
Red Hat JBoss Enterprise Application
Platform 7.0

Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 7.0

Last Updated: 2018-02-08

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 7.0

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book provides references and examples for Java EE developers using Red Hat JBoss
Enterprise Application Platform 7.0 and its patch releases.

. .

. .

Table of Contents

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS
1.1. INTRODUCTION

1.1.1. About Red Hat JBoss Enterprise Application Platform 7
1.2. BECOME FAMILIAR WITH JAVA ENTERPRISE EDITION 7

1.2.1. Overview of EE 7 Profiles
Java Enterprise Edition 7 Web Profile
Java Enterprise Edition 7 Full Profile

1.3. SETTING UP THE DEVELOPMENT ENVIRONMENT
1.3.1. Download JBoss Developer Studio
1.3.2. Install JBoss Developer Studio
1.3.3. Start JBoss Developer Studio
1.3.4. Add the JBoss EAP Server to JBoss Developer Studio

1.4. USING THE QUICKSTART EXAMPLES
1.4.1. About Maven

1.4.1.1. Using Maven with the Quickstarts
1.4.2. Download and Run the Quickstart Code Examples

1.4.2.1. Download the Quickstarts
1.4.2.2. Run the Quickstarts in JBoss Developer Studio
1.4.2.3. Run the Quickstarts from the Command Line

1.4.3. Review the Quickstart Tutorials
1.4.3.1. Explore the helloworld Quickstart

Prerequisites
Examine the Directory Structure
Examine the Code

1.4.3.2. Explore the numberguess Quickstart
Prerequisites
Examine the Configuration Files
1.4.3.2.1. Examine the JSF Code
1.4.3.2.2. Examine the Class Files

1.5. CONFIGURE THE DEFAULT WELCOME WEB APPLICATION
Changing the welcome-content File Handler
Changing the default-web-module
Disabling the Default Welcome Web Application

CHAPTER 2. USING MAVEN WITH JBOSS EAP
2.1. LEARN ABOUT MAVEN

2.1.1. About the Maven Repository
2.1.2. About the Maven POM File

Minimum Requirements of a Maven POM File
2.1.3. About the Maven Settings File
2.1.4. About Maven Repository Managers

Commonly used Maven repository managers
2.2. INSTALL MAVEN AND THE JBOSS EAP MAVEN REPOSITORY

2.2.1. Download and Install Maven
2.2.2. Install the JBoss EAP Maven Repository
2.2.3. Install the JBoss EAP Maven Repository Locally
2.2.4. Install the JBoss EAP Maven Repository for Use with Apache httpd

2.3. USE THE MAVEN REPOSITORY
2.3.1. Configure the JBoss EAP Maven Repository

Configure the JBoss EAP Maven Repository Using the Maven Settings
Configure the JBoss EAP Maven Repository Using the Project POM

13
13
13
13
13
13
14
15
15
16
16
17
21
21
22
22
22
23
28
28
28
29
29
29
30
31
31
31
33
37
37
37
38

39
39
39
39
39
40
41
41
41
42
42
42
43
43
43
43
46

Table of Contents

1

. .

. .

Determine the URL of the JBoss EAP Repository
2.3.2. Configure Maven for Use with Red Hat JBoss Developer Studio
2.3.3. Manage Project Dependencies

Supported Maven Artifacts
Dependency Management
JBoss EAP Java EE Specs BOM
JBoss EAP BOMs and Quickstarts
JBoss EAP Client BOMs

CHAPTER 3. CLASS LOADING AND MODULES
3.1. INTRODUCTION

3.1.1. Overview of Class Loading and Modules
3.1.2. Modules

Static Modules
Dynamic Modules

3.1.3. Module Dependencies
Optional Dependencies
Export a Dependency
Global Modules
3.1.3.1. Display Module Dependencies Using the Management CLI

3.1.4. Class Loading in Deployments
3.1.5. Class Loading Precedence
3.1.6. Dynamic Module Naming Conventions
3.1.7. jboss-deployment-structure.xml

3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT
Prerequisites
Add a Dependency Configuration to MANIFEST.MF
Add a Dependency Configuration to the jboss-deployment-structure.xml
Creating a Jandex Index

3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN
Generate a MANIFEST.MF File Containing Module Dependencies

3.4. PREVENT A MODULE BEING IMPLICITLY LOADED
3.5. EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT
3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A DEPLOYMENT

3.6.1. Programmatically Load Classes and Resources in a Deployment
3.6.2. Programmatically Iterate Resources in a Deployment

3.7. CLASS LOADING AND SUBDEPLOYMENTS
3.7.1. Modules and Class Loading in Enterprise Archives
3.7.2. Subdeployment Class Loader Isolation
3.7.3. Enable Subdeployment Class Loader Isolation Within a EAR
3.7.4. Configuring Session Sharing between Subdeployments in Enterprise Archives

3.7.4.1. Reference of Shared Session Configuration Options
3.8. DEPLOY TAG LIBRARY DESCRIPTORS (TLDS) IN A CUSTOM MODULE

Deploy TLDs in a Custom Module
3.9. REFERENCE

3.9.1. Implicit Module Dependencies
3.9.2. Included Modules
3.9.3. JBoss Deployment Structure Deployment Descriptor Reference

CHAPTER 4. LOGGING
4.1. ABOUT LOGGING

4.1.1. Supported Application Logging Frameworks
4.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK

48
48
51
51
52
53
53
54

56
56
56
56
56
57
57
58
58
58
58
59
60
60
61
61
61
61
62
63
64
64
65
66
68
68
69
72
72
72
72
73
73
76
76
77
77
86
86

87
87
87
87

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

2

. .

. .

4.2.1. About JBoss Logging
4.2.2. Add Logging to an Application with JBoss Logging

4.3. PER-DEPLOYMENT LOGGING
4.3.1. Add Per-deployment Logging to an Application

Configuring logging.properties
JBoss Log Manager Configuration Options

4.4. LOGGING PROFILES
4.4.1. Specify a Logging Profile in an Application

4.5. INTERNATIONALIZATION AND LOCALIZATION
4.5.1. Introduction

4.5.1.1. About Internationalization
4.5.1.2. About Localization

4.5.2. JBoss Logging Tools Internationalization and Localization
4.5.3. Creating Internationalized Loggers, Messages and Exceptions

4.5.3.1. Create Internationalized Log Messages
4.5.3.2. Create and Use Internationalized Messages
4.5.3.3. Create Internationalized Exceptions

4.5.4. Localizing Internationalized Loggers, Messages and Exceptions
4.5.4.1. Generate New Translation Properties Files with Maven
4.5.4.2. Translate an Internationalized Logger, Exception, or Message

4.5.5. Customizing Internationalized Log Messages
4.5.5.1. Add Message IDs and Project Codes to Log Messages
4.5.5.2. Specify the Log Level for a Message
4.5.5.3. Customize Log Messages with Parameters
4.5.5.4. Specify an Exception as the Cause of a Log Message

4.5.6. Customizing Internationalized Exceptions
4.5.6.1. Add Message IDs and Project Codes to Exception Messages
4.5.6.2. Customize Exception Messages with Parameters
4.5.6.3. Specify One Exception as the Cause of Another Exception

4.5.7. References
4.5.7.1. JBoss Logging Tools Maven Configuration
4.5.7.2. Translation Property File Format
4.5.7.3. JBoss Logging Tools Annotations Reference
4.5.7.4. Project Codes Used in JBoss EAP

CHAPTER 5. REMOTE JNDI LOOKUP
5.1. REGISTERING OBJECTS TO JNDI
5.2. CONFIGURING REMOTE JNDI

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS
6.1. SESSION REPLICATION

6.1.1. About HTTP Session Replication
6.1.2. Enable Session Replication in Your Application

Make your Application Distributable
Immutable Session Attributes

6.2. HTTP SESSION PASSIVATION AND ACTIVATION
6.2.1. About HTTP Session Passivation and Activation
6.2.2. Configure HTTP Session Passivation in Your Application

6.3. PUBLIC API FOR CLUSTERING SERVICES
6.4. HA SINGLETON SERVICE

HA Singleton ServiceBuilder API
HA Singleton Service Election Policies
Create an HA Singleton Service Application

87
88
90
90
90
90
92
93
94
94
94
94
94
95
95
97
98

100
100
101
102
102
103
103
104
105
105
106
107
108
109
110
110
111

115
115
115

116
116
116
116
116
117
118
118
118
119
119
120
120
120

Table of Contents

3

. .

6.5. HA SINGLETON DEPLOYMENTS
Defining or Choosing a Singleton Deployment
Creating a Singleton Deployment

Preferences
Quorum

6.6. APACHE MOD_CLUSTER-MANAGER APPLICATION
6.6.1. About mod_cluster-manager Application

Exploring mod_cluster-manager Application

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)
7.1. INTRODUCTION TO CDI

7.1.1. About Contexts and Dependency Injection (CDI)
Benefits of CDI

7.1.2. Relationship Between Weld, Seam 2, and JavaServer Faces
7.2. USE CDI TO DEVELOP AN APPLICATION

7.2.1. Default Bean Discovery Mode
Bean Defining Annotations

7.2.2. Exclude Beans From the Scanning Process
7.2.3. Use an Injection to Extend an Implementation

7.3. AMBIGUOUS OR UNSATISFIED DEPENDENCIES
7.3.1. Qualifiers

'@Any'
7.3.2. Use a Qualifier to Resolve an Ambiguous Injection

Resolve an Ambiguous Injection with a Qualifier
7.4. MANAGED BEANS

7.4.1. Types of Classes That are Beans
@Vetoed

7.4.2. Use CDI to Inject an Object Into a Bean
Inject Objects into Other Objects

7.5. CONTEXTS AND SCOPES
7.6. NAMED BEANS

7.6.1. Use Named Beans
Configure Bean Names Using the @Named Annotation

7.7. BEAN LIFECYCLE
Manage Bean Lifecycles
7.7.1. Use a Producer Method

7.8. ALTERNATIVE BEANS
Declaring Selected Alternatives
7.8.1. Override an Injection with an Alternative

Override an Injection
7.9. STEREOTYPES

7.9.1. Use Stereotypes
Define and Use Stereotypes

7.10. OBSERVER METHODS
7.10.1. Fire and Observe Events
7.10.2. Transactional Observers

7.11. INTERCEPTORS
Enabling Interceptors
7.11.1. Use Interceptors with CDI

Use Interceptors with CDI
7.12. DECORATORS
7.13. PORTABLE EXTENSIONS
7.14. BEAN PROXIES

124
124
125
126
127
127
127
128

130
130
130
130
130
130
131
131
132
133
134
134
135
135
136
136
136
137
137
137
138
139
139
139
140
140
140
142
142
143
143
143
144
144
144
145
145
147
147
148
149
149
150
151

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

4

. .

. .

. .

. .

7.15. USE A PROXY IN AN INJECTION

CHAPTER 8. JBOSS EAP MBEAN SERVICES
8.1. WRITING JBOSS MBEAN SERVICES

8.1.1. A Standard MBean Example
8.2. DEPLOYING JBOSS MBEAN SERVICES

CHAPTER 9. CONCURRENCY UTILITIES
9.1. CONTEXT SERVICE
9.2. MANAGED THREAD FACTORY
9.3. MANAGED EXECUTOR SERVICE
9.4. MANAGED SCHEDULED EXECUTOR SERVICE

CHAPTER 10. UNDERTOW
10.1. INTRODUCTION TO UNDERTOW HANDLER

Request Lifecycle
Ending the Exchange

10.2. USING EXISTING UNDERTOW HANDLERS WITH A DEPLOYMENT
10.3. CREATING CUSTOM HANDLERS

CHAPTER 11. JAVA TRANSACTION API (JTA)
11.1. OVERVIEW

11.1.1. Overview of Java Transactions API (JTA)
11.2. TRANSACTION CONCEPTS

11.2.1. About Transactions
11.2.2. About ACID Properties for Transactions
11.2.3. About the Transaction Coordinator or Transaction Manager
11.2.4. About Transaction Participants
11.2.5. About Java Transactions API (JTA)
11.2.6. About Java Transaction Service (JTS)
11.2.7. About XML Transaction Service

11.2.7.1. Overview of Protocols Used by XTS
11.2.7.2. Web Services-Atomic Transaction Process

11.2.7.2.1. Atomic Transaction Process
11.2.7.3. Web Services-Business Activity Process

11.2.7.3.1. WS-BA Process
11.2.7.4. Transaction Bridging Overview

11.2.8. About XA Resources and XA Transactions
11.2.9. About XA Recovery
11.2.10. Limitations of the XA Recovery Process
11.2.11. About the 2-Phase Commit Protocol

Phase 1: Prepare
Phase 2: Commit

11.2.12. About Transaction Timeouts
11.2.13. About Distributed Transactions
11.2.14. About the ORB Portability API

11.3. TRANSACTION OPTIMIZATIONS
11.3.1. Overview of Transaction Optimizations
11.3.2. About the LRCO Optimization for Single-phase Commit (1PC)

Single-phase Commit (1PC)
Last Resource Commit Optimization (LRCO)
11.3.2.1. Commit Markable Resource

Summary
Create Tables in Database

151

153
153
153
155

156
157
157
158
159

161
161
161
162
162
163

166
166
166
166
166
166
166
167
167
167
168
168
168
168
169
169
170
170
170
170
172
172
172
172
172
172
173
173
173
173
174
174
174
174

Table of Contents

5

. .

Enabling Datasource to be Connectable
Updating an Existing Resource to Use the New CMR Feature
Add Reference to Transactions Subsystem

11.3.3. About the Presumed-Abort Optimization
11.3.4. About the Read-Only Optimization

11.4. TRANSACTION OUTCOMES
11.4.1. About Transaction Outcomes
11.4.2. About Transaction Commit
11.4.3. About Transaction Roll-Back
11.4.4. About Heuristic Outcomes

Heuristic rollback
Heuristic commit
Heuristic mixed
Heuristic hazard

11.4.5. JBoss Transactions Errors and Exceptions
11.5. OVERVIEW OF THE TRANSACTION LIFECYCLE

11.5.1. Transaction Lifecycle
11.6. TRANSACTION SUBSYSTEM CONFIGURATION
11.7. TRANSACTIONS USAGE IN PRACTICE

11.7.1. Transactions Usage Overview
11.7.2. Control Transactions
11.7.3. Begin a Transaction
11.7.4. Nested Transactions
11.7.5. Commit a Transaction
11.7.6. Roll Back a Transaction
11.7.7. Handle a Heuristic Outcome in a Transaction
11.7.8. JTA Transaction Error Handling

11.7.8.1. Handle Transaction Errors
11.8. TRANSACTION REFERENCES

11.8.1. JTA Transaction Example
11.8.2. Transaction API Documentation

CHAPTER 12. JAVA PERSISTENCE API (JPA)
12.1. ABOUT JAVA PERSISTENCE API (JPA)
12.2. ABOUT HIBERNATE CORE
12.3. HIBERNATE ENTITYMANAGER
12.4. CREATE A SIMPLE JPA APPLICATION
12.5. HIBERNATE CONFIGURATION
12.6. SECOND-LEVEL CACHES

12.6.1. About Second-Level Caches
12.6.2. Configure a Second-level Cache for Hibernate

Configuring a Second-level Cache for Hibernate Using JPA Applications
Configuring a Second-level Cache for Hibernate Using Hibernate Native Applications

12.7. HIBERNATE ANNOTATIONS
12.8. HIBERNATE QUERY LANGUAGE

12.8.1. About Hibernate Query Language
Introduction to JPQL
Introduction to HQL

12.8.2. About HQL Statements
12.8.3. About the INSERT Statement
12.8.4. About the FROM Clause
12.8.5. About the WITH Clause
12.8.6. About HQL Ordering

175
176
176
177
177
177
177
177
177
178
178
178
178
178
178
178
178
179
179
179
180
180
181
181
182
183
185
185
186
186
188

189
189
189
189
190
193
194
194
194
194
195
195
202
202
202
202
203
203
204
204
205

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

6

. .

12.8.7. About Bulk Update, Insert and Delete
12.8.8. About Collection Member References
12.8.9. About Qualified Path Expressions
12.8.10. About Scalar Functions
12.8.11. About HQL Standardized Functions
12.8.12. About the Concatenation Operation
12.8.13. About Dynamic Instantiation
12.8.14. About HQL Predicates

HQL Predicates
12.8.15. About Relational Comparisons

12.9. HIBERNATE SERVICES
12.9.1. About Hibernate Services
12.9.2. About Service Contracts
12.9.3. Types of Service Dependencies
12.9.4. The Service Registry

12.9.4.1. About the ServiceRegistry
12.9.5. Custom Services

12.9.5.1. About Custom Services
12.9.6. The Boot-Strap Registry

12.9.6.1. About the Boot-strap Registry
Using BootstrapServiceRegistryBuilder

12.9.6.2. BootstrapRegistry Services
12.9.7. SessionFactory Registry

12.9.7.1. SessionFactory Services
12.9.8. Integrators

12.9.8.1. Integrator use-cases
12.10. ENVERS

12.10.1. About Hibernate Envers
12.10.2. About Auditing Persistent Classes
12.10.3. Auditing Strategies

12.10.3.1. About Auditing Strategies
12.10.3.2. Set the Auditing Strategy

Define an Auditing Strategy
12.10.4. Adding Auditing Support to a JPA Entity
12.10.5. Configuration

12.10.5.1. Configure Envers Parameters
12.10.5.2. Enable or Disable Auditing at Runtime
12.10.5.3. Configure Conditional Auditing
12.10.5.4. Envers Configuration Properties

12.10.6. Retrieve Auditing Information through Queries
12.11. PERFORMANCE TUNING

12.11.1. Alternative Batch Loading Algorithms
12.11.2. Second Level Caching of Object References for Non-mutable Data

CHAPTER 13. HIBERNATE SEARCH
13.1. GETTING STARTED WITH HIBERNATE SEARCH

13.1.1. About Hibernate Search
13.1.2. Overview
13.1.3. About the Directory Provider
13.1.4. About the Worker
13.1.5. Back End Setup and Operations

13.1.5.1. Back End
13.1.5.2. Lucene

205
207
208
209
209
210
210
211
211
214
215
215
215
215
216
216
216
216
217
217
218
218
219
219
219
219
220
220
221
221
221
221
222
222
223
223
224
224
225
227
230
230
232

233
233
233
233
233
234
234
234
234

Table of Contents

7

13.1.5.3. JMS
13.1.6. Reader Strategies

13.1.6.1. The Shared Strategy
13.1.6.2. The Not-shared Strategy
13.1.6.3. Custom Reader Strategies

13.2. CONFIGURATION
13.2.1. Minimum Configuration
13.2.2. Configuring the IndexManager

13.2.2.1. Directory-based
13.2.2.2. Near Real Time
13.2.2.3. Custom

13.2.3. DirectoryProvider Configuration
Directory Providers and their Properties

13.2.4. Worker Configuration
13.2.4.1. JMS Master/Slave Back End
13.2.4.2. Slave Nodes
13.2.4.3. Master Node

13.2.5. Tuning Lucene Indexing
13.2.5.1. Tuning Lucene Indexing Performance
13.2.5.2. The Lucene IndexWriter
13.2.5.3. Performance Option Configuration
13.2.5.4. Tuning the Indexing Speed
13.2.5.5. Control Segment Size

13.2.6. LockFactory Configuration
13.2.7. Index Format Compatibility

13.3. HIBERNATE SEARCH FOR YOUR APPLICATION
13.3.1. First Steps with Hibernate Search
13.3.2. Enable Hibernate Search using Maven
13.3.3. Add Annotations
13.3.4. Indexing
13.3.5. Searching
13.3.6. Analyzer

13.4. MAPPING ENTITIES TO THE INDEX STRUCTURE
13.4.1. Mapping an Entity

13.4.1.1. Basic Mapping
13.4.1.2. @Indexed
13.4.1.3. @Field
13.4.1.4. @NumericField
13.4.1.5. @Id
13.4.1.6. Mapping Properties Multiple Times
13.4.1.7. Embedded and Associated Objects
13.4.1.8. Limiting Object Embedding to Specific Paths

13.4.2. Boosting
13.4.2.1. Static Index Time Boosting
13.4.2.2. Dynamic Index Time Boosting

13.4.3. Analysis
13.4.3.1. Default Analyzer and Analyzer by Class
13.4.3.2. Named Analyzers
13.4.3.3. Available Analyzers
13.4.3.4. Dynamic Analyzer Selection
13.4.3.5. Retrieving an Analyzer

13.4.4. Bridges
13.4.4.1. Built-in Bridges

235
236
236
237
237
237
237
237
237
237
238
238
239
241
244
245
245
246
246
250
250
254
254
254
256
256
256
256
257
259
260
261
262
262
262
263
263
265
266
267
267
271
273
273
273
274
274
275
278
279
280
281
281

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

8

13.4.4.2. Custom Bridges
13.4.4.2.1. StringBridge
13.4.4.2.2. Parameterized Bridge
13.4.4.2.3. Type Aware Bridge
13.4.4.2.4. Two-Way Bridge
13.4.4.2.5. FieldBridge
13.4.4.2.6. ClassBridge

13.5. QUERYING
13.5.1. Building Queries

13.5.1.1. Building a Lucene Query Using the Lucene API
13.5.1.2. Building a Lucene Query
13.5.1.3. Keyword Queries
13.5.1.4. Fuzzy Queries
13.5.1.5. Wildcard Queries
13.5.1.6. Phrase Queries
13.5.1.7. Range Queries
13.5.1.8. Combining Queries
13.5.1.9. Query Options
13.5.1.10. Build a Hibernate Search Query

13.5.1.10.1. Generality
13.5.1.10.2. Pagination
13.5.1.10.3. Sorting
13.5.1.10.4. Fetching Strategy
13.5.1.10.5. Projection
13.5.1.10.6. Customizing Object Initialization Strategies
13.5.1.10.7. Limiting the Time of a Query
13.5.1.10.8. Raise an Exception on Time Limit

13.5.2. Retrieving the Results
13.5.2.1. Performance Considerations
13.5.2.2. Result Size
13.5.2.3. ResultTransformer
13.5.2.4. Understanding Results
13.5.2.5. Filters
13.5.2.6. Using Filters in a Sharded Environment

13.5.3. Faceting
13.5.3.1. Creating a Faceting Request
13.5.3.2. Applying a Faceting Request
13.5.3.3. Restricting Query Results

13.5.4. Optimizing the Query Process
13.5.4.1. Caching Index Values: FieldCache

13.6. MANUAL INDEX CHANGES
13.6.1. Adding Instances to the Index
13.6.2. Deleting Instances from the Index
13.6.3. Rebuilding the Index

13.6.3.1. Using flushToIndexes()
13.6.3.2. Using a MassIndexer

13.7. INDEX OPTIMIZATION
13.7.1. Automatic Optimization
13.7.2. Manual Optimization
13.7.3. Adjusting Optimization

13.8. ADVANCED FEATURES
13.8.1. Accessing the SearchFactory
13.8.2. Using an IndexReader

283
283
283
284
285
285
287
288
290
290
290
291
293
293
294
294
294
295
296
296
296
297
297
298
299
300
300
301
301
301
302
303
303
307
309
311
312
313
313
314
315
315
315
316
316
317
319
319
320
320
321
321
321

Table of Contents

9

. .

. .

. .

. .

. .

. .

13.8.3. Accessing a Lucene Directory
13.8.4. Sharding Indexes
13.8.5. Customizing Lucene’s Scoring Formula
13.8.6. Exception Handling Configuration
13.8.7. Disable Hibernate Search

13.9. MONITORING
Access to Statistics via JMX
Monitoring Indexing

CHAPTER 14. BEAN VALIDATION
14.1. ABOUT BEAN VALIDATION
14.2. VALIDATION CONSTRAINTS

14.2.1. About Validation Constraints
14.2.2. Hibernate Validator Constraints
14.2.3. Bean Validation Using Custom Constraints

14.2.3.1. Creating A Constraint Annotation
14.2.3.2. Implementing A Constraint Validator

14.3. VALIDATION CONFIGURATION

CHAPTER 15. CREATING WEBSOCKET APPLICATIONS
Create the WebSocket Application

CHAPTER 16. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
16.1. ABOUT JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
16.2. CONFIGURE JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC) SECURITY

CHAPTER 17. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
17.1. ABOUT JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI) SECURITY
17.2. CONFIGURE JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI) SECURITY

CHAPTER 18. JAVA BATCH APPLICATION DEVELOPMENT
18.1. REQUIRED BATCH DEPENDENCIES
18.2. JOB SPECIFICATION LANGUAGE (JSL) INHERITANCE

Example: Inherit Step and Flow Within the Same Job XML File
Example: Inherit a Step from a Different Job XML File

18.3. BATCH PROPERTY INJECTIONS
Example: Injecting a Number into a Batchlet Class as Various Types
Example: Injecting a Number Sequence into a Batchlet Class as Various Arrays
Example: Injecting a Class Property into a Batchlet Class
Example: Assigning a Default Value to a Field Annotated for Property Injection

APPENDIX A. REFERENCE MATERIAL
A.1. PROVIDED UNDERTOW HANDLERS

AccessControlListHandler
AccessLogHandler
AllowedMethodsHandler
BlockingHandler
ByteRangeHandler
CanonicalPathHandler
DisableCacheHandler
DisallowedMethodsHandler
EncodingHandler
FileErrorPageHandler
HttpTraceHandler
IPAddressAccessControlHandler

322
322
323
325
325
326
326
326

327
327
327
327
327
330
330
332
333

335
335

339
339
339

341
341
341

342
342
342
342
343
344
346
346
347
348

349
349
349
349
351
351
351
351
352
352
352
352
353
353

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

10

JDBCLogHandler
LearningPushHandler
LocalNameResolvingHandler
PathSeparatorHandler
PeerNameResolvingHandler
ProxyPeerAddressHandler
RedirectHandler
RequestBufferingHandler
RequestDumpingHandler
RequestLimitingHandler
ResourceHandler
ResponseRateLimitingHandler
SetHeaderHandler
SSLHeaderHandler
StuckThreadDetectionHandler
URLDecodingHandler

A.2. HIBERNATE PROPERTIES

353
354
354
355
355
355
355
355
356
356
356
357
357
357
358
358
358

Table of Contents

11

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

12

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

1.1. INTRODUCTION

1.1.1. About Red Hat JBoss Enterprise Application Platform 7

Red Hat JBoss Enterprise Application Platform 7 (JBoss EAP) is a middleware platform built on open
standards and compliant with the Java Enterprise Edition 7 specification. It integrates WildFly Application
Server 10 with messaging, high-availability clustering, and other technologies.

JBoss EAP includes a modular structure that allows service enabling only when required, improving
startup speed.

The management console and management command-line interface (CLI) make editing XML
configuration files unnecessary and add the ability to script and automate tasks.

JBoss EAP provides two operating modes for JBoss EAP instances: standalone server or managed
domain. The standalone server operating mode represents running JBoss EAP as a single server
instance. The managed domain operating mode allows for the management of multiple JBoss EAP
instances from a single control point.

In addition, JBoss EAP includes APIs and development frameworks for quickly developing secure and
scalable Java EE applications.

1.2. BECOME FAMILIAR WITH JAVA ENTERPRISE EDITION 7

1.2.1. Overview of EE 7 Profiles

Java Enterprise Edition 7 (EE 7) includes support for multiple profiles, or subsets of APIs. The only two
profiles that the EE 7 specification defines are the Full Profile and the Web Profile.

EE 7 Full Profile includes all APIs and specifications included in the EE 7 specification. EE 7 Web Profile
includes a selected subset of APIs, which are designed to be useful to web developers.

JBoss EAP is a certified implementation of the Java Enterprise Edition 7 Full Profile and Web Profile
specifications.

Java Enterprise Edition 7 Web Profile

Java Enterprise Edition 7 Full Profile

Java Enterprise Edition 7 Web Profile
The Web Profile is one of two profiles defined by the Java Enterprise Edition 7 specification, and is
designed for web application development. The Web Profile supports the following APIs:

Java EE 7 Web Profile Requirements:

Java Platform, Enterprise Edition 7

Java Web Technologies:

Servlet 3.1 (JSR 340)

JSP 2.3

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

13

Expression Language (EL) 3.0

JavaServer Faces (JSF) 2.2 (JSR 344)

Java Standard Tag Library (JSTL) for JSP 1.2

NOTE

A known security risk in JBoss EAP exists where the Java Standard Tag
Library (JSTL) allows the processing of external entity references in untrusted
XML documents which could access resources on the host system and,
potentially, allow arbitrary code execution.

To avoid this, the JBoss EAP server has to be run with system property
org.apache.taglibs.standard.xml.accessExternalEntity
correctly set, usually with an empty string as value. This can be done in two
ways:

Configuring the system properties and restarting the server.

org.apache.taglibs.standard.xml.accessExternalEntit
y

Passing -
Dorg.apache.taglibs.standard.xml.accessExternalEntity=
"" as an argument to the standalone.sh or domain.sh scripts.

Debugging Support for Other Languages 1.0 (JSR 45)

Enterprise Application Technologies:

Contexts and Dependency Injection (CDI) 1.1 (JSR 346)

Dependency Injection for Java 1.0 (JSR 330)

Enterprise JavaBeans 3.2 Lite (JSR 345)

Java Persistence API 2.1 (JSR 338)

Common Annotations for the Java Platform 1.1 (JSR 250)

Java Transaction API (JTA) 1.2 (JSR 907)

Bean Validation 1.1 (JSR 349)

The other profile defined by the Java EE 7 specification is the Full Profile, and includes several more
APIs.

Java Enterprise Edition 7 Full Profile
The Java Enterprise Edition 7 (EE 7) specification defines a concept of profiles, and defines two of them
as part of the specification. The Full Profile supports the following APIs, as well as those supported in
the Java Enterprise Edition 7 Web Profile:

Included in the EE 7 Full Profile:

Batch 1.0

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

14

JSON-P 1.0

Concurrency 1.0

WebSocket 1.1

JMS 2.0

JPA 2.1

JCA 1.7

JAX-RS 2.0

JAX-WS 2.2

Servlet 3.1

JSF 2.2

JSP 2.3

EL 3.0

CDI 1.1

CDI Extensions

JTA 1.2

Interceptors 1.2

Common Annotations 1.1

Managed Beans 1.0

EJB 3.2

Bean Validation 1.1

1.3. SETTING UP THE DEVELOPMENT ENVIRONMENT

1.3.1. Download JBoss Developer Studio

JBoss Developer Studio can be downloaded from the Red Hat Customer Portal.

1. Log in to the Red Hat Customer Portal.

2. Click Downloads.

3. In the Product Downloads list, click Red Hat JBoss Developer Studio.

4. Select the desired version in the Version drop-down menu.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

15

https://access.redhat.com

NOTE

It is recommended to use JBoss Developer Studio version 9.1 or later.

5. Find the Red Hat JBoss Developer Studio 9.x.x Stand-alone Installer entry in the table and
click Download.

6. Save the JAR file to the desired directory.

1.3.2. Install JBoss Developer Studio

1. Open a terminal and navigate to the directory containing the downloaded JAR file.

2. Run the following command to launch the GUI installation program:

$ java -jar jboss-devstudio-BUILD_VERSION-installer-standalone.jar

NOTE

Alternatively, you may be able to double-click the JAR file to launch the
installation program.

3. Click Next to start the installation process.

4. Select I accept the terms of this license agreement and click Next.

5. Adjust the installation path and click Next.

NOTE

If the installation path folder does not exist, a prompt will appear. Click OK to
create the folder.

6. Choose a JVM, or leave the default JVM selected, and click Next.

7. Click Next when asked to select platforms and servers.

8. Review the installation details, and click Next.

9. Click Next when the installation process is complete.

10. Configure the desktop shortcuts for JBoss Developer Studio, and click Next.

11. Click Done.

1.3.3. Start JBoss Developer Studio

To start JBoss Developer Studio, you can double-click on the desktop shortcut created during the
installation, or you can start it from a command line. Follow the below steps to start JBoss Developer
Studio using the command line.

1. Open a terminal and navigate to the JBoss Developer Studio installation directory.

2. Run the following command to start JBoss Developer Studio:

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

16

$./jbdevstudio

NOTE

For Windows Server, use the jbdevstudio.bat file.

1.3.4. Add the JBoss EAP Server to JBoss Developer Studio

These instructions assume that you have not yet added any JBoss EAP servers to JBoss Developer
Studio. Use the following steps to add your JBoss EAP server using the Define New Server wizard.

1. Open the Servers tab.

NOTE

If the Servers tab is not shown, add it to the panel by selecting Window → Show
View → Servers.

2. Click on the No servers are available. Click this link to create a new server link.

Figure 1.1. Add a New Server

3. Expand Red Hat JBoss Middleware and choose JBoss Enterprise Application Platform 7.0.
Enter a server name, for example, JBoss EAP 7.0, then click Next.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

17

Figure 1.2. Define a New Server

4. Create a server adapter to manage starting and stopping the server. Keep the defaults and click
Next.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

18

Figure 1.3. Create a New Server Adapter

5. Enter a name, for example JBoss EAP 7.0 Runtime. Click Browse next to Home Directory
and navigate to your JBoss EAP installation directory. Then click Next.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

19

Figure 1.4. Add New Server Runtime Environment

NOTE

Some quickstarts require that you run the server with a different profile or
additional arguments. For example, to deploy a quickstart that requires the full
profile, you must define a new server and specify standalone-full.xml in the
Configuration file field. Be sure to give the new server a descriptive name.

6. Configure existing projects for the new server. Because you do not have any projects at this
point, click Finish.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

20

Figure 1.5. Modify Resources for the New Server

The JBoss EAP 7.0 server is now listed in the Servers tab.

Figure 1.6. Server List

1.4. USING THE QUICKSTART EXAMPLES

1.4.1. About Maven

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

21

Apache Maven is a distributed build automation tool used in Java application development to create,
manage, and build software projects. Maven uses standard configuration files called Project Object
Model (POM) files to define projects and manage the build process. POMs describe the module and
component dependencies, build order, and targets for the resulting project packaging and output using
an XML file. This ensures that the project is built in a correct and uniform manner.

Maven achieves this by using a repository. A Maven repository stores Java libraries, plug-ins, and other
build artifacts. The default public repository is the Maven 2 Central Repository, but repositories can be
private and internal within a company with a goal to share common artifacts among development teams.
Repositories are also available from third-parties. For more information, see the Apache Maven project
and the Introduction to Repositories guide.

JBoss EAP includes a Maven repository that contains many of the requirements that Java EE developers
typically use to build applications on JBoss EAP.

For more information, see Using Maven with JBoss EAP.

1.4.1.1. Using Maven with the Quickstarts

The artifacts and dependencies needed to build and deploy applications to JBoss EAP 7 are hosted on a
public repository. Starting with the JBoss EAP 7 quickstarts, it is no longer necessary to configure your
Maven settings.xml file to use these repositories when building the quickstarts. The Maven
repositories are now configured in the quickstart project POM files. This method of configuration is
provided to make it easier to get started with the quickstarts, however, is generally not recommended for
production projects because it can slow down your build.

Red Hat JBoss Developer Studio includes Maven, so there is no need to download and install it
separately. It is recommended to use JBoss Developer Studio version 9.1 or later.

If you plan to use the Maven command line to build and deploy your applications, then you must first
download Maven from the Apache Maven project and install it using the instructions provided in the
Maven documentation.

1.4.2. Download and Run the Quickstart Code Examples

1.4.2.1. Download the Quickstarts

JBoss EAP comes with a comprehensive set of quickstart code examples designed to help users begin
writing applications using various Java EE 7 technologies. The quickstarts can be downloaded from the
Red Hat Customer Portal.

1. Log in to the Red Hat Customer Portal.

2. Click Downloads.

3. In the Product Downloads list, click Red Hat JBoss Enterprise Application Platform.

4. Select the desired version in the Version drop-down menu.

5. Find the Red Hat JBoss Enterprise Application Platform 7.0.0 Quickstarts entry in the table
and click Download.

6. Save the ZIP file to the desired directory.

7. Extract the ZIP file.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

22

http://search.maven.org/#browse
http://maven.apache.org/
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://maven.apache.org/download.cgi
https://access.redhat.com

1.4.2.2. Run the Quickstarts in JBoss Developer Studio

Once the quickstarts have been downloaded, they can be imported into JBoss Developer Studio and
deployed to JBoss EAP.

Import a Quickstart into JBoss Developer Studio

Each quickstart ships with a POM file that contains its project and configuration information. Use this
POM file to easily import the quickstart into JBoss Developer Studio.

IMPORTANT

If your quickstart project folder is located within the IDE workspace when you import it into
JBoss Developer Studio, the IDE generates an invalid project name and WAR archive
name. Be sure your quickstart project folder is located outside the IDE workspace before
you begin.

1. Start JBoss Developer Studio.

2. Select File → Import.

3. Choose Maven → Existing Maven Projects, then click Next.

Figure 1.7. Import Existing Maven Projects

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

23

4. Browse to the desired quickstart’s directory (for example the helloworld quickstart), and click
OK. The Projects list box is populated with the pom.xml file of the selected quickstart project.

Figure 1.8. Select Maven Projects

5. Click Finish.

Run the helloworld Quickstart

Running the helloworld quickstart is a simple way to verify that the JBoss EAP server is configured
and running correctly.

1. If you have not yet defined a server, add the JBoss EAP server to JBoss Developer Studio.

2. Right-click the jboss-helloworld project in the Project Explorer tab and select Run As → Run
on Server.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

24

Figure 1.9. Run As - Run on Server

3. Select JBoss EAP 7.0 from the server list and click Next.

Figure 1.10. Run on Server

4. The jboss-helloworld quickstart is already listed to be configured on the server. Click Finish to
deploy the quickstart.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

25

Figure 1.11. Modify Resources Configured on the Server

5. Verify the results.

In the Server tab, the JBoss EAP 7.0 server status changes to Started .

The Console tab shows messages detailing the JBoss EAP server start and the
helloworld quickstart deployment.

WFLYUT0021: Registered web context: /jboss-helloworld
WFLYSRV0010: Deployed "jboss-helloworld.war" (runtime-name :
"jboss-helloworld.war")

The helloworld application is available at http://localhost:8080/jboss-helloworld and
displays the text Hello World!.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

26

http://localhost:8080/jboss-helloworld

Run the bean-validation Quickstart

Some quickstarts, such as the bean-validation quickstart, do not provide a user interface layer and
instead provide Arquillian tests to demonstrate functionality.

1. Import the bean-validation quickstart into JBoss Developer Studio.

2. In the Servers tab, right-click on the server and choose Start to start the JBoss EAP server. If
you do not see a Servers tab or have not yet defined a server, add the JBoss EAP server to Red
Hat JBoss Developer Studio.

3. Right-click on the jboss-bean-validation project in the Project Explorer tab and select
Run As → Maven Build.

4. Enter the following in the Goals input field and then click Run.

clean test -Parq-wildfly-remote

Figure 1.12. Edit Configuration

5. Verify the results.
The Console tab shows the results of the bean-validation Arquillian tests:

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

27

 T E S T S

Running
org.jboss.as.quickstarts.bean_validation.test.MemberValidationTest
Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
2.189 sec

Results :

Tests run: 5, Failures: 0, Errors: 0, Skipped: 0

[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

1.4.2.3. Run the Quickstarts from the Command Line

You can easily build and deploy the quickstarts from the command line using Maven. If you do not yet
have Maven installed, see the Apache Maven project to download and install it.

A README.md file is provided at the root directory of the quickstarts that contains general information
about system requirements, configuring Maven, adding users, and running the quickstarts.

Each quickstart also contains its own README.md file that provides the specific instructions and Maven
commands to run that quickstart.

Run the helloworld Quickstart from the Command Line

1. Review the README.md file in the root directory of the helloworld quickstart.

2. Start the JBoss EAP server.

$ EAP_HOME/bin/standalone.sh

3. Navigate to the helloworld quickstart directory.

4. Build and deploy the quickstart using the Maven command provided in the quickstart’s
README.md file.

mvn clean install wildfly:deploy

5. The helloworld application is now available at http://localhost:8080/jboss-helloworld and displays
the text Hello World!.

1.4.3. Review the Quickstart Tutorials

1.4.3.1. Explore the helloworld Quickstart

The helloworld quickstart shows you how to deploy a simple servlet to JBoss EAP. The business logic
is encapsulated in a service, which is provided as a Contexts and Dependency Injection (CDI) bean and

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

28

http://maven.apache.org/download.cgi
http://localhost:8080/jboss-helloworld

injected into the Servlet. This quickstart is a starting point to be sure you have configured and started
your server properly.

Detailed instructions to build and deploy this quickstart using the command line can be found in the
README.html file at the root of the helloworld quickstart directory. This topic shows you how to use
Red Hat JBoss Developer Studio to run the quickstart and assumes you have installed Red Hat JBoss
Developer Studio, configured Maven, and imported and successfully run the helloworld quickstart.

Prerequisites

Install Red Hat JBoss Developer Studio.

Follow the instructions to run the quickstarts in JBoss Developer Studio.

Verify that the helloworld quickstart was successfully deployed to JBoss EAP by opening a
web browser and accessing the application at http://localhost:8080/jboss-helloworld

Examine the Directory Structure
The code for the helloworld quickstart can be found in the QUICKSTART_HOME/helloworld
directory. The helloworld quickstart is comprised of a Servlet and a CDI bean. It also contains a
beans.xml file in the application’s WEB-INF directory that has a version number of 1.1 and a bean-
discovery-mode of all. This marker file identifies the WAR as a bean archive and tells JBoss EAP to
look for beans in this application and to activate the CDI.

The src/main/webapp/ directory contains the files for the quickstart. All the configuration files for this
example are located in the WEB-INF/ directory within src/main/webapp/, including the beans.xml
file. The src/main/webapp/ directory also includes an index.html file, which uses a simple meta
refresh to redirect the user’s browser to the Servlet, which is located at http://localhost:8080/jboss-
helloworld/HelloWorld. The quickstart does not require a web.xml file.

Examine the Code
The package declaration and imports have been excluded from these listings. The complete listing is
available in the quickstart source code.

1. Review the HelloWorldServlet code.
The HelloWorldServlet.java file is located in the
src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This servlet sends
the information to the browser.

HelloWorldServlet Class Code Example

42 @SuppressWarnings("serial")
43 @WebServlet("/HelloWorld")
44 public class HelloWorldServlet extends HttpServlet {
45
46 static String PAGE_HEADER = "<html><head>
<title>helloworld</title></head><body>";
47
48 static String PAGE_FOOTER = "</body></html>";
49
50 @Inject
51 HelloService helloService;
52
53 @Override
54 protected void doGet(HttpServletRequest req,
HttpServletResponse resp) throws ServletException, IOException {

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

29

http://localhost:8080/jboss-helloworld
http://localhost:8080/jboss-helloworld/HelloWorld

Table 1.1. HelloWorldServlet Details

Line Note

43 All you need to do is add the @WebServlet annotation and provide a
mapping to a URL used to access the servlet.

46-48 Every web page needs correctly formed HTML. This quickstart uses static
Strings to write the minimum header and footer output.

50-51 These lines inject the HelloService CDI bean which generates the actual
message. As long as we don’t alter the API of HelloService, this approach
allows us to alter the implementation of HelloService at a later date without
changing the view layer.

58 This line calls into the service to generate the message "Hello World", and
write it out to the HTTP request.

2. Review the HelloService code.
The HelloService.java file is located in the
src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This service
simply returns a message. No XML or annotation registration is required.

HelloService Class Code Example

1.4.3.2. Explore the numberguess Quickstart

The numberguess quickstart shows you how to create and deploy a simple non-persistant application
to JBoss EAP. Information is displayed using a JSF view and business logic is encapsulated in two CDI
beans. In the numberguess quickstart, you have ten attempts to guess a number between 1 and 100.
After each attempt, you’re told whether your guess was too high or too low.

The code for the numberguess quickstart can be found in the QUICKSTART_HOME/numberguess
directory where QUICKSTART_HOME is the directory where you downloaded and unzipped the JBoss

55 resp.setContentType("text/html");
56 PrintWriter writer = resp.getWriter();
57 writer.println(PAGE_HEADER);
58 writer.println("<h1>" +
helloService.createHelloMessage("World") + "</h1>");
59 writer.println(PAGE_FOOTER);
60 writer.close();
61 }
62
63 }

public class HelloService {

 String createHelloMessage(String name) {
 return "Hello " + name + "!";
 }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

30

EAP quickstarts. The numberguess quickstart is comprised of a number of beans, configuration files,
and Facelets (JSF) views, and is packaged as a WAR module.

Detailed instructions to build and deploy this quickstart using the command line can be found in the
README.html file at the root of the numberguess quickstart directory. The following examples use Red
Hat JBoss Developer Studio to run the quickstart.

Prerequisites

Install Red Hat JBoss Developer Studio.

Follow the instructions to run the quickstarts in Red Hat JBoss Developer Studio, replacing
helloworld with the numberguess quickstart in the instructions.

Verify the numberguess quickstart was deployed successfully to JBoss EAP by opening a web
browser and accessing the application at this URL: http://localhost:8080/jboss-numberguess

Examine the Configuration Files
All the configuration files for this example are located in the
QUICKSTART_HOME/numberguess/src/main/webapp/WEB-INF/ directory of the quickstart.

1. Examine the faces-config.xml file.
This quickstart uses the JSF 2.2 version of faces-config.xml filename. A standardized
version of Facelets is the default view handler in JSF 2.2 so it requires no configuration. This file
consists of only the root element and is simply a marker file to indicate JSF should be enabled in
the application.

2. Examine the beans.xml file.
The beans.xml file contains a version number of 1.1 and a bean-discovery-mode of all.
This file is a marker file that identifies the WAR as a bean archive and tells JBoss EAP to look for
beans in this application and to activate the CDI.

NOTE

This quickstart does not need a web.xml file.

1.4.3.2.1. Examine the JSF Code

<faces-config version="2.2"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd">

</faces-config>

<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
 bean-discovery-mode="all">
</beans>

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

31

http://localhost:8080/jboss-numberguess

JSF uses the .xhtml file extension for source files, but delivers the rendered views with the .jsf
extension. The home.xhtml file is located in the src/main/webapp/ directory.

JSF Source Code

19<html xmlns="http://www.w3.org/1999/xhtml"
20 xmlns:ui="http://java.sun.com/jsf/facelets"
21 xmlns:h="http://java.sun.com/jsf/html"
22 xmlns:f="http://java.sun.com/jsf/core">
23
24 <head>
25 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"
/>
26 <title>Numberguess</title>
27 </head>
28
29 <body>
30 <div id="content">
31 <h1>Guess a number...</h1>
32 <h:form id="numberGuess">
33
34 <!-- Feedback for the user on their guess -->
35 <div style="color: red">
36 <h:messages id="messages" globalOnly="false" />
37 <h:outputText id="Higher" value="Higher!"
38 rendered="#{game.number gt game.guess and game.guess ne 0}" />
39 <h:outputText id="Lower" value="Lower!"
40 rendered="#{game.number lt game.guess and game.guess ne 0}" />
41 </div>
42
43 <!-- Instructions for the user -->
44 <div>
45 I'm thinking of a number between #{game.smallest} and #{game.biggest}. You have
48 #{game.remainingGuesses} guesses remaining.
49 </div>
50
51 <!-- Input box for the users guess, plus a button to submit, and reset
-->
52 <!-- These are bound using EL to our CDI beans -->
53 <div>
54 Your guess:
55 <h:inputText id="inputGuess" value="#{game.guess}"
56 required="true" size="3"
57 disabled="#{game.number eq game.guess}"
58 validator="#{game.validateNumberRange}" />
59 <h:commandButton id="guessButton" value="Guess"
60 action="#{game.check}"
61 disabled="#{game.number eq game.guess}" />
62 </div>
63 <div>
64 <h:commandButton id="restartButton" value="Reset"
65 action="#{game.reset}" immediate="true" />
66 </div>
67 </h:form>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

32

The following line numbers correspond to those seen when viewing the file in JBoss Developer Studio.

Table 1.2. JSF Details

Line Note

36-40 These are the messages which can be sent to the user: "Higher!" and "Lower!"

45-48 As the user guesses, the range of numbers they can guess gets smaller. This
sentence changes to make sure they know the number range of a valid guess.

55-58 This input field is bound to a bean property using a value expression.

58 A validator binding is used to make sure the user does not accidentally input a
number outside of the range in which they can guess. If the validator was not
here, the user might use up a guess on an out of bounds number.

59-61 There must be a way for the user to send their guess to the server. Here we bind
to an action method on the bean.

1.4.3.2.2. Examine the Class Files

All of the numberguess quickstart source files can be found in the
QUICKSTART_HOME/numberguess/src/main/java/org/jboss/as/quickstarts/numbergues
s/ directory. The package declaration and imports have been excluded from these listings. The
complete listing is available in the quickstart source code.

1. Review the Random.java Qualifier Code
A qualifier is used to remove ambiguity between two beans, both of which are eligible for
injection based on their type. For more information on qualifiers, see Use a Qualifier to Resolve
an Ambiguous Injection. The @Random qualifier is used for injecting a random number.

2. Review the MaxNumber.java Qualifier Code
The @MaxNumber qualifier is used for injecting the maximum number allowed.

68
69 </div>
70
71 <br style="clear: both" />
72
73 </body>
74</html>

@Target({ TYPE, METHOD, PARAMETER, FIELD })
@Retention(RUNTIME)
@Documented
@Qualifier
public @interface Random {

}

@Target({ TYPE, METHOD, PARAMETER, FIELD })

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

33

3. Review the Generator.java Code
The Generator class creates the random number via a producer method, exposing the
maximum possible number via the same. This class is application-scoped, so you don’t get a
different random each time.

4. Review the Game.java Code
The session-scoped Game class is the primary entry point of the application. It is responsible for
setting up or resetting the game, capturing and validating the user’s guess, and providing
feedback to the user with a FacesMessage. It uses the post-construct lifecycle method to
initialize the game by retrieving a random number from the @Random Instance<Integer>
bean.

Notice the @Named annotation in the class. This annotation is only required when you want to
make the bean accessible to a JSF view by using Expression Language (EL), in this case #
{game}.

@Retention(RUNTIME)
@Documented
@Qualifier
public @interface MaxNumber {
}

@SuppressWarnings("serial")
@ApplicationScoped
public class Generator implements Serializable {

 private java.util.Random random = new
java.util.Random(System.currentTimeMillis());

 private int maxNumber = 100;

 java.util.Random getRandom() {
 return random;
 }

 @Produces
 @Random
 int next() {
 // a number between 1 and 100
 return getRandom().nextInt(maxNumber - 1) + 1;
 }

 @Produces
 @MaxNumber
 int getMaxNumber() {
 return maxNumber;
 }
}

@SuppressWarnings("serial")
@Named
@SessionScoped
public class Game implements Serializable {

 /**

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

34

 * The number that the user needs to guess
 */
 private int number;

 /**
 * The users latest guess
 */
 private int guess;

 /**
 * The smallest number guessed so far (so we can track the valid
guess range).
 */
 private int smallest;

 /**
 * The largest number guessed so far
 */
 private int biggest;

 /**
 * The number of guesses remaining
 */
 private int remainingGuesses;

 /**
 * The maximum number we should ask them to guess
 */
 @Inject
 @MaxNumber
 private int maxNumber;

 /**
 * The random number to guess
 */
 @Inject
 @Random
 Instance<Integer> randomNumber;

 public Game() {
 }

 public int getNumber() {
 return number;
 }

 public int getGuess() {
 return guess;
 }

 public void setGuess(int guess) {
 this.guess = guess;
 }

 public int getSmallest() {
 return smallest;

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

35

 }

 public int getBiggest() {
 return biggest;
 }

 public int getRemainingGuesses() {
 return remainingGuesses;
 }

 /**
 * Check whether the current guess is correct, and update the
biggest/smallest guesses as needed. Give feedback to the user
 * if they are correct.
 */
 public void check() {
 if (guess > number) {
 biggest = guess - 1;
 } else if (guess < number) {
 smallest = guess + 1;
 } else if (guess == number) {
 FacesContext.getCurrentInstance().addMessage(null, new
FacesMessage("Correct!"));
 }
 remainingGuesses--;
 }

 /**
 * Reset the game, by putting all values back to their defaults,
and getting a new random number. We also call this method
 * when the user starts playing for the first time using
{@linkplain PostConstruct @PostConstruct} to set the initial
 * values.
 */
 @PostConstruct
 public void reset() {
 this.smallest = 0;
 this.guess = 0;
 this.remainingGuesses = 10;
 this.biggest = maxNumber;
 this.number = randomNumber.get();
 }

 /**
 * A JSF validation method which checks whether the guess is
valid. It might not be valid because there are no guesses left,
 * or because the guess is not in range.
 *
 */
 public void validateNumberRange(FacesContext context,
UIComponent toValidate, Object value) {
 if (remainingGuesses <= 0) {
 FacesMessage message = new FacesMessage("No guesses
left!");
 context.addMessage(toValidate.getClientId(context),
message);

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

36

1.5. CONFIGURE THE DEFAULT WELCOME WEB APPLICATION

JBoss EAP includes a default Welcome application, which displays at the root context on port 8080 by
default.

This default Welcome application can be replaced with your own web application. This can be configured
in one of two ways:

By changing the welcome-content file handler

By changing the default-web-module

You can also disable the welcome content.

Changing the welcome-content File Handler
Modify the existing welcome-content file handler’s path to point to the new deployment.

/subsystem=undertow/configuration=handler/file=welcome-content:write-
attribute(name=path,value="/path/to/content")

NOTE

Alternatively, you could create a different file handler to be used by the server’s root.

/subsystem=undertow/configuration=handler/file=NEW_FILE_HANDLER
:add(path="/path/to/content")
/subsystem=undertow/server=default-server/host=default-
host/location=\/:write-
attribute(name=handler,value=NEW_FILE_HANDLER)

Reload the server for the changes to take effect.

reload

Changing the default-web-module
Map a deployed web application to the server’s root.

 ((UIInput) toValidate).setValid(false);
 return;
 }
 int input = (Integer) value;

 if (input < smallest || input > biggest) {
 ((UIInput) toValidate).setValid(false);

 FacesMessage message = new FacesMessage("Invalid
guess");
 context.addMessage(toValidate.getClientId(context),
message);
 }
 }
}

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

37

/subsystem=undertow/server=default-server/host=default-host:write-
attribute(name=default-web-module,value=hello.war)

Reload the server for the changes to take effect.

reload

Disabling the Default Welcome Web Application
Disable the welcome application by removing the location entry (/) for the default-host.

/subsystem=undertow/server=default-server/host=default-
host/location=\/:remove

Reload the server for the changes to take effect.

reload

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

38

CHAPTER 2. USING MAVEN WITH JBOSS EAP

2.1. LEARN ABOUT MAVEN

2.1.1. About the Maven Repository

Apache Maven is a distributed build automation tool used in Java application development to create,
manage, and build software projects. Maven uses standard configuration files called Project Object
Model, or POM, files to define projects and manage the build process. POMs describe the module and
component dependencies, build order, and targets for the resulting project packaging and output using
an XML file. This ensures that the project is built in a correct and uniform manner.

Maven achieves this by using a repository. A Maven repository stores Java libraries, plug-ins, and other
build artifacts. The default public repository is the Maven 2 Central Repository, but repositories can be
private and internal within a company with a goal to share common artifacts among development teams.
Repositories are also available from third-parties. JBoss EAP includes a Maven repository that contains
many of the requirements that Java EE developers typically use to build applications on JBoss EAP. To
configure your project to use this repository, see Configure the JBoss EAP Maven Repository.

For more information about Maven, see Welcome to Apache Maven.

For more information about Maven repositories, see Apache Maven Project - Introduction to
Repositories.

2.1.2. About the Maven POM File

The Project Object Model, or POM, file is a configuration file used by Maven to build projects. It is an
XML file that contains information about the project and how to build it, including the location of the
source, test, and target directories, the project dependencies, plug-in repositories, and goals it can
execute. It can also include additional details about the project including the version, description,
developers, mailing list, license, and more. A pom.xml file requires some configuration options and will
default all others.

The schema for the pom.xml file can be found at http://maven.apache.org/maven-v4_0_0.xsd.

For more information about POM files, see the Apache Maven Project POM Reference.

Minimum Requirements of a Maven POM File
The minimum requirements of a pom.xml file are as follows:

project root

modelVersion

groupId - the id of the project’s group

artifactId - the id of the artifact (project)

version - the version of the artifact under the specified group

Example: Basic pom.xml File

A basic pom.xml file might look like this:

<project>

CHAPTER 2. USING MAVEN WITH JBOSS EAP

39

http://search.maven.org/#browse
http://maven.apache.org/
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org/pom.html

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.jboss.app</groupId>
 <artifactId>my-app</artifactId>
 <version>1</version>
</project>

2.1.3. About the Maven Settings File

The Maven settings.xml file contains user-specific configuration information for Maven. It contains
information that must not be distributed with the pom.xml file, such as developer identity, proxy
information, local repository location, and other settings specific to a user.

There are two locations where the settings.xml can be found:

In the Maven installation: The settings file can be found in the $M2_HOME/conf/ directory.
These settings are referred to as global settings. The default Maven settings file is a template
that can be copied and used as a starting point for the user settings file.

In the user’s installation: The settings file can be found in the ${user.home}/.m2/
directory. If both the Maven and user settings.xml files exist, the contents are merged.
Where there are overlaps, the user’s settings.xml file takes precedence.

Example: Maven Settings file

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <profiles>
 <!-- Configure the JBoss EAP Maven repository -->
 <profile>
 <id>jboss-eap-maven-repository</id>
 <repositories>
 <repository>
 <id>jboss-eap</id>
 <url>file:///path/to/repo/jboss-eap-7.0.0.GA-maven-
repository/maven-repository</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-eap-maven-plugin-repository</id>
 <url>file:///path/to/repo/jboss-eap-7.0.0.GA-maven-
repository/maven-repository</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

40

The schema for the settings.xml file can be found at http://maven.apache.org/xsd/settings-1.0.0.xsd.

2.1.4. About Maven Repository Managers

A repository manager is a tool that allows you to easily manage Maven repositories. Repository
managers are useful in multiple ways:

They provide the ability to configure proxies between your organization and remote Maven
repositories. This provides a number of benefits, including faster and more efficient deployments
and a better level of control over what is downloaded by Maven.

They provide deployment destinations for your own generated artifacts, allowing collaboration
between different development teams across an organization.

For more information about Maven repository managers, see Best Practice - Using a Repository
Manager.

Commonly used Maven repository managers

Sonatype Nexus

See Sonatype Nexus documentation for more information about Nexus.

Artifactory

See JFrog Artifactory documentation for more information about Artifactory.

Apache Archiva

See Apache Archiva: The Build Artifact Repository Manager for more information about Apache
Archiva.

NOTE

In an Enterprise environment, where a repository manager is usually used, Maven should
query all artifacts for all projects using this manager. Because Maven uses all declared
repositories to find missing artifacts, if it can not find what it is looking for, it will try and
look for it in the repository central (defined in the built-in parent POM). To override this
central location, you can add a definition with central so that the default repository
central is now your repository manager as well. This works well for established
projects, but for clean or 'new' projects it causes a problem as it creates a cyclic
dependency.

2.2. INSTALL MAVEN AND THE JBOSS EAP MAVEN REPOSITORY

 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>
 <activeProfiles>
 <!-- Optionally, make the repository active by default -->
 <activeProfile>jboss-eap-maven-repository</activeProfile>
 </activeProfiles>
</settings>

CHAPTER 2. USING MAVEN WITH JBOSS EAP

41

http://maven.apache.org/xsd/settings-1.0.0.xsd
http://maven.apache.org/repository-management.html
http://www.sonatype.org/nexus/
http://www.jfrog.com/products.php
http://archiva.apache.org/

2.2.1. Download and Install Maven

If you plan to use Maven command line to build and deploy your applications to JBoss EAP, you must
download and install Maven. If you plan to use Red Hat JBoss Developer Studio to build and deploy your
applications, you can skip this procedure as Maven is distributed with Red Hat JBoss Developer Studio.

1. Go to Apache Maven Project - Download Maven and download the latest distribution for your
operating system.

2. See the Maven documentation for information on how to download and install Apache Maven for
your operating system.

2.2.2. Install the JBoss EAP Maven Repository

There are three ways to install the JBoss EAP Maven repository.

You can install the JBoss EAP Maven repository on your local file system. For detailed
instructions, see Install the JBoss EAP Maven Repository Locally.

You can install the JBoss EAP Maven repository on the Apache Web Server. For more
information, see Install the JBoss EAP Maven Repository for Use with Apache httpd.

You can install the JBoss EAP Maven repository using the Nexus Maven Repository Manager.
For more information, see Repository Management Using Nexus Maven Repository Manager.

NOTE

You can use the JBoss EAP Maven repository available online, or download and install it
locally using any one of the three listed methods.

2.2.3. Install the JBoss EAP Maven Repository Locally

This example covers the steps to download the JBoss EAP Maven Repository to the local file system.
This option is easy to configure and allows you to get up and running quickly on your local machine. It
can help you become familiar with using Maven for development but is not recommended for team
production environments.

Follow these steps to download and install the JBoss EAP Maven repository to the local file system.

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find Red Hat JBoss Enterprise Application Platform 7.0 Maven Repository in the list.

3. Click the Download button to download a .zip file containing the repository.

4. Unzip the file on the local file system into a directory of your choosing.
This creates a new jboss-eap-7.0.0.GA-maven-repository/ directory, which contains
the Maven repository in a subdirectory named maven-repository/.

IMPORTANT

If you want to continue to use an older local repository, you must configure it separately in
the Maven settings.xml configuration file. Each local repository must be configured
within its own <repository> tag.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

42

http://maven.apache.org/download.html
http://books.sonatype.com/nexus-book/3.0/reference/admin.html#admin-repositories
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform

IMPORTANT

When downloading a new Maven repository, remove the cached repository/
subdirectory located under the .m2/ directory before attempting to use it.

2.2.4. Install the JBoss EAP Maven Repository for Use with Apache httpd

This example will cover the steps to download the JBoss EAP Maven Repository for use with Apache
httpd. This option is good for multi-user and cross-team development environments because any
developer that can access the web server can also access the Maven repository.

NOTE

You must first configure Apache httpd. See Apache HTTP Server Project documentation
for instructions.

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find Red Hat JBoss Enterprise Application Platform 7.0 Maven Repository in the list.

3. Click the Download button to download a .zip file containing the repository.

4. Unzip the files in a directory that is web accessible on the Apache server.

5. Configure Apache to allow read access and directory browsing in the created directory.
This configuration allows a multi-user environment to access the Maven repository on Apache
httpd.

2.3. USE THE MAVEN REPOSITORY

2.3.1. Configure the JBoss EAP Maven Repository

Overview

There are two approaches to direct Maven to use the JBoss EAP Maven Repository in your project:

You can configure the repositories in the Maven global or user settings.

You can configure the repositories in the project’s POM file.

Configure the JBoss EAP Maven Repository Using the Maven Settings
This is the recommended approach. Maven settings used with a repository manager or repository on a
shared server provide better control and manageability of projects. Settings also provide the ability to
use an alternative mirror to redirect all lookup requests for a specific repository to your repository
manager without changing the project files. For more information about mirrors, see
http://maven.apache.org/guides/mini/guide-mirror-settings.html.

This method of configuration applies across all Maven projects, as long as the project POM file does not
contain repository configuration.

This section describes how to configure the Maven settings. You can configure the Maven install global
settings or the user’s install settings.

CHAPTER 2. USING MAVEN WITH JBOSS EAP

43

http://httpd.apache.org/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
http://maven.apache.org/guides/mini/guide-mirror-settings.html

Configure the Maven Settings File

1. Locate the Maven settings.xml file for your operating system. It is usually located in the
${user.home}/.m2/ directory.

For Linux or Mac, this is ~/.m2/

For Windows, this is \Documents and Settings\.m2\ or \Users\.m2\

2. If you do not find a settings.xml file, copy the settings.xml file from the
${user.home}/.m2/conf/ directory into the ${user.home}/.m2/ directory.

3. Copy the following XML into the <profiles> element of the settings.xml file. Determine
the URL of the JBoss EAP repository and replace JBOSS_EAP_REPOSITORY_URL with it.

The following is an example configuration that accesses the online JBoss EAP Maven
repository.

<!-- Configure the JBoss Enterprise Maven repository -->
<profile>
 <id>jboss-enterprise-maven-repository</id>
 <repositories>
 <repository>
 <id>jboss-enterprise-maven-repository</id>
 <url>JBOSS_EAP_REPOSITORY_URL</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-enterprise-maven-repository</id>
 <url>JBOSS_EAP_REPOSITORY_URL</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</profile>

<!-- Configure the JBoss Enterprise Maven repository -->
<profile>
 <id>jboss-enterprise-maven-repository</id>
 <repositories>
 <repository>
 <id>jboss-enterprise-maven-repository</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <releases>
 <enabled>true</enabled>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

44

4. Copy the following XML into the <activeProfiles> element of the settings.xml file.

5. If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, you
must refresh the user settings.

a. From the menu, choose Window → Preferences.

b. In the Preferences window, expand Maven and choose User Settings.

c. Click the Update Settings button to refresh the Maven user settings in Red Hat JBoss
Developer Studio.

The Update Maven User Settings screen shot

 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-enterprise-maven-repository</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</profile>

<activeProfile>jboss-enterprise-maven-repository</activeProfile>

CHAPTER 2. USING MAVEN WITH JBOSS EAP

45

IMPORTANT

If your Maven repository contains outdated artifacts, you may encounter one of the
following Maven error messages when you build or deploy your project:

Missing artifact ARTIFACT_NAME

[ERROR] Failed to execute goal on project PROJECT_NAME; Could not resolve
dependencies for PROJECT_NAME

To resolve the issue, delete the cached version of your local repository to force a
download of the latest Maven artifacts. The cached repository is located here:
${user.home}/.m2/repository/

Configure the JBoss EAP Maven Repository Using the Project POM

WARNING

You should avoid this method of configuration as it overrides the global and user
Maven settings for the configured project.

You must plan carefully if you decide to configure repositories using project POM file. Transitively



Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

46

included POMs are an issue with this type of configuration since Maven has to query the external
repositories for missing artifacts and this slows the build process. It can also cause you to lose control
over where your artifacts are coming from.

NOTE

The URL of the repository will depend on where the repository is located: on the file
system, or web server. For information on how to install the repository, see: Install the
JBoss EAP Maven Repository. The following are examples for each of the installation
options:

File System

file:///path/to/repo/jboss-eap-maven-repository

Apache Web Server

http://intranet.acme.com/jboss-eap-maven-repository/

Nexus Repository Manager

https://intranet.acme.com/nexus/content/repositories/jboss-eap-maven-repository

Configuring the Project’s POM File

1. Open your project’s pom.xml file in a text editor.

2. Add the following repository configuration. If there is already a <repositories> configuration
in the file, then add the <repository> element to it. Be sure to change the <url> to the actual
repository location.

<repositories>
 <repository>
 <id>jboss-eap-repository-group</id>
 <name>JBoss EAP Maven Repository</name>
 <url>JBOSS_EAP_REPOSITORY_URL</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </repository>
</repositories>

3. Add the following plug-in repository configuration. If there is already a
<pluginRepositories> configuration in the file, then add the <pluginRepository>
element to it.

<pluginRepositories>
 <pluginRepository>
 <id>jboss-eap-repository-group</id>
 <name>JBoss EAP Maven Repository</name>
 <url>JBOSS_EAP_REPOSITORY_URL</url>
 <releases>

CHAPTER 2. USING MAVEN WITH JBOSS EAP

47

 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </pluginRepository>
</pluginRepositories>

Determine the URL of the JBoss EAP Repository
The repository URL depends on where the repository is located. You can configure Maven to use any of
the following repository locations.

To use the online JBoss EAP Maven repository, specify the following URL:
https://maven.repository.redhat.com/ga/

To use a JBoss EAP Maven repository installed on the local file system, you must download the
repository and then use the local file path for the URL. For example: file:///path/to/repo/jboss-
eap-7.0-maven-repository/maven-repository/

If you install the repository on an Apache Web Server, the repository URL will be similar to the
following: http://intranet.acme.com/jboss-eap-7.0-maven-repository/maven-repository/

If you install the JBoss EAP Maven repository using the Nexus Repository Manager, the URL will
look something like the following: https://intranet.acme.com/nexus/content/repositories/jboss-
eap-7.0-maven-repository/maven-repository/

NOTE

Remote repositories are accessed using common protocols such as http:// for a
repository on an HTTP server or file:// for a repository on a file server.

2.3.2. Configure Maven for Use with Red Hat JBoss Developer Studio

The artifacts and dependencies needed to build and deploy applications to Red Hat JBoss Enterprise
Application Platform are hosted on a public repository. You must direct Maven to use this repository
when you build your applications. This topic covers the steps to configure Maven if you plan to build and
deploy applications using Red Hat JBoss Developer Studio.

Maven is distributed with Red Hat JBoss Developer Studio, so it is not necessary to install it separately.
However, you must configure Maven for use by the Java EE Web Project wizard for deployments to
JBoss EAP. The procedure below demonstrates how to configure Maven for use with JBoss EAP by
editing the Maven configuration file from within Red Hat JBoss Developer Studio.

Configure Maven in Red Hat JBoss Developer Studio

1. Click Window → Preferences, expand JBoss Tools and select JBoss Maven Integration.

JBoss Maven Integration Pane in the Preferences Window

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

48

https://maven.repository.redhat.com/ga/

2. Click Configure Maven Repositories.

3. Click Add Repository to configure the JBoss Enterprise Maven repository. Complete the Add
Maven Repository dialog as follows:

a. Set the Profile ID, Repository ID, and Repository Name values to jboss-ga-
repository.

b. Set the Repository URL value to http://maven.repository.redhat.com/ga.

c. Click the Active by default checkbox to enable the Maven repository.

d. Click OK.

Add Maven Repository

CHAPTER 2. USING MAVEN WITH JBOSS EAP

49

http://maven.repository.redhat.com/ga

4. Review the repositories and click Finish.

Review Maven Repositories

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

50

5. You are prompted with the message "Are you sure you want to update the file
MAVEN_HOME/settings.xml?". Click Yes to update the settings. Click OK to close the dialog.

The JBoss EAP Maven repository is now configured for use with Red Hat JBoss Developer Studio.

2.3.3. Manage Project Dependencies

This topic describes the usage of Bill of Materials (BOM) POMs for Red Hat JBoss Enterprise Application
Platform.

A BOM is a Maven pom.xml (POM) file that specifies the versions of all runtime dependencies for a
given module. Version dependencies are listed in the dependency management section of the file.

A project uses a BOM by adding its groupId:artifactId:version (GAV) to the dependency
management section of the project pom.xml file and specifying the <scope>import</scope> and
<type>pom</type> element values.

NOTE

In many cases, dependencies in project POM files use the provided scope. This is
because these classes are provided by the application server at runtime and it is not
necessary to package them with the user application.

Supported Maven Artifacts
As part of the product build process, all runtime components of JBoss EAP are built from source in a
controlled environment. This helps to ensure that the binary artifacts do not contain any malicious code,
and that they can be supported for the life of the product. These artifacts can be easily identified by the -
redhat version qualifier, for example 1.0.0-redhat-1.

CHAPTER 2. USING MAVEN WITH JBOSS EAP

51

Adding a supported artifact to the build configuration pom.xml file ensures that the build is using the
correct binary artifact for local building and testing. Note that an artifact with a -redhat version is not
necessarily part of the supported public API, and may change in future revisions. For information about
the public supported API, see the JavaDoc documentation included in the release.

For example, to use the supported version of Hibernate, add something similar to the following to your
build configuration.

Notice that the above example includes a value for the <version/> field. However, it is recommended
to use Maven dependency management for configuring dependency versions.

Dependency Management
Maven includes a mechanism for managing the versions of direct and transitive dependencies
throughout the build. For general information about using dependency management, see the Apache
Maven Project: Introduction to the Dependency Mechanism.

Using one or more supported Red Hat dependencies directly in your build does not guarantee that all
transitive dependencies of the build will be fully supported Red Hat artifacts. It is common for Maven
builds to use a mix of artifact sources from the Maven central repository and other Maven repositories.

There is a dependency management BOM included in the JBoss EAP Maven repository, which specifies
all the supported JBoss EAP binary artifacts. This BOM can be used in a build to ensure that Maven will
prioritize supported JBoss EAP dependencies for all direct and transitive dependencies in the build. In
other words, transitive dependencies will be managed to the correct supported dependency version
where applicable. The version of this BOM matches the version of the JBoss EAP release.

NOTE

In JBoss EAP 7 the name of this BOM was changed from eap6-supported-artifacts to
eap-runtime-artifacts. The purpose of this change is to make it more clear that the
artifacts in this POM are part of the JBoss EAP runtime, but are not necessarily part of the
supported public API. Some of the jars contain internal API and functionality which may
change between releases.

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>5.0.1.Final-redhat-1</version>
 <scope>provided</scope>
</dependency>

<dependencyManagement>
 <dependencies>
 ...
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>eap-runtime-artifacts</artifactId>
 <version>7.0.0.GA</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 ...
 </dependencies>
</dependencyManagement>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

52

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

JBoss EAP Java EE Specs BOM
The jboss-javaee-7.0 BOM contains the Java EE Specification API JARs used by JBoss EAP.

To use this BOM in a project, add a dependency for the GAV that contains the version of the JSP and
Servlet API JARs needed to build and deploy the application.

The following example uses the 1.0.3.Final-redhat-1 version of the jboss-javaee-7.0 BOM.

JBoss EAP BOMs and Quickstarts
The quickstarts provide the primary use case examples for the Maven repository. The following table
lists the Maven BOMs used by the quickstarts.

