
Red Hat JBoss Enterprise
Application Platform 7.1

Developing Hibernate Applications

For Use with Red Hat JBoss Enterprise Application Platform 7.1

Last Updated: 2018-10-11

Red Hat JBoss Enterprise Application Platform 7.1 Developing
Hibernate Applications
For Use with Red Hat JBoss Enterprise Application Platform 7.1

Legal Notice
Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative
Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of
CC-BY-SA is available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it,
you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to
assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the
Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other
countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the
United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European
Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally
related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered
trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in
the United States and other countries and are used with the OpenStack Foundation's
permission. We are not affiliated with, endorsed or sponsored by the OpenStack
Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This document provides information for developers and administrators who want to
develop and deploy JPA/Hibernate applications with JBoss EAP 7.1.

. .

. .

. .

. .

. .

. .

Table of Contents
CHAPTER 1. INTRODUCTION

1.1. ABOUT HIBERNATE CORE
1.2. HIBERNATE ENTITYMANAGER

CHAPTER 2. HIBERNATE CONFIGURATION
2.1. HIBERNATE CONFIGURATION
2.2. SECOND-LEVEL CACHES

2.2.1. About Second-level Caches
2.2.2. Configure a Second-level Cache for Hibernate

Configuring a Second-level Cache for Hibernate Using Hibernate Native Applications

CHAPTER 3. HIBERNATE ANNOTATIONS
3.1. HIBERNATE ANNOTATIONS

CHAPTER 4. HIBERNATE QUERY LANGUAGE
4.1. ABOUT HIBERNATE QUERY LANGUAGE

Introduction to JPQL
Introduction to HQL

4.2. ABOUT HQL STATEMENTS
About the UPDATE and DELETE Statements
About the INSERT Statement

4.3. ABOUT HQL ORDERING
4.4. ABOUT COLLECTION MEMBER REFERENCES
4.5. ABOUT QUALIFIED PATH EXPRESSIONS
4.6. ABOUT HQL FUNCTIONS

4.6.1. About HQL Standardized Functions
4.6.2. About HQL Non-Standardized Functions
4.6.3. About the Concatenation Operation

4.7. ABOUT DYNAMIC INSTANTIATION
4.8. ABOUT HQL PREDICATES

HQL Predicates
4.9. ABOUT RELATIONAL COMPARISONS
4.10. BYTECODE ENHANCEMENT

4.10.1. Lazy Attribute Loading

CHAPTER 5. HIBERNATE SERVICES
5.1. ABOUT HIBERNATE SERVICES
5.2. ABOUT SERVICE CONTRACTS
5.3. TYPES OF SERVICE DEPENDENCIES

5.3.1. The Service Registry
5.3.1.1. About the ServiceRegistry

5.3.2. Custom Services
5.3.2.1. About Custom Services

5.3.3. The Boot-Strap Registry
5.3.3.1. About the Boot-strap Registry

Using BootstrapServiceRegistryBuilder
5.3.3.2. BootstrapRegistry Services

5.3.4. SessionFactory Registry
5.3.4.1. SessionFactory Services

5.3.5. Integrators
5.3.5.1. Integrator Use Cases

CHAPTER 6. HIBERNATE ENVERS

6
6
6

8
8
8
8
9
9

10
10

18
18
18
18
18
20
21
22
23
24
25
25
26
26
27
27
28
30
32
32

34
34
34
34
34
34
35
35
36
36
36
37
38
38
38
38

40

Table of Contents

1

. .

6.1. ABOUT HIBERNATE ENVERS
6.2. ABOUT AUDITING PERSISTENT CLASSES
6.3. AUDITING STRATEGIES

6.3.1. About Auditing Strategies
6.3.2. Set the Auditing Strategy

Define an Auditing Strategy
6.3.3. Adding Auditing Support to a JPA Entity

6.4. CONFIGURATION
6.4.1. Configure Envers Parameters
6.4.2. Enable or Disable Auditing at Runtime
6.4.3. Configure Conditional Auditing
6.4.4. Envers Configuration Properties

6.5. QUERYING AUDIT INFORMATION
6.5.1. Retrieve Auditing Information Through Queries
6.5.2. Traversing Entity Associations Using Properties of Referenced Entities

6.6. PERFORMANCE TUNING
6.6.1. Alternative Batch Loading Algorithms
6.6.2. Second Level Caching of Object References for Non-mutable Data

CHAPTER 7. HIBERNATE SEARCH
7.1. GETTING STARTED WITH HIBERNATE SEARCH

7.1.1. About Hibernate Search
7.1.2. Overview
7.1.3. About the Directory Provider
7.1.4. About the Worker
7.1.5. Back End Setup and Operations

7.1.5.1. Back End
7.1.5.2. Lucene
7.1.5.3. JMS

7.1.6. Reader Strategies
7.1.6.1. The Shared Strategy
7.1.6.2. The Not-shared Strategy
7.1.6.3. Custom Reader Strategies

7.2. CONFIGURATION
7.2.1. Minimum Configuration
7.2.2. Configuring the IndexManager

7.2.2.1. Directory-based
7.2.2.2. Near Real Time
7.2.2.3. Custom

7.2.3. DirectoryProvider Configuration
Directory Providers and Their Properties

7.2.4. Worker Configuration
7.2.4.1. JMS Master/Slave Back End
7.2.4.2. Slave Nodes
7.2.4.3. Master Node

7.2.5. Tuning Lucene Indexing
7.2.5.1. Tuning Lucene Indexing Performance
7.2.5.2. The Lucene IndexWriter
7.2.5.3. Performance Option Configuration
7.2.5.4. Tuning the Indexing Speed
7.2.5.5. Control Segment Size

7.2.6. LockFactory Configuration
7.2.7. Index Format Compatibility

40
40
40
40
41
41
41
43
43
43
44
44
46
46
49
51
51
52

54
54
54
54
55
55
55
55
55
56
57
57
58
58
58
58
58
58
58
59
59
60
62
65
66
67
68
68
72
72
76
76
77
78

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

2

7.3. HIBERNATE SEARCH FOR YOUR APPLICATION
7.3.1. First Steps with Hibernate Search
7.3.2. Enable Hibernate Search Using Maven
7.3.3. Add Annotations
7.3.4. Indexing
7.3.5. Searching
7.3.6. Analyzer

7.4. MAPPING ENTITIES TO THE INDEX STRUCTURE
7.4.1. Mapping an Entity

7.4.1.1. Basic Mapping
7.4.1.2. @Indexed
7.4.1.3. @Field
7.4.1.4. @NumericField
7.4.1.5. @Id
7.4.1.6. Mapping Properties Multiple Times
7.4.1.7. Embedded and Associated Objects
7.4.1.8. Limiting Object Embedding to Specific Paths

7.4.2. Boosting
7.4.2.1. Static Index Time Boosting
7.4.2.2. Dynamic Index Time Boosting

7.4.3. Analysis
7.4.3.1. Default Analyzer and Analyzer by Class
7.4.3.2. Named Analyzers
7.4.3.3. Available Analyzers
7.4.3.4. Dynamic Analyzer Selection
7.4.3.5. Retrieving an Analyzer

7.4.4. Bridges
7.4.4.1. Built-in Bridges
7.4.4.2. Custom Bridges

7.4.4.2.1. StringBridge
7.4.4.2.2. Parameterized Bridge
7.4.4.2.3. Type Aware Bridge
7.4.4.2.4. Two-Way Bridge
7.4.4.2.5. FieldBridge
7.4.4.2.6. ClassBridge

7.5. QUERYING
7.5.1. Building Queries

7.5.1.1. Building a Lucene Query Using the Lucene API
7.5.1.2. Building a Lucene Query
7.5.1.3. Keyword Queries
7.5.1.4. Fuzzy Queries
7.5.1.5. Wildcard Queries
7.5.1.6. Phrase Queries
7.5.1.7. Range Queries
7.5.1.8. Combining Queries
7.5.1.9. Query Options
7.5.1.10. Build a Hibernate Search Query

7.5.1.10.1. Generality
7.5.1.10.2. Pagination
7.5.1.10.3. Sorting
7.5.1.10.4. Fetching Strategy
7.5.1.10.5. Projection
7.5.1.10.6. Customizing Object Initialization Strategies

79
79
79
79
82
83
84
85
85
85
85
86
88
89
89
90
93
96
96
96
97
98
98

101
102
104
104
105
106
106
107
108
108
109
110
111
113
113
113
114
116
117
117
117
118
119
119
119
120
120
121
121
122

Table of Contents

3

. .

