& RedHat

Red Hat JBoss A-MQ 6.3

Fault Tolerant Messaging

Hardening your Red Hat JBoss A-MQ environment against downtime

Last Updated: 2019-06-17

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

Hardening your Red Hat JBoss A-MQ environment against downtime

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2016 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide shows you how to configure your broker to ensure maximum uptime and guarantee that
messages are delivered.

Table of Contents

CHAPTERLLINTRODUCTION ... i

OVERVIEW
CLIENT FAIL OVER
MASTER/SLAVE TOPOLOGIES

CHAPTER 2. CLIENT FAILOVER ... e

2.1. FAILOVER PROTOCOL
2.2. DISCOVERY PROTOCOL

CHAPTER 3. MASTER/SLAVE ... e

3.1. SHARED FILE SYSTEM MASTER/SLAVE
3.2. SHARED JDBC MASTER/SLAVE

CHAPTER 4. MASTER/SLAVE AND BROKERNETWORKSoouit

OVERVIEW

CONFIGURING THE CONNECTION TO A MASTER/SLAVE GROUP
HOST PAIR WITH MASTER/SLAVE GROUPS

NETWORK OF MULTIPLE HOST PAIRS

MORE INFORMATION

Table of Contents

10

......................... 19

24

......................... 29

29
29
30
30

31

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION

Abstract

Fault tolerant message systems can recover from failures with little or no interruption of functionality.
Red Hat JBoss A-MQ does this by making it easy to configure clients to fail over to new brokers in the
event of a broker failure. It also makes it easy to set up master/slave groups that allow brokers to take
over for each other and maintain the integrity of persistent messages and transactions.

OVERVIEW

If planned for, disaster scenarios that result in the loss of a message broker need not obstruct message
delivery. Making a messaging system fault tolerant involves:

® deploying multiple brokers into a topology that allows one broker to pick up the duties of a
failed broker

® configuring clients to fail over to a new broker in the event that its current broker fails

Red Hat JBoss A-MQ provides mechanisms that make building fault tolerant messaging systems easy.

CLIENT FAIL OVER

JBoss A-MQ provides two protocols that allow clients to fail over to a new broker in the case of a failure:
e the failover protocol—allows you to provide a list of brokers that a client can use
® the discovery protocol—allows clients to automatically discover the brokers available for fail over

Both protocols automatically reconnect to an available broker when its existing connection fails. As long
as an available broker is running, the client can continue to function uninterrupted.

When combined with brokers deployed in a master/slave topology, the failover protocol is a key part of a
fault-tolerant messaging system. The clients will automatically fail over to the slave broker if the master

fails. The clients will remain functional and continue working as if nothing had happened.

For more information, see Chapter 2, Client Failover.

MASTER/SLAVE TOPOLOGIES

A master/slave topology includes a master broker and one or more slave brokers. All of the brokers
share data by using either a replication mechanism or by using a shared data store. When the master
broker fails, one of the slave brokers takes over and becomes the new master broker. Client applications
can reconnect to the new master broker and resume processing as normal.

For details, see Chapter 3, Master/Slave.

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

CHAPTER 2. CLIENT FAILOVER

Abstract

Red Hat JBoss A-MQ provides two simple mechanisms for clients to failover to an alternate broker if its
active connection fails. The failover protocol relies on a hard coded list of alternative brokers. The
discovery protocol relies on discovery agents to provide a list of alternative brokers.

2.1. FAILOVER PROTOCOL

Abstract

The failover protocol provides a simple mechanism for clients to failover to a secondary broker if the
primary connection fails. The failover protocol does not require that the brokers be configured as a
network of brokers. However, when paired with a network of brokers it can be configured to use dynamic
failover locations.

The failover protocol facilitates quick recovery from network failures. When a recoverable network error
occurs the protocol catches the error and automatically attempts to reestablish the connection to an
alternate broker endpoint without the need to recreate all of the objects associated with the
connection. The failover URI is composed of one or more URIs that represent different broker
endpoints. By default, the protocol randomly chooses a URI from the list and attempts to establish a
network connection to it. If it does not succeed, or if it subsequently fails, a new network connection is
established to one of the other URIs in the list.

You can set up failover in one of the following ways:
® Static—the client is configured with a static list of available URIs

® Dynamic—the brokers push information about the available broker connections
2.1.1. Static Failover

Overview

In static failover a client is configured to use a failover URI that lists the URIs of the broker connections
the client can use. When establishing a connection, the client randomly chooses a URI from the list and
attempts to establish a connection to it. If the connection does not succeed, the client chooses a new
URI from the list and tries again. The client will continue cycling through the list until a connection
attempt succeeds.

If a client's connection to a broker fails after it has been established, the client will attempt to reconnect

to a different broker in the list. Once a connection to a new broker is established, the client will continue
to use the new broker until the connection to the new broker is severed.

Failover URI

A failover URI is a composite URI that uses one of the following syntaxes:

(] I failover:urit,...,uriN

° I failover:(urit,...,uriN)? TransportOptions

CHAPTER 2. CLIENT FAILOVER

The URI list(urit,...,uriN) is a comma-separated list containing the list of broker endpoint URIs to which
the client can connect. The transport options(? TransportOptions) specified in the form of a query list,

allow you to configure some of the failoiver behaviors.

Transport options

The failover protocol supports the transport options described in Table 2.1, “Failover Transport Options”.

Table 2.1. Failover Transport Options

Option

initialReconnectDelay

maxReconnectDelay

useExponentialBackOff

backOffMultiplier

maxReconnectAttempts

startupMaxReconnectAttem
pts

randomize

Default

10

30000

true

true

Description

Specifies the number of
milliseconds to wait before the
first reconnect attempt.

Specifies the maximum amount of
time, in milliseconds, to wait
between reconnect attempts.

Specifies whether to use an
exponential back-off between
reconnect attempts.

Specifies the exponent used in
the exponential back-off
algorithm.

Specifies the maximum number of
reconnect attempts before an
error is returned to the client. -1
specifies unlimited attempts. O
specifies that an initial connection
attempt is made at start-up, but
no attempts to fail over to a
secondary broker will be made.

Specifies the maximum number of
reconnect attempts before an
error is returned to the client on
the first attempt by the client to
start a connection. -1specifies
unlimited attempts and O
specifies no retry attempts.