Table 2.1. JBoss BOMs Used by the Quickstarts

BOM Artifact ID Use Case

jboss-eap-javaee7 Supported JBoss EAP JavaEE 7 APIs plus additional JBoss EAP API
jars

jboss-eap-javaee7-with-spring3 jboss-eap-javaee7 plus recommended Spring 3 versions

jboss-eap-javaee7-with-spring4 jboss-eap-javaee7 plus recommended Spring 4 versions

jjboss-eap-javaee7-with-tools jboss-eap-javaee7 plus development tools such as Arquillian

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.spec</groupId>
 <artifactId>jboss-javaee-7.0</artifactId>
 <version>1.0.3.Final-redhat-1</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 ...
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.jboss.spec.javax.servlet</groupId>
 <artifactId>jboss-servlet-api_3.1_spec</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.spec.javax.servlet.jsp</groupId>
 <artifactId>jboss-jsp-api_2.3_spec</artifactId>
 <scope>provided</scope>
 </dependency>
 ...
</dependencies>

CHAPTER 2. USING MAVEN WITH JBOSS EAP

53

NOTE

These BOMs from JBoss EAP 6 have been consolidated into fewer BOMs to make usage
simpler for most use cases. The Hibernate, logging, transactions, messaging, and other
public API jars are now included in jboss-javaee7-eap instead of a requiring a
separate BOM for each case.

The following example uses the 7.0.0.GA version of the jboss-eap-javaee7 BOM.

JBoss EAP Client BOMs
The client BOMs do not create a dependency management section or define dependencies. Instead,
they are an aggregate of other BOMs and are used to package the set of dependencies necessary for a
remote client use case.

The wildfly-ejb-client-bom and wildfly-jms-client-bom BOMs are managed by the
jboss-eap-javaee7 BOM, so there is no need to manage the versions in your project dependencies.

The following is an example of how to add the wildfly-ejb-client-bom and wildfly-jms-
client-bom client BOM dependencies to your project.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-javaee7</artifactId>
 <version>7.0.0.GA</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 ...
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <scope>provided</scope>
 </dependency>
 ...
</dependencies>

<dependencyManagement>
 <dependencies>
 <!-- jboss-eap-javaee7: JBoss stack of the Java EE APIs and related
components. -->
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-javaee7</artifactId>
 <version>7.0.0.GA</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 ...

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

54

For more information about Maven Dependencies and BOM POM files, see Apache Maven Project -
Introduction to the Dependency Mechanism.

</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.jboss.eap</groupId>
 <artifactId>wildfly-ejb-client-bom</artifactId>
 <type>pom</type>
 </dependency>
 <dependency>
 <groupId>org.jboss.eap</groupId>
 <artifactId>wildfly-jms-client-bom</artifactId>
 <type>pom</type>
 </dependency>
 ...
</dependencies>

CHAPTER 2. USING MAVEN WITH JBOSS EAP

55

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

CHAPTER 3. CLASS LOADING AND MODULES

3.1. INTRODUCTION

3.1.1. Overview of Class Loading and Modules

JBoss EAP uses a modular class loading system for controlling the class paths of deployed applications.
This system provides more flexibility and control than the traditional system of hierarchical class loaders.
Developers have fine-grained control of the classes available to their applications, and can configure a
deployment to ignore classes provided by the application server in favor of their own.

The modular class loader separates all Java classes into logical groups called modules. Each module
can define dependencies on other modules in order to have the classes from that module added to its
own class path. Because each deployed JAR and WAR file is treated as a module, developers can
control the contents of their application’s class path by adding module configuration to their application.

3.1.2. Modules

A module is a logical grouping of classes used for class loading and dependency management. JBoss
EAP identifies two different types of modules: static and dynamic. The main difference between the two
is how they are packaged.

Static Modules
Static modules are defined in the EAP_HOME/modules/ directory of the application server. Each
module exists as a subdirectory, for example EAP_HOME/modules/com/mysql/. Each module
directory then contains a slot subdirectory, which defaults to main and contains the module.xml
configuration file and any required JAR files. All the application server-provided APIs are provided as
static modules, including the Java EE APIs as well as other APIs.

Example MySQL JDBC Driver module.xml File

The module name (com.mysql) must match the directory structure for the module, excluding the slot
name (main).

Creating custom static modules can be useful if many applications are deployed on the same server that
use the same third-party libraries. Instead of bundling those libraries with each application, a module
containing these libraries can be created and installed by an administrator. The applications can then
declare an explicit dependency on the custom static modules.

The modules provided in JBoss EAP distributions are located in the system directory within the
EAP_HOME/modules directory. This keeps them separate from any modules provided by third parties.
Any Red Hat provided products that layer on top of JBoss EAP also install their modules within the

<?xml version="1.0" ?>
<module xmlns="urn:jboss:module:1.1" name="com.mysql">
 <resources>
 <resource-root path="mysql-connector-java-5.1.36-bin.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

56

system directory.

Users must ensure that custom modules are installed into the EAP_HOME/modules directory, using one
directory per module. This ensures that custom versions of modules that already exist in the system
directory are loaded instead of the shipped versions. In this way, user-provided modules will take
precedence over system modules.

If you use the JBOSS_MODULEPATH environment variable to change the locations in which JBoss EAP
searches for modules, then the product will look for a system subdirectory structure within one of the
locations specified. A system structure must exist somewhere in the locations specified with
JBOSS_MODULEPATH.

Dynamic Modules
Dynamic modules are created and loaded by the application server for each JAR or WAR deployment
(or subdeployment in an EAR). The name of a dynamic module is derived from the name of the deployed
archive. Because deployments are loaded as modules, they can configure dependencies and be used as
dependencies by other deployments.

Modules are only loaded when required. This usually only occurs when an application is deployed that
has explicit or implicit dependencies.

3.1.3. Module Dependencies

A module dependency is a declaration that one module requires the classes of one or more other
modules in order to function. When JBoss EAP loads a module, the modular class loader parses the
dependencies of that module and adds the classes from each dependency to its class path. If a specified
dependency cannot be found, the module will fail to load.

NOTE

See the Modules section for complete details about modules and the modular class
loading system.

Deployed applications (a JAR or WAR, for example) are loaded as dynamic modules and make use of
dependencies to access the APIs provided by JBoss EAP.

There are two types of dependencies: explicit and implicit.

Explicit Dependencies

Explicit dependencies are declared by the developer in a configuration file. A static module can
declare dependencies in its module.xml file. A dynamic module can declare dependencies in the
deployment’s MANIFEST.MF or jboss-deployment-structure.xml deployment descriptor.

Implicit Dependencies

Implicit dependencies are added automatically by JBoss EAP when certain conditions or meta-data
are found in a deployment. The Java EE 7 APIs supplied with JBoss EAP are examples of modules
that are added by detection of implicit dependencies in deployments.
Deployments can also be configured to exclude specific implicit dependencies by using the jboss-
deployment-structure.xml deployment descriptor file. This can be useful when an application
bundles a specific version of a library that JBoss EAP will attempt to add as an implicit dependency.

See the Add an Explicit Module Dependency to a Deployment section for details on using the jboss-
deployment-structure.xml deployment descriptor.

CHAPTER 3. CLASS LOADING AND MODULES

57

Optional Dependencies
Explicit dependencies can be specified as optional. Failure to load an optional dependency will not cause
a module to fail to load. However, if the dependency becomes available later it will not be added to the
module’s class path. Dependencies must be available when the module is loaded.

Export a Dependency
A module’s class path contains only its own classes and that of its immediate dependencies. A module is
not able to access the classes of the dependencies of one of its dependencies. However, a module can
specify that an explicit dependency is exported. An exported dependency is provided to any module that
depends on the module that exports it.

For example, Module A depends on Module B, and Module B depends on Module C. Module A can
access the classes of Module B, and Module B can access the classes of Module C. Module A cannot
access the classes of Module C unless:

Module A declares an explicit dependency on Module C, or

Module B exports its dependency on Module C.

Global Modules
A global module is a module that JBoss EAP provides as a dependency to every application. Any
module can be made global by adding it to JBoss EAP’s list of global modules. It does not require
changes to the module.

See the Define Global Modules section of the JBoss EAP Configuration Guide for details.

3.1.3.1. Display Module Dependencies Using the Management CLI

You can use the following management operation to view information about a particular module and its
dependencies:

/core-service=module-loading:module-info(name=$MODULE_NAME)

Example of module-info output

[standalone@localhost:9990 /] /core-service=module-loading:module-
info(name=org.jboss.logmanager
{
 "outcome" => "success",
 "result" => {
 "name" => "org.jboss.logmanager:main",
 "main-class" => undefined,
 "fallback-loader" => undefined,
 "dependencies" => [
 {
 "dependency-name" => "ModuleDependency",
 "module-name" => "javax.api:main",
 "export-filter" => "Reject",
 "import-filter" => "multi-path filter {exclude children of
\"META-INF/\", exclude equals \"META-INF\", default accept}",
 "optional" => false
 },
 {
 "dependency-name" => "ModuleDependency",
 "module-name" => "org.jboss.modules:main",

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

58

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/#add_a_global_module

 "export-filter" => "Reject",
 "import-filter" => "multi-path filter {exclude children of
\"META-INF/\", exclude equals \"META-INF\", default accept}",
 "optional" => false
 }
],
 "local-loader-class" => undefined,
 "resource-loaders" => [
 {
 "type" => "org.jboss.modules.JarFileResourceLoader",
 "paths" => [
 "",
 "org/jboss/logmanager",
 "META-INF/services",
 "org",
 "META-INF/maven/org.jboss.logmanager/jboss-
logmanager",
 "org/jboss",
 "org/jboss/logmanager/errormanager",
 "org/jboss/logmanager/formatters",
 "META-INF",
 "org/jboss/logmanager/filters",
 "org/jboss/logmanager/config",
 "META-INF/maven",
 "org/jboss/logmanager/handlers",
 "META-INF/maven/org.jboss.logmanager"
]
 },
 {
 "type" =>
"org.jboss.modules.NativeLibraryResourceLoader",
 "paths" => undefined
 }
]
 }
}

3.1.4. Class Loading in Deployments

For the purposes of class loading, JBoss EAP treats all deployments as modules. These are called
dynamic modules. Class loading behavior varies according to the deployment type.

WAR Deployment

A WAR deployment is considered to be a single module. Classes in the WEB-INF/lib directory are
treated the same as classes in the WEB-INF/classes directory. All classes packaged in the WAR
will be loaded with the same class loader.

EAR Deployment

EAR deployments are made up of more than one module, and are defined by the following rules:

1. The lib/ directory of the EAR is a single module called the parent module.

2. Each WAR deployment within the EAR is a single module.

3. Each EJB JAR deployment within the EAR is a single module.

CHAPTER 3. CLASS LOADING AND MODULES

59

Subdeployment modules (the WAR and JAR deployments within the EAR) have an automatic
dependency on the parent module. However, they do not have automatic dependencies on each other.
This is called subdeployment isolation, and can be disabled per deployment, or for the entire application
server.

Explicit dependencies between subdeployment modules can be added by the same means as any other
module.

3.1.5. Class Loading Precedence

The JBoss EAP modular class loader uses a precedence system to prevent class loading conflicts.

During deployment, a complete list of packages and classes is created for each deployment and each of
its dependencies. The list is ordered according to the class loading precedence rules. When loading
classes at runtime, the class loader searches this list, and loads the first match. This prevents multiple
copies of the same classes and packages within the deployments class path from conflicting with each
other.

The class loader loads classes in the following order, from highest to lowest:

1. Implicit dependencies: These dependencies are automatically added by JBoss EAP, such as
the JAVA EE APIs. These dependencies have the highest class loader precedence because
they contain common functionality and APIs that are supplied by JBoss EAP.
Refer to Implicit Module Dependencies for complete details about each implicit dependency.

2. Explicit dependencies: These dependencies are manually added to the application
configuration using the application’s MANIFEST.MF file or the new optional JBoss deployment
descriptor jboss-deployment-structure.xml file.
Refer to Add an Explicit Module Dependency to a Deployment to learn how to add explicit
dependencies.

3. Local resources: These are class files packaged up inside the deployment itself, e.g. from the
WEB-INF/classes or WEB-INF/lib directories of a WAR file.

4. Inter-deployment dependencies: These are dependencies on other deployments in a EAR
deployment. This can include classes in the lib directory of the EAR or classes defined in other
EJB jars.

3.1.6. Dynamic Module Naming Conventions

JBoss EAP loads all deployments as modules, which are named according to the following conventions.

Deployments of WAR and JAR files are named using the following format:

deployment.DEPLOYMENT_NAME

For example, inventory.war and store.jar will have the module names of
deployment.inventory.war and deployment.store.jar respectively.

Subdeployments within an Enterprise Archive (EAR) are named using the following format:

deployment.EAR_NAME.SUBDEPLOYMENT_NAME

For example, the subdeployment of reports.war within the enterprise archive accounts.ear
will have the module name of deployment.accounts.ear.reports.war.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

60

3.1.7. jboss-deployment-structure.xml

jboss-deployment-structure.xml is an optional deployment descriptor for JBoss EAP. This
deployment descriptor provides control over class loading in the deployment.

The XML schema for this deployment descriptor is in /docs/schema/jboss-deployment-
structure-1_2.xsd

3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT

Explicit module dependencies can be added to applications to add the classes of those modules to the
class path of the application at deployment.

NOTE

JBoss EAP automatically adds some dependencies to deployments. See Implicit Module
Dependencies for details.

Prerequisites

1. A working software project that you want to add a module dependency to.

2. You must know the name of the module being added as a dependency. See Included Modules
for the list of static modules included with JBoss EAP. If the module is another deployment then
see Dynamic Module Naming to determine the module name.

Dependencies can be configured using two methods:

Adding entries to the MANIFEST.MF file of the deployment.

Adding entries to the jboss-deployment-structure.xml deployment descriptor.

Add a Dependency Configuration to MANIFEST.MF
Maven projects can be configured to create the required dependency entries in the MANIFEST.MF file.

1. If the project does not have one, create a file called MANIFEST.MF. For a web application
(WAR) add this file to the META-INF directory. For an EJB archive (JAR) add it to the META-INF
directory.

2. Add a dependencies entry to the MANIFEST.MF file with a comma-separated list of dependency
module names:

Dependencies: org.javassist, org.apache.velocity, org.antlr

To make a dependency optional, append optional to the module name in the dependency
entry:

Dependencies: org.javassist optional, org.apache.velocity

A dependency can be exported by appending export to the module name in the
dependency entry:

Dependencies: org.javassist, org.apache.velocity export

CHAPTER 3. CLASS LOADING AND MODULES

61

The annotations flag is needed when the module dependency contains annotations that
need to be processed during annotation scanning, such as when declaring EJB interceptors.
Without this, an EJB interceptor declared in a module cannot be used in a deployment.
There are other situations involving annotation scanning when this is needed too.

Dependencies: org.javassist, test.module annotations

By default items in the META-INF of a dependency are not accessible. The services
dependency makes items from META-INF/services accessible so that services in the
modules can be loaded.

Dependencies: org.javassist, org.hibernate services

To scan a beans.xml file and make its resulting beans available to the application, the
meta-inf dependency can be used.

Dependencies: org.javassist, test.module meta-inf

Add a Dependency Configuration to the jboss-deployment-structure.xml

1. If the application does not have one, create a new file called jboss-deployment-
structure.xml and add it to the project. This file is an XML file with the root element of
<jboss-deployment-structure>.

For a web application (WAR) add this file to the WEB-INF directory. For an EJB archive (JAR)
add it to the META-INF directory.

2. Create a <deployment> element within the document root and a <dependencies> element
within that.

3. Within the <dependencies> node, add a module element for each module dependency. Set
the name attribute to the name of the module.

A dependency can be made optional by adding the optional attribute to the module entry
with the value of true. The default value for this attribute is false.

A dependency can be exported by adding the export attribute to the module entry with the
value of true. The default value for this attribute is false.

When the module dependency contains annotations that need to be processed during
annotation scanning, the annotations flag is used.

<jboss-deployment-structure>

</jboss-deployment-structure>

<module name="org.javassist" />

<module name="org.javassist" optional="true" />

<module name="org.javassist" export="true" />

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

62

The Services dependency specifies whether and how services found in this
dependency are used. The default is none. Specifying a value of import for this attribute is
equivalent to adding a filter at the end of the import filter list which includes the META-
INF/services path from the dependency module. Setting a value of export for this
attribute is equivalent to the same action on the export filter list.

The META-INF dependency specifies whether and how META-INF entries in this
dependency are used. The default is none. Specifying a value of import for this attribute is
equivalent to adding a filter at the end of the import filter list which includes the META-
INF/** path from the dependency module. Setting a value of export for this attribute is
equivalent to the same action on the export filter list.

Example: jboss-deployment-structure.xml with Two Dependencies

JBoss EAP adds the classes from the specified modules to the class path of the application when it is
deployed.

Creating a Jandex Index
The annotations flag requires that the module contain a Jandex index. In JBoss EAP 7.0, this is
generated automatically. However, to add the index manually, perhaps for backwards compatibility,
create a new "index JAR" to add to the module. Use the Jandex JAR to build the index, and then insert it
into a new JAR file.

Creating a Jandex index::

1. Create the index:

java -jar modules/system/layers/base/org/jboss/jandex/main/jandex-
jandex-2.0.0.Final-redhat-1.jar $JAR_FILE

2. Create a temporary working space:

mkdir /tmp/META-INF

3. Move the index file to the working directory

mv $JAR_FILE.ifx /tmp/META-INF/jandex.idx

<module name="test.module" annotations="true" />

<module name="org.hibernate" services="import" />

<module name="test.module" meta-inf="import" />

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.javassist" />
 <module name="org.apache.velocity" export="true" />
 </dependencies>
 </deployment>
</jboss-deployment-structure>

CHAPTER 3. CLASS LOADING AND MODULES

63

a. Option 1: Include the index in a new JAR file

jar cf index.jar -C /tmp META-INF/jandex.idx

Then place the JAR in the module directory and edit module.xml to add it to the resource
roots.

b. Option 2: Add the index to an existing JAR

java -jar /modules/org/jboss/jandex/main/jandex-1.0.3.Final-
redhat-1.jar -m $JAR_FILE

4. Tell the module import to utilize the annotation index, so that annotation scanning can find the
annotations.

a. Option 1: If you are adding a module dependency using MANIFEST.MF, add annotations
after the module name. For example change:

Dependencies: test.module, other.module

to

Dependencies: test.module annotations, other.module

b. Option 2: If you are adding a module dependency using jboss-deployment-
structure.xml add annotations="true" on the module dependency.

NOTE

An annotation index is required when an application wants to use annotated
Java EE components defined in classes within the static module. In JBoss
EAP 7.0, annotation indexes for static modules are automatically generated,
so you do not need to create them. However, you must tell the module import
to use the annotations by adding the dependencies to either the
MANIFEST.MF or the jboss-deployment-structure.xml file.

3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN

Maven projects using the Maven JAR, EJB, or WAR packaging plug-ins can generate a MANIFEST.MF
file with a Dependencies entry. This does not automatically generate the list of dependencies, but only
creates the MANIFEST.MF file with the details specified in the pom.xml.

Before generating the MANIFEST.MF entries using Maven, you will require:

A working Maven project, which is using one of the JAR, EJB, or WAR plug-ins (maven-jar-
plugin, maven-ejb-plugin, or maven-war-plugin).

You must know the name of the project’s module dependencies. Refer to Included Modules for
the list of static modules included with JBoss EAP. If the module is another deployment, then
refer to Dynamic Module Naming to determine the module name.

Generate a MANIFEST.MF File Containing Module Dependencies

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

64

1. Add the following configuration to the packaging plug-in configuration in the project’s pom.xml
file.

2. Add the list of module dependencies to the <Dependencies> element. Use the same format
that is used when adding the dependencies to the MANIFEST.MF file:

The optional and export attributes can also be used here:

3. Build the project using the Maven assembly goal:

When the project is built using the assembly goal, the final archive contains a MANIFEST.MF file
with the specified module dependencies.

Example: Configured Module Dependencies in pom.xml

NOTE

The example here shows the WAR plug-in but it also works with the JAR and EJB
plug-ins (maven-jar-plugin and maven-ejb-plugin).

3.4. PREVENT A MODULE BEING IMPLICITLY LOADED

<configuration>
 <archive>
 <manifestEntries>
 <Dependencies></Dependencies>
 </manifestEntries>
 </archive>
</configuration>

<Dependencies>org.javassist, org.apache.velocity</Dependencies>

<Dependencies>org.javassist optional, org.apache.velocity
export</Dependencies>

[Localhost]$ mvn assembly:single

<plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <archive>
 <manifestEntries>
 <Dependencies>org.javassist,
org.apache.velocity</Dependencies>
 </manifestEntries>
 </archive>
 </configuration>
 </plugin>
</plugins>

CHAPTER 3. CLASS LOADING AND MODULES

65

You can configure a deployable application to prevent implicit dependencies from being loaded. This can
be useful when an application includes a different version of a library or framework than the one that will
be provided by the application server as an implicit dependency.

Prerequisites

A working software project that you want to exclude an implicit dependency from.

You must know the name of the module to exclude. Refer to Implicit Module Dependencies for a
list of implicit dependencies and their conditions.

Add dependency exclusion configuration to jboss-deployment-structure.xml

1. If the application does not have one, create a new file called jboss-deployment-
structure.xml and add it to the project. This is an XML file with the root element of <jboss-
deployment-structure>.

For a web application (WAR) add this file to the WEB-INF directory. For an EJB archive (JAR)
add it to the META-INF directory.

2. Create a <deployment> element within the document root and an <exclusions> element
within that.

3. Within the exclusions element, add a <module> element for each module to be excluded. Set
the name attribute to the name of the module.

Example: Excluding Two Modules

3.5. EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT

<jboss-deployment-structure>

</jboss-deployment-structure>

<deployment>
 <exclusions>

 </exclusions>
</deployment>

<module name="org.javassist" />

<jboss-deployment-structure>
 <deployment>
 <exclusions>
 <module name="org.javassist" />
 <module name="org.dom4j" />
 </exclusions>
 </deployment>
</jboss-deployment-structure>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

66

Excluding a subsystem provides the same effect as removing the subsystem, but it applies only to a
single deployment. You can exclude a subsystem from a deployment by editing the jboss-
deployment-structure.xml configuration file.

Exclude a Subsystem

1. Edit the jboss-deployment-structure.xml file.

2. Add the following XML inside the <deployment> tags:

3. Save the jboss-deployment-structure.xml file.

The subsystem’s deployment unit processors will no longer run on the deployment.

Example: jboss-deployment-structure.xml File

<exclude-subsystems>
 <subsystem name="SUBSYSTEM_NAME" />
</exclude-subsystems>

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>
 <deployment>
 <exclude-subsystems>
 <subsystem name="jaxrs" />
 </exclude-subsystems>
 <exclusions>
 <module name="org.javassist" />
 </exclusions>
 <dependencies>
 <module name="deployment.javassist.proxy" />
 <module name="deployment.myjavassist" />
 <module name="myservicemodule" services="import"/>
 </dependencies>
 <resources>
 <resource-root path="my-library.jar" />
 </resources>
 </deployment>
 <sub-deployment name="myapp.war">
 <dependencies>
 <module name="deployment.myear.ear.myejbjar.jar" />
 </dependencies>
 <local-last value="true" />
 </sub-deployment>
 <module name="deployment.myjavassist" >
 <resources>
 <resource-root path="javassist.jar" >
 <filter>
 <exclude path="javassist/util/proxy" />
 </filter>
 </resource-root>
 </resources>
 </module>
 <module name="deployment.javassist.proxy" >
 <dependencies>

CHAPTER 3. CLASS LOADING AND MODULES

67

3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A
DEPLOYMENT

3.6.1. Programmatically Load Classes and Resources in a Deployment

You can programmatically find or load classes and resources in your application code. The method you
choose will depend on a number of factors. This topic describes the methods available and provides
guidelines for when to use them.

Load a Class Using the Class.forName() Method

You can use the Class.forName() method to programmatically load and initialize classes. This
method has two signatures:

Class.forName(String className): This signature takes only one parameter, the name of the
class you need to load. With this method signature, the class is loaded by the class loader of the
current class and initializes the newly loaded class by default.

Class.forName(String className, boolean initialize, ClassLoader loader): This signature
expects three parameters: the class name, a boolean value that specifies whether to initialize the
class, and the ClassLoader that should load the class.

The three argument signature is the recommended way to programmatically load a class. This signature
allows you to control whether you want the target class to be initialized upon load. It is also more efficient
to obtain and provide the class loader because the JVM does not need to examine the call stack to
determine which class loader to use. Assuming the class containing the code is named CurrentClass,
you can obtain the class’s class loader using CurrentClass.class.getClassLoader() method.

The following example provides the class loader to load and initialize the TargetClass class:

Find All Resources with a Given Name

If you know the name and path of a resource, the best way to load it directly is to use the standard Java
development kit Class or ClassLoader API.

Load a Single Resource: To load a single resource located in the same directory as your class
or another class in your deployment, you can use the Class.getResourceAsStream()
method.

 <module name="org.javassist" >
 <imports>
 <include path="javassist/util/proxy" />
 <exclude path="/**" />
 </imports>
 </module>
 </dependencies>
 </module>
</jboss-deployment-structure>

Class<?> targetClass = Class.forName("com.myorg.util.TargetClass", true,
CurrentClass.class.getClassLoader());

InputStream inputStream =
CurrentClass.class.getResourceAsStream("targetResourceName");

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

68

Load All Instances of a Single Resource: To load all instances of a single resource that are
visible to your deployment’s class loader, use the
Class.getClassLoader().getResources(String resourceName) method, where
resourceName is the fully qualified path of the resource. This method returns an Enumeration
of all URL objects for resources accessible by the class loader with the given name. You can
then iterate through the array of URLs to open each stream using the openStream() method.
The following example loads all instances of a resource and iterates through the results.

Because the URL instances are loaded from local storage, it is not necessary to use the
openConnection() or other related methods. Streams are much simpler to use and minimize the
complexity of the code.

Load a Class File From the Class Loader: If a class has already been loaded, you can load
the class file that corresponds to that class using the following syntax:

If the class is not yet loaded, you must use the class loader and translate the path:

3.6.2. Programmatically Iterate Resources in a Deployment

The JBoss Modules library provides several APIs for iterating all deployment resources. The JavaDoc for
the JBoss Modules API is located here: http://docs.jboss.org/jbossmodules/1.3.0.Final/api/. To use these
APIs, you must add the following dependency to the MANIFEST.MF:

Enumeration<URL> urls =
CurrentClass.class.getClassLoader().getResources("full/path/to/resou
rce");
while (urls.hasMoreElements()) {
 URL url = urls.nextElement();
 InputStream inputStream = null;
 try {
 inputStream = url.openStream();
 // Process the inputStream
 ...
 } catch(IOException ioException) {
 // Handle the error
 } finally {
 if (inputStream != null) {
 try {
 inputStream.close();
 } catch (Exception e) {
 // ignore
 }
 }
 }
}

InputStream inputStream =
CurrentClass.class.getResourceAsStream(TargetClass.class.getSimpleNa
me() + ".class");

String className = "com.myorg.util.TargetClass"
InputStream inputStream =
CurrentClass.class.getClassLoader().getResourceAsStream(className.re
place('.', '/') + ".class");

CHAPTER 3. CLASS LOADING AND MODULES

69

http://docs.jboss.org/jbossmodules/1.3.0.Final/api/

Dependencies: org.jboss.modules

It is important to note that while these APIs provide increased flexibility, they will also run much more
slowly than a direct path lookup.

This topic describes some of the ways you can programmatically iterate through resources in your
application code.

List Resources Within a Deployment and Within All Imports: There are times when it is not
possible to look up resources by the exact path. For example, the exact path may not be known
or you may need to examine more than one file in a given path. In this case, the JBoss Modules
library provides several APIs for iterating all deployment resources. You can iterate through
resources in a deployment by utilizing one of two methods.

Iterate All Resources Found in a Single Module: The
ModuleClassLoader.iterateResources() method iterates all the resources within
this module class loader. This method takes two arguments: the starting directory name to
search and a boolean that specifies whether it should recurse into subdirectories.
The following example demonstrates how to obtain the ModuleClassLoader and obtain the
iterator for resources in the bin/ directory, recursing into subdirectories.

The resultant iterator may be used to examine each matching resource and query its name
and size (if available), open a readable stream, or acquire a URL for the resource.

Iterate All Resources Found in a Single Module and Imported Resources: The
Module.iterateResources() method iterates all the resources within this module class
loader, including the resources that are imported into the module. This method returns a
much larger set than the previous method. This method requires an argument, which is a
filter that narrows the result to a specific pattern. Alternatively, PathFilters.acceptAll() can be
supplied to return the entire set.
The following example demonstrates how to find the entire set of resources in this module,
including imports.

Find All Resources That Match a Pattern: If you need to find only specific resources within
your deployment or within your deployment’s full import set, you need to filter the resource
iteration. The JBoss Modules filtering APIs give you several tools to accomplish this.

Examine the Full Set of Dependencies: If you need to examine the full set of
dependencies, you can use the Module.iterateResources() method’s PathFilter
parameter to check the name of each resource for a match.

Examine Deployment Dependencies: If you need to look only within the deployment, use
the ModuleClassLoader.iterateResources() method. However, you must use
additional methods to filter the resultant iterator. The PathFilters.filtered() method

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Iterator<Resource> mclResources =
moduleClassLoader.iterateResources("bin",true);

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Module module = moduleClassLoader.getModule();
Iterator<Resource> moduleResources =
module.iterateResources(PathFilters.acceptAll());

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

70

can provide a filtered view of a resource iterator this case. The PathFilters class includes
many static methods to create and compose filters that perform various functions, including
finding child paths or exact matches, or matching an Ant-style "glob" pattern.

Additional Code Examples For Filtering Resouces: The following examples demonstrate
how to filter resources based on different criteria.

Example: Find All Files Named messages.properties in Your Deployment

Example: Find All Files Named messages.properties in Your Deployment and
Imports

Example: Find All Files Inside Any Directory Named my-resources in Your
Deployment

Example: Find All Files Named messages or errors in Your Deployment and
Imports

Example: Find All Files in a Specific Package in Your Deployment

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Iterator<Resource> mclResources =
PathFilters.filtered(PathFilters.match("**/messages.properties"),
moduleClassLoader.iterateResources("", true));

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Module module = moduleClassLoader.getModule();
Iterator<Resource> moduleResources =
module.iterateResources(PathFilters.match("**/message.properties"));

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Iterator<Resource> mclResources =
PathFilters.filtered(PathFilters.match("**/my-resources/**"),
moduleClassLoader.iterateResources("", true));

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Module module = moduleClassLoader.getModule();
Iterator<Resource> moduleResources =
module.iterateResources(PathFilters.any(PathFilters.match("**/messag
es"), PathFilters.match("**/errors"));

ModuleClassLoader moduleClassLoader = (ModuleClassLoader)
TargetClass.class.getClassLoader();
Iterator<Resource> mclResources =
moduleClassLoader.iterateResources("path/form/of/packagename",
false);

CHAPTER 3. CLASS LOADING AND MODULES

71

3.7. CLASS LOADING AND SUBDEPLOYMENTS

3.7.1. Modules and Class Loading in Enterprise Archives

Enterprise Archives (EAR) are not loaded as a single module like JAR or WAR deployments. They are
loaded as multiple unique modules.

The following rules determine what modules exist in an EAR:

The contents of the lib/ directory in the root of the EAR archive is a module. This is called the
parent module.

Each WAR and EJB JAR subdeployment is a module. These modules have the same behavior
as any other module as well as implicit dependencies on the parent module.

Subdeployments have implicit dependencies on the parent module and any other non-WAR
subdeployments.

The implicit dependencies on non-WAR subdeployments occur because JBoss EAP has subdeployment
class loader isolation disabled by default. Dependencies on the parent module persist, regardless of
subdeployment class loader isolation.

IMPORTANT

No subdeployment ever gains an implicit dependency on a WAR subdeployment. Any
subdeployment can be configured with explicit dependencies on another subdeployment
as would be done for any other module.

Subdeployment class loader isolation can be enabled if strict compatibility is required. This can be
enabled for a single EAR deployment or for all EAR deployments. The Java EE specification
recommends that portable applications should not rely on subdeployments being able to access each
other unless dependencies are explicitly declared as Class-Path entries in the MANIFEST.MF file of
each subdeployment.

3.7.2. Subdeployment Class Loader Isolation

Each subdeployment in an Enterprise Archive (EAR) is a dynamic module with its own class loader. By
default a subdeployment can access the resources of other subdeployments.

If a subdeployment is not to be allowed to access the resources of other subdeployments, strict
subdeployment isolation can be enabled.

3.7.3. Enable Subdeployment Class Loader Isolation Within a EAR

This task shows you how to enable subdeployment class loader isolation in an EAR deployment by
using a special deployment descriptor in the EAR. This does not require any changes to be made to the
application server and does not affect any other deployments.

IMPORTANT

Even when subdeployment class loader isolation is disabled it is not possible to add a
WAR deployment as a dependency.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

72

1. Add the deployment descriptor file: Add the jboss-deployment-structure.xml
deployment descriptor file to the META-INF directory of the EAR if it doesn’t already exist and
add the following content:

<jboss-deployment-structure>

</jboss-deployment-structure>

2. Add the <ear-subdeployments-isolated> element: Add the <ear-subdeployments-
isolated> element to the jboss-deployment-structure.xml file if it doesn’t already
exist with the content of true.

<ear-subdeployments-isolated>true</ear-subdeployments-isolated>

Result

Subdeployment class loader isolation will now be enabled for this EAR deployment. This means that the
subdeployments of the EAR will not have automatic dependencies on each of the non-WAR
subdeployments.

3.7.4. Configuring Session Sharing between Subdeployments in Enterprise
Archives

JBoss EAP provides the ability to configure enterprise archives (EARs) to share sessions between WAR
module subdeployments contained in the EAR. This functionality is disabled by default and must be
explicitly enabled in the META-INF/jboss-all.xml file in the EAR.

IMPORTANT

Since this feature is not a standard servlet feature, your applications may not be portable if
this functionality is enabled.

To enable session sharing between WARs within an EAR, you need to declare a shared-session-
config element in the META-INF/jboss-all.xml of the EAR:

Example: META-INF/jboss-all.xml

The shared-session-config element is used to configure the shared session manager for all WARs
within the EAR. If the shared-session-config element is present, all WARs within the EAR will
share the same session manager. Changes made here will affect all the WARs contained within the
EAR.

3.7.4.1. Reference of Shared Session Configuration Options

The shared-session-config element has the following structure:

<jboss umlns="urn:jboss:1.0">
 ...
 <shared-session-config xmlns="urn:jboss:shared-session-config:1.0">
 </shared-session-config>
 ...
</jboss>

CHAPTER 3. CLASS LOADING AND MODULES

73

shared-session-config

max-active-sessions

session-config

session-timeout

cookie-config

name

domain

path

comment

http-only

secure

max-age

tracking-mode

replication-config

cache-name

replication-granularity

Example: META-INF/jboss-all.xml

<jboss umlns="urn:jboss:1.0">
 <shared-session-config xmlns="urn:jboss:shared-session-config:1.0">
 <max-active-sessions>10</max-active-sessions>
 <session-config>
 <session-timeout>0</session-timeout>
 <cookie-config>
 <name>JSESSIONID</name>
 <domain>domainName</domain>
 <path>/cookiePath</path>
 <comment>cookie comment</comment>
 <http-only>true</http-only>
 <secure>true</secure>
 <max-age>-1</max-age>
 </cookie-config>
 <tracking-mode>COOKIE</tracking-mode>
 </session-config>
 <replication-config>
 <cache-name>web</cache-name>
 <replication-granularity>SESSION</replication-granularity>
 </replication-config>
 </shared-session-config>
</jboss>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

74

shared-session-config

Root element for the shared session configuration. If this is present in the META-INF/jboss-
all.xml, then all deployed WARs contained in the EAR will share a single session manager.

max-active-sessions

Number of maximum sessions allowed.

session-config

Contains the session configuration parameters for all deployed WARs contained in the EAR.

session-timeout

Defines the default session timeout interval for all sessions created in the deployed WARs contained
in the EAR. The specified timeout must be expressed in a whole number of minutes. If the timeout is
0 or less, the container ensures the default behavior of sessions is to never time out. If this element is
not specified, the container must set its default timeout period.

cookie-config

Contains the configuration of the session tracking cookies created by the deployed WARs contained
in the EAR.

name

The name that will be assigned to any session tracking cookies created by the deployed WARs
contained in the EAR. The default is JSESSIONID.

domain

The domain name that will be assigned to any session tracking cookies created by the deployed
WARs contained in the EAR.

path

The path that will be assigned to any session tracking cookies created by the deployed WARs
contained in the EAR.

comment

The comment that will be assigned to any session tracking cookies created by the deployed WARs
contained in the EAR.

http-only

Specifies whether any session tracking cookies created by the deployed WARs contained in the EAR
will be marked as HttpOnly.

secure

Specifies whether any session tracking cookies created by the deployed WARs contained in the EAR
will be marked as secure even if the request that initiated the corresponding session is using plain
HTTP instead of HTTPS

max-age

The lifetime (in seconds) that will be assigned to any session tracking cookies created by the
deployed WARs contained in the EAR. Default is -1.

tracking-mode

Defines the tracking modes for sessions created by the deployed WARs contained in the EAR.

replication-config

Contains the HTTP session clustering configuration.

cache-name

This option is for use in clustering only. It specifies the name of the Infinispan container and cache in
which to store session data. The default value, if not explicitly set, is determined by the application
server. To use a specific cache within a cache container, use the form container.cache, for

CHAPTER 3. CLASS LOADING AND MODULES

75

example web.dist. If name is unqualified, the default cache of the specified container is used.

replication-granularity

This option is for use in clustering only. It determines the session replication granularity level. The
possible values are SESSION and ATTRIBUTE with SESSION being the default.
If SESSION granularity is used, all session attributes are replicated if any were modified within the
scope of a request. This policy is required if an object reference is shared by multiple session
attributes. However, this can be inefficient if session attributes are sufficiently large and/or are
modified infrequently, since all attributes must be replicated regardless of whether they were modified
or not.

If ATTRIBUTE granularity is used, only those attributes that were modified within the scope of a
request are replicated. This policy is not appropriate if an object reference is shared by multiple
session attributes. This can be more efficient than SESSION granularity if the session attributes are
sufficiently large and/or are modified infrequently.

3.8. DEPLOY TAG LIBRARY DESCRIPTORS (TLDS) IN A CUSTOM
MODULE

If you have multiple applications that use common Tag Library Descriptors (TLDs), it may be useful to
separate the TLDs from the applications so that they are located in one central and unique location. This
enables easier additions and updates to TLDs without necessarily having to update each individual
application that uses them.

This can be done by creating a custom JBoss EAP module that contains the TLD JARs, and declaring a
dependency on that module in the applications.

NOTE

Ensure that at least one JAR contains TLDs and the TLDs are packed in META-INF.

Deploy TLDs in a Custom Module

1. Using the management CLI, connect to your JBoss EAP instance and execute the following
command to create the custom module containing the TLD JAR:

module add --name=MyTagLibs --resources=/path/to/TLDarchive.jar

IMPORTANT

Using the module management CLI command to add and remove modules is
provided as technology preview only. This command is not appropriate for use in
a managed domain or when connecting to the management CLI remotely.
Modules should be added and removed manually in a production environment.
For more information, see the Create a Custom Module Manually and Remove a
Custom Module Manually sections of the JBoss EAP Configuration Guide.

If the TLDs are packaged with classes that require dependencies, use the --dependencies=
option to ensure that you specify those dependencies when creating the custom module.

When creating the module, you can specify multiple JAR resources by separating each one with
the file system-specific separator for your system.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

76

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/#create_module_manually
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/#remove_module_manually

For linux - :. Example, --resources=<path-to-jar>:<path-to-another-jar>

For Windows - ;. Example, --resources=<path-to-jar>;<path-to-another-jar>

NOTE

--resources

It is required unless --module-xml is used. It lists file system paths,
usually JAR files, separated by a file system-specific path separator, for
example java.io.File.pathSeparatorChar. The files specified will
be copied to the created module’s directory.

--resource-delimiter

It is an optional user-defined path separator for the resources argument. If
this argument is present, the command parser will use the value here
instead of the file system-specific path separator. This allows the modules
command to be used in cross-platform scripts.

2. In your applications, declare a dependency on the new MyTagLibs custom module using one of
the methods described in Add an Explicit Module Dependency to a Deployment.

IMPORTANT

Ensure that you also import META-INF when declaring the dependency. For example, for
MANIFEST.MF:

Dependencies: com.MyTagLibs meta-inf

Or, for jboss-deployment-structure.xml, use the meta-inf attribute.

3.9. REFERENCE

3.9.1. Implicit Module Dependencies

The following table lists the modules that are automatically added to deployments as dependencies and
the conditions that trigger the dependency.

Table 3.1. Implicit Module Dependencies

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

Application
Client org.omg.api

org.jboss.xn
io

CHAPTER 3. CLASS LOADING AND MODULES

77

Batch
javax.batch.
api

org.jberet.j
beret-core

org.wildfly.
jberet

Bean
Validation org.hibernat

e.validator

javax.valida
tion.api

Core Server
javax.api

sun.jdk

org.jboss.vf
s

ibm.jdk

DriverDepend
enciesProcess
or

javax.transa
ction.api

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

78

EE
org.jboss.in
vocation
(except
org.jboss.in
vocation.pro
xy.classload
ing)

org.jboss.as
.ee (except
org.jboss.as
.ee.componen
t.serializat
ion,
org.jboss.as
.ee.concurre
nt,
org.jboss.as
.ee.concurre
nt.handle)

org.wildfly.
naming

javax.annota
tion.api

javax.enterp
rise.concurr
ent.api

javax.interc
eptor.api

javax.json.a
pi

javax.resour
ce.api

javax.rmi.ap
i

javax.xml.bi
nd.api

javax.api

org.glassfis
h.javax.el

org.glassfis
h.javax.ente

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

CHAPTER 3. CLASS LOADING AND MODULES

79

rprise.concu
rrent

EJB 3
javax.ejb.ap
i

javax.xml.rp
c.api

org.jboss.ej
b-client

org.jboss.ii
op-client

org.jboss.as
.ejb3

org.wildfly.
iiop-openjdk

IIOP
org.omg.api

javax.rmi.ap
i

javax.orb.ap
i

JAX-RS
(RESTEasy) javax.xml.bi

nd.api

javax.ws.rs.
api

javax.json.a
pi

org.jboss.re
steasy.reste
asy-atom-
provider

org.jboss.re
steasy.reste
asy-crypto

org.jboss.re
steasy.reste
asy-
validator-
provider-11

org.jboss.re
steasy.reste
asy-jaxrs

org.jboss.re
steasy.reste

org.jboss.re
steasy.reste
asy-cdi

The presence of JAX-RS
annotations in the
deployment.

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

80

asy-jaxb-
provider

org.jboss.re
steasy.reste
asy-jackson2-
provider

org.jboss.re
steasy.reste
asy-jsapi

org.jboss.re
steasy.reste
asy-json-p-
provider

org.jboss.re
steasy.reste
asy-
multipart-
provider

org.jboss.re
steasy.reste
asy-yaml-
provider

org.codehaus
.jackson.jac
kson-core-
asl

JCA
javax.resour
ce.api

javax.jms.ap
i

javax.valida
tion.api

org.jboss.ir
onjacamar.ap
i

org.jboss.ir
onjacamar.im
pl

org.hibernat
e.validator

The deployment of a
resource adapter (RAR)
archive.

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

CHAPTER 3. CLASS LOADING AND MODULES

81

JPA
(Hibernate) javax.persis

tence.api
org.jboss.as
.jpa

org.jboss.as
.jpa.spi

org.javassis
t

The presence of an
@PersistenceUnit or
@PersistenceContext
annotation, or a
<persistence-unit-
ref> or
<persistence-
context-ref> element
in a deployment descriptor.

JBoss EAP maps
persistence provider names
to module names. If you
name a specific provider in
the persistence.xml
file, a dependency is added
for the appropriate module.
If this not the desired
behavior, you can exclude it
using a jboss-
deployment-
structure.xml file.

JSF (Java
Server Faces)

javax.faces.
api

com.sun.jsf-
impl

org.jboss.as
.jsf

org.jboss.as
.jsf-
injection

Added to EAR applications.

Added to WAR applications
only if the web.xml file
does NOT specify a
context-param of
org.jboss.jbossface
s.WAR_BUNDLES_JSF_I
MPL with a value of true.

JSR-77
javax.manage
ment.j2ee.ap
i

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

82

Logging
org.jboss.lo
gging

org.apache.c
ommons.loggi
ng

org.apache.l
og4j

org.slf4j

org.jboss.lo
gging.jul-
to-slf4j-
stub

Mail
javax.mail.a
pi

javax.activa
tion.api

Messaging
javax.jms.ap
i

org.wildfly.
extension.me
ssaging-
activemq

PicketLink
Federation

org.picketli
nk

Pojo
org.jboss.as
.pojo

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

CHAPTER 3. CLASS LOADING AND MODULES

83

SAR
org.jboss.mo
dules

org.jboss.as
.system-jmx

org.jboss.co
mmon-beans

The deployment of a SAR
archive that has a jboss-
service.xml.

Seam2
org.jboss.vf
s

.

Security
org.picketbo
x

org.jboss.as
.security

javax.securi
ty.jacc.api

javax.securi
ty.auth.mess
age.api

ServiceActivat
or

org.jboss.ms
c

Transactions
javax.transa
ction.api

org.jboss.xt
s

org.jboss.jt
s

org.jboss.na
rayana.compe
nsations

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

84

Undertow
javax.servle
t.jstl.api

javax.servle
t.api

javax.servle
t.jsp.api

javax.websoc
ket.api

io.undertow.
core

io.undertow.
servlet

io.undertow.
jsp

io.undertow.
websocket

io.undertow.
js

org.wildfly.
clustering.w
eb.api

Web Services
javax.jws.ap
i

javax.xml.so
ap.api

javax.xml.ws
.api

org.jboss.ws
.api

org.jboss.ws
.spi

If it is not application client
type, then it will add the
conditional dependencies.

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

CHAPTER 3. CLASS LOADING AND MODULES

85

Weld (CDI)
javax.enterp
rise.api

javax.inject
.api

javax.persis
tence.api

org.javassis
t

org.jboss.as
.weld

org.jboss.we
ld.core

org.jboss.we
ld.probe

org.jboss.we
ld.api

org.jboss.we
ld.spi

org.hibernat
e.validator.
cdi

The presence of a
beans.xml file in the
deployment.

Subsystem
Responsible
for Adding
the
Dependency

Package Dependencies
That Are Always Added

Package Dependencies
That Are Conditionally
Added

Conditions That Trigger
the Addition of the
Dependency

3.9.2. Included Modules

For the complete listing of the included modules and whether they are supported, see Red Hat JBoss
Enterprise Application Platform 7 Included Modules on the Red Hat Customer Portal.

3.9.3. JBoss Deployment Structure Deployment Descriptor Reference

The key tasks that can be performed using this deployment descriptor are:

Defining explicit module dependencies.

Preventing specific implicit dependencies from loading.

Defining additional modules from the resources of that deployment.

Changing the subdeployment isolation behavior in that EAR deployment.

Adding additional resource roots to a module in an EAR.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

86

https://access.redhat.com/articles/2158031

CHAPTER 4. LOGGING

4.1. ABOUT LOGGING

Logging is the practice of recording a series of messages from an application that provides a record (or
log) of the application’s activities.

Log messages provide important information for developers when debugging an application and for
system administrators maintaining applications in production.

Most modern Java logging frameworks also include details such as the exact time and the origin of the
message.

4.1.1. Supported Application Logging Frameworks

JBoss LogManager supports the following logging frameworks:

JBoss Logging (included with JBoss EAP)

Apache Commons Logging

Simple Logging Facade for Java (SLF4J)

Apache log4j

Java SE Logging (java.util.logging)

JBoss LogManager supports the following APIs:

JBoss Logging

commons-logging

SLF4J

Log4j

java.util.logging

JBoss LogManager also supports the following SPIs:

java.util.logging Handler

Log4j Appender

NOTE

If you are using the Log4j API and a Log4J Appender, then Objects will be converted
to string before being passed.

4.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK

4.2.1. About JBoss Logging

CHAPTER 4. LOGGING

87

http://commons.apache.org/logging/
http://www.slf4j.org/
http://logging.apache.org/log4j/1.2/
http://download.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html

JBoss Logging is the application logging framework that is included in JBoss EAP. It provides an easy
way to add logging to an application. You add code to your application that uses the framework to send
log messages in a defined format. When the application is deployed to an application server, these
messages can be captured by the server and displayed or written to file according to the server’s
configuration.

JBoss Logging provides the following features:

An innovative, easy-to-use typed logger. A typed logger is a logger interface annotated with
org.jboss.logging.annotations.MessageLogger. For examples, see Creating
Internationalized Loggers, Messages and Exceptions.

Full support for internationalization and localization. Translators work with message bundles in
properties files while developers work with interfaces and annotations. For details, see
Internationalization and Localization.

Build-time tooling to generate typed loggers for production and runtime generation of typed
loggers for development.

4.2.2. Add Logging to an Application with JBoss Logging

This procedure demonstrates how to add logging to an application using JBoss Logging.

IMPORTANT

If you use Maven to build your project, you must configure Maven to use the JBoss EAP
Maven repository. For more information, see Configure the JBoss EAP Maven
Repository.

1. The JBoss Logging JAR files must be in the build path for your application.

If you build using Red Hat JBoss Developer Studio, select Properties from the Project
menu, then select Targeted Runtimes and ensure the runtime for JBoss EAP is
checked.

If you use Maven to build your project, make sure you add the jboss-logging
dependency to your project’s pom.xml file for access to JBoss Logging framework:

The jboss-javaee-7.0 BOM manages the version of jboss-logging. For more details, see
Manage Project Dependencies. See the logging quickstart for a working example of
logging in an application.

You do not need to include the JARs in your built application because JBoss EAP provides them
to deployed applications.

2. For each class to which you want to add logging:

<dependency>
 <groupId>org.jboss.logging</groupId>
 <artifactId>jboss-logging</artifactId>
 <version>3.3.0.Final-redhat-1</version>
 <scope>provided</scope>
</dependency>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

88

a. Add the import statements for the JBoss Logging class namespaces that you will be using.
At a minimum you will need the following import:

b. Create an instance of org.jboss.logging.Logger and initialize it by calling the static
method Logger.getLogger(Class). It is recommended to create this as a single
instance variable for each class.

3. Call the Logger object methods in your code where you want to send log messages.
The Logger has many different methods with different parameters for different types of
messages. Use the following methods to send a log message with the corresponding log level
and the message parameter as a string:

For the complete list of JBoss Logging methods, see the Logging API documentation.

The following example loads customized configuration for an application from a properties file. If the
specified file is not found, an ERROR level log message is recorded.

Example: Application Logging with JBoss Logging

import org.jboss.logging.Logger;

private static final Logger LOGGER =
Logger.getLogger(HelloWorld.class);

LOGGER.debug("This is a debugging message.");
LOGGER.info("This is an informational message.");
LOGGER.error("Configuration file not found.");
LOGGER.trace("This is a trace message.");
LOGGER.fatal("A fatal error occurred.");

import org.jboss.logging.Logger;
public class LocalSystemConfig
{
 private static final Logger LOGGER =
Logger.getLogger(LocalSystemConfig.class);

 public Properties openCustomProperties(String configname) throws
CustomConfigFileNotFoundException
 {
 Properties props = new Properties();
 try
 {
 LOGGER.info("Loading custom configuration from "+configname);
 props.load(new FileInputStream(configname));
 }
 catch(IOException e) //catch exception in case properties file does
not exist
 {
 LOGGER.error("Custom configuration file ("+configname+") not
found. Using defaults.");
 throw new CustomConfigFileNotFoundException(configname);
 }

CHAPTER 4. LOGGING

89

https://access.redhat.com/webassets/avalon/d/red-hat-jboss-enterprise-application-platform/7.0.0/javadocs/org/jboss/logging/package-summary.html

4.3. PER-DEPLOYMENT LOGGING

Per-deployment logging allows a developer to configure the logging configuration for their application in
advance. When the application is deployed, logging begins according to the defined configuration. The
log files created through this configuration contain information only about the behavior of the application.

NOTE

If the per-deployment logging configuration is not done, the configuration from logging
subsystem is used for all the applications as well as the server.

This approach has advantages and disadvantages over using system-wide logging. An advantage is that
the administrator of the JBoss EAP instance does not need to configure any other logging than the server
logging. A disadvantage is that the per-deployment logging configuration is read only on server startup,
and so cannot be changed at runtime.

4.3.1. Add Per-deployment Logging to an Application

To configure per-deployment logging to an application, add the logging.properties configuration file
to your deployment. This configuration file is recommended because it can be used with any logging
facade where JBoss Log Manager is the underlying log manager.

The directory into which the configuration file is added depends on the deployment method:

For EAR deployments, copy the logging configuration file to the META-INF directory.

For WAR or JAR deployments, copy the logging configuration file to the WEB-INF/classes
directory.

NOTE

If you are using Simple Logging Facade for Java (SLF4J) or Apache log4j,
the logging.properties configuration file is suitable. If you are using Apache log4j
appenders then the configuration file log4j.properties is required. The configuration
file jboss-logging.properties is supported only for legacy deployments.

Configuring logging.properties
The logging.properties file is used when the server boots, until the logging subsystem is started.
If the logging subsystem is not included in your configuration, then the server uses the configuration in
this file as the logging configuration for the entire server.

JBoss Log Manager Configuration Options

Logger options

loggers=<category>[,<category>,… ​] - Specify a comma-separated list of logger
categories to be configured. Any categories not listed here will not be configured from the
following properties.

 return props;
 }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

90

logger.<category>.level=<level> - Specify the level for a category. The level can be
one of the valid levels. If unspecified, the level of the nearest parent will be inherited.

logger.<category>.handlers=<handler>[,<handler>,… ​] - Specify a comma-
separated list of the handler names to be attached to this logger. The handlers must be
configured in the same properties file.

logger.<category>.filter=<filter> - Specify a filter for a category.

logger.<category>.useParentHandlers=(true|false) - Specify whether log
messages should cascade up to parent handlers. The default value is true.

Handler options

handler.<name>=<className> - Specify the class name of the handler to instantiate. This
option is mandatory.

handler.<name>.level=<level> - Restrict the level of this handler. If unspecified, the
default value of ALL is retained.

handler.<name>.encoding=<encoding> - Specify the character encoding, if it is
supported by this handler type. If not specified, a handler-specific default is used.

handler.<name>.errorManager=<name> - Specify the name of the error manager to use.
The error manager must be configured in the same properties file. If unspecified, no error
manager is configured.

handler.<name>.filter=<name> - Specify a filter for a category. See the filter expressions
for details on defining a filter.

handler.<name>.formatter=<name> - Specify the name of the formatter to use, if it is
supported by this handler type. The formatter must be configured in the same properties file. If
not specified, messages will not be logged for most handler types.

handler.<name>.properties=<property>[,<property>,… ​] - Specify a list of
JavaBean-style properties to additionally configure. A rudimentary type introspection is done to
ascertain the appropriate conversion for the given property.

handler.<name>.constructorProperties=<property>[,<property>,… ​] - Specify a
list of properties that should be used as construction parameters. A rudimentary type
introspection is done to ascertain the appropriate conversion for the given property.

handler.<name>.<property>=<value> - Set the value of the named property.

For further information, see Log Handler Attributes in the JBoss EAP Configuration Guide.

Error manager options

errorManager.<name>=<className> - Specify the class name of the error manager to
instantiate. This option is mandatory.

errorManager.<name>.properties=<property>[,<property>,… ​] - Specify a list of
JavaBean-style properties to additionally configure. A rudimentary type introspection is done to
ascertain the appropriate conversion for the given property.

errorManager.<name>.<property>=<value> - Set the value of the named property.

CHAPTER 4. LOGGING

91

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/#log_handler_attributes

Formatter options

formatter.<name>=<className> - Specify the class name of the formatter to instantiate.
This option is mandatory.

formatter.<name>.properties=<property>[,<property>,… ​] - Specify a list of
JavaBean-style properties to additionally configure. A rudimentary type introspection is done to
ascertain the appropriate conversion for the given property.

formatter.<name>.constructorProperties=<property>[,<property>,… ​] - Specify
a list of properties that should be used as construction parameters. A rudimentary type
introspection is done to ascertain the appropriate conversion for the given property.

formatter.<name>.<property>=<value> - Set the value of the named property.

The following example shows the minimal configuration for logging.properties file that will log to
the console.

Example: Minimal logging.properties Configuration

Additional logger names to configure (root logger is always configured)
loggers=

Root logger level
logger.level=INFO

Root logger handlers
logger.handlers=CONSOLE

Console handler configuration
handler.CONSOLE=org.jboss.logmanager.handlers.ConsoleHandler
handler.CONSOLE.properties=autoFlush
handler.CONSOLE.autoFlush=true
handler.CONSOLE.formatter=PATTERN

Formatter pattern configuration
formatter.PATTERN=org.jboss.logmanager.formatters.PatternFormatter
formatter.PATTERN.properties=pattern
formatter.PATTERN.pattern=%K{level}%d{HH:mm:ss,SSS} %-5p %C.%M(%L) [%c]
%s%e%n

4.4. LOGGING PROFILES

Logging profiles are independent sets of logging configurations that can be assigned to deployed
applications. As with the regular logging subsystem, a logging profile can define handlers, categories,
and a root logger, but it cannot refer to configurations in other profiles or the main logging subsystem.
The design of logging profiles mimics the logging subsystem for ease of configuration.

Logging profiles allow administrators to create logging configurations that are specific to one or more
applications without affecting any other logging configurations. Because each profile is defined in the
server configuration, the logging configuration can be changed without requiring that the affected
applications be redeployed. However, logging profiles cannot be configured using the management
console. For more information, see Configure a Logging Profile in the JBoss EAP Configuration Guide.

Each logging profile can have:

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

92

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/#configure_logging_profile

A unique name (required)

Any number of log handlers

Any number of log categories

Up to one root logger

An application can specify a logging profile to use in its MANIFEST.MF file, using the Logging-
Profile attribute.

4.4.1. Specify a Logging Profile in an Application

An application specifies the logging profile to use in its MANIFEST.MF file.

NOTE

You must know the name of the logging profile that has been set up on the server for this
application to use.

To add a logging profile configuration to an application, edit the MANIFEST.MF file.

If your application does not have a MANIFEST.MF file, create one with the following content to
specify the logging profile name.

Manifest-Version: 1.0
Logging-Profile: LOGGING_PROFILE_NAME

If your application already has a MANIFEST.MF file, add the following line to specify the logging
profile name.

Logging-Profile: LOGGING_PROFILE_NAME

NOTE

If you are using Maven and the maven-war-plugin, put your MANIFEST.MF file in
src/main/resources/META-INF/ and add the following configuration to your
pom.xml file:

When the application is deployed, it will use the configuration in the specified logging profile for its log
messages.

<plugin>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <archive>
 <manifestFile>src/main/resources/META-
INF/MANIFEST.MF</manifestFile>
 </archive>
 </configuration>
</plugin>

CHAPTER 4. LOGGING

93

For an example of how to configure a logging profile and the application using it, see Example Logging
Profile Configuration in the JBoss EAP Configuration Guide.

4.5. INTERNATIONALIZATION AND LOCALIZATION

4.5.1. Introduction

4.5.1.1. About Internationalization

Internationalization is the process of designing software so that it can be adapted to different languages
and regions without engineering changes.

4.5.1.2. About Localization

Localization is the process of adapting internationalized software for a specific region or language by
adding locale-specific components and translations of text.

4.5.2. JBoss Logging Tools Internationalization and Localization

JBoss Logging Tools is a Java API that provides support for the internationalization and localization of
log messages, exception messages, and generic strings. In addition to providing a mechanism for
translation, JBoss Logging Tools also provides support for unique identifiers for each log message.

Internationalized messages and exceptions are created as method definitions inside of interfaces
annotated using org.jboss.logging.annotations annotations. Implementing the interfaces is not
necessary; JBoss Logging Tools does this at compile time. Once defined, you can use these methods to
log messages or obtain exception objects in your code.

Internationalized logging and exception interfaces created with JBoss Logging Tools can be localized by
creating a properties file for each bundle containing the translations for a specific language and region.
JBoss Logging Tools can generate template property files for each bundle that can then be edited by a
translator.

JBoss Logging Tools creates an implementation of each bundle for each corresponding translations
property file in your project. All you have to do is use the methods defined in the bundles and JBoss
Logging Tools ensures that the correct implementation is invoked for your current regional settings.

Message IDs and project codes are unique identifiers that are prepended to each log message. These
unique identifiers can be used in documentation to make it easy to find information about log messages.
With adequate documentation, the meaning of a log message can be determined from the identifiers
regardless of the language that the message was written in.

The JBoss Logging Tools includes support for the following features:

MessageLogger

This interface in the org.jboss.logging.annotations package is used to define
internationalized log messages. A message logger interface is annotated with @MessageLogger.

MessageBundle

This interface can be used to define generic translatable messages and Exception objects with
internationalized messages. A message bundle is not used for creating log messages. A message
bundle interface is annotated with @MessageBundle.

Internationalized Log Messages

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

94

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/#example_logging_profile_configuration

These log messages are created by defining a method in a MessageLogger. The method must be
annotated with the @LogMessage and @Message annotations and must specify the log message
using the value attribute of @Message. Internationalized log messages are localized by providing
translations in a properties file.
JBoss Logging Tools generates the required logging classes for each translation at compile time and
invokes the correct methods for the current locale at runtime.

Internationalized Exceptions

An internationalized exception is an exception object returned from a method defined in a
MessageBundle. These message bundles can be annotated to define a default exception message.
The default message is replaced with a translation if one is found in a matching properties file for the
current locale. Internationalized exceptions can also have project codes and message IDs assigned
to them.

Internationalized Messages

An internationalized message is a string returned from a method defined in a MessageBundle.
Message bundle methods that return Java String objects can be annotated to define the default
content of that string, known as the message. The default message is replaced with a translation if
one is found in a matching properties file for the current locale.

Translation Properties Files

Translation properties files are Java properties files that contain the translations of messages from
one interface for one locale, country, and variant. Translation properties files are used by the JBoss
Logging Tools to generate the classes that return the messages.

JBoss Logging Tools Project Codes

Project codes are strings of characters that identify groups of messages. They are displayed at the
beginning of each log message, prepended to the message ID. Project codes are defined with the
projectCode attribute of the @MessageLogger annotation.

NOTE

For a complete list of the new log message project code prefixes, see the Project
Codes used in JBoss EAP 7.0.

JBoss Logging Tools Message IDs

Message IDs are numbers that uniquely identify a log message when combined with a project code.
Message IDs are displayed at the beginning of each log message, appended to the project code for
the message. Message IDs are defined with the ID attribute of the @Message annotation.

The logging-tools quickstart that ships with JBoss EAP is a simple Maven project that provides a
working example of many of the features of JBoss Logging Tools. The code examples that follow are
taken from the logging-tools quickstart.

4.5.3. Creating Internationalized Loggers, Messages and Exceptions

4.5.3.1. Create Internationalized Log Messages

You can use JBoss Logging Tools to create internationalized log messages by creating
MessageLogger interfaces.

CHAPTER 4. LOGGING

95

NOTE

This topic does not cover all optional features or the localization of the log messages.

1. If you have not yet done so, configure your Maven settings to use the JBoss EAP Maven
repository.
For more information, see Configure the JBoss EAP Maven Repository Using the Maven
Settings.

2. Configure the project’s pom.xml file to use JBoss Logging Tools.
For details, see JBoss Logging Tools Maven Configuration.

3. Create a message logger interface by adding a Java interface to your project to contain the log
message definitions.
Name the interface to describe the log messages it will define. The log message interface has
the following requirements:

It must be annotated with @org.jboss.logging.annotations.MessageLogger.

Optionally, it can extend org.jboss.logging.BasicLogger.

The interface must define a field that is a message logger of the same type as the interface.
Do this with the getMessageLogger() method of @org.jboss.logging.Logger.

Example: Creating a Message Logger

4. Add a method definition to the interface for each log message.
Name each method descriptively for the log message that it represents. Each method has the
following requirements:

The method must return void.

It must be annotated with the @org.jboss.logging.annotation.LogMessage
annotation.

It must be annotated with the @org.jboss.logging.annotations.Message
annotation.

The default log level is INFO.

The value attribute of @org.jboss.logging.annotations.Message contains the
default log message, which is used if no translation is available.

package com.company.accounts.loggers;

import org.jboss.logging.BasicLogger;
import org.jboss.logging.Logger;
import org.jboss.logging.annotations.MessageLogger;

@MessageLogger(projectCode="")
interface AccountsLogger extends BasicLogger {
 AccountsLogger LOGGER = Logger.getMessageLogger(
 AccountsLogger.class,
 AccountsLogger.class.getPackage().getName());
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

96

5. Invoke the methods by adding the calls to the interface methods in your code where the
messages must be logged from.
Creating implementations of the interfaces is not necessary, the annotation processor does this
for you when the project is compiled.

The custom loggers are subclassed from BasicLogger, so the logging methods of
BasicLogger can also be used. It is not necessary to create other loggers to log non-
internationalized messages.

6. The project now supports one or more internationalized loggers that can be localized.

NOTE

The logging-tools quickstart that ships with JBoss EAP is a simple Maven project that
provides a working example of how to use JBoss Logging Tools.

4.5.3.2. Create and Use Internationalized Messages

This procedure demonstrates how to create and use internationalized messages.

NOTE

This section does not cover all optional features or the process of localizing those
messages.

1. If you have not yet done so, configure your Maven settings to use the JBoss EAP Maven
repository. For more information, see Configure the JBoss EAP Maven Repository Using the
Maven Settings.

2. Configure the project’s pom.xml file to use JBoss Logging Tools. For details, see JBoss
Logging Tools Maven Configuration.

3. Create an interface for the exceptions. JBoss Logging Tools defines internationalized messages
in interfaces. Name each interface descriptively for the messages that it contains. The interface
has the following requirements:

It must be declared as public.

It must be annotated with @org.jboss.logging.annotations.MessageBundle.

The interface must define a field that is a message bundle of the same type as the interface.

Example: Create a MessageBundle Interface

@LogMessage
@Message(value = "Customer query failed, Database not
available.")
void customerQueryFailDBClosed();

AccountsLogger.LOGGER.customerQueryFailDBClosed();

AccountsLogger.LOGGER.error("Invalid query syntax.");

CHAPTER 4. LOGGING

97

NOTE

Calling Messages.getBundle(GreetingMessagesBundle.class) is
equivalent to calling
Messages.getBundle(GreetingMessagesBundle.class,
Locale.getDefault()).

Locale.getDefault() gets the current value of the default locale for this
instance of the Java Virtual Machine. The Java Virtual Machine sets the
default locale during startup, based on the host environment. It is used by
many locale-sensitive methods if no locale is explicitly specified. It can be
changed using the setDefault method.

See Set the Default Locale of the Server in the JBoss EAP Configuration
Guide for more information.

4. Add a method definition to the interface for each message. Name each method descriptively for
the message that it represents. Each method has the following requirements:

It must return an object of type String.

It must be annotated with the @org.jboss.logging.annotations.Message
annotation.

The value attribute of @org.jboss.logging.annotations.Message must be set to the
default message. This is the message that is used if no translation is available.

5. Invoke the interface methods in your application where you need to obtain the message:

The project now supports internationalized message strings that can be localized.

NOTE

See the logging-tools quickstart that ships with JBoss EAP for a complete working
example.

4.5.3.3. Create Internationalized Exceptions

You can use JBoss Logging Tools to create and use internationalized exceptions.

The following instructions assume that you want to add internationalized exceptions to an existing
software project that is built using either Red Hat JBoss Developer Studio or Maven.

@MessageBundle(projectCode="")
public interface GreetingMessageBundle {
 GreetingMessageBundle MESSAGES =
Messages.getBundle(GreetingMessageBundle.class);
}

@Message(value = "Hello world.")
String helloworldString();

System.out.println(helloworldString());

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

98

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/#default_locale_server

NOTE

This topic does not cover all optional features or the process of localization of those
exceptions.

1. Configure the project’s pom.xml file to use JBoss Logging Tools. For details, see JBoss
Logging Tools Maven Configuration.

2. Create an interface for the exceptions. JBoss Logging Tools defines internationalized exceptions
in interfaces. Name each interface descriptively for the exceptions that will be defined in it. The
interface has the following requirements:

It must be declared as public.

It must be annotated with @MessageBundle.

The interface must define a field that is a message bundle of the same type as the interface.

Example: Create an ExceptionBundle Interface

3. Add a method definition to the interface for each exception. Name each method descriptively for
the exception that it represents. Each method has the following requirements:

It must return an Exception object, or a sub-type of Exception.

It must be annotated with the @org.jboss.logging.annotations.Message
annotation.

The value attribute of @org.jboss.logging.annotations.Message must be set to the
default exception message. This is the message that is used if no translation is available.

If the exception being returned has a constructor that requires parameters in addition to a
message string, then those parameters must be supplied in the method definition using the
@Param annotation. The parameters must be the same type and order as they are in the
constructor of the exception.

4. Invoke the interface methods in your code where you need to obtain one of the exceptions. The
methods do not throw the exceptions, they return the exception object, which you can then
throw.

@MessageBundle(projectCode="")
public interface ExceptionBundle {
 ExceptionBundle EXCEPTIONS =
Messages.getBundle(ExceptionBundle.class);
}

@Message(value = "The config file could not be opened.")
IOException configFileAccessError();

@Message(id = 13230, value = "Date string '%s' was invalid.")
ParseException dateWasInvalid(String dateString, @Param int
errorOffset);

try {
 propsInFile=new File(configname);

CHAPTER 4. LOGGING

99

The project now supports internationalized exceptions that can be localized.

NOTE

See the logging-tools quickstart that ships with JBoss EAP for a complete working
example.

4.5.4. Localizing Internationalized Loggers, Messages and Exceptions

4.5.4.1. Generate New Translation Properties Files with Maven

Projects that are built using Maven can generate empty translation property files for each
MessageLogger and MessageBundle it contains. These files can then be used as new translation
property files.

The following procedure demonstrates how to configure a Maven project to generate new translation
property files.

Prerequisites

You must already have a working Maven project.

The project must already be configured for JBoss Logging Tools.

The project must contain one or more interfaces that define internationalized log messages or
exceptions.

Generate the Translation Properties Files

1. Add the Maven configuration by adding the -AgenereatedTranslationFilePath compiler
argument to the Maven compiler plug-in configuration, and assign it the path where the new files
will be created.
This configuration creates the new files in the target/generated-translation-files
directory of your Maven project.

Example: Define the Translation File Path

 props.load(new FileInputStream(propsInFile));
}
catch(IOException ioex) {
 //in case props file does not exist
 throw ExceptionBundle.EXCEPTIONS.configFileAccessError();
}

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 <compilerArgument>
 -
AgeneratedTranslationFilesPath=${project.basedir}/target/generated-

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

100

2. Build the project using Maven:

$ mvn compile

One properties file is created for each interface annotated with @MessageBundle or
@MessageLogger.

The new files are created in a subdirectory corresponding to the Java package in which
each interface is declared.

Each new file is named using the following pattern where INTERFACE_NAME is the name of
the interface used to generated the file.

INTERFACE_NAME.i18n_locale_COUNTRY_VARIANT.properties

The resulting files can now be copied into your project as the basis for new translations.

NOTE

See the logging-tools quickstart that ships with JBoss EAP for a complete working
example.

4.5.4.2. Translate an Internationalized Logger, Exception, or Message

Properties files can be used to provide translations for logging and exception messages defined in
interfaces using JBoss Logging Tools.

The following procedure shows how to create and use a translation properties file, and assumes that you
already have a project with one or more interfaces defined for internationalized exceptions or log
messages.

Prerequisites

You must already have a working Maven project.

The project must already be configured for JBoss Logging Tools.

The project must contain one or more interfaces that define internationalized log messages or
exceptions.

The project must be configured to generate template translation property files.

Translate an Internationalized Logger, Exception, or Message

1. Run the following command to create the template translation properties files:

$ mvn compile

translation-files
 </compilerArgument>
 <showDeprecation>true</showDeprecation>
 </configuration>
</plugin>

CHAPTER 4. LOGGING

101

2. Copy the template for the interfaces that you want to translate from the directory where they
were created into the src/main/resources directory of your project. The properties files must
be in the same package as the interfaces they are translating.

3. Rename the copied template file to indicate the language it will contain. For example:
GreeterLogger.i18n_fr_FR.properties.

4. Edit the contents of the new translation properties file to contain the appropriate translation:

Level: Logger.Level.INFO
Message: Hello message sent.
logHelloMessageSent=Bonjour message envoyé.

5. Repeat the process of copying the template and modifying it for each translation in the bundle.

The project now contains translations for one or more message or logger bundles. Building the project
generates the appropriate classes to log messages with the supplied translations. It is not necessary to
explicitly invoke methods or supply parameters for specific languages, JBoss Logging Tools
automatically uses the correct class for the current locale of the application server.

The source code of the generated classes can be viewed under target/generated-
sources/annotations/.

4.5.5. Customizing Internationalized Log Messages

4.5.5.1. Add Message IDs and Project Codes to Log Messages

This procedure demonstrates how to add message IDs and project codes to internationalized log
messages created using JBoss Logging Tools. A log message must have both a project code and
message ID to be displayed in the log. If a message does not have both a project code and a message
ID, then neither is displayed.

Prerequisites

1. You must already have a project with internationalized log messages. For details, see Create
Internationalized Log Messages.

2. You need to know the project code you will be using. You can use a single project code, or
define different ones for each interface.

Add Message IDs and Project Codes to Log Messages

1. Specify the project code for the interface by using the projectCode attribute of the
@MessageLogger annotation attached to a custom logger interface. All messages that are
defined in the interface will use that project code.

2. Specify a message ID for each message using the id attribute of the @Message annotation
attached to the method that defines the message.