7.5.1.10.7. Limiting the Time of a Query
7.5.1.10.8. Raise an Exception on Time Limit

7.5.2. Retrieving the Results
7.5.2.1. Performance Considerations
7.5.2.2. Result Size
7.5.2.3. ResultTransformer
7.5.2.4. Understanding Results
7.5.2.5. Filters
7.5.2.6. Using Filters in a Sharded Environment

7.5.3. Faceting
7.5.3.1. Creating a Faceting Request
7.5.3.2. Applying a Faceting Request
7.5.3.3. Restricting Query Results

7.5.4. Optimizing the Query Process
7.5.4.1. Caching Index Values: FieldCache

7.6. MANUAL INDEX CHANGES
7.6.1. Adding Instances to the Index
7.6.2. Deleting Instances from the Index
7.6.3. Rebuilding the Index

7.6.3.1. Using flushToIndexes()
7.6.3.2. Using a MassIndexer

7.7. INDEX OPTIMIZATION
7.7.1. Automatic Optimization
7.7.2. Manual Optimization
7.7.3. Adjusting Optimization

7.8. ADVANCED FEATURES
7.8.1. Accessing the SearchFactory
7.8.2. Using an IndexReader
7.8.3. Accessing a Lucene Directory
7.8.4. Sharding Indexes
7.8.5. Customizing Lucene’s Scoring Formula
7.8.6. Exception Handling Configuration
7.8.7. Disable Hibernate Search

7.9. MONITORING
Access to Statistics via JMX
Monitoring Indexing

APPENDIX A. REFERENCE MATERIAL
A.1. HIBERNATE PROPERTIES

123
124
125
125
125
126
126
127
131
132
135
136
137
137
138
139
139
139
140
140
141
143
143
144
145
145
145
145
146
146
148
149
150
150
150
150

152
152

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

4

Table of Contents

5

CHAPTER 1. INTRODUCTION

1.1. ABOUT HIBERNATE CORE
Hibernate Core is an object-relational mapping framework for the Java language. It provides
a framework for mapping an object-oriented domain model to a relational database,
allowing applications to avoid direct interaction with the database. Hibernate solves object-
relational impedance mismatch problems by replacing direct, persistent database accesses
with high-level object handling functions.

1.2. HIBERNATE ENTITYMANAGER
Hibernate EntityManager implements the programming interfaces and lifecycle rules as
defined by the Java Persistence 2.1 specification. Together with Hibernate Annotations, this
wrapper implements a complete (and standalone) JPA persistence solution on top of the
mature Hibernate Core. You may use a combination of all three together, annotations
without JPA programming interfaces and lifecycle, or even pure native Hibernate Core,
depending on the business and technical needs of your project. You can at all times fall
back to Hibernate native APIs, or if required, even to native JDBC and SQL. It provides JBoss
EAP with a complete Java Persistence solution.

JBoss EAP is 100% compliant with the Java Persistence 2.1 specification. Hibernate also
provides additional features to the specification. To get started with JPA and JBoss EAP, see
the bean-validation, greeter, and kitchensink quickstarts that ship with JBoss EAP. For
information about how to download and run the quickstarts, see Using the Quickstart
Examples in the JBoss EAP Getting Started Guide.

Persistence in JPA is available in containers like EJB 3 or the more modern CDI, Java Context
and Dependency Injection, as well as in standalone Java SE applications that execute
outside of a particular container. The following programming interfaces and artifacts are
available in both environments.

EntityManagerFactory
An entity manager factory provides entity manager instances, all instances are
configured to connect to the same database, to use the same default settings as defined
by the particular implementation, etc. You can prepare several entity manager factories
to access several data stores. This interface is similar to the SessionFactory in native
Hibernate.

EntityManager
The EntityManager API is used to access a database in a particular unit of work. It is used
to create and remove persistent entity instances, to find entities by their primary key
identity, and to query over all entities. This interface is similar to the Session in
Hibernate.

Persistence context
A persistence context is a set of entity instances in which for any persistent entity
identity there is a unique entity instance. Within the persistence context, the entity
instances and their lifecycle is managed by a particular entity manager. The scope of this
context can either be the transaction, or an extended unit of work.

Persistence unit
The set of entity types that can be managed by a given entity manager is defined by a
persistence unit. A persistence unit defines the set of all classes that are related or
grouped by the application, and which must be collocated in their mapping to a single

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

6

https://www.jcp.org/en/jsr/detail?id=338
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/getting_started_guide/#using_the_quickstart_examples

data store.
Container-managed entity manager

An entity manager whose lifecycle is managed by the container.
Application-managed entity manager

An entity manager whose lifecycle is managed by the application.
JTA entity manager

Entity manager involved in a JTA transaction.
Resource-local entity manager

Entity manager using a resource transaction (not a JTA transaction).

CHAPTER 1. INTRODUCTION

7

CHAPTER 2. HIBERNATE CONFIGURATION

2.1. HIBERNATE CONFIGURATION
The configuration for entity managers both inside an application server and in a standalone
application reside in a persistence archive. A persistence archive is a JAR file which must
define a persistence.xml file that resides in the META-INF/ folder.

You can connect to the database using the persistence.xml file. There are two ways of
doing this:

Specifying a data source which is configured in the datasources subsystem in JBoss
EAP.
The jta-data-source points to the JNDI name of the data source this persistence
unit maps to. The java:jboss/datasources/ExampleDS here points to the H2 DB
embedded in the JBoss EAP.

Example of object-relational-mapping in the persistence.xml File

Explicitly configuring the persistence.xml file by specifying the connection
properties.

Example of Specifying Connection Properties in the persistence.xml
file

For the complete list of connection properties, see Connection Properties
Configurable in the persistence.xml File.

There are a number of properties that control the behavior of Hibernate at runtime. All are
optional and have reasonable default values. These Hibernate properties are all used in the
persistence.xml file. For the complete list of all configurable Hibernate properties, see
Hibernate Properties.

2.2. SECOND-LEVEL CACHES

2.2.1. About Second-level Caches

<persistence>
 <persistence-unit name="myapp">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-
source>
 <properties>

 </properties>
 </persistence-unit>
</persistence>

<property name="javax.persistence.jdbc.driver"
value="org.hsqldb.jdbcDriver"/>
<property name="javax.persistence.jdbc.user" value="sa"/>
<property name="javax.persistence.jdbc.password" value=""/>
<property name="javax.persistence.jdbc.url" value="jdbc:hsqldb:."/>

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

8

A second-level cache is a local data store that holds information persisted outside the
application session. The cache is managed by the persistence provider, improving runtime
by keeping the data separate from the application.

JBoss EAP supports caching for the following purposes:

Web Session Clustering

Stateful Session Bean Clustering

SSO Clustering

Hibernate/JPA Second-level Cache

WARNING

Each cache container defines a repl and a dist cache. These caches
should not be used directly by user applications.

2.2.2. Configure a Second-level Cache for Hibernate
The configuration of Infinispan to act as the second-level cache for Hibernate can be done
in two ways:

It is recommended to configure the second-level cache through JPA applications,
using the persistence.xml file, as explained in the JBoss EAP Development Guide.

Alternatively, you can configure the second-level cache through Hibernate native
applications, using the hibernate.cfg.xml file, as explained below.

Configuring a Second-level Cache for Hibernate Using Hibernate Native
Applications

1. Create the hibernate.cfg.xml file in the deployment’s class path.

2. Add the following XML to the hibernate.cfg.xml file. The XML needs to be within
the <session-factory> tag:

3. In order to use the Hibernate native APIs within your application, you must add the
following dependencies to the MANIFEST.MF file:

Dependencies: org.infinispan,org.hibernate



<property
name="hibernate.cache.use_second_level_cache">true</property>
<property name="hibernate.cache.use_query_cache">true</property>
<property
name="hibernate.cache.region.factory_class">org.jboss.as.jpa.hiberna
te5.infinispan.InfinispanRegionFactory</property>

CHAPTER 2. HIBERNATE CONFIGURATION

9

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/development_guide/#configure_second_level_cache_persistence_unit

CHAPTER 3. HIBERNATE ANNOTATIONS

3.1. HIBERNATE ANNOTATIONS
The org.hibernate.annotations package contains some annotations which are offered by
Hibernate, on top of the standard JPA annotations.

Table 3.1. General Annotations

Annotation Description

Check Arbitrary SQL check constraints which can be
defined at the class, property or collection
level.

Immutable Mark an Entity or a Collection as immutable.
No annotation means the element is mutable.

An immutable entity may not be updated by
the application. Updates to an immutable
entity will be ignored, but no exception is
thrown.

@Immutable placed on a collection makes the
collection immutable, meaning additions and
deletions to and from the collection are not
allowed. A HibernateException is thrown in
this case.

Table 3.2. Caching Entities

Annotation Description

Cache Add caching strategy to a root entity or a
collection.

Table 3.3. Collection Related Annotations

Annotation Description

MapKeyType Defines the type of key of a persistent map.

ManyToAny Defines a ToMany association pointing to
different entity types. Matching the entity type
is done through a metadata discriminator
column. This kind of mapping should be only
marginal.

OrderBy Order a collection using SQL ordering (not HQL
ordering).

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

10

OnDelete Strategy to use on collections, arrays and on
joined subclasses delete. OnDelete of
secondary tables is currently not supported.

Persister Specify a custom persister.

Sort Collection sort (Java level sorting).

Where Where clause to add to the element Entity or
target entity of a collection. The clause is
written in SQL.

WhereJoinTable Where clause to add to the collection join
table. The clause is written in SQL.

Annotation Description

Table 3.4. Custom SQL for CRUD Operations

Annotation Description

Loader Overwrites Hibernate default FIND method.

SQLDelete Overwrites the Hibernate default DELETE
method.

SQLDeleteAll Overwrites the Hibernate default DELETE ALL
method.