Specifies if a URl is chosen at
random from the list. Otherwise,
the list is traversed from left to
right.

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

Option Default Description

backu false Specifies if the protocol initializes
P P
and holds a second transport
connection to enable fast failover.

timeout -1 Specifies the amount of time, in
milliseconds, to wait before
sending an error if a new
connection is not established. -1
specifies an infinite timeout value.

trackMessages false Specifies if the protocol keeps a
cache of in-flight messages that
are flushed to a broker on

reconnect.
maxCacheSize 131072 Specifies the size, in bytes, used
for the cache used to track
messages.
updateURIsSupported true Specifies whether the client

accepts updates to its list of
known URIs from the connected
broker. Setting this to false
inhibits the client's ability to use
dynamic failover. See

Section 2.1.2, “Dynamic Failover”.

updateURIsURL Specifies a URL locating a text file
that contains a comma-separated
list of URIs to use for reconnect in
the case of failure. See
Section 2.1.2, “Dynamic Failover”.

nested.* Specifies extra options that can
be added to the nested URLs. see
Example 2.4, “Adding Options for
Nested Failover URL"

warnAfterReconnectAttempt 10 Specifies to log a warning for no

S connection after every N number
of attemps to reconnect. To
disable the feature, set the value
to <=0

Example

Example 2.1, “Simple Failover URI” shows a failover URI that can connect to one of two message brokers.

I Example 2.1. Simple Failover URI

6

CHAPTER 2. CLIENT FAILOVER

I failover:(tcp://localhost:61616,tcp://remotehost:61616)?initialReconnectDelay=100

2.1.2. Dynamic Failover

Abstract

Dynamic failover combines the failover protocol and a network of brokers to allow a broker to supply its
clients with a list of broker connections to which the clients can failover.

Overview

Dynamic failover combines the failover protocol and a network of brokers to allow a broker to supply its
clients with a list of broker connections to which the clients can failover. Clients use a failover URI to
connect to a broker and the broker dynamically updates the clients' list of available URIs. The broker
updates its clients' failover lists with the URIs of the other brokers in its network of brokers that are
currently running. As new brokers join, or exit, the network of brokers, the broker will adjust its clients'
failover lists.

From a connectivity point of view, dynamic failover works the same as static failover. A client randomly
chooses a URI from the list provided in its failover URI. Once that connection is established, the list of
available brokers is updated. If the original connection fails, the client will randomly select a new URI from

its dynamically generated list of brokers. If the new broker is configured for to supply a failover list, the
new broker will update the client's list.

Set-up

To use dynamic failover you must configure both the clients and brokers used by your application. The
following must be configured:

® The client's must be configured to use the failover protocol when connecting with its broker.
® The client must be configured to accept URI lists from a broker.
® The brokers must be configured to form a network of brokers.

See "Using Networks of Brokers".

® The broker's transport connector must set the failover properties needed to update its
consumers.

Client-side configuration

The client-side configuration for using dynamic failover is nearly identical to the client-side configuration
for using static failover. The differences include:

e The failover URI can consist of a single broker URI.
® The updateURIsSupported option must be set to true.

e The updateURISURL option should be set so that the transport can failover to a new broker
when none of the broker's in the dynamically supplied list are available.

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Using_Networks_of_Brokers/

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

See the section called “Failover URI” and the section called “Transport options” for more information
about using failover URls.

Broker-side configuration

IMPORTANT

Brokers should never use a failover URI to configure a transport connector. The failover
protocol does not support listening for incoming messages.

Configuring a broker to participate in dynamic failover requires two things:

® The broker must be configured to participate in a network of brokers that can be available for
failovers.

See "Using Networks of Brokers" for information about setting up a network of brokers.

® The broker's transport connector must set the failover properties needed to update its
consumers.

Table 2.2, “Broker-side Failover Properties” describes the broker-side properties that can be used to
configure a failover cluster. These properties are attributes on the broker's transportConnector
element.

Table 2.2. Broker-side Failover Properties

Property Default Description

updateClusterClients false Specifies if the broker passes
information to connected clients
about changes in the topology of
the broker cluster.

updateClusterClientsOnRem false Specifies if clients are updated

ove when a broker is removed from
the cluster.

rebalanceClusterClients false Specifies if connected clients are

asked to rebalance across the
cluster whenever a new broker
joins.

updateClusterFilter Specifies a comma-separated list
of regular expression filters, which
match against broker names to
select the brokers that belong to
the failover cluster.

Example

Example 2.2, “Broker for Dynamic Failover” shows the configuration for a broker that participates in
dynamic failover.

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Using_Networks_of_Brokers/

CHAPTER 2. CLIENT FAILOVER

Example 2.2. Broker for Dynamic Failover

<beans ... >
<broker>

<networkConnectors>
<networkConnector uri="multicast://default" />
</networkConnectors>

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://0.0.0.0:61616"
9 discoveryUri="multicast://default"
updateClusterClients="true"
updateClusterFilter="A.*,B.*" />
</transportConnectors>

</broker>
</beans>

The configuration in Example 2.2, “Broker for Dynamic Failover” does the following:

ﬂ Creates a network connector that connects to any discoverable broker that uses the multicast
transport.

9 Makes the broker discoverable by other brokers over the multicast protocol.

9 Makes the broker update the list of available brokers for clients that connect using the failover
protocol.

NOTE

Clients will only be updated when new brokers join the cluster, not when a broker
leaves the cluster.

Q Creates a filter so that only those brokers whose names start with the letter A or the letter B are
considered to belong to the failover cluster.

Example 2.3, “Failover URI for Connecting to a Failover Cluster” shows the URI for a client that uses the
failover protocol to connect to the broker and its cluster.

Example 2.3. Failover URI for Connecting to a Failover Cluster

I failover:(tcp://0.0.0.0:61616)?initialReconnectDelay=100

Example 2.4, "Adding Options for Nested Failover URL" shows the options that are passed to a nested
URL to detect dead connections in the failover protocol.