@MessageLogger(projectCode="ACCNTS")
interface AccountsLogger extends BasicLogger {

}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

102

3. The log messages that have both a message ID and project code associated with them will
prepend these to the logged message.

10:55:50,638 INFO [com.company.accounts.ejb] (MSC service thread 1-
4) ACCNTS000043: Customer query failed, Database not available.

4.5.5.2. Specify the Log Level for a Message

The default log level of a message defined by an interface by JBoss Logging Tools is INFO. A different
log level can be specified with the level attribute of the @LogMessage annotation attached to the
logging method. Use the following procedure to specify a different log level.

1. Add the level attribute to the @LogMessage annotation of the log message method definition.

2. Assign the log level for this message using the level attribute. The valid values for level are
the six enumerated constants defined in org.jboss.logging.Logger.Level: DEBUG,
ERROR, FATAL, INFO, TRACE, and WARN.

Invoking the logging method in the above sample will produce a log message at the level of ERROR.

10:55:50,638 ERROR [com.company.app.Main] (MSC service thread 1-4)
 Customer query failed, Database not available.

4.5.5.3. Customize Log Messages with Parameters

Custom logging methods can define parameters. These parameters are used to pass additional
information to be displayed in the log message. Where the parameters appear in the log message is
specified in the message itself using either explicit or ordinary indexing.

Customize Log Messages with Parameters

1. Add parameters of any type to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

2. Add parameter references to the log message. References can use explicit or ordinary indexes.

To use ordinary indexes, insert %s characters in the message string where you want each
parameter to appear. The first instance of %s will insert the first parameter, the second
instance will insert the second parameter, and so on.

To use explicit indexes, insert %#$s characters in the message, where # indicates the
number of the parameter that you wish to appear.

@LogMessage
@Message(id=43, value = "Customer query failed, Database not
available.") void customerQueryFailDBClosed();

import org.jboss.logging.Logger.Level;

@LogMessage(level=Level.ERROR)
@Message(value = "Customer query failed, Database not available.")
void customerQueryFailDBClosed();

CHAPTER 4. LOGGING

103

Using explicit indexes allows the parameter references in the message to be in a different order than
they are defined in the method. This is important for translated messages that may require different
ordering of parameters.

IMPORTANT

The number of parameters must match the number of references to the parameters in the
specified message or the code will not compile. A parameter marked with the @Cause
annotation is not included in the number of parameters.

The following is an example of message parameters using ordinary indexes:

The following is an example of message parameters using explicit indexes:

4.5.5.4. Specify an Exception as the Cause of a Log Message

JBoss Logging Tools allows one parameter of a custom logging method to be defined as the cause of the
message. This parameter must be the Throwable type or any of its sub-classes, and is marked with the
@Cause annotation. This parameter cannot be referenced in the log message like other parameters, and
is displayed after the log message.

The following procedure shows how to update a logging method using the @Cause parameter to indicate
the "causing" exception. It is assumed that you have already created internationalized logging messages
to which you want to add this functionality.

Specify an Exception as the Cause of a Log Message

1. Add a parameter of the type Throwable or its subclass to the method.

2. Add the @Cause annotation to the parameter.

3. Invoke the method. When the method is invoked in your code, an object of the correct type must
be passed and will be displayed after the log message.

@LogMessage(level=Logger.Level.DEBUG)
@Message(id=2, value="Customer query failed, customerid:%s, user:%s")
void customerLookupFailed(Long customerid, String username);

@LogMessage(level=Logger.Level.DEBUG)
@Message(id=2, value="Customer query failed, user:%2$s, customerid:%1$s")
void customerLookupFailed(Long customerid, String username);

@LogMessage
@Message(id=404, value="Loading configuration failed. Config
file:%s")
void loadConfigFailed(Exception ex, File file);

import org.jboss.logging.annotations.Cause

@LogMessage
@Message(value = "Loading configuration failed. Config file: %s")
void loadConfigFailed(@Cause Exception ex, File file);

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

104

The following is the output of the above code samples if the code threw an exception of type
FileNotFoundException:

10:50:14,675 INFO [com.company.app.Main] (MSC service thread 1-3) Loading
configuration failed. Config file: customised.properties
java.io.FileNotFoundException: customised.properties (No such file or
directory)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:120)
 at com.company.app.demo.Main.openCustomProperties(Main.java:70)
 at com.company.app.Main.go(Main.java:53)
 at com.company.app.Main.main(Main.java:43)

4.5.6. Customizing Internationalized Exceptions

4.5.6.1. Add Message IDs and Project Codes to Exception Messages

Message IDs and project codes are unique identifiers that are prepended to each message displayed by
internationalized exceptions. These identifying codes make it possible to create a reference for all the
exception messages in an application. This allows someone to look up the meaning of an exception
message written in language that they do not understand.

The following procedure demonstrates how to add message IDs and project codes to internationalized
exception messages created using JBoss Logging Tools.

Prerequisites

1. You must already have a project with internationalized exceptions. For details, see Create
Internationalized Exceptions.

2. You need to know the project code you will be using. You can use a single project code, or
define different ones for each interface.

Add Message IDs and Project Codes to Exception Messages

1. Specify the project code using the projectCode attribute of the @MessageBundle annotation
attached to a exception bundle interface. All messages that are defined in the interface will use
that project code.

try
{
 confFile=new File(filename);
 props.load(new FileInputStream(confFile));
}
catch(Exception ex) //in case properties file cannot be read
{
 ConfigLogger.LOGGER.loadConfigFailed(ex, filename);
}

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle
{

CHAPTER 4. LOGGING

105

2. Specify message IDs for each exception using the id attribute of the @Message annotation
attached to the method that defines the exception.

IMPORTANT

A message that has both a project code and message ID displays them prepended to the
message. If a message does not have both a project code and a message ID, neither is
displayed.

Example: Internationalized Exception

This exception bundle interface example uses the project code of "ACCTS". It contains a single
exception method with the ID of "143".

The exception object can be obtained and thrown using the following code:

This would display an exception message like the following:

Exception in thread "main" java.io.IOException: ACCTS000143: The config
file could not be opened.
at com.company.accounts.Main.openCustomProperties(Main.java:78)
at com.company.accounts.Main.go(Main.java:53)
at com.company.accounts.Main.main(Main.java:43)

4.5.6.2. Customize Exception Messages with Parameters

Exception bundle methods that define exceptions can specify parameters to pass additional information
to be displayed in the exception message. The exact position of the parameters in the exception
message is specified in the message itself using either explicit or ordinary indexing.

Customize Exception Messages with Parameters

1. Add parameters of any type to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

 ExceptionBundle EXCEPTIONS =
Messages.getBundle(ExceptionBundle.class);
}

@Message(id=143, value = "The config file could not be opened.")
IOException configFileAccessError();

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle
{
 ExceptionBundle EXCEPTIONS =
Messages.getBundle(ExceptionBundle.class);

 @Message(id=143, value = "The config file could not be opened.")
 IOException configFileAccessError();
}

throw ExceptionBundle.EXCEPTIONS.configFileAccessError();

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

106

2. Add parameter references to the exception message. References can use explicit or ordinary
indexes.

To use ordinary indexes, insert %s characters in the message string where you want each
parameter to appear. The first instance of %s will insert the first parameter, the second
instance will insert the second parameter, and so on.

To use explicit indexes, insert %#$s characters in the message, where # indicates the
number of the parameter that you wish to appear.

Using explicit indexes allows the parameter references in the message to be in a different order than
they are defined in the method. This is important for translated messages that may require different
ordering of parameters.

IMPORTANT

The number of parameters must match the number of references to the parameters in the
specified message, or the code will not compile. A parameter marked with the @Cause
annotation is not included in the number of parameters.

Example: Using Ordinary Indexes

Example: Using Explicit Indexes

4.5.6.3. Specify One Exception as the Cause of Another Exception

Exceptions returned by exception bundle methods can have another exception specified as the
underlying cause. This is done by adding a parameter to the method and annotating the parameter with
@Cause. This parameter is used to pass the causing exception, and cannot be referenced in the
exception message.

The following procedure shows how to update a method from an exception bundle using the @Cause
parameter to indicate the causing exception. It is assumed that you have already created an exception
bundle to which you want to add this functionality.

1. Add a parameter of the type Throwable or its subclass to the method.

2. Add the @Cause annotation to the parameter.

@Message(id=2, value="Customer query failed, customerid:%s, user:%s")
void customerLookupFailed(Long customerid, String username);

@Message(id=2, value="Customer query failed, user:%2$s, customerid:%1$s")
void customerLookupFailed(Long customerid, String username);

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError(Throwable cause, String msg);

import org.jboss.logging.annotations.Cause

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError(@Cause Throwable cause, String
msg);

CHAPTER 4. LOGGING

107

3. Invoke the interface method to obtain an exception object. The most common use case is to
throw a new exception from a catch block using the caught exception as the cause.

The following is an example of specifying an exception as the cause of another exception. This exception
bundle defines a single method that returns an exception of type ArithmeticException.

This code snippet performs an operation that throws an exception, because it attempts to divide an
integer by zero. The exception is caught, and a new exception is created using the first one as the cause.

The following is an example of the exception message:

Exception in thread "main" java.lang.ArithmeticException: TPS000328: Error
calculating: payments per day.
 at com.company.accounts.Main.go(Main.java:58)
 at com.company.accounts.Main.main(Main.java:43)
Caused by: java.lang.ArithmeticException: / by zero
 at com.company.accounts.Main.go(Main.java:54)
 ... 1 more

4.5.7. References

try
{
 ...
}
catch(Exception ex)
{
 throw ExceptionBundle.EXCEPTIONS.calculationError(
 ex, "calculating payment due
per day");
}

@MessageBundle(projectCode = "TPS")
interface CalcExceptionBundle
{
 CalcExceptionBundle EXCEPTIONS =
Messages.getBundle(CalcExceptionBundle.class);

 @Message(id=328, value = "Error calculating: %s.")
 ArithmeticException calcError(@Cause Throwable cause, String value);
}

int totalDue = 5;
int daysToPay = 0;
int amountPerDay;

try
{
 amountPerDay = totalDue/daysToPay;
}
catch (Exception ex)
{
 throw CalcExceptionBundle.EXCEPTIONS.calcError(ex, "payments per day");
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

108

4.5.7.1. JBoss Logging Tools Maven Configuration

The following procedure configures a Maven project to use JBoss Logging and JBoss Logging Tools for
internationalization.

1. If you have not yet done so, configure your Maven settings to use the JBoss EAP repository. For
more information, see Configure the JBoss EAP Maven Repository Using the Maven Settings.
Include the jboss-eap-javaee7 BOM in the <dependencyManagement> section of the
project’s pom.xml file.

2. Add the Maven dependencies to the project’s pom.xml file:

a. Add the jboss-logging dependency for access to JBoss Logging framework.

b. If you plan to use the JBoss Logging Tools, also add the jboss-logging-processor
dependency.
Both of these dependencies are available in JBoss EAP BOM that was added in the
previous step, so the scope element of each can be set to provided as shown.

<dependencyManagement>
 <dependencies>
 <!-- JBoss distributes a complete set of Java EE APIs including
 a Bill of Materials (BOM). A BOM specifies the versions of a
"stack" (or
 a collection) of artifacts. We use this here so that we always
get the correct versions of artifacts.
 Here we use the jboss-javaee-7.0 stack (you can
 read this as the JBoss stack of the Java EE APIs). You can
actually
 use this stack with any version of JBoss EAP that implements
Java EE. -->
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-javaee7</artifactId>
 <version>${version.jboss.bom.eap}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependencies>
<dependencyManagement>

<!-- Add the JBoss Logging Tools dependencies -->
<!-- The jboss-logging API -->
<dependency>
 <groupId>org.jboss.logging</groupId>
 <artifactId>jboss-logging</artifactId>
 <scope>provided</scope>
</dependency>
<!-- Add the jboss-logging-tools processor if you are using JBoss
Tools -->
<dependency>
 <groupId>org.jboss.logging</groupId>
 <artifactId>jboss-logging-processor</artifactId>
 <scope>provided</scope>
</dependency>

CHAPTER 4. LOGGING

109

3. The maven-compiler-plugin must be at least version 3.1 and configured for target and
generated sources of 1.8.

NOTE

For a complete working example of a pom.xml file that is configured to use JBoss
Logging Tools, see the logging-tools quickstart that ships with JBoss EAP.

4.5.7.2. Translation Property File Format

The property files used for the translation of messages in JBoss Logging Tools are standard Java
property files. The format of the file is the simple line-oriented, key=value pair format described in the
java.util.Properties class documentation.

The file name format has the following format:

InterfaceName.i18n_locale_COUNTRY_VARIANT.properties

InterfaceName is the name of the interface that the translations apply to.

locale, COUNTRY, and VARIANT identify the regional settings that the translation applies to.

locale and COUNTRY specify the language and country using the ISO-639 and ISO-3166
Language and Country codes respectively. COUNTRY is optional.

VARIANT is an optional identifier that can be used to identify translations that only apply to a
specific operating system or browser.

The properties contained in the translation file are the names of the methods from the interface being
translated. The assigned value of the property is the translation. If a method is overloaded, then this is
indicated by appending a dot and then the number of parameters to the name. Methods for translation
can only be overloaded by supplying a different number of parameters.

Translation Properties File Example

File name: GreeterService.i18n_fr_FR_POSIX.properties.

Level: Logger.Level.INFO
Message: Hello message sent.
logHelloMessageSent=Bonjour message envoyé.

4.5.7.3. JBoss Logging Tools Annotations Reference

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
</plugin>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

110

http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html

The following annotations are defined in JBoss Logging for use with internationalization and localization
of log messages, strings, and exceptions.

Table 4.1. JBoss Logging Tools Annotations

Annotation Target Description Attributes

@MessageBundle Interface Defines the interface as a
message bundle.

projectCo
de

@MessageLogger Interface Defines the interface as a
message logger.

projectCo
de

@Message Method Can be used in message bundles
and message loggers. In a
message bundle it defines the
method as being one that returns
a localized String or Exception
object. In a message logger it
defines a method as being a
localized logger.

value, id

@LogMessage Method Defines a method in a message
logger as being a logging method.

level
(default
INFO)

@Cause Parameter Defines a parameter as being one
that passes an Exception as the
cause of either a Log message or
another Exception.

-

@Param Parameter Defines a parameter as being one
that is passed to the constructor
of the Exception.

-

4.5.7.4. Project Codes Used in JBoss EAP

The following table lists all the project codes used in JBoss EAP 7.0, along with the Maven modules they
belong to.

Table 4.2. Project Codes Used in JBoss EAP

Maven Module Project Code

appclient WFLYAC

batch/extension-jberet WFLYBATCH

batch/extension WFLYBATCH-DEPRECATED

batch/jberet WFLYBAT

CHAPTER 4. LOGGING

111

bean-validation WFLYBV

controller-client WFLYCC

controller WFLYCTL

clustering/common WFLYCLCOM

clustering/ejb/infinispan WFLYCLEJBINF

clustering/infinispan/extension WFLYCLINF

clustering/jgroups/extension WFLYCLJG

clustering/server WFLYCLSV

clustering/web/infinispan WFLYCLWEBINF

connector WFLYJCA

deployment-repository WFLYDR

deployment-scanner WFLYDS

domain-http WFLYDMHTTP

domain-management WFLYDM

ee WFLYEE

ejb3 WFLYEJB

embedded WFLYEMB

host-controller WFLYDC

host-controller WFLYHC

iiop-openjdk WFLYIIOP

io/subsystem WFLYIO

jaxrs WFLYRS

jdr WFLYJDR

Maven Module Project Code

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

112

jmx WFLYJMX

jpa/hibernate5 JIPI

jpa/spi/src/main/java/org/jipijapa/JipiLogger.java JIPI

jpa/subsystem WFLYJPA

jsf/subsystem WFLYJSF

jsr77 WFLYEEMGMT

launcher WFLYLNCHR

legacy WFLYORB

legacy WFLYMSG

legacy WFLYWEB

logging WFLYLOG

mail WFLYMAIL

management-client-content WFLYCNT

messaging-activemq WFLYMSGAMQ

mod_cluster/extension WFLYMODCLS

naming WFLYNAM

network WFLYNET

patching WFLYPAT

picketlink WFLYPL

platform-mbean WFLYPMB

pojo WFLYPOJO

process-controller WFLYPC

protocol WFLYPRT

Maven Module Project Code

CHAPTER 4. LOGGING

113

remoting WFLYRMT

request-controller WFLYREQCON

rts WFLYRTS

sar WFLYSAR

security-manager WFLYSM

security WFLYSEC

server WFLYSRV

system-jmx WFLYSYSJMX

threads WFLYTHR

transactions WFLYTX

undertow WFLYUT

webservices/server-integration WFLYWS

weld WFLYWELD

xts WFLYXTS

Maven Module Project Code

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

114

CHAPTER 5. REMOTE JNDI LOOKUP

5.1. REGISTERING OBJECTS TO JNDI

The Java Naming and Directory Interface (JNDI) is a Java API for a directory service that allows Java
software clients to discover and look up objects via a name.

If an object, registered to JNDI, is supposed to be looked up by remote JNDI clients (i.e. a client that runs
in a separate JVM), then it must be registered under java:jboss/exported context.

For example, if the JMS queue in a messaging-activemq subsystem must be exposed for remote
JNDI clients, then it must be registred to JNDI, like
java:jboss/exported/jms/queue/myTestQueue. Remote JNDI client can look it up by name
jms/queue/myTestQueue.

Example: Configuration of the Queue in standalone-full(-ha).xml

5.2. CONFIGURING REMOTE JNDI

A remote JNDI client can connect and lookup objects by name from JNDI. It must have jboss-
client.jar on its class path. The jboss-client.jar is available at
EAP_HOME/bin/client/jboss-client.jar.

The following example shows how to lookup the myTestQueue queue from JNDI in remote JNDI client:

Example: Configuration for an MDB Resource Adapter

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">
 <server name="default">
 ...
 <jms-queue name="myTestQueue"
entries="java:jboss/exported/jms/queue/myTestQueue"/>
 ...
 </server>
</subsystem>

Properties properties = new Properties();
properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jboss.naming.remote.client.InitialContextFactory");
properties.put(Context.PROVIDER_URL, "http-remoting://<hostname>:8080");
context = new InitialContext(properties);
Queue myTestQueue = (Queue) context.lookup("jms/queue/myTestQueue");

CHAPTER 5. REMOTE JNDI LOOKUP

115

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

6.1. SESSION REPLICATION

6.1.1. About HTTP Session Replication

Session replication ensures that client sessions of distributable applications are not disrupted by failovers
of nodes in a cluster. Each node in the cluster shares information about ongoing sessions, and can take
over sessions if a node disappears.

Session replication is the mechanism by which mod_cluster, mod_jk, mod_proxy, ISAPI, and NSAPI
clusters provide high availability.

6.1.2. Enable Session Replication in Your Application

To take advantage of JBoss EAP High Availability (HA) features and enable clustering of your web
application, you must configure your application to be distributable.

Make your Application Distributable

1. Indicate that your application is distributable. If your application is not marked as distributable, its
sessions will never be distributed. Add the <distributable/> element inside the <web-app>
tag of your application’s web.xml descriptor file:

Example: Minimum Configuration for a Distributable Application

2. Next, if desired, modify the default replication behavior. If you want to change any of the values
affecting session replication, you can override them inside a <replication-config> element
inside <jboss-web> in an application’s WEB-INF/jboss-web.xml file. For a given element,
only include it if you want to override the defaults.

Example: <replication-config> Values

<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-
app_3_0.xsd"
 version="3.0">

 <distributable/>

</web-app>

<jboss-web xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee
http://www.jboss.org/j2ee/schema/jboss-web_10_0.xsd">
 <replication-config>
 <replication-granularity>SESSION</replication-granularity>
 </replication-config>
</jboss-web>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

116

The <replication-granularity> parameter determines the granularity of data that is replicated. It
defaults to SESSION, but can be set to ATTRIBUTE to increase performance on sessions where most
attributes remain unchanged.

Valid values for <replication-granularity> can be :

SESSION: The default value. The entire session object is replicated if any attribute is dirty. This
policy is required if an object reference is shared by multiple session attributes. The shared
object references are maintained on remote nodes since the entire session is serialized in one
unit.

ATTRIBUTE: This is only for dirty attributes in the session and for some session data, such as
the last-accessed timestamp.

Immutable Session Attributes
For JBoss EAP7, session replication is triggered when the session is mutated or when any mutable
attribute of the session is accessed. Session attributes are assumed to be mutable unless one of the
following is true:

The value is a known immutable value:

null

java.util.Collections.EMPTY_LIST, EMPTY_MAP, EMPTY_SET

The value type is or implements a known immutable type:

java.lang.Boolean, Character, Byte, Short, Integer, Long, Float, Double

java.lang.Class, Enum, StackTraceElement, String

java.io.File, java.nio.file.Path

java.math.BigDecimal, BigInteger, MathContext

java.net.Inet4Address, Inet6Address, InetSocketAddress, URI, URL

java.security.Permission

java.util.Currency, Locale, TimeZone, UUID

java.time.Clock, Duration, Instant, LocalDate, LocalDateTime, LocalTime,
MonthDay, Period, Year, YearMonth, ZoneId, ZoneOffset, ZonedDateTime

java.time.chrono.ChronoLocalDate, Chronology, Era

java.time.format.DateTimeFormatter, DecimalStyle

java.time.temporal.TemporalField, TemporalUnit, ValueRange, WeekFields

java.time.zone.ZoneOffsetTransition, ZoneOffsetTransitionRule,
ZoneRules

The value type is annotated with:

@org.wildfly.clustering.web.annotation.Immutable

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

117

@net.jcip.annotations.Immutable

6.2. HTTP SESSION PASSIVATION AND ACTIVATION

6.2.1. About HTTP Session Passivation and Activation

Passivation is the process of controlling memory usage by removing relatively unused sessions from
memory while storing them in persistent storage.

Activation is when passivated data is retrieved from persisted storage and put back into memory.

Passivation occurs at different times in an HTTP session’s lifetime:

When the container requests the creation of a new session, if the number of currently active
sessions exceeds a configurable limit, the server attempts to passivate some sessions to make
room for the new one.

When a web application is deployed and a backup copy of sessions active on other servers is
acquired by the newly deploying web application’s session manager, sessions may be
passivated.

A session is passivated if the number of active sessions exceeds a configurable maximum.

Sessions are always passivated using a Least Recently Used (LRU) algorithm.

6.2.2. Configure HTTP Session Passivation in Your Application

HTTP session passivation is configured in your application’s WEB-INF/jboss-web.xml and META-
INF/jboss-web.xml file.

Example: jboss-web.xml File

The <max-active-sessions> element dictates the maximum number of active sessions allowed, and
is used to enable session passivation. If session creation would cause the number of active sessions to
exceed <max-active-sessions/>, then the oldest session known to the session manager will
passivate to make room for the new session.

<jboss-web xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee
http://www.jboss.org/j2ee/schema/jboss-web_10_0.xsd">

 <max-active-sessions>20</max-active-sessions>
</jboss-web>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

118

NOTE

The total number of sessions in memory includes sessions replicated from other cluster
nodes that are not being accessed on this node. Take this into account when setting
<max-active-sessions>. The number of sessions replicated from other nodes also
depends on whether REPL or DIST cache mode is enabled. In REPL cache mode, each
session is replicated to each node. In DIST cache mode, each session is replicated only
to the number of nodes specified by the owners parameter. See Configure the Cache
Mode in the JBoss EAP Config Guide for information on configuring session cache
modes. For example, consider an eight node cluster, where each node handles requests
from 100 users. With REPL cache mode, each node would store 800 sessions in memory.
With DIST cache mode enabled, and the default owners setting of 2, each node stores
200 sessions in memory.

6.3. PUBLIC API FOR CLUSTERING SERVICES

JBoss EAP 7 introduces a refined public clustering API for use by applications. The new services are
designed to be lightweight, easily injectable, with no external dependencies.

org.wildfly.clustering.group.Group

The group service provides a mechanism to view the cluster topology for a JGroups channel, and to
be notified when the topology changes.

org.wildfly.clustering.dispatcher.CommandDispatcher

The CommandDispatcherFactory service provides a mechanism to create a dispatcher for
executing commands on nodes in the cluster. The resulting CommandDispatcher is a command-
pattern analog to the reflection-based GroupRpcDispatcher from previous JBoss EAP releases.

6.4. HA SINGLETON SERVICE

@Resource(lookup = "java:jboss/clustering/group/channel-name")
private Group channelGroup;

@Resource(lookup = "java:jboss/clustering/dispatcher/channel-name")
private CommandDispatcherFactory factory;

public void foo() {
 String context = "Hello world!";
 try (CommandDispatcher<String> dispatcher =
this.factory.createCommandDispatcher(context)) {
 dispatcher.executeOnCluster(new StdOutCommand());
 }
}

public static class StdOutCommand implements Command<Void, String> {
 @Override
 public Void execute(String context) {
 System.out.println(context);
 return null;
 }
}

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

119

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/#configure_the_cache_mode

A clustered singleton service, also known as a high-availability (HA) singleton, is a service deployed on
multiple nodes in a cluster. The service is provided on only one of the nodes. The node running the
singleton service is usually called the master node.

When the master node either fails or shuts down, another master is selected from the remaining nodes
and the service is restarted on the new master. Other than a brief interval when one master has stopped
and another has yet to take over, the service is provided by one, but only one, node.

HA Singleton ServiceBuilder API
JBoss EAP 7 introduces a new public API for building singleton services that simplifies the process
significantly.

The SingletonServiceBuilder implementation installs its services so they will start asynchronously,
preventing deadlocking of the Modular Service Container (MSC).

HA Singleton Service Election Policies
If there is a preference for which node should start the ha-singleton, you can set the election policy in the
ServiceActivator class.

JBoss EAP provides two election policies:

1. Simple Election Policy
The simple election policy selects a master node based on the relative age. The required age is
configured in the position property, which is the index in the list of available nodes where,

position = 0 – refers to the oldest node (the default)

position = 1 – refers to the 2nd oldest etc.
Position can also be negative to indicate the youngest nodes.

position = -1 – refers to the youngest node

position = -2 – refers to the 2nd youngest node etc.

2. Random Election Policy
The random election policy elects a random member to be the provider of a singleton service.

Create an HA Singleton Service Application
The following is an abbreviated example of the steps required to create and deploy an application as a
cluster-wide singleton service. This example service activates a scheduled timer that is started only once
in the cluster.

1. Create an HATimerService service that implements the
org.jboss.msc.service.Service interface and contains the getValue(), start(), and
stop() methods.

Service Class Code Example

public class HATimerService implements Service<String> {
 private static final Logger LOGGER =
Logger.getLogger(HATimerService.class.toString());
 public static final ServiceName SINGLETON_SERVICE_NAME =
ServiceName.JBOSS.append("quickstart", "ha", "singleton", "timer");

 /**
 * A flag whether the service is started.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

120

https://access.redhat.com/webassets/avalon/d/red-hat-jboss-enterprise-application-platform/7.0.0/javadocs//org/wildfly/clustering/singleton/SingletonServiceBuilder.html
https://access.redhat.com/webassets/avalon/d/red-hat-jboss-enterprise-application-platform/7.0.0/javadocs//org/jboss/msc/service/ServiceActivator.html
https://access.redhat.com/webassets/avalon/d/red-hat-jboss-enterprise-application-platform/7.0.0/javadocs//org/jboss/msc/service/Service.html

 */
 private final AtomicBoolean started = new AtomicBoolean(false);

 /**
 * @return the name of the server node
 */
 public String getValue() throws IllegalStateException,
IllegalArgumentException {
 LOGGER.info(String.format("%s is %s at %s",
HATimerService.class.getSimpleName(), (started.get() ? "started" :
"not started"), System.getProperty("jboss.node.name")));
 return System.getProperty("jboss.node.name");
 }

 public void start(StartContext arg0) throws StartException {
 if (!started.compareAndSet(false, true)) {
 throw new StartException("The service is still
started!");
 }
 LOGGER.info("Start HASingleton timer service '" +
this.getClass().getName() + "'");

 final String node = System.getProperty("jboss.node.name");
 try {
 InitialContext ic = new InitialContext();
 ((Scheduler) ic.lookup("global/jboss-cluster-ha-
singleton-
service/SchedulerBean!org.jboss.as.quickstarts.cluster.hasingleton.s
ervice.ejb.Scheduler"))
 .initialize("HASingleton timer @" + node + " " +
new Date());
 } catch (NamingException e) {
 throw new StartException("Could not initialize timer",
e);
 }
 }

 public void stop(StopContext arg0) {
 if (!started.compareAndSet(true, false)) {
 LOGGER.warning("The service '" +
this.getClass().getName() + "' is not active!");
 } else {
 LOGGER.info("Stop HASingleton timer service '" +
this.getClass().getName() + "'");
 try {
 InitialContext ic = new InitialContext();
 ((Scheduler) ic.lookup("global/jboss-cluster-ha-
singleton-
service/SchedulerBean!org.jboss.as.quickstarts.cluster.hasingleton.s
ervice.ejb.Scheduler")).stop();
 } catch (NamingException e) {
 LOGGER.info("Could not stop timer:" +
e.getMessage());
 }

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

121

2. Create a service activator that implements the
org.jboss.msc.service.ServiceActivator interface and installs the HATimerService
as a clustered singleton in the activate() method. This example specifies that node1 should
start the singleton service.

Service Activator Code Example

3. Create a file named org.jboss.msc.service.ServiceActivator in the application’s
META-INF/services/ directory and add a line containing the fully qualified name of the
ServiceActivator class created in the previous step.

META-INF/services/org.jboss.msc.service.ServiceActivator File Example

org.jboss.as.quickstarts.cluster.hasingleton.service.ejb.HATimerServ
iceActivator

4. Create a Scheduler interface that contains the initialize() and stop() methods.

 }
 }
}

public class HATimerServiceActivator implements ServiceActivator {
 private final Logger log =
Logger.getLogger(this.getClass().toString());

 @Override
 public void activate(ServiceActivatorContext context) {
 log.info("HATimerService will be installed!");

 HATimerService service = new HATimerService();
 ServiceName factoryServiceName =
SingletonServiceName.BUILDER.getServiceName("server", "default");
 ServiceController<?> factoryService =
context.getServiceRegistry().getRequiredService(factoryServiceName);
 SingletonServiceBuilderFactory factory =
(SingletonServiceBuilderFactory) factoryService.getValue();
 ServiceName ejbComponentService = ServiceName.of("jboss",
"deployment", "unit", "jboss-cluster-ha-singleton-service.jar",
"component", "SchedulerBean", "START");

factory.createSingletonServiceBuilder(HATimerService.SINGLETON_SERVI
CE_NAME, service)
 .electionPolicy(new PreferredSingletonElectionPolicy(new
SimpleSingletonElectionPolicy(), new
NamePreference("node1/singleton")))
 .build(new
DelegatingServiceContainer(context.getServiceTarget(),
context.getServiceRegistry()))
 .setInitialMode(ServiceController.Mode.ACTIVE)
 .addDependency(ejbComponentService)
 .install();
 }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

122

https://access.redhat.com/webassets/avalon/d/red-hat-jboss-enterprise-application-platform/7.0.0/javadocs//org/jboss/msc/service/ServiceActivator.html
https://access.redhat.com/webassets/avalon/d/red-hat-jboss-enterprise-application-platform/7.0.0/javadocs//org/jboss/msc/service/ServiceActivator.html

Scheduler Interface Code Example

5. Create a Singleton bean that implements the Scheduler interface. This bean is used as the
cluster-wide singleton timer.

IMPORTANT

The Singleton bean must not have a remote interface and you must not
reference its local interface from another EJB in any application. This prevents a
lookup by a client or other component and ensures the HATimerService has
total control of the Singleton.

Singleton Bean Code Example

public interface Scheduler {

 void initialize(String info);

 void stop();

}

@Singleton
public class SchedulerBean implements Scheduler {
 private static Logger LOGGER =
Logger.getLogger(SchedulerBean.class.toString());
 @Resource
 private TimerService timerService;

 @Timeout
 public void scheduler(Timer timer) {
 LOGGER.info("HASingletonTimer: Info=" + timer.getInfo());
 }

 @Override
 public void initialize(String info) {
 ScheduleExpression sexpr = new ScheduleExpression();
 // set schedule to every 10 seconds for demonstration
 sexpr.hour("*").minute("*").second("0/10");
 // persistent must be false because the timer is started by
the HASingleton service
 timerService.createCalendarTimer(sexpr, new
TimerConfig(info, false));
 }

 @Override
 public void stop() {
 LOGGER.info("Stop all existing HASingleton timers");
 for (Timer timer : timerService.getTimers()) {
 LOGGER.fine("Stop HASingleton timer: " +
timer.getInfo());
 timer.cancel();

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

123

See the cluster-ha-singleton quickstart that ships with JBoss EAP for a complete working
example of this application. The quickstart provides detailed instructions to build and deploy the
application.

6.5. HA SINGLETON DEPLOYMENTS

JBoss EAP 7 adds the ability to deploy a given application as a singleton deployment.

When deployed to a group of clustered servers, a singleton deployment will only deploy on a single node
at any given time. If the node on which the deployment is active stops or fails, the deployment will
automatically start on another node.

The policies for controlling HA singleton behavior are managed by a new singleton subsystem. A
deployment may either specify a specific singleton policy or use the default subsystem policy. A
deployment identifies itself as singleton deployment via a /META-INF/singleton-deployment.xml
deployment descriptor which is most easily applied to an existing deployment as a deployment overlay.
Alternatively, the requisite singleton configuration can be embedded within an existing jboss-all.xml.

Defining or Choosing a Singleton Deployment

To define a deployment as a singleton deployment, include a /META-INF/singleton-
deployment.xml descriptor in your application archive.

Example: Singleton Deployment Descriptor

Example: Singleton Deployment Descriptor with a Specific Singleton Policy

Alternatively, you can also add a singleton-deployment element to your jboss-all.xml
descriptor.

Example: Defining singleton-deployment in jboss-all.xml

Example: Defining singleton-deployment in jboss-all.xml with a Specific
Singleton Policy

 }
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<singleton-deployment xmlns="urn:jboss:singleton-deployment:1.0"/>

<?xml version="1.0" encoding="UTF-8"?>
<singleton-deployment policy="my-new-policy"
xmlns="urn:jboss:singleton-deployment:1.0"/>

<?xml version="1.0" encoding="UTF-8"?>
<jboss xmlns="urn:jboss:1.0">
 <singleton-deployment xmlns="urn:jboss:singleton-
deployment:1.0"/>
</jboss>

<?xml version="1.0" encoding="UTF-8"?>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

124

Creating a Singleton Deployment
JBoss EAP provides two election policies:

Simple Election Policy
The simple-election-policy chooses a specific member, indicated by the position
attribute, on which a given application will be deployed. The position attribute determines the
index of the node to be elected from a list of candidates sorted by descending age, where 0
indicates the oldest node, 1 indicates the second oldest node, -1 indicates the youngest node, -
2 indicates the second youngest node, and so on. If the specified position exceeds the number
of candidates, a modulus operation is applied.

Example: Create a New Singleton Policy with a simple-election-policy and
Position Set to -1, Using the Management CLI

batch
/subsystem=singleton/singleton-policy=my-new-policy:add(cache-
container=server)
/subsystem=singleton/singleton-policy=my-new-policy/election-
policy=simple:add(position=-1)
run-batch

NOTE

To set the newly created policy my-new-policy as the default, run this
command:

/subsystem=singleton:write-attribute(name=default,
value=my-new-policy)

Example: Configure a simple-election-policy with Position Set to -1 Using
standalone-ha.xml

Random Election Policy
The random-election-policy chooses a random member on which a given application will
be deployed.

Example: Creating a New Singleton Policy with a random-election-policy, Using
the Management CLI

<jboss xmlns="urn:jboss:1.0">
 <singleton-deployment policy="my-new-policy"
xmlns="urn:jboss:singleton-deployment:1.0"/>
</jboss>

<subsystem xmlns="urn:jboss:domain:singleton:1.0">
 <singleton-policies default="my-new-policy">
 <singleton-policy name="my-new-policy" cache-
container="server">
 <simple-election-policy position="-1"/>
 </singleton-policy>
 </singleton-policies>
</subsystem>

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

125

batch
/subsystem=singleton/singleton-policy=my-other-new-policy:add(cache-
container=server)
/subsystem=singleton/singleton-policy=my-other-new-policy/election-
policy=random:add()
run-batch

Example: Configure a random-election-policy Using standalone-ha.xml

NOTE

The default-cache attribute of the cache-container needs to be defined
before trying to add the policy. Without this, if you are using a custom cache
container, you might end up getting error messages.

Preferences
Additionally, any singleton election policy may indicate a preference for one or more members of a
cluster. Preferences may be defined either via node name or via outbound socket binding name. Node
preferences always take precedent over the results of an election policy.

Example: Indicate Preference in the Existing Singleton Policy Using the Management CLI

/subsystem=singleton/singleton-policy=foo/election-policy=simple:list-
add(name=name-preferences, value=nodeA)

/subsystem=singleton/singleton-policy=bar/election-policy=random:list-
add(name=socket-binding-preferences, value=binding1)

Example: Create a New Singleton Policy with a simple-election-policy and name-
preferences, Using the Management CLI

batch
/subsystem=singleton/singleton-policy=my-new-policy:add(cache-
container=server)
/subsystem=singleton/singleton-policy=my-new-policy/election-
policy=simple:add(name-preferences=[node1, node2, node3, node4])
run-batch

<subsystem xmlns="urn:jboss:domain:singleton:1.0">
 <singleton-policies default="my-other-new-policy">
 <singleton-policy name="my-other-new-policy" cache-
container="server">
 <random-election-policy/>
 </singleton-policy>
 </singleton-policies>
</subsystem>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

126

NOTE

To set the newly created policy my-new-policy as the default, run this command:

/subsystem=singleton:write-attribute(name=default, value=my-
new-policy)

Example: Configure a random-election-policy with socket-binding-preferences
Using standalone-ha.xml

Quorum
Network partitions are particularly problematic for singleton deployments, since they can trigger multiple
singleton providers for the same deployment to run at the same time. To defend against this scenario, a
singleton policy may define a quorum that requires a minimum number of nodes to be present before a
singleton provider election can take place. A typical deployment scenario uses a quorum of N/2 + 1,
where N is the anticipated cluster size. This value can be updated at runtime, and will immediately affect
any singleton deployments using the respective singleton policy.

Example: Quorum Declaration in the standalone-ha.xml File

Example: Quorum Declaration Using the Management CLI

/subsystem=singleton/singleton-policy=foo:write-attribute(name=quorum,
value=3)

6.6. APACHE MOD_CLUSTER-MANAGER APPLICATION

6.6.1. About mod_cluster-manager Application

The mod_cluster-manager application is an administration web page, which is available on Apache
HTTP Server. It is used for monitoring the connected worker nodes and performing various

<subsystem xmlns="urn:jboss:domain:singleton:1.0">
 <singleton-policies default="my-other-new-policy">
 <singleton-policy name="my-other-new-policy" cache-
container="server">
 <random-election-policy>
 <socket-binding-preferences>binding1 binding2 binding3
binding4</socket-binding-preferences>
 </random-election-policy>
 </singleton-policy>
 </singleton-policies>
</subsystem>

<subsystem xmlns="urn:jboss:domain:singleton:1.0">
 <singleton-policies default="default">
 <singleton-policy name="default" cache-container="server"
quorum="4">
 <simple-election-policy/>
 </singleton-policy>
 </singleton-policies>
</subsystem>

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

127

administration tasks, such as enabling or disabling contexts, and configuring the load-balancing
properties of worker nodes in a cluster.

Exploring mod_cluster-manager Application
The mod_cluster-manager application can be used for performing various administration tasks on worker
nodes.

Figure - mod_cluster Administration Web Page

[1] mod_cluster/1.3.1.Final: The version of the mod_cluster native library.

[2] ajp://192.168.122.204:8099: The protocol used (either AJP, HTTP, or HTTPS), hostname or
IP address of the worker node, and the port.

[3] jboss-eap-7.0-2: The worker node’s JVMRoute.

[4] Virtual Host 1: The virtual host(s) configured on the worker node.

[5] Disable: An administration option that can be used to disable the creation of new sessions on
the particular context. However, the ongoing sessions do not get disabled and remain intact.

[6] Stop: An administration option that can be used to stop the routing of session requests to the
context. The remaining sessions will failover to another node unless the sticky-session-
force property is set to true.

[7] Enable Contexts Disable Contexts Stop Contexts: The operations that can be performed
on the whole node. Selecting one of these options affects all the contexts of a node in all its
virtual hosts.

[8] Load balancing group (LBGroup): The load-balancing-group property is set in the
modcluster subsystem in JBoss EAP configuration to group all worker nodes into custom load
balancing groups. Load balancing group (LBGroup) is an informational field that gives
information about all set load balancing groups. If this field is not set, then all worker nodes are
grouped into a single default load balancing group.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

128

NOTE

This is only an informational field and thus cannot be used to set load-
balancing-group property. The property has to be set in modcluster
subsystem in JBoss EAP configuration.

[9] Load (value): The load factor on the worker node. The load factor(s) are evaluated as below:

-load > 0 : A load factor with value 1 indicates that the worker
node is overloaded. A load factor of 100 denotes a free and not-
loaded node.
-load = 0 : A load factor of value 0 indicates that the worker node
is in standby mode. This means that no session requests will be
routed to this node until and unless the other worker nodes are
unavailable.
-load = -1 : A load factor of value -1 indicates that the worker
node is in an error state.
-load = -2 : A load factor of value -2 indicates that the worker
node is undergoing CPing/CPong and is in a transition state.

NOTE

For JBoss EAP 7.0, it is also possible to use Undertow as load balancer.

CHAPTER 6. CLUSTERING IN WEB APPLICATIONS

129

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

7.1. INTRODUCTION TO CDI

7.1.1. About Contexts and Dependency Injection (CDI)

Contexts and Dependency Injection (CDI) 1.2 is a specification designed to enable Enterprise Java
Beans (EJB) 3 components to be used as Java Server Faces (JSF) managed beans. CDI unifies the two
component models and enables a considerable simplification to the programming model for web-based
applications in Java. CDI 1.2 release is treated as a maintenance release of 1.1. Details about CDI 1.1
can be found in JSR 346: Contexts and Dependency Injection for Java™ EE 1.1.

JBoss EAP includes Weld, which is the reference implementation of JSR-346:Contexts and Dependency
Injection for Java™ EE 1.1.

Benefits of CDI
The benefits of CDI include:

Simplifying and shrinking your code base by replacing big chunks of code with annotations.

Flexibility, allowing you to disable and enable injections and events, use alternative beans, and
inject non-CDI objects easily.

Optionally, allowing you to include beans.xml in your META-INF/ or WEB-INF/ directory if you
need to customize the configuration to differ from the default. The file can be empty.

Simplifying packaging and deployments and reducing the amount of XML you need to add to
your deployments.

Providing lifecycle management via contexts. You can tie injections to requests, sessions,
conversations, or custom contexts.

Providing type-safe dependency injection, which is safer and easier to debug than string-based
injection.

Decoupling interceptors from beans.

Providing complex event notification.

7.1.2. Relationship Between Weld, Seam 2, and JavaServer Faces

Weld is the reference implementation of CDI, which is defined in JSR 346: Contexts and Dependency
Injection for Java™ EE 1.1. Weld was inspired by Seam 2 and other dependency injection frameworks,
and is included in JBoss EAP.

The goal of Seam 2 was to unify Enterprise Java Beans and JavaServer Faces managed beans.

JavaServer Faces 2.2 implements JSR-344: JavaServer™ Faces 2.2. It is an API for building server-side
user interfaces.

7.2. USE CDI TO DEVELOP AN APPLICATION

Contexts and Dependency Injection (CDI) gives you tremendous flexibility in developing applications,
reusing code, adapting your code at deployment or run-time, and unit testing. JBoss EAP includes Weld,

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

130

https://www.jcp.org/en/jsr/detail?id=346
https://www.jcp.org/en/jsr/detail?id=346
https://www.jcp.org/en/jsr/detail?id=346
https://www.jcp.org/en/jsr/detail?id=344

the reference implementation of CDI. These tasks show you how to use CDI in your enterprise
applications.

7.2.1. Default Bean Discovery Mode

The default bean discovery mode for a bean archive is annotated. Such a bean archive is said to be an
implicit bean archive.

If the bean discovery mode is annotated then:

Bean classes that do not have bean defining annotation and are not bean classes of
sessions beans are not discovered.

Producer methods that are not on a session bean and whose bean class does not have a bean
defining annotation are not discovered.

Producer fields that are not on a session bean and whose bean class does not have a bean
defining annotation are not discovered.

Disposer methods that are not on a session bean and whose bean class does not have a bean
defining annotation are not discovered.

Observer methods that are not on a session bean and whose bean class does not have a bean
defining annotation are not discovered.

IMPORTANT

All examples in the CDI section are valid only when you have a discovery mode set to
all.

Bean Defining Annotations
A bean class may have a bean defining annotation, allowing it to be placed anywhere in an
application, as defined in Bean archives. A bean class with a bean defining annotation is said to be an
implicit bean.

The set of bean defining annotations contains:

@ApplicationScoped, @SessionScoped, @ConversationScoped and @RequestScoped
annotations

All other normal scope types

@Interceptor and @Decorator annotations

All stereotype annotations, i.e. annotations annotated with @Stereotype

The @Dependent scope annotation

If one of these annotations is declared on a bean class, then the bean class is said to have a bean
defining annotation.

Example: Bean Defining Annotation

@Dependent
public class BookShop

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

131

NOTE

To ensure compatibility with other JSR-330 implementations, all pseudo-scope
annotations, except @Dependent, are not bean defining annotations. However, a
stereotype annotation including a pseudo-scope annotation is a bean defining annotation.

7.2.2. Exclude Beans From the Scanning Process

Exclude filters are defined by <exclude> elements in the beans.xml file for the bean archive as
children of the <scan> element. By default an exclude filter is active. The exclude filter becomes
inactive, if its definition contains:

A child element named <if-class-available> with a name attribute, and the class loader
for the bean archive can not load a class for that name, or

A child element named <if-class-not-available> with a name attribute, and the class
loader for the bean archive can load a class for that name, or

A child element named <if-system-property> with a name attribute, and there is no system
property defined for that name, or

A child element named <if-system-property> with a name attribute and a value attribute,
and there is no system property defined for that name with that value.

The type is excluded from discovery, if the filter is active, and:

The fully qualified name of the type being discovered matches the value of the name attribute of
the exclude filter, or

The package name of the type being discovered matches the value of the name attribute with a
suffix ".*" of the exclude filter, or

The package name of the type being discovered starts with the value of the name attribute with
a suffix ".**" of the exclude filter

Example 7.1. Example: beans.xml File

 extends Business
 implements Shop<Book> {
 ...
}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee">

 <scan>

 <exclude name="com.acme.rest.*" /> 1

 <exclude name="com.acme.faces.**"> 2
 <if-class-not-available
name="javax.faces.context.FacesContext"/>
 </exclude>

 <exclude name="com.acme.verbose.*"> 3

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

132

https://jcp.org/en/jsr/detail?id=330

1

2

3

4

The first exclude filter will exclude all classes in com.acme.rest package.

The second exclude filter will exclude all classes in the com.acme.faces package, and any
subpackages, but only if JSF is not available.

The third exclude filter will exclude all classes in the com.acme.verbose package if the
system property verbosity has the value low.

The fourth exclude filter will exclude all classes in the com.acme.ejb package, and any
subpackages, if the system property exclude-ejbs is set with any value and if at the same
time, the javax.enterprise.inject.Model class is also available to the classloader.

NOTE

It is safe to annotate Java EE components with @Vetoed to prevent them being
considered beans. An event is not fired for any type annotated with @Vetoed, or in a
package annotated with @Vetoed. For more information, see @Vetoed.

7.2.3. Use an Injection to Extend an Implementation

You can use an injection to add or change a feature of your existing code.

The following example adds a translation ability to an existing class, and assumes you already have a
Welcome class, which has a method buildPhrase. The buildPhrase method takes as an argument
the name of a city, and outputs a phrase like "Welcome to Boston!".

Example: Inject a Translator Bean Into the Welcome Class

The following injects a hypothetical Translator object into the Welcome class. The Translator
object can be an EJB stateless bean or another type of bean, which can translate sentences from one
language to another. In this instance, the Translator is used to translate the entire greeting, without
modifying the original Welcome class. The Translator is injected before the buildPhrase method is
called.

 <if-system-property name="verbosity" value="low"/>
 </exclude>

 <exclude name="com.acme.ejb.**"> 4
 <if-class-available name="javax.enterprise.inject.Model"/>
 <if-system-property name="exclude-ejbs"/>
 </exclude>
 </scan>

</beans>

public class TranslatingWelcome extends Welcome {

 @Inject Translator translator;

 public String buildPhrase(String city) {
 return translator.translate("Welcome to " + city + "!");
 }
 ...

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

133

7.3. AMBIGUOUS OR UNSATISFIED DEPENDENCIES

Ambiguous dependencies exist when the container is unable to resolve an injection to exactly one bean.

Unsatisfied dependencies exist when the container is unable to resolve an injection to any bean at all.

The container takes the following steps to try to resolve dependencies:

1. It resolves the qualifier annotations on all beans that implement the bean type of an injection
point.

2. It filters out disabled beans. Disabled beans are @Alternative beans which are not explicitly
enabled.

In the event of an ambiguous or unsatisfied dependency, the container aborts deployment and throws an
exception.

To fix an ambiguous dependency, see Use a Qualifier to Resolve an Ambiguous Injection.

7.3.1. Qualifiers

Qualifiers are annotations used to avoid ambiguous dependencies when the container can resolve
multiple beans, which fit into an injection point. A qualifier declared at an injection point provides the set
of eligible beans, which declare the same Qualifier.

Qualifiers have to be declared with a retention and target as shown in the example below.

Example: Define the @Synchronous and @Asynchronous Qualifiers

Example: Use the @Synchronous and @Asynchronous Qualifiers

}

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Synchronous {}

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Asynchronous {}

@Synchronous
public class SynchronousPaymentProcessor implements PaymentProcessor {
 public void process(Payment payment) { ... }
}

@Asynchronous
public class AsynchronousPaymentProcessor implements PaymentProcessor {
 public void process(Payment payment) { ... }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

134

'@Any'
Whenever a bean or injection point does not explicitly declare a qualifier, the container assumes the
qualifier @Default. From time to time, you will need to declare an injection point without specifying a
qualifier. There is a qualifier for that too. All beans have the qualifier @Any. Therefore, by explicitly
specifying @Any at an injection point, you suppress the default qualifier, without otherwise restricting the
beans that are eligible for injection.

This is especially useful if you want to iterate over all beans with a certain bean type.

Every bean has the qualifier @Any, even if it does not explicitly declare this qualifier.

Every event also has the qualifier @Any, even if it was raised without explicit declaration of this qualifier.

The @Any qualifier allows an injection point to refer to all beans or all events of a certain bean type.

7.3.2. Use a Qualifier to Resolve an Ambiguous Injection

You can resolve an ambiguous injection using a qualifier. Read more about ambiguous injections at
Ambiguous or Unsatisfied Dependencies.

The following example is ambiguous and features two implementations of Welcome, one which
translates and one which does not. The injection needs to be specified to use the translating Welcome.

Example: Ambiguous Injection

import javax.enterprise.inject.Instance;
...

@Inject

void initServices(@Any Instance<Service> services) {

 for (Service service: services) {

 service.init();

 }

}

@Inject @Any Event<User> anyUserEvent;

@Inject @Delegate @Any Logger logger;

public class Greeter {
 private Welcome welcome;

 @Inject
 void init(Welcome welcome) {
 this.welcome = welcome;
 }
 ...
}

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

135

Resolve an Ambiguous Injection with a Qualifier

1. To resolve the ambiguous injection, create a qualifier annotation called @Translating:

2. Annotate your translating Welcome with the @Translating annotation:

3. Request the translating Welcome in your injection. You must request a qualified implementation
explicitly, similar to the factory method pattern. The ambiguity is resolved at the injection point.

7.4. MANAGED BEANS

Java EE establishes a common definition in the Managed Beans specification. Managed Beans are
defined as container-managed objects with minimal programming restrictions, otherwise known by the
acronym POJO (Plain Old Java Object). They support a small set of basic services, such as resource
injection, lifecycle callbacks, and interceptors. Companion specifications, such as EJB and CDI, build on
this basic model.

With very few exceptions, almost every concrete Java class that has a constructor with no parameters
(or a constructor designated with the annotation @Inject) is a bean. This includes every JavaBean and
every EJB session bean.

7.4.1. Types of Classes That are Beans

A managed bean is a Java class. The basic lifecycle and semantics of a managed bean are defined by
the Managed Beans specification. You can explicitly declare a managed bean by annotating the bean
class @ManagedBean, but in CDI you do not need to. According to the specification, the CDI container
treats any class that satisfies the following conditions as a managed bean:

It is not a non-static inner class.

@Qualifier
@Retention(RUNTIME)
@Target({TYPE,METHOD,FIELD,PARAMETERS})
public @interface Translating{}

@Translating
public class TranslatingWelcome extends Welcome {
 @Inject Translator translator;
 public String buildPhrase(String city) {
 return translator.translate("Welcome to " + city + "!");
 }
 ...
}

public class Greeter {
 private Welcome welcome;
 @Inject
 void init(@Translating Welcome welcome) {
 this.welcome = welcome;
 }
 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase("San Francisco"));
 }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

136

It is a concrete class, or is annotated @Decorator.

It is not annotated with an EJB component-defining annotation or declared as an EJB bean class
in ejb-jar.xml.

It does not implement interface javax.enterprise.inject.spi.Extension.

It has either a constructor with no parameters, or a constructor annotated with @Inject.

It is not annotated @Vetoed or in a package annotated @Vetoed .

The unrestricted set of bean types for a managed bean contains the bean class, every superclass and all
interfaces it implements directly or indirectly.

If a managed bean has a public field, it must have the default scope @Dependent.

@Vetoed
CDI 1.1 introduces a new annotation, @Vetoed. You can prevent a bean from injection by adding this
annotation:

In this code, the SimpleGreeting bean is not considered for injection.

All beans in a package may be prevented from injection:

This code in package-info.java in the org.sample.beans package will prevent all beans inside
this package from injection.

Java EE components, such as stateless EJBs or JAX-RS resource endpoints, can be marked with
@Vetoed to prevent them from being considered beans. Adding the @Vetoed annotation to all persistent
entities prevents the BeanManager from managing an entity as a CDI Bean. When an entity is
annotated @Vetoed, no injections take place. The reasoning behind this is to prevent the BeanManager
from performing the operations that may cause the JPA provider to break.

7.4.2. Use CDI to Inject an Object Into a Bean

CDI is activated automatically if CDI components are detected in an application. If you wish to customize
your configuration to differ from the default, you can include META-INF/beans.xml or WEB-
INF/beans.xml to your deployment archive.

Inject Objects into Other Objects

1. To obtain an instance of a class, annotate the field with @Inject within your bean:

@Vetoed
public class SimpleGreeting implements Greeting {
 ...
}

@Vetoed
package org.sample.beans;

import javax.enterprise.inject.Vetoed;

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

137

2. Use your injected object’s methods directly. Assume that TextTranslator has a method
translate:

3. Use an injection in the constructor of a bean. You can inject objects into the constructor of a
bean as an alternative to using a factory or service locator to create them:

4. Use the Instance(<T>) interface to get instances programmatically. The Instance interface
can return an instance of TextTranslator when parameterized with the bean type.

When you inject an object into a bean, all of the object’s methods and properties are available to your
bean. If you inject into your bean’s constructor, instances of the injected objects are created when your
bean’s constructor is called, unless the injection refers to an instance that already exists. For instance, a
new instance would not be created if you inject a session-scoped bean during the lifetime of the session.

7.5. CONTEXTS AND SCOPES

A context, in terms of CDI, is a storage area that holds instances of beans associated with a specific
scope.

public class TranslateController {
 @Inject TextTranslator textTranslator;
 ...

// in TranslateController class

public void translate() {
 translation = textTranslator.translate(inputText);
}

public class TextTranslator {

 private SentenceParser sentenceParser;
 private Translator sentenceTranslator;

 @Inject
 TextTranslator(SentenceParser sentenceParser, Translator
sentenceTranslator) {
 this.sentenceParser = sentenceParser;
 this.sentenceTranslator = sentenceTranslator;
 }

 // Methods of the TextTranslator class
 ...
}

@Inject Instance<TextTranslator> textTranslatorInstance;
...
public void translate() {
 textTranslatorInstance.get().translate(inputText);
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

138

A scope is the link between a bean and a context. A scope/context combination may have a specific
lifecycle. Several predefined scopes exist, and you can create your own. Examples of predefined scopes
are @RequestScoped, @SessionScoped, and @ConversationScope.

Table 7.1. Available Scopes

Scope Description

@Dependent The bean is bound to the lifecycle of the bean holding the reference. The
default scope for an injected bean is @Dependent.

@ApplicationScoped The bean is bound to the lifecycle of the application.

@RequestScoped The bean is bound to the lifecycle of the request.

@SessionScoped The bean is bound to the lifecycle of the session.

@ConversationScoped The bean is bound to the lifecycle of the conversation. The conversation
scope is between the lengths of the request and the session, and is
controlled by the application.

Custom scopes If the above contexts do not meet your needs, you can define custom
scopes.

7.6. NAMED BEANS

You can name a bean by using the @Named annotation. Naming a bean allows you to use it directly in
Java Server Faces (JSF) and Expression Language (EL).

The @Named annotation takes an optional parameter, which is the bean name. If this parameter is
omitted, the bean name defaults to the class name of the bean with its first letter converted to lower-
case.

7.6.1. Use Named Beans

Configure Bean Names Using the @Named Annotation

1. Use the @Named annotation to assign a name to a bean.

@Named("greeter")
public class GreeterBean {
 private Welcome welcome;

 @Inject
 void init (Welcome welcome) {
 this.welcome = welcome;
 }

 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase("San Francisco"));
 }
}

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

139

In the example above, the default name would be greeterBean if no name had been specified.

2. Use the named bean in a JSF view.

<h:form>
 <h:commandButton value="Welcome visitors" action="#
{greeter.welcomeVisitors}"/>
</h:form>

7.7. BEAN LIFECYCLE

This task shows you how to save a bean for the life of a request.

The default scope for an injected bean is @Dependent. This means that the bean’s lifecycle is
dependent upon the lifecycle of the bean that holds the reference. Several other scopes exist, and you
can define your own scopes. For more information, see Contexts and Scopes.

Manage Bean Lifecycles

1. Annotate the bean with the desired scope.

2. When your bean is used in the JSF view, it holds state.

Your bean is saved in the context relating to the scope that you specify, and lasts as long as the scope
applies.

7.7.1. Use a Producer Method

A producer method is a method that acts as a source of bean instances. When no instance exists in the
specified context, the method declaration itself describes the bean, and the container invokes the method
to obtain an instance of the bean. A producer method lets the application take full control of the bean
instantiation process.

This task shows how to use producer methods to produce a variety of different objects that are not beans
for injection.

@RequestScoped
@Named("greeter")
public class GreeterBean {
 private Welcome welcome;
 private String city; // getter & setter not shown
 @Inject void init(Welcome welcome) {
 this.welcome = welcome;
 }
 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase(city));
 }
}

<h:form>
 <h:inputText value="#{greeter.city}"/>
 <h:commandButton value="Welcome visitors" action="#
{greeter.welcomeVisitors}"/>
</h:form>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

140

Example: Use a Producer Method

By using a producer method instead of an alternative, polymorphism after deployment is allowed.

The @Preferred annotation in the example is a qualifier annotation. For more information about
qualifiers, see Qualifiers.

The following injection point has the same type and qualifier annotations as the producer method, so it
resolves to the producer method using the usual CDI injection rules. The producer method is called by
the container to obtain an instance to service this injection point.

Example: Assign a Scope to a Producer Method

The default scope of a producer method is @Dependent. If you assign a scope to a bean, it is bound to
the appropriate context. The producer method in this example is only called once per session.

Example: Use an Injection Inside a Producer Method

Objects instantiated directly by an application cannot take advantage of dependency injection and do not
have interceptors. However, you can use dependency injection into the producer method to obtain bean
instances.

@SessionScoped
public class Preferences implements Serializable {
 private PaymentStrategyType paymentStrategy;
 ...
 @Produces @Preferred
 public PaymentStrategy getPaymentStrategy() {
 switch (paymentStrategy) {
 case CREDIT_CARD: return new CreditCardPaymentStrategy();
 case CHECK: return new CheckPaymentStrategy();
 default: return null;
 }
 }
}

@Inject @Preferred PaymentStrategy paymentStrategy;

@Produces @Preferred @SessionScoped
public PaymentStrategy getPaymentStrategy() {
 ...
}

@Produces @Preferred @SessionScoped
public PaymentStrategy getPaymentStrategy(CreditCardPaymentStrategy ccps,
 CheckPaymentStrategy cps) {
 switch (paymentStrategy) {
 case CREDIT_CARD: return ccps;
 case CHEQUE: return cps;
 default: return null;
 }
}

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

141

If you inject a request-scoped bean into a session-scoped producer, the producer method promotes the
current request-scoped instance into session scope. This is almost certainly not the desired behavior, so
use caution when you use a producer method in this way.

NOTE

The scope of the producer method is not inherited from the bean that declares the
producer method.

Producer methods allow you to inject non-bean objects and change your code dynamically.

7.8. ALTERNATIVE BEANS

Alternatives are beans whose implementation is specific to a particular client module or deployment
scenario.

By default, @Alternative beans are disabled. They are enabled for a specific bean archive by editing
its beans.xml file. However, this activation only applies to the beans in that archive. From CDI 1.1
onwards, the alternative can be enabled for the entire application using the @Priority annotation.

Example: Defining Alternatives

This alternative defines an implementation of the PaymentProcessor class using both @Synchronous
and @Asynchronous alternatives:

Example: Enabling @Alternative Using beans.xml

Declaring Selected Alternatives
The @Priority annotation allows an alternative to be enabled for an entire application. An alternative
may be given a priority for the application:

by placing the @Priority annotation on the bean class of a managed bean or session bean, or

@Alternative @Synchronous @Asynchronous

public class MockPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

<beans
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd">
 <alternatives>
 <class>org.mycompany.mock.MockPaymentProcessor</class>
 </alternatives>
</beans>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

142

by placing the @Priority annotation on the bean class that declares the producer method, field
or resource.

7.8.1. Override an Injection with an Alternative

You can use alternative beans to override existing beans. They can be thought of as a way to plug in a
class which fills the same role, but functions differently. They are disabled by default.

This task shows you how to specify and enable an alternative.

Override an Injection
This task assumes that you already have a TranslatingWelcome class in your project, but you want
to override it with a "mock" TranslatingWelcome class. This would be the case for a test deployment,
where the true Translator bean cannot be used.

1. Define the alternative.

2. Activate the substitute implementation by adding the fully-qualified class name to your META-
INF/beans.xml or WEB-INF/beans.xml file.

The alternative implementation is now used instead of the original one.

7.9. STEREOTYPES

In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype
allows you to identify such a role and declare some common metadata for beans with that role in a
central place.

A stereotype encapsulates any combination of:

Default scope

A set of interceptor bindings

A stereotype can also specify either:

All beans where the stereotypes are defaulted bean EL names

All beans where the stereotypes are alternatives

@Alternative
@Translating
public class MockTranslatingWelcome extends Welcome {
 public String buildPhrase(string city) {
 return "Bienvenue Ã " + city + "!");
 }
}

<beans>
 <alternatives>
 <class>com.acme.MockTranslatingWelcome</class>
 </alternatives>
</beans>

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

143

A bean may declare zero, one, or multiple stereotypes. A stereotype is an @Stereotype annotation that
packages several other annotations. Stereotype annotations may be applied to a bean class, producer
method, or field.

A class that inherits a scope from a stereotype may override that stereotype and specify a scope directly
on the bean.

In addition, if a stereotype has a @Named annotation, any bean it is placed on has a default bean name.
The bean may override this name if the @Named annotation is specified directly on the bean. For more
information about named beans, see Named Beans.

7.9.1. Use Stereotypes

Without stereotypes, annotations can become cluttered. This task shows you how to use stereotypes to
reduce the clutter and streamline your code.

Example: Annotation Clutter

Define and Use Stereotypes

1. Define the stereotype.

2. Use the stereotype.

7.10. OBSERVER METHODS

@Secure
@Transactional
@RequestScoped
@Named
public class AccountManager {
 public boolean transfer(Account a, Account b) {
 ...
 }
}

@Secure
@Transactional
@RequestScoped
@Named
@Stereotype
@Retention(RUNTIME)
@Target(TYPE)
public @interface BusinessComponent {
 ...
}

@BusinessComponent
public class AccountManager {
 public boolean transfer(Account a, Account b) {
 ...
 }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

144

Observer methods receive notifications when events occur.

CDI also provides transactional observer methods, which receive event notifications during the before
completion or after completion phase of the transaction in which the event was fired.

7.10.1. Fire and Observe Events

Example: Fire an Event

The following code shows an event being injected and used in a method.

Example: Fire an Event with a Qualifier

You can annotate your event injection with a qualifier, to make it more specific. For more information
about qualifiers, see Qualifiers.

Example: Observe an Event

To observe an event, use the @Observes annotation.

You can use qualifiers to observe only specific types of events.

7.10.2. Transactional Observers

public class AccountManager {
 @Inject Event<Withdrawal> event;

 public boolean transfer(Account a, Account b) {
 ...
 event.fire(new Withdrawal(a));
 }
}

public class AccountManager {
 @Inject @Suspicious Event <Withdrawal> event;

 public boolean transfer(Account a, Account b) {
 ...
 event.fire(new Withdrawal(a));
 }
}

public class AccountObserver {
 void checkTran(@Observes Withdrawal w) {
 ...
 }
}

public class AccountObserver {
 void checkTran(@Observes @Suspicious Withdrawal w) {
 ...
 }
}

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

145

Transactional observers receive the event notifications before or after the completion phase of the
transaction in which the event was raised. Transactional observers are important in a stateful object
model because state is often held for longer than a single atomic transaction.

There are five kinds of transactional observers:

IN_PROGRESS: By default, observers are invoked immediately.

AFTER_SUCCESS: Observers are invoked after the completion phase of the transaction, but only
if the transaction completes successfully.

AFTER_FAILURE: Observers are invoked after the completion phase of the transaction, but only
if the transaction fails to complete successfully.

AFTER_COMPLETION: Observers are invoked after the completion phase of the transaction.

BEFORE_COMPLETION: Observers are invoked before the completion phase of the transaction.

The following observer method refreshes a query result set cached in the application context, but only
when transactions that update the Category tree are successful:

Assume we have cached a JPA query result set in the application scope:

Occasionally a Product is created or deleted. When this occurs, we need to refresh the Product
catalog. But we have to wait for the transaction to complete successfully before performing this refresh.

The bean that creates and deletes Products triggers events:

public void refreshCategoryTree(@Observes(during = AFTER_SUCCESS)
CategoryUpdateEvent event) { ... }

import javax.ejb.Singleton;
import javax.enterprise.inject.Produces;

@ApplicationScoped @Singleton

public class Catalog {
 @PersistenceContext EntityManager em;
 List<Product> products;
 @Produces @Catalog
 List<Product> getCatalog() {
 if (products==null) {
 products = em.createQuery("select p from Product p where
p.deleted = false")
 .getResultList();
 }
 return products;
 }
}

import javax.enterprise.event.Event;

@Stateless

public class ProductManager {

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

146

The Catalog can now observe the events after successful completion of the transaction:

7.11. INTERCEPTORS

Interceptors allow you to add functionality to the business methods of a bean without modifying the
bean’s method directly. The interceptor is executed before any of the business methods of the bean.
Interceptors are defined as part of the JSR 318: Enterprise JavaBeans™ 3.1 specification.

CDI enhances this functionality by allowing you to use annotations to bind interceptors to beans.

Interception points

Business method interception: A business method interceptor applies to invocations of methods
of the bean by clients of the bean.

Lifecycle callback interception: A lifecycle callback interceptor applies to invocations of lifecycle
callbacks by the container.

Timeout method interception: A timeout method interceptor applies to invocations of the EJB
timeout methods by the container.

Enabling Interceptors

 @PersistenceContext EntityManager em;
 @Inject @Any Event<Product> productEvent;
 public void delete(Product product) {
 em.delete(product);
 productEvent.select(new AnnotationLiteral<Deleted>()
{}).fire(product);
 }

 public void persist(Product product) {
 em.persist(product);
 productEvent.select(new AnnotationLiteral<Created>()
{}).fire(product);
 }
 ...
}

import javax.ejb.Singleton;

@ApplicationScoped @Singleton
public class Catalog {
 ...
 void addProduct(@Observes(during = AFTER_SUCCESS) @Created Product
product) {
 products.add(product);
 }

 void removeProduct(@Observes(during = AFTER_SUCCESS) @Deleted Product
product) {
 products.remove(product);
 }

}

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

147

https://jcp.org/en/jsr/detail?id=318

By default, all interceptors are disabled. You can enable the interceptor by using the beans.xml
descriptor of a bean archive. However, this activation only applies to the beans in that archive. From CDI
1.1 onwards the interceptor can be enabled for the whole application using the @Priority annotation.

Example: Enabling Interceptors in beans.xml

Having the XML declaration solves two problems:

It enables us to specify an ordering for the interceptors in our system, ensuring deterministic
behavior

It lets us enable or disable interceptor classes at deployment time.

Interceptors enabled using @Priority are called before interceptors enabled using the beans.xml file.

NOTE

Having an interceptor enabled by @Priority and at the same time invoked by
beans.xml, leads to a non-portable behavior. This combination of enablement should
therefore be avoided in order to maintain consistent behavior across different CDI
implementations.

7.11.1. Use Interceptors with CDI

CDI can simplify your interceptor code and make it easier to apply to your business code.

Without CDI, interceptors have two problems:

The bean must specify the interceptor implementation directly.

Every bean in the application must specify the full set of interceptors in the correct order. This
makes adding or removing interceptors on an application-wide basis time-consuming and error-
prone.

Example: Interceptors Without CDI

<beans
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd">
 <interceptors>
 <class>org.mycompany.myapp.TransactionInterceptor</class>
 </interceptors>
</beans>

@Interceptors({
 SecurityInterceptor.class,
 TransactionInterceptor.class,
 LoggingInterceptor.class
})
@Stateful public class BusinessComponent {
 ...
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

148

Use Interceptors with CDI

1. Define the interceptor binding type:

2. Mark the interceptor implementation:

3. Use the interceptor in your business code:

4. Enable the interceptor in your deployment, by adding it to META-INF/beans.xml or WEB-
INF/beans.xml:

The interceptors are applied in the order listed.

7.12. DECORATORS

A decorator intercepts invocations from a specific Java interface, and is aware of all the semantics
attached to that interface. Decorators are useful for modeling some kinds of business concerns, but do
not have the generality of interceptors. A decorator is a bean, or even an abstract class, that implements
the type it decorates, and is annotated with @Decorator. To invoke a decorator in a CDI application, it
must be specified in the beans.xml file.

Example: Invoke a Decorator Through beans.xml

@InterceptorBinding
@Retention(RUNTIME)
@Target({TYPE, METHOD})
public @interface Secure {}

@Secure
@Interceptor
public class SecurityInterceptor {
 @AroundInvoke
 public Object aroundInvoke(InvocationContext ctx) throws Exception
{
 // enforce security ...
 return ctx.proceed();
 }
}

@Secure
public class AccountManager {
 public boolean transfer(Account a, Account b) {
 ...
 }
}

<beans>
 <interceptors>
 <class>com.acme.SecurityInterceptor</class>
 <class>com.acme.TransactionInterceptor</class>
 </interceptors>
</beans>

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

149

This declaration serves two main purposes:

It enables us to specify an ordering for decorators in our system, ensuring deterministic behavior

It lets us enable or disable decorator classes at deployment time.

A decorator must have exactly one @Delegate injection point to obtain a reference to the decorated
object.

Example: Decorator Class

From CDI 1.1 onwards, the decorator can be enabled for the whole application using @Priority
annotation.

Decorators enabled using @Priority are called before decorators enabled using beans.xml. The
lower priority values are called first.

NOTE

Having a decorator enabled by @Priority and at the same time invoked by beans.xml,
leads to a non-portable behavior. This combination of enablement should therefore be
avoided in order to maintain consistent behavior across different CDI implementations.

7.13. PORTABLE EXTENSIONS

CDI is intended to be a foundation for frameworks, extensions, and for integration with other
technologies. Therefore, CDI exposes a set of SPIs for the use of developers of portable extensions to
CDI.

<beans
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd">
 <decorators>
 <class>org.mycompany.myapp.LargeTransactionDecorator</class>
 </decorators>
</beans>

@Decorator
public abstract class LargeTransactionDecorator implements Account {

 @Inject @Delegate @Any Account account;
 @PersistenceContext EntityManager em;

 public void withdraw(BigDecimal amount) {
 ...
 }

 public void deposit(BigDecimal amount);
 ...
 }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

150

Extensions can provide the following types of functionality:

Integration with Business Process Management engines

Integration with third-party frameworks, such as Spring, Seam, GWT, or Wicket

New technology based upon the CDI programming model

According to the JSR-346 specification, a portable extension can integrate with the container in the
following ways:

Providing its own beans, interceptors, and decorators to the container

Injecting dependencies into its own objects using the dependency injection service

Providing a context implementation for a custom scope

Augmenting or overriding the annotation-based metadata with metadata from another source

7.14. BEAN PROXIES

Clients of an injected bean do not usually hold a direct reference to a bean instance. Unless the bean is a
dependent object, scope @Dependent, the container must redirect all injected references to the bean
using a proxy object.