SQLInsert Overwrites the Hibernate default INSERT
INTO method.

SQLUpdate Overwrites the Hibernate default UPDATE
method.

Subselect Maps an immutable and read-only entity to a
given SQL subselect expression.

Synchronize Ensures that auto-flush happens correctly and
that queries against the derived entity do not
return stale data. Mostly used with
Subselect.

Table 3.5. Entity

CHAPTER 3. HIBERNATE ANNOTATIONS

11

Annotation Description

Cascade Apply a cascade strategy on an association.

Entity Adds additional metadata that may be needed
beyond what is defined in the standard
@Entity.

mutable: whether this entity is
mutable or not

dynamicInsert: allow dynamic SQL
for inserts

dynamicUpdate: allow dynamic SQL
for updates

selectBeforeUpdate: Specifies that
Hibernate should never perform an
SQL UPDATE unless it is certain that an
object is actually modified.

polymorphism: whether the entity
polymorphism is of
PolymorphismType.IMPLICIT (default)
or PolymorphismType.EXPLICIT

optimisticLock: optimistic locking
strategy
(OptimisticLockType.VERSION,
OptimisticLockType.NONE,
OptimisticLockType.DIRTY or
OptimisticLockType.ALL)

NOTE

The annotation "Entity"
is deprecated and
scheduled for removal in
future releases. Its
individual attributes or
values should become
annotations.

Polymorphism Used to define the type of polymorphism
Hibernate will apply to entity hierarchies.

Proxy Lazy and proxy configuration of a particular
class.

Table Complementary information to a table either
primary or secondary.

Tables Plural annotation of Table.

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

12

Target Defines an explicit target, avoiding reflection
and generics resolving.

Tuplizer Defines a tuplizer for an entity or a
component.

Tuplizers Defines a set of tuplizers for an entity or a
component.

Annotation Description

Table 3.6. Fetching

Annotation Description

BatchSize Batch size for SQL loading.

FetchProfile Defines the fetching strategy profile.

FetchProfiles Plural annotation for @FetchProfile.

LazyGroup Specifies that an entity attribute should be
fetched along with all the other attributes
belonging to the same group. In order to load
entity attributes lazily, bytecode enhancement
is needed. By default, all non-collection
attributes are loaded in one group named
DEFAULT. This annotation allows defining
different groups of attributes to be initialized
together when accessing one attribute in the
group.

Table 3.7. Filters

Annotation Description

Filter Adds filters to an entity or a target entity of a
collection.

FilterDef Filter definition.

FilterDefs Array of filter definitions.

FilterJoinTable Adds filters to a join table collection.

FilterJoinTables Adds multiple @FilterJoinTable to a
collection.

CHAPTER 3. HIBERNATE ANNOTATIONS

13

Filters Adds multiple @Filter.

ParamDef A parameter definition.

Annotation Description

Table 3.8. Primary Keys

Annotation Description

Generated This annotated property is generated by the
database.

GenericGenerator Generator annotation describing any kind of
Hibernate generator in a detyped manner.

GenericGenerators Array of generic generator definitions.

NaturalId Specifies that a property is part of the natural
id of the entity.

Parameter Key/value pattern.

RowId Support for ROWID mapping feature of
Hibernate.

Table 3.9. Inheritance

Annotation Description

DiscriminatorFormula Discriminator formula to be placed at the root
entity.

DiscriminatorOptions Optional annotation to express Hibernate
specific discriminator properties.

MetaValue Maps a given discriminator value to the
corresponding entity type.

Table 3.10. Mapping JP-QL/HQL Queries

Annotation Description

NamedNativeQueries Extends NamedNativeQueries to hold
Hibernate NamedNativeQuery objects.

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

14

NamedNativeQuery Extends NamedNativeQuery with Hibernate
features.

NamedQueries Extends NamedQueries to hold Hibernate
NamedQuery objects.

NamedQuery Extends NamedQuery with Hibernate features.

Annotation Description

Table 3.11. Mapping Simple Properties

Annotation Description

AccessType Property access type.

Columns Support an array of columns. Useful for
component user type mappings.

ColumnTransformer Custom SQL expression used to read the value
from and write a value to a column. Use for
direct object loading/saving as well as queries.
The write expression must contain exactly one
'?' placeholder for the value.

ColumnTransformers Plural annotation for @ColumnTransformer.
Useful when more than one column is using
this behavior.

Table 3.12. Property

Annotation Description

Formula To be used as a replacement for @Column in
most places. The formula has to be a valid SQL
fragment.

Index Defines a database index.

JoinFormula To be used as a replacement for
@JoinColumn in most places. The formula has
to be a valid SQL fragment.

Parent Reference the property as a pointer back to
the owner (generally the owning entity).

Type Hibernate type.

CHAPTER 3. HIBERNATE ANNOTATIONS

15

TypeDef Hibernate type definition.

TypeDefs Hibernate type definition array.

Annotation Description

Table 3.13. Single Association Related Annotations

Annotation Description

Any Defines a ToOne association pointing to
several entity types. Matching the according
entity type is done through a metadata
discriminator column. This kind of mapping
should be only marginal.

AnyMetaDef Defines @Any and @ManyToAny metadata.

AnyMetaDefs Defines @Any and @ManyToAny set of
metadata. Can be defined at the entity level or
the package level.

Fetch Defines the fetching strategy used for the
given association.

LazyCollection Defines the lazy status of a collection.

LazyToOne Defines the lazy status of a ToOne association
(i.e. OneToOne or ManyToOne).

NotFound Action to do when an element is not found on
an association.

Table 3.14. Optimistic Locking

Annotation Description

OptimisticLock Whether or not a change of the annotated
property will trigger an entity version
increment. If the annotation is not present, the
property is involved in the optimistic lock
strategy (default).

OptimisticLocking Used to define the style of optimistic locking to
be applied to an entity. In a hierarchy, only
valid on the root entity.

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

16

Source Optional annotation in conjunction with Version
and timestamp version properties. The
annotation value decides where the timestamp
is generated.

Annotation Description

CHAPTER 3. HIBERNATE ANNOTATIONS

17

CHAPTER 4. HIBERNATE QUERY LANGUAGE

4.1. ABOUT HIBERNATE QUERY LANGUAGE
Introduction to JPQL
The Java Persistence Query Language (JPQL) is a platform-independent object-oriented
query language defined as part of the Java Persistence API (JPA) specification. JPQL is used
to make queries against entities stored in a relational database. It is heavily inspired by
SQL, and its queries resemble SQL queries in syntax, but operate against JPA entity objects
rather than directly with database tables.

Introduction to HQL
The Hibernate Query Language (HQL) is a powerful query language, similar in appearance
to SQL. Compared with SQL, however, HQL is fully object-oriented and understands notions
like inheritance, polymorphism and association.

HQL is a superset of JPQL. An HQL query is not always a valid JPQL query, but a JPQL query
is always a valid HQL query.

Both HQL and JPQL are non-type-safe ways to perform query operations. Criteria queries
offer a type-safe approach to querying.

4.2. ABOUT HQL STATEMENTS
Both HQL and JPQL allow SELECT, UPDATE, and DELETE statements. HQL additionally allows
INSERT statements, in a form similar to a SQL INSERT-SELECT.

The following table shows the syntax in Backus-Naur Form (BNF) notation for the various
HQL statements.

Table 4.1. HQL Statements

Statement Description

SELECT The BNF for SELECT statements in HQL is:

select_statement :: =
 [select_clause]
 from_clause
 [where_clause]
 [groupby_clause]
 [having_clause]
 [orderby_clause]

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

18

UPDATE The BNF for UPDATE statement in HQL is the
same as it is in JPQL.

update_statement ::=
update_clause [where_clause]

update_clause ::= UPDATE
entity_name [[AS]
identification_variable]
 SET update_item {,
update_item}*

update_item ::=
[identification_variable.]
{state_field |
single_valued_object_field}
 = new_value

new_value ::= scalar_expression |

simple_entity_expression |
 NULL

DELETE The BNF for DELETE statements in HQL is the
same as it is in JPQL.

delete_statement ::=
delete_clause [where_clause]

delete_clause ::= DELETE FROM
entity_name [[AS]
identification_variable]

INSERT The BNF for INSERT statement in HQL is:

insert_statement ::=
insert_clause select_statement

insert_clause ::= INSERT INTO
entity_name (attribute_list)

attribute_list ::= state_field[,
state_field]*

There is no JPQL equivalent to this.

Statement Description

CHAPTER 4. HIBERNATE QUERY LANGUAGE

19

WARNING

Hibernate allows the use of Data Manipulation Language (DML) to bulk
insert, update and delete data directly in the mapped database through
the Hibernate Query Language (HQL).

Using DML may violate the object/relational mapping and may affect
object state. Object state stays in memory and by using DML, the state of
an in-memory object is not affected, depending on the operation that is
performed on the underlying database. In-memory data must be used
with care if DML is used.

About the UPDATE and DELETE Statements
The pseudo-syntax for UPDATE and DELETE statements is:

(UPDATE | DELETE) FROM? EntityName (WHERE where_conditions)?.