Example 2.4. Adding Options for Nested Failover URL

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

failover:(tcp://host01:61616,tcp://host02:61616,tcp://host03:61616)?
nested.wireFormat.maxInactivityDuration=1000

2.1.3. Priority Backup

The priority backup feature allows clients to automatically reconnect to local urls. If the setup has
brokers in both local and remote networks, you would want the client to connect to the local broker. In
this scenario the priority backup feature is useful.

Example 2.5. Priority backup
I failover:(tcp://local:61616,tcp://remote:61616) ?randomize=false&priorityBackup=true

If the above urlis used for the client, the client tries to connect to the local broker. If local broker
fails, the client will fail over to the remote one. But as the priorityBackup parameter is used, the
client will constantly try to reconnect to the local broker and the client switches to the local broker
without any intervention.

Example 2.6. Priority URI

In case of multiple local urls the priority is assigned to the url by using priorityURIs parameter

failover:(tcp://local1:61616,tcp://local2:61616,tcp://remote:61616)?
randomize=false&priorityBackup=true&priorityURIs=tcp://local1:61616,tcp://local2:61616

The client prioritizes the brokers in order (first locall then local2) and reconnects to them in that
order according to their availability.

2.2. DISCOVERY PROTOCOL

Abstract

When you want to have the list of available brokers dynamically generated and don't want to hard code
the initial connection point, you can use Red Hat JBoss A-MQ's discovery protocol. This protocol uses
discovery agents to advertise available brokers and discovery URIs to configure what discovery agent a
client will use for discovering brokers.

The failover protocol provides a lot of control over the brokers to which a client can connect. Using
dynamic failover adds some ability to make the broker list more transparent. However, it has
weaknesses. It requires that you know the address of at least one broker and that an initial broker is
active when the client starts up. Using dynamic failover also requires that all of the brokers being used
for failover are configured in a network of brokers.

Red Hat JBoss A-MQ's discovery protocol offers an alternative method for dynamically generating a list
of brokers that are available for client failover. The protocol allows brokers to advertise their availability

and for clients to dynamically discover them. This is accomplished using two pieces:

® discovery URI—looks up all of the discoverable brokers and presents them as a list of actual URIs
for use by the client or network connector

10

CHAPTER 2. CLIENT FAILOVER
® discovery agents—components that advertise the list of available brokers

2.2.1. Dynamic Discovery Protocol

Abstract

The dynamic discovery protocol combines reconnect logic with a discovery agent to dynamically create
a list of brokers to which the client can connect.

Overview

The dynamic discovery protocol combines reconnect logic with a discovery agent to dynamically create a
list of brokers to which the client can connect. The discovery protocol invokes a discovery agent in order
to build up a list of broker URIs. The protocol then randomly chooses a URI from the list and attempts to
establish a connection to it. If it does not succeed, or if the connection subsequently fails, a new
connection is established to one of the other URIs in the list.

URI syntax

Example 2.7, "Dynamic Discovery URI" shows the syntax for a discovery URI.

Example 2.7. Dynamic Discovery URI

I discovery:(DiscoveryAgentUri)? Options

DiscoveryAgentUri is URI for the discovery agent used to build up the list of available brokers. Discovery
agents are described in Section 2.2.2, “Discovery Agents”.

The options, ? Options, are specified in the form of a query list. The discovery options are described in

Table 2.3, "Dynamic Discovery Protocol Options”. You can also inject transport options as described in
the section called “Setting options on the discovered transports” .

NOTE

If no options are required, you can drop the parentheses from the URI. The resulting URI
would take the form discovery:DiscoveryAgentUri

Transport options

The discovery protocol supports the options described in Table 2.3, “Dynamic Discovery Protocol
Options”.

Table 2.3. Dynamic Discovery Protocol Options

Option Default Description

initialReconnectDelay 10 Specifies, in milliseconds, how
long to wait before the first
reconnect attempt.

1

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

Option Default Description

maxReconnectDelay 30000 Specifies, in milliseconds, the
maximum amount of time to wait
between reconnect attempts.

useExponentialBackOff true Specifies if an exponential back-
off is used between reconnect
attempts.

backOffMultiplier 2 Specifies the exponent used in
the exponential back-off
algorithm.

maxReconnectAttempts -1 Specifies the maximum number of
reconnect attempts before an
error is sent back to the client. =1
specifies unlimited attempts. 0
denotes that reconnects are
disabled, i.e., try once to
reconnect. Values greater than 0
denote the maximum number of
reconnect attempts.

Sample URI

Example 2.8, "Discovery Protocol URI” shows a discovery URI that uses a multicast discovery agent.

Example 2.8. Discovery Protocol URI

I discovery:(multicast://default) ?initialReconnectDelay=100

Setting options on the discovered transports

The list of transport options, Options, in the discovery URI can also be used to set options on the

discovered transports. If you set an option notlisted in the section called “Setting options on the
discovered transports”, the URI parser attempts to inject the option setting into every one of the

discovered endpoints.

Example 2.9, “Injecting Transport Options into a Discovered Transport” shows a discovery URI that sets
the TCP connectionTimeout option to 10 seconds.

Example 2.9. Injecting Transport Options into a Discovered Transport

I discovery:(multicast://default) ?connectionTimeout=10000

The 10 second timeout setting is injected into every discovered TCP endpoint.

12

CHAPTER 2. CLIENT FAILOVER

2.2.2. Discovery Agents

Abstract

A discovery agent is a mechanism that advertises available brokers to clients and other brokers.

2.2.2.1. Introduction to Discovery Agents

What is a discovery agent?

A discovery agent is a mechanism that advertises available brokers to clients and other brokers. When a
client, or broker, using a discovery URI starts up it will look for any brokers that are available using the
specified discovery agent. The clients will update their lists periodically using the same mechanism.

Discovery mechanisms

How a discovery agent learns about the available brokers varies between agents. Some agents use a
static list, some use a third party registry, and some rely on the brokers to provide the information. For
discovery agents that rely on the brokers for information, it is necessary to enable the discovery agentin
the message broker configuration. For example, to enable the multicast discovery agent on an Openwire
endpoint, you edit the relevant transportConnector element as shown in Example 2.10, “Enabling a
Discovery Agent on a Broker”.

<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://default" />

<transportConnectors>
</transportConnectors>

| Example 2.10. Enabling a Discovery Agent on a Broker

Where the discoveryUri attribute on the transportConnector element is initialized to
multicast://default.