A bean proxy, which can be referred to as client proxy, is responsible for ensuring the bean instance that
receives a method invocation is the instance associated with the current context. The client proxy also
allows beans bound to contexts, such as the session context, to be serialized to disk without recursively
serializing other injected beans.

Due to Java limitations, some Java types cannot be proxied by the container. If an injection point
declared with one of these types resolves to a bean with a scope other than @Dependent, the container
aborts the deployment.

Certain Java types cannot be proxied by the container. These include:

Classes that do not have a non-private constructor with no parameters

Classes that are declared final or have a final method

Arrays and primitive types

7.15. USE A PROXY IN AN INJECTION

A proxy is used for injection when the lifecycles of the beans are different from each other. The proxy is a
subclass of the bean that is created at run-time, and overrides all the non-private methods of the bean
class. The proxy forwards the invocation onto the actual bean instance.

In this example, the PaymentProcessor instance is not injected directly into Shop. Instead, a proxy is
injected, and when the processPayment() method is called, the proxy looks up the current
PaymentProcessor bean instance and calls the processPayment() method on it.

Example: Proxy Injection

@ConversationScoped
class PaymentProcessor

CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)

151

https://jcp.org/en/jsr/detail?id=346

{
 public void processPayment(int amount)
 {
 System.out.println("I'm taking $" + amount);
 }
}

@ApplicationScoped
public class Shop
{

 @Inject
 PaymentProcessor paymentProcessor;

 public void buyStuff()
 {
 paymentProcessor.processPayment(100);
 }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

152

CHAPTER 8. JBOSS EAP MBEAN SERVICES
A managed bean, sometimes simply referred to as an MBean, is a type of JavaBean that is created with
dependency injection. MBean services are the core building blocks of the JBoss EAP server.

8.1. WRITING JBOSS MBEAN SERVICES

Writing a custom MBean service that relies on a JBoss service requires the service interface method
pattern. A JBoss MBean service interface method pattern consists of a set of life cycle operations that
inform an MBean service when it can create, start, stop, and destroy itself.

You can manage the dependency state using any of the following approaches:

If you want specific methods to be called on your MBean, declare those methods in your MBean
interface. This approach allows your MBean implementation to avoid dependencies on JBoss
specific classes.

If you are not bothered about dependencies on JBoss specific classes, then you may have your
MBean interface extend the ServiceMBean interface and ServiceMBeanSupport class. The
ServiceMBeanSupport class provides implementations of the service lifecycle methods like
create, start, and stop. To handle a specific event like the start() event, you need to override
startService() method provided by the ServiceMBeanSupport class.

8.1.1. A Standard MBean Example

This section develops two sample MBean services packaged together in a service archive (.sar).

ConfigServiceMBean interface declares specific methods like the start, getTimeout, and stop
methods to start, hold, and stop the MBean correctly without using any JBoss specific classes.
ConfigService class implements ConfigServiceMBean interface and consequently implements the
methods used within that interface.

The PlainThread class extends the ServiceMBeanSupport class and implements the
PlainThreadMBean interface. PlainThread starts a thread and uses
ConfigServiceMBean.getTimeout() to determine how long the thread should sleep.

Example: MBean Services Class

package org.jboss.example.mbean.support;
public interface ConfigServiceMBean {
 int getTimeout();
 void start();
 void stop();
}
package org.jboss.example.mbean.support;
public class ConfigService implements ConfigServiceMBean {
 int timeout;
 @Override
 public int getTimeout() {
 return timeout;
 }
 @Override
 public void start() {
 //Create a random number between 3000 and 6000 milliseconds

CHAPTER 8. JBOSS EAP MBEAN SERVICES

153

The jboss-service.xml descriptor shows how the ConfigService class is injected into the
PlainThread class using the inject tag. The inject tag establishes a dependency between

 timeout = (int)Math.round(Math.random() * 3000) + 3000;
 System.out.println("Random timeout set to " + timeout + "
seconds");
 }
 @Override
 public void stop() {
 timeout = 0;
 }
}

package org.jboss.example.mbean.support;
import org.jboss.system.ServiceMBean;
public interface PlainThreadMBean extends ServiceMBean {
 void setConfigService(ConfigServiceMBean configServiceMBean);
}

package org.jboss.example.mbean.support;
import org.jboss.system.ServiceMBeanSupport;
public class PlainThread extends ServiceMBeanSupport implements
PlainThreadMBean {
 private ConfigServiceMBean configService;
 private Thread thread;
 private volatile boolean done;
 @Override
 public void setConfigService(ConfigServiceMBean configService) {
 this.configService = configService;
 }
 @Override
 protected void startService() throws Exception {
 System.out.println("Starting Plain Thread MBean");
 done = false;
 thread = new Thread(new Runnable() {
 @Override
 public void run() {
 try {
 while (!done) {
 System.out.println("Sleeping....");
 Thread.sleep(configService.getTimeout());
 System.out.println("Slept!");
 }
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 });
 thread.start();
 }
 @Override
 protected void stopService() throws Exception {
 System.out.println("Stopping Plain Thread MBean");
 done = true;
 }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

154

PlainThreadMBean and ConfigServiceMBean, and thus allows PlainThreadMBean use
ConfigServiceMBean easily.

Example: jboss-service.xml Service Descriptor

After writing the MBeans example, you can package the classes and the jboss-service.xml
descriptor in the META-INF folder of a service archive (.sar).

8.2. DEPLOYING JBOSS MBEAN SERVICES

Deploy and test sample MBeans in managed domain

Use the following command to deploy the sample MBeans (ServiceMBeanTest.sar) in a managed
domain:

deploy ~/Desktop/ServiceMBeanTest.sar --all-server-groups

Deploy and test sample MBeans on a standalone server

Use the following command to build and deploy the sample MBeans (ServiceMBeanTest.sar) on a
standalone server:

deploy ~/Desktop/ServiceMBeanTest.sar

Undeploy sample MBeans

Use the following command to undeploy the sample MBeans:

undeploy ServiceMBeanTest.sar

<server xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:jboss:service:7.0 jboss-service_7_0.xsd"
 xmlns="urn:jboss:service:7.0">
 <mbean code="org.jboss.example.mbean.support.ConfigService"
name="jboss.support:name=ConfigBean"/>
 <mbean code="org.jboss.example.mbean.support.PlainThread"
name="jboss.support:name=ThreadBean">
 <attribute name="configService">
 <inject bean="jboss.support:name=ConfigBean"/>
 </attribute>
 </mbean>
</server>

CHAPTER 8. JBOSS EAP MBEAN SERVICES

155

CHAPTER 9. CONCURRENCY UTILITIES
Concurrency Utilities is an API that accommodates Java SE concurrency utilities into the Java EE
application environment specifications. It is defined in JSR 236: Concurrency Utilities for Java™ EE.
JBoss EAP allows you to create, edit, and delete instances of EE concurrency utilities, thus making
these instances readily available for applications to use.

Concurrency Utilities help to extend the invocation context by pulling in the existing context’s application
threads and using these in its own threads. This extending of invocation context includes class loading,
JNDI, and security contexts, by default.

Types of Concurrency Utilities include:

Context Service

Managed Thread Factory

Managed Executor Service

Managed Scheduled Executor Service

Example: Concurrency Utilities in standalone.xml

<subsystem xmlns="urn:jboss:domain:ee:4.0">
 <spec-descriptor-property-replacement>false</spec-descriptor-
property-replacement>
 <concurrent>
 <context-services>
 <context-service name="default" jndi-
name="java:jboss/ee/concurrency/context/default" use-transaction-setup-
provider="true"/>
 </context-services>
 <managed-thread-factories>
 <managed-thread-factory name="default" jndi-
name="java:jboss/ee/concurrency/factory/default" context-
service="default"/>
 </managed-thread-factories>
 <managed-executor-services>
 <managed-executor-service name="default" jndi-
name="java:jboss/ee/concurrency/executor/default" context-
service="default" hung-task-threshold="60000" keepalive-time="5000"/>
 </managed-executor-services>
 <managed-scheduled-executor-services>
 <managed-scheduled-executor-service name="default"
jndi-name="java:jboss/ee/concurrency/scheduler/default" context-
service="default" hung-task-threshold="60000" keepalive-time="3000"/>
 </managed-scheduled-executor-services>
 </concurrent>
 <default-bindings context-
service="java:jboss/ee/concurrency/context/default"
datasource="java:jboss/datasources/ExampleDS" managed-executor-
service="java:jboss/ee/concurrency/executor/default" managed-scheduled-
executor-service="java:jboss/ee/concurrency/scheduler/default" managed-
thread-factory="java:jboss/ee/concurrency/factory/default"/>
</subsystem>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

156

https://jcp.org/ja/jsr/detail?id=236

9.1. CONTEXT SERVICE

Context service (javax.enterprise.concurrent.ContextService) allows you to build
contextual proxies from existing objects. Contextual proxy prepares the invocation context, which is used
by other concurrency utilities when the context is created or invoked, before transferring the invocation to
the original object.

Attributes of context service concurrency utility include:

name: A unique name within all the context services.

jndi-name: Defines where the context service should be placed in the JNDI.

use-transaction-setup-provider: Optional. Indicates if the contextual proxies built by the
context service should suspend transactions in context, when invoking the proxy objects. Its
value defaults to false, but the default context-service has the value true.

See the example above for the usage of context service concurrency utility.

Example: Add a New Context Service

Example: Change a Context Service

This operation requires reload.

Example: Remove a Context Service

This operation requires reload.

9.2. MANAGED THREAD FACTORY

The managed thread factory (javax.enterprise.concurrent.ManagedThreadFactory)
concurrency utility allows Java EE applications to create Java threads. JBoss EAP handles the managed
thread factory instances, hence Java EE applications cannot invoke any lifecycle related method.

Attributes of managed thread factory concurrency utility include:

context-service: A unique name within all managed thread factories.

jndi-name: Defines where in the JNDI the managed thread factory should be placed.

priority: Optional. Indicates the priority for new threads created by the factory, and defaults
to 5.

Example: Add a New Managed Thread Factory

/subsystem=ee/context-service=newContextService:add(jndi-
name=java:jboss/ee/concurrency/contextservice/newContextService)

/subsystem=ee/context-service=newContextService:write-attribute(name=jndi-
name,
value=java:jboss/ee/concurrency/contextservice/changedContextService)

/subsystem=ee/context-service=newContextService:remove()

CHAPTER 9. CONCURRENCY UTILITIES

157

Example: Change a Managed Thread Factory

This operation requires reload. Similarly, you can change other attributes as well.

Example: Remove a Managed Thread Factory

This operation requires reload.

9.3. MANAGED EXECUTOR SERVICE

Managed executor service (javax.enterprise.concurrent.ManagedExecutorService) allows
Java EE applications to submit tasks for asynchronous execution. JBoss EAP handles managed
executor service instances, hence Java EE applications cannot invoke any lifecycle related method.

Attributes of managed executor service concurrency utility include:

context-service: Optional. References an existing context service by its name. If specified,
then the referenced context service will capture the invocation context present when submitting a
task to the executor, which will then be used when executing the task.

jndi-name: Defines where the managed thread factory should be placed in the JNDI.

max-threads: Defines the maximum number of threads used by the executor, which defaults to
Integer.MAX_VALUE.

thread-factory: References an existing managed thread factory by its name, to handle the
creation of internal threads. If not specified, then a managed thread factory with default
configuration will be created and used internally.

core-threads: Provides the number of threads to keep in the executor’s pool, even if they are
idle. A value of 0 means there is no limit.

keepalive-time: Defines the time, in milliseconds, that an internal thread may be idle. The
attribute default value is 60000.

queue-length: Indicates the number of tasks that can be stored in the input queue. The
default value is 0, which means the queue capacity is unlimited.

hung-task-threshold: Defines the time, in milliseconds, after which tasks are considered
hung by the managed executor service and forcefully aborted. If the value is 0 (which is the
default), tasks are never considered hung.

long-running-tasks: Suggests optimizing the execution of long running tasks, and defaults
to false.

/subsystem=ee/managed-thread-factory=newManagedTF:add(context-
service=newContextService, jndi-
name=java:jboss/ee/concurrency/threadfactory/newManagedTF, priority=2)

/subsystem=ee/managed-thread-factory=newManagedTF:write-
attribute(name=jndi-name,
value=java:jboss/ee/concurrency/threadfactory/changedManagedTF)

/subsystem=ee/managed-thread-factory=newManagedTF:remove()

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

158

reject-policy: Defines the policy to use when a task is rejected by the executor. The
attribute value may be the default ABORT, which means an exception should be thrown, or
RETRY_ABORT, which means the executor will try to submit it once more, before throwing an
exception

Example: Add a New Managed Executor Service

Example: Change a Managed Executor Service

This operation requires reload. Similarly, you can change other attributes too.

Example: Remove a Managed Executor Service

This operation requires reload.

9.4. MANAGED SCHEDULED EXECUTOR SERVICE

Managed scheduled executor service
(javax.enterprise.concurrent.ManagedScheduledExecutorService) allows Java EE
applications to schedule tasks for asynchronous execution. JBoss EAP handles managed scheduled
executor service instances, hence Java EE applications cannot invoke any lifecycle related method.

Attributes of managed executor service concurrency utility include:

context-service: References an existing context service by its name. If specified then the
referenced context service will capture the invocation context present when submitting a task to
the executor, which will then be used when executing the task.

hung-task-threshold: Defines the time, in milliseconds, after which tasks are considered
hung by the managed scheduled executor service and forcefully aborted. If the value is 0 (which
is the default), tasks are never considered hung.

keepalive-time: Defines the time, in milliseconds, that an internal thread may be idle. The
attribute default value is 60000.

reject-policy: Defines the policy to use when a task is rejected by the executor. The
attribute value may be the default ABORT, which means an exception should be thrown, or
RETRY_ABORT, which means the executor will try to submit it once more, before throwing an
exception.

core-threads: Provides the number of threads to keep in the executor’s pool, even if they are
idle. A value of 0 means there is no limit.

/subsystem=ee/managed-executor-service=newManagedExecutorService:add(jndi-
name=java:jboss/ee/concurrency/executor/newManagedExecutorService, core-
threads=7, thread-factory=default)

/subsystem=ee/managed-executor-service=newManagedExecutorService:write-
attribute(name=core-threads,value=10)

/subsystem=ee/managed-executor-service=newManagedExecutorService:remove()

CHAPTER 9. CONCURRENCY UTILITIES

159

jndi-name: Defines where the managed scheduled executor service should be placed in the
JNDI .

long-running-tasks: Suggests optimizing the execution of long running tasks, and defaults
to false.

thread-factory: References an existing managed thread factory by its name, to handle the
creation of internal threads. If not specified, then a managed thread factory with default
configuration will be created and used internally.

Example: Add a New Managed Scheduled Executor Service

This operation requires reload.

Example: Changed a Managed Scheduled Executor Service

This operation requires reload. Similarly, you can change other attributes.

Example: Remove a Managed Scheduled Executor Service

This operation requires reload.

/subsystem=ee/managed-scheduled-executor-
service=newManagedScheduledExecutorService:add(jndi-
name=java:jboss/ee/concurrency/scheduledexecutor/newManagedScheduledExecut
orService, core-threads=7, context-service=default)

/subsystem=ee/managed-scheduled-executor-
service=newManagedScheduledExecutorService:write-attribute(name=core-
threads, value=10)

/subsystem=ee/managed-scheduled-executor-
service=newManagedScheduledExecutorService:remove()

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

160

CHAPTER 10. UNDERTOW

10.1. INTRODUCTION TO UNDERTOW HANDLER

Undertow is a web server designed to be used for both blocking and non-blocking tasks. It replaces
JBoss Web in JBoss EAP 7. Some of its main features are:

High Performance

Embeddable

Servlet 3.1

Web Sockets

Reverse Proxy

Request Lifecycle
When a client connects to the server, Undertow creates a
io.undertow.server.HttpServerConnection. When the client sends a request, it is parsed by
the Undertow parser, and then the resulting io.undertow.server.HttpServerExchange is passed
to the root handler. When the root handler finishes, one of four things can happen:

The exchange is completed

And exchange is considered complete if both request and response channels have been fully read or
written. For requests with no content, such as GET and HEAD, the request side is automatically
considered fully read. The read side is considered complete when a handler has written out the full
response and has closed and fully flushed the response channel. If an exchange is already complete,
then no action is taken.

The root handler returns normally without completing the exchange

In this case the exchange is completed by calling HttpServerExchange.endExchange().

The root handler returns with an Exception

In this case a response code of 500 is set and the exchange is ended using
HttpServerExchange.endExchange().

The root handler can return after HttpServerExchange.dispatch() has been called, or after
async IO has been started

In this case the dispatched task will be submitted to the dispatch executor, or if async IO has been
started on either the request or response channels then this will be started. In this case the exchange
will not be finished. It is up to your async task to finish the exchange when it is done processing.

By far the most common use of HttpServerExchange.dispatch() is to move execution from an IO
thread where blocking is not allowed into a worker thread, which does allow for blocking operations. This
pattern generally looks like:

Example: Dispatching to a Worker Thread

public void handleRequest(final HttpServerExchange exchange) throws
Exception {
 if (exchange.isInIoThread()) {
 exchange.dispatch(this);
 return;

CHAPTER 10. UNDERTOW

161

Because exchange is not actually dispatched until the call stack returns, you can be sure that more that
one thread is never active in an exchange at once. The exchange is not thread safe. However it can be
passed between multiple threads as long as both threads do not attempt to modify it at once.

Ending the Exchange
There are two ways to end an exchange, either by fully reading the request channel, and calling
shutdownWrites() on the response channel and then flushing it, or by calling
HttpServerExchange.endExchange(). When endExchange() is called, Undertow will check if the
content has been generated yet. If it has, then it will simply drain the request channel and close and flush
the response channel. If not and there are any default response listeners registered on the exchange,
then Undertow will give each of them a chance to generate a default response. This mechanism is how
default error pages are generated.

For more information on configuring the Undertow, see Configuring the Web Server in the JBoss EAP
Configuration Guide.

10.2. USING EXISTING UNDERTOW HANDLERS WITH A DEPLOYMENT

Undertow provides a default set of handlers that you can use with any application deployed to JBoss
EAP. You can find a full list of the available handlers as well as their attributes here.

To use a handler with a deployment, you need to add a WEB-INF/undertow-handlers.conf file.

Example: WEB-INF/undertow-handlers.conf File

allowed-methods(methods='GET')

All handlers may also take an optional predicate to apply that handler in specific cases.

Example: WEB-INF/undertow-handlers.conf File with Optional Predicate

path('/my-path') -> allowed-methods(methods='GET')

The above example will only apply the allowed-methods handler to the path /my-path.

Some handlers have a default parameter, which allows you to specify the value of that parameter in the
handler definition without using the name.

Example: WEB-INF/undertow-handlers.conf File Using the Default Parameter

path('/a') -> redirect('/b')

You also may update the WEB-INF/jboss-web.xml file to include the definition of one or more
handlers but using WEB-INF/undertow-handlers.conf is preferred.

Example: WEB-INF/jboss-web.xml File

 }
 //handler code
}

<jboss-web>
 <http-handler>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

162

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/#configuring_the_web_server_undertow

A full list of provided Undertow handlers can be found here.

10.3. CREATING CUSTOM HANDLERS

A custom handler can be defined in the WEB-INF/jboss-web.xml file.

Example: Define Custom Handler in WEB-INF/jboss-web.xml

Example: HttpHandler Class

Parameters could also be set for the custom handler via the WEB-INF/jboss-web.xml file.

Example: Defining Parameters in WEB-INF/jboss-web.xml

 <class-
name>io.undertow.server.handlers.AllowedMethodsHandler</class-name>
 <param>
 <param-name>methods</param-name>
 <param-value>GET</param-value>
 </param>
 </http-handler>
</jboss-web>

<jboss-web>
 <http-handler>
 <class-name>org.jboss.example.MyHttpHandler</class-name>
 </http-handler>
</jboss-web>

package org.jboss.example;

import io.undertow.server.HttpHandler;
import io.undertow.server.HttpServerExchange;

public class MyHttpHandler implements HttpHandler {
 private HttpHandler next;

 public MyHttpHandler(HttpHandler next) {
 this.next = next;
 }

 public void handleRequest(HttpServerExchange exchange) throws
Exception {
 // do something
 next.handleRequest(exchange);
 }
}

<jboss-web>
 <http-handler>
 <class-name>org.jboss.example.MyHttpHandler</class-name>
 <param>
 <param-name>myParam</param-name>

CHAPTER 10. UNDERTOW

163

For these parameters to work, the handler class needs to have corresponding setters.

Example: Defining Setter Methods in Handler

Instead of using the WEB-INF/jboss-web.xml for defining the handler, it could also be
defined in the WEB-INF/undertow-handlers.conf file.

myHttpHandler(myParam='foobar')

For the handler defined in WEB-INF/undertow-handlers.conf to work, two things need to
be created:

1. An implementation of HandlerBuilder, which defines the corresponding syntax bits for
undertow-handlers.conf and is responsible for creating the HttpHandler, wrapped in
a HandlerWrapper.

Example: HandlerBuilder Class

 <param-value>foobar</param-value>
 </param>
 </http-handler>
</jboss-web>

package org.jboss.example;

import io.undertow.server.HttpHandler;
import io.undertow.server.HttpServerExchange;

public class MyHttpHandler implements HttpHandler {
 private HttpHandler next;
 private String myParam;

 public MyHttpHandler(HttpHandler next) {
 this.next = next;
 }

 public void setMyParam(String myParam) {
 this.myParam = myParam;
 }

 public void handleRequest(HttpServerExchange exchange) throws
Exception {
 // do something, use myParam
 next.handleRequest(exchange);
 }
}

package org.jboss.example;

import io.undertow.server.HandlerWrapper;
import io.undertow.server.HttpHandler;
import io.undertow.server.handlers.builder.HandlerBuilder;

import java.util.Collections;

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

164

2. An entry in the file META-
INF/services/io.undertow.server.handlers.builder.HandlerBuilder. This
file must be on the class path, for example, in WEB-INF/classes.

org.jboss.example.MyHandlerBuilder

import java.util.Map;
import java.util.Set;

public class MyHandlerBuilder implements HandlerBuilder {
 public String name() {
 return "myHttpHandler";
 }

 public Map<String, Class<?>> parameters() {
 return Collections.<String, Class<?
>>singletonMap("myParam", String.class);
 }

 public Set<String> requiredParameters() {
 return Collections.emptySet();

 }

 public String defaultParameter() {
 return null;

 }

 public HandlerWrapper build(final Map<String, Object> config)
{
 return new HandlerWrapper() {
 public HttpHandler wrap(HttpHandler handler) {
 MyHttpHandler result = new
MyHttpHandler(handler);
 result.setMyParam((String)
config.get("myParam"));
 return result;
 }
 };
 }
}

CHAPTER 10. UNDERTOW

165

CHAPTER 11. JAVA TRANSACTION API (JTA)

11.1. OVERVIEW

11.1.1. Overview of Java Transactions API (JTA)

Introduction

These topics provide a foundational understanding of the Java Transactions API (JTA).

About Java Transactions API (JTA)

Transaction Lifecycle

JTA Transaction Example

11.2. TRANSACTION CONCEPTS

11.2.1. About Transactions

A transaction consists of two or more actions which must either all succeed or all fail. A successful
outcome is a commit, and a failed outcome is a roll-back. In a roll-back, each member’s state is reverted
to its state before the transaction attempted to commit.

The typical standard for a well-designed transaction is that it is Atomic, Consistent, Isolated, and
Durable (ACID).

11.2.2. About ACID Properties for Transactions

ACID is an acronym which stands for Atomicity, Consistency, Isolation, and Durability. This
terminology is usually used in the context of databases or transactional operations.

Atomicity

For a transaction to be atomic, all transaction members must make the same decision. Either they all
commit, or they all roll back. If atomicity is broken, what results is termed a heuristic outcome.

Consistency

Consistency means that data written to the database is guaranteed to be valid data, in terms of the
database schema. The database or other data source must always be in a consistent state. One
example of an inconsistent state would be a field in which half of the data is written before an
operation aborts. A consistent state would be if all the data were written, or the write were rolled back
when it could not be completed.

Isolation

Isolation means that data being operated on by a transaction must be locked before modification, to
prevent processes outside the scope of the transaction from modifying the data.

Durability

Durability means that in the event of an external failure after transaction members have been
instructed to commit, all members will be able to continue committing the transaction when the failure
is resolved. This failure may be related to hardware, software, network, or any other involved system.

11.2.3. About the Transaction Coordinator or Transaction Manager

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

166

The terms Transaction Coordinator and Transaction Manager (TM) are mostly interchangeable in terms
of transactions with JBoss EAP. The term Transaction Coordinator is usually used in the context of
distributed JTS transactions.

In JTA transactions, the TM runs within JBoss EAP and communicates with transaction participants
during the two-phase commit protocol.

The TM tells transaction participants whether to commit or roll back their data, depending on the outcome
of other transaction participants. In this way, it ensures that transactions adhere to the ACID standard.

About Transaction Participants

About ACID Properties for Transactions

About the 2-Phase Commit Protocol

11.2.4. About Transaction Participants

A transaction participant is any resource within a transaction, which has the ability to commit or roll back
state. It is generally a database or a JMS broker, but by implementing the transaction interface, a user
code could also act as a transaction participant. Each participant of a transaction independently decides
whether it is able to commit or roll back its state, and only if all participants can commit, does the
transaction as a whole succeed. Otherwise, each participant rolls back its state, and the transaction as a
whole fails. The TM coordinates the commit or rollback operations and determines the outcome of the
transaction.

11.2.5. About Java Transactions API (JTA)

Java Transactions API (JTA) is part of Java Enterprise Edition specification. It is defined in JSR-907.

Implementation of JTA is done using TM, which is covered by project Narayana for JBoss EAP
application server. TM allows application to assign various resources, for example, database or JMS
brokers, through a single global transaction. The global transaction is referred as XA transaction.
Generally resources with XA capabilities are included in such transaction, but non-XA resources could
also be part of global transaction. There are several optimizations which help non-XA resources to
behave as XA capable resources. For more information, refer LRCO Optimization for Single-phase
Commit

In this document, the term JTA refers to two things:

1. Java Transaction API, which is defined by Java EE specification

2. Indicates how the TM processes the transactions.
TM works in JTA transactions mode, the data is shared via memory and transaction context is
transferred by remote EJB calls. In JTS mode, the data is shared by sending Common Object
Request Broker Architecture (CORBA) messages and transaction context is transferred by IIOP
calls. Both modes support distribution of transaction over multiple JBoss EAP servers.

About Distributed Transactions

About XA Datasources and XA Transactions

11.2.6. About Java Transaction Service (JTS)

Java Transaction Service (JTS) is a mapping of the Object Transaction Service (OTS) to Java. Java EE
applications use the JTA API to manage transactions. JTA API then interacts with a JTS transaction

CHAPTER 11. JAVA TRANSACTION API (JTA)

167

implementation when the transaction manager is switched to JTS mode. JTS works over the IIOP
protocol. Transaction managers that use JTS communicate with each other using a process called an
Object Request Broker (ORB), using a communication standard called Common Object Request Broker
Architecture (CORBA). For more information, see ORB Configuration in the JBoss EAP Configuration
Guide.

Using JTA API from an application standpoint, a JTS transaction behaves in the same way as a JTA
transaction.

NOTE

The implementation of JTS included in JBoss EAP supports distributed transactions. The
difference from fully-compliant JTS transactions is interoperability with external third-party
ORBs. This feature is unsupported with JBoss EAP. Supported configurations distribute
transactions across multiple JBoss EAP containers only.

11.2.7. About XML Transaction Service

The XML Transaction Service (XTS) component supports the coordination of private and public web
services in a business transaction. Using XTS, you can coordinate complex business transactions in a
controlled and reliable manner. The XTS API supports a transactional coordination model based on the
WS-Coordination, WS-Atomic Transaction, and WS-Business Activity protocols.

11.2.7.1. Overview of Protocols Used by XTS

The WS-Coordination (WS-C) specification defines a framework that allows different coordination
protocols to be plugged in to coordinate work between clients, services, and participants.

The WS-Transaction (WS-T) protocol comprises the pair of transaction coordination protocols, WS-
Atomic Transaction (WS-AT) and WS-Business Activity (WS-BA), which utilize the coordination
framework provided by WS-C. WS-T is developed to unify existing traditional transaction processing
systems, allowing them to communicate reliably with one another.

11.2.7.2. Web Services-Atomic Transaction Process

An atomic transaction (AT) is designed to support short duration interactions where ACID semantics are
appropriate. Within the scope of an AT, web services typically employ bridging to access XA resources,
such as databases and message queues, under the control of the WS-T. When the transaction
terminates, the participant propagates the outcome decision of the AT to the XA resources, and the
appropriate commit or rollback actions are taken by each participant.

11.2.7.2.1. Atomic Transaction Process

1. To initiate an AT, the client application first locates a WS-C Activation Coordinator web service
that supports WS-T.

2. The client sends a WS-C CreateCoordinationContext message to the service, specifying
http://schemas.xmlsoap.org/ws/2004/10/wsat as its coordination type.

3. The client receives an appropriate WS-T context from the activation service.

4. The response to the CreateCoordinationContext message, the transaction context, has its
CoordinationType element set to the WS-AT namespace,
http://schemas.xmlsoap.org/ws/2004/10/wsat. It also contains a reference to the atomic

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

168

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/#orb_configuration
http://schemas.xmlsoap.org/ws/2004/10/wsat
http://schemas.xmlsoap.org/ws/2004/10/wsat

transaction coordinator endpoint, the WS-C Registration Service, where participants can be
enlisted.

5. The client normally proceeds to invoke web services and complete the transaction, either
committing all the changes made by the web services, or rolling them back. In order to be able to
drive this completion, the client must register itself as a participant for the completion protocol,
by sending a register message to the registration service whose endpoint was returned in the
coordination context.

6. Once registered for completion, the client application then interacts with web services to
accomplish its business-level work. With each invocation of a business web service, the client
inserts the transaction context into a SOAP header block, such that each invocation is implicitly
scoped by the transaction. The toolkits that support WS-AT aware web services provide facilities
to correlate contexts found in SOAP header blocks with back-end operations. This ensures that
modifications made by the web service are done within the scope of the same transaction as the
client and subject to commit or rollback by the Transaction Coordinator.

7. Once all the necessary application work is complete, the client can terminate the transaction,
with the intent of making any changes to the service state permanent. The completion
participant instructs the coordinator to try to commit or roll back the transaction. When the
commit or rollback operation completes, a status is returned to the participant to indicate the
outcome of the transaction.

For more details, see Web Services-Transaction Documentation.

11.2.7.3. Web Services-Business Activity Process

Web Services-Business Activity (WS-BA) defines a protocol for web service applications to enable
existing business processing and workflow systems to wrap their proprietary mechanisms and
interoperate across implementations and business boundaries.

Unlike the WS-AT protocol model, where participants inform the transaction coordinator of their state
only when asked, a child activity within a WS-BA can specify its outcome to the coordinator directly,
without waiting for a request. A participant may choose to exit the activity or notify the coordinator of a
failure at any point. This feature is useful when tasks fail because the notification can be used to modify
the goals and drive processing forward, without waiting until the end of the transaction to identify failures.

11.2.7.3.1. WS-BA Process

1. Services are requested to do work.

2. Wherever these services have the ability to undo any work, they inform the WS-BA, in case the
WS-BA later decides the cancel the work. If the WS-BA suffers a failure. it can instruct the
service to execute its undo behavior.

The WS-BA protocols employ a compensation-based transaction model. When a participant in a
business activity completes its work, it may choose to exit the activity. This choice does not allow any
subsequent rollback. Alternatively, the participant can complete its activity, signaling to the coordinator
that the work it has done can be compensated if, at some later point, another participant notifies a failure
to the coordinator. In this latter case, the coordinator asks each non-exited participant to compensate for
the failure, giving them the opportunity to execute whatever compensating action they consider
appropriate. If all participants exit or complete without failure, the coordinator notifies each completed
participant that the activity has been closed.

For more details, see Web Services-Transaction Documentation.

CHAPTER 11. JAVA TRANSACTION API (JTA)

169

http://narayana.io//docs/project/index.html#d0e14935
http://narayana.io//docs/project/index.html#d0e14935

11.2.7.4. Transaction Bridging Overview

Transaction Bridging describes the process of linking the Java EE and WS-T domains. The transaction
bridge component txbridge provides bi-directional linkage, such that either type of transaction may
encompass business logic designed for use with the other type. The technique used by the bridge is a
combination of interposition and protocol mapping.

In the transaction bridge, an interposed coordinator is registered into the existing transaction and
performs the additional task of protocol mapping; that is, it appears to its parent coordinator to be a
resource of its native transaction type, whilst appearing to its children to be a coordinator of their native
transaction type, even though these transaction types differ.

The transaction bridge resides in the package org.jboss.jbossts.txbridge and its sub-packages.
It consists of two distinct sets of classes, one for bridging in each direction.

For more details, see Transaction Bridge Documentation.

11.2.8. About XA Resources and XA Transactions

XA stands for eXtended Architecture, which was developed by the X/Open Group to define a transaction
that uses more than one back-end data store. The XA standard describes the interface between a global
TM and a local resource manager. XA allows multiple resources, such as application servers,
databases, caches, and message queues, to participate in the same transaction, while preserving all
four ACID properties. One of the four ACID properties is atomicity, which means that if one of the
participants fails to commit its changes, the other participants abort the transaction, and restore their
state to the same status as before the transaction occurred. An XA resource is a resource that can
participate in an XA global transaction.

An XA transaction is a transaction which can span multiple resources. It involves a coordinating TM, with
one or more databases or other transactional resources, all involved in a single global XA transaction.

11.2.9. About XA Recovery

TM implements X/Open XA specification and supports XA transactions across multiple XA resources.

XA Recovery is the process of ensuring that all resources affected by a transaction are updated or rolled
back, even if any of the resources, which are transaction participants, crash or become unavailable.
Within the scope of JBoss EAP, the transactions subsystem provides the mechanisms for XA
Recovery to any XA resources or subsystems which use them, such as XA datasources, JMS message
queues, and JCA resource adapters.

XA Recovery happens without user intervention. In the event of an XA Recovery failure, errors are
recorded in the log output. Contact Red Hat Global Support Services if you need assistance. The XA
recovery process is driven by periodic recovery thread which is launched by default each 2 minutes. The
periodic recovery thread processes all unfinished transactions.

NOTE

It can take four to eight minutes to complete the recovery for an in-doubt transaction
because it might require multiple runs of the recovery process.

11.2.10. Limitations of the XA Recovery Process

XA recovery has the following limitations:

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

170

http://narayana.io//docs/product/index.html#txbridge

The transaction log may not be cleared from a successfully committed transaction

If the JBoss EAP server crashes after an XAResource commit method successfully completes and
commits the transaction, but before the coordinator can update the log, you may see the following
warning message in the log when you restart the server:

ARJUNA016037: Could not find new XAResource to use for recovering non-
serializable XAResource XAResourceRecord

This is because upon recovery, the JBoss Transaction Manager (TM) sees the transaction
participants in the log and attempts to retry the commit. Eventually the JBoss TM assumes the
resources are committed and no longer retries the commit. In this situation, can safely ignore this
warning as the transaction is committed and there is no loss of data.

To prevent the warning, set the com.arjuna.ats.jta.xaAssumeRecoveryComplete property
value to true . This property is checked whenever a new XAResource instance cannot be located
from any registered XAResourceRecovery instance. When set to true, the recovery assumes that a
previous commit attempt succeeded and the instance can be removed from the log with no further
recovery attempts. This property must be used with care because it is global and when used
incorrectly could result in XAResource instances remaining in an uncommitted state.

NOTE

JBoss EAP 7.0 has an implemented enhancement to clear transaction logs after a
successfully committed transaction and the above situation should not occur frequently.

Rollback is not called for JTS transaction when a server crashes at the end of
XAResource.prepare()

If the JBoss EAP server crashes after the completion of an XAResource prepare() method call, all
of the participating XAResources are locked in the prepared state and remain that way upon server
restart. The transaction is not rolled back and the resources remain locked until the transaction times
out or a DBA manually rolls back the resources and clears the transaction log. For more information,
see https://issues.jboss.org/browse/JBTM-2124

Periodic recovery can occur on committed transactions.

When the server is under excessive load, the server log may contain the following warning message,
followed by a stacktrace:

ARJUNA016027: Local XARecoveryModule.xaRecovery got XA exception
XAException.XAER_NOTA: javax.transaction.xa.XAException

Under heavy load, the processing time taken by a transaction can overlap with the timing of the
periodic recovery process’s activity. The periodic recovery process detects the transaction still in
progress and attempts to initiate a rollback but in fact the transaction continues to completion. At the
time the periodic recovery attempts but fails the rollback, it records the rollback failure in the server
log. The underlying cause of this issue will be addressed in a future release, but in the meantime a
workaround is available.

Increase the interval between the two phases of the recovery process by setting the
com.arjuna.ats.jta.orphanSafetyInterval property to a value higher than the default value
of 10000 milliseconds. A value of 40000 milliseconds is recommended. Please note that this does not
solve the issue, instead it decreases the probability that it will occur and that the warning message
will be shown in the log. For more information, see https://developer.jboss.org/thread/266729

CHAPTER 11. JAVA TRANSACTION API (JTA)

171

https://issues.jboss.org/browse/JBTM-2124
https://developer.jboss.org/thread/266729

11.2.11. About the 2-Phase Commit Protocol

The two-phase commit (2PC) protocol refers to an algorithm to determine the outcome of a transaction.
2PC is driven by the Transaction Manager (TM) as a process of finishing XA transactions.

Phase 1: Prepare
In the first phase, the transaction participants notify the transaction coordinator whether they are able to
commit the transaction or must roll back.

Phase 2: Commit
In the second phase, the transaction coordinator makes the decision about whether the overall
transaction should commit or roll back. If any one of the participants cannot commit, the transaction must
roll back. Otherwise, the transaction can commit. The coordinator directs the resources about what to do,
and they notify the coordinator when they have done it. At that point, the transaction is finished.

11.2.12. About Transaction Timeouts

In order to preserve atomicity and adhere to the ACID standard for transactions, some parts of a
transaction can be long-running. Transaction participants need to lock an XA resource, that is part of
database table or message in a queue, when they commit. The TM needs to wait to hear back from each
transaction participant before it can direct them all whether to commit or roll back. Hardware or network
failures can cause resources to be locked indefinitely.

Transaction timeouts can be associated with transactions in order to control their lifecycle. If a timeout
threshold passes before the transaction commits or rolls back, the timeout causes the transaction to be
rolled back automatically.

You can configure default timeout values for the entire transaction subsystem, or you disable default
timeout values, and specify timeouts on a per-transaction basis.

11.2.13. About Distributed Transactions

A distributed transaction, is a transaction with participants on multiple JBoss EAP servers. Java
Transaction Service (JTS) specification mandates that JTS transactions be able to be distributed across
application servers from different vendors. Java Transaction API (JTA) does not define that but JBoss
EAP supports distributed JTA transactions among JBoss EAP servers.

NOTE

Transaction distribution among servers from different vendors is not supported.

NOTE

In other application server vendor documentation, you can find that term distributed
transaction means XA transaction. In context of JBoss EAP documentation, the
distributed transaction refers transactions distributed among several JBoss EAP
application servers. Transaction which consists from different resources (for example,
database resource and jms resource) are referred as XA transactions in this document.
For more information, refer to About Java Transaction Service (JTS) and About XA
Datasources and XA Transactions.

11.2.14. About the ORB Portability API

The Object Request Broker (ORB) is a process which sends and receives messages to transaction
participants, coordinators, resources, and other services distributed across multiple application servers.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

172

An ORB uses a standardized Interface Description Language (IDL) to communicate and interpret
messages. Common Object Request Broker Architecture (CORBA) is the IDL used by the ORB in JBoss
EAP.

The main type of service which uses an ORB is a system of distributed Java Transactions, using the
Java Transaction Service (JTS) specification. Other systems, especially legacy systems, may choose to
use an ORB for communication, rather than other mechanisms such as remote Enterprise JavaBeans or
JAX-WS or JAX-RS web services.

The ORB Portability API provides mechanisms to interact with an ORB. This API provides methods for
obtaining a reference to the ORB, as well as placing an application into a mode where it listens for
incoming connections from an ORB. Some of the methods in the API are not supported by all ORBs. In
those cases, an exception is thrown.

The API consists of two different classes:

com.arjuna.orbportability.orb

com.arjuna.orbportability.oa

Refer to the JBoss EAP Javadocs bundle from the Red Hat Customer Portal for specific details about the
methods and properties included in the ORB Portability API.

11.3. TRANSACTION OPTIMIZATIONS

11.3.1. Overview of Transaction Optimizations

The Transaction Manager (TM) of JBoss EAP includes several optimizations that your application can
take advantage of.

Optimizations serve to enhance the 2-phase commit protocol in particular cases. Generally, the TM
starts a global transaction which passes through the 2-phase commit. But when we optimize these
transactions, in certain cases, the TM does not need to proceed with full 2-phased commits and thus the
process gets faster.

Different optimizations used by the TM are described in detail below.

About the LRCO Optimization for Single-phase Commit (1PC)

About the Presumed-Abort Optimization

About the Read-Only Optimization

11.3.2. About the LRCO Optimization for Single-phase Commit (1PC)

Single-phase Commit (1PC)
Although the 2-phase commit protocol (2PC) is more commonly encountered with transactions, some
situations do not require, or cannot accommodate, both phases. In these cases, you can use the single
phase commit (1PC) protocol. The single phase commnit protocol is used when only one XA or non-XA
resource is a part of the global transaction.

The prepare phase generally locks the resource until the second phase is processed. Single-phase
commit means that the prepare phase is skipped and only the commit is processed on the resource. If
not specified, the single-phase commit optimization is used automatically when the global transaction
contains only one participant.

CHAPTER 11. JAVA TRANSACTION API (JTA)

173

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

Last Resource Commit Optimization (LRCO)
In situations where non-XA datasource participate in XA transaction, an optimization known as the Last
Resource Commit Optimization (LRCO) is employed. While this protocol allows for most transactions to
complete normally, certain types of error can cause an inconsistent transaction outcome. Therefore, use
this approach only as a last resort.

The non-XA resource is processed at the end of the prepare phase, and an attempt is made to commit it.
If the commit succeeds, the transaction log is written and the remaining resources go through the commit
phase. If the last resource fails to commit, the transaction is rolled back.

Where a single local TX datasource is used in a transaction, the LRCO is automatically applied to it.

Previously, adding non-XA resources to an XA transaction was achieved via the LRCO method.
However, there is a window of failure in LRCO. The procedure for adding non-XA resources to an XA
transaction via the LRCO method is as follows:

1. Prepare XA transaction

2. Commit LRCO

3. Write tx log

4. Commit XA transaction

If the procedure crashes between steps 2 and step 3, this could lead to data inconsistency and you
cannot commit the XA transaction. The data inconsistency is because the LRCO non-XA resource is
committed but information about preparation of XA resource was not recorded. The recovery manager
will rollback the resource after the server is up. CMR eliminates this restriction and allows non-XA to be
reliably enlisted in an XA transaction.

NOTE

CMR is a special case of LRCO optimalization, which could be used only for datasources.
It is not suitable for all non-XA resources.

About the 2-Phase Commit Protocol

11.3.2.1. Commit Markable Resource

Summary
Configuring access to a resource manager using the Commit Markable Resource (CMR) interface
ensures that a non-XA datasource can be reliably enlisted to an XA (2PC) transaction. It is an
implementation of the LRCO algorithm, which makes non-XA resource fully recoverable.

To configure CMR, you must:

1. Create tables in database.

2. Enable datasource to be connectable.

3. Add reference to transactions subsystem.

Create Tables in Database
A transaction may contain only one CMR resource. You must have a table created for which the
following SQL would work.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

174

SELECT xid,actionuid FROM _tableName_ WHERE transactionManagerID IN
(String[])
DELETE FROM _tableName_ WHERE xid IN (byte[[]])
INSERT INTO _tableName_ (xid, transactionManagerID, actionuid) VALUES
(byte[],String,byte[])

Example: Sybase Query

CREATE TABLE xids (xid varbinary(144), transactionManagerID varchar(64),
actionuid varbinary(28))

Example: Oracle Query

CREATE TABLE xids (xid RAW(144), transactionManagerID varchar(64),
actionuid RAW(28))
CREATE UNIQUE INDEX index_xid ON xids (xid)

Example: IBM Query

CREATE TABLE xids (xid VARCHAR(255) for bit data not null,
transactionManagerID
varchar(64), actionuid VARCHAR(255) for bit data not null)
CREATE UNIQUE INDEX index_xid ON xids (xid)

Example: SQL Server Query

CREATE TABLE xids (xid varbinary(144), transactionManagerID varchar(64),
actionuid varbinary(28))
CREATE UNIQUE INDEX index_xid ON xids (xid)

Example: Postgres Query

CREATE TABLE xids (xid bytea, transactionManagerID varchar(64), actionuid
bytea)
CREATE UNIQUE INDEX index_xid ON xids (xid)

Example: MariaDB Query

CREATE TABLE xids (xid BINARY(144), transactionManagerID varchar(64),
actionuid BINARY(28))
CREATE UNIQUE INDEX index_xid ON xids (xid)

Example: MySQL Query

CREATE TABLE xids (xid VARCHAR(255), transactionManagerID varchar(64),
actionuid VARCHAR(255))
CREATE UNIQUE INDEX index_xid ON xids (xid)

Enabling Datasource to be Connectable

CHAPTER 11. JAVA TRANSACTION API (JTA)

175

By default, the CMR feature is disabled for datasources. To enable it, you must create or modify the
datasource configuration and ensure that the connectible attribute is set to true. The following is an
example of the datasources section of a server XML configuration file:

<datasource enabled="true" jndi-
name="java:jboss/datasources/ConnectableDS" pool-name="ConnectableDS"
jta="true" use-java-context="true" connectable="true"/>

NOTE

This feature is not applicable to XA datasources.

You can also enable a resource manager as a CMR, using the management CLI, as follows:

/subsystem=datasources/data-source=ConnectableDS:add(enabled="true", jndi-
name="java:jboss/datasources/ConnectableDS", jta="true", use-java-
context="true", connectable="true", connection-url="validConnectionURL",
exception-
sorter="org.jboss.jca.adapters.jdbc.extensions.mssql.MSSQLExceptionSorter"
, driver-name="h2")

Updating an Existing Resource to Use the New CMR Feature
If you only need to update an existing datasource to use the CMR feature, then simply modify the
connectable attribute:

/subsystem=datasources/data-source=ConnectableDS:write-
attribute(name=connectable,value=true)

Add Reference to Transactions Subsystem
The transactions subsystem identifies the datasources that are CMR capable through an entry to the
transactions subsystem config section as shown below:

<subsystem xmlns="urn:jboss:domain:transactions:3.0">
 ...
 <commit-markable-resources>
 <commit-markable-resource jndi-
name="java:jboss/datasources/ConnectableDS">
 <xid-location name="xids" batch-size="100" immediate-
cleanup="false"/>
 </commit-markable-resource>
 ...
 </commit-markable-resources>
</subsystem>

NOTE

You must restart the server after adding the CMR reference under the transactions
subsystem.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

176

NOTE

Use the exception-sorter parameter in the datasource configuration. For details, see
Example Datasource Configurations in the JBoss EAP Configuration Guide.

11.3.3. About the Presumed-Abort Optimization

If a transaction is going to roll back, it can record this information locally and notify all enlisted
participants. This notification is only a courtesy, and has no effect on the transaction outcome. After all
participants have been contacted, the information about the transaction can be removed.

If a subsequent request for the status of the transaction occurs there will be no information available. In
this case, the requester assumes that the transaction has aborted and rolled back. This presumed-abort
optimization means that no information about participants needs to be made persistent until the
transaction has decided to commit, since any failure prior to this point will be assumed to be an abort of
the transaction.

11.3.4. About the Read-Only Optimization

When a participant is asked to prepare, it can indicate to the coordinator that it has not modified any data
during the transaction. Such a participant does not need to be informed about the outcome of the
transaction, since the fate of the participant has no affect on the transaction. This read-only participant
can be omitted from the second phase of the commit protocol.

11.4. TRANSACTION OUTCOMES

11.4.1. About Transaction Outcomes

There are three possible outcomes for a transaction.

Commit

If every transaction participant can commit, the transaction coordinator directs them to do so. See
About Transaction Commit for more information.

Roll-back

If any transaction participant cannot commit, or the transaction coordinator cannot direct participants
to commit, the transaction is rolled back. See About Transaction Roll-Back for more information.

Heuristic outcome

If some transaction participants commit and others roll back. it is termed a heuristic outcome.
Heuristic outcomes require human intervention. See About Heuristic Outcomes for more information.

11.4.2. About Transaction Commit

When a transaction participant commits, it makes its new state durable. The new state is created by the
participant doing the work involved in the transaction. The most common example is when a transaction
member writes records to a database.

After commit, information about the transaction is removed from the transaction coordinator, and the
newly-written state is now the durable state.

11.4.3. About Transaction Roll-Back

CHAPTER 11. JAVA TRANSACTION API (JTA)

177

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/example_datasource_configurations

A transaction participant rolls back by restoring its state to reflect the state before the transaction began.
After a roll-back, the state is the same as if the transaction had never been started.

11.4.4. About Heuristic Outcomes

A heuristic outcome, or non-atomic outcome, is a situation where the decisions of the participants in a
transaction differ from that of the transaction manager. Heuristic outcomes can cause loss of integrity to
the system, and usually requires human intervention to resolve. Do not write code which relies on them.

Heuristic outcomes typically occur during the second phase of the 2-phase commit (2PC) protocol. In
rare cases, this outcome may occur in 1PC. They are often caused by failures to the underlying
hardware or communications subsystems of the underlying servers.

Heuristic is possible due to timeouts in various subsystems or resources even with transaction manager
and full crash recovery. In any system that requires some form of distributed agreement, situations may
arise some parts of the system diverge in terms of the global outcome.

There are four different types of heuristic outcomes:

Heuristic rollback
The commit operation was not able to commit the resources but all of the participants were able to be
rolled back and so an atomic outcome was still achieved.

Heuristic commit
An attempted rollback operation failed because all of the participants unilaterally committed. This may
happen if, for example, the coordinator is able to successfully prepare the transaction but then decides to
roll it back because of a failure on its side, such as a failure to update its log. In the interim, the
participants may decide to commit.

Heuristic mixed
Some participants committed and others rolled back.

Heuristic hazard
The disposition of some of the updates is unknown. For those which are known, they have either all
been committed or all rolled back.

About the 2-Phase Commit Protocol

11.4.5. JBoss Transactions Errors and Exceptions

For details about exceptions thrown by methods of the UserTransaction class, see the UserTransaction
API specification at http://docs.oracle.com/javaee/7/api/javax/transaction/UserTransaction.html.

11.5. OVERVIEW OF THE TRANSACTION LIFECYCLE

11.5.1. Transaction Lifecycle

See About Java Transactions API (JTA) for more information on Java Transactions API (JTA).

When a resource asks to participate in a transaction, a chain of events is set in motion. The Transaction
Manager (TM) is a process that lives within the application server and manages transactions. Transaction
participants are objects which participate in a transaction. Resources are datasources, JMS connection
factories, or other JCA connections.

1. Your application starts a new transaction

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

178

http://docs.oracle.com/javaee/7/api/javax/transaction/UserTransaction.html

To begin a transaction, your application obtains an instance of class UserTransaction from JNDI
or, if it is an EJB, from an annotation. The UserTransaction interface includes methods for
beginning, committing, and rolling back top-level transactions. Newly-created transactions are
automatically associated with their invoking thread. Nested transactions are not supported in
JTA, so all transactions are top-level transactions.

An EJB starts a transaction when the UserTransaction.begin() method is called. The
default behavior of this transaction could be affected by use of the TransactionAttribute
annotation or the ejb.xml descriptor. Any resource that is used after that point is associated
with the transaction. If more than one resource is enlisted, your transaction becomes an XA
transaction, and participates in the two-phase commit protocol at commit time.

NOTE

By default, transactions are driven by application containers in EJB. This is called
Container Managed Transaction (CMT). To make the transaction user driven, you
will need to change the Transaction Management to Bean Managed
Transaction (BMT). In BMT, the UserTransaction object is available for user to
manage the transaction.

2. Your application modifies its state
In the next step, your application performs its work and makes changes to its state, only on
enlisted resources.

3. Your application decides to commit or roll back
When your application has finished changing its state, it decides whether to commit or roll back.
It calls the appropriate method, either UserTransaction.commit() or
UserTransaction.rollback(). For a CMT, this process is driven automatically, whereas for
a BMT, a method commit or rollback of the UserTransaction has to be explicitly called.

4. TM removes the transaction from its records
After the commit or rollback completes, the TM cleans up its records and removes information
about your transaction from the transaction log.

Failure Recovery

If a resource, transaction participant, or the application server crashes or become unavailable, the
Transaction Manager handles recovery when the underlying failure is resolved and the resource is
available again. This process happens automatically. For more information, see XA Recovery.

11.6. TRANSACTION SUBSYSTEM CONFIGURATION

The transactions subsystem allows you to configure transaction manager options such as statistics,
timeout values, and transaction logging. You can also manage transactions and view transaction
statistics.

For more information, see Configuring Transactions in the JBoss EAP Configuration Guide.

11.7. TRANSACTIONS USAGE IN PRACTICE

11.7.1. Transactions Usage Overview

The following procedures are useful when you need to use transactions in your application.

CHAPTER 11. JAVA TRANSACTION API (JTA)

179

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/#configuring_transactions

Control Transactions

Begin a Transaction

Commit a Transaction

Roll Back a Transaction

Handle a Heuristic Outcome in a Transaction

Handle Transaction Errors

11.7.2. Control Transactions

Introduction

This list of procedures outlines the different ways to control transactions in your applications which use
JTA APIs.

Begin a Transaction

Commit a Transaction

Roll Back a Transaction

JTA Transaction Example

11.7.3. Begin a Transaction

This procedure shows how to begin a new transaction. The API is the same either you run Transaction
Manager (TM) configured with JTA or JTS.

1. Get an instance of UserTransaction
You can get the instance using JNDI, injection, or an EJB’s context, if the EJB uses bean-
managed transactions, by means of a
@TransactionManagement(TransactionManagementType.BEAN) annotation.

a. JNDI

b. Injection

c. Context

In a stateless/stateful bean:

In a message-driven bean:

new InitialContext().lookup("java:comp/UserTransaction")

@Resource UserTransaction userTransaction;

@Resource SessionContext ctx;
ctx.getUserTransaction();

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

180

2. Call UserTransaction.begin() after you connect to your datasource

Participate in an existing transaction using the JTS specification

One of the benefits of EJBs (either used with CMT or BMT) is that the container manages all
the internals of the transactional processing, that is, you are free from taking care of
transaction being part of XA transaction or transaction distribution amongst JBoss EAP
containers.

Result

The transaction begins. All uses of your datasource until you commit or roll back the transaction are
transactional.

For a full example, see JTA Transaction Example.

11.7.4. Nested Transactions

Nested transactions allow an application to create a transaction that is embedded in an existing
transaction. In this model, multiple subtransactions can be embedded recursively in a transaction.
Subtransactions can be committed or rolled back without committing or rolling back the parent
transaction. However, the results of a commit operation are contingent upon the commitment of all the
transaction’s ancestors.

For implementation specific information, see the Narayana Project Documentation.

Nested transactions are available only when used with the JTS specification. Nested transactions are not
a supported feature of JBoss EAP application server. In addition, many database vendors do not support
nested transactions, so consult your database vendor before you add nested transactions to your
application.

11.7.5. Commit a Transaction

This procedure shows how to commit a transaction using the Java Transaction API (JTA).

Pre-requisites

You must begin a transaction before you can commit it. For information on how to begin a transaction,
refer to Begin a Transaction.

1. Call the commit() method on the UserTransaction

@Resource MessageDrivenContext ctx;
ctx.getUserTransaction()

try {
 System.out.println("\nCreating connection to database: "+url);
 stmt = conn.createStatement(); // non-tx statement
 try {
 System.out.println("Starting top-level transaction.");
 userTransaction.begin();
 stmtx = conn.createStatement(); // will be a tx-statement
 ...
 }
}

CHAPTER 11. JAVA TRANSACTION API (JTA)

181

http://narayana.io//docs/project/index.html

When you call the commit() method on the UserTransaction, the TM attempts to commit the
transaction.

2. If you use Container Managed Transactions (CMT), you do not need to manually commit
If you configure your bean to use Container Managed Transactions, the container will manage
the transaction lifecycle for you based on annotations you configure in the code.

Result

Your datasource commits and your transaction ends, or an exception is thrown.

NOTE

For a full example, see JTA Transaction Example.

11.7.6. Roll Back a Transaction

This procedure shows how to roll back a transaction using the Java Transaction API (JTA).

Pre-requisites

@Inject
private UserTransaction userTransaction;

public void updateTable(String key, String value) {
 EntityManager entityManager =
entityManagerFactory.createEntityManager();
 try {
 userTransaction.begin();
 <!-- Perform some data manipulation using entityManager -->
 ...
 // Commit the transaction
 userTransaction.commit();
 } catch (Exception ex) {
 <!-- Log message or notify Web page -->
 ...
 try {
 userTransaction.rollback();
 } catch (SystemException se) {
 throw new RuntimeException(se);
 }
 throw new RuntimeException(ex);
 } finally {
 entityManager.close();
 }
}

@PersistenceContext
private EntityManager em;

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public void updateTable(String key, String value)
 <!-- Perform some data manipulation using entityManager -->
 ...
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

182

You must begin a transaction before you can roll it back. For information on how to begin a transaction,
refer to Begin a Transaction.

1. Call the rollback() method on the UserTransaction
When you call the rollback() method on the UserTransaction, the TM attempts to roll
back the transaction and return the data to its previous state.

2. If you use Container Managed Transactions (CMT), you do not need to manually roll back
the transaction
If you configure your bean to use Container Managed Transactions, the container will manage
the transaction lifecycle for you based on annotations you configure in the code.

NOTE

Rollback for CMT occurs if RuntimeException is thrown. You can also explicitly call the
setRollbackOnly method to gain the rollback. Or, use the
@ApplicationException(rollback=true) for application exception to rollback.

Result

Your transaction is rolled back by the TM.

NOTE

For a full example, see JTA Transaction Example.

11.7.7. Handle a Heuristic Outcome in a Transaction

@Inject
private UserTransaction userTransaction;

public void updateTable(String key, String value)
 EntityManager entityManager =
entityManagerFactory.createEntityManager();
 try {
 userTransaction.begin():
 <!-- Perform some data manipulation using entityManager -->
 ...
 // Commit the transaction
 userTransaction.commit();
 } catch (Exception ex) {
 <!-- Log message or notify Web page -->
 ...
 try {
 userTransaction.rollback();
 } catch (SystemException se) {
 throw new RuntimeException(se);
 }
 throw new RuntimeException(e);
 } finally {
 entityManager.close();
 }
}

CHAPTER 11. JAVA TRANSACTION API (JTA)

183

Heuristic transaction outcomes are uncommon and usually have exceptional causes. The word heuristic
means "by hand", and that is the way that these outcomes usually have to be handled. See About
Heuristic Outcomes for more information about heuristic transaction outcomes.

This procedure shows how to handle a heuristic outcome of a transaction using the Java Transaction API
(JTA).

1. Determine the cause: The over-arching cause of a heuristic outcome in a transaction is that a
resource manager promised it could commit or roll-back, and then failed to fulfill the promise.
This could be due to a problem with a third-party component, the integration layer between the
third-party component and JBoss EAP, or JBoss EAP itself.
By far, the most common two causes of heuristic errors are transient failures in the environment
and coding errors in the code dealing with resource managers.

2. Fix transient failures in the environment: Typically, if there is a transient failure in your
environment, you will know about it before you find out about the heuristic error. This could be a
network outage, hardware failure, database failure, power outage, or a host of other things.
If you experienced the heuristic outcome in a test environment, during stress testing, it provides
information about weaknesses in your environment.

WARNING

JBoss EAP will automatically recover transactions that were in a non-
heuristic state at the time of the failure, but it does not attempt to recover
heuristic transactions.

3. Contact resource manager vendors: If you have no obvious failure in your environment, or the
heuristic outcome is easily reproducible, it is probably a coding error. Contact third-party vendors
to find out if a solution is available. If you suspect the problem is in the TM of JBoss EAP itself,
contact Red Hat Global Support Services.

4. Try to manually recover transaction through the management CLI. For more information, see the
Recover a Transaction Participant section of the JBoss EAP Configuration Guide.

5. In a test environment, delete the logs and restart JBoss EAP: In a test environment, or if you do
not care about the integrity of the data, deleting the transaction logs and restarting JBoss EAP
gets rid of the heuristic outcome. By default, the transaction logs are located in the
EAP_HOME/standalone/data/tx-object-store/ directory for a standalone server, or the
EAP_HOME/domain/servers/SERVER_NAME/data/tx-object-store/ directory in a
managed domain. In the case of a managed domain, SERVER_NAME refers to the name of the
individual server participating in a server group.

NOTE

The location of the transaction log also depends on the object store in use and the
values set for the oject-store-relative-to and object-store-path
parameters. For file system logs (such as a standard shadow and Apache
ActiveMQ Artemis logs) the default direction location is used, but when using a
JDBC object store, the transaction logs are stored in a database.



Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

184

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/#recover_a_transaction

6. Resolve the outcome by hand: The process of resolving the transaction outcome by hand is very
dependent on the exact circumstance of the failure. Typically, you need to take the following
steps, applying them to your situation:

a. Identify which resource managers were involved.

b. Examine the state in the TM and the resource managers.

c. Manually force log cleanup and data reconciliation in one or more of the involved
components.
The details of how to perform these steps are out of the scope of this documentation.

11.7.8. JTA Transaction Error Handling

11.7.8.1. Handle Transaction Errors

Transaction errors are challenging to solve because they are often dependent on timing. Here are some
common errors and ideas for troubleshooting them.

NOTE

These guidelines do not apply to heuristic errors. If you experience heuristic errors, refer
to Handle a Heuristic Outcome in a Transaction and contact Red Hat Global Support
Services for assistance.

The transaction timed out but the business logic thread did not notice

This type of error often manifests itself when Hibernate is unable to obtain a database connection for
lazy loading. If it happens frequently, you can lengthen the timeout value. See the JBoss EAP
Configuration Guide for information on configuring the transaction manager.
If that is not feasible, you may be able to tune your external environment to perform more quickly, or
restructure your code to be more efficient. Contact Red Hat Global Support Services if you still have
trouble with timeouts.

The transaction is already running on a thread, or you receive a NotSupportedException
exception

The NotSupportedException exception usually indicates that you attempted to nest a JTA
transaction, and this is not supported. If you were not attempting to nest a transaction, it is likely that
another transaction was started in a thread pool task, but finished the task without suspending or
ending the transaction.
Applications typically use UserTransaction, which handles this automatically. If so, there may be a
problem with a framework.

If your code does use TransactionManager or Transaction methods directly, be aware of the
following behavior when committing or rolling back a transaction. If your code uses
TransactionManager methods to control your transactions, committing or rolling back a
transaction disassociates the transaction from the current thread. However, if your code uses
Transaction methods, the transaction may not be associated with the running thread, and you
need to disassociate it from its threads manually, before returning it to the thread pool.

You are unable to enlist a second local resource

This error happens if you try to enlist a second non-XA resource into a transaction. If you need
multiple resources in a transaction, they must be XA.

CHAPTER 11. JAVA TRANSACTION API (JTA)

185

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/configuration_guide/#configuring_the_transaction_manager

11.8. TRANSACTION REFERENCES

11.8.1. JTA Transaction Example

This example illustrates how to begin, commit, and roll back a JTA transaction. You need to adjust the
connection and datasource parameters to suit your environment, and set up two test tables in your
database.

public class JDBCExample {
 public static void main (String[] args) {
 Context ctx = new InitialContext();
 // Change these two lines to suit your environment.
 DataSource ds = (DataSource)ctx.lookup("jdbc/ExampleDS");
 Connection conn = ds.getConnection("testuser", "testpwd");
 Statement stmt = null; // Non-transactional statement
 Statement stmtx = null; // Transactional statement
 Properties dbProperties = new Properties();

 // Get a UserTransaction
 UserTransaction txn = new
InitialContext().lookup("java:comp/UserTransaction");

 try {
 stmt = conn.createStatement(); // non-tx statement

 // Check the database connection.
 try {
 stmt.executeUpdate("DROP TABLE test_table");
 stmt.executeUpdate("DROP TABLE test_table2");
 }
 catch (Exception e) {
 throw new RuntimeException(e);
 // assume not in database.
 }

 try {
 stmt.executeUpdate("CREATE TABLE test_table (a INTEGER,b
INTEGER)");
 stmt.executeUpdate("CREATE TABLE test_table2 (a INTEGER,b
INTEGER)");
 }
 catch (Exception e) {
 throw new RuntimeException(e);
 }

 try {
 System.out.println("Starting top-level transaction.");

 txn.begin();

 stmtx = conn.createStatement(); // will be a tx-statement

 // First, we try to roll back changes

 System.out.println("\nAdding entries to table 1.");

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

186

 stmtx.executeUpdate("INSERT INTO test_table (a, b) VALUES
(1,2)");

 ResultSet res1 = null;

 System.out.println("\nInspecting table 1.");

 res1 = stmtx.executeQuery("SELECT * FROM test_table");

 while (res1.next()) {
 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }
 System.out.println("\nAdding entries to table 2.");

 stmtx.executeUpdate("INSERT INTO test_table2 (a, b) VALUES
(3,4)");
 res1 = stmtx.executeQuery("SELECT * FROM test_table2");

 System.out.println("\nInspecting table 2.");

 while (res1.next()) {
 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }

 System.out.print("\nNow attempting to rollback
changes.");

 txn.rollback();

 // Next, we try to commit changes
 txn.begin();
 stmtx = conn.createStatement();
 System.out.println("\nAdding entries to table 1.");
 stmtx.executeUpdate("INSERT INTO test_table (a, b) VALUES
(1,2)");
 ResultSet res2 = null;

 System.out.println("\nNow checking state of table 1.");

 res2 = stmtx.executeQuery("SELECT * FROM test_table");

 while (res2.next()) {
 System.out.println("Column 1: "+res2.getInt(1));
 System.out.println("Column 2: "+res2.getInt(2));
 }

 System.out.println("\nNow checking state of table 2.");

 stmtx = conn.createStatement();

 res2 = stmtx.executeQuery("SELECT * FROM test_table2");

 while (res2.next()) {

CHAPTER 11. JAVA TRANSACTION API (JTA)

187

11.8.2. Transaction API Documentation

The transaction JTA API documentation is available as javadoc at the following location:

UserTransaction - http://docs.oracle.com/javaee/7/api/javax/transaction/UserTransaction.html

If you use Red Hat JBoss Developer Studio to develop your applications, the API documentation is
included in the Help menu.

 System.out.println("Column 1: "+res2.getInt(1));
 System.out.println("Column 2: "+res2.getInt(2));
 }

 txn.commit();
 }
 catch (Exception ex) {
 throw new RuntimeException(ex);

 }
 }
 catch (Exception sysEx) {
 sysEx.printStackTrace();
 System.exit(0);
 }
 }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

188

http://docs.oracle.com/javaee/7/api/javax/transaction/UserTransaction.html

CHAPTER 12. JAVA PERSISTENCE API (JPA)

12.1. ABOUT JAVA PERSISTENCE API (JPA)

The Java Persistence API (JPA) is a Java specification for accessing, persisting, and managing data
between Java objects or classes and a relational database. The JPA specification recognizes the interest
and the success of the transparent object or relational mapping paradigm. It standardizes the basic APIs
and the metadata needed for any object or relational persistence mechanism.

NOTE

JPA itself is just a specification, not a product; it cannot perform persistence or anything
else by itself. JPA is just a set of interfaces, and requires an implementation.

12.2. ABOUT HIBERNATE CORE

Hibernate Core is an object-relational mapping framework for the Java language. It provides a framework
for mapping an object-oriented domain model to a relational database, allowing applications to avoid
direct interaction with the database. Hibernate solves object-relational impedance mismatch problems by
replacing direct, persistent database accesses with high-level object handling functions.

12.3. HIBERNATE ENTITYMANAGER

Hibernate EntityManager implements the programming interfaces and lifecycle rules as defined by the
Java Persistence 2.1 specification. Together with Hibernate Annotations, this wrapper implements a
complete (and standalone) JPA persistence solution on top of the mature Hibernate Core. You may use
a combination of all three together, annotations without JPA programming interfaces and lifecycle, or
even pure native Hibernate Core, depending on the business and technical needs of your project. You
can at all times fall back to Hibernate native APIs, or if required, even to native JDBC and SQL. It
provides JBoss EAP with a complete Java Persistence solution.

JBoss EAP is 100% compliant with the Java Persistence 2.1 specification. Hibernate also provides
additional features to the specification. To get started with JPA and JBoss EAP, see the bean-
validation, greeter, and kitchensink quickstarts that ship with JBoss EAP. For information
about how to download and run the quickstarts, see Using the Quickstart Examples.

Persistence in JPA is available in containers like EJB 3 or the more modern CDI, Java Context and
Dependency Injection, as well as in standalone Java SE applications that execute outside of a particular
container. The following programming interfaces and artifacts are available in both environments.

EntityManagerFactory

An entity manager factory provides entity manager instances, all instances are configured to connect
to the same database, to use the same default settings as defined by the particular implementation,
etc. You can prepare several entity manager factories to access several data stores. This interface is
similar to the SessionFactory in native Hibernate.

EntityManager

The EntityManager API is used to access a database in a particular unit of work. It is used to create
and remove persistent entity instances, to find entities by their primary key identity, and to query over
all entities. This interface is similar to the Session in Hibernate.

Persistence context

A persistence context is a set of entity instances in which for any persistent entity identity there is a
unique entity instance. Within the persistence context, the entity instances and their lifecycle is

CHAPTER 12. JAVA PERSISTENCE API (JPA)

189

https://www.jcp.org/en/jsr/detail?id=338

managed by a particular entity manager. The scope of this context can either be the transaction, or an
extended unit of work.

Persistence unit

The set of entity types that can be managed by a given entity manager is defined by a persistence
unit. A persistence unit defines the set of all classes that are related or grouped by the application,
and which must be collocated in their mapping to a single data store.

Container-managed entity manager

An entity manager whose lifecycle is managed by the container.

Application-managed entity manager

An entity manager whose lifecycle is managed by the application.

JTA entity manager

Entity manager involved in a JTA transaction.

Resource-local entity manager

Entity manager using a resource transaction (not a JTA transaction).

12.4. CREATE A SIMPLE JPA APPLICATION

Follow the procedure below to create a simple JPA application in Red Hat Developer studio.

1. Create a JPA project in JBoss Developer Studio.

a. In Red Hat JBoss Developer Studio, click File-→ New -→ Project. Find JPA in the list,
expand it, and select JPA Project. You are presented with the following dialog.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

190

Figure 12.1. New JPA Project Dialog

b. Enter a Project name.

c. Select a Target runtime. If no target runtime is available, follow these instructions to define
a new server and runtime: Add the JBoss EAP Server Using Define New Server .

CHAPTER 12. JAVA PERSISTENCE API (JPA)

191

d. Under JPA version, ensure 2.1 is selected.

e. Under Configuration, choose Basic JPA Configuration.

f. Click Finish.

g. If prompted, choose whether you wish to associate this type of project with the JPA
perspective window.

2. Create and configure a new persistence settings file.

a. Open an EJB 3.x project in Red Hat JBoss Developer Studio.

b. Right click the project root directory in the Project Explorer panel.

c. Select New → Other… ​.

d. Select XML File from the XML folder and click Next.

e. Select the ejbModule/META-INF/ folder as the parent directory.

f. Name the file persistence.xml and click Next.

g. Select Create XML file from an XML schema file and click Next.

h. Select http://java.sun.com/xml/ns/persistence/persistence_2.0.xsd from the Select XML
Catalog entry list and click Next.

Figure 12.2. Persistence XML Schema

i. Click Finish to create the file. The persistence.xml has been created in the META-INF/
folder and is ready to be configured.

Example: Persistence Settings File

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

192

http://java.sun.com/xml/ns/persistence/persistence_2.0.xsd

12.5. HIBERNATE CONFIGURATION

The configuration for entity managers both inside an application server and in a standalone application
reside in a persistence archive. A persistence archive is a JAR file which must define a
persistence.xml file that resides in the META-INF/ folder.

You can connect to the database using the persistence.xml file. There are two ways of doing this:

Specifying a data source which is configured in the datasources subsystem in JBoss EAP.
The jta-data-source points to the JNDI name of the data source this persistence unit maps
to. The java:jboss/datasources/ExampleDS here points to the H2 DB embedded in the
JBoss EAP.

Example of object-relational-mapping in the persistence.xml File

Explicitly configuring the persistence.xml file by specifying the connection properties.

Example of Specifying Connection Properties in the persistence.xml file

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">
 <persistence-unit name="example" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-
data-source>
 <mapping-file>ormap.xml</mapping-file>
 <jar-file>TestApp.jar</jar-file>
 <class>org.test.Test</class>
 <shared-cache-mode>NONE</shared-cache-mode>
 <validation-mode>CALLBACK</validation-mode>
 <properties>
 <property name="hibernate.dialect"
value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create-
drop"/>
 </properties>
 </persistence-unit>
</persistence>

<persistence>
 <persistence-unit name="myapp">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-
source>
 <properties>

 </properties>
 </persistence-unit>
</persistence>

<property name="javax.persistence.jdbc.driver"

CHAPTER 12. JAVA PERSISTENCE API (JPA)

193

For the complete list of connection properties, see Connection Properties Configurable in the
persistence.xml File.

There are a number of properties that control the behavior of Hibernate at runtime. All are optional and
have reasonable default values. These Hibernate properties are all used in the persistence.xml file.
For the complete list of all configurable Hibernate properties, see Hibernate Properties in the appendix of
this guide.