NOTE

The FROM keyword and the WHERE Clause are optional. The FROM clause is
responsible for defining the scope of object model types available to the rest
of the query. It also is responsible for defining all the identification variables
available to the rest of the query. The WHERE clause allows you to refine the
list of instances returned.

The result of execution of a UPDATE or DELETE statement is the number of rows
that are actually affected (updated or deleted).

Example: Bulk Update Statement

Example: Bulk Delete Statement



Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlUpdate = "update Company set name = :newName where name =
:oldName";
int updatedEntities = s.createQuery(hqlUpdate)
 .setString("newName", newName)
 .setString("oldName", oldName)
 .executeUpdate();
tx.commit();
session.close();

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlDelete = "delete Company where name = :oldName";
int deletedEntities = s.createQuery(hqlDelete)
 .setString("oldName", oldName)

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

20

The int value returned by the Query.executeUpdate() method indicates the number of
entities within the database that were affected by the operation.

Internally, the database might use multiple SQL statements to execute the operation in
response to a DML Update or Delete request. This might be because of relationships that
exist between tables and the join tables that need to be updated or deleted.

For example, issuing a delete statement, as in the example above, may actually result in
deletes being executed against not just the Company table for companies that are named
with oldName, but also against joined tables. Therefore a Company table in a bidirectional,
many-to-many relationship with an Employee table would also lose rows from the
corresponding join table, Company_Employee, as a result of the successful execution of the
previous example.

The deletedEntries value above will contain a count of all the rows affected due to this
operation, including the rows in the join tables.

IMPORTANT

Care should be taken when executing bulk update or delete operations
because they may result in inconsistencies between the database and the
entities in the active persistence context. In general, bulk update and delete
operations should only be performed within a transaction in a new persistence
context or before fetching or accessing entities whose state might be affected
by such operations.

About the INSERT Statement
HQL adds the ability to define INSERT statements. There is no JPQL equivalent to this. The
Backus-Naur Form (BNF) for an HQL INSERT statement is:

insert_statement ::= insert_clause select_statement

insert_clause ::= INSERT INTO entity_name (attribute_list)

attribute_list ::= state_field[, state_field]*

The attribute_list is analogous to the column specification in the SQL INSERT
statement. For entities involved in mapped inheritance, only attributes directly defined on
the named entity can be used in the attribute_list. Superclass properties are not
allowed and subclass properties do not make sense. In other words, INSERT statements are
inherently non-polymorphic.

 .executeUpdate();
tx.commit();
session.close();

CHAPTER 4. HIBERNATE QUERY LANGUAGE

21

WARNING

The select_statement can be any valid HQL select query, with the
caveat that the return types must match the types expected by the
insert. Currently, this is checked during query compilation rather than
allowing the check to relegate to the database. This can cause problems
with Hibernate Types that are equivalent as opposed to equal. For
example, this might cause mismatch issues between an attribute mapped
as an org.hibernate.type.DateType and an attribute defined as a
org.hibernate.type.TimestampType, even though the database might
not make a distinction or might be able to handle the conversion.

For the id attribute, the insert statement gives you two options. You can either explicitly
specify the id property in the attribute_list, in which case its value is taken from the
corresponding select expression, or omit it from the attribute_list in which case a
generated value is used. This latter option is only available when using id generators that
operate "in the database"; attempting to use this option with any "in memory" type
generators will cause an exception during parsing.

For optimistic locking attributes, the insert statement again gives you two options. You can
either specify the attribute in the attribute_list in which case its value is taken from the
corresponding select expressions, or omit it from the attribute_list in which case the
seed value defined by the corresponding org.hibernate.type.VersionType is used.

Example: INSERT Query Statements

Example: Bulk Insert Statement

If you do not supply the value for the id attribute using the SELECT statement, an identifier
is generated for you, as long as the underlying database supports auto-generated keys. The
return value of this bulk insert operation is the number of entries actually created in the
database.

4.3. ABOUT HQL ORDERING



String hqlInsert = "insert into DelinquentAccount (id, name) select c.id,
c.name from Customer c where ...";
int createdEntities = s.createQuery(hqlInsert).executeUpdate();

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlInsert = "insert into Account (id, name) select c.id, c.name
from Customer c where ...";
int createdEntities = s.createQuery(hqlInsert)
 .executeUpdate();
tx.commit();
session.close();

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

22

The results of the query can also be ordered. The ORDER BY clause is used to specify the
selected values to be used to order the result. The types of expressions considered valid as
part of the order-by clause include:

state fields

component/embeddable attributes

scalar expressions such as arithmetic operations, functions, etc.

identification variable declared in the select clause for any of the previous
expression types

HQL does not mandate that all values referenced in the order-by clause must be named in
the select clause, but it is required by JPQL. Applications desiring database portability
should be aware that not all databases support referencing values in the order-by clause
that are not referenced in the select clause.

Individual expressions in the order-by can be qualified with either ASC (ascending) or DESC
(descending) to indicate the desired ordering direction.

Example: Order By

// legal because p.name is implicitly part of p
select p
from Person p
order by p.name

select c.id, sum(o.total) as t
from Order o
 inner join o.customer c
group by c.id
order by t

4.4. ABOUT COLLECTION MEMBER REFERENCES
References to collection-valued associations actually refer to the values of that collection.

Example: Collection References

select c
from Customer c
 join c.orders o
 join o.lineItems l
 join l.product p
where o.status = 'pending'
 and p.status = 'backorder'

// alternate syntax
select c
from Customer c,
 in(c.orders) o,
 in(o.lineItems) l

CHAPTER 4. HIBERNATE QUERY LANGUAGE

23

 join l.product p
where o.status = 'pending'
 and p.status = 'backorder'

In the example, the identification variable o actually refers to the object model type Order
which is the type of the elements of the Customer#orders association.

The example also shows the alternate syntax for specifying collection association joins
using the IN syntax. Both forms are equivalent. Which form an application chooses to use is
simply a matter of taste.

4.5. ABOUT QUALIFIED PATH EXPRESSIONS
It was previously stated that collection-valued associations actually refer to the values of
that collection. Based on the type of collection, there are also available a set of explicit
qualification expressions.

Table 4.2. Qualified Path Expressions

Expression Description

VALUE Refers to the collection value. Same as not
specifying a qualifier. Useful to explicitly show
intent. Valid for any type of collection-valued
reference.

INDEX According to HQL rules, this is valid for both
Maps and Lists which specify a
javax.persistence.OrderColumn annotation to
refer to the Map key or the List position (aka
the OrderColumn value). JPQL however,
reserves this for use in the List case and adds
KEY for the MAP case. Applications interested
in JPA provider portability should be aware of
this distinction.

KEY Valid only for Maps. Refers to the map’s key. If
the key is itself an entity, can be further
navigated.

ENTRY Only valid only for Maps. Refers to the Map’s
logical java.util.Map.Entry tuple (the
combination of its key and value). ENTRY is
only valid as a terminal path and only valid in
the select clause.

Example: Qualified Collection References

// Product.images is a Map<String,String> : key = a name, value = file
path

// select all the image file paths (the map value) for Product#123
select i

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

24

from Product p
 join p.images i
where p.id = 123

// same as above
select value(i)
from Product p
 join p.images i
where p.id = 123

// select all the image names (the map key) for Product#123
select key(i)
from Product p
 join p.images i
where p.id = 123

// select all the image names and file paths (the 'Map.Entry') for
Product#123
select entry(i)
from Product p
 join p.images i
where p.id = 123

// total the value of the initial line items for all orders for a customer
select sum(li.amount)
from Customer c
 join c.orders o
 join o.lineItems li
where c.id = 123
 and index(li) = 1

4.6. ABOUT HQL FUNCTIONS
HQL defines some standard functions that are available regardless of the underlying
database in use. HQL can also understand additional functions defined by the dialect and
the application.

4.6.1. About HQL Standardized Functions
The following functions are available in HQL regardless of the underlying database in use.

Table 4.3. HQL Standardized Functions

Function Description

BIT_LENGTH Returns the length of binary data.

CAST Performs an SQL cast. The cast target should
name the Hibernate mapping type to use.

CHAPTER 4. HIBERNATE QUERY LANGUAGE

25

EXTRACT Performs an SQL extraction on datetime
values. An extraction returns a part of the
date/time value, for example, the year. See
the abbreviated forms below.

SECOND Abbreviated extract form for extracting the
second.

MINUTE Abbreviated extract form for extracting the
minute.

HOUR Abbreviated extract form for extracting the
hour.

DAY Abbreviated extract form for extracting the
day.

MONTH Abbreviated extract form for extracting the
month.

YEAR Abbreviated extract form for extracting the
year.

STR Abbreviated form for casting a value as
character data.

Function Description

4.6.2. About HQL Non-Standardized Functions
Hibernate dialects can register additional functions known to be available for that particular
database product. They would only be available when using that database or dialect.
Applications that aim for database portability should avoid using functions in this category.

Application developers can also supply their own set of functions. This would usually
represent either custom SQL functions or aliases for snippets of SQL. Such function
declarations are made by using the addSqlFunction method of
org.hibernate.cfg.Configuration.