IMPORTANT

If a broker uses multiple transport connectors, you need to configure each transport
connector to use a discovery agent individually. This means that different connectors can
use different discovery mechanisms or that one or more of the connectors can be
undiscoverable.

Discovery agent types

Red Hat JBoss A-MQ currently supports the following discovery agents:
® Fuse Fabric Discovery Agent
® Static Discovery Agent
® Multicast Discovery Agent

® Zeroconf Discovery Agent

13

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

2.2.2.2. Fuse Fabric Discovery Agent

Abstract

The Fuse Fabric discovery agent uses Fuse Fabric to discovery brokers that are deployed into a fabric.

Overview

The Fuse Fabric discovery agent uses Fuse Fabric to discover the brokers in a specified group. The
discovery agent requires that all of the discoverable brokers be deployed into a single fabric. When the
client attempts to connect to a broker the agent looks up all of the available brokers in the fabric's
registry and returns the ones in the specified group.

URI

The Fuse Fabric discovery agent URI conforms to the syntax in Example 2.11, “Fuse Fabric Discovery
Agent URI Format”.

Example 2.11. Fuse Fabric Discovery Agent URI Format

I fabric://GID

Where GID is the ID of the broker group from which the client discovers the available brokers.

Configuring a broker

The Fuse Fabric discovery agent requires that the discoverable brokers are deployed into a single fabric.

The best way to deploy brokers into a fabric is using the management console. For information on using
the management console see "Management Console User Guide".

You can also use the console to deploy brokers into a fabric. See chapter "Fabric Console Commands"
in "Console Reference".

Configuring a client

To use the agent a client must be configured to connect to a broker using a discovery protocol that uses
a Fuse Fabric agent URI as shown in Example 2.12, “Client Connection URL using Fuse Fabric Discovery” .

Example 2.12. Client Connection URL using Fuse Fabric Discovery

I discovery:(fabric://nwBrokers)

A client using the URL in Example 2.12, “Client Connection URL using Fuse Fabric Discovery” will
discover all the brokers in the nwBrokers broker group and generate a list of brokers to which it can
connect.

2.2.2.3. Static Discovery Agent

14

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Management_Console_User_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Console_Reference/Consolefabric.html

CHAPTER 2. CLIENT FAILOVER

Abstract

The static discovery agent uses an explicit list of broker URLs to specify the available brokers.

Overview

The static discovery agent does not truly discover the available brokers. It uses an explicit list of broker
URLSs to specify the available brokers. Brokers are not involved with the static discovery agent. The client
only knows about the brokers that are hard coded into the agent's URL.

Using the agent

The static discovery agent is a client-side only agent. It does not require any configuration on the
brokers that will be discovered.

To use the agent, you simply configure the client to connect to a broker using a discovery protocol that
uses a static agent URI.

The static discovery agent URI conforms to the syntax in Example 2.13, “Static Discovery Agent URI
Format”.

Example 2.13. Static Discovery Agent URI Format

I static://(URI1,URI2,URI3,...)

Example

Example 2.14, “Discovery URI using the Static Discovery Agent” shows a discovery URI that configures a
client to use the static discovery agent to connect to one member of a broker pair.

Example 2.14. Discovery URI using the Static Discovery Agent

I discovery:(static:/(tcp://localhost:61716,tcp://localhost:61816))

2.2.2.4. Multicast Discovery Agent

Abstract

The multicast discovery agent uses the IP multicast protocol to find any message brokers currently
active on the local network.

Overview

The multicast discovery agent uses the IP multicast protocol to find any message brokers currently
active on the local network. The agent requires that each broker you want to advertise is configured to
use the multicast agent to publish its details to a multicast group. Clients using the multicast agent as
part of the discovery URI they use for connecting to a broker will use the agent to receive the list of
available brokers advertising in the specified multicast group.

15

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

IMPORTANT

Your local network (LAN) must be configured appropriately for the IP/multicast protocol
to work.

URI

The multicast discovery agent URI conforms to the syntax in Example 2.15, “Multicast Discovery Agent
URI Format”.

Example 2.15. Multicast Discovery Agent URI Format

I multicast://GrouplD

Where GrouplD is an alphanumeric identifier. All participants in the same discovery group must use the
same GrouplD.

Configuring a broker

For a broker to be discoverable using the multicast discovery agent, you must enable the discovery
agent in the broker's configuration. To enable the multicast discovery agent you set the
transportConnector element's discoveryUri attribute to a mulitcast discovery agent URI as shown in
Example 2.16, “Enabling a Multicast Discovery Agent on a Broker” .

<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://default" />

<transportConnectors>
</transportConnectors>

| Example 2.16. Enabling a Multicast Discovery Agent on a Broker

The broker configured in Example 2.16, “Enabling a Multicast Discovery Agent on a Broker” is
discoverable as part of the multicast group default.

Configuring a client

To use the multicast agent a client must be configured to connect to a broker using a discovery URI that
uses a multicast agent URI as shown in Example 2.17, “Client Connection URL using Multicast Discovery” .

Example 2.17. Client Connection URL using Multicast Discovery

I discovery:(multicast://default)

A client using the URI in Example 2.17, “Client Connection URL using Multicast Discovery” will discover all
the brokers advertised in the default multicast group and generate a list of brokers to which it can
connect.

2.2.2.5. Zeroconf Discovery Agent

16

CHAPTER 2. CLIENT FAILOVER

Abstract

The zeroconf discovery agent uses an open source implementation of Apple's Bonjour networking
technology to find any brokers currently active on the local network.

Overview

The zeroconf discovery agent is derived from Apple’s Bonjour Networking technology, which defines the
zeroconf protocol as a mechanism for discovering services on a network. Red Hat JBoss A-MQ bases its
implementation of the zeroconf discovery agent on JmDSN, which is a service discovery protocol that is
layered over IP/multicast and is compatible with Apple Bonjour.

The agent requires that each broker you want to advertise is configured to use a multicast discovery
agent to publish its details to a multicast group. Clients using the zeroconf agent as part of the discovery
URI they use for connecting to a broker will use the agent to receive the list of available brokers
advertising in the specified multicast group.

