLIENT APIS
	3.1. INTRODUCTION TO AMQP
	What is AMQP?
	JMS is an API
	AMQP is a wire protocol
	AMQP-to-JMS requires message conversion

	3.2. JMS AMQP 1.0 CLIENT API
	3.2.1. Getting Started with AMQP
	Getting started with AMQP

	3.2.2. Configuring the Broker for AMQP
	Overview
	Steps to configure the broker
	Message conversion
	Reference

	3.2.3. AMQP Example Clients
	Overview
	Prerequisites
	Steps to implement and run the AMQP clients

	A Simple Messaging Program in Java JMS
	Apache Qpid JMS Client Configuration
	Configuring a JNDI InitialContext
	Syntax of the Properties file
	Connection URI
	JMS Configuration options
	TCP Transport Configuration options
	SSL Transport Configuration options
	Failover Configuration options
	AMQP Configuration options
	Discovery Configuration options
	JMS Client Logging

	3.3. .NET AMQP 1.0 CLIENT API
	3.3.1. Getting Started with .NET AMQP 1.0 Client API
	3.3.1.1. Introduction to .NET AMQP 1.0 Client API
	3.3.1.2. A Simple Messaging Program in AMQPNet.Lite

	3.4. PYTHON AMQP 1.0 CLIENT API
	3.4.1. Getting Started with Qpid Proton Python Client
	3.4.1.1. Introduction to Qpid Proton Python Client

	3.4.2. Python Client Tutorials with examples
	A Simple Sending and Receiving Program in Python
	Sending and Receiving Program using SSL in Python
	SSL Configuration
	SSL certificate and keys settings for Qpid Python client
	Example
	A Request/Response Server and Client Program
	Run python client over SSL
	A simple client program to receive the messages from the Server
	Sending and Receiving using Transactions
	Example
	Using a Selector Filter
	Sending and Receiving Best-Effort Messages

	3.5. C++ AMQP 1.0 CLIENT API
	3.5.1. Getting Started with C++ AMQP
	Introduction to C++ AMQP 1.0 Client API
	Downloading A-MQ C++ Client

	3.5.2. C++ Example Clients
	A Simple Messaging Program in C++

	3.5.3. C++ Client on RHEL for SSL based communication with A-MQ Broker
	Overview
	Configuring SSL/TLS for the broker on RHEL
	Configuring SSL/TLS on the client side

	3.5.4. C++ Client on Windows for SSL-Based Communication with A-MQ Broker
	Overview
	Configuring SSL/TLS for the broker on Linux
	Configuring SSL/TLS on the client side

	3.6. INTEROPERABILITY BETWEEN AMQP 1.0 CLIENT APIS

	INDEX