4.6.3. About the Concatenation Operation
HQL defines a concatenation operator in addition to supporting the concatenation (CONCAT)
function. This is not defined by JPQL, so portable applications should avoid using it. The
concatenation operator is taken from the SQL concatenation operator (||).

Example: Concatenation Operation Example

select 'Mr. ' || c.name.first || ' ' || c.name.last
from Customer c
where c.gender = Gender.MALE

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

26

4.7. ABOUT DYNAMIC INSTANTIATION
There is a particular expression type that is only valid in the select clause. Hibernate calls
this "dynamic instantiation". JPQL supports some of this feature and calls it a "constructor
expression".

Example: Dynamic Instantiation Example - Constructor

select new Family(mother, mate, offspr)
from DomesticCat as mother
 join mother.mate as mate
 left join mother.kittens as offspr

So rather than dealing with the Object[] here we are wrapping the values in a type-safe
java object that will be returned as the results of the query. The class reference must be
fully qualified and it must have a matching constructor.

The class here does not need to be mapped. If it does represent an entity, the resulting
instances are returned in the NEW state (not managed!).

This is the part JPQL supports as well. HQL supports additional "dynamic instantiation"
features. First, the query can specify to return a List rather than an Object[] for scalar
results:

Example: Dynamic Instantiation Example - List

select new list(mother, offspr, mate.name)
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

The results from this query will be a List<List> as opposed to a List<Object[]>.

HQL also supports wrapping the scalar results in a Map.

Example: Dynamic Instantiation Example - Map

select new map(mother as mother, offspr as offspr, mate as mate)
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

select new map(max(c.bodyWeight) as max, min(c.bodyWeight) as min,
count(*) as n)
from Cat cxt

The results from this query will be a List<Map<String,Object>> as opposed to a
List<Object[]>. The keys of the map are defined by the aliases given to the select
expressions.

4.8. ABOUT HQL PREDICATES

CHAPTER 4. HIBERNATE QUERY LANGUAGE

27

Predicates form the basis of the where clause, the having clause and searched case
expressions. They are expressions which resolve to a truth value, generally TRUE or FALSE,
although boolean comparisons involving NULL values generally resolve to UNKNOWN.

HQL Predicates

Null Predicate
Check a value for null. Can be applied to basic attribute references, entity
references and parameters. HQL additionally allows it to be applied to
component/embeddable types.

Example: NULL Check

// select everyone with an associated address
select p
from Person p
where p.address is not null

// select everyone without an associated address
select p
from Person p
 where p.address is null

Like Predicate
Performs a like comparison on string values. The syntax is:

like_expression ::=
 string_expression
 [NOT] LIKE pattern_value
 [ESCAPE escape_character]

The semantics follow that of the SQL like expression. The pattern_value is the
pattern to attempt to match in the string_expression. Just like SQL,
pattern_value can use _ (underscore) and % (percent) as wildcards. The meanings
are the same. The _ matches any single character. The % matches any number of
characters.

The optional escape_character is used to specify an escape character used to
escape the special meaning of _ and % in the pattern_value. This is useful when
needing to search on patterns including either _ or %.

Example: LIKE Predicate

select p
from Person p
where p.name like '%Schmidt'

select p
from Person p
where p.name not like 'Jingleheimmer%'

// find any with name starting with "sp_"
select sp
from StoredProcedureMetadata sp
where sp.name like 'sp|_%' escape '|'

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

28

Between Predicate
Analogous to the SQL BETWEEN expression. Perform an evaluation that a value is
within the range of 2 other values. All the operands should have comparable types.

Example: BETWEEN Predicate

select p
from Customer c
 join c.paymentHistory p
where c.id = 123
 and index(p) between 0 and 9

select c
from Customer c
where c.president.dateOfBirth
 between {d '1945-01-01'}
 and {d '1965-01-01'}

select o
from Order o
where o.total between 500 and 5000

select p
from Person p
where p.name between 'A' and 'E'

IN Predicate
The IN predicate performs a check that a particular value is in a list of values. Its
syntax is:

in_expression ::= single_valued_expression
 [NOT] IN single_valued_list

single_valued_list ::= constructor_expression |
 (subquery) |
 collection_valued_input_parameter

constructor_expression ::= (expression[, expression]*)

The types of the single_valued_expression and the individual values in the
single_valued_list must be consistent. JPQL limits the valid types here to string,
numeric, date, time, timestamp, and enum types. In JPQL,
single_valued_expression can only refer to:

"state fields", which is its term for simple attributes. Specifically this excludes
association and component/embedded attributes.

entity type expressions.
In HQL, single_valued_expression can refer to a far more broad set of
expression types. Single-valued association are allowed. So are
component/embedded attributes, although that feature depends on the level of
support for tuple or "row value constructor syntax" in the underlying database.
Additionally, HQL does not limit the value type in any way, though application

CHAPTER 4. HIBERNATE QUERY LANGUAGE

29

developers should be aware that different types may incur limited support based
on the underlying database vendor. This is largely the reason for the JPQL
limitations.

The list of values can come from a number of different sources. In the
constructor_expression and collection_valued_input_parameter, the list of
values must not be empty; it must contain at least one value.

Example: IN Predicate

select p
from Payment p
where type(p) in (CreditCardPayment, WireTransferPayment)

select c
from Customer c
where c.hqAddress.state in ('TX', 'OK', 'LA', 'NM')

select c
from Customer c
where c.hqAddress.state in ?

select c
from Customer c
where c.hqAddress.state in (
 select dm.state
 from DeliveryMetadata dm
 where dm.salesTax is not null
)

// Not JPQL compliant!
select c
from Customer c
where c.name in (
 ('John','Doe'),
 ('Jane','Doe')
)

// Not JPQL compliant!
select c
from Customer c
where c.chiefExecutive in (
 select p
 from Person p
 where ...
)

4.9. ABOUT RELATIONAL COMPARISONS
Comparisons involve one of the comparison operators - =, >, >=, <, ⇐, <>. HQL also
defines != as a comparison operator synonymous with <>. The operands should be of the
same type.

Example: Relational Comparison Examples

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

30

// numeric comparison
select c
from Customer c
where c.chiefExecutive.age < 30

// string comparison
select c
from Customer c
where c.name = 'Acme'

// datetime comparison
select c
from Customer c
where c.inceptionDate < {d '2000-01-01'}

// enum comparison
select c
from Customer c
where c.chiefExecutive.gender = com.acme.Gender.MALE

// boolean comparison
select c
from Customer c
where c.sendEmail = true

// entity type comparison
select p
from Payment p
where type(p) = WireTransferPayment

// entity value comparison
select c
from Customer c
where c.chiefExecutive = c.chiefTechnologist

Comparisons can also involve subquery qualifiers - ALL, ANY, SOME. SOME and ANY are
synonymous.

The ALL qualifier resolves to true if the comparison is true for all of the values in the result
of the subquery. It resolves to false if the subquery result is empty.

Example: ALL Subquery Comparison Qualifier Example

// select all players that scored at least 3 points
// in every game.
select p
from Player p
where 3 > all (
 select spg.points
 from StatsPerGame spg
 where spg.player = p
)

The ANY/SOME qualifier resolves to true if the comparison is true for at least one of the
values in the result of the subquery. It resolves to false if the subquery result is empty.

CHAPTER 4. HIBERNATE QUERY LANGUAGE

31

4.10. BYTECODE ENHANCEMENT

4.10.1. Lazy Attribute Loading
Lazy attribute loading is a bytecode enhancement which allows you to tell Hibernate that
only certain parts of an entity should be loaded upon fetching from the database, and when
the other remaining parts should be loaded as well. This is different from proxy-based idea
of lazy loading which is entity-centric where the entity’s state is loaded at once as needed.
With bytecode enhancement, individual attributes or groups of attributes are loaded as
needed.

Lazy attributes can be designated to be loaded together and this is called a lazy group. By
default, all singular attributes are part of a single group. When one lazy singular attribute is
accessed, all lazy singular attributes are loaded. Contrary to lazy singular group, lazy plural
attributes are each a discrete lazy group. This behavior is explicitly controllable through the
@org.hibernate.annotations.LazyGroup annotation.

@Entity
public class Customer {

 @Id
 private Integer id;

 private String name;

 @Basic(fetch = FetchType.LAZY)
 private UUID accountsPayableXrefId;

 @Lob
 @Basic(fetch = FetchType.LAZY)
 @LazyGroup("lobs")
 private Blob image;

 public Integer getId() {
 return id;
 }

 public void setId(Integer id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public UUID getAccountsPayableXrefId() {
 return accountsPayableXrefId;
 }

 public void setAccountsPayableXrefId(UUID accountsPayableXrefId) {
 this.accountsPayableXrefId = accountsPayableXrefId;

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

32

In the example above, there are two lazy attributes: accountsPayableXrefId and image.
Each of these attributes is part of a different fetch group. The accountsPayableXrefId
attribute is a part of the default fetch group, which means that accessing
accountsPayableXrefId will not force the loading of the image attribute, and vice versa.