IMPORTANT

Your local network (LAN) must be configured to use IP/multicast for the zeroconf agent
to work.

URI

The zeroconf discovery agent URI conforms to the syntax in Example 2.18, “Zeroconf Discovery Agent
URI Format”.

Example 2.18. Zeroconf Discovery Agent URI Format

I zeroconf://GrouplD

Where the GrouplD is an alphanumeric identifier. All participants in the same discovery group must use
the same GrouplD.

Configuring a broker

For a broker to be discoverable using the zeroconf discovery agent, you must enable a multicast
discovery agent in the broker's configuration. To enable the multicast discovery agent you set the
transportConnector element's discoveryUri attribute to a mulitcast discovery agent URI as shown in
Example 2.19, “Enabling a Multicast Discovery Agent on a Broker” .

<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://NEGroup" />

<transportConnectors>
</transportConnectors>

| Example 2.19. Enabling a Multicast Discovery Agent on a Broker

The broker configured in Example 2.19, “Enabling a Multicast Discovery Agent on a Broker” is
discoverable as part of the multicast group NEGroup.

17

http://developer.apple.com/networking/bonjour/
http://sourceforge.net/projects/jmdns/

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

Configuring a client

To use the agent a client must be configured to connect to a broker using a discovery protocol that uses
a zeroconf agent URI as shown in Example 2.20, “Client Connection URL using Zeroconf Discovery” .

Example 2.20. Client Connection URL using Zeroconf Discovery

I discovery:(zeroconf://NEGroup)

A client using the URL in Example 2.20, “Client Connection URL using Zeroconf Discovery” will discover
all the brokers advertised in the NEGroup multicast group and generate a list of brokers to which it can
connect.

18

CHAPTER 3. MASTER/SLAVE

CHAPTER 3. MASTER/SLAVE

Abstract

Persistent messages require an additional layer of fault tolerance. In case of a broker failure, persistent
messages require that the replacement broker has a copy of all the undelivered messages. Master/slave
groups address this requirement by having a standby broker that shares the active broker's data store.

A master/slave group consists of two or more brokers where one master broker is active and one or
more slave brokers are on hot standby, ready to take over whenever the master fails or shuts down. All of
the brokers store the message and event data processed by the master broker. So, when one of the
slaves takes over as the new master broker the integrity of the messaging system is guaranteed.

Red Hat JBoss A-MQ supports two master/slave broker configurations:

® Shared file system—the master and the slaves use a common persistence store that is located
on a shared file system

® Shared JDBC database—the masters and the slaves use a common JDBC persistence store

3.1. SHARED FILE SYSTEM MASTER/SLAVE

Overview

A shared file system master/slave group works by sharing a common data store that is located on a
shared file system. Brokers automatically configure themselves to operate in master mode or slave
mode based on their ability to grab an exclusive lock on the underlying data store.

The disadvantage of this configuration is that the shared file system is a single point of failure. This
disadvantage can be mitigated by using a storage area network (SAN) with built in high availability (HA)
functionality. The SAN will handle replication and fail over of the data store.
Supported network file systems
The following network file systems (and only these file systems) are supported by JBoss A-MQ:

e NFSv4

e GFS2

® CIFS/SMB (Windows only)

Recommended NFSv4 client mount options

The goal is to set mount options that provide optimal support for both broker failoverll and data
persistence. For broker failover, you want errors to propagate up the brokerll quickly. For data
persistence, you want to resend failed requests many times. The trickll is to find settings that optimally
balance both fault tolerant messagingll features.

The following mount options were used in all NFS locking mechanism tests. The testsll were run on Red

Hat Enterprise Linux 7.x machines in Red Hat OpenStack Platform. Thell broker was configured to use
the KahaDB store withll lockKeepAlivePeriod=2000 (for details, see the section called “File locking

19

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

requirements”). In these tests, the broker detected lost access to the data store and initiatedll
shutdown within 12 seconds. You may need to adjust these settings depending on yourll particular setup.

soft—Disables continuous retransmission attemptsll by the client when the NFS server does not
respond to a request. Instead, anll NFS request fails after retrans transmissions have beenll
sent, causing the NFS client to return an error to the calling client, andll thus the broker. This
option is key for enabling thell timeo and retrans options.

timeo=20-The time, in deciseconds, the NFS clientll waits for a response from the NFS server,
before it sends another request.ll The default is 600 (60 seconds).

retrans=2-Specifies the number of times the NFSH client attempts to retransmit a failed
request to the NFS server. Thell default is 3. The client waits a timeoll timeout period between
each retrans attempt.

NOTE

After each retransmission, the timeout period is incremented byll timeo, up to the
maximum allowedll (600).

lookupcache=none—Specifies how the kernel managesll its cache of directory entries for the
mount point. nonell forces the client to revalidate all cache entries before they are used. Thisll
enables the Master broker to immediately detect any change made to the lockll file, and it
prevents the lock checking mechanism from returning incorrectll validity information.

The default is all, which means the client assumes that allll cache directory entries are valid until
their parent directory's cachedll attributes expire.

sync—Any system call that writes data to files onll the mount point causes the data to be
flushed to the NFS server before thell system call returns control to user space. This option

provides greater datall cache coherence.

intr—Allows signals to interrupt file operationsll on the mount point. System calls return EINTR
when anll in-progress NFS operation is interrupted by a signal.

proto=tcp—Specifies the protocol the NFS clientll uses to transmit requests to the NFS server.

For more information on NFS mount point options, see http://linux.die.net/man/5/nfs.

File locking requirements

The shared file system requires an efficient and reliable file locking mechanism to function correctly. Not
all SAN file systems are compatible with the shared file system configuration's needs.

' WARNING
A OCFS2 is incompatible with this master/slave configuration, because mutex file

20

locking from Java is not supported.

http://linux.die.net/man/5/nfs

CHAPTER 3. MASTER/SLAVE

' WARNING
A NFSv3 is incompatible with this master/slave configuration. In the event of an

abnormal termination of a master broker, which is an NFSv3 client, the NFSv3 server
does not time out the lock held by the client. This renders the Red Hat JBoss A-MQ
data directory inaccessible. Because of this, the slave broker cannot acquire the

lock and therefore cannot start up. In this case, the only way to unblock the
master/slave in NFSv3 is to reboot all broker instances.

