& RedHat

Red Hat JBoss Core Services 2.4.57

Red Hat JBoss Core Services ModSecurity
Guide

For use with Red Hat JBoss middleware products.

Last Updated: 2024-02-06

Red Hat JBoss Core Services 2.4.57 Red Hat JBoss Core Services
ModSecurity Guide

For use with Red Hat JBoss middleware products.

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Configure and use the Red Hat JBoss Core Services ModSecurity module as a web application
firewall.

Table of Contents

Table of Contents

PROVIDING FEEDBACK ON RED HAT JBOSS CORE SERVICES DOCUMENTATIONcvuven... 3
MAKING OPEN SOURCE MORE INCLUSIVE ...\ uttttatatetet et ettt e e e e e e e e eenens 4
CHAPTER 1. MODSECURITY MODULE ...\ttt ettt et et et et 5
CHAPTER 2. CONFIGURING MODSECURITY ON RHEL\utttatetetenineeeaeeeeeaaeneienenanenen 6
2.1. MODSECURITY DEPENDENCIES ON RHEL 6
2.2. MODSECURITY INSTALLATION ON RHEL 6
2.3. LOADING MODSECURITY 6
2.4. CONFIGURING THE RULES DIRECTORY ON RHEL 7
2.5. KEY MODSECURITY CONFIGURATION OPTIONS 7
CHAPTER 3. CONFIGURING MODSECURITY ON WINDOWS SERVER \tuininiieeananananannnn. 8
3. MODSECURITY DEPENDENCIES ON WINDOWS SERVER 8
3.2. INSTALLING MODSECURITY ON WINDOWS SERVER 8
3.3. CONFIGURING THE RULES FOLDER ON WINDOWS SERVER 9
3.4. KEY MODSECURITY CONFIGURATION OPTIONS 9
CHAPTER 4. CREATING MODSECURITY RULEStutttttttatatetetetetenen et eeeeanananen, 1
4. MODSECURITY RULES IN THE APACHE REQUEST CYCLE 1l
4.2. STRUCTURE OF MODSECURITY RULES 1l
4.3 MODSECURITY CONFIGURATION DIRECTIVES 1l
4.4, EXAMPLE OF A SIMPLE MODSECURITY RULE 12
4.5. EXAMPLE OF A COMPLEX MODSECURITY RULE 12

4.6. ADDITIONAL RESOURCES (OR NEXT STEPS) 13

Red Hat JBoss Core Services 2.4.57 Red Hat JBoss Core Services ModSecurity Guide

PROVIDING FEEDBACK ON RED HAT JBOSS CORE SERVICES DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT JBOSS CORE SERVICES
DOCUMENTATION

To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket
2. Enter a brief description of the issue in the Summary.

3. Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

4. Clicking Submit creates and routes the issue to the appropriate documentation team.

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12317125&summary=(issue+created via+link)&issuetype=1&priority=3&labels=customer-feedback&components=12323941

Red Hat JBoss Core Services 2.4.57 Red Hat JBoss Core Services ModSecurity Guide

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. MODSECURITY MODULE

CHAPTER 1. MODSECURITY MODULE

The ModSecurity module is a web application firewall (WAF) that you can use to filter, monitor, and
block HTTP traffic that web clients send to a web server application. Unlike a regular firewall, a WAF uses
filters to determine which applications and users can interact with your Apache HTTP Server application.
The effectiveness of ModSecurity relies on user-defined rules that enable ModSecurity to perform
configurable and real-time monitoring of HTTP traffic to detect attacks instantly.

NOTE

The Red Hat JBoss Core Services ModSecurity Guide provides information and examples
for the ModSecurity version 2.9 module that is available with the Red Hat JBoss Core
Services 2.4.57 release. The effectiveness of ModSecurity depends on user-generated
rules. This document describes how to create and implement rules. This document does
not provide a set of rules to use.

Red Hat JBoss Core Services 2.4.57 Red Hat JBoss Core Services ModSecurity Guide

CHAPTER 2. CONFIGURING MODSECURITY ON RHEL

When you install Red Hat JBoss Core Services on Red Hat Enterprise Linux (RHEL), you can configure
the ModSecurity module to function as a web application firewall (WAF) for the Apache HTTP Server.

NOTE

JBCS 2.4.57 does not currently provide an archive file distribution of the Apache HTTP
Server for RHEL 9.

e

2.1. MODSECURITY DEPENDENCIES ON RHEL

ModSecurity has several dependencies to function successfully. Some of these dependencies are
already included as a part of Red Hat JBoss Core Services.