 }

 public Blob getImage() {
 return image;
 }

 public void setImage(Blob image) {
 this.image = image;
 }
}

CHAPTER 4. HIBERNATE QUERY LANGUAGE

33

CHAPTER 5. HIBERNATE SERVICES

5.1. ABOUT HIBERNATE SERVICES
Services are classes that provide Hibernate with pluggable implementations of various
types of functionality. Specifically they are implementations of certain service contract
interfaces. The interface is known as the service role; the implementation class is known as
the service implementation. Generally speaking, users can plug in alternate
implementations of all standard service roles (overriding); they can also define additional
services beyond the base set of service roles (extending).

5.2. ABOUT SERVICE CONTRACTS
The basic requirement for a service is to implement the marker interface
org.hibernate.service.Service. Hibernate uses this internally for some basic type safety.

Optionally, the service can also implement the org.hibernate.service.spi.Startable and
org.hibernate.service.spi.Stoppable interfaces to receive notifications of being started and
stopped. Another optional service contract is org.hibernate.service.spi.Manageable which
marks the service as manageable in JMX provided the JMX integration is enabled.

5.3. TYPES OF SERVICE DEPENDENCIES
Services are allowed to declare dependencies on other services using either of the
following approaches:

@org.hibernate.service.spi.InjectService
Any method on the service implementation class accepting a single parameter and
annotated with @InjectService is considered requesting injection of another service.
By default the type of the method parameter is expected to be the service role to be
injected. If the parameter type is different than the service role, the serviceRole
attribute of the InjectService should be used to explicitly name the role.

By default injected services are considered required, that is the startup will fail if a
named dependent service is missing. If the service to be injected is optional, the
required attribute of the InjectService should be declared as false. The default is
true.

org.hibernate.service.spi.ServiceRegistryAwareService
The second approach is a pull approach where the service implements the optional
service interface org.hibernate.service.spi.ServiceRegistryAwareService which
declares a single injectServices method.
During startup, Hibernate will inject the org.hibernate.service.ServiceRegistry
itself into services which implement this interface. The service can then use the
ServiceRegistry reference to locate any additional services it needs.

5.3.1. The Service Registry

5.3.1.1. About the ServiceRegistry

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

34

The central service API, aside from the services themselves, is the
org.hibernate.service.ServiceRegistry interface. The main purpose of a service registry is to
hold, manage and provide access to services.

Service registries are hierarchical. Services in one registry can depend on and utilize
services in that same registry as well as any parent registries.

Use org.hibernate.service.ServiceRegistryBuilder to build a
org.hibernate.service.ServiceRegistry instance.

Example Using ServiceRegistryBuilder to Create a ServiceRegistry

5.3.2. Custom Services

5.3.2.1. About Custom Services

Once a org.hibernate.service.ServiceRegistry is built it is considered immutable; the
services themselves might accept reconfiguration, but immutability here means adding or
replacing services. So another role provided by the
org.hibernate.service.ServiceRegistryBuilder is to allow tweaking of the services
that will be contained in the org.hibernate.service.ServiceRegistry generated from it.

There are two means to tell a org.hibernate.service.ServiceRegistryBuilder about
custom services.

Implement a org.hibernate.service.spi.BasicServiceInitiator class to
control on-demand construction of the service class and add it to the
org.hibernate.service.ServiceRegistryBuilder using its addInitiator
method.

Just instantiate the service class and add it to the
org.hibernate.service.ServiceRegistryBuilder using its addService method.

Either approach is valid for extending a registry, such as adding new service roles, and
overriding services, such as replacing service implementations.

Example: Use ServiceRegistryBuilder to Replace an Existing Service with a
Custom Service

ServiceRegistryBuilder registryBuilder =
 new ServiceRegistryBuilder(bootstrapServiceRegistry);
 ServiceRegistry serviceRegistry =
registryBuilder.buildServiceRegistry();

ServiceRegistryBuilder registryBuilder =
 new ServiceRegistryBuilder(bootstrapServiceRegistry);
registryBuilder.addService(JdbcServices.class, new MyCustomJdbcService());
ServiceRegistry serviceRegistry = registryBuilder.buildServiceRegistry();

public class MyCustomJdbcService implements JdbcServices{

 @Override
 public ConnectionProvider getConnectionProvider() {
 return null;
 }

CHAPTER 5. HIBERNATE SERVICES

35

5.3.3. The Boot-Strap Registry

5.3.3.1. About the Boot-strap Registry

The boot-strap registry holds services that absolutely have to be available for most things
to work. The main service here is the ClassLoaderService which is a perfect example.
Even resolving configuration files needs access to class loading services i.e. resource look
ups. This is the root registry, no parent, in normal use.

Instances of boot-strap registries are built using the
org.hibernate.service.BootstrapServiceRegistryBuilder class.

Using BootstrapServiceRegistryBuilder

Example: Using BootstrapServiceRegistryBuilder

 @Override
 public Dialect getDialect() {
 return null;
 }

 @Override
 public SqlStatementLogger getSqlStatementLogger() {
 return null;
 }

 @Override
 public SqlExceptionHelper getSqlExceptionHelper() {
 return null;
 }

 @Override
 public ExtractedDatabaseMetaData getExtractedMetaDataSupport() {
 return null;
 }

 @Override
 public LobCreator getLobCreator(LobCreationContext lobCreationContext)
{
 return null;
 }

 @Override
 public ResultSetWrapper getResultSetWrapper() {
 return null;
 }
}

BootstrapServiceRegistry bootstrapServiceRegistry =
 new BootstrapServiceRegistryBuilder()
 // pass in org.hibernate.integrator.spi.Integrator instances which are
not
 // auto-discovered (for whatever reason) but which should be included
 .with(anExplicitIntegrator)

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

36

5.3.3.2. BootstrapRegistry Services

org.hibernate.service.classloading.spi.ClassLoaderService
Hibernate needs to interact with class loaders. However, the manner in which Hibernate,
or any library, should interact with class loaders varies based on the runtime
environment that is hosting the application. Application servers, OSGi containers, and
other modular class loading systems impose very specific class loading requirements.
This service provides Hibernate an abstraction from this environmental complexity. And
just as importantly, it does so in a single-swappable-component manner.
In terms of interacting with a class loader, Hibernate needs the following capabilities:

the ability to locate application classes

the ability to locate integration classes

the ability to locate resources, such as properties files and XML files

the ability to load java.util.ServiceLoader

NOTE

Currently, the ability to load application classes and the ability to
load integration classes are combined into a single load class
capability on the service. That may change in a later release.

org.hibernate.integrator.spi.IntegratorService
Applications, add-ons and other modules need to integrate with Hibernate. The previous
approach required a component, usually an application, to coordinate the registration of
each individual module. This registration was conducted on behalf of each module’s
integrator.
This service focuses on the discovery aspect. It leverages the standard Java
java.util.ServiceLoader capability provided by the
org.hibernate.service.classloading.spi.ClassLoaderService in order to discover
implementations of the org.hibernate.integrator.spi.Integrator contract.

Integrators would simply define a file named /META-
INF/services/org.hibernate.integrator.spi.Integrator and make it available on
the class path.

This file is used by the java.util.ServiceLoader mechanism. It lists, one per line, the
fully qualified names of classes which implement the
org.hibernate.integrator.spi.Integrator interface.

 // pass in a class loader that Hibernate should use to load
application classes
 .with(anExplicitClassLoaderForApplicationClasses)
 // pass in a class loader that Hibernate should use to load resources
 .with(anExplicitClassLoaderForResources)
 // see BootstrapServiceRegistryBuilder for rest of available methods
 ...
 // finally, build the bootstrap registry with all the above options
 .build();

CHAPTER 5. HIBERNATE SERVICES

37

5.3.4. SessionFactory Registry
While it is best practice to treat instances of all the registry types as targeting a given
org.hibernate.SessionFactory, the instances of services in this group explicitly belong
to a single org.hibernate.SessionFactory.

The difference is a matter of timing in when they need to be initiated. Generally they need
access to the org.hibernate.SessionFactory to be initiated. This special registry is
org.hibernate.service.spi.SessionFactoryServiceRegistry.

5.3.4.1. SessionFactory Services

org.hibernate.event.service.spi.EventListenerRegistry

Description
Service for managing event listeners.

Initiator
org.hibernate.event.service.internal.EventListenerServiceInitiator

Implementations
org.hibernate.event.service.internal.EventListenerRegistryImpl

5.3.5. Integrators
The org.hibernate.integrator.spi.Integrator is intended to provide a simple means
for allowing developers to hook into the process of building a functioning SessionFactory.
The org.hibernate.integrator.spi.Integrator interface defines two methods of
interest:

integrate allows us to hook into the building process

disintegrate allows us to hook into a SessionFactory shutting down.

NOTE

There is a third method defined in
org.hibernate.integrator.spi.Integrator, an overloaded form of
integrate, accepting a
org.hibernate.metamodel.source.MetadataImplementor instead of
org.hibernate.cfg.Configuration.

In addition to the discovery approach provided by the IntegratorService,
applications can manually register Integrator implementations when building
the BootstrapServiceRegistry.

5.3.5.1. Integrator Use Cases

The main use cases for an org.hibernate.integrator.spi.Integrator are registering
event listeners and providing services, see
org.hibernate.integrator.spi.ServiceContributingIntegrator.