12.6. SECOND-LEVEL CACHES

12.6.1. About Second-Level Caches

A second-level cache is a local data store that holds information persisted outside the application
session. The cache is managed by the persistence provider, improving run-time by keeping the data
separate from the application.

JBoss EAP supports caching for the following purposes:

Web Session Clustering

Stateful Session Bean Clustering

SSO Clustering

Hibernate Second Level Cache

Each cache container defines a "repl" and a "dist" cache. These caches should not be used directly by
user applications.

12.6.2. Configure a Second-level Cache for Hibernate

The configuration of Infinispan to act as the second-level cache for Hibernate can be done in two ways:

It is recommended to configure the second-level cache through JPA applications, using the
persistence.xml file.

Alternatively, you can configure the second-level cache through Hibernate native applications,
using the hibernate.cfg.xml file.

Configuring a Second-level Cache for Hibernate Using JPA Applications

1. See Create a Simple JPA Application for details on how to create a Hibernate configuration file
in Red Hat JBoss Developer Studio.

2. Add the following to the persistence.xml file:

value="org.hsqldb.jdbcDriver"/>
<property name="javax.persistence.jdbc.user" value="sa"/>
<property name="javax.persistence.jdbc.password" value=""/>
<property name="javax.persistence.jdbc.url" value="jdbc:hsqldb:."/>

<persistence-unit name="...">
 (...) <!-- other configuration -->
 <shared-cache-mode>$SHARED_CACHE_MODE</shared-cache-mode>
 <properties>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

194

NOTE

The following can be value of $SHARED_CACHE_MODE:

ALL - All entities should be considered cacheable.

ENABLE_SELECTIVE - Only entities marked as cacheable should be
considered cacheable.

DISABLE_SELECTIVE - All entities except the ones explicitly marked as not
cacheable, should be considered cacheable.

Configuring a Second-level Cache for Hibernate Using Hibernate Native Applications

1. Create the hibernate.cfg.xml file in the deployment’s class path.

2. Add the following XML to the hibernate.cfg.xml file. The XML needs to be within the
<session-factory> tag:

12.7. HIBERNATE ANNOTATIONS

The org.hibernate.annotations package contains some annotations which are offered by
Hibernate, on top of the standard JPA annotations.

Table 12.1. General Annotations

Annotation Description

Check Arbitrary SQL check constraints which can be defined
at the class, property or collection level.

 <property name="hibernate.cache.use_second_level_cache"
value="true" />
 <property name="hibernate.cache.use_query_cache" value="true" />
 </properties>
</persistence-unit>

<property
name="hibernate.cache.use_second_level_cache">true</property>
<property name="hibernate.cache.use_query_cache">true</property>
<property
name="hibernate.cache.region.factory_class">org.jboss.as.jpa.hiberna
te5.infinispan.InfinispanRegionFactory</property>

CHAPTER 12. JAVA PERSISTENCE API (JPA)

195

Immutable Mark an Entity or a Collection as immutable. No
annotation means the element is mutable.

An immutable entity may not be updated by the
application. Updates to an immutable entity will be
ignored, but no exception is thrown.

@Immutable placed on a collection makes the
collection immutable, meaning additions and
deletions to and from the collection are not allowed. A
HibernateException is thrown in this case.

Annotation Description

Table 12.2. Caching Entities

Annotation Description

Cache Add caching strategy to a root entity or a collection.

Table 12.3. Collection Related Annotations

Annotation Description

MapKeyType Defines the type of key of a persistent map.

ManyToAny Defines a ToMany association pointing to different
entity types. Matching the entity type is done through
a metadata discriminator column. This kind of
mapping should be only marginal.

OrderBy Order a collection using SQL ordering (not HQL
ordering).

OnDelete Strategy to use on collections, arrays and on joined
subclasses delete. OnDelete of secondary tables is
currently not supported.

Persister Specify a custom persister.

Sort Collection sort (Java level sorting).

Where Where clause to add to the element Entity or target
entity of a collection. The clause is written in SQL.

WhereJoinTable Where clause to add to the collection join table. The
clause is written in SQL.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

196

Table 12.4. Custom SQL for CRUD Operations

Annotation Description

Loader Overwrites Hibernate default FIND method.

SQLDelete Overwrites the Hibernate default DELETE method.

SQLDeleteAll Overwrites the Hibernate default DELETE ALL
method.

SQLInsert Overwrites the Hibernate default INSERT INTO
method.

SQLUpdate Overwrites the Hibernate default UPDATE method.

Subselect Maps an immutable and read-only entity to a given
SQL subselect expression.

Synchronize Ensures that auto-flush happens correctly and that
queries against the derived entity do not return stale
data. Mostly used with Subselect.

Table 12.5. Entity

Annotation Description

Cascade Apply a cascade strategy on an association.

CHAPTER 12. JAVA PERSISTENCE API (JPA)

197

Entity Adds additional metadata that may be needed
beyond what is defined in the standard @Entity.

mutable: whether this entity is mutable or
not

dynamicInsert: allow dynamic SQL for
inserts

dynamicUpdate: allow dynamic SQL for
updates

selectBeforeUpdate: Specifies that
Hibernate should never perform an SQL
UPDATE unless it is certain that an object is
actually modified.

polymorphism: whether the entity
polymorphism is of
PolymorphismType.IMPLICIT (default) or
PolymorphismType.EXPLICIT

optimisticLock: optimistic locking
strategy (OptimisticLockType.VERSION,
OptimisticLockType.NONE,
OptimisticLockType.DIRTY or
OptimisticLockType.ALL)

NOTE

The annotation "Entity" is
deprecated and scheduled
for removal in future
releases. Its individual
attributes or values should
become annotations.

Polymorphism Used to define the type of polymorphism Hibernate
will apply to entity hierarchies.

Proxy Lazy and proxy configuration of a particular class.

Table Complementary information to a table either primary
or secondary.

Tables Plural annotation of Table.

Target Defines an explicit target, avoiding reflection and
generics resolving.

Tuplizer Defines a tuplizer for an entity or a component.

Annotation Description

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

198

Tuplizers Defines a set of tuplizers for an entity or a
component.

Annotation Description

Table 12.6. Fetching

Annotation Description

BatchSize Batch size for SQL loading.

FetchProfile Defines the fetching strategy profile.

FetchProfiles Plural annotation for @FetchProfile.

Table 12.7. Filters

Annotation Description

Filter Adds filters to an entity or a target entity of a
collection.

FilterDef Filter definition.

FilterDefs Array of filter definitions.

FilterJoinTable Adds filters to a join table collection.

FilterJoinTables Adds multiple @FilterJoinTable to a collection.

Filters Adds multiple @Filter.

ParamDef A parameter definition.

Table 12.8. Primary Keys

Annotation Description

Generated This annotated property is generated by the
database.

GenericGenerator Generator annotation describing any kind of
Hibernate generator in a detyped manner.

GenericGenerators Array of generic generator definitions.

CHAPTER 12. JAVA PERSISTENCE API (JPA)

199

NaturalId Specifies that a property is part of the natural id of the
entity.

Parameter Key/value pattern.

RowId Support for ROWID mapping feature of Hibernate.

Annotation Description

Table 12.9. Inheritance

Annotation Description

DiscriminatorFormula Discriminator formula to be placed at the root entity.

DiscriminatorOptions Optional annotation to express Hibernate specific
discriminator properties.

MetaValue Maps a given discriminator value to the
corresponding entity type.

Table 12.10. Mapping JP-QL/HQL Queries

Annotation Description

NamedNativeQueries Extends NamedNativeQueries to hold Hibernate
NamedNativeQuery objects.

NamedNativeQuery Extends NamedNativeQuery with Hibernate
features.

NamedQueries Extends NamedQueries to hold Hibernate
NamedQuery objects.

NamedQuery Extends NamedQuery with Hibernate features.

Table 12.11. Mapping Simple Properties

Annotation Description

AccessType Property Access type.

Columns Support an array of columns. Useful for component
user type mappings.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

200

ColumnTransformer Custom SQL expression used to read the value from
and write a value to a column. Use for direct object
loading/saving as well as queries. The write
expression must contain exactly one '?' placeholder
for the value.

ColumnTransformers Plural annotation for @ColumnTransformer.
Useful when more than one column is using this
behavior.

Annotation Description

Table 12.12. Property

Annotation Description

Formula To be used as a replacement for @Column in most
places. The formula has to be a valid SQL fragment.

Index Defines a database index.

JoinFormula To be used as a replacement for @JoinColumn in
most places. The formula has to be a valid SQL
fragment.

Parent Reference the property as a pointer back to the
owner (generally the owning entity).

Type Hibernate Type.

TypeDef Hibernate Type definition.

TypeDefs Hibernate Type definition array.

Table 12.13. Single Association Related Annotations

Annotation Description

Any Defines a ToOne association pointing to several
entity types. Matching the according entity type is
done through a metadata discriminator column. This
kind of mapping should be only marginal.

AnyMetaDef Defines @Any and @ManyToAny metadata.

CHAPTER 12. JAVA PERSISTENCE API (JPA)

201

AnyMetaDefs Defines @Any and @ManyToAny set of metadata.
Can be defined at the entity level or the package
level.

Fetch Defines the fetching strategy used for the given
association.

LazyCollection Defines the lazy status of a collection.

LazyToOne Defines the lazy status of a ToOne association (i.e.
OneToOne or ManyToOne).

NotFound Action to do when an element is not found on an
association.

Annotation Description

Table 12.14. Optimistic Locking

Annotation Description

OptimisticLock Whether or not a change of the annotated property
will trigger an entity version increment. If the
annotation is not present, the property is involved in
the optimistic lock strategy (default).

OptimisticLocking Used to define the style of optimistic locking to be
applied to an entity. In a hierarchy, only valid on the
root entity.

Source Optional annotation in conjunction with Version and
timestamp version properties. The annotation value
decides where the timestamp is generated.

12.8. HIBERNATE QUERY LANGUAGE

12.8.1. About Hibernate Query Language

Introduction to JPQL
The Java Persistence Query Language (JPQL) is a platform-independent object-oriented query language
defined as part of the Java Persistence API (JPA) specification. JPQL is used to make queries against
entities stored in a relational database. It is heavily inspired by SQL, and its queries resemble SQL
queries in syntax, but operate against JPA entity objects rather than directly with database tables.

Introduction to HQL

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

202

The Hibernate Query Language (HQL) is a powerful query language, similar in appearance to SQL.
Compared with SQL, however, HQL is fully object-oriented and understands notions like inheritance,
polymorphism and association.

HQL is a superset of JPQL. An HQL query is not always a valid JPQL query, but a JPQL query is
always a valid HQL query.

Both HQL and JPQL are non-type-safe ways to perform query operations. Criteria queries offer a type-
safe approach to querying.

12.8.2. About HQL Statements

Both HQL and JPQL allow SELECT, UPDATE, and DELETE statements. HQL additionally allows INSERT
statements, in a form similar to a SQL INSERT-SELECT.

IMPORTANT

Care should be taken when executing bulk update or delete operations because they may
result in inconsistencies between the database and the entities in the active persistence
context. In general, bulk update and delete operations should only be performed within a
transaction in a new persistence context or before fetching or accessing entities whose
state might be affected by such operations.

Table 12.15. HQL Statements

Statement Description

SELECT The BNF for SELECT statements in HQL is:

select_statement :: =
 [select_clause]
 from_clause
 [where_clause]
 [groupby_clause]
 [having_clause]
 [orderby_clause]

UDPATE The BNF for UPDATE statement in HQL is the same
as it is in JPQL

DELETE The BNF for DELETE statements in HQL is the same
as it is in JPQL

12.8.3. About the INSERT Statement

HQL adds the ability to define INSERT statements. There is no JPQL equivalent to this. The BNF for an
HQL INSERT statement is:

insert_statement ::= insert_clause select_statement

insert_clause ::= INSERT INTO entity_name (attribute_list)

CHAPTER 12. JAVA PERSISTENCE API (JPA)

203

attribute_list ::= state_field[, state_field]*

The attribute_list is analogous to the column specification in the SQL INSERT statement.
For entities involved in mapped inheritance, only attributes directly defined on the named entity can be
used in the attribute_list. Superclass properties are not allowed and subclass properties do not
make sense. In other words, INSERT statements are inherently non-polymorphic.

WARNING

The select_statement can be any valid HQL select query, with the caveat that
the return types must match the types expected by the insert. Currently, this is
checked during query compilation rather than allowing the check to relegate to the
database. This can cause problems with Hibernate Types that are equivalent as
opposed to equal. For example, this might cause mismatch issues between an
attribute mapped as an org.hibernate.type.DateType and an attribute
defined as a org.hibernate.type.TimestampType, even though the database
might not make a distinction or might be able to handle the conversion.

For the id attribute, the insert statement gives you two options. You can either explicitly specify the id
property in the attribute_list, in which case its value is taken from the corresponding select
expression, or omit it from the attribute_list in which case a generated value is used. This latter
option is only available when using id generators that operate "in the database"; attempting to use this
option with any "in memory" type generators will cause an exception during parsing.

For optimistic locking attributes, the insert statement again gives you two options. You can either specify
the attribute in the attribute_list in which case its value is taken from the corresponding select
expressions, or omit it from the attribute_list in which case the seed value defined by the
corresponding org.hibernate.type.VersionType is used.

Example. INSERT Query Statements

String hqlInsert = "insert into DelinquentAccount (id, name) select c.id,
c.name from Customer c where ...";
int createdEntities = s.createQuery(hqlInsert).executeUpdate();

12.8.4. About the FROM Clause

The FROM clause is responsible defining the scope of object model types available to the rest of the
query. It also is responsible for defining all the "identification variables" available to the rest of the query.

12.8.5. About the WITH Clause

HQL defines a WITH clause to qualify the join conditions. This is specific to HQL; JPQL does not define
this feature.

Example. With Clause



Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

204

select distinct c
from Customer c
 left join c.orders o
 with o.value > 5000.00

The important distinction is that in the generated SQL the conditions of the with clause are made part
of the on clause in the generated SQL as opposed to the other queries in this section where the
HQL/JPQL conditions are made part of the where clause in the generated SQL. The distinction in this
specific example is probably not that significant. The with clause is sometimes necessary in more
complicated queries.

Explicit joins may reference association or component/embedded attributes. In the case of
component/embedded attributes, the join is logical and does not correlate to a physical (SQL) join.

12.8.6. About HQL Ordering

The results of the query can also be ordered. The ORDER BY clause is used to specify the selected
values to be used to order the result. The types of expressions considered valid as part of the order-by
clause include:

state fields

component/embeddable attributes

scalar expressions such as arithmetic operations, functions, etc.

identification variable declared in the select clause for any of the previous expression types

HQL does not mandate that all values referenced in the order-by clause must be named in the select
clause, but it is required by JPQL. Applications desiring database portability should be aware that not all
databases support referencing values in the order-by clause that are not referenced in the select clause.

Individual expressions in the order-by can be qualified with either ASC (ascending) or DESC (descending)
to indicate the desired ordering direction.

Example. Order-by Examples

// legal because p.name is implicitly part of p
select p
from Person p
order by p.name

select c.id, sum(o.total) as t
from Order o
 inner join o.customer c
group by c.id
order by t

12.8.7. About Bulk Update, Insert and Delete

Hibernate allows the use of Data Manipulation Language (DML) to bulk insert, update and delete data
directly in the mapped database through the Hibernate Query Language.

CHAPTER 12. JAVA PERSISTENCE API (JPA)

205

WARNING

Using DML may violate the object/relational mapping and may affect object state.
Object state stays in memory and by using DML, the state of an in-memory object is
not affected depending on the operation that is performed on the underlying
database. In-memory data must be used with care if DML is used.

The pseudo-syntax for UPDATE and DELETE statements is:

(UPDATE | DELETE) FROM? EntityName (WHERE where_conditions)?.

NOTE

The FROM keyword and the WHERE Clause are optional.

The result of execution of a UPDATE or DELETE statement is the number of rows that are actually
affected (updated or deleted).

Example. Bulk Update Statement

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlUpdate = "update Company set name = :newName where name =
:oldName";
int updatedEntities = s.createQuery(hqlUpdate)
 .setString("newName", newName)
 .setString("oldName", oldName)
 .executeUpdate();
tx.commit();
session.close();

Example. Bulk Delete Statement

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlDelete = "delete Company where name = :oldName";
int deletedEntities = s.createQuery(hqlDelete)
 .setString("oldName", oldName)
 .executeUpdate();
tx.commit();
session.close();

The int value returned by the Query.executeUpdate() method indicates the number of entities
within the database that were affected by the operation.

Internally, the database might use multiple SQL statements to execute the operation in response to a
DML Update or Delete request. This might be because of relationships that exist between tables and the
join tables that may need to be updated or deleted.



Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

206

For example, issuing a delete statement (as in the example above) may actually result in deletes being
executed against not just the Company table for companies that are named with oldName, but also
against joined tables. Thus, a Company table in a BiDirectional ManyToMany relationship with an
Employee table, would lose rows from the corresponding join table Company_Employee as a result of
the successful execution of the previous example.

The int deletedEntries value above will contain a count of all the rows affected due to this
operation, including the rows in the join tables.

The pseudo-syntax for INSERT statements is: INSERT INTO EntityName properties_list
select_statement.

NOTE

Only the INSERT INTO … ​ SELECT … ​ form is supported; not the INSERT INTO … ​
VALUES … ​ form.

Example. Bulk Insert Statement

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlInsert = "insert into Account (id, name) select c.id, c.name
from Customer c where ...";
int createdEntities = s.createQuery(hqlInsert)
 .executeUpdate();
tx.commit();
session.close();

If you do not supply the value for the id attribute via the SELECT statement, an identifier is generated
for you, as long as the underlying database supports auto-generated keys. The return value of this bulk
insert operation is the number of entries actually created in the database.

12.8.8. About Collection Member References

References to collection-valued associations actually refer to the values of that collection.

Example. Collection References

select c
from Customer c
 join c.orders o
 join o.lineItems l
 join l.product p
where o.status = 'pending'
 and p.status = 'backorder'

// alternate syntax
select c
from Customer c,
 in(c.orders) o,
 in(o.lineItems) l

CHAPTER 12. JAVA PERSISTENCE API (JPA)

207

 join l.product p
where o.status = 'pending'
 and p.status = 'backorder'

In the example, the identification variable o actually refers to the object model type Order which is the
type of the elements of the Customer#orders association.

The example also shows the alternate syntax for specifying collection association joins using the IN
syntax. Both forms are equivalent. Which form an application chooses to use is simply a matter of taste.

12.8.9. About Qualified Path Expressions

It was previously stated that collection-valued associations actually refer to the values of that collection.
Based on the type of collection, there are also available a set of explicit qualification expressions.

Table 12.16. Qualified Path Expressions

Expression Description

VALUE Refers to the collection value. Same as not specifying
a qualifier. Useful to explicitly show intent. Valid for
any type of collection-valued reference.

INDEX According to HQL rules, this is valid for both Maps
and Lists which specify a
javax.persistence.OrderColumn annotation to refer to
the Map key or the List position (aka the
OrderColumn value). JPQL however, reserves this for
use in the List case and adds KEY for the MAP case.
Applications interested in JPA provider portability
should be aware of this distinction.

KEY Valid only for Maps. Refers to the map’s key. If the
key is itself an entity, can be further navigated.

ENTRY Only valid only for Maps. Refers to the Map’s logical
java.util.Map.Entry tuple (the combination of its key
and value). ENTRY is only valid as a terminal path
and only valid in the select clause.

Example. Qualified Collection References

// Product.images is a Map<String,String> : key = a name, value = file
path

// select all the image file paths (the map value) for Product#123
select i
from Product p
 join p.images i
where p.id = 123

// same as above
select value(i)

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

208

from Product p
 join p.images i
where p.id = 123

// select all the image names (the map key) for Product#123
select key(i)
from Product p
 join p.images i
where p.id = 123

// select all the image names and file paths (the 'Map.Entry') for
Product#123
select entry(i)
from Product p
 join p.images i
where p.id = 123

// total the value of the initial line items for all orders for a customer
select sum(li.amount)
from Customer c
 join c.orders o
 join o.lineItems li
where c.id = 123
 and index(li) = 1

12.8.10. About Scalar Functions

HQL defines some standard functions that are available regardless of the underlying database in use.
HQL can also understand additional functions defined by the dialect and the application.

12.8.11. About HQL Standardized Functions

The following functions are available in HQL regardless of the underlying database in use.

Table 12.17. HQL Standardized Functions

Function Description

BIT_LENGTH Returns the length of binary data.

CAST Performs a SQL cast. The cast target should name
the Hibernate mapping type to use.

EXTRACT Performs a SQL extraction on datetime values. An
extraction extracts parts of the datetime (the year, for
example). See the abbreviated forms below.

SECOND Abbreviated extract form for extracting the second.

MINUTE Abbreviated extract form for extracting the minute.

HOUR Abbreviated extract form for extracting the hour.

CHAPTER 12. JAVA PERSISTENCE API (JPA)

209

DAY Abbreviated extract form for extracting the day.

MONTH Abbreviated extract form for extracting the month.

YEAR Abbreviated extract form for extracting the year.

STR Abbreviated form for casting a value as character
data.

Function Description

Application developers can also supply their own set of functions. This would usually represent either
custom SQL functions or aliases for snippets of SQL. Such function declarations are made by using the
addSqlFunction method of org.hibernate.cfg.Configuration

12.8.12. About the Concatenation Operation

HQL defines a concatenation operator in addition to supporting the concatenation (CONCAT) function.
This is not defined by JPQL, so portable applications should avoid using it. The concatenation operator
is taken from the SQL concatenation operator - ||.

Example. Concatenation Operation Example

select 'Mr. ' || c.name.first || ' ' || c.name.last
from Customer c
where c.gender = Gender.MALE

12.8.13. About Dynamic Instantiation

There is a particular expression type that is only valid in the select clause. Hibernate calls this "dynamic
instantiation". JPQL supports some of this feature and calls it a "constructor expression".

Example. Dynamic Instantiation Example - Constructor

select new Family(mother, mate, offspr)
from DomesticCat as mother
 join mother.mate as mate
 left join mother.kittens as offspr

So rather than dealing with the Object[] here we are wrapping the values in a type-safe java object that
will be returned as the results of the query. The class reference must be fully qualified and it must have a
matching constructor.

The class here need not be mapped. If it does represent an entity, the resulting instances are returned in
the NEW state (not managed!).

This is the part JPQL supports as well. HQL supports additional "dynamic instantiation" features. First,
the query can specify to return a List rather than an Object[] for scalar results:

Example. Dynamic Instantiation Example - List

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

210

select new list(mother, offspr, mate.name)
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

The results from this query will be a List<List> as opposed to a List<Object[]>

HQL also supports wrapping the scalar results in a Map.

Example. Dynamic Instantiation Example - Map

select new map(mother as mother, offspr as offspr, mate as mate)
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

select new map(max(c.bodyWeight) as max, min(c.bodyWeight) as min,
count(*) as n)
from Cat cxt

The results from this query will be a List<Map<String,Object>> as opposed to a List<Object[]>. The keys
of the map are defined by the aliases given to the select expressions.

12.8.14. About HQL Predicates

Predicates form the basis of the where clause, the having clause and searched case expressions.
They are expressions which resolve to a truth value, generally TRUE or FALSE, although boolean
comparisons involving NULL values generally resolve to UNKNOWN.

HQL Predicates

Null Predicate
Check a value for null. Can be applied to basic attribute references, entity references and
parameters. HQL additionally allows it to be applied to component/embeddable types.

Null Check Examples

// select everyone with an associated address
select p
from Person p
where p.address is not null

// select everyone without an associated address
select p
from Person p
 where p.address is null

Like Predicate
Performs a like comparison on string values. The syntax is:

like_expression ::=
 string_expression
 [NOT] LIKE pattern_value
 [ESCAPE escape_character]

CHAPTER 12. JAVA PERSISTENCE API (JPA)

211

The semantics follow that of the SQL like expression. The pattern_value is the pattern to
attempt to match in the string_expression. Just like SQL, pattern_value can use _
(underscore) and % (percent) as wildcards. The meanings are the same. The _ matches any
single character. The % matches any number of characters.

The optional escape_character is used to specify an escape character used to escape the
special meaning of _ and % in the pattern_value. This is useful when needing to search on
patterns including either _ or %.

Like Predicate Examples

select p
from Person p
where p.name like '%Schmidt'

select p
from Person p
where p.name not like 'Jingleheimmer%'

// find any with name starting with "sp_"
select sp
from StoredProcedureMetadata sp
where sp.name like 'sp|_%' escape '|'

Between Predicate
Analogous to the SQL BETWEEN expression. Perform an evaluation that a value is within the
range of 2 other values. All the operands should have comparable types.

Between Predicate Examples

select p
from Customer c
 join c.paymentHistory p
where c.id = 123
 and index(p) between 0 and 9

select c
from Customer c
where c.president.dateOfBirth
 between {d '1945-01-01'}
 and {d '1965-01-01'}

select o
from Order o
where o.total between 500 and 5000

select p
from Person p
where p.name between 'A' and 'E'

IN Predicate
The IN predicate performs a check that a particular value is in a list of values. Its syntax is:

in_expression ::= single_valued_expression

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

212

 [NOT] IN single_valued_list

single_valued_list ::= constructor_expression |
 (subquery) |
 collection_valued_input_parameter

constructor_expression ::= (expression[, expression]*)

The types of the single_valued_expression and the individual values in the
single_valued_list must be consistent. JPQL limits the valid types here to string, numeric,
date, time, timestamp, and enum types. In JPQL, single_valued_expression can only refer
to:

"state fields", which is its term for simple attributes. Specifically this excludes association
and component/embedded attributes.

entity type expressions.
In HQL, single_valued_expression can refer to a far more broad set of expression
types. Single-valued association are allowed. So are component/embedded attributes,
although that feature depends on the level of support for tuple or "row value constructor
syntax" in the underlying database. Additionally, HQL does not limit the value type in any
way, though application developers should be aware that different types may incur limited
support based on the underlying database vendor. This is largely the reason for the JPQL
limitations.

The list of values can come from a number of different sources. In the
constructor_expression and collection_valued_input_parameter, the list of
values must not be empty; it must contain at least one value.

In Predicate Examples

select p
from Payment p
where type(p) in (CreditCardPayment, WireTransferPayment)

select c
from Customer c
where c.hqAddress.state in ('TX', 'OK', 'LA', 'NM')

select c
from Customer c
where c.hqAddress.state in ?

select c
from Customer c
where c.hqAddress.state in (
 select dm.state
 from DeliveryMetadata dm
 where dm.salesTax is not null
)

// Not JPQL compliant!
select c
from Customer c
where c.name in (
 ('John','Doe'),

CHAPTER 12. JAVA PERSISTENCE API (JPA)

213

 ('Jane','Doe')
)

// Not JPQL compliant!
select c
from Customer c
where c.chiefExecutive in (
 select p
 from Person p
 where ...
)

12.8.15. About Relational Comparisons

Comparisons involve one of the comparison operators - =, >, >=, <, ⇐, <>. HQL also defines != as a
comparison operator synonymous with <>. The operands should be of the same type.

Example. Relational Comparison Examples

// numeric comparison
select c
from Customer c
where c.chiefExecutive.age < 30

// string comparison
select c
from Customer c
where c.name = 'Acme'

// datetime comparison
select c
from Customer c
where c.inceptionDate < {d '2000-01-01'}

// enum comparison
select c
from Customer c
where c.chiefExecutive.gender = com.acme.Gender.MALE

// boolean comparison
select c
from Customer c
where c.sendEmail = true

// entity type comparison
select p
from Payment p
where type(p) = WireTransferPayment

// entity value comparison
select c
from Customer c
where c.chiefExecutive = c.chiefTechnologist

Comparisons can also involve subquery qualifiers - ALL, ANY, SOME. SOME and ANY are synonymous.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

214

The ALL qualifier resolves to true if the comparison is true for all of the values in the result of the
subquery. It resolves to false if the subquery result is empty.

Example. ALL Subquery Comparison Qualifier Example

// select all players that scored at least 3 points
// in every game.
select p
from Player p
where 3 > all (
 select spg.points
 from StatsPerGame spg
 where spg.player = p
)

The ANY/SOME qualifier resolves to true if the comparison is true for some of (at least one of) the values
in the result of the subquery. It resolves to false if the subquery result is empty.

12.9. HIBERNATE SERVICES

12.9.1. About Hibernate Services

Services are classes that provide Hibernate with pluggable implementations of various types of
functionality. Specifically they are implementations of certain service contract interfaces. The interface is
known as the service role; the implementation class is known as the service implementation. Generally
speaking, users can plug in alternate implementations of all standard service roles (overriding); they can
also define additional services beyond the base set of service roles (extending).

12.9.2. About Service Contracts

The basic requirement for a service is to implement the marker interface org.hibernate.service.Service.
Hibernate uses this internally for some basic type safety.

Optionally, the service can also implement the org.hibernate.service.spi.Startable and
org.hibernate.service.spi.Stoppable interfaces to receive notifications of being started and stopped.
Another optional service contract is org.hibernate.service.spi.Manageable which marks the service as
manageable in JMX provided the JMX integration is enabled.

12.9.3. Types of Service Dependencies

Services are allowed to declare dependencies on other services using either of 2 approaches:

@org.hibernate.service.spi.InjectService

Any method on the service implementation class accepting a single parameter and annotated with
@InjectService is considered requesting injection of another service.

By default the type of the method parameter is expected to be the service role to be injected. If the
parameter type is different than the service role, the serviceRole attribute of the InjectService
should be used to explicitly name the role.

By default injected services are considered required, that is the start up will fail if a named dependent
service is missing. If the service to be injected is optional, the required attribute of the
InjectService should be declared as false (default is true).

org.hibernate.service.spi.ServiceRegistryAwareService

CHAPTER 12. JAVA PERSISTENCE API (JPA)

215

The second approach is a pull approach where the service implements the optional service interface
org.hibernate.service.spi.ServiceRegistryAwareService which declares a single
injectServices method.

During startup, Hibernate will inject the org.hibernate.service.ServiceRegistry itself into
services which implement this interface. The service can then use the ServiceRegistry reference
to locate any additional services it needs.

12.9.4. The Service Registry

12.9.4.1. About the ServiceRegistry

The central service API, aside from the services themselves, is the org.hibernate.service.ServiceRegistry
interface. The main purpose of a service registry is to hold, manage and provide access to services.

Service registries are hierarchical. Services in one registry can depend on and utilize services in that
same registry as well as any parent registries.

Use org.hibernate.service.ServiceRegistryBuilder to build a org.hibernate.service.ServiceRegistry
instance.

Example Using ServiceRegistryBuilder to Create a ServiceRegistry

12.9.5. Custom Services

12.9.5.1. About Custom Services

Once a org.hibernate.service.ServiceRegistry is built it is considered immutable; the
services themselves might accept reconfiguration, but immutability here means adding or replacing
services. So another role provided by the org.hibernate.service.ServiceRegistryBuilder is
to allow tweaking of the services that will be contained in the
org.hibernate.service.ServiceRegistry generated from it.

There are two means to tell a org.hibernate.service.ServiceRegistryBuilder about custom
services.

Implement a org.hibernate.service.spi.BasicServiceInitiator class to control on-
demand construction of the service class and add it to the
org.hibernate.service.ServiceRegistryBuilder using its addInitiator method.

Just instantiate the service class and add it to the
org.hibernate.service.ServiceRegistryBuilder using its addService method.

Either approach is valid for extending a registry, such as adding new service roles, and overriding
services, such as replacing service implementations.

Example. Use ServiceRegistryBuilder to Replace an Existing Service with a Custom
Service

ServiceRegistryBuilder registryBuilder =
 new ServiceRegistryBuilder(bootstrapServiceRegistry);
 ServiceRegistry serviceRegistry =
registryBuilder.buildServiceRegistry();

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

216

12.9.6. The Boot-Strap Registry

12.9.6.1. About the Boot-strap Registry

The boot-strap registry holds services that absolutely have to be available for most things to work. The
main service here is the ClassLoaderService which is a perfect example. Even resolving
configuration files needs access to class loading services i.e. resource look ups. This is the root registry,
no parent, in normal use.

Instances of boot-strap registries are built using the
org.hibernate.service.BootstrapServiceRegistryBuilder class.

ServiceRegistryBuilder registryBuilder =
 new ServiceRegistryBuilder(bootstrapServiceRegistry);
registryBuilder.addService(JdbcServices.class, new MyCustomJdbcService());
ServiceRegistry serviceRegistry = registryBuilder.buildServiceRegistry();

public class MyCustomJdbcService implements JdbcServices{

 @Override
 public ConnectionProvider getConnectionProvider() {
 return null;
 }

 @Override
 public Dialect getDialect() {
 return null;
 }

 @Override
 public SqlStatementLogger getSqlStatementLogger() {
 return null;
 }

 @Override
 public SqlExceptionHelper getSqlExceptionHelper() {
 return null;
 }

 @Override
 public ExtractedDatabaseMetaData getExtractedMetaDataSupport() {
 return null;
 }

 @Override
 public LobCreator getLobCreator(LobCreationContext lobCreationContext)
{
 return null;
 }

 @Override
 public ResultSetWrapper getResultSetWrapper() {
 return null;
 }
}

CHAPTER 12. JAVA PERSISTENCE API (JPA)

217

Using BootstrapServiceRegistryBuilder

Example. Using BootstrapServiceRegistryBuilder

12.9.6.2. BootstrapRegistry Services

org.hibernate.service.classloading.spi.ClassLoaderService

Hibernate needs to interact with class loaders. However, the manner in which Hibernate, or any
library, should interact with class loaders varies based on the runtime environment that is hosting the
application. Application servers, OSGi containers, and other modular class loading systems impose
very specific class loading requirements. This service provides Hibernate an abstraction from this
environmental complexity. And just as importantly, it does so in a single-swappable-component
manner.
In terms of interacting with a class loader, Hibernate needs the following capabilities:

the ability to locate application classes

the ability to locate integration classes

the ability to locate resources, such as properties files and XML files

the ability to load java.util.ServiceLoader

NOTE

Currently, the ability to load application classes and the ability to load
integration classes are combined into a single load class capability on the
service. That may change in a later release.

org.hibernate.integrator.spi.IntegratorService

Applications, add-ons and other modules need to integrate with Hibernate. The previous approach
required a component, usually an application, to coordinate the registration of each individual module.
This registration was conducted on behalf of each module’s integrator.
This service focuses on the discovery aspect. It leverages the standard Java
java.util.ServiceLoader capability provided by the
org.hibernate.service.classloading.spi.ClassLoaderService in order to discover
implementations of the org.hibernate.integrator.spi.Integrator contract.

BootstrapServiceRegistry bootstrapServiceRegistry =
 new BootstrapServiceRegistryBuilder()
 // pass in org.hibernate.integrator.spi.Integrator instances which are
not
 // auto-discovered (for whatever reason) but which should be included
 .with(anExplicitIntegrator)
 // pass in a class loader that Hibernate should use to load
application classes
 .with(anExplicitClassLoaderForApplicationClasses)
 // pass in a class loader that Hibernate should use to load resources
 .with(anExplicitClassLoaderForResources)
 // see BootstrapServiceRegistryBuilder for rest of available methods
 ...
 // finally, build the bootstrap registry with all the above options
 .build();

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

218

Integrators would simply define a file named /META-
INF/services/org.hibernate.integrator.spi.Integrator and make it available on the
class path.

This file is used by the java.util.ServiceLoader mechanism. It lists, one per line, the fully
qualified names of classes which implement the org.hibernate.integrator.spi.Integrator
interface.

12.9.7. SessionFactory Registry

While it is best practice to treat instances of all the registry types as targeting a given
org.hibernate.SessionFactory, the instances of services in this group explicitly belong to a single
org.hibernate.SessionFactory.

The difference is a matter of timing in when they need to be initiated. Generally they need access to the
org.hibernate.SessionFactory to be initiated. This special registry is
org.hibernate.service.spi.SessionFactoryServiceRegistry

12.9.7.1. SessionFactory Services

org.hibernate.event.service.spi.EventListenerRegistry

Description

Service for managing event listeners.

Initiator

org.hibernate.event.service.internal.EventListenerServiceInitiator

Implementations

org.hibernate.event.service.internal.EventListenerRegistryImpl

12.9.8. Integrators

The org.hibernate.integrator.spi.Integrator is intended to provide a simple means for
allowing developers to hook into the process of building a functioning SessionFactory. The
org.hibernate.integrator.spi.Integrator interface defines two methods of interest:

integrate allows us to hook into the building process

disintegrate allows us to hook into a SessionFactory shutting down.

NOTE

There is a third method defined in org.hibernate.integrator.spi.Integrator,
an overloaded form of integrate, accepting a
org.hibernate.metamodel.source.MetadataImplementor instead of
org.hibernate.cfg.Configuration.

In addition to the discovery approach provided by the IntegratorService, applications
can manually register Integrator implementations when building the
BootstrapServiceRegistry.

12.9.8.1. Integrator use-cases

CHAPTER 12. JAVA PERSISTENCE API (JPA)

219

The main use cases for an org.hibernate.integrator.spi.Integrator are registering event
listeners and providing services, see
org.hibernate.integrator.spi.ServiceContributingIntegrator.

Example. Registering Event Listeners

12.10. ENVERS

12.10.1. About Hibernate Envers

Hibernate Envers is an auditing and versioning system, providing JBoss EAP with a means to track
historical changes to persistent classes. Audit tables are created for entities annotated with @Audited,
which store the history of changes made to the entity. The data can then be retrieved and queried.

Envers allows developers to:

audit all mappings defined by the JPA specification,

audit all hibernate mappings that extend the JPA specification,

public class MyIntegrator implements
org.hibernate.integrator.spi.Integrator {

 public void integrate(
 Configuration configuration,
 SessionFactoryImplementor sessionFactory,
 SessionFactoryServiceRegistry serviceRegistry) {
 // As you might expect, an EventListenerRegistry is the thing with
which event listeners are registered It is a
 // service so we look it up using the service registry
 final EventListenerRegistry eventListenerRegistry =
serviceRegistry.getService(EventListenerRegistry.class);

 // If you wish to have custom determination and handling of
"duplicate" listeners, you would have to add an
 // implementation of the
org.hibernate.event.service.spi.DuplicationStrategy contract like this

eventListenerRegistry.addDuplicationStrategy(myDuplicationStrategy);

 // EventListenerRegistry defines 3 ways to register listeners:
 // 1) This form overrides any existing registrations with
 eventListenerRegistry.setListeners(EventType.AUTO_FLUSH,
myCompleteSetOfListeners);
 // 2) This form adds the specified listener(s) to the
beginning of the listener chain
 eventListenerRegistry.prependListeners(EventType.AUTO_FLUSH,
myListenersToBeCalledFirst);
 // 3) This form adds the specified listener(s) to the end of
the listener chain
 eventListenerRegistry.appendListeners(EventType.AUTO_FLUSH,
myListenersToBeCalledLast);
 }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

220

http://docs.jboss.org/hibernate/orm/5.2/javadocs/org/hibernate/integrator/spi/ServiceContributingIntegrator.html

audit entities mapped by or using the native Hibernate API

log data for each revision using a revision entity, and

query historical data.

12.10.2. About Auditing Persistent Classes

Auditing of persistent classes is done in JBoss EAP through Hibernate Envers and the @Audited
annotation. When the annotation is applied to a class, a table is created, which stores the revision history
of the entity.

Each time a change is made to the class, an entry is added to the audit table. The entry contains the
changes to the class, and is given a revision number. This means that changes can be rolled back, or
previous revisions can be viewed.

12.10.3. Auditing Strategies

12.10.3.1. About Auditing Strategies

Auditing strategies define how audit information is persisted, queried and stored. There are currently two
audit strategies available with Hibernate Envers:

Default Audit Strategy

This strategy persists the audit data together with a start revision. For each row that is
inserted, updated or deleted in an audited table, one or more rows are inserted in the audit
tables, along with the start revision of its validity.

Rows in the audit tables are never updated after insertion. Queries of audit information use
subqueries to select the applicable rows in the audit tables, which are slow and difficult to
index.

Validity Audit Strategy

This strategy stores the start revision, as well as the end revision of the audit information. For
each row that is inserted, updated or deleted in an audited table, one or more rows are
inserted in the audit tables, along with the start revision of its validity.

At the same time, the end revision field of the previous audit rows (if available) is set to this
revision. Queries on the audit information can then use between start and end revision,
instead of subqueries. This means that persisting audit information is a little slower because
of the extra updates, but retrieving audit information is a lot faster.

This can also be improved by adding extra indexes.

For more information on auditing, refer to About Auditing Persistent Classes. To set the auditing strategy
for the application, refer here: Set the Auditing Strategy .

12.10.3.2. Set the Auditing Strategy

There are two audit strategies supported by JBoss EAP:

The default audit strategy

CHAPTER 12. JAVA PERSISTENCE API (JPA)

221

The validity audit strategy

Define an Auditing Strategy
Configure the org.hibernate.envers.audit_strategy property in the persistence.xml file of
the application. If the property is not set in the persistence.xml file, then the default audit strategy is
used.

Set the Default Audit Strategy

Set the Validity Audit Strategy

12.10.4. Adding Auditing Support to a JPA Entity

JBoss EAP uses entity auditing, through About Hibernate Envers, to track the historical changes of a
persistent class. This topic covers adding auditing support for a JPA entity.

Add Auditing Support to a JPA Entity

1. Configure the available auditing parameters to suit the deployment: Configure Envers
Parameters .

2. Open the JPA entity to be audited.

3. Import the org.hibernate.envers.Audited interface.

4. Apply the @Audited annotation to each field or property to be audited, or apply it once to the
whole class.

Example: Audit Two Fields

<property name="org.hibernate.envers.audit_strategy"
value="org.hibernate.envers.strategy.DefaultAuditStrategy"/>

<property name="org.hibernate.envers.audit_strategy"
value="org.hibernate.envers.strategy.ValidityAuditStrategy"/>

import org.hibernate.envers.Audited;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.Column;

@Entity
public class Person {
 @Id
 @GeneratedValue
 private int id;

 @Audited
 private String name;

 private String surname;

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

222

Example: Audit an entire Class

Once the JPA entity has been configured for auditing, a table called _AUD will be created to store the
historical changes.

12.10.5. Configuration

12.10.5.1. Configure Envers Parameters

JBoss EAP uses entity auditing, through Hibernate Envers, to track the historical changes of a persistent
class.

Configuring the Available Envers Parameters

1. Open the persistence.xml file for the application.

2. Add, remove or configure Envers properties as required. For a list of available properties, refer
to Envers Configuration Properties .

Example: Envers Parameters

 @ManyToOne
 @Audited
 private Address address;

 // add getters, setters, constructors, equals and hashCode here
}

import org.hibernate.envers.Audited;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.Column;

@Entity
@Audited
public class Person {
 @Id
 @GeneratedValue
 private int id;

 private String name;

 private String surname;

 @ManyToOne
 private Address address;

 // add getters, setters, constructors, equals and hashCode here
}

<persistence-unit name="mypc">
 <description>Persistence Unit.</description>

CHAPTER 12. JAVA PERSISTENCE API (JPA)

223

12.10.5.2. Enable or Disable Auditing at Runtime

Enable or Disable Entity Version Auditing at Runtime

1. Subclass the AuditEventListener class.

2. Override the following methods that are called on Hibernate events:

onPostInsert

onPostUpdate

onPostDelete

onPreUpdateCollection

onPreRemoveCollection

onPostRecreateCollection

3. Specify the subclass as the listener for the events.

4. Determine if the change should be audited.

5. Pass the call to the superclass if the change should be audited.

12.10.5.3. Configure Conditional Auditing

Hibernate Envers persists audit data in reaction to various Hibernate events, using a series of event
listeners. These listeners are registered automatically if the Envers jar is in the class path.

Implement Conditional Auditing

1. Set the hibernate.listeners.envers.autoRegister Hibernate property to false in the
persistence.xml file.

2. Subclass each event listener to be overridden. Place the conditional auditing logic in the
subclass, and call the super method if auditing should be performed.

 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-
source>
 <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create-drop" />
 <property name="hibernate.show_sql" value="true" />
 <property name="hibernate.cache.use_second_level_cache"
value="true" />
 <property name="hibernate.cache.use_query_cache" value="true" />
 <property name="hibernate.generate_statistics" value="true" />
 <property name="org.hibernate.envers.versionsTableSuffix"
value="_V" />
 <property name="org.hibernate.envers.revisionFieldName"
value="ver_rev" />
 </properties>
</persistence-unit>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

224

3. Create a custom implementation of org.hibernate.integrator.spi.Integrator, similar
to org.hibernate.envers.event.EnversIntegrator. Use the event listener subclasses
created in step two, rather than the default classes.

4. Add a META-INF/services/org.hibernate.integrator.spi.Integrator file to the
jar. This file should contain the fully qualified name of the class implementing the interface.

12.10.5.4. Envers Configuration Properties

Table 12.18. Entity Data Versioning Configuration Parameters

Property Name Default Value Description

org.hibernate.envers.aud
it_table_prefix

It has is no default value A string that is prepended to the name of
an audited entity, to create the name of
the entity that will hold the audit
information.

org.hibernate.envers.aud
it_table_suffix

_AUD A string that is appended to the name of
an audited entity to create the name of
the entity that will hold the audit
information. For example, if an entity with
a table name of Person is audited,
Envers will generate a table called
Person_AUD to store the historical data.

org.hibernate.envers.rev
ision_field_name

REV The name of the field in the audit entity
that holds the revision number.

org.hibernate.envers.rev
ision_type_field_name

REVTYPE The name of the field in the audit entity
that holds the type of revision. The
current types of revisions possible are:
add, mod and del for inserting,
modifying or deleting respectively.

org.hibernate.envers.rev
ision_on_collection_chan
ge

true This property determines if a revision
should be generated if a relation field that
is not owned changes. This can either be
a collection in a one-to-many relation, or
the field using the mappedBy attribute in
a one-to-one relation.

org.hibernate.envers.do_
not_audit_optimistic_loc
king_field

true When true, properties used for optimistic
locking (annotated with @Version) will
automatically be excluded from auditing.

CHAPTER 12. JAVA PERSISTENCE API (JPA)

225

org.hibernate.envers.sto
re_data_at_delete

false This property defines whether or not
entity data should be stored in the
revision when the entity is deleted,
instead of only the ID, with all other
properties marked as null. This is not
usually necessary, as the data is present
in the last-but-one revision. Sometimes,
however, it is easier and more efficient to
access it in the last revision. However,
this means the data the entity contained
before deletion is stored twice.

org.hibernate.envers.def
ault_schema

null (same as normal
tables)

The default schema name used for audit
tables. Can be overridden using the
@AuditTable(schema="… ​")
annotation. If not present, the schema will
be the same as the schema of the normal
tables.

org.hibernate.envers.def
ault_catalog

null (same as normal
tables)

The default catalog name that should be
used for audit tables. Can be overridden
using the
@AuditTable(catalog="… ​")
annotation. If not present, the catalog will
be the same as the catalog of the normal
tables.

org.hibernate.envers.aud
it_strategy

org.hibernate.en
vers.strategy.De
faultAuditStrate
gy

This property defines the audit strategy
that should be used when persisting audit
data. By default, only the revision where
an entity was modified is stored.
Alternatively,
org.hibernate.envers.strateg
y.ValidityAuditStrategy stores
both the start revision and the end
revision. Together, these define when an
audit row was valid.

org.hibernate.envers.aud
it_strategy_validity_end
_rev_field_name

REVEND The column name that will hold the end
revision number in audit entities. This
property is only valid if the validity audit
strategy is used.

Property Name Default Value Description

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

226

org.hibernate.envers.aud
it_strategy_validity_sto
re_revend_timestamp

false This property defines whether the
timestamp of the end revision, where the
data was last valid, should be stored in
addition to the end revision itself. This is
useful to be able to purge old audit
records out of a relational database by
using table partitioning. Partitioning
requires a column that exists within the
table. This property is only evaluated if
the ValidityAuditStrategy is
used.

org.hibernate.envers.aud
it_strategy_validity_rev
end_timestamp_field_name

REVEND_TSTMP Column name of the timestamp of the end
revision at which point the data was still
valid. Only used if the
ValidityAuditStrategy is used,
and
org.hibernate.envers.audit_s
trategy_validity_store_reven
d_timestamp evaluates to true.

Property Name Default Value Description

12.10.6. Retrieve Auditing Information through Queries

Hibernate Envers provides the functionality to retrieve audit information through queries.

NOTE

Queries on the audited data will be, in many cases, much slower than corresponding
queries on live data, as they involve correlated subselects.

Querying for Entities of a Class at a Given Revision

The entry point for this type of query is:

Constraints can then be specified, using the AuditEntity factory class. The query below only selects
entities where the name property is equal to John:

The queries below only select entities that are related to a given entity:

AuditQuery query = getAuditReader()
 .createQuery()
 .forEntitiesAtRevision(MyEntity.class, revisionNumber);

query.add(AuditEntity.property("name").eq("John"));

CHAPTER 12. JAVA PERSISTENCE API (JPA)

227

The results can then be ordered, limited, and have aggregations and projections (except grouping) set.
The example below is a full query.

Query Revisions where Entities of a Given Class Changed

The entry point for this type of query is:

Constraints can be added to this query in the same way as the previous example. There are additional
possibilities for this query:

AuditEntity.revisionNumber()

Specify constraints, projections and order on the revision number in which the audited entity was
modified.

AuditEntity.revisionProperty(propertyName)

Specify constraints, projections and order on a property of the revision entity, corresponding to the
revision in which the audited entity was modified.

AuditEntity.revisionType()

Provides accesses to the type of the revision (ADD, MOD, DEL).

The query results can then be adjusted as necessary. The query below selects the smallest revision
number at which the entity of the MyEntity class, with the entityId ID has changed, after revision
number 42:

Queries for revisions can also minimize/maximize a property. The query below selects the revision at
which the value of the actualDate for a given entity was larger than a given value, but as small as
possible:

query.add(AuditEntity.property("address").eq(relatedEntityInstance));
// or
query.add(AuditEntity.relatedId("address").eq(relatedEntityId));

List personsAtAddress = getAuditReader().createQuery()
 .forEntitiesAtRevision(Person.class, 12)
 .addOrder(AuditEntity.property("surname").desc())
 .add(AuditEntity.relatedId("address").eq(addressId))
 .setFirstResult(4)
 .setMaxResults(2)
 .getResultList();

AuditQuery query = getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true);

Number revision = (Number) getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 .setProjection(AuditEntity.revisionNumber().min())
 .add(AuditEntity.id().eq(entityId))
 .add(AuditEntity.revisionNumber().gt(42))
 .getSingleResult();

Number revision = (Number) getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 // We are only interested in the first revision

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

228

The minimize() and maximize() methods return a criteria, to which constraints can be added, which
must be met by the entities with the maximized/minimized properties.

There are two boolean parameters passed when creating the query.

selectEntitiesOnly

This parameter is only valid when an explicit projection is not set.
If true, the result of the query will be a list of entities that changed at revisions satisfying the specified
constraints.
If false, the result will be a list of three element arrays. The first element will be the changed entity
instance. The second will be an entity containing revision data. If no custom entity is used, this will be
an instance of DefaultRevisionEntity. The third element array will be the type of the revision
(ADD, MOD, DEL).

selectDeletedEntities

This parameter specifies if revisions in which the entity was deleted must be included in the results. If
true, the entities will have the revision type DEL, and all fields, except id, will have the value null.

Query Revisions of an Entity that Modified a Given Property

The query below will return all revisions of MyEntity with a given id, where the actualDate property
has been changed.

The hasChanged condition can be combined with additional criteria. The query below will return a
horizontal slice for MyEntity at the time the revisionNumber was generated. It will be limited to the
revisions that modified prop1, but not prop2.

The result set will also contain revisions with numbers lower than the revisionNumber. This means that
this query cannot be read as "Return all MyEntities changed in revisionNumber with prop1 modified
and prop2 untouched."

The query below shows how this result can be returned, using the
forEntitiesModifiedAtRevision query:

 .setProjection(AuditEntity.revisionNumber().min())
 .add(AuditEntity.property("actualDate").minimize()
 .add(AuditEntity.property("actualDate").ge(givenDate))
 .add(AuditEntity.id().eq(givenEntityId)))
 .getSingleResult();

AuditQuery query = getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 .add(AuditEntity.id().eq(id));
 .add(AuditEntity.property("actualDate").hasChanged())

AuditQuery query = getAuditReader().createQuery()
 .forEntitiesAtRevision(MyEntity.class, revisionNumber)
 .add(AuditEntity.property("prop1").hasChanged())
 .add(AuditEntity.property("prop2").hasNotChanged());

AuditQuery query = getAuditReader().createQuery()
 .forEntitiesModifiedAtRevision(MyEntity.class, revisionNumber)
 .add(AuditEntity.property("prop1").hasChanged())
 .add(AuditEntity.property("prop2").hasNotChanged());

CHAPTER 12. JAVA PERSISTENCE API (JPA)

229

Query Entities Modified in a Given Revision

The example below shows the basic query for entities modified in a given revision. It allows entity names
and corresponding Java classes changed in a specified revision to be retrieved:

There are a number of other queries that are also accessible from
org.hibernate.envers.CrossTypeRevisionChangesReader:

List<Object> findEntities(Number)

Returns snapshots of all audited entities changed (added, updated and removed) in a given revision.
Executes n+1 SQL queries, where n is a number of different entity classes modified within the
specified revision.

List<Object> findEntities(Number, RevisionType)

Returns snapshots of all audited entities changed (added, updated or removed) in a given revision
filtered by modification type. Executes n+1 SQL queries, where n is a number of different entity
classes modified within specified revision. Map<RevisionType, List<Object>>

findEntitiesGroupByRevisionType(Number)

Returns a map containing lists of entity snapshots grouped by modification operation (e.g. addition,
update and removal). Executes 3n+1 SQL queries, where n is a number of different entity classes
modified within specified revision.

12.11. PERFORMANCE TUNING

12.11.1. Alternative Batch Loading Algorithms

Hibernate allows you to load data for associations using one of four fetching strategies: join, select,
subselect and batch. Out of these four strategies, batch loading allows for the biggest performance gains
as it is an optimization strategy for select fetching. In this strategy, Hibernate retrieves a batch of entity
instances or collections in a single SELECT statement by specifying a list of primary or foreign keys.
Batch fetching is an optimization of the lazy select fetching strategy.

There are two ways to configure batch fetching: per-class level or per-collection level.

Per-Class Level
When Hibernate loads data on a per-class level, it requires the batch size of the association to
pre-load when queried. For example, consider that at runtime you have 30 instances of a car
object loaded in session. Each car object belongs to an owner object. If you were to iterate
through all the car objects and request their owners, with lazy loading, Hibernate will issue 30
select statements - one for each owner. This is a performance bottleneck.

You can instead, tell Hibernate to pre-load the data for the next batch of owners before they
have been sought via a query. When an owner object has been queried, Hibernate will query
many more of these objects in the same SELECT statement.

The number of owner objects to query in advance depends upon the batch-size parameter
specified at configuration time:

<class name="owner" batch-size="10"></class>

Set<Pair<String, Class>> modifiedEntityTypes = getAuditReader()
 .getCrossTypeRevisionChangesReader().findEntityTypes(revisionNumber);

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

230

This tells Hibernate to query at least 10 more owner objects in expectation of them being
needed in the near future. When a user queries the owner of car A, the owner of car B may
already have been loaded as part of batch loading. When the user actually needs the owner of
car B, instead of going to the database (and issuing a SELECT statement), the value can be
retrieved from the current session.

In addition to the batch-size parameter, Hibernate 4.2.0 has introduced a new configuration
item to improve in batch loading performance. The configuration item is called Batch Fetch
Style configuration and specified by the hibernate.batch_fetch_style parameter.

Three different batch fetch styles are supported: LEGACY, PADDED and DYNAMIC. To specify
which style to use, use org.hibernate.cfg.AvailableSettings#BATCH_FETCH_STYLE.

LEGACY: In the legacy style of loading, a set of pre-built batch sizes based on
ArrayHelper.getBatchSizes(int) are utilized. Batches are loaded using the next-
smaller pre-built batch size from the number of existing batchable identifiers.
Continuing with the above example, with a batch-size setting of 30, the pre-built batch
sizes would be [30, 15, 10, 9, 8, 7, .., 1]. An attempt to batch load 29 identifiers would result
in batches of 15, 10, and 4. There will be 3 corresponding SQL queries, each loading 15, 10
and 4 owners from the database.

PADDED - Padded is similar to LEGACY style of batch loading. It still utilizes pre-built batch
sizes, but uses the next-bigger batch size and pads the extra identifier placeholders.
As with the example above, if 30 owner objects are to be initialized, there will only be one
query executed against the database.

However, if 29 owner objects are to be initialized, Hibernate will still execute only 1 SQL
select statement of batch size 30, with the extra space padded with a repeated identifier.

Dynamic - While still conforming to batch-size restrictions, this style of batch loading
dynamically builds its SQL SELECT statement using the actual number of objects to be
loaded.
For example, for 30 owner objects, and a maximum batch size of 30, a call to retrieve 30
owner objects will result in one SQL SELECT statement. A call to retrieve 35 will result in
two SQL statements, of batch sizes 30 and 5 respectively. Hibernate will dynamically alter
the second SQL statement to keep at 5, the required number, while still remaining under the
restriction of 30 as the batch-size. This is different to the PADDED version, as the second
SQL will not get PADDED, and unlike the LEGACY style, there is no fixed size for the
second SQL statement - the second SQL is created dynamically.

For a query of less than 30 identifiers, this style will dynamically only load the number of
identifiers requested.

Per-Collection Level
Hibernate can also batch load collections honoring the batch fetch size and styles as listed in
the per-class section above.

To reverse the example used in the previous section, consider that you need to load all the car
objects owned by each owner object. If 10 owner objects are loaded in the current session
iterating through all owners will generate 10 SELECT statements, one for every call to
getCars() method. If you enable batch fetching for the cars collection in the mapping of
Owner, Hibernate can pre-fetch these collections, as shown below.

<class name="Owner"><set name="cars" batch-size="5"></set></class>

CHAPTER 12. JAVA PERSISTENCE API (JPA)

231

Thus, with a batch-size of 5 and using legacy batch style to load 10 collections, Hibernate will
execute two SELECT statements, each retrieving 5 collections.

12.11.2. Second Level Caching of Object References for Non-mutable Data

Hibernate automatically caches data within memory for improved performance. This is accomplished by
an in-memory cache which reduces the number of times that database lookups are required, especially
for data that rarely changes.

Hibernate maintains two types of caches. The primary cache (also called the first-level cache) is
mandatory. This cache is associated with the current session and all requests must pass through it. The
secondary cache (also called the second-level cache) is optional, and is only consulted after the primary
cache has been consulted first.

Data is stored in the second-level cache by first disassembling it into a state array. This array is deep
copied, and that deep copy is put into the cache. The reverse is done for reading from the cache. This
works well for data that changes (mutable data), but is inefficient for immutable data.

Deep copying data is an expensive operation in terms of memory usage and processing speed. For large
data sets, memory and processing speed become a performance-limiting factor. Hibernate allows you to
specify that immutable data be referenced rather than copied. Instead of copying entire data sets,
Hibernate can now store the reference to the data in the cache.

This can be done by changing the value of the configuration setting
hibernate.cache.use_reference_entries to true. By default,
hibernate.cache.use_reference_entries is set to false.

When hibernate.cache.use_reference_entries is set to true, an immutable data object that
does not have any associations is not copied into the second-level cache, and only a reference to it is
stored.

WARNING

When hibernate.cache.use_reference_entries is set to true, immutable
data objects with associations are still deep copied into the second-level cache.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

232

CHAPTER 13. HIBERNATE SEARCH

13.1. GETTING STARTED WITH HIBERNATE SEARCH

13.1.1. About Hibernate Search

Hibernate Search provides full-text search capability to Hibernate applications. It is especially suited to
search applications for which SQL-based solutions are not suited, including: full-text, fuzzy and
geolocation searches. Hibernate Search uses Apache Lucene as its full-text search engine, but is
designed to minimize the maintenance overhead. Once it is configured, indexing, clustering and data
synchronization is maintained transparently, allowing you to focus on meeting your business
requirements.

NOTE

The prior release of JBoss EAP included Hibernate 4.2 and Hibernate Search 4.6. JBoss
EAP 7 includes Hibernate 5 and Hibernate Search 5.5.

Hibernate Search 5.5 works with Java 7 and now builds upon Lucene 5.3.x. If you are
using any native Lucene APIs make sure to align with this version.

13.1.2. Overview

Hibernate Search consists of an indexing component as well as an index search component, both are
backed by Apache Lucene. Each time an entity is inserted, updated or removed from the database,
Hibernate Search keeps track of this event through the Hibernate event system and schedules an index
update. All these updates are handled without having to interact with the Apache Lucene APIs directly.
Instead, interaction with the underlying Lucene indexes is handled via an IndexManager. By default
there is a one-to-one relationship between IndexManager and Lucene index. The IndexManager
abstracts the specific index configuration, including the selected back end, reader strategy and the
DirectoryProvider.

Once the index is created, you can search for entities and return lists of managed entities instead of
dealing with the underlying Lucene infrastructure. The same persistence context is shared between
Hibernate and Hibernate Search. The FullTextSession class is built on top of the Hibernate
Session class so that the application code can use the unified org.hibernate.Query or
javax.persistence.Query APIs exactly the same way an HQL, JPA-QL, or native query would.

Transactional batching mode is recommended for all operations, whether or not they are JDBC-based.

NOTE

It is recommended, for both your database and Hibernate Search, to execute your
operations in a transaction, whether it is JDBC or JTA.

NOTE

Hibernate Search works perfectly fine in the Hibernate or EntityManager long
conversation pattern, known as atomic conversation.

13.1.3. About the Directory Provider

CHAPTER 13. HIBERNATE SEARCH

233

Apache Lucene, which is part of the Hibernate Search infrastructure, has the concept of a Directory for
storage of indexes. Hibernate Search handles the initialization and configuration of a Lucene Directory
instance via a Directory Provider.

The directory_provider property specifies the directory provider to be used to store the indexes.
The default file system directory provider is filesystem, which uses the local file system to store
indexes.

13.1.4. About the Worker

Updates to Lucene indexes are handled by the Hibernate Search Worker, which receives all entity
changes, queues them by context and applies them once a context ends. The most common context is
the transaction, but may be dependent on the number of entity changes or some other application
events.

For better efficiency, interactions are batched and generally applied once the context ends. Outside a
transaction, the index update operation is executed right after the actual database operation. In the case
of an ongoing transaction, the index update operation is scheduled for the transaction commit phase and
discarded in case of transaction rollback. A worker may be configured with a specific batch size limit,
after which indexing occurs regardless of the context.

There are two immediate benefits to this method of handling index updates:

Performance: Lucene indexing works better when operation are executed in batch.

ACIDity: The work executed has the same scoping as the one executed by the database
transaction and is executed if and only if the transaction is committed. This is not ACID in the
strict sense, but ACID behavior is rarely useful for full text search indexes since they can be
rebuilt from the source at any time.

The two batch modes, no scope vs transactional, are the equivalent of autocommit versus transactional
behavior. From a performance perspective, the transactional mode is recommended. The scoping choice
is made transparently. Hibernate Search detects the presence of a transaction and adjust the scoping.

13.1.5. Back End Setup and Operations

13.1.5.1. Back End

Hibernate Search uses various back ends to process batches of work. The back end is not limited to the
configuration option default.worker.backend. This property specifies a implementation of the
BackendQueueProcessor interface which is a part of a back-end configuration. Additional settings are
required to set up a back-end, for example the JMS back-end.

13.1.5.2. Lucene

In the Lucene mode, all index updates for a node are executed by the same node to the Lucene
directories using the directory providers. Use this mode in a non-clustered environment or in clustered
environments with a shared directory store.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

234

Figure 13.1. Lucene Back-end Configuration

Lucene mode targets non-clustered or clustered applications where the directory manages the locking
strategy. The primary advantage of Lucene mode is simplicity and immediate visibility of changes in
Lucene queries. The Near Real Time (NRT) back end is an alternative back end for non-clustered and
non-shared index configurations.

13.1.5.3. JMS

Index updates for a node are sent to the JMS queue. A unique reader processes the queue and updates
the master index. The master index is subsequently replicated regularly to slave copies, to establish the
master and slave pattern. The master is responsible for Lucene index updates. The slaves accept read
and write operations but process read operations on local index copies. The master is solely responsible
for updating the Lucene index. Only the master applies the local changes in an update operation.

CHAPTER 13. HIBERNATE SEARCH

235

Figure 13.2. JMS Back-end Configuration

This mode targets clustered environment where throughput is critical and index update delays are
affordable. The JMS provider ensures reliability and uses the slaves to change the local index copies.

13.1.6. Reader Strategies

When executing a query, Hibernate Search uses a reader strategy to interact with the Apache Lucene
indexes. Choose a reader strategy based on the profile of the application like frequent updates, read
mostly, asynchronous index update.

13.1.6.1. The Shared Strategy

Using the shared strategy, Hibernate Search shares the same IndexReader for a given Lucene index
across multiple queries and threads provided that the IndexReader remains updated. If the
IndexReader is not updated, a new one is opened and provided. Each IndexReader is made of
several SegmentReaders. The shared strategy reopens segments that have been modified or created
after the last opening and shares the already loaded segments from the previous instance. This is the
default strategy.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

236

13.1.6.2. The Not-shared Strategy

Using the not-shared strategy, a Lucene IndexReader opens every time a query executes. Opening
and starting up a IndexReader is an expensive operation. As a result, opening an IndexReader for
each query execution is not an efficient strategy.

13.1.6.3. Custom Reader Strategies

You can write a custom reader strategy using an implementation of
org.hibernate.search.reader.ReaderProvider. The implementation must be thread safe.

13.2. CONFIGURATION

13.2.1. Minimum Configuration

Hibernate Search has been designed to provide flexibility in its configuration and operation, with default
values carefully chosen to suit the majority of use cases. At a minimum a Directory Provider must
be configured, along with its properties. The default Directory Provider is filesystem, which uses the
local file system for index storage. For details of available Directory Providers and their configuration,
see DirectoryProvider Configuration.

If you are using Hibernate directly, settings such as the DirectoryProvider must be set in the
configuration file, either hibernate.properties or hibernate.cfg.xml. If you are using Hibernate via JPA, the
configuration file is persistence.xml.

13.2.2. Configuring the IndexManager

Hibernate Search offers several implementations for this interface:

directory-based: the default implementation which uses the Lucene Directory abstraction
to manage index files.

near-real-time: avoids flushing writes to disk at each commit. This index manager is also
Directory based, but uses Lucene’s near real-time, NRT, functionality.

To specify an IndexManager other than the default, specify the following property:

hibernate.search.[default|<indexname>].indexmanager = near-real-time

13.2.2.1. Directory-based

The Directory-based implementation is the default IndexManager implementation. It is highly
configurable and allows separate configurations for the reader strategy, back ends, and directory
providers.

13.2.2.2. Near Real Time

The NRTIndexManager is an extension of the default IndexManager and leverages the Lucene NRT,
Near Real Time, feature for low latency index writes. However, it ignores configuration settings for
alternative back ends other than lucene and acquires exclusive write locks on the Directory.

CHAPTER 13. HIBERNATE SEARCH

237

The IndexWriter does not flush every change to the disk to provide low latency. Queries can read the
updated states from the unflushed index writer buffers. However, this means that if the IndexWriter is
killed or the application crashes, updates can be lost so the indexes must be rebuilt.

The Near Real Time configuration is recommended for non-clustered websites with limited data due to
the mentioned disadvantages and because a master node can be individually configured for improved
performance as well.

13.2.2.3. Custom

Specify a fully qualified class name for the custom implementation to set up a customized
IndexManager. Set up a no-argument constructor for the implementation as follows:

[default|<indexname>].indexmanager = my.corp.myapp.CustomIndexManager

The custom index manager implementation does not require the same components as the default
implementations. For example, delegate to a remote indexing service which does not expose a
Directory interface.

13.2.3. DirectoryProvider Configuration

A DirectoryProvider is the Hibernate Search abstraction around a Lucene Directory and handles
the configuration and the initialization of the underlying Lucene resources. Directory Providers and their
Properties shows the list of the directory providers available in Hibernate Search together with their
corresponding options.

Each indexed entity is associated with a Lucene index (except of the case where multiple entities share
the same index). The name of the index is given by the index property of the @Indexed annotation. If
the index property is not specified the fully qualified name of the indexed class will be used as name
(recommended).

The DirectoryProvider and any additional options can be configured by using the prefix
hibernate.search.<indexname>. The name default (hibernate.search.default) is
reserved and can be used to define properties which apply to all indexes. Configuring Directory Providers
shows how hibernate.search.default.directory_provider is used to set the default directory
provider to be the filesystem one. hibernate.search.default.indexBase sets then the default
base directory for the indexes. As a result the index for the entity Status is created in
/usr/lucene/indexes/org.hibernate.example.Status.

The index for the Rule entity, however, is using an in-memory directory, because the default directory
provider for this entity is overridden by the property
hibernate.search.Rules.directory_provider.

Finally the Action entity uses a custom directory provider CustomDirectoryProvider specified via
hibernate.search.Actions.directory_provider.

Specifying the Index Name

package org.hibernate.example;

@Indexed
public class Status { ... }

@Indexed(index="Rules")

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

238

Configuring Directory Providers

hibernate.search.default.directory_provider = filesystem
hibernate.search.default.indexBase=/usr/lucene/indexes
hibernate.search.Rules.directory_provider = ram
hibernate.search.Actions.directory_provider =
com.acme.hibernate.CustomDirectoryProvider

NOTE

Using the described configuration scheme you can easily define common rules like the
directory provider and base directory, and override those defaults later on a per index
basis.

Directory Providers and their Properties

ram

None

filesystem

File system based directory. The directory used will be <indexBase>/< indexName >

indexBase : base directory

indexName: override @Indexed.index (useful for sharded indexes)

locking_strategy : optional, see LockFactory Configuration

filesystem_access_type: allows to determine the exact type of FSDirectory
implementation used by this DirectoryProvider. Allowed values are auto (the default
value, selects NIOFSDirectory on non Windows systems, SimpleFSDirectory on
Windows), simple (SimpleFSDirectory), nio (NIOFSDirectory), mmap
(MMapDirectory). Refer to Javadocs of these Directory implementations before changing
this setting. Even though NIOFSDirectory or MMapDirectory can bring substantial
performance boosts they also have their issues.

filesystem-master

File system based directory. Like filesystem. It also copies the index to a source directory (aka
copy directory) on a regular basis.
The recommended value for the refresh period is (at least) 50% higher that the time to copy the
information (default 3600 seconds - 60 minutes).

Note that the copy is based on an incremental copy mechanism reducing the average copy time.

DirectoryProvider typically used on the master node in a JMS back end cluster.

The buffer_size_on_copy optimum depends on your operating system and available RAM; most
people reported good results using values between 16 and 64MB.

public class Rule { ... }

@Indexed(index="Actions")
public class Action { ... }

CHAPTER 13. HIBERNATE SEARCH

239

indexBase: base directory

indexName: override @Indexed.index (useful for sharded indexes)

sourceBase: source (copy) base directory.

source: source directory suffix (default to @Indexed.index). The actual source directory
name being <sourceBase>/<source>

refresh: refresh period in seconds (the copy will take place every refresh seconds). If a copy
is still in progress when the following refresh period elapses, the second copy operation will
be skipped.

buffer_size_on_copy: The amount of MegaBytes to move in a single low level copy
instruction; defaults to 16MB.

locking_strategy : optional, see LockFactory Configuration

filesystem_access_type: allows to determine the exact type of FSDirectory
implementation used by this DirectoryProvider. Allowed values are auto (the default
value, selects NIOFSDirectory on non Windows systems, SimpleFSDirectory on
Windows), simple (SimpleFSDirectory), nio (NIOFSDirectory), mmap
(MMapDirectory). Refer to Javadocs of these Directory implementations before changing
this setting. Even though NIOFSDirectory or MMapDirectory can bring substantial
performance boosts, there are also issues of which you need to be aware.

filesystem-slave

File system based directory. Like filesystem, but retrieves a master version (source) on a regular
basis. To avoid locking and inconsistent search results, 2 local copies are kept.
The recommended value for the refresh period is (at least) 50% higher that the time to copy the
information (default 3600 seconds - 60 minutes).

Note that the copy is based on an incremental copy mechanism reducing the average copy time. If a
copy is still in progress when refresh period elapses, the second copy operation will be skipped.

DirectoryProvider typically used on slave nodes using a JMS back end.

The buffer_size_on_copy optimum depends on your operating system and available RAM; most
people reported good results using values between 16 and 64MB.

indexBase: Base directory

indexName: override @Indexed.index (useful for sharded indexes)

sourceBase: Source (copy) base directory.

source: Source directory suffix (default to @Indexed.index). The actual source directory
name being <sourceBase>/<source>

refresh: refresh period in second (the copy will take place every refresh seconds).

buffer_size_on_copy: The amount of MegaBytes to move in a single low level copy
instruction; defaults to 16MB.

locking_strategy : optional, see LockFactory Configuration

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

240

retry_marker_lookup : optional, default to 0. Defines how many times Hibernate Search
checks for the marker files in the source directory before failing. Waiting 5 seconds between
each try.

retry_initialize_period : optional, set an integer value in seconds to enable the retry initialize
feature: if the slave cannot find the master index it will try again until it’s found in background,
without preventing the application to start: fullText queries performed before the index is
initialized are not blocked but will return empty results. When not enabling the option or
explicitly setting it to zero it will fail with an exception instead of scheduling a retry timer. To
prevent the application from starting without an invalid index but still control an initialization
timeout, see retry_marker_lookup instead.

filesystem_access_type: allows to determine the exact type of FSDirectory
implementation used by this DirectoryProvider. Allowed values are auto (the default
value, selects NIOFSDirectory on non Windows systems, SimpleFSDirectory on
Windows), simple (SimpleFSDirectory), nio (NIOFSDirectory), mmap
(MMapDirectory). Refer to Javadocs of these Directory implementations before changing
this setting. Even though NIOFSDirectory or MMapDirectory can bring substantial
performance boosts you need also to be aware of the issues.