NFSv4, on the other hand, is compatible with this master/slave configuration, as its design includes
timeouts for locks. When an NFSv4 client holding a lock terminates abnormally, NFSv4 automatically
releases the lock after the specified timeout (see http://tools.ietf.org/html/rfc5661 for details), allowing
another NFSv4 client to grab it.

It is possible for a slave to grab the lock from the master without the master's knowledge when NFSv4
crashes. This is so because the master broker does not automatically check whether it still has the lock,
giving a slave the chance to grab it when the NFSv4 specified timeout elapses.

You can avoid this scenario by using the persistence adapter's lockKeepAlivePeriod attribute. Setting
the lockKeepAlivePeriod attribute instructs the master to check, at intervals of the specified
milliseconds, whether it still holds the lock (lock is valid) and that the lock file still exists. If the master
discovers that the lock is invalid, it tries to regain the lock. If it fails or the lock file no longer exists, the
master enters Slave mode, allowing another slave to try to get the lock and become master.

In attempting to get the lock, the slave checks every lockAcquireSleeplinterval (milliseconds) whether
another broker holds the lock. If not, the slave locks the file and waits one lockKeepAlivePeriod before
entering Master mode. If the lock file does not exist, the slave recreates it and then tries to lock it,
following the same procedure it would if the lock file existed.

To enable this lock checking mechanism, add the lockKeepAlivePeriod attribute to the persistence
Adaptor element in the broker configuration. For example, like this:

<kahaDB directory="/sharedFileSystem/sharedBrokerData" lockKeepAlivePeriod="2000">
<locker>
<shared-file-locker lockAcquireSleeplnterval="10000" />
</locker>
</kahaDB>

which instructs the master broker to check at five second intervals whether the lock is still valid and that
the lock file exists. Example 3.1, “Shared File System Broker Configuration” shows how to set the
lockAcquireSleeplnterval attribute.

Initial state

Figure 3.1, “Shared File System Initial State” shows the initial state of a shared file system master/slave
group. When all of the brokers are started, one of them grabs the exclusive lock on the broker data store
and becomes the master. All of the other brokers remain slaves and pause while waiting for the exclusive
lock to be freed up. Only the master starts its transport connectors, so all of the clients connect to it.

21

http://tools.ietf.org/html/rfc5661

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

Figure 3.1. Shared File System Initial State

Master

j broker i
broker1

mmmmm - Y= mmmm e

Shared file system

Client 1

broker2

State after failure of the master

Client 2

broker3

Figure 3.2, “Shared File System after Master Failure” shows the state of the master/slave group after
the original master has shut down or failed. As soon as the master gives up the lock (or after a suitable
timeout, if the master crashes), the lock on the data store frees up and another broker grabs the lock

and gets promoted to master.

22

CHAPTER 3. MASTER/SLAVE

Figure 3.2. Shared File System after Master Failure

Client 1 Client 2

Master
broker

__

broker2 broker3

—
w
-y
jul]
H
[
()
nsl
H
O
S
T
H
!
'_I_
H

Shared file system

After the clients lose their connection to the original master, they automatically try all of the other
brokers listed in the failover URL. This enables them to find and connect to the new master.

Configuring the brokers

In the shared file system master/slave configuration, there is nothing special to distinguish a master
broker from the slave brokers. The membership of a particular master/slave group is defined by the fact
that all of the brokers in the group use the same persistence layer and store their data in the same
shared directory.

Example 3.1, “Shared File System Broker Configuration” shows the broker configuration for a shared file
system master/slave group that shares a data store located at /sharedFileSystem/sharedBrokerData
and uses the KahaDB persistence store.

<shared-file-locker lockAcquireSleeplnterval="10000" />
</locker>
</kahaDB>
</persistenceAdapter>

<broker ... >

<persistenceAdapter>

<locker>
</broker>

Example 3.1. Shared File System Broker Configuration
<kahaDB directory="/sharedFileSystem/sharedBrokerData" lockKeepAlivePeriod="2000">

All of the brokers in the group must share the same persistenceAdapter element.

23

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

Configuring the clients

Clients of shared file system master/slave group must be configured with a failover URL that lists the
URLSs for all of the brokers in the group. Example 3.2, “Client URL for a Shared File System Master/Slave
Group” shows the client failover URL for a group that consists of three brokers: broker1, broker2, and
broker3.

Example 3.2. Client URL for a Shared File System Master/Slave Group

I failover:(tcp://broker1:61616,tcp://broker2:61616,tcp://broker3:61616)

For more information about using the failover protocol see Section 2.1.1, “Static Failover”.

Reintroducing a failed node

You can restart the failed master at any time and it will rejoin the cluster. It will rejoin as a slave broker
because one of the other brokers already owns the exclusive lock on the data store, as shown in

Figure 3.3, “Shared File System after Master Restart”.
Client 2

Figure 3.3. Shared File System after Master Restart

Client 1

Slave Slave

j broker i | broker i E broker i
broker1 broker2 broker3

mmmmm - = e € mmmmmmmm e Q- mmm s

Shared file system

3.2. SHARED JDBC MASTER/SLAVE

Overview

A shared JDBC master/slave group works by sharing a common database using the JDBC persistence
adapter. Brokers automatically configure themselves to operate in master mode or slave mode,
depending on whether or not they manage to grab a mutex lock on the underlying database table.

24

The disadvantages of this configuration are:

CHAPTER 3. MASTER/SLAVE

® The shared database is a single point of failure. This disadvantage can be mitigated by using a
database with built in high availability(HA) functionality. The database will handle replication and

fail over of the data store.

® You cannot enable high speed journaling. This has a significant impact on performance.

Initial state

Figure 3.4, "JDBC Master/Slave Initial State” shows the initial state of a JDBC master/slave group.
When all of the brokers are started, one of them grabs the mutex lock on the database table and
becomes the master. All of the other brokers become slaves and pause while waiting for the lock to be
freed up. Only the master starts its transport connectors, so all of the clients connect to it.

Figure 3.4. JDBC Master/Slave Initial State

Master
broker

broker1

Client 1

After failure of the master

Client 2

broker3

Shared database

Figure 3.5, "JDBC Master/Slave after Master Failure” shows the state of the group after the original
master has shut down or failed. As soon as the master gives up the lock (or after a suitable timeout, if
the master crashes), the lock on the database table frees up and another broker grabs the lock and gets

promoted to master.