Example: Registering Event Listeners

public class MyIntegrator implements

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

38

http://docs.jboss.org/hibernate/orm/5.2/javadocs/org/hibernate/integrator/spi/ServiceContributingIntegrator.html

org.hibernate.integrator.spi.Integrator {

 public void integrate(
 Configuration configuration,
 SessionFactoryImplementor sessionFactory,
 SessionFactoryServiceRegistry serviceRegistry) {
 // As you might expect, an EventListenerRegistry is the thing with
which event listeners are registered It is a
 // service so we look it up using the service registry
 final EventListenerRegistry eventListenerRegistry =
serviceRegistry.getService(EventListenerRegistry.class);

 // If you wish to have custom determination and handling of
"duplicate" listeners, you would have to add an
 // implementation of the
org.hibernate.event.service.spi.DuplicationStrategy contract like this

eventListenerRegistry.addDuplicationStrategy(myDuplicationStrategy);

 // EventListenerRegistry defines 3 ways to register listeners:
 // 1) This form overrides any existing registrations with
 eventListenerRegistry.setListeners(EventType.AUTO_FLUSH,
myCompleteSetOfListeners);
 // 2) This form adds the specified listener(s) to the
beginning of the listener chain
 eventListenerRegistry.prependListeners(EventType.AUTO_FLUSH,
myListenersToBeCalledFirst);
 // 3) This form adds the specified listener(s) to the end of
the listener chain
 eventListenerRegistry.appendListeners(EventType.AUTO_FLUSH,
myListenersToBeCalledLast);
 }
}

CHAPTER 5. HIBERNATE SERVICES

39

CHAPTER 6. HIBERNATE ENVERS

6.1. ABOUT HIBERNATE ENVERS
Hibernate Envers is an auditing and versioning system, providing JBoss EAP with a means to
track historical changes to persistent classes. Audit tables are created for entities
annotated with @Audited, which store the history of changes made to the entity. The data
can then be retrieved and queried.

Envers allows developers to:

audit all mappings defined by the JPA specification

audit all hibernate mappings that extend the JPA specification

audit entities mapped by or using the native Hibernate API

log data for each revision using a revision entity

query historical data

6.2. ABOUT AUDITING PERSISTENT CLASSES
Auditing of persistent classes is done in JBoss EAP through Hibernate Envers and the
@Audited annotation. When the annotation is applied to a class, a table is created, which
stores the revision history of the entity.

Each time a change is made to the class, an entry is added to the audit table. The entry
contains the changes to the class, and is given a revision number. This means that changes
can be rolled back, or previous revisions can be viewed.

6.3. AUDITING STRATEGIES

6.3.1. About Auditing Strategies
Auditing strategies define how audit information is persisted, queried and stored. There are
currently two audit strategies available with Hibernate Envers:

Default Audit Strategy

This strategy persists the audit data together with a start revision. For each row
that is inserted, updated or deleted in an audited table, one or more rows are
inserted in the audit tables, along with the start revision of its validity.

Rows in the audit tables are never updated after insertion. Queries of audit
information use subqueries to select the applicable rows in the audit tables,
which are slow and difficult to index.

Validity Audit Strategy

This strategy stores the start revision, as well as the end revision of the audit
information. For each row that is inserted, updated or deleted in an audited table,
one or more rows are inserted in the audit tables, along with the start revision of
its validity.

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

40

At the same time, the end revision field of the previous audit rows (if available) is
set to this revision. Queries on the audit information can then use between start
and end revision, instead of subqueries. This means that persisting audit
information is a little slower because of the extra updates, but retrieving audit
information is a lot faster.

This can also be improved by adding extra indexes.

For more information on auditing, see About Auditing Persistent Classes. To set the auditing
strategy for the application, see Set the Auditing Strategy.

6.3.2. Set the Auditing Strategy
There are two audit strategies supported by JBoss EAP:

The default audit strategy

The validity audit strategy

Define an Auditing Strategy
Configure the org.hibernate.envers.audit_strategy property in the persistence.xml
file of the application. If the property is not set in the persistence.xml file, then the
default audit strategy is used.

Set the Default Audit Strategy

Set the Validity Audit Strategy

6.3.3. Adding Auditing Support to a JPA Entity
JBoss EAP uses entity auditing, through About Hibernate Envers, to track the historical
changes of a persistent class. This section covers adding auditing support for a JPA entity.

Add Auditing Support to a JPA Entity

1. Configure the available auditing parameters to suit the deployment. See Configure
Envers Parameters for details.

2. Open the JPA entity to be audited.

3. Import the org.hibernate.envers.Audited interface.

4. Apply the @Audited annotation to each field or property to be audited, or apply it
once to the whole class.

Example: Audit Two Fields

<property name="org.hibernate.envers.audit_strategy"
value="org.hibernate.envers.strategy.DefaultAuditStrategy"/>

<property name="org.hibernate.envers.audit_strategy"
value="org.hibernate.envers.strategy.ValidityAuditStrategy"/>

CHAPTER 6. HIBERNATE ENVERS

41

Example: Audit an Entire Class

Once the JPA entity has been configured for auditing, a table called _AUD will be created to
store the historical changes.

import org.hibernate.envers.Audited;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.Column;

@Entity
public class Person {
 @Id
 @GeneratedValue
 private int id;

 @Audited
 private String name;

 private String surname;

 @ManyToOne
 @Audited
 private Address address;

 // add getters, setters, constructors, equals and hashCode here
}

import org.hibernate.envers.Audited;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.Column;

@Entity
@Audited
public class Person {
 @Id
 @GeneratedValue
 private int id;

 private String name;

 private String surname;

 @ManyToOne
 private Address address;

 // add getters, setters, constructors, equals and hashCode here
}

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

42

6.4. CONFIGURATION

6.4.1. Configure Envers Parameters
JBoss EAP uses entity auditing, through Hibernate Envers, to track the historical changes of
a persistent class.

Configuring the Available Envers Parameters

1. Open the persistence.xml file for the application.

2. Add, remove or configure Envers properties as required. For a list of available
properties, see Envers Configuration Properties.

Example: Envers Parameters

6.4.2. Enable or Disable Auditing at Runtime

Enable or Disable Entity Version Auditing at Runtime

1. Subclass the AuditEventListener class.

2. Override the following methods that are called on Hibernate events:

onPostInsert

onPostUpdate

onPostDelete

onPreUpdateCollection

onPreRemoveCollection

onPostRecreateCollection

<persistence-unit name="mypc">
 <description>Persistence Unit.</description>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-
source>
 <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create-drop" />
 <property name="hibernate.show_sql" value="true" />
 <property name="hibernate.cache.use_second_level_cache"
value="true" />
 <property name="hibernate.cache.use_query_cache" value="true" />
 <property name="hibernate.generate_statistics" value="true" />
 <property name="org.hibernate.envers.versionsTableSuffix"
value="_V" />
 <property name="org.hibernate.envers.revisionFieldName"
value="ver_rev" />
 </properties>
</persistence-unit>

CHAPTER 6. HIBERNATE ENVERS

43

3. Specify the subclass as the listener for the events.

4. Determine if the change should be audited.

5. Pass the call to the superclass if the change should be audited.

6.4.3. Configure Conditional Auditing
Hibernate Envers persists audit data in reaction to various Hibernate events, using a series
of event listeners. These listeners are registered automatically if the Envers jar is in the
class path.

Implement Conditional Auditing

1. Set the hibernate.listeners.envers.autoRegister Hibernate property to false in
the persistence.xml file.

2. Subclass each event listener to be overridden. Place the conditional auditing logic in
the subclass, and call the super method if auditing should be performed.

3. Create a custom implementation of org.hibernate.integrator.spi.Integrator,
similar to org.hibernate.envers.event.EnversIntegrator. Use the event listener
subclasses created in step two, rather than the default classes.

4. Add a META-INF/services/org.hibernate.integrator.spi.Integrator file to the
jar. This file should contain the fully qualified name of the class implementing the
interface.

6.4.4. Envers Configuration Properties

Table 6.1. Entity Data Versioning Configuration Parameters

Property Name Default Value Description

org.hibernate.envers.aud
it_table_prefix

 A string that is prepended to the
name of an audited entity, to create
the name of the entity that will hold
the audit information.

org.hibernate.envers.aud
it_table_suffix

_AUD A string that is appended to the
name of an audited entity to create
the name of the entity that will hold
the audit information. For example,
if an entity with a table name of
Person is audited, Envers will
generate a table called Person_AUD
to store the historical data.

org.hibernate.envers.rev
ision_field_name

REV The name of the field in the audit
entity that holds the revision
number.