The following table provides a list of ModSecurity dependencies:

Dependency Part of JBCS on RHEL?

Apache Portable Runtimes (APR) Yes

APR-Util Yes

mod_unique_id Yes

libcurl Yes

Perl-Compatible Regular Expressions (PCRE) Yes

libxmi2 No
NOTE

On RHEL, Red Hat JBoss Core Services includes all of these dependencies except the
libxml2 library.

2.2. MODSECURITY INSTALLATION ON RHEL

The ModSecurity module is included as part of a Red Hat JBoss Core Services installation.

You can follow the procedures in the Red Hat JBoss Core Services Apache HTTP Server Installation
Guide to download and install the Apache HTTP Server for your operating system.

Additional resources

® Red Hat JBoss Core Services Apache HTTP Server Installation Guide

2.3. LOADING MODSECURITY

You can load the ModSecurity module by using the LoadModule command.

https://access.redhat.com/documentation/en-us/red_hat_jboss_core_services/2.4.57/html/apache_http_server_installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_jboss_core_services/2.4.57/html/apache_http_server_installation_guide/

CHAPTER 2. CONFIGURING MODSECURITY ON RHEL

Procedure

® To load the ModSecurity module, enter the following command:

I LoadModule security2_module modules/mod_security2.so

2.4. CONFIGURING THE RULES DIRECTORY ON RHEL

ModSecurity functionality requires that you create rules that the system uses. Apache HTTP Server
provides a preconfigured mod_security.conf.sample file in the HTTPD_HOME/modsecurity.d
directory. To use ModSecurity rules, you must modify the mod_security.conf.sample file with settings
that are appropriate for your environment. You can store the ModSecurity rules in the modsecurity.d
directory or the modsecurity.d/activated_rules subdirectory.

Procedure

1. Go to the HTTPD_HOME/modsecurity.d directory.

2. Rename the mod_security.conf.sample file to mod_security.conf:

I mv mod_security.conf.sample ./mod_security.conf

3. Open the mod_security.conf file and specify parameters for all the configuration directives
that you want to use with the ModSecurity rules.

2.5. KEY MODSECURITY CONFIGURATION OPTIONS

You can use key ModSecurity configuration options to improve the performance of regular expressions,
investigate ModSecurity 2.6 phase one moving to phase two hook, and allow use of certain directives in
.htaccess files.

enable-pcre-jit

Enables Just-In-Time (JIT) compiler support in the Perl-Compatible Regular Expressions (PCRE)
library 8.20 or later to improve the performance of regular expressions.

enable-request-early
Enables testing of the ModSecurity 2.6 move from phase one to phase two hook
enable-htaccess-config

Enables use of directives in .htaccess files when AllowOverride Options is set

Red Hat JBoss Core Services 2.4.57 Red Hat JBoss Core Services ModSecurity Guide

CHAPTER 3. CONFIGURING MODSECURITY ON WINDOWS
SERVER

When you install Red Hat JBoss Core Services on Windows Server, you can configure the ModSecurity
module to function as a web application firewall (WAF) for the Apache HTTP Server.

3.1. MODSECURITY DEPENDENCIES ON WINDOWS SERVER

ModSecurity has several dependencies to function successfully. Some of these dependencies are
already included as a part of Red Hat JBoss Core Services.

The following table provides a list of ModSecurity dependencies:

Dependency Part of JBCS on Windows Server?
Apache Portable Runtimes Yes
APR-Util Yes
mod_unique_id Yes
libcurl Yes
Perl-Compatible Regular Expressions (PCRE) Yes
libxml2 Yes
NOTE

On Windows Server, Red Hat JBoss Core Services includes all of these dependencies.

3.2. INSTALLING MODSECURITY ON WINDOWS SERVER

The ModSecurity module is included as part of a Red Hat JBoss Core Services installation. Apache
HTTP Server provides many of the items that are required to run ModSecurity on Windows Server.
However, you must ensure that your system complies with certain criteria to allow ModSecurity to
function correctly.

Prerequisites

® The folder where you build software from source contains both the Apache source, which you
use to build the Apache HTTP Server, and the ModSecurity source.
For example:

o Apache source is in C:\ sourceFolder\httpd-2.4.57
o Apache has been installed to C:\Apache2457

o ModSecurity source is in C:\ sourceFoldermod_security

CHAPTER 3. CONFIGURING MODSECURITY ON WINDOWS SERVER

NOTE

In this case, sourceFolder is a generic folder that you use in conjunction with
the project.