25

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

Figure 3.5. JDBC Master/Slave after Master Failure

Client 1 Client 2

Master
broker

broker? broker3

Data

Shared database

After the clients lose their connection to the original master, they automatically try all of the other
brokers listed in the failover URL. This enables them to find and connect to the new master.

Configuring the brokers

In a JDBC master/slave configuration, there is nothing special to distinguish a master broker from the
slave brokers. The membership of a particular master/slave group is defined by the fact that all of the
brokers in the cluster use the same JDBC persistence layer and store their data in the same database
tables.

There is one important requirement when configuring the JDBC persistence adapter for use in a shared
database master/slave cluster. You must use the direct JDBC persistence adapter. This is because the
journal used by the journaled JDBC persistence adapter is not replicated and batch updates are used to
sync with the JDBC store. Therefore it is not possible to guarantee that the latest updates are on the
shared JDBC store.

26

CHAPTER 3. MASTER/SLAVE

Example 3.3, “JDBC Master/Slave Broker Configuration” shows the configuration used be a
master/slave group that stores the shared broker data in an Oracle database.

Example 3.3. JDBC Master/Slave Broker Configuration

<beans xmins="http://www.springframework.org/schema/beans"
xmlns:amqg="http://activemq.apache.org/schema/core"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/schema/core
http://activemq.apache.org/schema/core/activemq-core.xsd">

<broker xmins="http://activemq.apache.org/schema/core"
brokerName="brokerA">

<persistenceAdapter>
<jdbcPersistenceAdapter dataSource="#oracle-ds"/>
</persistenceAdapter>

</broker>
<bean id="oracle-ds"
class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">
<property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
<property name="url" value="jdbc:oracle:thin:@localhost:1521:AMQDB"/>
<property name="username" value="scott"/>
<property name="password" value="tiger"/>

<property name="poolPreparedStatements" value="true"/>
</bean>

</beans>

NOTE

Share the scheduled messages between the brokers and adjust the schedule store
directory along with the schedulerDirectory as shown below:

<broker xmlns="http://activemq.apache.org/schema/core” schedulerSupport="true"
schedulerDirectory="{activemq.data}/broker/scheduler’/>

Configuring the clients

Clients of shared JDBC master/slave group must be configured with a failover URL that lists the URLs
for all of the brokers in the group. Example 3.4, “Client URL for a Shared JDBC Master/Slave Group”
shows the client failover URL for a group that consists of three brokers: broker1, broker2, and broker3.

Example 3.4. Client URL for a Shared JDBC Master/Slave Group

I failover:(tcp://broker1:61616,tcp://broker2:61616,tcp://broker3:61616)

27

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging
For more information about using the failover protocol see Section 2.1.1, “Static Failover”.

Reintroducing a failed node

You can restart the failed node at any time and it will rejoin the group. It will rejoin the group as a slave
because one of the other brokers already owns the mutex lock on the database table, as shown in

Figure 3.6, "JDBC Master/Slave after Master Restart”.
Client 2

Figure 3.6. JDBC Master/Slave after Master Restart

Client 1

Slave Master Slave
i broker E | broker ! i broker i
broker1 broker2 broker3

Shared database

28

CHAPTER 4. MASTER/SLAVE AND BROKER NETWORKS

CHAPTER 4. MASTER/SLAVE AND BROKER NETWORKS

Abstract

Master/slave groups and networks of brokers are very different things. Master/slave groups can be
used in a network of brokers to provide fault tolerance to the nodes in the broker network. This requires
careful consideration and the use of a special network connection protocol.

OVERVIEW

Master/slave groups and broker networks represent different levels of organization. A network of
brokers provides a symmetrical group of brokers that share information among all of the members in the
group. They are useful for distributing the message processing load among many brokers.

Master/slave groups are asymmetrical> Only one member of the group is active at a time. They are
useful for providing fault tolerance when data loss is unacceptable.

You can include a master/slave group as a node in a network of brokers. Using the basic principles of
making a master/slave group a node in a broker network, you can scale up to an entire network
consisting of master/slave groups.

When combining master/slave groups with broker networks there are two things to remember:

® Network connectors to a master/slave group use a special protocol.

® A broker cannot open a network connection to another member of its master/slave group.

CONFIGURING THE CONNECTION TO A MASTER/SLAVE GROUP
The network connection to a master/slave group needs to do two things:

® Open a connection to the master broker without connecting to the slave brokers.

® Connect to the new master in the case of a failure.

The network connector's reconnect logic will handle the reconnection to the new master in the case of a
network failure. The network connector's connection logic, however, attempts to establish connections
to all of the specified brokers. To get around the network connector's default behavior, you use a
masterslave URI to specify the list of broker's in the master/slave group. The masterslave URI only
allows the connector to connect to one of brokers in the list which will be the master.

The masterslave protocol's URI is a list of the connections points for each broker in the master/slave
group. The network connector will traverse the list in order until it establishes a connection.

Example 4.1, "Network Connector to a Master/Slave Group” shows a network connector configured to
link to a master/slave group.

<networkConnector name="linkToCluster"
uri="masterslave:(tcp://masterHost:61002,tcp://slaveHost:61002)"
LI>

Example 4.1. Network Connector to a Master/Slave Group
</networkConnectors>

| <networkConnectors>

29

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging
HOST PAIR WITH MASTER/SLAVE GROUPS

In order to scale up to a large fault tolerant broker network, it is a good idea to adopt a simple building
block as the basis for the network. An effective building block for this purpose is the host pair
arrangement shown in Figure 4.1, “Master/Slave Groups on Two Host Machines”.

Figure 4.1. Master/Slave Groups on Two Host Machines

-

-

-

Master/Slave Pair

The host pair arrangement consists of two master/slave groups distributed between two host machines.
Under normal operating conditions, one master broker is active on each of the two host machines. If one
of the machines should fail for some reason, the slave on the other machine takes over, so that you end
up with two active brokers on the healthy machine.

When configuring the network connectors, you must remember not to open any connectors to brokers

in the same group. For example, the network connector for brokerB1 should be configured to connect
to at most brokerA1 and brokerAz2.