NOTE

If the built-in directory providers do not fit your needs, you can write your own directory
provider by implementing the org.hibernate.store.DirectoryProvider interface.
In this case, pass the fully qualified class name of your provider into the
directory_provider property. You can pass any additional properties using the prefix
hibernate.search.<indexname>.

13.2.4. Worker Configuration

It is possible to refine how Hibernate Search interacts with Lucene through the worker configuration.
There exist several architectural components and possible extension points. Let’s have a closer look.

Use the worker configuration to refine how Infinispan Query interacts with Lucene. Several architectural
components and possible extension points are available for this configuration.

First there is a Worker. An implementation of the Worker interface is responsible for receiving all entity
changes, queuing them by context and applying them once a context ends. The most intuitive context,
especially in connection with ORM, is the transaction. For this reason Hibernate Search will per default
use the TransactionalWorker to scope all changes per transaction. One can, however, imagine a
scenario where the context depends for example on the number of entity changes or some other
application (lifecycle) events.

Table 13.1. Scope configuration

Property Description

hibernate.search.worker.scope The fully qualified class name of the Worker
implementation to use. If this property is not set,
empty or transaction the default
TransactionalWorker is used.

CHAPTER 13. HIBERNATE SEARCH

241

hibernate.search.worker.* All configuration properties prefixed with
hibernate.search.worker are passed to the
Worker during initialization. This allows adding
custom, worker specific parameters.

hibernate.search.worker.batch_size Defines the maximum number of indexing operation
batched per context. Once the limit is reached
indexing will be triggered even though the context
has not ended yet. This property only works if the
Worker implementation delegates the queued work
to BatchedQueueingProcessor, which is what the
TransactionalWorker does.

Property Description

Once a context ends it is time to prepare and apply the index changes. This can be done synchronously
or asynchronously from within a new thread. Synchronous updates have the advantage that the index is
at all times in sync with the databases. Asynchronous updates, on the other hand, can help to minimize
the user response time. The drawback is potential discrepancies between database and index states.

NOTE

The following options can be different on each index; in fact they need the indexName
prefix or use default to set the default value for all indexes.

Table 13.2. Execution configuration

Property Description

hibernate.search.<indexName>. ​
worker.execution

sync: synchronous execution (default)

async: asynchronous execution

hibernate.search.<indexName>. ​
worker.thread_pool.size

The back end can apply updates from the same
transaction context (or batch) in parallel, using a
threadpool. The default value is 1. You can
experiment with larger values if you have many
operations per transaction.

hibernate.search.<indexName>. ​
worker.buffer_queue.max

Defines the maximal number of work queue if the
thread pool is starved. Useful only for asynchronous
execution. Default to infinite. If the limit is reached,
the work is done by the main thread.

So far all work is done within the same Virtual Machine (VM), no matter which execution mode. The total
amount of work has not changed for the single VM. Luckily there is a better approach, namely
delegation. It is possible to send the indexing work to a different server by configuring
hibernate.search.default.worker.backend. Again this option can be configured differently for
each index.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

242

Table 13.3. Back-end configuration

Property Description

hibernate.search.<indexName>. ​
worker.backend

lucene: The default back end which runs index
updates in the same VM. Also used when the
property is undefined or empty.

jms: JMS back end. Index updates are send to a
JMS queue to be processed by an indexing master.
See JMS back-end configuration for additional
configuration options and for a more detailed
description of this setup.

blackhole: Mainly a test/developer setting which
ignores all indexing work

You can also specify the fully qualified name of a
class implementing BackendQueueProcessor.
This way you can implement your own
communication layer. The implementation is
responsible for returning a Runnable instance
which on execution will process the index work.

Table 13.4. JMS back-end configuration

Property Description

hibernate.search.<indexName>. ​
worker.jndi.*

Defines the JNDI properties to initiate the
InitialContext (if needed). JNDI is only used by the
JMS back end.

hibernate.search.<indexName>. ​
worker.jms.connection_factory

Mandatory for the JMS back end. Defines the JNDI
name to lookup the JMS connection factory from
(/ConnectionFactory by default in Red Hat
JBoss Enterprise Application Platform)

hibernate.search.<indexName>. ​
worker.jms.queue

Mandatory for the JMS back end. Defines the JNDI
name to lookup the JMS queue from. The queue will
be used to post work messages.

CHAPTER 13. HIBERNATE SEARCH

243

WARNING

As you probably noticed, some of the shown properties are correlated which means
that not all combinations of property values make sense. In fact you can end up with
a non-functional configuration. This is especially true for the case that you provide
your own implementations of some of the shown interfaces. Make sure to study the
existing code before you write your own Worker or BackendQueueProcessor
implementation.

13.2.4.1. JMS Master/Slave Back End

This section describes in greater detail how to configure the Master/Slave Hibernate Search architecture.

Figure 13.3. JMS Backend Configuration



Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

244

13.2.4.2. Slave Nodes

Every index update operation is sent to a JMS queue. Index querying operations are executed on a local
index copy.

JMS Slave configuration

slave configuration

DirectoryProvider
(remote) master location
hibernate.search.default.sourceBase =
/mnt/mastervolume/lucenedirs/mastercopy

local copy location
hibernate.search.default.indexBase = /Users/prod/lucenedirs

refresh every half hour
hibernate.search.default.refresh = 1800

appropriate directory provider
hibernate.search.default.directory_provider = filesystem-slave

Back-end configuration
hibernate.search.default.worker.backend = jms
hibernate.search.default.worker.jms.connection_factory =
/ConnectionFactory
hibernate.search.default.worker.jms.queue = queue/hibernatesearch
#optional jndi configuration (check your JMS provider for more information)

Optional asynchronous execution strategy
hibernate.search.default.worker.execution = async
hibernate.search.default.worker.thread_pool.size = 2
hibernate.search.default.worker.buffer_queue.max = 50

NOTE

A file system local copy is recommended for faster search results.

13.2.4.3. Master Node

Every index update operation is taken from a JMS queue and executed. The master index is copied on a
regular basis.

Index update operations in the JMS queue are executed and the master index is copied regularly.

JMS Master Configuration

master configuration

DirectoryProvider
(remote) master location where information is copied to
hibernate.search.default.sourceBase =
/mnt/mastervolume/lucenedirs/mastercopy

CHAPTER 13. HIBERNATE SEARCH

245

local master location
hibernate.search.default.indexBase = /Users/prod/lucenedirs

refresh every half hour
hibernate.search.default.refresh = 1800

appropriate directory provider
hibernate.search.default.directory_provider = filesystem-master

Back-end configuration
#Back-end is the default for Lucene

In addition to the Hibernate Search framework configuration, a Message Driven Bean has to be written
and set up to process the index works queue through JMS.

Message Driven Bean processing the indexing queue

This example inherits from the abstract JMS controller class available in the Hibernate Search source
code and implements a JavaEE MDB. This implementation is given as an example and can be adjusted
to make use of non Java EE Message Driven Beans.

13.2.5. Tuning Lucene Indexing

13.2.5.1. Tuning Lucene Indexing Performance

Hibernate Search is used to tune the Lucene indexing performance by specifying a set of parameters
which are passed through to underlying Lucene IndexWriter such as mergeFactor,
maxMergeDocs, and maxBufferedDocs. Specify these parameters either as default values applying
for all indexes, on a per index basis, or even per shard.

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(propertyName="destination",
 propertyValue="queue/hibernatesearch"),
 @ActivationConfigProperty(propertyName="DLQMaxResent",
propertyValue="1")
 })
public class MDBSearchController extends
AbstractJMSHibernateSearchController
 implements MessageListener {
 @PersistenceContext EntityManager em;

 //method retrieving the appropriate session
 protected Session getSession() {
 return (Session) em.getDelegate();
 }

 //potentially close the session opened in #getSession(), not needed
here
 protected void cleanSessionIfNeeded(Session session)
 }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

246

There are several low level IndexWriter settings which can be tuned for different use cases. These
parameters are grouped by the indexwriter keyword:

hibernate.search.[default|<indexname>].indexwriter.<parameter_name>

If no value is set for an indexwriter value in a specific shard configuration, Hibernate Search checks
the index section, then at the default section.

The configuration in the following table will result in these settings applied on the second shard of the
Animal index:

max_merge_docs = 10

merge_factor = 20

ram_buffer_size = 64MB

term_index_interval = Lucene default

All other values will use the defaults defined in Lucene.

The default for all values is to leave them at Lucene’s own default. The values listed in List of indexing
performance and behavior properties depend for this reason on the version of Lucene you are using. The
values shown are relative to version 2.4.

NOTE

Previous versions of Hibernate Search had the notion of batch and transaction
properties. This is no longer the case as the back end will always perform work using the
same settings.

Table 13.5. List of indexing performance and behavior properties

Property Description Default Value

hibernate.search.
[default|
<indexname>]. ​
exclusive_index_use

Set to true when no other process will need to write
to the same index. This enables Hibernate Search to
work in exclusive mode on the index and improve
performance when writing changes to the index.

true(improved
performance,
releases locks
only at shutdown)

hibernate.search.
[default|
<indexname>].max_que
ue_length

Each index has a separate "pipeline" which contains
the updates to be applied to the index. When this
queue is full adding more operations to the queue
becomes a blocking operation. Configuring this
setting does not make much sense unless the
worker.execution is configured as async.

1000

hibernate.search.
[default|
<indexname>].indexwr
iter.max_buffered_de
lete_terms

Determines the minimal number of delete terms
required before the buffered in-memory delete terms
are applied and flushed. If there are documents
buffered in memory at the time, they are merged and
a new segment is created.

Disabled (flushes
by RAM usage)

CHAPTER 13. HIBERNATE SEARCH

247

hibernate.search.
[default|
<indexname>].indexwr
iter.max_buffered_do
cs

Controls the amount of documents buffered in
memory during indexing. The bigger the more RAM
is consumed.

Disabled (flushes
by RAM usage)

hibernate.search.
[default|
<indexname>].indexwr
iter.max_merge_docs

Defines the largest number of documents allowed in
a segment. Smaller values perform better on
frequently changing indexes, larger values provide
better search performance if the index does not
change often.

Unlimited
(Integer.MAX_VAL
UE)

hibernate.search.
[default|
<indexname>].indexwr
iter.merge_factor

Controls segment merge frequency and size.

Determines how often segment indexes are merged
when insertion occurs. With smaller values, less RAM
is used while indexing, and searches on unoptimized
indexes are faster, but indexing speed is slower. With
larger values, more RAM is used during indexing,
and while searches on unoptimized indexes are
slower, indexing is faster. Thus larger values (> 10)
are best for batch index creation, and smaller values
(< 10) for indexes that are interactively maintained.
The value must not be lower than 2.

10

hibernate.search.
[default|
<indexname>].indexwr
iter.merge_min_size

Controls segment merge frequency and size.
Segments smaller than this size (in MB) are always
considered for the next segment merge operation.
Setting this too large might result in expensive merge
operations, even though they are less frequent. See
also
org.apache.lucene.index.LogDocMergeP
olicy.minMergeSize.

0 MB (actually
~1K)

hibernate.search. ​
[default|
<indexname>]. ​
indexwriter.merge_ma
x_size

Controls segment merge frequency and size.

Segments larger than this size (in MB) are never
merged in bigger segments.

This helps reduce memory requirements and avoids
some merging operations at the cost of optimal
search speed. When optimizing an index this value is
ignored.

See also
org.apache.lucene.index.LogDocMergeP
olicy.maxMergeSize.

Unlimited

Property Description Default Value

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

248

hibernate.search.
[default|
<indexname>].indexwr
iter.merge_max_optim
ize_size

Controls segment merge frequency and size.

Segments larger than this size (in MB) are not
merged in bigger segments even when optimizing
the index (see merge_max_size setting as well).

Applied to
org.apache.lucene.index.LogDocMergeP
olicy.maxMergeSizeForOptimize.

Unlimited

hibernate.search.
[default|
<indexname>].indexwr
iter.merge_calibrate
_by_deletes

Controls segment merge frequency and size.

Set to false to not consider deleted documents
when estimating the merge policy.

Applied to
org.apache.lucene.index.LogMergePoli
cy.calibrateSizeByDeletes.

true

hibernate.search.
[default|
<indexname>].indexwr
iter.ram_buffer_size

Controls the amount of RAM in MB dedicated to
document buffers. When used together
max_buffered_docs a flush occurs for whichever
event happens first.

Generally for faster indexing performance it is best to
flush by RAM usage instead of document count and
use as large a RAM buffer as you can.

16 MB

hibernate.search.
[default|
<indexname>].indexwr
iter.term_index_inte
rval

Expert: Set the interval between indexed terms.

Large values cause less memory to be used by
IndexReader, but slow random-access to terms.Small
values cause more memory to be used by an
IndexReader, and speed random-access to terms.
See Lucene documentation for more details.

128

hibernate.search.
[default|
<indexname>].indexwr
iter.use_compound_fi
le

The advantage of using the compound file format is
that less file descriptors are used. The disadvantage
is that indexing takes more time and temporary disk
space. You can set this parameter to false in an
attempt to improve the indexing time, but you could
run out of file descriptors if mergeFactor is also
large.

Boolean parameter, use “true” or “false”. The default
value for this option is true.

true

Property Description Default Value

CHAPTER 13. HIBERNATE SEARCH

249

hibernate.search. ​
enable_dirty_check

Not all entity changes require a Lucene index
update. If all of the updated entity properties (dirty
properties) are not indexed, Hibernate Search skips
the re-indexing process.

Disable this option if you use custom
FieldBridges which need to be invoked at each
update event (even though the property for which the
field bridge is configured has not changed).

This optimization will not be applied on classes using
a @ClassBridge or a @DynamicBoost.

Boolean parameter, use “true” or “false”. The default
value for this option is true.

true

Property Description Default Value

WARNING

The blackhole back end is not meant to be used in production, only as a tool to
identify indexing bottlenecks.

13.2.5.2. The Lucene IndexWriter

There are several low level IndexWriter settings which can be tuned for different use cases. These
parameters are grouped by the indexwriter keyword:

default.<indexname>.indexwriter.<parameter_name>

If no value is set for indexwriter in a shard configuration, Hibernate Search looks at the index section
and then at the default section.

13.2.5.3. Performance Option Configuration

The following configuration will result in these settings being applied on the second shard of the Animal
index:

Example performance option configuration

default.Animals.2.indexwriter.max_merge_docs = 10
default.Animals.2.indexwriter.merge_factor = 20
default.Animals.2.indexwriter.term_index_interval = default
default.indexwriter.max_merge_docs = 100
default.indexwriter.ram_buffer_size = 64

max_merge_docs = 10



Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

250

merge_factor = 20

ram_buffer_size = 64MB

term_index_interval = Lucene default

All other values will use the defaults defined in Lucene.

The Lucene default values are the default setting for Hibernate Search. Therefore, the values listed in
the following table depend on the version of Lucene being used. The values shown are relative to version
2.4. For more information about Lucene indexing performance, see the Lucene documentation.

NOTE

The back end will always perform work using the same settings.

Table 13.6. List of indexing performance and behavior properties

Property Description Default Value

default.
<indexname>.exclusiv
e_index_use

Set to true when no other process will need to write
to the same index. This enables Hibernate Search to
work in exclusive mode on the index and improve
performance when writing changes to the index.

true (improved
performance,
releases locks
only at shutdown)

default.
<indexname>.max_queu
e_length

Each index has a separate "pipeline" which contains
the updates to be applied to the index. When this
queue is full adding more operations to the queue
becomes a blocking operation. Configuring this
setting does not make much sense unless the
worker.execution is configured as async.

1000

default.
<indexname>.indexwri
ter.max_buffered_del
ete_terms

Determines the minimal number of delete terms
required before the buffered in-memory delete terms
are applied and flushed. If there are documents
buffered in memory at the time, they are merged and
a new segment is created.

Disabled (flushes
by RAM usage)

default.
<indexname>.indexwri
ter.max_buffered_doc
s

Controls the amount of documents buffered in
memory during indexing. The bigger the more RAM
is consumed.

Disabled (flushes
by RAM usage)

default.
<indexname>.indexwri
ter.max_merge_docs

Defines the largest number of documents allowed in
a segment. Smaller values perform better on
frequently changing indexes, larger values provide
better search performance if the index does not
change often.

Unlimited
(Integer.MAX_VAL
UE)

CHAPTER 13. HIBERNATE SEARCH

251

default.
<indexname>.indexwri
ter.merge_factor

Controls segment merge frequency and size.

Determines how often segment indexes are merged
when insertion occurs. With smaller values, less RAM
is used while indexing, and searches on unoptimized
indexes are faster, but indexing speed is slower. With
larger values, more RAM is used during indexing,
and while searches on unoptimized indexes are
slower, indexing is faster. Thus larger values (> 10)
are best for batch index creation, and smaller values
(< 10) for indexes that are interactively maintained.
The value must not be lower than 2.

10

default.
<indexname>.indexwri
ter.merge_min_size

Controls segment merge frequency and size.

Segments smaller than this size (in MB) are always
considered for the next segment merge operation.

Setting this too large might result in expensive merge
operations, even though they are less frequent.

See also
org.apache.lucene.index.LogDocMergeP
olicy.minMergeSize.

0 MB (actually
~1K)

default.
<indexname>.indexwri
ter.merge_max_size

Controls segment merge frequency and size.

Segments larger than this size (in MB) are never
merged in bigger segments.

This helps reduce memory requirements and avoids
some merging operations at the cost of optimal
search speed. When optimizing an index this value is
ignored.

See also
org.apache.lucene.index.LogDocMergeP
olicy.maxMergeSize.

Unlimited

default.
<indexname>.indexwri
ter.merge_max_optimi
ze_size

Controls segment merge frequency and size.

Segments larger than this size (in MB) are not
merged in bigger segments even when optimizing
the index (see merge_max_size setting as well).

Applied to
org.apache.lucene.index.LogDocMergeP
olicy.maxMergeSizeForOptimize.

Unlimited

Property Description Default Value

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

252

default.
<indexname>.indexwri
ter.merge_calibrate_
by_deletes

Controls segment merge frequency and size.

Set to false to not consider deleted documents
when estimating the merge policy.

Applied to
org.apache.lucene.index.LogMergePoli
cy.calibrateSizeByDeletes.

true

default.
<indexname>.indexwri
ter.ram_buffer_size

Controls the amount of RAM in MB dedicated to
document buffers. When used together
max_buffered_docs a flush occurs for whichever
event happens first.

Generally for faster indexing performance it is best to
flush by RAM usage instead of document count and
use as large a RAM buffer as you can.

16 MB

default.
<indexname>.indexwri
ter.term_index_inter
val

Expert: Set the interval between indexed terms.

Large values cause less memory to be used by
IndexReader, but slow random-access to terms.
Small values cause more memory to be used by an
IndexReader, and speed random-access to terms.
See Lucene documentation for more details.

128

default.
<indexname>.indexwri
ter.use_compound_fil
e

The advantage of using the compound file format is
that less file descriptors are used. The disadvantage
is that indexing takes more time and temporary disk
space. You can set this parameter to false in an
attempt to improve the indexing time, but you could
run out of file descriptors if mergeFactor is also
large.

Boolean parameter, use “true” or “false”. The default
value for this option is true.

true

default.enable_dirty
_check

Not all entity changes require a Lucene index
update. If all of the updated entity properties (dirty
properties) are not indexed, Hibernate Search skips
the re-indexing process.

Disable this option if you use custom
FieldBridges which need to be invoked at each
update event (even though the property for which the
field bridge is configured has not changed).

This optimization will not be applied on classes using
a @ClassBridge or a @DynamicBoost.

Boolean parameter, use “true” or “false”. The default
value for this option is true.

true

Property Description Default Value

CHAPTER 13. HIBERNATE SEARCH

253

13.2.5.4. Tuning the Indexing Speed

When the architecture permits it, keep default.exclusive_index_use=true for improved index
writing efficiency.

When tuning indexing speed the recommended approach is to focus first on optimizing the object
loading, and then use the timings you achieve as a baseline to tune the indexing process. Set the
blackhole as worker back end and start your indexing routines. This back end does not disable
Hibernate Search. It generates the required change sets to the index, but discards them instead of
flushing them to the index. In contrast to setting the hibernate.search.indexing_strategy to
manual, using blackhole will possibly load more data from the database because associated entities
are re-indexed as well.

hibernate.search.[default|<indexname>].worker.backend blackhole

WARNING

The blackhole back end is not to be used in production, only as a diagnostic tool
to identify indexing bottlenecks.

13.2.5.5. Control Segment Size

The following options configure the maximum size of segments created:

merge_max_size

merge_max_optimize_size

merge_calibrate_by_deletes

Control Segment Size

//to be fairly confident no files grow above 15MB, use:
hibernate.search.default.indexwriter.ram_buffer_size = 10
hibernate.search.default.indexwriter.merge_max_optimize_size = 7
hibernate.search.default.indexwriter.merge_max_size = 7

Set the max_size for merge operations to less than half of the hard limit segment size, as merging
segments combines two segments into one larger segment.

A new segment may initially be a larger size than expected, however a segment is never created
significantly larger than the ram_buffer_size. This threshold is checked as an estimate.

13.2.6. LockFactory Configuration

The Lucene Directory can be configured with a custom locking strategy via LockingFactory for each
index managed by Hibernate Search.



Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

254

Some locking strategies require a filesystem level lock, and may be used on RAM-based indexes. When
using this strategy the IndexBase configuration option must be specified to point to a filesystem location
in which to store the lock marker files.

To select a locking factory, set the hibernate.search.<index>.locking_strategy option to one
the following options:

simple

native

single

none

Table 13.7. List of available LockFactory implementations

Name Class Description

LockFa
ctory
Configu
ration
simpl
e

org.apache.lucene.store. ​
SimpleFSLockFactory

Safe implementation based on Java’s File API, it
marks the usage of the index by creating a marker
file.

If for some reason you had to kill your application, you
will need to remove this file before restarting it.

nativ
e

org.apache.lucene.store. ​
NativeFSLockFactory

As does simple this also marks the usage of the
index by creating a marker file, but this one is using
native OS file locks so that even if the JVM is
terminated the locks will be cleaned up.

This implementation has known problems on NFS,
avoid it on network shares.

native is the default implementation for the
filesystem, filesystem-master and
filesystem-slave directory providers.

singl
e

org.apache.lucene.store. ​
SingleInstanceLockFactory

This LockFactory does not use a file marker but is a
Java object lock held in memory; therefore it’s
possible to use it only when you are sure the index is
not going to be shared by any other process.

This is the default implementation for the ram
directory provider.

none org.apache.lucene.store. ​NoLockFactory Changes to this index are not coordinated by a lock.

The following is an example of locking strategy configuration:

hibernate.search.default.locking_strategy = simple
hibernate.search.Animals.locking_strategy = native
hibernate.search.Books.locking_strategy =
org.custom.components.MyLockingFactory

CHAPTER 13. HIBERNATE SEARCH

255

13.2.7. Index Format Compatibility

Hibernate Search does not currently offer a backwards compatible API or tool to facilitate porting
applications to newer versions. The API uses Apache Lucene for index writing and searching.
Occasionally an update to the index format may be required. In this case, there is a possibility that data
will need to be re-indexed if Lucene is unable to read the old format.

WARNING

Back up indexes before attempting to update the index format.

Hibernate Search exposes the hibernate.search.lucene_version configuration property. This
property instructs Analyzers and other Lucene classes to conform to their behaviour as defined in an
older version of Lucene. See also org.apache.lucene.util.Version contained in the lucene-
core.jar. If the option is not specified, Hibernate Search instructs Lucene to use the version default. It
is recommended that the version used is explicitly defined in the configuration to prevent automatic
changes when an upgrade occurs. After an upgrade, the configuration values can be updated explicitly if
required.

Force Analyzers to be compatible with a Lucene 3.0 created index

hibernate.search.lucene_version = LUCENE_30

The configured SearchFactory is global and affects all Lucene APIs that contain the relevant
parameter. If Lucene is used and Hibernate Search is bypassed, apply the same value to it for consistent
results.

13.3. HIBERNATE SEARCH FOR YOUR APPLICATION

13.3.1. First Steps with Hibernate Search

To get started with Hibernate Search for your application, follow these topics.

Enable Hibernate Search using Maven

Indexing

Searching

Analyzer

13.3.2. Enable Hibernate Search using Maven

Use the following configuration in your Maven project to add hibernate-search-orm dependencies:



<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

256

13.3.3. Add Annotations

For this section, consider the example in which you have a database containing details of books. Your
application contains the Hibernate managed classes example.Book and example.Author and you
want to add free text search capabilities to your application to enable searching for books.

Example: Entities Book and Author Before Adding Hibernate Search Specific Annotations

 <artifactId>hibernate-search-orm</artifactId>
 <version>5.5.1.Final-redhat-1</version>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search-orm</artifactId>
 <scope>provided</scope>
 </dependency>
</dependencies>

package example;
...
@Entity
public class Book {

 @Id
 @GeneratedValue
 private Integer id;

 private String title;

 private String subtitle;

 @ManyToMany
 private Set<Author> authors = new HashSet<Author>();

 private Date publicationDate;

 public Book() {}

 // standard getters/setters follow here
 ...
}

package example;
...
@Entity
public class Author {

 @Id
 @GeneratedValue
 private Integer id;

CHAPTER 13. HIBERNATE SEARCH

257

To achieve this you have to add a few annotations to the Book and Author class. The first annotation
@Indexed marks Book as indexable. By design Hibernate Search stores an untokenized ID in the index
to ensure index unicity for a given entity. @DocumentId marks the property to use for this purpose and is
in most cases the same as the database primary key. The @DocumentId annotation is optional in the
case where an @Id annotation exists.

Next the fields you want to make searchable must be marked as such. In this example, start with title
and subtitle and annotate both with @Field. The parameter index=Index.YES will ensure that the
text will be indexed, while analyze=Analyze.YES ensures that the text will be analyzed using the
default Lucene analyzer. Usually, analyzing means chunking a sentence into individual words and
potentially excluding common words like 'a' or ‘the’. We will talk more about analyzers a little later on.
The third parameter we specify within @Field, store=Store.NO, ensures that the actual data will not
be stored in the index. Whether this data is stored in the index or not has nothing to do with the ability to
search for it. From Lucene’s perspective it is not necessary to keep the data once the index is created.
The benefit of storing it is the ability to retrieve it via projections.

Without projections, Hibernate Search will per default execute a Lucene query in order to find the
database identifiers of the entities matching the query criteria and use these identifiers to retrieve
managed objects from the database. The decision for or against projection has to be made on a case to
case basis. The default behavior is recommended since it returns managed objects whereas projections
only return object arrays. Note that index=Index.YES, analyze=Analyze.YES and
store=Store.NO are the default values for these parameters and could be omitted.

Another annotation not yet discussed is @DateBridge. This annotation is one of the built-in field bridges
in Hibernate Search. The Lucene index is purely string based. For this reason Hibernate Search must
convert the data types of the indexed fields to strings and vice-versa. A range of predefined bridges are
provided, including the DateBridge which will convert a java.util.Date into a String with the specified
resolution. For more details see Bridges.

This leaves us with @IndexedEmbedded. This annotation is used to index associated entities
(@ManyToMany, @*ToOne, @Embedded and @ElementCollection) as part of the owning entity. This
is needed since a Lucene index document is a flat data structure which does not know anything about
object relations. To ensure that the authors' name will be searchable you have to ensure that the names
are indexed as part of the book itself. On top of @IndexedEmbedded you will also have to mark all fields
of the associated entity you want to have included in the index with @Indexed. For more details see
Embedded and Associated Objects

These settings should be sufficient for now. For more details on entity mapping see Mapping an Entity.

Example: Entities After Adding Hibernate Search Annotations

 private String name;

 public Author() {}

 // standard getters/setters follow here
 ...
}

package example;
...
@Entity

public class Book {

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

258

13.3.4. Indexing

Hibernate Search will transparently index every entity persisted, updated or removed through Hibernate
Core. However, you have to create an initial Lucene index for the data already present in your database.
Once you have added the above properties and annotations it is time to trigger an initial batch index of
your books. You can achieve this by using one of the following code snippets (see also):

Example: Using the Hibernate Session to Index Data

 @Id
 @GeneratedValue
 private Integer id;

 private String title;

 private String subtitle;

 @Field(index = Index.YES, analyze=Analyze.NO, store = Store.YES)
 @DateBridge(resolution = Resolution.DAY)
 private Date publicationDate;

 @ManyToMany
 private Set<Author> authors = new HashSet<Author>();

 public Book() {
 }

 // standard getters/setters follow here
 ...
}

package example;
...
@Entity
public class Author {

 @Id
 @GeneratedValue
 private Integer id;

 private String name;

 public Author() {
 }

 // standard getters/setters follow here
 ...
}

CHAPTER 13. HIBERNATE SEARCH

259

Example: Using JPA to Index Data

After executing the above code, you should be able to see a Lucene index under
/var/lucene/indexes/example.Book. Go ahead an inspect this index with Luke. It will help you to
understand how Hibernate Search works.

13.3.5. Searching

To execute a search, create a Lucene query using either the Lucene API or the Hibernate Search query
DSL. Wrap the query in a org.hibernate.Query to get the required functionality from the Hibernate API.
The following code prepares a query against the indexed fields. Executing the code returns a list of
Books.

Example: Using a Hibernate Search Session to Create and Execute a Search

Example: Using JPA to Create and Execute a Search

FullTextSession fullTextSession =
org.hibernate.search.Search.getFullTextSession(session);
fullTextSession.createIndexer().startAndWait();

EntityManager em = entityManagerFactory.createEntityManager();
FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager(em);
fullTextEntityManager.createIndexer().startAndWait();

FullTextSession fullTextSession = Search.getFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();

// create native Lucene query using the query DSL
// alternatively you can write the Lucene query using the Lucene query
parser
// or the Lucene programmatic API. The Hibernate Search DSL is recommended
though
QueryBuilder qb = fullTextSession.getSearchFactory()
 .buildQueryBuilder().forEntity(Book.class).get();
org.apache.lucene.search.Query query = qb
 .keyword()
 .onFields("title", "subtitle", "authors.name", "publicationDate")
 .matching("Java rocks!")
 .createQuery();

// wrap Lucene query in a org.hibernate.Query
org.hibernate.Query hibQuery =
 fullTextSession.createFullTextQuery(query, Book.class);

// execute search
List result = hibQuery.list();

tx.commit();
session.close();

EntityManager em = entityManagerFactory.createEntityManager();
FullTextEntityManager fullTextEntityManager =

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

260

http://code.google.com/p/luke/

13.3.6. Analyzer

Assuming that the title of an indexed book entity is Refactoring: Improving the Design of
Existing Code and that hits are required for the following queries: refactor, refactors,
refactored, and refactoring. Select an analyzer class in Lucene that applies word stemming when
indexing and searching. Hibernate Search offers several ways to configure the analyzer (see Default
Analyzer and Analyzer by Class for more information):

Set the analyzer property in the configuration file. The specified class becomes the default
analyzer.

Set the @Analyzer annotation at the entity level.

Set the @Analyzer annotation at the field level.

Specify the fully qualified classname or the analyzer to use, or see an analyzer defined by the
@AnalyzerDef annotation with the @Analyzer annotation. The Solr analyzer framework with its
factories are utilized for the latter option. For more information about factory classes, see the Solr
JavaDoc or read the corresponding section on the Solr Wiki
(http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters)

In the example, a StandardTokenizerFactory is used by two filter factories: LowerCaseFilterFactory and
SnowballPorterFilterFactory. The tokenizer splits words at punctuation characters and hyphens but
keeping email addresses and internet hostnames intact. The standard tokenizer is ideal for this and other
general operations. The lowercase filter converts all letters in the token into lowercase and the snowball
filter applies language specific stemming.

If using the Solr framework, use the tokenizer with an arbitrary number of filters.

Example: Using @AnalyzerDef and the Solr Framework to Define and Use an Analyzer

 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);
em.getTransaction().begin();

// create native Lucene query using the query DSL
// alternatively you can write the Lucene query using the Lucene query
parser
// or the Lucene programmatic API. The Hibernate Search DSL is recommended
though
QueryBuilder qb = fullTextEntityManager.getSearchFactory()
 .buildQueryBuilder().forEntity(Book.class).get();
org.apache.lucene.search.Query query = qb
 .keyword()
 .onFields("title", "subtitle", "authors.name", "publicationDate")
 .matching("Java rocks!")
 .createQuery();

// wrap Lucene query in a javax.persistence.Query
javax.persistence.Query persistenceQuery =
 fullTextEntityManager.createFullTextQuery(query, Book.class);

// execute search
List result = persistenceQuery.getResultList();

em.getTransaction().commit();
em.close();

CHAPTER 13. HIBERNATE SEARCH

261

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Use @AnalyzerDef to define an analyzer, then apply it to entities and properties using @Analyzer. In the
example, the customanalyzer is defined but not applied on the entity. The analyzer is only applied to
the title and subtitle properties. An analyzer definition is global. Define the analyzer for an entity
and reuse the definition for other entities as required.

13.4. MAPPING ENTITIES TO THE INDEX STRUCTURE

13.4.1. Mapping an Entity

All the metadata information required to index entities is described through annotations, so there is no
need for XML mapping files. You can still use Hibernate mapping files for the basic Hibernate
configuration, but the Hibernate Search specific configuration has to be expressed via annotations.

13.4.1.1. Basic Mapping

Let us start with the most commonly used annotations for mapping an entity.

The Lucene-based Query API uses the following common annotations to map entities:

@Indexed

@Indexed
@AnalyzerDef(
 name = "customanalyzer",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = SnowballPorterFilterFactory.class,
 params = { @Parameter(name = "language", value = "English") })
 })
public class Book implements Serializable {

 @Field
 @Analyzer(definition = "customanalyzer")
 private String title;

 @Field
 @Analyzer(definition = "customanalyzer")
 private String subtitle;

 @IndexedEmbedded
 private Set authors = new HashSet();

 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.YES)
 @DateBridge(resolution = Resolution.DAY)
 private Date publicationDate;

 public Book() {
 }

 // standard getters/setters follow here
 ...
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

262

@Field

@NumericField

@Id

13.4.1.2. @Indexed

Foremost we must declare a persistent class as indexable. This is done by annotating the class with
@Indexed (all entities not annotated with @Indexed will be ignored by the indexing process):

You can optionally specify the index attribute of the @Indexed annotation to change the default name of
the index.

13.4.1.3. @Field

For each property (or attribute) of your entity, you have the ability to describe how it will be indexed. The
default (no annotation present) means that the property is ignored by the indexing process.

NOTE

Prior to Hibernate Search 5, numeric field encoding was only chosen if explicitly
requested via @NumericField. As of Hibernate Search 5 this encoding is automatically
chosen for numeric types. To avoid numeric encoding you can explicitly specify a non
numeric field bridge via @Field.bridge or @FieldBridge. The package
org.hibernate.search.bridge.builtin contains a set of bridges which encode
numbers as strings, for example
org.hibernate.search.bridge.builtin.IntegerBridge.

@Field does declare a property as indexed and allows to configure several aspects of the indexing
process by setting one or more of the following attributes:

name : describe under which name, the property should be stored in the Lucene Document. The
default value is the property name (following the JavaBeans convention)

store : describe whether or not the property is stored in the Lucene index. You can store the
value Store.YES (consuming more space in the index but allowing projection, store it in a
compressed way Store.COMPRESS (this does consume more CPU), or avoid any storage
Store.NO (this is the default value). When a property is stored, you can retrieve its original
value from the Lucene Document. This is not related to whether the element is indexed or not.

index: describe whether the property is indexed or not. The different values are Index.NO (no
indexing, ie cannot be found by a query), Index.YES (the element gets indexed and is
searchable). The default value is Index.YES. Index.NO can be useful for cases where a
property is not required to be searchable, but should be available for projection.

@Entity
@Indexed
public class Essay {
...
}

CHAPTER 13. HIBERNATE SEARCH

263

NOTE

Index.NO in combination with Analyze.YES or Norms.YES is not useful, since
analyze and norms require the property to be indexed

analyze: determines whether the property is analyzed (Analyze.YES) or not (Analyze.NO).
The default value is Analyze.YES.

NOTE

Whether or not you want to analyze a property depends on whether you wish to
search the element as is, or by the words it contains. It make sense to analyze a
text field, but probably not a date field.

NOTE

Fields used for sorting must not be analyzed.

norms: describes whether index time boosting information should be stored (Norms.YES) or not
(Norms.NO). Not storing it can save a considerable amount of memory, but there will not be any
index time boosting information available. The default value is Norms.YES.

termVector: describes collections of term-frequency pairs. This attribute enables the storing of
the term vectors within the documents during indexing. The default value is TermVector.NO.
The different values of this attribute are:

Value Definition

TermVector.YES Store the term vectors of each document. This produces
two synchronized arrays, one contains document terms
and the other contains the term’s frequency.

TermVector.NO Do not store term vectors.

TermVector.WITH_OFFSETS Store the term vector and token offset information. This is
the same as TermVector.YES plus it contains the starting
and ending offset position information for the terms.

TermVector.WITH_POSITIONS Store the term vector and token position information. This
is the same as TermVector.YES plus it contains the ordinal
positions of each occurrence of a term in a document.

TermVector.WITH_POSITION_OFFS
ETS

Store the term vector, token position and offset information.
This is a combination of the YES, WITH_OFFSETS and
WITH_POSITIONS.

indexNullAs : Per default null values are ignored and not indexed. However, using
indexNullAs you can specify a string which will be inserted as token for the null value. Per
default this value is set to Field.DO_NOT_INDEX_NULL indicating that null values should not
be indexed. You can set this value to Field.DEFAULT_NULL_TOKEN to indicate that a default

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

264

null token should be used. This default null token can be specified in the configuration using
hibernate.search.default_null_token. If this property is not set and you specify
Field.DEFAULT_NULL_TOKEN the string "null" will be used as default.

NOTE

When the indexNullAs parameter is used it is important to use the same token
in the search query to search for null values. It is also advisable to use this
feature only with un-analyzed fields (Analyze.NO).

WARNING

When implementing a custom FieldBridge or TwoWayFieldBridge it is up to
the developer to handle the indexing of null values (see JavaDocs of
LuceneOptions.indexNullAs()).

13.4.1.4. @NumericField

There is a companion annotation to @Field called @NumericField that can be specified in the same
scope as @Field or @DocumentId. It can be specified for Integer, Long, Float, and Double properties. At
index time the value will be indexed using a Trie structure. When a property is indexed as numeric field,
it enables efficient range query and sorting, orders of magnitude faster than doing the same query on
standard @Field properties. The @NumericField annotation accept the following parameters:

Value Definition

forField (Optional) Specify the name of the related @Field that will be indexed as
numeric. It is only mandatory when the property contains more than a
@Field declaration

precisionStep (Optional) Change the way that the Trie structure is stored in the index.
Smaller precisionSteps lead to more disk space usage and faster range and
sort queries. Larger values lead to less space used and range query
performance more close to the range query in normal @Fields. Default
value is 4.

@NumericField supports only Double, Long, Integer and Float. It is not possible to take any advantage
from similar functionality in Lucene for the other numeric types, so remaining types should use the string
encoding via the default or custom TwoWayFieldBridge.

It is possible to use a custom NumericFieldBridge assuming you can deal with the approximation during
type transformation:

Example: Defining a custom NumericFieldBridge



public class BigDecimalNumericFieldBridge extends NumericFieldBridge {
 private static final BigDecimal storeFactor = BigDecimal.valueOf(100);

CHAPTER 13. HIBERNATE SEARCH

265

13.4.1.5. @Id

Finally, the id (identifier) property of an entity is a special property used by Hibernate Search to ensure
index uniqueness of a given entity. By design, an id must be stored and must not be tokenized. To mark
a property as an index identifier, use the @DocumentId annotation. If you are using JPA and you have
specified @Id you can omit @DocumentId. The chosen entity identifier will also be used as the document
identifier.

Infinispan Query uses the entity’s id property to ensure the index is uniquely identified. By design, an ID
is stored and must not be converted into a token. To mark a property as index ID, use the @DocumentId
annotation.

Example: Specifying indexed properties

 @Override
 public void set(String name, Object value, Document document,
LuceneOptions luceneOptions) {
 if (value != null) {
 BigDecimal decimalValue = (BigDecimal) value;
 Long indexedValue = Long.valueOf(decimalValue.multiply(
storeFactor).longValue());
 luceneOptions.addNumericFieldToDocument(name, indexedValue,
document);
 }
 }

 @Override
 public Object get(String name, Document document) {
 String fromLucene = document.get(name);
 BigDecimal storedBigDecimal = new BigDecimal(fromLucene);
 return storedBigDecimal.divide(storeFactor);
 }

}

@Entity
@Indexed
public class Essay {
 ...
 @Id
 @DocumentId
 public Long getId() { return id; }

 @Field(name="Abstract", store=Store.YES)
 public String getSummary() { return summary; }

 @Lob
 @Field
 public String getText() { return text; }

 @Field @NumericField(precisionStep = 6)
 public float getGrade() { return grade; }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

266

The example above defines an index with four fields: id , Abstract, text and grade . Note that by
default the field name is not capitalized, following the JavaBean specification. The grade field is
annotated as numeric with a slightly larger precision step than the default.

13.4.1.6. Mapping Properties Multiple Times

Sometimes you need to map a property multiple times per index, with slightly different indexing
strategies. For example, sorting a query by field requires the field to be un-analyzed. To search by words
on this property and still sort it, it needs to be indexed - once analyzed and once un-analyzed. @Fields
allows you to achieve this goal.

Example: Using @Fields to map a property multiple times

In this example the field summary is indexed twice, once as summary in a tokenized way, and once as
summary_forSort in an untokenized way.

13.4.1.7. Embedded and Associated Objects

Associated objects as well as embedded objects can be indexed as part of the root entity index. This is
useful if you expect to search a given entity based on properties of associated objects. The aim is to
return places where the associated city is Atlanta (In the Lucene query parser language, it would
translate into address.city:Atlanta). The place fields will be indexed in the Place index. The
Place index documents will also contain the fields address.id, address.street, and
address.city which you will be able to query.

Example: Indexing associations

@Entity
@Indexed(index = "Book")
public class Book {
 @Fields({
 @Field,
 @Field(name = "summary_forSort", analyze = Analyze.NO, store
= Store.YES)
 })
 public String getSummary() {
 return summary;
 }

 ...
}

@Entity
@Indexed
public class Place {
 @Id
 @GeneratedValue
 @DocumentId
 private Long id;

 @Field
 private String name;

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })
 @IndexedEmbedded

CHAPTER 13. HIBERNATE SEARCH

267

Because the data is denormalized in the Lucene index when using the @IndexedEmbedded technique,
Hibernate Search must be aware of any change in the Place object and any change in the Address
object to keep the index up to date. To ensure the Lucene document is updated when it is Address
changes, mark the other side of the bidirectional relationship with @ContainedIn.

NOTE

@ContainedIn is useful on both associations pointing to entities and on embedded
(collection of) objects.

To expand upon this, the following example demonstrates nesting @IndexedEmbedded.

Example: Nested usage of @IndexedEmbedded and @ContainedIn

 private Address address;

}

@Entity
public class Address {
 @Id
 @GeneratedValue
 private Long id;

 @Field
 private String street;

 @Field
 private String city;

 @ContainedIn
 @OneToMany(mappedBy="address")
 private Set<Place> places;
 ...
}

@Entity
@Indexed
public class Place {
 @Id
 @GeneratedValue
 @DocumentId
 private Long id;

 @Field
 private String name;

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })
 @IndexedEmbedded
 private Address address;

}

@Entity
public class Address {

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

268

Any @*ToMany, @*ToOne and @Embedded attribute can be annotated with @IndexedEmbedded. The
attributes of the associated class will then be added to the main entity index. The index will contain the
following fields:

id

name

address.street

address.city

address.ownedBy_name

The default prefix is propertyName., following the traditional object navigation convention. You can
override it using the prefix attribute as it is shown on the ownedBy property.

NOTE

The prefix cannot be set to the empty string.

The depth property is necessary when the object graph contains a cyclic dependency of classes (not
instances). For example, if Owner points to Place. Hibernate Search will stop including Indexed
embedded attributes after reaching the expected depth (or the object graph boundaries are reached). A
class having a self reference is an example of cyclic dependency. In our example, because depth is set
to 1, any @IndexedEmbedded attribute in Owner (if any) will be ignored.

Using @IndexedEmbedded for object associations allows you to express queries (using Lucene’s query
syntax) such as:

 @Id
 @GeneratedValue
 private Long id;

 @Field
 private String street;

 @Field
 private String city;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_")
 private Owner ownedBy;

 @ContainedIn
 @OneToMany(mappedBy="address")
 private Set<Place> places;
 ...
}

@Embeddable
public class Owner {
 @Field
 private String name;
 ...
}

CHAPTER 13. HIBERNATE SEARCH

269

Return places where name contains JBoss and where address city is Atlanta. In Lucene query
this would be:

+name:jboss +address.city:atlanta

Return places where name contains JBoss and where owner’s name contain Joe. In Lucene
query this would be

+name:jboss +address.ownedBy_name:joe

This behavior mimics the relational join operation in a more efficient way (at the cost of data duplication).
Remember that, out of the box, Lucene indexes have no notion of association, the join operation does
not exist. It might help to keep the relational model normalized while benefiting from the full text index
speed and feature richness.

NOTE

An associated object can itself (but does not have to) be @Indexed

When @IndexedEmbedded points to an entity, the association has to be directional and the other side
has to be annotated @ContainedIn (as seen in the previous example). If not, Hibernate Search has no
way to update the root index when the associated entity is updated (in our example, a Place index
document has to be updated when the associated Address instance is updated).

Sometimes, the object type annotated by @IndexedEmbedded is not the object type targeted by
Hibernate and Hibernate Search. This is especially the case when interfaces are used in lieu of their
implementation. For this reason you can override the object type targeted by Hibernate Search using the
targetElement parameter.

Example: Using the targetElement property of @IndexedEmbedded

@Entity
@Indexed
public class Address {
 @Id
 @GeneratedValue
 @DocumentId
 private Long id;

 @Field
 private String street;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_",)
 @Target(Owner.class)
 private Person ownedBy;

 ...
}

@Embeddable
public class Owner implements Person { ... }

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

270

13.4.1.8. Limiting Object Embedding to Specific Paths

The @IndexedEmbedded annotation provides also an attribute includePaths which can be used as an
alternative to depth, or be combined with it.

When using only depth all indexed fields of the embedded type will be added recursively at the same
depth. This makes it harder to select only a specific path without adding all other fields as well, which
might not be needed.

To avoid unnecessarily loading and indexing entities you can specify exactly which paths are needed. A
typical application might need different depths for different paths, or in other words it might need to
specify paths explicitly, as shown in the example below:

Example: Using the includePaths property of @IndexedEmbedded

Using a mapping as in the example above, you would be able to search on a Person by name and/or
surname, and/or the name of the parent. It will not index the surname of the parent, so searching on
parent’s surnames will not be possible but speeds up indexing, saves space and improve overall
performance.

The @IndexedEmbeddedincludePaths will include the specified paths in addition to what you would
index normally specifying a limited value for depth. When using includePaths, and leaving depth
undefined, behavior is equivalent to setting depth=0: only the included paths are indexed.

@Entity
@Indexed
public class Person {

 @Id
 public int getId() {
 return id;
 }

 @Field
 public String getName() {
 return name;
 }

 @Field
 public String getSurname() {
 return surname;
 }

 @OneToMany
 @IndexedEmbedded(includePaths = { "name" })
 public Set<Person> getParents() {
 return parents;
 }

 @ContainedIn
 @ManyToOne
 public Human getChild() {
 return child;
 }

 ...//other fields omitted

CHAPTER 13. HIBERNATE SEARCH

271

Example: Using the includePaths property of @IndexedEmbedded

In the example above, every human will have its name and surname attributes indexed. The name and
surname of parents will also be indexed, recursively up to second line because of the depth attribute. It
will be possible to search by name or surname, of the person directly, his parents or of his grand
parents. Beyond the second level, we will in addition index one more level but only the name, not the
surname.

This results in the following fields in the index:

id: as primary key

_hibernate_class: stores entity type

name: as direct field

surname: as direct field

parents.name: as embedded field at depth 1

parents.surname: as embedded field at depth 1

parents.parents.name: as embedded field at depth 2

@Entity
@Indexed
public class Human {

 @Id
 public int getId() {
 return id;
 }

 @Field
 public String getName() {
 return name;
 }

 @Field
 public String getSurname() {
 return surname;
 }

 @OneToMany
 @IndexedEmbedded(depth = 2, includePaths = { "parents.parents.name" })
 public Set<Human> getParents() {
 return parents;
 }

 @ContainedIn
 @ManyToOne
 public Human getChild() {
 return child;
 }

 ...//other fields omitted

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

272

parents.parents.surname: as embedded field at depth 2

parents.parents.parents.name: as additional path as specified by includePaths. The first
parents. is inferred from the field name, the remaining path is the attribute of includePaths

Having explicit control of the indexed paths might be easier if you are designing your application by
defining the needed queries first, as at that point you might know exactly which fields you need, and
which other fields are unnecessary to implement your use case.

13.4.2. Boosting

Lucene has the notion of boosting which allows you to give certain documents or fields more or less
importance than others. Lucene differentiates between index and search time boosting. The following
sections show you how you can achieve index time boosting using Hibernate Search.

13.4.2.1. Static Index Time Boosting

To define a static boost value for an indexed class or property you can use the @Boost annotation. You
can use this annotation within @Field or specify it directly on method or class level.

Example: Different ways of using @Boost

In the example above, Essay’s probability to reach the top of the search list will be multiplied by 1.7. The
summary field will be 3.0 (2 * 1.5, because @Field.boost and @Boost on a property are cumulative) more
important than the isbn field. The text field will be 1.2 times more important than the isbn field. Note that
this explanation is wrong in strictest terms, but it is simple and close enough to reality for all practical
purposes.

13.4.2.2. Dynamic Index Time Boosting

The @Boost annotation used in Static Index Time Boosting defines a static boost factor which is
independent of the state of the indexed entity at runtime. However, there are use cases in which the

@Entity
@Indexed

public class Essay {
 ...

 @Id
 @DocumentId
 public Long getId() { return id; }

 @Field(name="Abstract", store=Store.YES, boost=@Boost(2f))
 @Boost(1.5f)
 public String getSummary() { return summary; }

 @Lob
 @Field(boost=@Boost(1.2f))
 public String getText() { return text; }

 @Field
 public String getISBN() { return isbn; }

}

CHAPTER 13. HIBERNATE SEARCH

273

boost factor may depend on the actual state of the entity. In this case you can use the @DynamicBoost
annotation together with an accompanying custom BoostStrategy.

Example: Dynamic boost example

In the example above, a dynamic boost is defined on class level specifying VIPBoostStrategy as
implementation of the BoostStrategy interface to be used at indexing time. You can place the
@DynamicBoost either at class or field level. Depending on the placement of the annotation either the
whole entity is passed to the defineBoost method or just the annotated field/property value. It is up to you
to cast the passed object to the correct type. In the example all indexed values of a VIP person would be
double as important as the values of a normal person.

NOTE

The specified BoostStrategy implementation must define a public no-arg constructor.

Of course you can mix and match @Boost and @DynamicBoost annotations in your entity. All defined
boost factors are cumulative.

13.4.3. Analysis

Analysis is the process of converting text into single terms (words) and can be considered as one of
the key features of a full-text search engine. Lucene uses the concept of Analyzers to control this
process. In the following section we cover the multiple ways Hibernate Search offers to configure the
analyzers.

13.4.3.1. Default Analyzer and Analyzer by Class

public enum PersonType {
 NORMAL,
 VIP
}

@Entity
@Indexed
@DynamicBoost(impl = VIPBoostStrategy.class)
public class Person {
 private PersonType type;

 //
}

public class VIPBoostStrategy implements BoostStrategy {
 public float defineBoost(Object value) {
 Person person = (Person) value;
 if (person.getType().equals(PersonType.VIP)) {
 return 2.0f;
 }
 else {
 return 1.0f;
 }
 }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

274

The default analyzer class used to index tokenized fields is configurable through the
hibernate.search.analyzer property. The default value for this property is
org.apache.lucene.analysis.standard.StandardAnalyzer.

You can also define the analyzer class per entity, property and even per @Field (useful when multiple
fields are indexed from a single property).

Example: Different ways of using @Analyzer

In this example, EntityAnalyzer is used to index tokenized property (name), except summary and body
which are indexed with PropertyAnalyzer and FieldAnalyzer respectively.

WARNING

Mixing different analyzers in the same entity is most of the time a bad practice. It
makes query building more complex and results less predictable (for the novice),
especially if you are using a QueryParser (which uses the same analyzer for the
whole query). As a rule of thumb, for any given field the same analyzer should be
used for indexing and querying.

13.4.3.2. Named Analyzers

Analyzers can become quite complex to deal with. For this reason introduces Hibernate Search the
notion of analyzer definitions. An analyzer definition can be reused by many @Analyzer declarations and
is composed of:

a name: the unique string used to refer to the definition

@Entity
@Indexed
@Analyzer(impl = EntityAnalyzer.class)
public class MyEntity {
 @Id
 @GeneratedValue
 @DocumentId
 private Integer id;

 @Field
 private String name;

 @Field
 @Analyzer(impl = PropertyAnalyzer.class)
 private String summary;

 @Field(analyzer = @Analyzer(impl = FieldAnalyzer.class)
 private String body;

 ...
}



CHAPTER 13. HIBERNATE SEARCH

275

a list of char filters: each char filter is responsible to pre-process input characters before the
tokenization. Char filters can add, change, or remove characters; one common usage is for
characters normalization

a tokenizer: responsible for tokenizing the input stream into individual words

a list of filters: each filter is responsible to remove, modify, or sometimes even add words into
the stream provided by the tokenizer

This separation of tasks - a list of char filters, and a tokenizer followed by a list of filters - allows for easy
reuse of each individual component and lets you build your customized analyzer in a very flexible way
(like Lego). Generally speaking the char filters do some pre-processing in the character input, then the
Tokenizer starts the tokenizing process by turning the character input into tokens which are then further
processed by the TokenFilters. Hibernate Search supports this infrastructure by utilizing the Solr
analyzer framework.

Let us review a concrete example stated below. First a char filter is defined by its factory. In our
example, a mapping char filter is used, and will replace characters in the input based on the rules
specified in the mapping file. Next a tokenizer is defined. This example uses the standard tokenizer. Last
but not least, a list of filters is defined by their factories. In our example, the StopFilter filter is built
reading the dedicated words property file. The filter is also expected to ignore case.

Example: @AnalyzerDef and the Solr framework

NOTE

Filters and char filters are applied in the order they are defined in the @AnalyzerDef
annotation. Order matters!

Some tokenizers, token filters or char filters load resources like a configuration or metadata file. This is
the case for the stop filter and the synonym filter. If the resource charset is not using the VM default, you
can explicitly specify it by adding a resource_charset parameter.

@AnalyzerDef(name="customanalyzer",
 charFilters = {
 @CharFilterDef(factory = MappingCharFilterFactory.class, params = {
 @Parameter(name = "mapping",
 value = "org/hibernate/search/test/analyzer/solr/mapping-
chars.properties")
 })
 },
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class, params = {
 @Parameter(name="words",
 value=
"org/hibernate/search/test/analyzer/solr/stoplist.properties"),
 @Parameter(name="ignoreCase", value="true")
 })
})
public class Team {
 ...
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

276

Example: Use a specific charset to load the property file

Once defined, an analyzer definition can be reused by an @Analyzer declaration as seen in the
following example.

Example: Referencing an analyzer by name

Analyzer instances declared by @AnalyzerDef are also available by their name in the SearchFactory
which is quite useful when building queries.

@AnalyzerDef(name="customanalyzer",
 charFilters = {
 @CharFilterDef(factory = MappingCharFilterFactory.class, params = {
 @Parameter(name = "mapping",
 value = "org/hibernate/search/test/analyzer/solr/mapping-
chars.properties")
 })
 },
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class, params = {
 @Parameter(name="words",
 value=
"org/hibernate/search/test/analyzer/solr/stoplist.properties"),
 @Parameter(name="resource_charset", value = "UTF-16BE"),
 @Parameter(name="ignoreCase", value="true")
 })
})
public class Team {
 ...
}

@Entity
@Indexed
@AnalyzerDef(name="customanalyzer", ...)
public class Team {
 @Id
 @DocumentId
 @GeneratedValue
 private Integer id;

 @Field
 private String name;

 @Field
 private String location;

 @Field
 @Analyzer(definition = "customanalyzer")
 private String description;
}

CHAPTER 13. HIBERNATE SEARCH

277

Fields in queries must be analyzed with the same analyzer used to index the field so that they speak a
common "language": the same tokens are reused between the query and the indexing process. This rule
has some exceptions but is true most of the time. Respect it unless you know what you are doing.

13.4.3.3. Available Analyzers

Solr and Lucene come with many useful default char filters, tokenizers, and filters. You can find a
complete list of char filter factories, tokenizer factories and filter factories at
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters. Let us check a few of them.

Table 13.8. Example of available char filters

Factory Description Parameters

MappingCharFilterFactory Replaces one or more characters with
one or more characters, based on
mappings specified in the resource file

mapping: points to a
resource file containing the
mappings using the format:
"á" ⇒ "a"; "ñ" ⇒ "n"; "ø" ⇒ "o"

HTMLStripCharFilterFactory Remove HTML standard tags, keeping
the text

none

Table 13.9. Example of available tokenizers

Factory Description Parameters

StandardTokenizerFactory Use the Lucene StandardTokenizer none

HTMLStripCharFilterFactory Remove HTML tags, keep the text and
pass it to a StandardTokenizer.

none

PatternTokenizerFactory Breaks text at the specified regular
expression pattern.

pattern: the regular
expression to use for
tokenizing

group: says which pattern
group to extract into tokens

Table 13.10. Examples of available filters

Factory Description Parameters

StandardFilterFactory Remove dots from acronyms and 's from
words

none

LowerCaseFilterFactory Lowercases all words none

Analyzer analyzer =
fullTextSession.getSearchFactory().getAnalyzer("customanalyzer");

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

278

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

StopFilterFactory Remove words (tokens) matching a list of
stop words

words: points to a resource
file containing the stop words

ignoreCase: true if case
should be ignored when
comparing stop words, false
otherwise

SnowballPorterFilterFactory Reduces a word to its root in a given
language. (example: protect, protects,
protection share the same root). Using
such a filter allows searches matching
related words.

language: Danish, Dutch,
English, Finnish, French,
German, Italian, Norwegian,
Portuguese, Russian,
Spanish, Swedish and a few
more

Factory Description Parameters

We recommend to check all the implementations of
org.apache.lucene.analysis.TokenizerFactory and
org.apache.lucene.analysis.TokenFilterFactory in your IDE to see the implementations
available.

13.4.3.4. Dynamic Analyzer Selection

So far all the introduced ways to specify an analyzer were static. However, there are use cases where it
is useful to select an analyzer depending on the current state of the entity to be indexed, for example in a
multilingual applications. For an BlogEntry class for example the analyzer could depend on the language
property of the entry. Depending on this property the correct language specific stemmer should be
chosen to index the actual text.

To enable this dynamic analyzer selection Hibernate Search introduces the AnalyzerDiscriminator
annotation. Following example demonstrates the usage of this annotation.

Example: Usage of @AnalyzerDiscriminator

@Entity
@Indexed
@AnalyzerDefs({
 @AnalyzerDef(name = "en",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = EnglishPorterFilterFactory.class
)
 }),
 @AnalyzerDef(name = "de",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = GermanStemFilterFactory.class)
 })
})

CHAPTER 13. HIBERNATE SEARCH

279

The prerequisite for using @AnalyzerDiscriminator is that all analyzers which are going to be used
dynamically are predefined via @AnalyzerDef definitions. If this is the case, one can place the
@AnalyzerDiscriminator annotation either on the class or on a specific property of the entity for
which to dynamically select an analyzer. Via the impl parameter of the AnalyzerDiscriminator you
specify a concrete implementation of the Discriminator interface. It is up to you to provide an
implementation for this interface. The only method you have to implement is
getAnalyzerDefinitionName() which gets called for each field added to the Lucene document.
The entity which is getting indexed is also passed to the interface method. The value parameter is only
set if the AnalyzerDiscriminator is placed on property level instead of class level. In this case the
value represents the current value of this property.

An implementation of the Discriminator interface has to return the name of an existing analyzer definition
or null if the default analyzer should not be overridden. The example above assumes that the language
parameter is either 'de' or 'en' which matches the specified names in the @AnalyzerDefs.

13.4.3.5. Retrieving an Analyzer

Retrieving an analyzer can be used when multiple analyzers have been used in a domain model, in
order to benefit from stemming or phonetic approximation, etc. In this case, use the same analyzers to
building a query. Alternatively, use the Hibernate Search query DSL, which selects the correct analyzer
automatically. See

Whether you are using the Lucene programmatic API or the Lucene query parser, you can retrieve the

public class BlogEntry {

 @Id
 @GeneratedValue
 @DocumentId
 private Integer id;

 @Field
 @AnalyzerDiscriminator(impl = LanguageDiscriminator.class)
 private String language;

 @Field
 private String text;

 private Set<BlogEntry> references;

 // standard getter/setter
 ...
}

public class LanguageDiscriminator implements Discriminator {

 public String getAnalyzerDefinitionName(Object value, Object entity,
String field) {
 if (value == null || !(entity instanceof BlogEntry)) {
 return null;
 }
 return (String) value;

 }
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

280

scoped analyzer for a given entity. A scoped analyzer is an analyzer which applies the right analyzers
depending on the field indexed. Remember, multiple analyzers can be defined on a given entity each one
working on an individual field. A scoped analyzer unifies all these analyzers into a context-aware
analyzer. While the theory seems a bit complex, using the right analyzer in a query is very easy.

NOTE

When you use programmatic mapping for a child entity, you can only see the fields
defined by the child entity. Fields or methods inherited from a parent entity (annotated
with @MappedSuperclass) are not configurable. To configure properties inherited from a
parent entity, either override the property in the child entity or create a programmatic
mapping for the parent entity. This mimics the usage of annotations where you cannot
annotate a field or method of a parent entity unless it is redefined in the child entity.

Example: Using the scoped analyzer when building a full-text query

In the example above, the song title is indexed in two fields: the standard analyzer is used in the field
title and a stemming analyzer is used in the field title_stemmed. By using the analyzer provided
by the search factory, the query uses the appropriate analyzer depending on the field targeted.

NOTE

You can also retrieve analyzers defined via @AnalyzerDef by their definition name using
searchFactory.getAnalyzer(String).

13.4.4. Bridges

When discussing the basic mapping for an entity one important fact was so far disregarded. In Lucene all
index fields have to be represented as strings. All entity properties annotated with @Field have to be
converted to strings to be indexed. The reason we have not mentioned it so far is, that for most of your
properties Hibernate Search does the translation job for you thanks to set of built-in bridges. However, in
some cases you need a more fine grained control over the translation process.

13.4.4.1. Built-in Bridges

Hibernate Search comes bundled with a set of built-in bridges between a Java property type and its full
text representation.

null

org.apache.lucene.queryParser.QueryParser parser = new QueryParser(
 "title",
 fullTextSession.getSearchFactory().getAnalyzer(Song.class)
);

org.apache.lucene.search.Query luceneQuery =
 parser.parse("title:sky Or title_stemmed:diamond");

org.hibernate.Query fullTextQuery =
 fullTextSession.createFullTextQuery(luceneQuery, Song.class);

List result = fullTextQuery.list(); //return a list of managed objects

CHAPTER 13. HIBERNATE SEARCH

281

Per default null elements are not indexed. Lucene does not support null elements. However, in
some situation it can be useful to insert a custom token representing the null value. See for more
information.

java.lang.String

Strings are indexed as are short, Short, integer, Integer, long, Long, float, Float, double,

Double, BigInteger, BigDecimal

Numbers are converted into their string representation. Note that numbers cannot be compared by
Lucene (that is, used in ranged queries) out of the box: they have to be padded.

NOTE

Using a Range query has drawbacks, an alternative approach is to use a Filter query
which will filter the result query to the appropriate range. Hibernate Search also
supports the use of a custom StringBridge as described in Custom Bridges.

java.util.Date

Dates are stored as yyyyMMddHHmmssSSS in GMT time (200611072203012 for Nov 7th of 2006
4:03PM and 12ms EST). You should not really bother with the internal format. What is important is
that when using a TermRangeQuery, you should know that the dates have to be expressed in GMT
time.
Usually, storing the date up to the millisecond is not necessary. @DateBridge defines the
appropriate resolution you are willing to store in the index
(@DateBridge(resolution=Resolution.DAY)). The date pattern will then be truncated
accordingly.

WARNING

A Date whose resolution is lower than MILLISECOND cannot be a @DocumentId.

IMPORTANT

The default Date bridge uses Lucene’s DateTools to convert from and to String. This
means that all dates are expressed in GMT time. If your requirements are to store dates in
a fixed time zone you have to implement a custom date bridge. Make sure you
understand the requirements of your applications regarding to date indexing and
searching.

java.net.URI, java.net.URL

@Entity
@Indexed
public class Meeting {
 @Field(analyze=Analyze.NO)

 private Date date;
 ...



Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

282

URI and URL are converted to their string representation.

java.lang.Class

Class are converted to their fully qualified class name. The thread context class loader is used when
the class is rehydrated.

13.4.4.2. Custom Bridges

Sometimes, the built-in bridges of Hibernate Search do not cover some of your property types, or the
String representation used by the bridge does not meet your requirements. The following paragraphs
describe several solutions to this problem.

13.4.4.2.1. StringBridge

The simplest custom solution is to give Hibernate Search an implementation of your expected Object to
String bridge. To do so you need to implement the
org.hibernate.search.bridge.StringBridge interface. All implementations have to be thread-
safe as they are used concurrently.

Example: Custom StringBridge implementation

Given the string bridge defined in the previous example, any property or field can use this bridge thanks
to the @FieldBridge annotation:

13.4.4.2.2. Parameterized Bridge

/**
 * Padding Integer bridge.
 * All numbers will be padded with 0 to match 5 digits
 *
 * @author Emmanuel Bernard
 */
public class PaddedIntegerBridge implements StringBridge {

 private int PADDING = 5;

 public String objectToString(Object object) {
 String rawInteger = ((Integer) object).toString();
 if (rawInteger.length() > PADDING)
 throw new IllegalArgumentException("Try to pad on a number
too big");
 StringBuilder paddedInteger = new StringBuilder();
 for (int padIndex = rawInteger.length() ; padIndex < PADDING ;
padIndex++) {
 paddedInteger.append('0');
 }
 return paddedInteger.append(rawInteger).toString();
 }
}

@FieldBridge(impl = PaddedIntegerBridge.class)
private Integer length;

CHAPTER 13. HIBERNATE SEARCH

283

Parameters can also be passed to the bridge implementation making it more flexible. Following example
implements a ParameterizedBridge interface and parameters are passed through the @FieldBridge
annotation.

Example: Passing parameters to your bridge implementation

The ParameterizedBridge interface can be implemented by StringBridge,
TwoWayStringBridge, FieldBridge implementations.

All implementations have to be thread-safe, but the parameters are set during initialization and no
special care is required at this stage.

13.4.4.2.3. Type Aware Bridge

It is sometimes useful to get the type the bridge is applied on:

the return type of the property for field/getter-level bridges.

the class type for class-level bridges.

An example is a bridge that deals with enums in a custom fashion but needs to access the actual enum
type. Any bridge implementing AppliedOnTypeAwareBridge will get the type the bridge is applied on
injected. Like parameters, the type injected needs no particular care with regard to thread-safety.

public class PaddedIntegerBridge implements StringBridge,
ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";
 private int padding = 5; //default

 public void setParameterValues(Map<String,String> parameters) {
 String padding = parameters.get(PADDING_PROPERTY);
 if (padding != null) this.padding = Integer.parseInt(padding);
 }

 public String objectToString(Object object) {
 String rawInteger = ((Integer) object).toString();
 if (rawInteger.length() > padding)
 throw new IllegalArgumentException("Try to pad on a number
too big");
 StringBuilder paddedInteger = new StringBuilder();
 for (int padIndex = rawInteger.length() ; padIndex < padding ;
padIndex++) {
 paddedInteger.append('0');
 }
 return paddedInteger.append(rawInteger).toString();
 }
}

//property
@FieldBridge(impl = PaddedIntegerBridge.class,
 params = @Parameter(name="padding", value="10")
)
private Integer length;

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

284

13.4.4.2.4. Two-Way Bridge

If you expect to use your bridge implementation on an id property (that is, annotated with @DocumentId
), you need to use a slightly extended version of StringBridge named TwoWayStringBridge.
Hibernate Search needs to read the string representation of the identifier and generate the object out of
it. There is no difference in the way the @FieldBridge annotation is used.

Example: Implementing a TwoWayStringBridge usable for id properties

IMPORTANT

It is important for the two-way process to be idempotent (i.e., object = stringToObject(
objectToString(object))).

13.4.4.2.5. FieldBridge

Some use cases require more than a simple object to string translation when mapping a property to a
Lucene index. To give you the greatest possible flexibility you can also implement a bridge as a
FieldBridge. This interface gives you a property value and let you map it the way you want in your

public class PaddedIntegerBridge implements TwoWayStringBridge,
ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";
 private int padding = 5; //default

 public void setParameterValues(Map parameters) {
 Object padding = parameters.get(PADDING_PROPERTY);
 if (padding != null) this.padding = (Integer) padding;
 }

 public String objectToString(Object object) {
 String rawInteger = ((Integer) object).toString();
 if (rawInteger.length() > padding)
 throw new IllegalArgumentException("Try to pad on a number
too big");
 StringBuilder paddedInteger = new StringBuilder();
 for (int padIndex = rawInteger.length() ; padIndex < padding ;
padIndex++) {
 paddedInteger.append('0');
 }
 return paddedInteger.append(rawInteger).toString();
 }

 public Object stringToObject(String stringValue) {
 return new Integer(stringValue);
 }
}

//id property
@DocumentId
@FieldBridge(impl = PaddedIntegerBridge.class,
 params = @Parameter(name="padding", value="10")
private Integer id;

CHAPTER 13. HIBERNATE SEARCH

285

Lucene Document. You can for example store a property in two different document fields. The interface
is very similar in its concept to the Hibernate UserTypes.

Example: Implementing the FieldBridge Interface

In the example above, the fields are not added directly to Document. Instead the addition is delegated to
the LuceneOptions helper; this helper will apply the options you have selected on @Field, like Store or
TermVector, or apply the chosen @Boost value. It is especially useful to encapsulate the complexity of
COMPRESS implementations. Even though it is recommended to delegate to LuceneOptions to add fields
to the Document, nothing stops you from editing the Document directly and ignore the LuceneOptions in
case you need to.

/**
 * Store the date in 3 different fields - year, month, day - to ease Range
Query per
 * year, month or day (eg get all the elements of December for the last 5
years).
 * @author Emmanuel Bernard
 */
public class DateSplitBridge implements FieldBridge {
 private final static TimeZone GMT = TimeZone.getTimeZone("GMT");

 public void set(String name, Object value, Document document,
LuceneOptions luceneOptions) {
 Date date = (Date) value;
 Calendar cal = GregorianCalendar.getInstance(GMT);
 cal.setTime(date);
 int year = cal.get(Calendar.YEAR);
 int month = cal.get(Calendar.MONTH) + 1;
 int day = cal.get(Calendar.DAY_OF_MONTH);

 // set year
 luceneOptions.addFieldToDocument(
 name + ".year",
 String.valueOf(year),
 document);

 // set month and pad it if needed
 luceneOptions.addFieldToDocument(
 name + ".month",
 month < 10 ? "0" : "" + String.valueOf(month),
 document);

 // set day and pad it if needed
 luceneOptions.addFieldToDocument(
 name + ".day",
 day < 10 ? "0" : "" + String.valueOf(day),
 document);
 }
}

//property
@FieldBridge(impl = DateSplitBridge.class)
private Date date;

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

286

NOTE

Classes like LuceneOptions are created to shield your application from changes in
Lucene API and simplify your code. Use them if you can, but if you need more flexibility
you are not required to.

13.4.4.2.6. ClassBridge

It is sometimes useful to combine more than one property of a given entity and index this combination in
a specific way into the Lucene index. The @ClassBridge and @ClassBridges annotations can be
defined at the class level, as opposed to the property level. In this case the custom field bridge
implementation receives the entity instance as the value parameter instead of a particular property.
Though not shown in following example, @ClassBridge supports the termVector attribute discussed
in section Basic Mapping.

Example: Implementing a class bridge

@Entity
@Indexed
(name="branchnetwork",
 store=Store.YES,
 impl = CatFieldsClassBridge.class,
 params = @Parameter(name="sepChar", value=" "))
public class Department {
 private int id;
 private String network;
 private String branchHead;
 private String branch;
 private Integer maxEmployees
 ...
}

public class CatFieldsClassBridge implements FieldBridge,
ParameterizedBridge {
 private String sepChar;

 public void setParameterValues(Map parameters) {
 this.sepChar = (String) parameters.get("sepChar");
 }

 public void set(String name, Object value, Document document,
LuceneOptions luceneOptions) {
 // In this particular class the name of the new field was passed
 // from the name field of the ClassBridge Annotation. This is not
 // a requirement. It just works that way in this instance. The
 // actual name could be supplied by hard coding it below.
 Department dep = (Department) value;
 String fieldValue1 = dep.getBranch();
 if (fieldValue1 == null) {
 fieldValue1 = "";
 }
 String fieldValue2 = dep.getNetwork();
 if (fieldValue2 == null) {
 fieldValue2 = "";
 }
 String fieldValue = fieldValue1 + sepChar + fieldValue2;

CHAPTER 13. HIBERNATE SEARCH

287

In this example, the particular CatFieldsClassBridge is applied to the department instance, the
field bridge then concatenate both branch and network and index the concatenation.