® Your build environment is set up correctly.
For example:

o Ensure that the PATH environment variable includes the Visual Studio variables set by
vsvars32.bat.

o Ensure that the PATH environment variable includes the bin\ folder for CMAKE.

o Set an environment variable for the Apache source code directory, which is located at C:\
sourceDirectory\httpd-2.4.57.

Procedure

® Follow the procedures in the Red Hat JBoss Core Services Apache HTTP Server Installation
Guide to download and install the Apache HTTP Server to the appropriate location on your C:
drive.

Additional resources

® Red Hat JBoss Core Services Apache HTTP Server Installation Guide

3.3. CONFIGURING THE RULES FOLDER ON WINDOWS SERVER

ModSecurity functionality requires that you create rules that the system uses. Apache HTTP Server
provides a preconfigured mod_security.conf.sample file in the HTTPD_HOME\modsecurity.d folder.
To use ModSecurity rules, you must modify the mod_security.conf.sample file with settings that are
appropriate for your environment. You can store the ModSecurity rules in the modsecurity.d folder or
the modsecurity.d\activated_rules subfolder.

Procedure

1. Go to the HTTPD_HOME\modsecurity.d folder.
2. Rename the mod_security.conf.sample file to mod_security.conf.

3. Open the mod_security.conf file and specify parameters for all the configuration directives
that you want to use with the ModSecurity rules.

3.4.KEY MODSECURITY CONFIGURATION OPTIONS

You can use key ModSecurity configuration options to improve the performance of regular expressions,
investigate ModSecurity 2.6 phase one moving to phase two hook, and allow use of certain directives in
.htaccess files.

enable-pcre-jit

Enables Just-In-Time (JIT) compiler support in the Perl-Compatible Regular Expressions (PCRE)
library 8.20 or later to improve the performance of regular expressions.

enable-request-early

https://access.redhat.com/documentation/en-us/red_hat_jboss_core_services/2.4.57/html/apache_http_server_installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_jboss_core_services/2.4.57/html/apache_http_server_installation_guide/

Red Hat JBoss Core Services 2.4.57 Red Hat JBoss Core Services ModSecurity Guide
Enables testing of the ModSecurity 2.6 move from phase one to phase two hook

enable-htaccess-config

Enables use of directives in .htaccess files when AllowOverride Options is set

10

CHAPTER 4. CREATING MODSECURITY RULES

CHAPTER 4. CREATING MODSECURITY RULES

ModSecurity primarily functions based on custom user-defined rules. These rules determine the types
of security checks that ModSecurity performs.

4.1. MODSECURITY RULES IN THE APACHE REQUEST CYCLE

You can apply rules to any of the five ModSecurity processing phases of the Apache request cycle:

Request headers

Apply a ModSecurity rule to this phase by specifying a REQUEST_HEADERS variable in the rule
syntax.

Request body
Apply a ModSecurity rule to this phase by specifying a REQUEST_BODY variable in the rule syntax.
Response headers

Apply a ModSecurity rule to this phase by specifyinga RESPONSE_HEADERS variable in the rule
syntax.

Response body
Apply a ModSecurity rule to this phase by specifying a RESPONSE_BODY variable in the rule syntax.

Logging
Apply a ModSecurity rule to this phase by specifying a LOGGING variable in the rule syntax.

Additional resources

® ModSecurity Reference Manual: Processing Phases

4.2. STRUCTURE OF MODSECURITY RULES
A ModSecurity rule typically consists of four main parts:

® A configuration directive

® One or more variables

® One or more operators

® One or more actions

4.3. MODSECURITY CONFIGURATION DIRECTIVES

A ModSecurity rule starts with a configuration directive. The configuration directives for ModSecurity
are similar to the Apache HTTP Server directives. You can use most ModSecurity directives within the
various Apache scope directives. However, you may only use some ModSecurity directives once in the
main configuration file.

You must store these rules and the core rule files outside of the httpd.conf file. You can use Apache
Include directives to call these rules. This facilitates the upgrade and migration of the rules.