NETWORK OF MULTIPLE HOST PAIRS

You can easily scale up to a large fault tolerant broker network by adding host pairs, as shown in
Figure 4.2, "Broker Network Consisting of Host Pairs” .

30

INDEX

Figure 4.2. Broker Network Consisting of Host Pairs

The preceding network consists of eight master/slave groups distributed over eight host machines. As
before, you should open network connectors only to brokers outside the current master/slave group.
For example, brokerA1 can connect to at most the following brokers: brokerB*, brokerC*, brokerD*,
brokerE*, brokerF*, brokerG*, and brokerH*.

MORE INFORMATION

For detailed information on setting up a network of brokers see "Using Networks of Brokers".

INDEX
B

broker networks

master/slave, Configuring the connection to a master/slave group

broker properties

rebalanceClusterClients, Broker-side configuration
updateClusterClients, Broker-side configuration
updateClusterClientsOnRemove, Broker-side configuration

updateClusterFilter, Broker-side configuration

D

discovery agent

Fuse Fabric, Fuse Fabric Discovery Agent
multicast, Multicast Discovery Agent
static, Static Discovery Agent

zeroconf, Zeroconf Discovery Agent

discovery protocol

31

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_A-MQ/6.3/html/Using_Networks_of_Brokers/

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

backOffMultiplier, Transport options
initialReconnectDelay, Transport options
maxReconnectAttempts, Transport options
maxReconnectDelay, Transport options
URI, URI syntax

useExponentialBackOff, Transport options

discovery URI, URI syntax
discovery:, URI syntax
discoveryUri, Configuring a broker, Configuring a broker

dynamic failover, Dynamic Failover

broker configuration, Broker-side configuration

client configuration, Client-side configuration

F
fabric://, URI

failover, Failover Protocol

backOffMultiplier, Transport options
backup, Transport options

broker properties,Broker-side configuration
dynamic, Dynamic Failover
initialReconnectDelay, Transport options
maxCacheSize, Transport options
maxReconnectAttempts, Transport options
maxReconnectDelay, Transport options
nested.*, Transport options

randomize, Transport options
startupMaxReconnectAttempts, Transport options
static, Static Failover

timeout, Transport options

trackMessages, Transport options
updateURIsSupported, Transport options
updateURISURL, Transport options

useExponentialBackOff, Transport options

32

warnAfterReconnectAttempts, Transport options

failover URI, Failover URI

transport options, Transport options

failover://, Failover URI

Fuse Fabric discovery agent
URI, URI

J

jdbcPersistenceAdapter, Configuring the brokers

M

master broker
reintroduction

shared file system, Reintroducing a failed node

shared JDBC, Reintroducing a failed node

master/slave

broker networks, Configuring the connection to a master/slave group

network of brokers, Configuring the connection to a master/slave group

masterslave, Configuring the connection to a master/slave group

multicast discovery agent

broker configuration, Configuring a broker

URI, URI

multicast://, URI

N

network of brokers

master/slave, Configuring the connection to a master/slave group

NFSv3, File locking requirements

NFSv4, File locking requirements

o

OCFS2, File locking requirements

INDEX

33

Red Hat JBoss A-MQ 6.3 Fault Tolerant Messaging

P

persistenceAdapter, Configuring the brokers Configuring the brokers

S

shared file system master/slave

advantages, Overview

broker configuration, Configuring the brokers Configuring the brokers
client configuration, Configuring the clients
disadvantages, Overview

incompatible SANs, File locking requirements

initial state, Initial state

master failure, State after failure of the master
NFSv3, File locking requirements

NFSv4, File locking requirements

OCFS2, File locking requirements

recovery strategies, State after failure of the master

reintroducing a node, Reintroducing a failed node

shared JDBC master/slave

advantages, Overview

client configuration, Configuring the clients
disadvantages, Overview

initial state, Initial state

master failure, After failure of the master
recovery strategies, After failure of the master

reintroducing a node, Reintroducing a failed node

static discovery agent

URI, Using the agent

static failover, Static Failover

static://, Using the agent

T

transportConnector

discoveryUri, Configuring a broker, Configuring a broker

34

INDEX

y4

zeroconf discovery agent

broker configuration, Configuring a broker

URI, URI

zeroconf://, URI

35

	Table of Contents
	CHAPTER 1. INTRODUCTION
	OVERVIEW
	CLIENT FAIL OVER
	MASTER/SLAVE TOPOLOGIES

	CHAPTER 2. CLIENT FAILOVER
	2.1. FAILOVER PROTOCOL
	2.1.1. Static Failover
	Overview
	Failover URI
	Transport options
	Example

	2.1.2. Dynamic Failover
	Overview
	Set-up
	Client-side configuration
	Broker-side configuration
	Example

	2.1.3. Priority Backup

	2.2. DISCOVERY PROTOCOL
	2.2.1. Dynamic Discovery Protocol
	Overview
	URI syntax
	Transport options
	Sample URI
	Setting options on the discovered transports

	2.2.2. Discovery Agents
	2.2.2.1. Introduction to Discovery Agents
	2.2.2.2. Fuse Fabric Discovery Agent
	2.2.2.3. Static Discovery Agent
	2.2.2.4. Multicast Discovery Agent
	2.2.2.5. Zeroconf Discovery Agent

	CHAPTER 3. MASTER/SLAVE
	3.1. SHARED FILE SYSTEM MASTER/SLAVE
	Overview
	Supported network file systems
	Recommended NFSv4 client mount options
	File locking requirements
	Initial state
	State after failure of the master
	Configuring the brokers
	Configuring the clients
	Reintroducing a failed node

	3.2. SHARED JDBC MASTER/SLAVE
	Overview
	Initial state
	After failure of the master
	Configuring the brokers
	Configuring the clients
	Reintroducing a failed node

	CHAPTER 4. MASTER/SLAVE AND BROKER NETWORKS
	OVERVIEW
	CONFIGURING THE CONNECTION TO A MASTER/SLAVE GROUP
	HOST PAIR WITH MASTER/SLAVE GROUPS
	NETWORK OF MULTIPLE HOST PAIRS
	MORE INFORMATION

	INDEX