13.5. QUERYING

Hibernate SearchHibernate Search can execute Lucene queries and retrieve domain objects managed
by an InfinispanHibernate session. The search provides the power of Lucene without leaving the
Hibernate paradigm, giving another dimension to the Hibernate classic search mechanisms (HQL,
Criteria query, native SQL query).

Preparing and executing a query consists of following four steps:

Creating a FullTextSession

Creating a Lucene query using either Hibernate QueryHibernate Search query DSL
(recommended) or using the Lucene Query API

Wrapping the Lucene query using an org.hibernate.Query

Executing the search by calling for example list() or scroll()

To access the querying facilities, use a FullTextSession. This Search specific session wraps a regular
org.hibernate.Session in order to provide query and indexing capabilities.

Example: Creating a FullTextSession

Use the FullTextSession to build a full-text query using either the Hibernate SearchHibernate Search
query DSL or the native Lucene query.

Use the following code when using the Hibernate SearchHibernate Search query DSL:

 Field field = new Field(name, fieldValue,
luceneOptions.getStore(),
 luceneOptions.getIndex(), luceneOptions.getTermVector());
 field.setBoost(luceneOptions.getBoost());
 document.add(field);
 }
}

Session session = sessionFactory.openSession();
...
FullTextSession fullTextSession = Search.getFullTextSession(session);

final QueryBuilder b =
fullTextSession.getSearchFactory().buildQueryBuilder().forEntity(
Myth.class).get();

org.apache.lucene.search.Query luceneQuery =
 b.keyword()
 .onField("history").boostedTo(3)
 .matching("storm")
 .createQuery();

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

288

As an alternative, write the Lucene query using either the Lucene query parser or the Lucene
programmatic API.

Example: Creating a Lucene query via the QueryParser

A Hibernate query built on the Lucene query is a org.hibernate.Query. This query remains in the same
paradigm as other Hibernate query facilities, such as HQL (Hibernate Query Language), Native, and
Criteria. Use methods such as list(), uniqueResult(), iterate() and scroll() with the query.

The same extensions are available with the Hibernate Java Persistence APIs:

Example: Creating a Search query using the JPA API

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(
luceneQuery);
List result = fullTextQuery.list(); //return a list of managed objects

SearchFactory searchFactory = fullTextSession.getSearchFactory();
org.apache.lucene.queryParser.QueryParser parser =
 new QueryParser("title", searchFactory.getAnalyzer(Myth.class));
try {
 org.apache.lucene.search.Query luceneQuery = parser.parse(
"history:storm^3");
}
catch (ParseException e) {
 //handle parsing failure
}

org.hibernate.Query fullTextQuery =
fullTextSession.createFullTextQuery(luceneQuery);
List result = fullTextQuery.list(); //return a list of managed objects

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

...
final QueryBuilder b = fullTextEntityManager.getSearchFactory()
 .buildQueryBuilder().forEntity(Myth.class).get();

org.apache.lucene.search.Query luceneQuery =
 b.keyword()
 .onField("history").boostedTo(3)
 .matching("storm")
 .createQuery();

javax.persistence.Query fullTextQuery =
fullTextEntityManager.createFullTextQuery(luceneQuery);

List result = fullTextQuery.getResultList(); //return a list of managed
objects

CHAPTER 13. HIBERNATE SEARCH

289

NOTE

In these examples, the Hibernate API has been used. The same examples can also be
written with the Java Persistence API by adjusting the way the FullTextQuery is
retrieved.

13.5.1. Building Queries

Hibernate Search queries are built on Lucene queries, allowing users to use any Lucene query type.
When the query is built, Hibernate Search uses org.hibernate.Query as the query manipulation API for
further query processing.

13.5.1.1. Building a Lucene Query Using the Lucene API

With the Lucene API, use either the query parser (simple queries) or the Lucene programmatic API
(complex queries). Building a Lucene query is out of scope for the Hibernate Search documentation. For
details, see the online Lucene documentation or a copy of Lucene in Action or Hibernate Search in
Action.

13.5.1.2. Building a Lucene Query

The Lucene programmatic API enables full-text queries. However, when using the Lucene programmatic
API, the parameters must be converted to their string equivalent and must also apply the correct
analyzer to the right field. A ngram analyzer for example uses several ngrams as the tokens for a given
word and should be searched as such. It is recommended to use the QueryBuilder for this task.

The Hibernate Search query API is fluent, with the following key characteristics:

Method names are in English. As a result, API operations can be read and understood as a
series of English phrases and instructions.

It uses IDE autocompletion which helps possible completions for the current input prefix and
allows the user to choose the right option.

It often uses the chaining method pattern.

It is easy to use and read the API operations.

To use the API, first create a query builder that is attached to a given indexedentitytype. This
QueryBuilder knows what analyzer to use and what field bridge to apply. Several QueryBuilders (one for
each entity type involved in the root of your query) can be created. The QueryBuilder is derived from the
SearchFactory.

The analyzer used for a given field or fields can also be overridden.

QueryBuilder mythQB = searchFactory.buildQueryBuilder().forEntity(
Myth.class).get();

QueryBuilder mythQB = searchFactory.buildQueryBuilder()
 .forEntity(Myth.class)
 .overridesForField("history","stem_analyzer_definition")
 .get();

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

290

The query builder is now used to build Lucene queries. Customized queries generated using Lucene’s
query parser or Query objects assembled using the Lucene programmatic API are used with the
Hibernate Search DSL.

13.5.1.3. Keyword Queries

The following example shows how to search for a specific word:

Table 13.11. Keyword query parameters

Parameter Description

keyword() Use this parameter to find a specific word

onField() Use this parameter to specify in which lucene field to search the word

matching() use this parameter to specify the match for search string

createQuery() creates the Lucene query object

The value "storm" is passed through the history FieldBridge. This is useful when numbers or
dates are involved.

The field bridge value is then passed to the analyzer used to index the field history. This
ensures that the query uses the same term transformation than the indexing (lower case, ngram,
stemming and so on). If the analyzing process generates several terms for a given word, a
boolean query is used with the SHOULD logic (roughly an OR logic).

To search a property that is not of type string.

Query luceneQuery =
mythQB.keyword().onField("history").matching("storm").createQuery();

@Indexed
public class Myth {
 @Field(analyze = Analyze.NO)
 @DateBridge(resolution = Resolution.YEAR)
 public Date getCreationDate() { return creationDate; }
 public Date setCreationDate(Date creationDate) { this.creationDate =
creationDate; }
 private Date creationDate;

 ...
}

Date birthdate = ...;
Query luceneQuery =
mythQb.keyword().onField("creationDate").matching(birthdate).createQuery()
;

CHAPTER 13. HIBERNATE SEARCH

291

NOTE

In plain Lucene, the Date object had to be converted to its string representation (in this
case the year)

This conversion works for any object, provided that the FieldBridge has an objectToString method (and
all built-in FieldBridge implementations do).

The next example searches a field that uses ngram analyzers. The ngram analyzers index succession of
ngrams of words, which helps to avoid user typos. For example, the 3-grams of the word hibernate are
hib, ibe, ber, ern, rna, nat, ate.

The matching word "Sisiphus" will be lower-cased and then split into 3-grams: sis, isi, sip, iph, phu, hus.
Each of these ngram will be part of the query. The user is then able to find the Sysiphus myth (with a y).
All that is transparently done for the user.

NOTE

If the user does not want a specific field to use the field bridge or the analyzer then the
ignoreAnalyzer() or ignoreFieldBridge() functions can be called.

To search for multiple possible words in the same field, add them all in the matching clause.

@AnalyzerDef(name = "ngram",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = StandardFilterFactory.class),
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class),
 @TokenFilterDef(factory = NGramFilterFactory.class,
 params = {
 @Parameter(name = "minGramSize", value = "3"),
 @Parameter(name = "maxGramSize", value = "3") })
 }
)

public class Myth {
 @Field(analyzer=@Analyzer(definition="ngram")
 public String getName() { return name; }
 public String setName(String name) { this.name = name; }
 private String name;

 ...
}

Date birthdate = ...;
Query luceneQuery = mythQb.keyword().onField("name").matching("Sisiphus")
 .createQuery();

//search document with storm or lightning in their history
Query luceneQuery =
 mythQB.keyword().onField("history").matching("storm
lightning").createQuery();

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

292

To search the same word on multiple fields, use the onFields method.

Sometimes, one field should be treated differently from another field even if searching the same term,
use the andField() method for that.

In the previous example, only field name is boosted to 5.

13.5.1.4. Fuzzy Queries

To execute a fuzzy query (based on the Levenshtein distance algorithm), start with a keyword query
and add the fuzzy flag.

The threshold is the limit above which two terms are considering matching. It is a decimal between 0
and 1 and the default value is 0.5. The prefixLength is the length of the prefix ignored by the
"fuzzyness". While the default value is 0, a nonzero value is recommended for indexes containing a huge
number of distinct terms.

13.5.1.5. Wildcard Queries

Wildcard queries are useful in circumstances where only part of the word is known. The ? represents a
single character and * represents multiple characters. Note that for performance purposes, it is
recommended that the query does not start with either ? or *.

Query luceneQuery = mythQB
 .keyword()
 .wildcard()
 .onField("history")
 .matching("sto*")
 .createQuery();

Query luceneQuery = mythQB
 .keyword()
 .onFields("history","description","name")
 .matching("storm")
 .createQuery();

Query luceneQuery = mythQB.keyword()
 .onField("history")
 .andField("name")
 .boostedTo(5)
 .andField("description")
 .matching("storm")
 .createQuery();

Query luceneQuery = mythQB
 .keyword()
 .fuzzy()
 .withThreshold(.8f)
 .withPrefixLength(1)
 .onField("history")
 .matching("starm")
 .createQuery();

CHAPTER 13. HIBERNATE SEARCH

293

NOTE

Wildcard queries do not apply the analyzer on the matching terms. The risk of * or ?
being mangled is too high.

13.5.1.6. Phrase Queries

So far we have been looking for words or sets of words, the user can also search exact or approximate
sentences. Use phrase() to do so.

Approximate sentences can be searched by adding a slop factor. The slop factor represents the number
of other words permitted in the sentence: this works like a within or near operator.

13.5.1.7. Range Queries

A range query searches for a value in between given boundaries (included or not) or for a value below or
above a given boundary (included or not).

13.5.1.8. Combining Queries

Queries can be aggregated (combined) to create more complex queries. The following aggregation
operators are available:

SHOULD: the query should contain the matching elements of the subquery.

MUST: the query must contain the matching elements of the subquery.

Query luceneQuery = mythQB
 .phrase()
 .onField("history")
 .sentence("Thou shalt not kill")
 .createQuery();

Query luceneQuery = mythQB
 .phrase()
 .withSlop(3)
 .onField("history")
 .sentence("Thou kill")
 .createQuery();

//look for 0 <= starred < 3
Query luceneQuery = mythQB
 .range()
 .onField("starred")
 .from(0).to(3).excludeLimit()
 .createQuery();

//look for myths strictly BC
Date beforeChrist = ...;
Query luceneQuery = mythQB
 .range()
 .onField("creationDate")
 .below(beforeChrist).excludeLimit()
 .createQuery();

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

294

MUST NOT: the query must not contain the matching elements of the subquery.

The subqueries can be any Lucene query including a boolean query itself.

Example: SHOULD Query

Example: MUST Query

Example: MUST NOT Query

13.5.1.9. Query Options

The Hibernate Search query DSL is an easy to use and easy to read query API. In accepting and
producing Lucene queries, you can incorporate query types not yet supported by the DSL.

The following is a summary of query options for query types and fields:

boostedTo (on query type and on field) boosts the whole query or the specific field to a given
factor.

withConstantScore (on query) returns all results that match the query have a constant score
equals to the boost.

filteredBy(Filter)(on query) filters query results using the Filter instance.

//look for popular myths that are preferably urban
Query luceneQuery = mythQB
 .bool()
 .should(
mythQB.keyword().onField("description").matching("urban").createQuery())
 .must(mythQB.range().onField("starred").above(4).createQuery())
 .createQuery();

//look for popular urban myths
Query luceneQuery = mythQB
 .bool()
 .must(
mythQB.keyword().onField("description").matching("urban").createQuery())
 .must(mythQB.range().onField("starred").above(4).createQuery())
 .createQuery();

//look for popular modern myths that are not urban
Date twentiethCentury = ...;
Query luceneQuery = mythQB
 .bool()
 .must(
mythQB.keyword().onField("description").matching("urban").createQuery())
 .not()
 .must(mythQB.range().onField("starred").above(4).createQuery())
 .must(mythQB
 .range()
 .onField("creationDate")
 .above(twentiethCentury)
 .createQuery())
 .createQuery();

CHAPTER 13. HIBERNATE SEARCH

295

ignoreAnalyzer (on field) ignores the analyzer when processing this field.

ignoreFieldBridge (on field) ignores field bridge when processing this field.

Example: Combination of Query Options

13.5.1.10. Build a Hibernate Search Query

13.5.1.10.1. Generality

After building the Lucene query, wrap it within a Hibernate query. The query searches all indexed
entities and returns all types of indexed classes unless explicitly configured not to do so.

Example: Wrapping a Lucene Query in a Hibernate Query

For improved performance, restrict the returned types as follows:

Example: Filtering the Search Result by Entity Type

The first part of the second example only returns the matching Customers. The second part of the same
example returns matching Actors and Items. The type restriction is polymorphic. As a result, if the two
subclasses Salesman and Customer of the base class Person return, specify Person.class to filter based
on result types.

13.5.1.10.2. Pagination

Query luceneQuery = mythQB
 .bool()
 .should(
mythQB.keyword().onField("description").matching("urban").createQuery())
 .should(mythQB
 .keyword()
 .onField("name")
 .boostedTo(3)
 .ignoreAnalyzer()
 .matching("urban").createQuery())
 .must(mythQB
 .range()
 .boostedTo(5).withConstantScore()
 .onField("starred").above(4).createQuery())
 .createQuery();

FullTextSession fullTextSession = Search.getFullTextSession(session);
org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(
luceneQuery);

fullTextQuery = fullTextSession
 .createFullTextQuery(luceneQuery, Customer.class);

// or

fullTextQuery = fullTextSession
 .createFullTextQuery(luceneQuery, Item.class, Actor.class);

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

296

To avoid performance degradation, it is recommended to restrict the number of returned objects per
query. A user navigating from one page to another page is a very common use case. The way to define
pagination is similar to defining pagination in a plain HQL or Criteria query.

Example: Defining pagination for a search query

NOTE

It is still possible to get the total number of matching elements regardless of the pagination
via fulltextQuery.getResultSize().

13.5.1.10.3. Sorting

Apache Lucene contains a flexible and powerful result sorting mechanism. The default sorting is by
relevance and is appropriate for a large variety of use cases. The sorting mechanism can be changed to
sort by other properties using the Lucene Sort object to apply a Lucene sorting strategy.

Example: Specifying a Lucene Sort

NOTE

Fields used for sorting must not be tokenized. For more information about tokenizing, see
@Field.

13.5.1.10.4. Fetching Strategy

Hibernate SearchHibernate Search loads objects using a single query if the return types are restricted to
one class. Hibernate SearchHibernate Search is restricted by the static fetching strategy defined in the
domain model. It is useful to refine the fetching strategy for a specific use case as follows:

Example: Specifying FetchMode on a query

In this example, the query will return all Books matching the LuceneQuery. The authors collection will be
loaded from the same query using an SQL outer join.

In a criteria query definition, the type is guessed based on the provided criteria query. As a result, it is
not necessary to restrict the return entity types.

org.hibernate.Query fullTextQuery =
 fullTextSession.createFullTextQuery(luceneQuery, Customer.class);
fullTextQuery.setFirstResult(15); //start from the 15th element
fullTextQuery.setMaxResults(10); //return 10 elements

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(query,
Book.class);
org.apache.lucene.search.Sort sort = new Sort(
 new SortField("title", SortField.STRING));

List results = query.list();

Criteria criteria =
 s.createCriteria(Book.class).setFetchMode("authors", FetchMode.JOIN
);
s.createFullTextQuery(luceneQuery).setCriteriaQuery(criteria);

CHAPTER 13. HIBERNATE SEARCH

297

IMPORTANT

The fetch mode is the only adjustable property. Do not use a restriction (a where clause)
on the Criteria query because the getResultSize() throws a SearchException if used in
conjunction with a Criteria with restriction.

If more than one entity is expected, do not use setCriteriaQuery.

13.5.1.10.5. Projection

In some cases, only a small subset of the properties is required. Use Hibernate Search to return a subset
of properties as follows:

Hibernate Search extracts properties from the Lucene index and converts them to their object
representation and returns a list of Object[]. Projections prevent a time consuming database round-trip.
However, they have following constraints:

The properties projected must be stored in the index (@Field(store=Store.YES)), which
increases the index size.

The properties projected must use a FieldBridge implementing
org.hibernate.search.bridge.TwoWayFieldBridge or
org.hibernate.search.bridge.TwoWayStringBridge, the latter being the simpler
version.

NOTE

All Hibernate Search built-in types are two-way.

Only the simple properties of the indexed entity or its embedded associations can be projected.
Therefore a whole embedded entity cannot be projected.

Projection does not work on collections or maps which are indexed via @IndexedEmbedded

Lucene provides metadata information about query results. Use projection constants to retrieve the
metadata.

Example: Using Projection to Retrieve Metadata

Fields can be mixed with the following projection constants:

FullTextQuery.THIS: returns the initialized and managed entity (as a non projected query would
have done).

FullTextQuery.DOCUMENT: returns the Lucene Document related to the object projected.

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
query.;
List results = query.list();
Object[] firstResult = (Object[]) results.get(0);
float score = firstResult[0];
Book book = firstResult[1];
String authorName = firstResult[2];

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

298

FullTextQuery.OBJECT_CLASS: returns the class of the indexed entity.

FullTextQuery.SCORE: returns the document score in the query. Scores are handy to compare
one result against an other for a given query but are useless when comparing the result of
different queries.

FullTextQuery.ID: the ID property value of the projected object.

FullTextQuery.DOCUMENT_ID: the Lucene document ID. Be careful in using this value as a
Lucene document ID can change over time between two different IndexReader opening.

FullTextQuery.EXPLANATION: returns the Lucene Explanation object for the matching
object/document in the given query. This is not suitable for retrieving large amounts of data.
Running explanation typically is as costly as running the whole Lucene query per matching
element. As a result, projection is recommended.

13.5.1.10.6. Customizing Object Initialization Strategies

By default, Hibernate Search uses the most appropriate strategy to initialize entities matching the full text
query. It executes one (or several) queries to retrieve the required entities. This approach minimizes
database trips where few of the retrieved entities are present in the persistence context (the session) or
the second level cache.

If entities are present in the second level cache, force Hibernate Search to look into the cache before
retrieving a database object.

Example: Check the second-level cache before using a query

ObjectLookupMethod defines the strategy to check if an object is easily accessible (without fetching it
from the database). Other options are:

ObjectLookupMethod.PERSISTENCE_CONTEXT is used if many matching entities are
already loaded into the persistence context (loaded in the Session or EntityManager).

ObjectLookupMethod.SECOND_LEVEL_CACHE checks the persistence context and then the
second-level cache.

Set the following to search in the second-level cache:

Correctly configure and activate the second-level cache.

Enable the second-level cache for the relevant entity. This is done using annotations such as
@Cacheable.

Enable second-level cache read access for either Session, EntityManager or Query. Use
CacheMode.NORMAL in Hibernate native APIs or CacheRetrieveMode.USE in Java
Persistence APIs.

FullTextQuery query = session.createFullTextQuery(luceneQuery,
User.class);
query.initializeObjectWith(
 ObjectLookupMethod.SECOND_LEVEL_CACHE,
 DatabaseRetrievalMethod.QUERY
);

CHAPTER 13. HIBERNATE SEARCH

299

WARNING

Unless the second-level cache implementation is EHCache or Infinispan, do not use
ObjectLookupMethod.SECOND_LEVEL_CACHE. Other second-level cache
providers do not implement this operation efficiently.

Customize how objects are loaded from the database using DatabaseRetrievalMethod as follows:

QUERY (default) uses a set of queries to load several objects in each batch. This approach is
recommended.

FIND_BY_ID loads one object at a time using the Session.get or EntityManager.find
semantic. This is recommended if the batch size is set for the entity, which allows Hibernate
Core to load entities in batches.

13.5.1.10.7. Limiting the Time of a Query

Limit the time a query takes in Hibernate Guide as follows:

Raise an exception when arriving at the limit.

Limit to the number of results retrieved when the time limit is raised.

13.5.1.10.8. Raise an Exception on Time Limit

If a query uses more than the defined amount of time, a QueryTimeoutException is raised
(org.hibernate.QueryTimeoutException or javax.persistence.QueryTimeoutException depending on the
programmatic API).

To define the limit when using the native Hibernate APIs, use one of the following approaches:

Example: Defining a Timeout in Query Execution



Query luceneQuery = ...;
FullTextQuery query = fullTextSession.createFullTextQuery(luceneQuery,
User.class);

//define the timeout in seconds
query.setTimeout(5);

//alternatively, define the timeout in any given time unit
query.setTimeout(450, TimeUnit.MILLISECONDS);

try {
 query.list();
}
catch (org.hibernate.QueryTimeoutException e) {
 //do something, too slow
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

300

The getResultSize(), iterate() and scroll() honor the timeout until the end of the method call. As a result,
Iterable or the ScrollableResults ignore the timeout. Additionally, explain() does not honor this timeout
period. This method is used for debugging and to check the reasons for slow performance of a query.

The following is the standard way to limit execution time using the Java Persistence API (JPA):

Example: Defining a Timeout in Query Execution

IMPORTANT

The example code does not guarantee that the query stops at the specified results
amount.

13.5.2. Retrieving the Results

After building the Hibernate query, it is executed the same way as a HQL or Criteria query. The same
paradigm and object semantic apply to a Lucene Query query and the common operations like: list(),
uniqueResult(), iterate(), scroll() are available.

13.5.2.1. Performance Considerations

If you expect a reasonable number of results (for example using pagination) and expect to work on all of
them, list() or uniqueResult() are recommended. list() work best if the entity batch-size is
set up properly. Note that Hibernate Search has to process all Lucene Hits elements (within the
pagination) when using list() , uniqueResult() and iterate().

If you wish to minimize Lucene document loading, scroll() is more appropriate. Do not forget to close
the ScrollableResults object when you are done, since it keeps Lucene resources. If you expect to use
scroll, but wish to load objects in batch, you can use query.setFetchSize(). When an object is
accessed, and if not already loaded, Hibernate Search will load the next fetchSize objects in one
pass.

IMPORTANT

Pagination is preferred over scrolling.

13.5.2.2. Result Size

It is sometimes useful to know the total number of matching documents:

Query luceneQuery = ...;
FullTextQuery query = fullTextEM.createFullTextQuery(luceneQuery,
User.class);

//define the timeout in milliseconds
query.setHint("javax.persistence.query.timeout", 450);

try {
 query.getResultList();
}
catch (javax.persistence.QueryTimeoutException e) {
 //do something, too slow
}

CHAPTER 13. HIBERNATE SEARCH

301

to provide a total search results feature, as provided by Google searches. For example, "1-10 of
about 888,000,000 results"

to implement a fast pagination navigation

to implement a multi-step search engine that adds approximation if the restricted query returns
zero or not enough results

Of course it would be too costly to retrieve all the matching documents. Hibernate Search allows you to
retrieve the total number of matching documents regardless of the pagination parameters. Even more
interesting, you can retrieve the number of matching elements without triggering a single object load.

Example: Determining the Result Size of a Query

NOTE

Like Google, the number of results is approximation if the index is not fully up-to-date with
the database (asynchronous cluster for example).

13.5.2.3. ResultTransformer

Projection results are returned as Object arrays. If the data structure used for the object does not match
the requirements of the application, apply a ResultTransformer. The ResultTransformer builds the
required data structure after the query execution.

Projection results are returned as Object arrays. If the data structure used for the object does not match
the requirements of the application, apply a ResultTransformer. The ResultTransformer builds the
required data structure after the query execution.

Exampl: Using ResultTransformer with Projections

Examples of ResultTransformer implementations can be found in the Hibernate Core codebase.

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
//return the number of matching books without loading a single one
assert 3245 == ;

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
query.setMaxResult(10);
List results = query.list();
//return the total number of matching books regardless of pagination
assert 3245 == ;

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
query.setProjection("title", "mainAuthor.name");

query.setResultTransformer(new StaticAliasToBeanResultTransformer(
BookView.class, "title", "author"));
List<BookView> results = (List<BookView>) query.list();
for(BookView view : results) {
 log.info("Book: " + view.getTitle() + ", " + view.getAuthor());
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

302

13.5.2.4. Understanding Results

If the results of a query are not what you expected, the Luke tool is useful in understanding the outcome.
However, Hibernate Search also gives you access to the Lucene Explanation object for a given result (in
a given query). This class is considered fairly advanced to Lucene users but can provide a good
understanding of the scoring of an object. You have two ways to access the Explanation object for a
given result:

Use the fullTextQuery.explain(int) method

Use projection

The first approach takes a document ID as a parameter and return the Explanation object. The document
ID can be retrieved using projection and the FullTextQuery.DOCUMENT_ID constant.

WARNING

The Document ID is unrelated to the entity ID. Be careful not to confuse these
concepts.

In the second approach you project the Explanation object using the FullTextQuery.EXPLANATION
constant.

Example: Retrieving the Lucene Explanation Object Using Projection

Use the Explanation object only when required as it is roughly as expensive as running the Lucene query
again.

13.5.2.5. Filters

Apache Lucene has a powerful feature that allows you to filter query results according to a custom
filtering process. This is a very powerful way to apply additional data restrictions, especially since filters
can be cached and reused. Use cases include:

security

temporal data (example, view only last month’s data)

population filter (example, search limited to a given category)



FullTextQuery ftQuery = s.createFullTextQuery(luceneQuery, Dvd.class)
 .setProjection(
 FullTextQuery.DOCUMENT_ID,
 ,
 FullTextQuery.THIS);
@SuppressWarnings("unchecked") List<Object[]> results = ftQuery.list();
for (Object[] result : results) {
 Explanation e = (Explanation) result[1];
 display(e.toString());
}

CHAPTER 13. HIBERNATE SEARCH

303

Hibernate Search pushes the concept further by introducing the notion of parameterizable named filters
which are transparently cached. For people familiar with the notion of Hibernate Core filters, the API is
very similar:

Example: Enabling Fulltext Filters for a Query

In this example we enabled two filters on top of the query. You can enable (or disable) as many filters as
you like.

Declaring filters is done through the @FullTextFilterDef annotation. This annotation can be on any
@Indexed entity regardless of the query the filter is later applied to. This implies that filter definitions are
global and their names must be unique. A SearchException is thrown in case two different
@FullTextFilterDef annotations with the same name are defined. Each named filter has to specify its
actual filter implementation.

Example: Defining and Implementing a Filter

BestDriversFilter is an example of a simple Lucene filter which reduces the result set to drivers whose
score is 5. In this example the specified filter implements the org.apache.lucene.search.Filter
directly and contains a no-arg constructor.

If your Filter creation requires additional steps or if the filter you want to use does not have a no-arg
constructor, you can use the factory pattern:

Example: Creating a filter using the factory pattern

fullTextQuery = s.createFullTextQuery(query, Driver.class);
fullTextQuery.enableFullTextFilter("bestDriver");
fullTextQuery.enableFullTextFilter("security").setParameter("login",
"andre");
fullTextQuery.list(); //returns only best drivers where andre has
credentials

@FullTextFilterDefs({
 @FullTextFilterDef(name = "bestDriver", impl =
BestDriversFilter.class),
 @FullTextFilterDef(name = "security", impl =
SecurityFilterFactory.class)
})
public class Driver { ... }

public class BestDriversFilter extends org.apache.lucene.search.Filter {

 public DocIdSet getDocIdSet(IndexReader reader) throws IOException {
 OpenBitSet bitSet = new OpenBitSet(reader.maxDoc());
 TermDocs termDocs = reader.termDocs(new Term("score", "5"));
 while (termDocs.next()) {
 bitSet.set(termDocs.doc());
 }
 return bitSet;
 }
}

@FullTextFilterDef(name = "bestDriver", impl =
BestDriversFilterFactory.class)

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

304

Hibernate Search will look for a @Factory annotated method and use it to build the filter instance. The
factory must have a no-arg constructor.

Infinispan Query uses a @Factory annotated method to build the filter instance. The factory must have a
no argument constructor.

Named filters come in handy where parameters have to be passed to the filter. For example a security
filter might want to know which security level you want to apply:

Example: Passing parameters to a defined filter

Each parameter name should have an associated setter on either the filter or filter factory of the targeted
named filter definition.] Example: Using parameters in the actual filter implementation

Note the method annotated @Key returns a FilterKey object. The returned object has a special contract:

public class Driver { ... }

public class BestDriversFilterFactory {

@Factory
 public Filter getFilter() {
 //some additional steps to cache the filter results per
IndexReader
 Filter bestDriversFilter = new BestDriversFilter();
 return new CachingWrapperFilter(bestDriversFilter);
 }
}

fullTextQuery = s.createFullTextQuery(query, Driver.class);
fullTextQuery.enableFullTextFilter("security").setParameter("level", 5);

public class SecurityFilterFactory {
 private Integer level;

 /**
 * injected parameter
 */
 public void setLevel(Integer level) {
 this.level = level;
 }

 @Key public FilterKey getKey() {
 StandardFilterKey key = new StandardFilterKey();
 key.addParameter(level);
 return key;
 }

 @Factory
 public Filter getFilter() {
 Query query = new TermQuery(new Term("level", level.toString())
);
 return new CachingWrapperFilter(new QueryWrapperFilter(query));
 }
}

CHAPTER 13. HIBERNATE SEARCH

305

the key object must implement equals() / hashCode() so that two keys are equal if and only if the given
Filter types are the same and the set of parameters are the same. In other words, two filter keys are
equal if and only if the filters from which the keys are generated can be interchanged. The key object is
used as a key in the cache mechanism.

@Key methods are needed only if:

the filter caching system is enabled (enabled by default)

the filter has parameters

In most cases, using the StandardFilterKey implementation will be good enough. It delegates the
equals() / hashCode() implementation to each of the parameters equals and hashcode methods.

As mentioned before the defined filters are per default cached and the cache uses a combination of hard
and soft references to allow disposal of memory when needed. The hard reference cache keeps track of
the most recently used filters and transforms the ones least used to SoftReferences when needed. Once
the limit of the hard reference cache is reached additional filters are cached as SoftReferences. To adjust
the size of the hard reference cache, use hibernate.search.filter.cache_strategy.size
(defaults to 128). For advanced use of filter caching, implement your own FilterCachingStrategy. The
classname is defined by hibernate.search.filter.cache_strategy.

This filter caching mechanism should not be confused with caching the actual filter results. In Lucene it is
common practice to wrap filters using the IndexReader around a CachingWrapperFilter. The wrapper will
cache the DocIdSet returned from the getDocIdSet(IndexReader reader) method to avoid expensive
recomputation. It is important to mention that the computed DocIdSet is only cachable for the same
IndexReader instance, because the reader effectively represents the state of the index at the moment it
was opened. The document list cannot change within an opened IndexReader. A different/new
IndexReader instance, however, works potentially on a different set of Documents (either from a different
index or simply because the index has changed), hence the cached DocIdSet has to be recomputed.

Hibernate Search also helps with this aspect of caching. Per default the cache flag of
@FullTextFilterDef is set to FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTS which will
automatically cache the filter instance as well as wrap the specified filter around a Hibernate specific
implementation of CachingWrapperFilter. In contrast to Lucene’s version of this class SoftReferences are
used together with a hard reference count (see discussion about filter cache). The hard reference count
can be adjusted using hibernate.search.filter.cache_docidresults.size (defaults to 5).
The wrapping behaviour can be controlled using the @FullTextFilterDef.cache parameter. There
are three different values for this parameter:

Value Definition

FilterCacheModeType.NONE No filter instance and no result is cached by Hibernate Search.
For every filter call, a new filter instance is created. This setting
might be useful for rapidly changing data sets or heavily memory
constrained environments.

FilterCacheModeType.INSTANCE_ONLY The filter instance is cached and reused across concurrent
Filter.getDocIdSet() calls. DocIdSet results are not cached. This
setting is useful when a filter uses its own specific caching
mechanism or the filter results change dynamically due to
application specific events making DocIdSet caching in both
cases unnecessary.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

306

FilterCacheModeType.INSTANCE_AND_
DOCIDSETRESULTS

Both the filter instance and the DocIdSet results are cached.
This is the default value.

Value Definition

Last but not least - why should filters be cached? There are two areas where filter caching shines:

Filters should be cached in the following situations:

the system does not update the targeted entity index often (in other words, the IndexReader is
reused a lot)

the Filter’s DocIdSet is expensive to compute (compared to the time spent to execute the query)

13.5.2.6. Using Filters in a Sharded Environment

In a sharded environment it is possible to execute queries on a subset of the available shards. This can
be done in two steps:

Query a Subset of Index Shards

1. Create a sharding strategy that does select a subset of IndexManagers depending on a filter
configuration.

2. Activate the filter at query time.

Example: Query a Subset of Index Shards

In this example the query is run against a specific customer shard if the customer filter is activated.

public class CustomerShardingStrategy implements IndexShardingStrategy {

 // stored IndexManagers in an array indexed by customerID
 private IndexManager[] indexManagers;

 public void initialize(Properties properties, IndexManager[]
indexManagers) {
 this.indexManagers = indexManagers;
 }

 public IndexManager[] getIndexManagersForAllShards() {
 return indexManagers;
 }

 public IndexManager getIndexManagerForAddition(
 Class<?> entity, Serializable id, String idInString, Document
document) {
 Integer customerID =
Integer.parseInt(document.getFieldable("customerID").stringValue());
 return indexManagers[customerID];
 }

 public IndexManager[] getIndexManagersForDeletion(
 Class<?> entity, Serializable id, String idInString) {

CHAPTER 13. HIBERNATE SEARCH

307

In this example, if the filter named customer is present, only the shard dedicated to this customer is
queried, otherwise, all shards are returned. A given Sharding strategy can react to one or more filters and
depends on their parameters.

The second step is to activate the filter at query time. While the filter can be a regular filter (as defined in
) which also filters Lucene results after the query, you can make use of a special filter that will only be
passed to the sharding strategy (and is otherwise ignored).

To use this feature, specify the ShardSensitiveOnlyFilter class when declaring your filter.

Note that by using the ShardSensitiveOnlyFilter, you do not have to implement any Lucene filter. Using
filters and sharding strategy reacting to these filters is recommended to speed up queries in a sharded
environment.

 return getIndexManagersForAllShards();
 }

 /**
 * Optimization; don't search ALL shards and union the results; in
this case, we
 * can be certain that all the data for a particular customer Filter
is in a single
 * shard; simply return that shard by customerID.
 */
 public IndexManager[] getIndexManagersForQuery(
 FullTextFilterImplementor[] filters) {
 FullTextFilter filter = getCustomerFilter(filters, "customer");
 if (filter == null) {
 return getIndexManagersForAllShards();
 }
 else {
 return new IndexManager[] { indexManagers[Integer.parseInt(
 filter.getParameter("customerID").toString())] };
 }
 }

 private FullTextFilter getCustomerFilter(FullTextFilterImplementor[]
filters, String name) {
 for (FullTextFilterImplementor filter: filters) {
 if (filter.getName().equals(name)) return filter;
 }
 return null;
 }
 }

@Indexed
@FullTextFilterDef(name="customer", impl=ShardSensitiveOnlyFilter.class)
public class Customer {
 ...
}

FullTextQuery query = ftEm.createFullTextQuery(luceneQuery,
Customer.class);
query.enableFulltextFilter("customer").setParameter("CustomerID", 5);
@SuppressWarnings("unchecked")
List<Customer> results = query.getResultList();

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

308

13.5.3. Faceting

Faceted search is a technique which allows the results of a query to be divided into multiple categories.
This categorization includes the calculation of hit counts for each category and the ability to further
restrict search results based on these facets (categories). The example below shows a faceting
example. The search results in fifteen hits which are displayed on the main part of the page. The
navigation bar on the left, however, shows the category Computers & Internet with its subcategories
Programming, Computer Science, Databases, Software, Web Development, Networking and Home
Computing. For each of these subcategories the number of books is shown matching the main search
criteria and belonging to the respective subcategory. This division of the category Computers & Internet
is one concrete search facet. Another one is for example the average customer review.

Faceted search divides the results of a query into categories. The categorization includes the calculation
of hit counts for each category and the further restricts search results based on these facets (categories).
The following example displays a faceting search results in fifteen hits displayed on the main page.

The left side navigation bar diplays the categories and subcategories. For each of these subcategories
the number of books matches the main search criteria and belongs to the respective subcategory. This
division of the category Computers & Internet is one concrete search facet. Another example is the
average customer review.

Example: Search for Hibernate Search on Amazon

In Hibernate Search, the classes QueryBuilder and FullTextQuery are the entry point into the faceting
API. The former creates faceting requests and the latter accesses the FacetManager. The
FacetManager applies faceting requests on a query and selects facets that are added to an existing
query to refine search results. The examples use the entity Cd as shown in the example below:

CHAPTER 13. HIBERNATE SEARCH

309

Example: Entity Cd

@Indexed
public class Cd {

 private int id;

 @Fields({
 @Field,
 @Field(name = "name_un_analyzed", analyze = Analyze.NO)
 })
 private String name;

 @Field(analyze = Analyze.NO)

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

310

NOTE

Prior to Hibernate Search 5.2, there was no need to explicitly use a @Facet annotation. In
Hibernate Search 5.2 it became necessary in order to use Lucene’s native faceting API.

13.5.3.1. Creating a Faceting Request

The first step towards a faceted search is to create the FacetingRequest. Currently two types of faceting
requests are supported. The first type is called discrete faceting and the second type range faceting
request. In the case of a discrete faceting request you specify on which index field you want to facet
(categorize) and which faceting options to apply. An example for a discrete faceting request can be seen
in the following example:

Example: Creating a discrete faceting request

When executing this faceting request a Facet instance will be created for each discrete value for the
indexed field label. The Facet instance will record the actual field value including how often this
particular field value occurs within the original query results. orderedBy, includeZeroCounts and
maxFacetCount are optional parameters which can be applied on any faceting request. orderedBy
allows to specify in which order the created facets will be returned. The default is
FacetSortOrder.COUNT_DESC, but you can also sort on the field value or the order in which ranges
were specified. includeZeroCount determines whether facets with a count of 0 will be included in the
result (per default they are) and maxFacetCount allows to limit the maximum amount of facets returned.

 @NumericField
 private int price;

 Field(analyze = Analyze.NO)
 @DateBridge(resolution = Resolution.YEAR)
 private Date releaseYear;

 @Field(analyze = Analyze.NO)
 private String label;

// setter/getter
...

QueryBuilder builder = fullTextSession.getSearchFactory()
 .buildQueryBuilder()
 .forEntity(Cd.class)
 .get();
FacetingRequest labelFacetingRequest = builder.facet()
 .name("labelFaceting")
 .onField("label")
 .discrete()
 .orderedBy(FacetSortOrder.COUNT_DESC)
 .includeZeroCounts(false)
 .maxFacetCount(1)
 .createFacetingRequest();

CHAPTER 13. HIBERNATE SEARCH

311

NOTE

At the moment there are several preconditions an indexed field has to meet in order to
apply faceting on it. The indexed property must be of type String, Date or a subtype of
Number and null values should be avoided. Furthermore the property has to be indexed
with Analyze.NO and in case of a numeric property @NumericField needs to be
specified.

The creation of a range faceting request is quite similar except that we have to specify ranges for the
field values we are faceting on. A range faceting request can be seen below where three different price
ranges are specified. The below and above can only be specified once, but you can specify as many
from - to ranges as you want. For each range boundary you can also specify via excludeLimit whether
it is included into the range or not.

Example: Creating a range faceting request

13.5.3.2. Applying a Faceting Request

A faceting request is applied to a query via the FacetManager class which can be retrieved via the
FullTextQuery class.

You can enable as many faceting requests as you like and retrieve them afterwards via getFacets()
specifying the faceting request name. There is also a disableFaceting() method which allows you to
disable a faceting request by specifying its name.

A faceting request can be applied on a query using the FacetManager, which can be retrieved via the
FullTextQuery.

Example: Applying a faceting request

QueryBuilder builder = fullTextSession.getSearchFactory()
 .buildQueryBuilder()
 .forEntity(Cd.class)
 .get();
FacetingRequest priceFacetingRequest = builder.facet()
 .name("priceFaceting")
 .onField("price")
 .range()
 .below(1000)
 .from(1001).to(1500)
 .above(1500).excludeLimit()
 .createFacetingRequest();

// create a fulltext query
Query luceneQuery = builder.all().createQuery(); // match all query
FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(
luceneQuery, Cd.class);

// retrieve facet manager and apply faceting request
FacetManager facetManager = fullTextQuery.getFacetManager();
facetManager.enableFaceting(priceFacetingRequest);

// get the list of Cds
List<Cd> cds = fullTextQuery.list();
...

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

312

Multiple faceting requests can be retrieved using getFacets() and specifying the faceting request name.

The disableFaceting() method disables a faceting request by specifying its name.

13.5.3.3. Restricting Query Results

Last but not least, you can apply any of the returned Facets as additional criteria on your original query in
order to implement a "drill-down" functionality. For this purpose FacetSelection can be utilized.
FacetSelections are available via the FacetManager and allow you to select a facet as query criteria
(selectFacets), remove a facet restriction (deselectFacets), remove all facet restrictions
(clearSelectedFacets) and retrieve all currently selected facets (getSelectedFacets). The following
snippet shows an example.

13.5.4. Optimizing the Query Process

Query performance depends on several criteria:

The Lucene query.

The number of objects loaded: use pagination (always) or index projection (if needed).

The way Hibernate Search interacts with the Lucene readers: defines the appropriate reader
strategy.

Caching frequently extracted values from the index: see Caching Index Values: FieldCache

// retrieve the faceting results
List<Facet> facets = facetManager.getFacets("priceFaceting");
...

// create a fulltext query
Query luceneQuery = builder.all().createQuery(); // match all query
FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(
luceneQuery, clazz);

// retrieve facet manager and apply faceting request
FacetManager facetManager = fullTextQuery.getFacetManager();
facetManager.enableFaceting(priceFacetingRequest);

// get the list of Cd
List<Cd> cds = fullTextQuery.list();
assertTrue(cds.size() == 10);

// retrieve the faceting results
List<Facet> facets = facetManager.getFacets("priceFaceting");
assertTrue(facets.get(0).getCount() == 2)

// apply first facet as additional search criteria
facetManager.getFacetGroup("priceFaceting").selectFacets(facets.get(0
));

// re-execute the query
cds = fullTextQuery.list();
assertTrue(cds.size() == 2);

CHAPTER 13. HIBERNATE SEARCH

313

13.5.4.1. Caching Index Values: FieldCache

The primary function of a Lucene index is to identify matches to your queries. After the query is
performed the results must be analyzed to extract useful information. Hibernate Search would typically
need to extract the Class type and the primary key.

Extracting the needed values from the index has a performance cost, which in some cases might be very
low and not noticeable, but in some other cases might be a good candidate for caching.

The requirements depend on the kind of Projections being used, as in some cases the Class type is not
needed as it can be inferred from the query context or other means.

Using the @CacheFromIndex annotation you can experiment with different kinds of caching of the main
metadata fields required by Hibernate Search:

It is possible to cache Class types and IDs using this annotation:

CLASS: Hibernate Search will use a Lucene FieldCache to improve performance of the Class
type extraction from the index.
This value is enabled by default, and is what Hibernate Search will apply if you do not specify the
@CacheFromIndex annotation.

ID: Extracting the primary identifier will use a cache. This is likely providing the best performing
queries, but will consume much more memory which in turn might reduce performance.

NOTE

Measure the performance and memory consumption impact after warmup (executing
some queries). Performance may improve by enabling Field Caches but this is not always
the case.

Using a FieldCache has two downsides to consider:

Memory usage: these caches can be quite memory hungry. Typically the CLASS cache has
lower requirements than the ID cache.

Index warmup: when using field caches, the first query on a new index or segment will be slower
than when you do not have caching enabled.

With some queries the classtype will not be needed at all, in that case even if you enabled the CLASS
field cache, this might not be used; for example if you are targeting a single class, obviously all returned
values will be of that type (this is evaluated at each Query execution).

For the ID FieldCache to be used, the ids of targeted entities must be using a TwoWayFieldBridge (as all
builting bridges), and all types being loaded in a specific query must use the fieldname for the id, and
have ids of the same type (this is evaluated at each Query execution).

import static org.hibernate.search.annotations.FieldCacheType.CLASS;
import static org.hibernate.search.annotations.FieldCacheType.ID;

@Indexed
@CacheFromIndex({ CLASS, ID })
public class Essay {
 ...

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

314

13.6. MANUAL INDEX CHANGES

As Hibernate Core applies changes to the database, Hibernate Search detects these changes and will
update the index automatically (unless the EventListeners are disabled). Sometimes changes are made
to the database without using Hibernate, as when backup is restored or your data is otherwise affected.
In these cases Hibernate Search exposes the Manual Index APIs to explicitly update or remove a single
entity from the index, rebuild the index for the whole database, or remove all references to a specific
type.

All these methods affect the Lucene Index only, no changes are applied to the database.

13.6.1. Adding Instances to the Index

Using FullTextSession.index(T entity) you can directly add or update a specific object instance to the
index. If this entity was already indexed, then the index will be updated. Changes to the index are only
applied at transaction commit.

Directly add an object or instance to the index using FullTextSession.index(T entity). The index is
updated when the entity is indexed. Infinispan Query applies changes to the index during the transaction
commit.

Example: Indexing an entity via FullTextSession.index(T entity)

In case you want to add all instances for a type, or for all indexed types, the recommended approach is
to use a MassIndexer: see for more details.

Use a MassIndexer to add all instances for a type (or for all indexed types). See Using a MassIndexer for
more information.

13.6.2. Deleting Instances from the Index

It is equally possible to remove an entity or all entities of a given type from a Lucene index without the
need to physically remove them from the database. This operation is named purging and is also done
through the FullTextSession.

The purging operation permits the removal of a single entity or all entities of a given type from a Lucene
index without physically removing them from the database. This operation is performed using the
FullTextSession.

Example: Purging a specific instance of an entity from the index

FullTextSession fullTextSession = Search.getFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();
Object customer = fullTextSession.load(Customer.class, 8);
fullTextSession.index(customer);
tx.commit(); //index only updated at commit time

FullTextSession fullTextSession = Search.getFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();
for (Customer customer : customers) {
fullTextSession.purgeAll(Customer.class);
//optionally optimize the index
//fullTextSession.getSearchFactory().optimize(Customer.class);
tx.commit(); //index is updated at commit time

CHAPTER 13. HIBERNATE SEARCH

315

It is recommended to optimize the index after such an operation.

NOTE

Methods index, purge, and purgeAll are available on FullTextEntityManager as well.

NOTE

All manual indexing methods (index, purge, and purgeAll) only affect the index, not the
database, nevertheless they are transactional and as such they will not be applied until the
transaction is successfully committed, or you make use of flushToIndexes.

13.6.3. Rebuilding the Index

If you change the entity mapping to the index, chances are that the whole Index needs to be updated;
For example if you decide to index an existing field using a different analyzer you’ll need to rebuild the
index for affected types. Also if the Database is replaced (like restored from a backup, imported from a
legacy system) you’ll want to be able to rebuild the index from existing data. Hibernate Search provides
two main strategies to choose from:

Changing the entity mapping in the indexer may require the entire index to be updated. For example, if
an existing field is to be indexed using a different analyzer, the index will need to be rebuilt for affected
types.

Additionally, if the database is replaced by restoring from a backup or being imported from a legacy
system, the index will need to be rebuilt from existing data. Infinispan Query provides two main
strategies:

Using FullTextSession.flushToIndexes() periodically, while using
FullTextSession.index() on all entities.

Use a MassIndexer.

13.6.3.1. Using flushToIndexes()

This strategy consists of removing the existing index and then adding all entities back to the index using
FullTextSession.purgeAll() and FullTextSession.index(), however there are some
memory and efficiency constraints. For maximum efficiency Hibernate Search batches index operations
and executes them at commit time. If you expect to index a lot of data you need to be careful about
memory consumption since all documents are kept in a queue until the transaction commit. You can
potentially face an OutOfMemoryException if you do not empty the queue periodically; to do this use
fullTextSession.flushToIndexes(). Every time fullTextSession.flushToIndexes() is
called (or if the transaction is committed), the batch queue is processed, applying all index changes. Be
aware that, once flushed, the changes cannot be rolled back.

Example: Index rebuilding using index() and flushToIndexes()

fullTextSession.setFlushMode(FlushMode.MANUAL);
fullTextSession.setCacheMode(CacheMode.IGNORE);
transaction = fullTextSession.beginTransaction();
//Scrollable results will avoid loading too many objects in memory
ScrollableResults results = fullTextSession.createCriteria(Email.class)
 .setFetchSize(BATCH_SIZE)
 .scroll(ScrollMode.FORWARD_ONLY);
int index = 0;

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

316

NOTE

hibernate.search.default.worker.batch_size has been deprecated in favor of
this explicit API which provides better control

Try to use a batch size that guarantees that your application will not be out of memory: with a bigger
batch size objects are fetched faster from database but more memory is needed.

13.6.3.2. Using a MassIndexer

Hibernate Search’s MassIndexer uses several parallel threads to rebuild the index. You can optionally
select which entities need to be reloaded or have it reindex all entities. This approach is optimized for
best performance but requires to set the application in maintenance mode. Querying the index is not
recommended when a MassIndexer is busy.

Example: Rebuild the Index Using a MassIndexer

This will rebuild the index, deleting it and then reloading all entities from the database. Although it is
simple to use, some tweaking is recommended to speed up the process.

WARNING

During the progress of a MassIndexer the content of the index is undefined! If a
query is performed while the MassIndexer is working most likely some results will be
missing.

Example: Using a Tuned MassIndexer

while(results.next()) {
 index++;
 fullTextSession.index(results.get(0)); //index each element
 if (index % BATCH_SIZE == 0) {
 fullTextSession.flushToIndexes(); //apply changes to indexes
 fullTextSession.clear(); //free memory since the queue is
processed
 }
}
transaction.commit();

fullTextSession.createIndexer().startAndWait();



fullTextSession
 .createIndexer(User.class)
 .batchSizeToLoadObjects(25)
 .cacheMode(CacheMode.NORMAL)
 .threadsToLoadObjects(12)
 .idFetchSize(150)
 .progressMonitor(monitor) //a MassIndexerProgressMonitor implementation
 .startAndWait();

CHAPTER 13. HIBERNATE SEARCH

317

This will rebuild the index of all User instances (and subtypes), and will create 12 parallel threads to load
the User instances using batches of 25 objects per query. These same 12 threads will also need to
process indexed embedded relations and custom FieldBridges or ClassBridges to output a
Lucene document. The threads trigger lazy loading of additional attributes during the conversion
process. Because of this, a high number of threads working in parallel is required. The number of threads
working on actual index writing is defined by the back-end configuration of each index.

It is recommended to leave cacheMode to CacheMode.IGNORE (the default), as in most reindexing
situations the cache will be a useless additional overhead. It might be useful to enable some other
CacheMode depending on your data as it could increase performance if the main entity is relating to
enum-like data included in the index.

NOTE

The ideal of number of threads to achieve best performance is highly dependent on your
overall architecture, database design and data values. All internal thread groups have
meaningful names so they should be easily identified with most diagnostic tools, including
thread dumps.

NOTE

The MassIndexer is unaware of transactions, therefore there is no need to begin one or
commit afterward. Because it is not transactional it is not recommended to let users use
the system during its processing, as it is unlikely people will be able to find results and the
system load might be too high anyway.

Other parameters which affect indexing time and memory consumption are:

hibernate.search.[default|<indexname>].exclusive_index_use

hibernate.search.[default|<indexname>].indexwriter.max_buffered_docs

hibernate.search.[default|<indexname>].indexwriter.max_merge_docs

hibernate.search.[default|<indexname>].indexwriter.merge_factor

hibernate.search.[default|<indexname>].indexwriter.merge_min_size

hibernate.search.[default|<indexname>].indexwriter.merge_max_size

hibernate.search.[default|
<indexname>].indexwriter.merge_max_optimize_size

hibernate.search.[default|
<indexname>].indexwriter.merge_calibrate_by_deletes

hibernate.search.[default|<indexname>].indexwriter.ram_buffer_size

hibernate.search.[default|<indexname>].indexwriter.term_index_interval

Previous versions also had a max_field_length but this was removed from Lucene, it is possible to
obtain a similar effect by using a LimitTokenCountAnalyzer.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

318

All .indexwriter parameters are Lucene specific and Hibernate Search passes these parameters
through.

The MassIndexer uses a forward only scrollable result to iterate on the primary keys to be loaded, but
MySQL’s JDBC driver will load all values in memory. To avoid this "optimization" set idFetchSize to
Integer.MIN_VALUE.

13.7. INDEX OPTIMIZATION

From time to time, the Lucene index needs to be optimized. The process is essentially a
defragmentation. Until an optimization is triggered Lucene only marks deleted documents as such, no
physical are applied. During the optimization process the deletions will be applied which also affects the
number of files in the Lucene Directory.

Optimizing the Lucene index speeds up searches but has no effect on the indexation (update)
performance. During an optimization, searches can be performed, but will most likely be slowed down. All
index updates will be stopped. It is recommended to schedule optimization:

Optimizing the Lucene index speeds up searches, but has no effect on the index update performance.
Searches can be performed during an optimization process, however they will be slower than expected.
All index updates are on hold during the optimization. It is therefore recommended to schedule
optimization:

On an idle system or when searches are least frequent.

After a large number of index modifications are applied.

MassIndexer (see Using a MassIndexer) optimizes indexes by default at the start and at the end of
processing. Use MassIndexer.optimizeAfterPurge and MassIndexer.optimizeOnFinish to
change this default behavior.

13.7.1. Automatic Optimization

Hibernate Search can automatically optimize an index after either:

Infinispan Query automatically optimizes the index after:

a certain amount of operations (insertion or deletion).

a certain amount of transactions.

The configuration for automatic index optimization can be defined either globally or per index:

Example: Defining automatic optimization parameters

An optimization will be triggered to the Animal index as soon as either:

the number of additions and deletions reaches 1000.

hibernate.search.default.optimizer.operation_limit.max = 1000
hibernate.search.default.optimizer.transaction_limit.max = 100
hibernate.search.Animal.optimizer.transaction_limit.max = 50

CHAPTER 13. HIBERNATE SEARCH

319

the number of transactions reaches 50
(hibernate.search.Animal.optimizer.transaction_limit.max has priority over
hibernate.search.default.optimizer.transaction_limit.max)

If none of these parameters are defined, no optimization is processed automatically.

The default implementation of OptimizerStrategy can be overridden by implementing
org.hibernate.search.store.optimization.OptimizerStrategy and setting the
optimizer.implementation property to the fully qualified name of your implementation. This
implementation must implement the interface, be a public class and have a public constructor taking no
arguments.

Example: Loading a custom OptimizerStrategy

The keyword default can be used to select the Hibernate Search default implementation; all properties
after the .optimizer key separator will be passed to the implementation’s initialize method at start.

13.7.2. Manual Optimization

You can programmatically optimize (defragment) a Lucene index from Hibernate Search through the
SearchFactory:

Example: Programmatic Index Optimization

The first example optimizes the Lucene index holding Orders and the second optimizes all indexes.

NOTE

searchFactory.optimize() has no effect on a JMS back end. You must apply the
optimize operation on the Master node.

searchFactory.optimize() is applied to the master node because it does not affect the JMC back
end.

13.7.3. Adjusting Optimization

Apache Lucene has a few parameters to influence how optimization is performed. Hibernate Search
exposes those parameters.

Further index optimization parameters include:

hibernate.search.default.optimizer.implementation =
com.acme.worlddomination.SmartOptimizer
hibernate.search.default.optimizer.SomeOption = CustomConfigurationValue
hibernate.search.humans.optimizer.implementation = default

FullTextSession fullTextSession =
Search.getFullTextSession(regularSession);
SearchFactory searchFactory = fullTextSession.getSearchFactory();

searchFactory.optimize(Order.class);
// or
searchFactory.optimize();

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

320

hibernate.search.[default|<indexname>].indexwriter.max_buffered_docs

hibernate.search.[default|<indexname>].indexwriter.max_merge_docs

hibernate.search.[default|<indexname>].indexwriter.merge_factor

hibernate.search.[default|<indexname>].indexwriter.ram_buffer_size

hibernate.search.[default|<indexname>].indexwriter.term_index_interval

13.8. ADVANCED FEATURES

13.8.1. Accessing the SearchFactory

The SearchFactory object keeps track of the underlying Lucene resources for Hibernate Search. It is a
convenient way to access Lucene natively. The SearchFactory can be accessed from a
FullTextSession:

Example: Accessing the SearchFactory

13.8.2. Using an IndexReader

Queries in Lucene are executed on an IndexReader. Hibernate Search might cache index readers to
maximize performance, or provide other efficient strategies to retrieve an updated IndexReader
minimizing I/O operations. Your code can access these cached resources, but there are several
requirements.

Example: Accessing an IndexReader

In this example the SearchFactory determines which indexes are needed to query this entity (considering
a Sharding strategy). Using the configured ReaderProvider on each index, it returns a compound
IndexReader on top of all involved indexes. Because this IndexReader is shared amongst several
clients, you must adhere to the following rules:

Never call indexReader.close(), instead use readerProvider.closeReader(reader) when
necessary, preferably in a finally block.

Don not use this IndexReader for modification operations (it is a readonly IndexReader, and any
such attempt will result in an exception).

FullTextSession fullTextSession =
Search.getFullTextSession(regularSession);
SearchFactory searchFactory = fullTextSession.getSearchFactory();

IndexReader reader =
searchFactory.getIndexReaderAccessor().open(Order.class);
try {
 //perform read-only operations on the reader
}
finally {
 searchFactory.getIndexReaderAccessor().close(reader);
}

CHAPTER 13. HIBERNATE SEARCH

321

Aside from those rules, you can use the IndexReader freely, especially to do native Lucene queries.
Using the shared IndexReaders will make most queries more efficient than by opening one directly from,
for example, the filesystem.

As an alternative to the method open(Class… ​ types) you can use open(String… ​ indexNames), allowing
you to pass in one or more index names. Using this strategy you can also select a subset of the indexes
for any indexed type if sharding is used.

Example: Accessing an IndexReader by index names

13.8.3. Accessing a Lucene Directory

A Directory is the most common abstraction used by Lucene to represent the index storage; Hibernate
Search does not interact directly with a Lucene Directory but abstracts these interactions via an
IndexManager: an index does not necessarily need to be implemented by a Directory.

If you know your index is represented as a Directory and need to access it, you can get a reference to
the Directory via the IndexManager. Cast the IndexManager to a DirectoryBasedIndexManager and then
use getDirectoryProvider().getDirectory() to get a reference to the underlying Directory.
This is not recommended, we would encourage to use the IndexReader instead.

13.8.4. Sharding Indexes

In some cases it can be useful to split (shard) the indexed data of a given entity into several Lucene
indexes.

WARNING

Sharding should only be implemented if the advantages outweigh the
disadvantages. Searching sharded indexes will typically be slower as all shards
have to be opened for a single search.

Possible use cases for sharding are:

A single index is so large that index update times are slowing the application down.

A typical search will only hit a subset of the index, such as when data is naturally segmented by
customer, region or application.

By default sharding is not enabled unless the number of shards is configured. To do this use the
hibernate.search.<indexName>.sharding_strategy.nbr_of_shards property.

Example: Enabling Index Sharding In this example 5 shards are enabled.

IndexReader reader =
searchFactory.getIndexReaderAccessor().open("Products.1", "Products.3");



hibernate.search.<indexName>.sharding_strategy.nbr_of_shards = 5

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

322

Responsible for splitting the data into sub-indexes is the IndexShardingStrategy. The default sharding
strategy splits the data according to the hash value of the ID string representation (generated by the
FieldBridge). This ensures a fairly balanced sharding. You can replace the default strategy by
implementing a custom IndexShardingStrategy. To use your custom strategy you have to set the
hibernate.search.<indexName>.sharding_strategy property.

Example: Specifying a Custom Sharding Strategy

The IndexShardingStrategy property also allows for optimizing searches by selecting which shard to run
the query against. By activating a filter a sharding strategy can select a subset of the shards used to
answer a query (IndexShardingStrategy.getIndexManagersForQuery) and thus speed up the query
execution.

Each shard has an independent IndexManager and so can be configured to use a different directory
provider and back-end configuration. The IndexManager index names for the Animal entity in the
example below are Animal.0 to Animal.4. In other words, each shard has the name of its owning
index followed by . (dot) and its index number.

Example: Sharding Configuration for Entity Animal

In the example above, the configuration uses the default id string hashing strategy and shards the
Animal index into 5 sub-indexes. All sub-indexes are filesystem instances and the directory where each
sub-index is stored is as followed:

for sub-index 0: /usr/lucene/indexes/Animal00 (shared indexBase but overridden
indexName)

for sub-index 1: /usr/lucene/indexes/Animal.1 (shared indexBase, default indexName)

for sub-index 2: /usr/lucene/indexes/Animal.2 (shared indexBase, default indexName)

for sub-index 3: /usr/lucene/shared/Animal03 (overridden indexBase, overridden
indexName)

for sub-index 4: /usr/lucene/indexes/Animal.4 (shared indexBase, default indexName)

When implementing a IndexShardingStrategy any field can be used to determine the sharding selection.
Consider that to handle deletions, purge and purgeAll operations, the implementation might need to
return one or more indexes without being able to read all the field values or the primary identifier. In that
case the information is not enough to pick a single index, all indexes should be returned, so that the
delete operation will be propagated to all indexes potentially containing the documents to be deleted.

13.8.5. Customizing Lucene’s Scoring Formula

hibernate.search.<indexName>.sharding_strategy =
my.shardingstrategy.Implementation

hibernate.search.default.indexBase = /usr/lucene/indexes
hibernate.search.Animal.sharding_strategy.nbr_of_shards = 5
hibernate.search.Animal.directory_provider = filesystem
hibernate.search.Animal.0.indexName = Animal00
hibernate.search.Animal.3.indexBase = /usr/lucene/sharded
hibernate.search.Animal.3.indexName = Animal03

CHAPTER 13. HIBERNATE SEARCH

323

Lucene allows the user to customize its scoring formula by extending
org.apache.lucene.search.Similarity. The abstract methods defined in this class match the factors of the
following formula calculating the score of query q for document d:

Extend org.apache.lucene.search.Similarity to customize Lucene’s scoring formula. The abstract
methods match the formula used to calculate the score of query q for document d as follows:

*score(q,d) = coord(q,d) · queryNorm(q) · ∑ ~t in q~ (tf(t in d) ·
idf(t) ^2^ · t.getBoost() · norm(t,d))*

Factor Description

tf(t ind) Term frequency factor for the term (t) in the document (d).

idf(t) Inverse document frequency of the term.

coord(q,d) Score factor based on how many of the query terms are found in the
specified document.

queryNorm(q) Normalizing factor used to make scores between queries comparable.

t.getBoost() Field boost.

norm(t,d) Encapsulates a few (indexing time) boost and length factors.

It is beyond the scope of this manual to explain this formula in more detail. Please refer to Similarity’s
Javadocs for more information.

Hibernate Search provides three ways to modify Lucene’s similarity calculation.

First you can set the default similarity by specifying the fully specified classname of your Similarity
implementation using the property hibernate.search.similarity. The default value is
org.apache.lucene.search.DefaultSimilarity.

You can also override the similarity used for a specific index by setting the similarity property

Finally you can override the default similarity on class level using the @Similarity annotation.

As an example, let us assume it is not important how often a term appears in a document. Documents
with a single occurrence of the term should be scored the same as documents with multiple occurrences.
In this case your custom implementation of the method tf(float freq) should return 1.0.

hibernate.search.default.similarity = my.custom.Similarity

@Entity
@Indexed
@Similarity(impl = DummySimilarity.class)
public class Book {
...
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

324

WARNING

When two entities share the same index they must declare the same Similarity
implementation. Classes in the same class hierarchy always share the index, so it is
not allowed to override the Similarity implementation in a subtype.

Likewise, it does not make sense to define the similarity via the index setting and the
class-level setting as they would conflict. Such a configuration will be rejected.

13.8.6. Exception Handling Configuration

Hibernate Search allows you to configure how exceptions are handled during the indexing process. If no
configuration is provided then exceptions are logged to the log output by default. It is possible to
explicitly declare the exception logging mechanism as follows:

The default exception handling occurs for both synchronous and asynchronous indexing. Hibernate
Search provides an easy mechanism to override the default error handling implementation.

In order to provide your own implementation you must implement the ErrorHandler interface, which
provides the handle(ErrorContext context) method. ErrorContext provides a reference to the
primary LuceneWork instance, the underlying exception and any subsequent LuceneWork instances
that could not be processed due to the primary exception.

To register this error handler with Hibernate Search you must declare the fully qualified classname of
your ErrorHandler implementation in the configuration properties:

13.8.7. Disable Hibernate Search

Hibernate Search can be partially or completely disabled as required. Hibernate Search’s indexing can
be disabled, for example, if the index is read-only, or you prefer to perform indexing manually, rather
than automatically. It is also possible to completely disable Hibernate Search, preventing indexing and
searching.

Disable Indexing

To disable Hibernate Search indexing, change the indexing_strategy configuration option to
manual, then restart JBoss EAP.



hibernate.search.error_handler = log

public interface ErrorContext {
 List<LuceneWork> getFailingOperations();
 LuceneWork getOperationAtFault();
 Throwable getThrowable();
 boolean hasErrors();
}

hibernate.search.error_handler = CustomerErrorHandler

hibernate.search.indexing_strategy = manual

CHAPTER 13. HIBERNATE SEARCH

325

Disable Hibernate Search Completely

To disable Hibernate Search completely, disable all listeners by changing the
autoregister_listeners configuration option to false, then restart JBoss EAP.

13.9. MONITORING

Hibernate Search offers access to a Statistics object via SearchFactory.getStatistics(). It
allows you, for example, to determine which classes are indexed and how many entities are in the index.
This information is always available. However, by specifying the
hibernate.search.generate_statistics property in your configuration you can also collect total
and average Lucene query and object loading timings.

Access to Statistics via JMX
To enable access to statistics via JMX, set the property hibernate.search.jmx_enabled to true.
This will automatically register the StatisticsInfoMBean bean, providing access to statistics using
the Statistics object. Depending on your configuration the IndexingProgressMonitorMBean
bean may also be registered.

Monitoring Indexing
If the mass indexer API is used, you can monitor indexing progress using the
IndexingProgressMonitorMBean bean. The bean is only bound to JMX while indexing is in
progress.

NOTE

JMX beans can be accessed remotely using JConsole by setting the system property
com.sun.management.jmxremote to true.

hibernate.search.autoregister_listeners = false

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

326

CHAPTER 14. BEAN VALIDATION

14.1. ABOUT BEAN VALIDATION

Bean Validation, or JavaBeans Validation, is a model for validating data in Java objects. The model uses
built-in and custom annotation constraints to ensure the integrity of application data. The specification is
documented here: JSR 349: Bean Validation 1.1.

Hibernate Validator is the JBoss EAP implementation of Bean Validation. It is also the reference
implementation of the JSR.

JBoss EAP is 100% compliant with JSR 349 Bean Validation 1.1 specification. Hibernate Validator also
provides additional features to the specification.

To get started with Bean Validation, see the bean-validation quickstart that ships with JBoss EAP.
For information about how to download and run the quickstarts, see Using the Quickstart Examples.

14.2. VALIDATION CONSTRAINTS

14.2.1. About Validation Constraints

Validation constraints are rules applied to a Java element, such as a field, property or bean. A constraint
will usually have a set of attributes used to set its limits. There are predefined constraints, and custom
ones can be created. Each constraint is expressed in the form of an annotation.

The built-in validation constraints for Hibernate Validator are listed here: Hibernate Validator Constraints.

14.2.2. Hibernate Validator Constraints

NOTE

When applicable, the application-level constraints lead to creation of database-level
constraints that are described in the Hibernate Metadata Impact column in the table
below.

Java-specific Validation Constraints

The following table includes validation constraints defined in the Java specifications, which are included
in the javax.validation.constraints package.

Annotation Property type Runtime checking Hibernate Metadata
impact

@AssertFalse Boolean Check that the method
evaluates to false.
Useful for constraints
expressed in code rather
than annotations.

None.

CHAPTER 14. BEAN VALIDATION

327

http://www.jcp.org/en/jsr/detail?id=349

@AssertTrue Boolean Check that the method
evaluates to true. Useful
for constraints
expressed in code rather
than annotations.

None.

@Digits(integerD
igits=1)

Numeric or string
representation of a
numeric

Check whether the
property is a number
having up to
integerDigits
integer digits and
fractionalDigits
fractional digits.

Define column precision
and scale.

@Future Date or calendar Check if the date is in
the future.

None.

@Max(value=) Numeric or string
representation of a
numeric

Check if the value is
less than or equal to
max.

Add a check constraint
on the column.

@Min(value=) Numeric or string
representation of a
numeric

Check if the value is
more than or equal to
Min.

Add a check constraint
on the column.

@NotNull Check if the value is not
null.

Column(s) are not null.

@Past Date or calendar Check if the date is in
the past.

Add a check constraint
on the column.

@Pattern(regexp=
"regexp", flag=)
or @Patterns(
{@Pattern(… ​)})

String Check if the property
matches the regular
expression given a
match flag. See
java.util.regex.
Pattern.

None.

@Size(min=,
max=)

Array, collection, map Check if the element
size is between min and
max, both values
included.

None.

Annotation Property type Runtime checking Hibernate Metadata
impact

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

328

@Valid Object Perform validation
recursively on the
associated object. If the
object is a Collection or
an array, the elements
are validated recursively.
If the object is a Map,
the value elements are
validated recursively.

None.

Annotation Property type Runtime checking Hibernate Metadata
impact

NOTE

The parameter @Valid is a part of the Bean Validation specification, even though it is
located in the javax.validation.constraints package.

Hibernate Validator-specific Validation Constraints

The following table includes vendor-specific validation constraints, which are a part of the
org.hibernate.validator.constraints package.

Annotation Property type Runtime checking Hibernate Metadata
impact

@Length(min=,
max=)

String Check if the string length
matches the range.

Column length will be
set to max.

@CreditCardNumbe
r

String Check whether the string
is a well formatted credit
card number, derivative
of the Luhn algorithm.

None.

@EAN String Check whether the string
is a properly formatted
EAN or UPC-A code.

None.

@Email String Check whether the string
is conform to the e-mail
address specification.

None.

@NotEmpty Check if the string is not
null nor empty. Check if
the connection is not null
nor empty.

Columns are not null for
String.

@Range(min=,
max=)

Numeric or string
representation of a
numeric

Check if the value is
between min and max,
both values included.

Add a check constraint
on the column.

CHAPTER 14. BEAN VALIDATION

329

14.2.3. Bean Validation Using Custom Constraints

Bean Validation API defines a set of standard constraint annotations, such as @NotNull, @Size, and
so on. However, in cases where these predefined constraints are not sufficient, you can easily create
custom constraints tailored to your specific validation requirements.

Creating a Bean Validation custom constraint requires that you create a constraint annotation and
implement a constraint validator. The following abbreviated code examples are taken from the bean-
validation-custom-constraint quickstart that ships with JBoss EAP. See that quickstart for a
complete working example.

14.2.3.1. Creating A Constraint Annotation

The following example shows the personAddress field of entity Person is validated using a set of
custom constraints defined in the class AddressValidator.

1. Create the entity Person

Example: Person Class

package org.jboss.as.quickstarts.bean_validation_custom_constraint;

@Entity
@Table(name = "person")
public class Person implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue
 @Column(name = "person_id")
 private Long personId;

 @NotNull

 @Size(min = 4)
 private String firstName;

 @NotNull
 @Size(min = 4)
 private String lastName;

 // Custom Constraint @Address for bean validation
 @NotNull
 @Address
 @OneToOne(mappedBy = "person", cascade = CascadeType.ALL)
 private PersonAddress personAddress;

 public Person() {

 }

 public Person(String firstName, String lastName, PersonAddress
address) {
 this.firstName = firstName;

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

330

2. Create the constraint validator files:

Example: Address Interface

Example: PersonAddress Class

 this.lastName = lastName;
 this.personAddress = address;
 }

 /* getters and setters omitted for brevity*/
}

package org.jboss.as.quickstarts.bean_validation_custom_constraint;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import javax.validation.Constraint;
import javax.validation.Payload;

// Linking the AddressValidator class with @Address annotation.
@Constraint(validatedBy = { AddressValidator.class })
// This constraint annotation can be used only on fields and method
parameters.
@Target({ ElementType.FIELD, ElementType.PARAMETER })
@Retention(value = RetentionPolicy.RUNTIME)
@Documented
public @interface Address {

 // The message to return when the instance of MyAddress fails
the validation.
 String message() default "Address Fields must not be null/empty
and obey character limit constraints";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};
}

package org.jboss.as.quickstarts.bean_validation_custom_constraint;

import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.OneToOne;
import javax.persistence.PrimaryKeyJoinColumn;
import javax.persistence.Table;

@Entity

CHAPTER 14. BEAN VALIDATION

331

14.2.3.2. Implementing A Constraint Validator

Having defined the annotation, you need to create a constraint validator that is able to validate elements
with an @Address annotation. To do so, implement the interface ConstraintValidator as shown
below:

Example: AddressValidator Class

@Table(name = "person_address")
public class PersonAddress implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 @Column(name = "person_id", unique = true, nullable = false)
 @GeneratedValue(strategy = GenerationType.SEQUENCE)
 private Long personId;

 private String streetAddress;
 private String locality;
 private String city;
 private String state;
 private String country;
 private String pinCode;

 @OneToOne
 @PrimaryKeyJoinColumn
 private Person person;

 public PersonAddress() {

 }

 public PersonAddress(String streetAddress, String locality,
String city, String state, String country, String pinCode) {
 this.streetAddress = streetAddress;
 this.locality = locality;
 this.city = city;
 this.state = state;
 this.country = country;
 this.pinCode = pinCode;
 }

 /* getters and setters omitted for brevity*/
}

package org.jboss.as.quickstarts.bean_validation_custom_constraint;

import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;
import
org.jboss.as.quickstarts.bean_validation_custom_constraint.PersonAddress;

public class AddressValidator implements ConstraintValidator<Address,
PersonAddress> {

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

332

14.3. VALIDATION CONFIGURATION

You can configure bean validation using XML descriptors in the validation.xml file located in the
/META-INF directory. If this file exists in the class path, its configuration is applied when the
ValidatorFactory gets created.