Additional resources

® ModSecurity Reference Manual: Configuration Directives

1

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#Processing_Phases
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#Configuration_Directives

Red Hat JBoss Core Services 2.4.57 Red Hat JBoss Core Services ModSecurity Guide

4.4. EXAMPLE OF A SIMPLE MODSECURITY RULE

You can define the following simple ModSecurity rule, for example, to check if the URI portion of a
request equals a specific lowercase value:

SecRule REQUEST_URI "@streq /index.php” "id:1,phase:1,t:lowercase,deny”
The preceding ModSecurity rule consists of the following compoonents:

SecRule

A configuration directive that creates a rule to analyze the specified variables by using the specified
operator

NOTE

Most ModSecurity rules use this configuration directive.

REQUEST_URI

A variable that holds the full request URL including the query string data
"@streq /index.php"

An operator where @streq checks for string values that are equal to /index.php
"id:1,phase:1,t:lowercase,deny"

Actions or transformations that the rule performs

NOTE

The rule performs the lowercase action first before the rule implements the
preceding operator instruction.

%

Based on the preceding example, during phase 1 of the Apache request cycle, the rule obtains the URI
portion of the HTTP request and transforms the value to lowercase. The rule then checks if the
transformed value equals /index.php. If the value does equal /index.php, ModSecurity denies the
request and does not process any further rules.

4.5. EXAMPLE OF A COMPLEX MODSECURITY RULE

You can define the following complex ModSecurity rule, for example, to check if a request has changed
history:

SecRule REQUEST_URI|REQUEST_BODY|REQUEST_HEADERS_NAMES|REQUEST_HEADERS
"history.pushstate|history.replacestate"” "phase:4,deny,log,msg:'history-based attacks detected™

The preceding ModSecurity rule consists of the following components:

SecRule

A configuration directive that creates a rule to analyze the specified variables by using the specified
operator

12

CHAPTER 4. CREATING MODSECURITY RULES

L

NOTE

Most ModSecurity rules use this configuration directive.

"REQUEST_URI|REQUEST_BODY|REQUEST_HEADERS_NAMES|REQUEST_HEADERS
A pipe-separated list of variables that define different parts of the request that the rule checks
"history.pushstate|history.replacestate"

A pipe-separated pair of operators that check for the JavaScript history.pushstate() and
history.replacestate() methods

"phase:4,deny,log,msg:'history-based attacks detected"

Actions or transformations that the rule performs if the specified operator values are found
Based on the preceding example, during phase 4 of the Apache request cycle, the rule checks different
parts of the request cycle for history.pushstate() and history.replacestate() methods. If the rule finds
these methods in the request URL string, request body, request header names, or request headers, the
rule performs the following actions:

e deny
Stops the rule processing and intercepts the transaction

® |og
Logs a successful match of the rule to the Apache error log file and the ModSecurity audit log

® msg
Outputs a message defined as history-based attacks detected with the log

4.6. ADDITIONAL RESOURCES (OR NEXT STEPS)
® ModSecurity Reference Manual: Actions
® ModSecurity Reference Manual: Configuration Directives
® ModSecurity Reference Manual: Operators
® ModSecurity Reference Manual: Transformation functions

® ModSecurity Reference Manual: Variables

13

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#Actions
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#Configuration_Directives
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#Operators
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#Transformation_functions
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#Variables

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT JBOSS CORE SERVICES DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. MODSECURITY MODULE
	CHAPTER 2. CONFIGURING MODSECURITY ON RHEL
	2.1. MODSECURITY DEPENDENCIES ON RHEL
	2.2. MODSECURITY INSTALLATION ON RHEL
	2.3. LOADING MODSECURITY
	2.4. CONFIGURING THE RULES DIRECTORY ON RHEL
	2.5. KEY MODSECURITY CONFIGURATION OPTIONS

	CHAPTER 3. CONFIGURING MODSECURITY ON WINDOWS SERVER
	3.1. MODSECURITY DEPENDENCIES ON WINDOWS SERVER
	3.2. INSTALLING MODSECURITY ON WINDOWS SERVER
	3.3. CONFIGURING THE RULES FOLDER ON WINDOWS SERVER
	3.4. KEY MODSECURITY CONFIGURATION OPTIONS

	CHAPTER 4. CREATING MODSECURITY RULES
	4.1. MODSECURITY RULES IN THE APACHE REQUEST CYCLE
	4.2. STRUCTURE OF MODSECURITY RULES
	4.3. MODSECURITY CONFIGURATION DIRECTIVES
	4.4. EXAMPLE OF A SIMPLE MODSECURITY RULE
	4.5. EXAMPLE OF A COMPLEX MODSECURITY RULE
	4.6. ADDITIONAL RESOURCES (OR NEXT STEPS)