Example: Validation Configuration File

The following example shows several configuration options of the validation.xml file. All the settings
are optional. These options can also be configured using the javax.validation package.

 public void initialize(Address constraintAnnotation) {
 }

 /**
 * 1. A null address is handled by the @NotNull constraint on the
@Address.
 * 2. The address should have all the data values specified.
 * 3. Pin code in the address should be of at least 6 characters.
 * 4. The country in the address should be of at least 4 characters.
 */
 public boolean isValid(PersonAddress value, ConstraintValidatorContext
context) {
 if (value == null) {
 return true;
 }

 if (value.getCity() == null || value.getCountry() == null ||
value.getLocality() == null
 || value.getPinCode() == null || value.getState() == null ||
value.getStreetAddress() == null) {
 return false;
 }

 if (value.getCity().isEmpty()
 || value.getCountry().isEmpty() ||
value.getLocality().isEmpty()
 || value.getPinCode().isEmpty() || value.getState().isEmpty()
|| value.getStreetAddress().isEmpty()) {
 return false;
 }

 if (value.getPinCode().length() < 6) {
 return false;
 }

 if (value.getCountry().length() < 4) {
 return false;
 }

 return true;
 }
}

CHAPTER 14. BEAN VALIDATION

333

The node default-provider allows to choose the bean validation provider. This is useful if there is
more than one provider on the classpath. The message-interpolator and constraint-
validator-factory properties are used to customize the used implementations for the interfaces
MessageInterpolator and ConstraintValidatorFactory, which are defined in the
javax.validation package. The constraint-mapping element lists additional XML files
containing the actual constraint configuration.

<validation-config
xmlns="http://jboss.org/xml/ns/javax/validation/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configuration
">

 <default-provider>
 org.hibernate.validator.HibernateValidator
 </default-provider>
 <message-interpolator>

org.hibernate.validator.messageinterpolation.ResourceBundleMessageInterpol
ator
 </message-interpolator>
 <constraint-validator-factory>
 org.hibernate.validator.engine.ConstraintValidatorFactoryImpl
 </constraint-validator-factory>

 <constraint-mapping>
 /constraints-example.xml
 </constraint-mapping>

 <property name="prop1">value1</property>
 <property name="prop2">value2</property>
</validation-config>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

334

CHAPTER 15. CREATING WEBSOCKET APPLICATIONS
The WebSocket protocol provides two-way communication between web clients and servers.
Communications between clients and the server are event-based, allowing for faster processing and
smaller bandwidth compared with polling-based methods. WebSocket is available for use in web
applications using a JavaScript API and by client WebSocket endpoints using the Java Websocket API.

A connection is first established between client and server as an HTTP connection. The client then
requests a WebSocket connection using the Upgrade header. All communications are then full-duplex
over the same TCP/IP connection, with minimal data overhead. Because each message does not
include unnecessary HTTP header content, Websocket communications require smaller bandwidth. The
result is a low latency communications path suited to applications, which require real-time
responsiveness.

The JBoss EAP WebSocket implementation provides full dependency injection support for server
endpoints, however, it does not provide CDI services for client endpoints.

A WebSocket application requires the following components and configuration changes:

A Java client or a WebSocket enabled HTML client. You can verify HTML client browser support
at this location: http://caniuse.com/#feat=websockets

A WebSocket server endpoint class.

Project dependencies configured to declare a dependency on the WebSocket API.

Create the WebSocket Application
The code examples that follow are taken from the websocket-hello quickstart that ships with JBoss
EAP. It is a simple example of a WebSocket application that opens a connection, sends a message, and
closes a connection. It does not implement any other functions or include any error handling, which
would be required for a real world application.

1. Create the JavaScript HTML client.
The following is an example of a WebSocket client. It contains these JavaScript functions:

connect(): This function creates the WebSocket connection passing the WebSocket URI.
The resource location matches the resource defined in the server endpoint class. This
function also intercepts and handles the WebSocket onopen, onmessage, onerror, and
onclose.

sendMessage(): This function gets the name entered in the form, creates a message, and
sends it using a WebSocket.send() command.

disconnect(): This function issues the WebSocket.close() command.

displayMessage(): This function sets the display message on the page to the value
returned by the WebSocket endpoint method.

displayStatus(): This function displays the WebSocket connection status.

Example: Application index.html Code

<html>
 <head>
 <title>WebSocket: Say Hello</title>
 <link rel="stylesheet" type="text/css"

CHAPTER 15. CREATING WEBSOCKET APPLICATIONS

335

https://docs.oracle.com/javaee/7/api/javax/websocket/package-summary.html
http://caniuse.com/#feat=websockets

href="resources/css/hello.css" />
 <script type="text/javascript">
 var websocket = null;
 function connect() {
 var wsURI = 'ws://' + window.location.host + '/jboss-
websocket-hello/websocket/helloName';
 websocket = new WebSocket(wsURI);
 websocket.onopen = function() {
 displayStatus('Open');
 document.getElementById('sayHello').disabled =
false;
 displayMessage('Connection is now open. Type a name
and click Say Hello to send a message.');
 };
 websocket.onmessage = function(event) {
 // log the event
 displayMessage('The response was received! ' +
event.data, 'success');
 };
 websocket.onerror = function(event) {
 // log the event
 displayMessage('Error! ' + event.data, 'error');
 };
 websocket.onclose = function() {
 displayStatus('Closed');
 displayMessage('The connection was closed or timed
out. Please click the Open Connection button to reconnect.');
 document.getElementById('sayHello').disabled = true;
 };
 }
 function disconnect() {
 if (websocket !== null) {
 websocket.close();
 websocket = null;
 }
 message.setAttribute("class", "message");
 message.value = 'WebSocket closed.';
 // log the event
 }
 function sendMessage() {
 if (websocket !== null) {
 var content = document.getElementById('name').value;
 websocket.send(content);
 } else {
 displayMessage('WebSocket connection is not
established. Please click the Open Connection button.', 'error');
 }
 }
 function displayMessage(data, style) {
 var message = document.getElementById('hellomessage');
 message.setAttribute("class", style);
 message.value = data;
 }
 function displayStatus(status) {
 var currentStatus =
document.getElementById('currentstatus');

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

336

2. Create the WebSocket server endpoint.
You can create a WebSocket server endpoint using either of the following methods.

Programmatic Endpoint: The endpoint extends the Endpoint class.

Annotated Endpoint: The endpoint class uses annotations to interact with the
WebSocket events. It is simpler to code than the programmatic endpoint.

The code example below uses the annotated endpoint approach and handles the following
events.

The @ServerEndpoint annotation identifies this class as a WebSocket server endpoint
and specifies the path.

The @OnOpen annotation is triggered when the WebSocket connection is opened.

 currentStatus.value = status;
 }
 </script>
 </head>
 <body>
 <div>
 <h1>Welcome to Red Hat JBoss Enterprise Application
Platform!</h1>
 <div>This is a simple example of a WebSocket
implementation.</div>
 <div id="connect-container">
 <div>
 <fieldset>
 <legend>Connect or disconnect using websocket
:</legend>
 <input type="button" id="connect"
onclick="connect();" value="Open Connection" />
 <input type="button" id="disconnect"
onclick="disconnect();" value="Close Connection" />
 </fieldset>
 </div>
 <div>
 <fieldset>
 <legend>Type your name below, then click the `Say
Hello` button :</legend>
 <input id="name" type="text" size="40"
style="width: 40%"/>
 <input type="button" id="sayHello"
onclick="sendMessage();" value="Say Hello" disabled="disabled"/>
 </fieldset>
 </div>
 <div>Current WebSocket Connection Status: <output
id="currentstatus" class="message">Closed</output></div>
 <div>
 <output id="hellomessage" />
 </div>
 </div>
 </div>
 </body>
</html>

CHAPTER 15. CREATING WEBSOCKET APPLICATIONS

337

The @OnMessage annotation is triggered when a message is received.

The @OnClose annotation is triggered when the WebSocket connection is closed.

Example: WebSocket Endpoint Code

3. Declare the WebSocket API dependency in your project POM file.
If you use Maven, you add the following dependency to the project pom.xml file.

Example: Maven Dependency

The quickstarts that ship with JBoss EAP include additional WebSocket client and endpoint code
examples.

package org.jboss.as.quickstarts.websocket_hello;

import javax.websocket.CloseReason;
import javax.websocket.OnClose;
import javax.websocket.OnMessage;
import javax.websocket.OnOpen;
import javax.websocket.Session;
import javax.websocket.server.ServerEndpoint;

@ServerEndpoint("/websocket/helloName")
public class HelloName {

 @OnMessage
 public String sayHello(String name) {
 System.out.println("Say hello to '" + name + "'");
 return ("Hello" + name);
 }

 @OnOpen
 public void helloOnOpen(Session session) {
 System.out.println("WebSocket opened: " +
session.getId());
 }

 @OnClose
 public void helloOnClose(CloseReason reason) {
 System.out.println("WebSocket connection closed with
CloseCode: " + reason.getCloseCode());
 }
}

<dependency>
 <groupId>org.jboss.spec.javax.websocket</groupId>
 <artifactId>jboss-websocket-api_1.0_spec</artifactId>
 <version>1.0.0.Final</version>
 <scope>provided</scope>
</dependency>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

338

CHAPTER 16. JAVA AUTHORIZATION CONTRACT FOR
CONTAINERS (JACC)

16.1. ABOUT JAVA AUTHORIZATION CONTRACT FOR CONTAINERS
(JACC)

Java Authorization Contract for Containers (JACC) is a standard which defines a contract between
containers and authorization service providers, which results in the implementation of providers for use
by containers. It is defined in JSR-115 of the Java Community Process. For details about the
specifications, see Java™ Authorization Contract for Containers.

JBoss EAP implements support for JACC within the security functionality of the security subsystem.

16.2. CONFIGURE JAVA AUTHORIZATION CONTRACT FOR
CONTAINERS (JACC) SECURITY

You can configure Java Authorization Contract for Containers (JACC) by configuring your security
domain with the correct module, and then modifying your jboss-web.xml to include the required
parameters.

Add JACC Support to the Security Domain

To add JACC support to the security domain, add the JACC authorization policy to the authorization stack
of the security domain, with the required flag set. The following is an example of a security domain
with JACC support. However, it is recommended to configure the security domain from the management
console or the management CLI, rather than directly modifying the XML.

Example: Security Domain with JACC Support

Configure a Web Application to Use JACC

The jboss-web.xml file is located in the WEB-INF/ directory of your deployment, and contains
overrides and additional JBoss-specific configuration for the web container. To use your JACC-enabled
security domain, you need to include the <security-domain> element, and also set the <use-
jboss-authorization> element to true. The following XML is configured to use the JACC security
domain above.

Example: Utilize the JACC Security Domain

<security-domain name="jacc" cache-type="default">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 </login-module>
 </authentication>
 <authorization>
 <policy-module code="JACC" flag="required"/>
 </authorization>
</security-domain>

<jboss-web>
 <security-domain>jacc</security-domain>
 <use-jboss-authorization>true</use-jboss-authorization>
</jboss-web>

CHAPTER 16. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)

339

http://jcp.org/en/jsr/detail?id=115

Configure an EJB Application to Use JACC

Configuring EJBs to use a security domain and to use JACC differs from web applications. For an EJB,
you can declare method permissions on a method or group of methods, in the ejb-jar.xml descriptor.
Within the <ejb-jar> element, any child <method-permission> elements contain information about
JACC roles. See the example configuration below for details. The EJBMethodPermission class is part
of the Java EE 7 API, and is documented at
http://docs.oracle.com/javaee/7/api/javax/security/jacc/EJBMethodPermission.html.

Example: JACC Method Permissions in an EJB

You can also constrain the authentication and authorization mechanisms for an EJB by using a security
domain, just as you can do for a web application. Security domains are declared in the jboss-
ejb3.xml descriptor, in the <security> child element. In addition to the security domain, you can also
specify the <run-as-principal>, which changes the principal that the EJB runs as.

Example: Security Domain Declaration in an EJB

<ejb-jar>
 <assembly-descriptor>
 <method-permission>
 <description>The employee and temp-employee roles may access any
method of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 </assembly-descriptor>
</ejb-jar>

<ejb-jar>
 <assembly-descriptor>
 <security>
 <ejb-name>*</ejb-name>
 <security-domain>myDomain</security-domain>
 <run-as-principal>myPrincipal</run-as-principal>
 </security>
 </assembly-descriptor>
</ejb-jar>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

340

http://docs.oracle.com/javaee/7/api/javax/security/jacc/EJBMethodPermission.html

CHAPTER 17. JAVA AUTHENTICATION SPI FOR CONTAINERS
(JASPI)

17.1. ABOUT JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
SECURITY

Java Authentication SPI for Containers (JASPI or JASPIC) is a pluggable interface for Java applications.
It is defined in JSR-196 of the Java Community Process. Refer to http://www.jcp.org/en/jsr/detail?id=196
for details about the specification.

17.2. CONFIGURE JAVA AUTHENTICATION SPI FOR CONTAINERS
(JASPI) SECURITY

You can authenticate a JASPI provider by adding <authentication-jaspi> element to your security
domain. The configuration is similar to that of a standard authentication module, but login module
elements are enclosed in a <login-module-stack> element. The structure of the configuration is:

Example: Structure of the authentication-jaspi Element

The login module itself is configured the same way as a standard authentication module.

The web-based management console does not expose the configuration of JASPI authentication
modules. You must stop the JBoss EAP running instance completely before adding the configuration
directly to /domain/configuration/domain.xml or
/standalone/configuration/standalone.xml.

<authentication-jaspi>
 <login-module-stack name="...">
 <login-module code="..." flag="...">
 <module-option name="..." value="..."/>
 </login-module>
 </login-module-stack>
 <auth-module code="..." login-module-stack-ref="...">
 <module-option name="..." value="..."/>
 </auth-module>
</authentication-jaspi>

CHAPTER 17. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)

341

http://www.jcp.org/en/jsr/detail?id=196

CHAPTER 18. JAVA BATCH APPLICATION DEVELOPMENT
Beginning with JBoss EAP 7, JBoss EAP supports Java batch applications as defined by JSR-352. The
Batch subsystem in JBoss EAP facilitates batch configuration and monitoring.

To configure your application to use batch processing on JBoss EAP, you must specify the required
dependencies. Additional JBoss EAP features for batch processing include Job Specification Language
(JSL) inheritance, and batch property injections.

18.1. REQUIRED BATCH DEPENDENCIES

To deploy your batch application to JBoss EAP, some additional dependencies that are required for
batch processing need to be declared in your application’s pom.xml. An example of these required
dependencies is shown below. Most of the dependencies have the scope set to provided, as they are
already included in JBoss EAP.

Example: pom.xml Batch Dependencies

18.2. JOB SPECIFICATION LANGUAGE (JSL) INHERITANCE

A feature of the JBoss EAP batch-jberet subsystem is the ability to use Job Specification Language
(JSL) inheritance to abstract out some common parts of your job definition. Although JSL inheritance is
not included in the JSR-352 1.0 specification, the JBoss EAP batch-jberet subsystem implements
JSL inheritance based on the JSL Inheritance v1 draft.

Example: Inherit Step and Flow Within the Same Job XML File
Parent elements (step, flow, etc.) are marked with the attribute abstract="true" to exclude them
from direct execution. Child elements contain a parent attribute, which points to the parent element.

<dependencies>
 <dependency>
 <groupId>org.jboss.spec.javax.batch</groupId>
 <artifactId>jboss-batch-api_1.0_spec</artifactId>
 <scope>provided</scope>
 </dependency>

 <dependency>
 <groupId>javax.enterprise</groupId>
 <artifactId>cdi-api</artifactId>
 <scope>provided</scope>
 </dependency>

 <dependency>
 <groupId>org.jboss.spec.javax.annotation</groupId>
 <artifactId>jboss-annotations-api_1.2_spec</artifactId>
 <scope>provided</scope>
 </dependency>

 <!-- Include your application's other dependencies. -->
 ...
</dependencies>

<job id="inheritance" xmlns="http://xmlns.jcp.org/xml/ns/javaee"

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

342

https://www.jcp.org/en/jsr/detail?id=352

Example: Inherit a Step from a Different Job XML File
Child elements (step, job, etc.) contain:

a jsl-name attribute, which specifies the job XML file name (without the .xml extension)
containing the parent element, and

a parent attribute, which points to the parent element in the job XML file specified by jsl-
name.

Parent elements are marked with the attribute abstract="true" to exclude them from direct
execution.

chunk-child.xml

chunk-parent.xml

version="1.0">
 <!-- abstract step and flow -->
 <step id="step0" abstract="true">
 <batchlet ref="batchlet0"/>
 </step>

 <flow id="flow0" abstract="true">
 <step id="flow0.step1" parent="step0"/>
 </flow>

 <!-- concrete step and flow -->
 <step id="step1" parent="step0" next="flow1"/>

 <flow id="flow1" parent="flow0"/>
</job>

<job id="chunk-child" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
version="1.0">
 <step id="chunk-child-step" parent="chunk-parent-step" jsl-
name="chunk-parent">
 </step>
</job>

<job id="chunk-parent" >
 <step id="chunk-parent-step" abstract="true">
 <chunk checkpoint-policy="item" skip-limit="5" retry-limit="5">
 <reader ref="R1"></reader>
 <processor ref="P1"></processor>
 <writer ref="W1"></writer>

 <checkpoint-algorithm ref="parent">
 <properties>
 <property name="parent" value="parent"></property>
 </properties>
 </checkpoint-algorithm>
 <skippable-exception-classes>
 <include class="java.lang.Exception"></include>
 <exclude class="java.io.IOException"></exclude>
 </skippable-exception-classes>

CHAPTER 18. JAVA BATCH APPLICATION DEVELOPMENT

343

18.3. BATCH PROPERTY INJECTIONS

A feature of the JBoss EAP batch-jberet subsystem is the ability to have properties defined in the job
XML file injected into fields in the batch artifact class. Properties defined in the job XML file can be
injected into fields using the @Inject and @BatchProperty annotations.

The injection field can be any of the following Java types:

java.lang.String

java.lang.StringBuilder

java.lang.StringBuffer

any primitive type, and its wrapper type:

boolean, Boolean

int, Integer

double, Double

long, Long

char, Character

float, Float

short, Short

byte, Byte

java.math.BigInteger

java.math.BigDecimal

java.net.URL

java.net.URI

java.io.File

java.util.jar.JarFile

 <retryable-exception-classes>
 <include class="java.lang.Exception"></include>
 <exclude class="java.io.IOException"></exclude>
 </retryable-exception-classes>
 <no-rollback-exception-classes>
 <include class="java.lang.Exception"></include>
 <exclude class="java.io.IOException"></exclude>
 </no-rollback-exception-classes>
 </chunk>
 </step>
</job>

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

344

java.util.Date

java.lang.Class

java.net.Inet4Address

java.net.Inet6Address

java.util.List, List<?>, List<String>

java.util.Set, Set<?>, Set<String>

java.util.Map, Map<?, ?>, Map<String, String>, Map<String, ?>

java.util.logging.Logger

java.util.regex.Pattern

javax.management.ObjectName

The following array types are also supported:

java.lang.String[]

any primitive type, and its wrapper type:

boolean[], Boolean[]

int[], Integer[]

double[], Double[]

long[], Long[]

char[], Character[]

float[], Float[]

short[], Short[]

byte[], Byte[]

java.math.BigInteger[]

java.math.BigDecimal[]

java.net.URL[]

java.net.URI[]

java.io.File[]

java.util.jar.JarFile[]

java.util.zip.ZipFile[]

CHAPTER 18. JAVA BATCH APPLICATION DEVELOPMENT

345

java.util.Date[]

java.lang.Class[]

Shown below are a few examples of using batch property injections:

Injecting a Number into a Batchlet Class as Various Types

Injecting a Number Sequence into a Batchlet Class as Various Arrays

Injecting a Class Property into a Batchlet Class

Assigning a Default Value to a Field Annotated for Property Injection

Example: Injecting a Number into a Batchlet Class as Various Types

Job XML File

Artifact Class

Example: Injecting a Number Sequence into a Batchlet Class as Various Arrays

<batchlet ref="myBatchlet">
 <properties>
 <property name="number" value="10"/>
 </properties>
</batchlet>

@Named
public class MyBatchlet extends AbstractBatchlet {
 @Inject
 @BatchProperty
 int number; // Field name is the same as batch property name.

 @Inject
 @BatchProperty (name = "number") // Use the name attribute to locate
the batch property.
 long asLong; // Inject it as a specific data type.

 @Inject
 @BatchProperty (name = "number")
 Double asDouble;

 @Inject
 @BatchProperty (name = "number")
 private String asString;

 @Inject
 @BatchProperty (name = "number")
 BigInteger asBigInteger;

 @Inject
 @BatchProperty (name = "number")
 BigDecimal asBigDecimal;
}

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

346

Job XML File

Artifact Class

Example: Injecting a Class Property into a Batchlet Class

<batchlet ref="myBatchlet">
 <properties>
 <property name="weekDays" value="1,2,3,4,5,6,7"/>
 </properties>
</batchlet>

@Named
public class MyBatchlet extends AbstractBatchlet {
 @Inject
 @BatchProperty
 int[] weekDays; // Array name is the same as batch property name.

 @Inject
 @BatchProperty (name = "weekDays") // Use the name attribute to
locate the batch property.
 Integer[] asIntegers; // Inject it as a specific array type.

 @Inject
 @BatchProperty (name = "weekDays")
 String[] asStrings;

 @Inject
 @BatchProperty (name = "weekDays")
 byte[] asBytes;

 @Inject
 @BatchProperty (name = "weekDays")
 BigInteger[] asBigIntegers;

 @Inject
 @BatchProperty (name = "weekDays")
 BigDecimal[] asBigDecimals;

 @Inject
 @BatchProperty (name = "weekDays")
 List asList;

 @Inject
 @BatchProperty (name = "weekDays")
 List<String> asListString;

 @Inject
 @BatchProperty (name = "weekDays")
 Set asSet;

 @Inject
 @BatchProperty (name = "weekDays")
 Set<String> asSetString;
}

CHAPTER 18. JAVA BATCH APPLICATION DEVELOPMENT

347

Job XML File

Artifact Class

Example: Assigning a Default Value to a Field Annotated for Property Injection
You can assign a default value to a field in an artifact Java class, in case the target batch property is not
defined in the job XML file. If the target property is resolved to a valid value, it is injected into that field;
otherwise, no value is injected and the default field value is used.

Artifact Class

<batchlet ref="myBatchlet">
 <properties>
 <property name="myClass" value="org.jberet.support.io.Person"/>
 </properties>
</batchlet>

@Named
public class MyBatchlet extends AbstractBatchlet {
 @Inject
 @BatchProperty
 private Class myClass;
}

/**
 Comment character. If commentChar batch property is not specified in job
XML file, use the default value '#'.
 */
@Inject
@BatchProperty
private char commentChar = '#';

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

348

APPENDIX A. REFERENCE MATERIAL

A.1. PROVIDED UNDERTOW HANDLERS

AccessControlListHandler
Class Name: io.undertow.server.handlers.AccessControlListHandler

Name: access-control

Handler that can accept or reject a request based on an attribute of the remote peer.

Table A.1. Parameters

Name Description

acl ACL rules. This parameter is required.

attribute Exchange attribute string. This parameter is required.

default-allow Boolean specifying whether handler accepts or
rejects a request by default. Defaults to false.

AccessLogHandler
Class Name: io.undertow.server.handlers.accesslog.AccessLogHandler

Name: access-log

Access log handler. This handler will generate access log messages based on the provided format string
and pass these messages into the provided AccessLogReceiver.

This handler can log any attribute that is provides via the ExchangeAttribute mechanism.

This factory produces token handlers for the following patterns.

Table A.2. Patterns

Pattern Description

%a Remote IP address

%A Local IP address

%b Bytes sent, excluding HTTP headers or - if no bytes
were sent

%B Bytes sent, excluding HTTP headers

%h Remote host name

%H Request protocol

APPENDIX A. REFERENCE MATERIAL

349

%l Remote logical username from identd (always
returns -)

%m Request method

%p Local port

%q Query string (excluding the ? character)

%r First line of the request

%s HTTP status code of the response

%t Date and time, in Common Log Format format

%u Remote user that was authenticated

%U Requested URL path

%v Local server name

%D Time taken to process the request, in milliseconds

%T Time taken to process the request, in seconds

%I current Request thread name (can compare later with
stack traces)

common %h %l %u %t "%r" %s %b

combined %h %l %u %t "%r" %s %b "%
{i,Referer}" "%{i,User-Agent}"

Pattern Description

There is also support to write information from the cookie, incoming header, or the session.

It is modeled after the Apache syntax:

%{i,xxx} for incoming headers

%{o,xxx} for outgoing response headers

%{c,xxx} for a specific cookie

%{r,xxx} where xxx is an attribute in the ServletRequest

%{s,xxx} where xxx is an attribute in the HttpSession

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

350

Table A.3. Parameters

Name Description

format Format used to generate the log messages. This is
the default parameter.

AllowedMethodsHandler
Handler that whitelists certain HTTP methods. Only requests with a method in the allowed methods set
will be allowed to continue.

Class Name: io.undertow.server.handlers.AllowedMethodsHandler

Name: allowed-methods

Table A.4. Parameters

Name Description

methods Methods to allow, for example GET, POST, PUT, and
so on. This is the default parameter.

BlockingHandler
An HttpHandler that initiates a blocking request. If the thread is currently running in the I/O thread it will
be dispatched.

Class Name: io.undertow.server.handlers.BlockingHandler

Name: blocking

This handler has no parameters.

ByteRangeHandler
Handler for range requests. This is a generic handler that can handle range requests to any resource of
a fixed content length, for example, any resource where the content-length header has been set.
This is not necessarily the most efficient way to handle range requests, as the full content will be
generated and then discarded. At present this handler can only handle simple, single range requests. If
multiple ranges are requested the Range header will be ignored.

Class Name: io.undertow.server.handlers.ByteRangeHandler

Name: byte-range

Table A.5. Parameters

Name Description

send-accept-ranges Boolean value on whether or not to send accept
ranges. This is the default parameter.

CanonicalPathHandler
This handler transforms a relative path to a canonical path.

APPENDIX A. REFERENCE MATERIAL

351

Class Name: io.undertow.server.handlers.CanonicalPathHandler

Name: canonical-path

This handler has no parameters.

DisableCacheHandler
Handler that disables response caching by browsers and proxies.

Class Name: io.undertow.server.handlers.DisableCacheHandler

Name: disable-cache

This handler has no parameters.

DisallowedMethodsHandler
Handler that blacklists certain HTTP methods.

Class Name: io.undertow.server.handlers.DisallowedMethodsHandler

Name: disallowed-methods

Table A.6. Parameters

Name Description

methods Methods to disallow, for example GET, POST, PUT,
and so on. This is the default parameter.

EncodingHandler
This handler serves as the basis for content encoding implementations. Encoding handlers are added as
delegates to this handler, with a specified server side priority.

The q value will be used to determine the correct handler. If a request comes in with no q value then the
server will pick the handler with the highest priority as the encoding to use.

If no handler matches then the identity encoding is assumed. If the identity encoding has been
specifically disallowed due to a q value of 0 then the handler will set the response code 406 (Not
Acceptable) and return.

Class Name: io.undertow.server.handlers.encoding.EncodingHandler

Name: compress

This handler has no parameters.

FileErrorPageHandler
Handler that serves up a file from disk to serve as an error page. This handler does not serve up any
response codes by default, you must configure the response codes it responds to.

Class Name: io.undertow.server.handlers.error.FileErrorPageHandler

Name: error-file

Table A.7. Parameters

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

352

Name Description

file Location of file to serve up as an error page.

response-codes List of response codes that result in a redirect to the
defined error page file.

HttpTraceHandler
A handler that handles HTTP trace requests.

Class Name: io.undertow.server.handlers.HttpTraceHandler

Name: trace

This handler has no parameters.

IPAddressAccessControlHandler
Handler that can accept or reject a request based on the IP address of the remote peer.

Class Name: io.undertow.server.handlers.IPAddressAccessControlHandler

Name: ip-access-control

Table A.8. Parameters

Name Description

acl String representing the access control list. This is the
default parameter.

failure-status Integer representing the status code to return on
rejected requests.

default-allow Boolean representing whether or not to allow by
default.

JDBCLogHandler
Class Name: io.undertow.server.handlers.JDBCLogHandler

Name: jdbc-access-log

Table A.9. Parameters

Name Description

format Specifies the JDBC Log pattern. Default value is
common. You may also use combined, which adds
the VirtualHost, request method, referrer, and user
agent information to the log message.

APPENDIX A. REFERENCE MATERIAL

353

datasource Name of the datasource to log. This parameter is
required and is the default parameter.

tableName Table name.

remoteHostField Remote Host address.

userField Username.

timestampField Timestamp.

virtualHostField VirtualHost.

methodField Method.

queryField Query.

statusField Status.

bytesField Bytes.

refererField Referrer.

userAgentField UserAgent.

Name Description

LearningPushHandler
Handler that builds up a cache of resources that a browser requests, and uses server push to push them
when supported.

Class Name: io.undertow.server.handlers.LearningPushHandler

Name: learning-push

Table A.10. Parameters

Name Description

max-age Integer representing the maximum time of a cache
entry.

max-entries Integer representing the maximum number of cache
entries

LocalNameResolvingHandler

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

354

A handler that performs DNS lookup to resolve a local address. Unresolved local address may be
created when a front end server has sent a X-forwarded-host header or AJP is in use.

Class Name: io.undertow.server.handlers.LocalNameResolvingHandler

Name: resolve-local-name

This handler has no parameters.

PathSeparatorHandler
A handler that translates non slash separator characters in the URL into a slash. In general this will
translate backslash into slash on Windows systems.

Class Name: io.undertow.server.handlers.PathSeparatorHandler

Name: path-separator

This handler has no parameters.

PeerNameResolvingHandler
A handler that performs reverse DNS lookup to resolve a peer address.

Class Name: io.undertow.server.handlers.PeerNameResolvingHandler

Name: resolve-peer-name

This handler has no parameters.

ProxyPeerAddressHandler
Handler that sets the peer address to the value of the X-Forwarded-For header. This should only be
used behind a proxy that always sets this header, otherwise it is possible for an attacker to forge their
peer address.

Class Name: io.undertow.server.handlers.ProxyPeerAddressHandler

Name: proxy-peer-address

This handler has no parameters.

RedirectHandler
A redirect handler that redirects to the specified location via a 302 redirect. The location is specified as
an exchange attribute string.

Class Name: io.undertow.server.handlers.RedirectHandler

Name: redirect

Table A.11. Parameters

Name Description

value Destination for the redirect. This is the default
parameter.

RequestBufferingHandler
Handler that will buffer all request data.

APPENDIX A. REFERENCE MATERIAL

355

Class Name: io.undertow.server.handlers.RequestBufferingHandler

Name: buffer-request

Table A.12. Parameters

Name Description

buffers Integer that defines the maximum number of buffers.
This is the default parameter.

RequestDumpingHandler
Handler that dumps an exchange to a log.

Class Name: io.undertow.server.handlers.RequestDumpingHandler

Name: dump-request

This handler has no parameters.

RequestLimitingHandler
A handler which limits the maximum number of concurrent requests. Requests beyond the limit will block
until the previous request is complete.

Class Name: io.undertow.server.handlers.RequestLimitingHandler

Name: request-limit

Table A.13. Parameters

Name Description

requests Integer that represents the maximum number of
concurrent requests. This is the default parameter
and is required.

ResourceHandler
A handler for serving resources.

Class Name: io.undertow.server.handlers.resource.ResourceHandler

Name: resource

Table A.14. Parameters

Name Description

location Location of resources. This is the default parameter
and is required.

allow-listing Boolean value to determine whether or not to allow
directory listings.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

356

ResponseRateLimitingHandler
Handler that limits the download rate to a set number of bytes/time.

Class Name: io.undertow.server.handlers.ResponseRateLimitingHandler

Name: response-rate-limit

Table A.15. Parameters

Name Description

bytes Number of bytes to limit the download rate. This
parameter is required.

time Time in seconds to limit the download rate. This
parameter is required.

SetHeaderHandler
A handler that sets a fixed response header.

Class Name: io.undertow.server.handlers.SetHeaderHandler

Name: header

Table A.16. Parameters

Name Description

header Name of header attribute. This parameter is required.

value Value of header attribute. This parameter is required.

SSLHeaderHandler
Handler that sets SSL information on the connection based on the following headers:

SSL_CLIENT_CERT

SSL_CIPHER

SSL_SESSION_ID

If this handler is present in the chain it will always override the SSL session information, even if these
headers are not present.

This handler MUST only be used on servers that are behind a reverse proxy, where the reverse proxy
has been configured to always set these headers for EVERY request (or strip existing headers with
these names if no SSL information is present). Otherwise it may be possible for a malicious client to
spoof an SSL connection.

Class Name: io.undertow.server.handlers.SSLHeaderHandler

Name: ssl-headers

APPENDIX A. REFERENCE MATERIAL

357

This handler has no parameters.

StuckThreadDetectionHandler
This handler detects requests that take a long time to process, which might indicate that the thread that
is processing it is stuck.

Class Name: io.undertow.server.handlers.StuckThreadDetectionHandler

Name: stuck-thread-detector

Table A.17. Parameters

Name Description

threshhold Integer value in seconds that determines the
threshold for how long a request should take to
process. Default value is 600 (10 minutes). This is
the default parameter.

URLDecodingHandler
A handler that will decode the URL and query parameters to the specified charset. If you are using this
handler you must set the UndertowOptions.DECODE_URL parameter to false.

This is not as efficient as using the parser’s built in UTF-8 decoder. Unless you need to decode to
something other than UTF-8 you should rely on the parsers decoding instead.

Class Name: io.undertow.server.handlers.URLDecodingHandler

Name: url-decoding

Table A.18. Parameters

Name Description

charset Charset to decode. This is the default parameter and
it is required.

A.2. HIBERNATE PROPERTIES

Table A.19. Connection Properties Configurable in the persistence.xml File

Property Name Value Description

javax.persistence.jd
bc.driver

org.hsqldb.jdbcDrive
r

The class name of the JDBC driver to be
used.

javax.persistence.jd
bc.user

sa The username

javax.persistence.jd
bc.password

 The password

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

358

https://access.redhat.com/webassets/avalon/d/red-hat-jboss-enterprise-application-platform/7.0.0/javadocs/io/undertow/UndertowOptions.html#DECODE_URL

javax.persistence.jd
bc.url

jdbc:hsqldb:. The JDBC connection url

Property Name Value Description

Table A.20. Hibernate Configuration Properties

Property Name Description

hibernate.dialect The classname of a Hibernate
org.hibernate.dialect.Dialect. Allows Hibernate to
generate SQL optimized for a particular relational database.

In most cases Hibernate will be able to choose the correct
org.hibernate.dialect.Dialect implementation,
based on the JDBC metadata returned by the JDBC driver.

hibernate.show_sql Boolean. Writes all SQL statements to console. This is an
alternative to setting the log category org.hibernate.SQL
to debug.

hibernate.format_sql Boolean. Pretty print the SQL in the log and console.

hibernate.default_schema Qualify unqualified table names with the given
schema/tablespace in generated SQL.

hibernate.default_catalog Qualifies unqualified table names with the given catalog in
generated SQL.

hibernate.session_factory_name The org.hibernate.SessionFactory will be automatically bound to
this name in JNDI after it has been created. For example,
jndi/composite/name.

hibernate.max_fetch_depth Sets a maximum depth for the outer join fetch tree for single-
ended associations (one-to-one, many-to-one). A 0 disables
default outer join fetching. The recommended value is between
0 and 3.

hibernate.default_batch_fetch_size Sets a default size for Hibernate batch fetching of associations.
The recommended values are 4, 8, and 16.

hibernate.default_entity_mode Sets a default mode for entity representation for all sessions
opened from this SessionFactory. Values include:
dynamic-map, dom4j, pojo.

hibernate.order_updates Boolean. Forces Hibernate to order SQL updates by the primary
key value of the items being updated. This will result in fewer
transaction deadlocks in highly concurrent systems.

APPENDIX A. REFERENCE MATERIAL

359

hibernate.generate_statistics Boolean. If enabled, Hibernate will collect statistics useful for
performance tuning.

hibernate.use_identifier_rollback Boolean. If enabled, generated identifier properties will be reset
to default values when objects are deleted.

hibernate.use_sql_comments Boolean. If turned on, Hibernate will generate comments inside
the SQL, for easier debugging. Default value is false.

hibernate.id.new_generator_mappings Boolean. This property is relevant when using
@GeneratedValue. It indicates whether or not the new
IdentifierGenerator implementations are used for
javax.persistence.GenerationType.AUTO,
javax.persistence.GenerationType.TABLE and
javax.persistence.GenerationType.SEQUENCE. Default value is
true.

hibernate.ejb.naming_strategy Chooses the org.hibernate.cfg.NamingStrategy implementation
when using Hibernate EntityManager.
hibernate.ejb.naming_strategy is no longer
supported in Hibernate 5.0. If used, a deprecation message will
be logged indicating that it is no longer supported and has been
removed in favor of the split ImplicitNamingStrategy and
PhysicalNamingStrategy.

If the application does not use EntityManager, follow the
instructions here to configure the NamingStrategy: Hibernate
Reference Documentation - Naming Strategies.

For an example on native bootstrapping using MetadataBuilder
and applying the implicit naming strategy, see
http://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/Hi
bernate_User_Guide.html#bootstrap-native-metadata in the
Hibernate 5.0 documentation. The physical naming strategy can
be applied by using
MetadataBuilder.applyPhysicalNamingStrategy
(). For further details on
org.hibernate.boot.MetadataBuilder, see
https://docs.jboss.org/hibernate/orm/5.0/javadocs/.

Property Name Description

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

360

http://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/Hibernate_User_Guide.html#naming
http://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/Hibernate_User_Guide.html#bootstrap-native-metadata
https://docs.jboss.org/hibernate/orm/5.0/javadocs/

hibernate.implicit_naming_strategy Specifies the
org.hibernate.boot.model.naming.ImplicitNam
ingStrategy class to be used.
hibernate.implicit_naming_strategy can also be
used to configure a custom class that implements
ImplicitNamingStrategy. Following short names are defined for
this setting:

default -
ImplicitNamingStrategyJpaCompliantImp
l

jpa -
ImplicitNamingStrategyJpaCompliantImp
l

legacy-jpa -
ImplicitNamingStrategyLegacyJpaImpl

legacy-hbm -
ImplicitNamingStrategyLegacyHbmImpl

component-path -
ImplicitNamingStrategyComponentPathIm
pl

The default setting is defined by the
ImplicitNamingStrategy in the default short name. If
the default setting is empty, the fallback is to use
ImplicitNamingStrategyJpaCompliantImpl.

hibernate.physical_naming_strategy Pluggable strategy contract for applying physical naming rules for
database object names. Specifies the PhysicalNamingStrategy
class to be used.
PhysicalNamingStrategyStandardImpl is used by
default. hibernate.physical_naming_strategy can
also be used to configure a custom class that implements
PhysicalNamingStrategy.

Property Name Description

IMPORTANT

For hibernate.id.new_generator_mappings, new applications should keep the
default value of true. Existing applications that used Hibernate 3.3.x may need to change
it to false to continue using a sequence object or table based generator, and maintain
backward compatibility.

Table A.21. Hibernate JDBC and Connection Properties

APPENDIX A. REFERENCE MATERIAL

361

Property Name Description

hibernate.jdbc.fetch_size A non-zero value that determines the JDBC fetch
size (calls Statement.setFetchSize()).

hibernate.jdbc.batch_size A non-zero value enables use of JDBC2 batch
updates by Hibernate. The recommended values are
between 5 and 30.

hibernate.jdbc.batch_versioned_data Boolean. Set this property to true if the JDBC driver
returns correct row counts from executeBatch().
Hibernate will then use batched DML for
automatically versioned data. Default value is to
false.

hibernate.jdbc.factory_class Select a custom org.hibernate.jdbc.Batcher. Most
applications will not need this configuration property.

hibernate.jdbc.use_scrollable_resultset Boolean. Enables use of JDBC2 scrollable resultsets
by Hibernate. This property is only necessary when
using user-supplied JDBC connections. Hibernate
uses connection metadata otherwise.

hibernate.jdbc.use_streams_for_binary Boolean. This is a system-level property. Use
streams when writing/reading binary or
serializable types to/from JDBC.

hibernate.jdbc.use_get_generated_keys Boolean. Enables use of JDBC3
PreparedStatement.getGeneratedKeys()
to retrieve natively generated keys after insert.
Requires JDBC3+ driver and JRE1.4+. Set to false if
JDBC driver has problems with the Hibernate
identifier generators. By default, it tries to determine
the driver capabilities using connection metadata.

hibernate.connection.provider_class The classname of a custom
org.hibernate.connection.ConnectionProvider which
provides JDBC connections to Hibernate.

hibernate.connection.isolation Sets the JDBC transaction isolation level. Check
java.sql.Connection for meaningful values, but note
that most databases do not support all isolation levels
and some define additional, non-standard isolations.
Standard values are 1, 2, 4, 8.

hibernate.connection.autocommit Boolean. This property is not recommended for use.
Enables autocommit for JDBC pooled connections.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

362

hibernate.connection.release_mode Specifies when Hibernate should release JDBC
connections. By default, a JDBC connection is held
until the session is explicitly closed or disconnected.
The default value auto will choose
after_statement for the JTA and CMT
transaction strategies, and after_transaction
for the JDBC transaction strategy.

Available values are auto (default), on_close,
after_transaction, after_statement.

This setting only affects Session returned from
SessionFactory.openSession. For Session
obtained through
SessionFactory.getCurrentSession, the
CurrentSessionContext implementation
configured for use controls the connection release
mode for that Session.

hibernate.connection.<propertyName> Pass the JDBC property <propertyName> to
DriverManager.getConnection().

hibernate.jndi.<propertyName> Pass the property <propertyName> to the JNDI
InitialContextFactory.

Property Name Description

Table A.22. Hibernate Cache Properties

Property Name Description

hibernate.cache.region.factory_class The classname of a custom CacheProvider.

hibernate.cache.use_minimal_puts Boolean. Optimizes second-level cache operation to
minimize writes, at the cost of more frequent reads.
This setting is most useful for clustered caches and,
in Hibernate3, is enabled by default for clustered
cache implementations.

hibernate.cache.use_query_cache Boolean. Enables the query cache. Individual queries
still have to be set cacheable.

hibernate.cache.use_second_level_cac
he

Boolean. Used to completely disable the second level
cache, which is enabled by default for classes that
specify a <cache> mapping.

hibernate.cache.query_cache_factory The classname of a custom QueryCache interface.
The default value is the built-in
StandardQueryCache.

APPENDIX A. REFERENCE MATERIAL

363

hibernate.cache.region_prefix A prefix to use for second-level cache region names.

hibernate.cache.use_structured_entri
es

Boolean. Forces Hibernate to store data in the
second-level cache in a more human-friendly format.

hibernate.cache.default_cache_concur
rency_strategy

Setting used to give the name of the default
org.hibernate.annotations.CacheConcurrencyStrateg
y to use when either @Cacheable or @Cache is
used. @Cache(strategy="..") is used to
override this default.

Property Name Description

Table A.23. Hibernate Transaction Properties

Property Name Description

hibernate.transaction.factory_class The classname of a TransactionFactory to
use with Hibernate Transaction API. Defaults to
JDBCTransactionFactory).

jta.UserTransaction A JNDI name used by
JTATransactionFactory to obtain the JTA
UserTransaction from the application server.

hibernate.transaction.manager_lookup
_class

The classname of a
TransactionManagerLookup. It is required
when JVM-level caching is enabled or when using
hilo generator in a JTA environment.

hibernate.transaction.flush_before_c
ompletion

Boolean. If enabled, the session will be automatically
flushed during the before completion phase of the
transaction. Built-in and automatic session context
management is preferred.

hibernate.transaction.auto_close_ses
sion

Boolean. If enabled, the session will be automatically
closed during the after completion phase of the
transaction. Built-in and automatic session context
management is preferred.

Table A.24. Miscellaneous Hibernate Properties

Property Name Description

hibernate.current_session_context_cl
ass

Supply a custom strategy for the scoping of the
"current" Session. Values include jta, thread,
managed, custom.Class.

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

364

hibernate.query.factory_class Chooses the HQL parser implementation:
org.hibernate.hql.internal.ast.ASTQu
eryTranslatorFactory or
org.hibernate.hql.internal.classic.C
lassicQueryTranslatorFactory.

hibernate.query.substitutions Used to map from tokens in Hibernate queries to
SQL tokens (tokens might be function or literal
names). For example,
hqlLiteral=SQL_LITERAL,
hqlFunction=SQLFUNC.

hibernate.hbm2ddl.auto Automatically validates or exports schema DDL to
the database when the SessionFactory is
created. With create-drop, the database schema
will be dropped when the SessionFactory is
closed explicitly. Property value options are
validate, update, create, create-drop

hibernate.hbm2ddl.import_files Comma-separated names of the optional files
containing SQL DML statements executed during the
SessionFactory creation. This is useful for testing or
demonstrating. For example, by adding INSERT
statements, the database can be populated with a
minimal set of data when it is deployed. An example
value is /humans.sql,/dogs.sql.

File order matters, as the statements of a given file
are executed before the statements of the following
files. These statements are only executed if the
schema is created (i.e. if
hibernate.hbm2ddl.auto is set to create or
create-drop).

hibernate.hbm2ddl.import_files_sql_e
xtractor

The classname of a custom
ImportSqlCommandExtractor. Defaults to the built-in
SingleLineSqlCommandExtractor. This is useful for
implementing a dedicated parser that extracts a
single SQL statement from each import file.
Hibernate also provides
MultipleLinesSqlCommandExtractor, which supports
instructions/comments and quoted strings spread
over multiple lines (mandatory semicolon at the end
of each statement).

Property Name Description

APPENDIX A. REFERENCE MATERIAL

365

hibernate.bytecode.use_reflection_op
timizer

Boolean. This is a system-level property, which
cannot be set in the hibernate.cfg.xml file.
Enables the use of bytecode manipulation instead of
runtime reflection. Reflection can sometimes be
useful when troubleshooting. Hibernate always
requires either cglib or javassist even if the optimizer
is turned off.

hibernate.bytecode.provider Both javassist or cglib can be used as byte
manipulation engines. The default is javassist.
Property value is either javassist or cglib

Property Name Description

Table A.25. Hibernate SQL Dialects (hibernate.dialect)

RDBMS Dialect

DB2 org.hibernate.dialect.DB2Dialect

DB2 AS/400 org.hibernate.dialect.DB2400Dialect

DB2 OS390 org.hibernate.dialect.DB2390Dialect

Firebird org.hibernate.dialect.FirebirdDialect

FrontBase org.hibernate.dialect.FrontbaseDialect

H2 Database org.hibernate.dialect.H2Dialect

HypersonicSQL org.hibernate.dialect.HSQLDialect

Informix org.hibernate.dialect.InformixDialect

Ingres org.hibernate.dialect.IngresDialect

Interbase org.hibernate.dialect.InterbaseDialect

MariaDB 10 org.hibernate.dialect.MySQL57InnoDBDialect

Mckoi SQL org.hibernate.dialect.MckoiDialect

Microsoft SQL Server 2000 org.hibernate.dialect.SQLServerDialect

Microsoft SQL Server 2005 org.hibernate.dialect.SQLServer2005Dialect

Microsoft SQL Server 2008 org.hibernate.dialect.SQLServer2008Dialect

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

366

Microsoft SQL Server 2012 org.hibernate.dialect.SQLServer2012Dialect

Microsoft SQL Server 2014 org.hibernate.dialect.SQLServer2012Dialect

MySQL5 org.hibernate.dialect.MySQL5Dialect

MySQL5.7 org.hibernate.dialect.MySQL57InnoDBDialect

MySQL5 with InnoDB org.hibernate.dialect.MySQL5InnoDBDialect

MySQL with MyISAM org.hibernate.dialect.MySQLMyISAMDialect

Oracle (any version) org.hibernate.dialect.OracleDialect

Oracle 9i org.hibernate.dialect.Oracle9iDialect

Oracle 10g org.hibernate.dialect.Oracle10gDialect

Oracle 11g org.hibernate.dialect.Oracle10gDialect

Oracle 12c org.hibernate.dialect.Oracle12cDialect

Pointbase org.hibernate.dialect.PointbaseDialect

PostgreSQL org.hibernate.dialect.PostgreSQLDialect

PostgreSQL 9.2 org.hibernate.dialect.PostgreSQL9Dialect

PostgreSQL 9.3 org.hibernate.dialect.PostgreSQL9Dialect

PostgreSQL 9.4 org.hibernate.dialect.PostgreSQL94Dialect

Postgres Plus Advanced Server org.hibernate.dialect.PostgresPlusDialect

Progress org.hibernate.dialect.ProgressDialect

SAP DB org.hibernate.dialect.SAPDBDialect

Sybase org.hibernate.dialect.SybaseASE15Dialect

Sybase 15.7 org.hibernate.dialect.SybaseASE157Dialect

Sybase Anywhere org.hibernate.dialect.SybaseAnywhereDialect

RDBMS Dialect

APPENDIX A. REFERENCE MATERIAL

367

IMPORTANT

The hibernate.dialect property should be set to the correct
org.hibernate.dialect.Dialect subclass for the application database. If a dialect
is specified, Hibernate will use sensible defaults for some of the other properties. This
means that they do not have to be specified manually.

Revised on 2018-02-08 10:17:22 EST

Red Hat JBoss Enterprise Application Platform 7.0 Development Guide

368

	Table of Contents
	CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS
	1.1. INTRODUCTION
	1.1.1. About Red Hat JBoss Enterprise Application Platform 7

	1.2. BECOME FAMILIAR WITH JAVA ENTERPRISE EDITION 7
	1.2.1. Overview of EE 7 Profiles
	Java Enterprise Edition 7 Web Profile
	Java Enterprise Edition 7 Full Profile

	1.3. SETTING UP THE DEVELOPMENT ENVIRONMENT
	1.3.1. Download JBoss Developer Studio
	1.3.2. Install JBoss Developer Studio
	1.3.3. Start JBoss Developer Studio
	1.3.4. Add the JBoss EAP Server to JBoss Developer Studio

	1.4. USING THE QUICKSTART EXAMPLES
	1.4.1. About Maven
	1.4.1.1. Using Maven with the Quickstarts

	1.4.2. Download and Run the Quickstart Code Examples
	1.4.2.1. Download the Quickstarts
	1.4.2.2. Run the Quickstarts in JBoss Developer Studio
	1.4.2.3. Run the Quickstarts from the Command Line

	1.4.3. Review the Quickstart Tutorials
	1.4.3.1. Explore the helloworld Quickstart
	1.4.3.2. Explore the numberguess Quickstart

	1.5. CONFIGURE THE DEFAULT WELCOME WEB APPLICATION
	Changing the welcome-content File Handler
	Changing the default-web-module
	Disabling the Default Welcome Web Application

	CHAPTER 2. USING MAVEN WITH JBOSS EAP
	2.1. LEARN ABOUT MAVEN
	2.1.1. About the Maven Repository
	2.1.2. About the Maven POM File
	Minimum Requirements of a Maven POM File

	2.1.3. About the Maven Settings File
	2.1.4. About Maven Repository Managers
	Commonly used Maven repository managers

	2.2. INSTALL MAVEN AND THE JBOSS EAP MAVEN REPOSITORY
	2.2.1. Download and Install Maven
	2.2.2. Install the JBoss EAP Maven Repository
	2.2.3. Install the JBoss EAP Maven Repository Locally
	2.2.4. Install the JBoss EAP Maven Repository for Use with Apache httpd

	2.3. USE THE MAVEN REPOSITORY
	2.3.1. Configure the JBoss EAP Maven Repository
	Configure the JBoss EAP Maven Repository Using the Maven Settings
	Configure the JBoss EAP Maven Repository Using the Project POM
	Determine the URL of the JBoss EAP Repository

	2.3.2. Configure Maven for Use with Red Hat JBoss Developer Studio
	2.3.3. Manage Project Dependencies
	Supported Maven Artifacts
	Dependency Management
	JBoss EAP Java EE Specs BOM
	JBoss EAP BOMs and Quickstarts
	JBoss EAP Client BOMs

	CHAPTER 3. CLASS LOADING AND MODULES
	3.1. INTRODUCTION
	3.1.1. Overview of Class Loading and Modules
	3.1.2. Modules
	Static Modules
	Dynamic Modules

	3.1.3. Module Dependencies
	Optional Dependencies
	Export a Dependency
	Global Modules
	3.1.3.1. Display Module Dependencies Using the Management CLI

	3.1.4. Class Loading in Deployments
	3.1.5. Class Loading Precedence
	3.1.6. Dynamic Module Naming Conventions
	3.1.7. jboss-deployment-structure.xml

	3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT
	Prerequisites
	Add a Dependency Configuration to MANIFEST.MF
	Add a Dependency Configuration to the jboss-deployment-structure.xml
	Creating a Jandex Index

	3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN
	Generate a MANIFEST.MF File Containing Module Dependencies

	3.4. PREVENT A MODULE BEING IMPLICITLY LOADED
	3.5. EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT
	3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A DEPLOYMENT
	3.6.1. Programmatically Load Classes and Resources in a Deployment
	3.6.2. Programmatically Iterate Resources in a Deployment

	3.7. CLASS LOADING AND SUBDEPLOYMENTS
	3.7.1. Modules and Class Loading in Enterprise Archives
	3.7.2. Subdeployment Class Loader Isolation
	3.7.3. Enable Subdeployment Class Loader Isolation Within a EAR
	3.7.4. Configuring Session Sharing between Subdeployments in Enterprise Archives
	3.7.4.1. Reference of Shared Session Configuration Options

	3.8. DEPLOY TAG LIBRARY DESCRIPTORS (TLDS) IN A CUSTOM MODULE
	Deploy TLDs in a Custom Module

	3.9. REFERENCE
	3.9.1. Implicit Module Dependencies
	3.9.2. Included Modules
	3.9.3. JBoss Deployment Structure Deployment Descriptor Reference

	CHAPTER 4. LOGGING
	4.1. ABOUT LOGGING
	4.1.1. Supported Application Logging Frameworks

	4.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK
	4.2.1. About JBoss Logging
	4.2.2. Add Logging to an Application with JBoss Logging

	4.3. PER-DEPLOYMENT LOGGING
	4.3.1. Add Per-deployment Logging to an Application
	Configuring logging.properties

	4.4. LOGGING PROFILES
	4.4.1. Specify a Logging Profile in an Application

	4.5. INTERNATIONALIZATION AND LOCALIZATION
	4.5.1. Introduction
	4.5.1.1. About Internationalization
	4.5.1.2. About Localization

	4.5.2. JBoss Logging Tools Internationalization and Localization
	4.5.3. Creating Internationalized Loggers, Messages and Exceptions
	4.5.3.1. Create Internationalized Log Messages
	4.5.3.2. Create and Use Internationalized Messages
	4.5.3.3. Create Internationalized Exceptions

	4.5.4. Localizing Internationalized Loggers, Messages and Exceptions
	4.5.4.1. Generate New Translation Properties Files with Maven
	4.5.4.2. Translate an Internationalized Logger, Exception, or Message

	4.5.5. Customizing Internationalized Log Messages
	4.5.5.1. Add Message IDs and Project Codes to Log Messages
	4.5.5.2. Specify the Log Level for a Message
	4.5.5.3. Customize Log Messages with Parameters
	4.5.5.4. Specify an Exception as the Cause of a Log Message

	4.5.6. Customizing Internationalized Exceptions
	4.5.6.1. Add Message IDs and Project Codes to Exception Messages
	4.5.6.2. Customize Exception Messages with Parameters
	4.5.6.3. Specify One Exception as the Cause of Another Exception

	4.5.7. References
	4.5.7.1. JBoss Logging Tools Maven Configuration
	4.5.7.2. Translation Property File Format
	4.5.7.3. JBoss Logging Tools Annotations Reference
	4.5.7.4. Project Codes Used in JBoss EAP

	CHAPTER 5. REMOTE JNDI LOOKUP
	5.1. REGISTERING OBJECTS TO JNDI
	5.2. CONFIGURING REMOTE JNDI

	CHAPTER 6. CLUSTERING IN WEB APPLICATIONS
	6.1. SESSION REPLICATION
	6.1.1. About HTTP Session Replication
	6.1.2. Enable Session Replication in Your Application
	Make your Application Distributable
	Immutable Session Attributes

	6.2. HTTP SESSION PASSIVATION AND ACTIVATION
	6.2.1. About HTTP Session Passivation and Activation
	6.2.2. Configure HTTP Session Passivation in Your Application

	6.3. PUBLIC API FOR CLUSTERING SERVICES
	6.4. HA SINGLETON SERVICE
	HA Singleton ServiceBuilder API
	HA Singleton Service Election Policies
	Create an HA Singleton Service Application

	6.5. HA SINGLETON DEPLOYMENTS
	Defining or Choosing a Singleton Deployment
	Creating a Singleton Deployment
	Preferences
	Quorum

	6.6. APACHE MOD_CLUSTER-MANAGER APPLICATION
	6.6.1. About mod_cluster-manager Application
	Exploring mod_cluster-manager Application

	CHAPTER 7. CONTEXTS AND DEPENDENCY INJECTION (CDI)
	7.1. INTRODUCTION TO CDI
	7.1.1. About Contexts and Dependency Injection (CDI)
	Benefits of CDI

	7.1.2. Relationship Between Weld, Seam 2, and JavaServer Faces

	7.2. USE CDI TO DEVELOP AN APPLICATION
	7.2.1. Default Bean Discovery Mode
	Bean Defining Annotations

	7.2.2. Exclude Beans From the Scanning Process
	7.2.3. Use an Injection to Extend an Implementation

	7.3. AMBIGUOUS OR UNSATISFIED DEPENDENCIES
	7.3.1. Qualifiers
	'@Any'

	7.3.2. Use a Qualifier to Resolve an Ambiguous Injection
	Resolve an Ambiguous Injection with a Qualifier

	7.4. MANAGED BEANS
	7.4.1. Types of Classes That are Beans
	@Vetoed

	7.4.2. Use CDI to Inject an Object Into a Bean
	Inject Objects into Other Objects

	7.5. CONTEXTS AND SCOPES
	7.6. NAMED BEANS
	7.6.1. Use Named Beans
	Configure Bean Names Using the @Named Annotation

	7.7. BEAN LIFECYCLE
	Manage Bean Lifecycles
	7.7.1. Use a Producer Method

	7.8. ALTERNATIVE BEANS
	Declaring Selected Alternatives
	7.8.1. Override an Injection with an Alternative
	Override an Injection

	7.9. STEREOTYPES
	7.9.1. Use Stereotypes
	Define and Use Stereotypes

	7.10. OBSERVER METHODS
	7.10.1. Fire and Observe Events
	7.10.2. Transactional Observers

	7.11. INTERCEPTORS
	Enabling Interceptors
	7.11.1. Use Interceptors with CDI
	Use Interceptors with CDI

	7.12. DECORATORS
	7.13. PORTABLE EXTENSIONS
	7.14. BEAN PROXIES
	7.15. USE A PROXY IN AN INJECTION

	CHAPTER 8. JBOSS EAP MBEAN SERVICES
	8.1. WRITING JBOSS MBEAN SERVICES
	8.1.1. A Standard MBean Example

	8.2. DEPLOYING JBOSS MBEAN SERVICES

	CHAPTER 9. CONCURRENCY UTILITIES
	9.1. CONTEXT SERVICE
	9.2. MANAGED THREAD FACTORY
	9.3. MANAGED EXECUTOR SERVICE
	9.4. MANAGED SCHEDULED EXECUTOR SERVICE

	CHAPTER 10. UNDERTOW
	10.1. INTRODUCTION TO UNDERTOW HANDLER
	Request Lifecycle
	Ending the Exchange

	10.2. USING EXISTING UNDERTOW HANDLERS WITH A DEPLOYMENT
	10.3. CREATING CUSTOM HANDLERS

	CHAPTER 11. JAVA TRANSACTION API (JTA)
	11.1. OVERVIEW
	11.1.1. Overview of Java Transactions API (JTA)

	11.2. TRANSACTION CONCEPTS
	11.2.1. About Transactions
	11.2.2. About ACID Properties for Transactions
	11.2.3. About the Transaction Coordinator or Transaction Manager
	11.2.4. About Transaction Participants
	11.2.5. About Java Transactions API (JTA)
	11.2.6. About Java Transaction Service (JTS)
	11.2.7. About XML Transaction Service
	11.2.7.1. Overview of Protocols Used by XTS
	11.2.7.2. Web Services-Atomic Transaction Process
	11.2.7.3. Web Services-Business Activity Process
	11.2.7.4. Transaction Bridging Overview

	11.2.8. About XA Resources and XA Transactions
	11.2.9. About XA Recovery
	11.2.10. Limitations of the XA Recovery Process
	11.2.11. About the 2-Phase Commit Protocol
	Phase 1: Prepare
	Phase 2: Commit

	11.2.12. About Transaction Timeouts
	11.2.13. About Distributed Transactions
	11.2.14. About the ORB Portability API

	11.3. TRANSACTION OPTIMIZATIONS
	11.3.1. Overview of Transaction Optimizations
	11.3.2. About the LRCO Optimization for Single-phase Commit (1PC)
	Single-phase Commit (1PC)
	Last Resource Commit Optimization (LRCO)
	11.3.2.1. Commit Markable Resource

	11.3.3. About the Presumed-Abort Optimization
	11.3.4. About the Read-Only Optimization

	11.4. TRANSACTION OUTCOMES
	11.4.1. About Transaction Outcomes
	11.4.2. About Transaction Commit
	11.4.3. About Transaction Roll-Back
	11.4.4. About Heuristic Outcomes
	Heuristic rollback
	Heuristic commit
	Heuristic mixed
	Heuristic hazard

	11.4.5. JBoss Transactions Errors and Exceptions

	11.5. OVERVIEW OF THE TRANSACTION LIFECYCLE
	11.5.1. Transaction Lifecycle

	11.6. TRANSACTION SUBSYSTEM CONFIGURATION
	11.7. TRANSACTIONS USAGE IN PRACTICE
	11.7.1. Transactions Usage Overview
	11.7.2. Control Transactions
	11.7.3. Begin a Transaction
	11.7.4. Nested Transactions
	11.7.5. Commit a Transaction
	11.7.6. Roll Back a Transaction
	11.7.7. Handle a Heuristic Outcome in a Transaction
	11.7.8. JTA Transaction Error Handling
	11.7.8.1. Handle Transaction Errors

	11.8. TRANSACTION REFERENCES
	11.8.1. JTA Transaction Example
	11.8.2. Transaction API Documentation

	CHAPTER 12. JAVA PERSISTENCE API (JPA)
	12.1. ABOUT JAVA PERSISTENCE API (JPA)
	12.2. ABOUT HIBERNATE CORE
	12.3. HIBERNATE ENTITYMANAGER
	12.4. CREATE A SIMPLE JPA APPLICATION
	12.5. HIBERNATE CONFIGURATION
	12.6. SECOND-LEVEL CACHES
	12.6.1. About Second-Level Caches
	12.6.2. Configure a Second-level Cache for Hibernate
	Configuring a Second-level Cache for Hibernate Using JPA Applications
	Configuring a Second-level Cache for Hibernate Using Hibernate Native Applications

	12.7. HIBERNATE ANNOTATIONS
	12.8. HIBERNATE QUERY LANGUAGE
	12.8.1. About Hibernate Query Language
	Introduction to JPQL
	Introduction to HQL

	12.8.2. About HQL Statements
	12.8.3. About the INSERT Statement
	12.8.4. About the FROM Clause
	12.8.5. About the WITH Clause
	12.8.6. About HQL Ordering
	12.8.7. About Bulk Update, Insert and Delete
	12.8.8. About Collection Member References
	12.8.9. About Qualified Path Expressions
	12.8.10. About Scalar Functions
	12.8.11. About HQL Standardized Functions
	12.8.12. About the Concatenation Operation
	12.8.13. About Dynamic Instantiation
	12.8.14. About HQL Predicates
	HQL Predicates

	12.8.15. About Relational Comparisons

	12.9. HIBERNATE SERVICES
	12.9.1. About Hibernate Services
	12.9.2. About Service Contracts
	12.9.3. Types of Service Dependencies
	12.9.4. The Service Registry
	12.9.4.1. About the ServiceRegistry

	12.9.5. Custom Services
	12.9.5.1. About Custom Services

	12.9.6. The Boot-Strap Registry
	12.9.6.1. About the Boot-strap Registry
	12.9.6.2. BootstrapRegistry Services

	12.9.7. SessionFactory Registry
	12.9.7.1. SessionFactory Services

	12.9.8. Integrators
	12.9.8.1. Integrator use-cases

	12.10. ENVERS
	12.10.1. About Hibernate Envers
	12.10.2. About Auditing Persistent Classes
	12.10.3. Auditing Strategies
	12.10.3.1. About Auditing Strategies
	12.10.3.2. Set the Auditing Strategy

	12.10.4. Adding Auditing Support to a JPA Entity
	12.10.5. Configuration
	12.10.5.1. Configure Envers Parameters
	12.10.5.2. Enable or Disable Auditing at Runtime
	12.10.5.3. Configure Conditional Auditing
	12.10.5.4. Envers Configuration Properties

	12.10.6. Retrieve Auditing Information through Queries

	12.11. PERFORMANCE TUNING
	12.11.1. Alternative Batch Loading Algorithms
	12.11.2. Second Level Caching of Object References for Non-mutable Data

	CHAPTER 13. HIBERNATE SEARCH
	13.1. GETTING STARTED WITH HIBERNATE SEARCH
	13.1.1. About Hibernate Search
	13.1.2. Overview
	13.1.3. About the Directory Provider
	13.1.4. About the Worker
	13.1.5. Back End Setup and Operations
	13.1.5.1. Back End
	13.1.5.2. Lucene
	13.1.5.3. JMS

	13.1.6. Reader Strategies
	13.1.6.1. The Shared Strategy
	13.1.6.2. The Not-shared Strategy
	13.1.6.3. Custom Reader Strategies

	13.2. CONFIGURATION
	13.2.1. Minimum Configuration
	13.2.2. Configuring the IndexManager
	13.2.2.1. Directory-based
	13.2.2.2. Near Real Time
	13.2.2.3. Custom

	13.2.3. DirectoryProvider Configuration
	Directory Providers and their Properties

	13.2.4. Worker Configuration
	13.2.4.1. JMS Master/Slave Back End
	13.2.4.2. Slave Nodes
	13.2.4.3. Master Node

	13.2.5. Tuning Lucene Indexing
	13.2.5.1. Tuning Lucene Indexing Performance
	13.2.5.2. The Lucene IndexWriter
	13.2.5.3. Performance Option Configuration
	13.2.5.4. Tuning the Indexing Speed
	13.2.5.5. Control Segment Size

	13.2.6. LockFactory Configuration
	13.2.7. Index Format Compatibility

	13.3. HIBERNATE SEARCH FOR YOUR APPLICATION
	13.3.1. First Steps with Hibernate Search
	13.3.2. Enable Hibernate Search using Maven
	13.3.3. Add Annotations
	13.3.4. Indexing
	13.3.5. Searching
	13.3.6. Analyzer

	13.4. MAPPING ENTITIES TO THE INDEX STRUCTURE
	13.4.1. Mapping an Entity
	13.4.1.1. Basic Mapping
	13.4.1.2. @Indexed
	13.4.1.3. @Field
	13.4.1.4. @NumericField
	13.4.1.5. @Id
	13.4.1.6. Mapping Properties Multiple Times
	13.4.1.7. Embedded and Associated Objects
	13.4.1.8. Limiting Object Embedding to Specific Paths

	13.4.2. Boosting
	13.4.2.1. Static Index Time Boosting
	13.4.2.2. Dynamic Index Time Boosting

	13.4.3. Analysis
	13.4.3.1. Default Analyzer and Analyzer by Class
	13.4.3.2. Named Analyzers
	13.4.3.3. Available Analyzers
	13.4.3.4. Dynamic Analyzer Selection
	13.4.3.5. Retrieving an Analyzer

	13.4.4. Bridges
	13.4.4.1. Built-in Bridges
	13.4.4.2. Custom Bridges

	13.5. QUERYING
	13.5.1. Building Queries
	13.5.1.1. Building a Lucene Query Using the Lucene API
	13.5.1.2. Building a Lucene Query
	13.5.1.3. Keyword Queries
	13.5.1.4. Fuzzy Queries
	13.5.1.5. Wildcard Queries
	13.5.1.6. Phrase Queries
	13.5.1.7. Range Queries
	13.5.1.8. Combining Queries
	13.5.1.9. Query Options
	13.5.1.10. Build a Hibernate Search Query

	13.5.2. Retrieving the Results
	13.5.2.1. Performance Considerations
	13.5.2.2. Result Size
	13.5.2.3. ResultTransformer
	13.5.2.4. Understanding Results
	13.5.2.5. Filters
	13.5.2.6. Using Filters in a Sharded Environment

	13.5.3. Faceting
	13.5.3.1. Creating a Faceting Request
	13.5.3.2. Applying a Faceting Request
	13.5.3.3. Restricting Query Results

	13.5.4. Optimizing the Query Process
	13.5.4.1. Caching Index Values: FieldCache

	13.6. MANUAL INDEX CHANGES
	13.6.1. Adding Instances to the Index
	13.6.2. Deleting Instances from the Index
	13.6.3. Rebuilding the Index
	13.6.3.1. Using flushToIndexes()
	13.6.3.2. Using a MassIndexer

	13.7. INDEX OPTIMIZATION
	13.7.1. Automatic Optimization
	13.7.2. Manual Optimization
	13.7.3. Adjusting Optimization

	13.8. ADVANCED FEATURES
	13.8.1. Accessing the SearchFactory
	13.8.2. Using an IndexReader
	13.8.3. Accessing a Lucene Directory
	13.8.4. Sharding Indexes
	13.8.5. Customizing Lucene’s Scoring Formula
	13.8.6. Exception Handling Configuration
	13.8.7. Disable Hibernate Search

	13.9. MONITORING
	Access to Statistics via JMX
	Monitoring Indexing

	CHAPTER 14. BEAN VALIDATION
	14.1. ABOUT BEAN VALIDATION
	14.2. VALIDATION CONSTRAINTS
	14.2.1. About Validation Constraints
	14.2.2. Hibernate Validator Constraints
	14.2.3. Bean Validation Using Custom Constraints
	14.2.3.1. Creating A Constraint Annotation
	14.2.3.2. Implementing A Constraint Validator

	14.3. VALIDATION CONFIGURATION

	CHAPTER 15. CREATING WEBSOCKET APPLICATIONS
	Create the WebSocket Application

	CHAPTER 16. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
	16.1. ABOUT JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
	16.2. CONFIGURE JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC) SECURITY

	CHAPTER 17. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
	17.1. ABOUT JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI) SECURITY
	17.2. CONFIGURE JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI) SECURITY

	CHAPTER 18. JAVA BATCH APPLICATION DEVELOPMENT
	18.1. REQUIRED BATCH DEPENDENCIES
	18.2. JOB SPECIFICATION LANGUAGE (JSL) INHERITANCE
	Example: Inherit Step and Flow Within the Same Job XML File
	Example: Inherit a Step from a Different Job XML File

	18.3. BATCH PROPERTY INJECTIONS
	Example: Injecting a Number into a Batchlet Class as Various Types
	Example: Injecting a Number Sequence into a Batchlet Class as Various Arrays
	Example: Injecting a Class Property into a Batchlet Class
	Example: Assigning a Default Value to a Field Annotated for Property Injection

	APPENDIX A. REFERENCE MATERIAL
	A.1. PROVIDED UNDERTOW HANDLERS
	AccessControlListHandler
	AccessLogHandler
	AllowedMethodsHandler
	BlockingHandler
	ByteRangeHandler
	CanonicalPathHandler
	DisableCacheHandler
	DisallowedMethodsHandler
	EncodingHandler
	FileErrorPageHandler
	HttpTraceHandler
	IPAddressAccessControlHandler
	JDBCLogHandler
	LearningPushHandler
	LocalNameResolvingHandler
	PathSeparatorHandler
	PeerNameResolvingHandler
	ProxyPeerAddressHandler
	RedirectHandler
	RequestBufferingHandler
	RequestDumpingHandler
	RequestLimitingHandler
	ResourceHandler
	ResponseRateLimitingHandler
	SetHeaderHandler
	SSLHeaderHandler
	StuckThreadDetectionHandler
	URLDecodingHandler

	A.2. HIBERNATE PROPERTIES