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

44

org.hibernate.envers.rev
ision_type_field_name

REVTYPE The name of the field in the audit
entity that holds the type of revision.
The current types of revisions
possible are: add, mod and del for
inserting, modifying or deleting
respectively.

org.hibernate.envers.rev
ision_on_collection_chan
ge

true This property determines if a
revision should be generated if a
relation field that is not owned
changes. This can either be a
collection in a one-to-many relation,
or the field using the mappedBy
attribute in a one-to-one relation.

org.hibernate.envers.do_
not_audit_optimistic_loc
king_field

true When true, properties used for
optimistic locking (annotated with
@Version) will automatically be
excluded from auditing.

org.hibernate.envers.sto
re_data_at_delete

false This property defines whether or not
entity data should be stored in the
revision when the entity is deleted,
instead of only the ID, with all other
properties marked as null. This is
not usually necessary, as the data is
present in the last-but-one revision.
Sometimes, however, it is easier and
more efficient to access it in the last
revision. However, this means the
data the entity contained before
deletion is stored twice.

org.hibernate.envers.def
ault_schema

null (same as normal
tables)

The default schema name used for
audit tables. Can be overridden
using the
@AuditTable(schema="… ​")
annotation. If not present, the
schema will be the same as the
schema of the normal tables.

org.hibernate.envers.def
ault_catalog

null (same as normal
tables)

The default catalog name that
should be used for audit tables. Can
be overridden using the
@AuditTable(catalog="… ​")
annotation. If not present, the
catalog will be the same as the
catalog of the normal tables.

Property Name Default Value Description

CHAPTER 6. HIBERNATE ENVERS

45

org.hibernate.envers.aud
it_strategy

org.hibernate.en
vers.strategy.De
faultAuditStrate
gy

This property defines the audit
strategy that should be used when
persisting audit data. By default,
only the revision where an entity
was modified is stored. Alternatively,
org.hibernate.envers.strateg
y.ValidityAuditStrategy stores
both the start revision and the end
revision. Together, these define
when an audit row was valid.

org.hibernate.envers.aud
it_strategy_validity_end
_rev_field_name

REVEND The column name that will hold the
end revision number in audit
entities. This property is only valid if
the validity audit strategy is used.

org.hibernate.envers.aud
it_strategy_validity_sto
re_revend_timestamp

false This property defines whether the
timestamp of the end revision,
where the data was last valid,
should be stored in addition to the
end revision itself. This is useful to
be able to purge old audit records
out of a relational database by using
table partitioning. Partitioning
requires a column that exists within
the table. This property is only
evaluated if the
ValidityAuditStrategy is used.

org.hibernate.envers.aud
it_strategy_validity_rev
end_timestamp_field_name

REVEND_TSTMP Column name of the timestamp of
the end revision at which point the
data was still valid. Only used if the
ValidityAuditStrategy is used,
and
org.hibernate.envers.audit_s
trategy_validity_store_reven
d_timestamp evaluates to true.

Property Name Default Value Description

6.5. QUERYING AUDIT INFORMATION

6.5.1. Retrieve Auditing Information Through Queries
Hibernate Envers provides the functionality to retrieve audit information through queries.

NOTE

Queries on the audited data will be, in many cases, much slower than
corresponding queries on live data, as they involve correlated subselects.

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

46

Querying for Entities of a Class at a Given Revision
The entry point for this type of query is:

Constraints can then be specified, using the AuditEntity factory class. The query below
only selects entities where the name property is equal to John:

The queries below only select entities that are related to a given entity:

The results can then be ordered, limited, and have aggregations and projections (except
grouping) set. The example below is a full query.

Query Revisions where Entities of a Given Class Changed
The entry point for this type of query is:

Constraints can be added to this query in the same way as the previous example. There
are additional possibilities for this query:

AuditEntity.revisionNumber()
Specify constraints, projections and order on the revision number in which the audited
entity was modified.

AuditEntity.revisionProperty(propertyName)
Specify constraints, projections and order on a property of the revision entity,
corresponding to the revision in which the audited entity was modified.

AuditEntity.revisionType()
Provides accesses to the type of the revision (ADD, MOD, DEL).

The query results can then be adjusted as necessary. The query below selects the smallest
revision number at which the entity of the MyEntity class, with the entityId ID has
changed, after revision number 42:

AuditQuery query = getAuditReader()
 .createQuery()
 .forEntitiesAtRevision(MyEntity.class, revisionNumber);

query.add(AuditEntity.property("name").eq("John"));

query.add(AuditEntity.property("address").eq(relatedEntityInstance));
// or
query.add(AuditEntity.relatedId("address").eq(relatedEntityId));

List personsAtAddress = getAuditReader().createQuery()
 .forEntitiesAtRevision(Person.class, 12)
 .addOrder(AuditEntity.property("surname").desc())
 .add(AuditEntity.relatedId("address").eq(addressId))
 .setFirstResult(4)
 .setMaxResults(2)
 .getResultList();

AuditQuery query = getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true);

CHAPTER 6. HIBERNATE ENVERS

47

Queries for revisions can also minimize/maximize a property. The query below selects the
revision at which the value of the actualDate for a given entity was larger than a given
value, but as small as possible:

The minimize() and maximize() methods return a criteria, to which constraints can be
added, which must be met by the entities with the maximized/minimized properties.

There are two boolean parameters passed when creating the query.

selectEntitiesOnly

This parameter is only valid when an explicit projection is not set.
If true, the result of the query will be a list of entities that changed at revisions
satisfying the specified constraints.
If false, the result will be a list of three element arrays. The first element will be the
changed entity instance. The second will be an entity containing revision data. If no
custom entity is used, this will be an instance of DefaultRevisionEntity. The third
element array will be the type of the revision (ADD, MOD, DEL).

selectDeletedEntities
This parameter specifies if revisions in which the entity was deleted must be included in
the results. If true, the entities will have the revision type DEL, and all fields, except id,
will have the value null.

Query Revisions of an Entity that Modified a Given Property
The query below will return all revisions of MyEntity with a given id, where the actualDate
property has been changed.

The hasChanged condition can be combined with additional criteria. The query below will
return a horizontal slice for MyEntity at the time the revisionNumber was generated. It will
be limited to the revisions that modified prop1, but not prop2.

Number revision = (Number) getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 .setProjection(AuditEntity.revisionNumber().min())
 .add(AuditEntity.id().eq(entityId))
 .add(AuditEntity.revisionNumber().gt(42))
 .getSingleResult();

Number revision = (Number) getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 // We are only interested in the first revision
 .setProjection(AuditEntity.revisionNumber().min())
 .add(AuditEntity.property("actualDate").minimize()
 .add(AuditEntity.property("actualDate").ge(givenDate))
 .add(AuditEntity.id().eq(givenEntityId)))
 .getSingleResult();

AuditQuery query = getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 .add(AuditEntity.id().eq(id));
 .add(AuditEntity.property("actualDate").hasChanged())

AuditQuery query = getAuditReader().createQuery()

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

48

The result set will also contain revisions with numbers lower than the revisionNumber. This
means that this query cannot be read as "Return all MyEntities changed in
revisionNumber with prop1 modified and prop2 untouched."

The query below shows how this result can be returned, using the
forEntitiesModifiedAtRevision query:

Query Entities Modified in a Given Revision
The example below shows the basic query for entities modified in a given revision. It allows
entity names and corresponding Java classes changed in a specified revision to be
retrieved:

There are a number of other queries that are also accessible from
org.hibernate.envers.CrossTypeRevisionChangesReader:

List<Object> findEntities(Number)
Returns snapshots of all audited entities changed (added, updated and removed) in a
given revision. Executes n+1 SQL queries, where n is a number of different entity classes
modified within the specified revision.

List<Object> findEntities(Number, RevisionType)
Returns snapshots of all audited entities changed (added, updated or removed) in a
given revision filtered by modification type. Executes n+1 SQL queries, where n is a
number of different entity classes modified within specified revision. Map<RevisionType,
List<Object>>

findEntitiesGroupByRevisionType(Number)
Returns a map containing lists of entity snapshots grouped by modification operation, for
example, addition, update or removal. Executes 3n+1 SQL queries, where n is a number
of different entity classes modified within specified revision.

6.5.2. Traversing Entity Associations Using Properties of Referenced
Entities
You can use the properties of a referenced entity to traverse entities in a query. This
enables you to query for one-to-one and many-to-one associations.

The examples below demonstrate some of the ways you can traverse entities in a query.

In revision number 1, find cars where the owner is age 20 or lives at address number
30, then order the result set by car make.

 .forEntitiesAtRevision(MyEntity.class, revisionNumber)
 .add(AuditEntity.property("prop1").hasChanged())
 .add(AuditEntity.property("prop2").hasNotChanged());

AuditQuery query = getAuditReader().createQuery()
 .forEntitiesModifiedAtRevision(MyEntity.class, revisionNumber)
 .add(AuditEntity.property("prop1").hasChanged())
 .add(AuditEntity.property("prop2").hasNotChanged());

Set<Pair<String, Class>> modifiedEntityTypes = getAuditReader()
 .getCrossTypeRevisionChangesReader().findEntityTypes(revisionNumber);

CHAPTER 6. HIBERNATE ENVERS

49

In revision number 1, find the car where the owner age is equal to the owner
address number.

In revision number 1, find all cars where the owner is age 20 or where there is no
owner.

In revision number 1, find all cars where the make equals "car3", and where the
owner is age 30 or there is no no owner.

In revision number 1, find all cars where the make equals "car3" or where or the
owner is age 10 or where there is no owner.

List<Car> resultList = auditReader.createQuery()
 .forEntitiesAtRevision(Car.class, 1)
 .traverseRelation("owner", JoinType.INNER, "p")
 .traverseRelation("address", JoinType.INNER, "a")
 .up().up().add(
AuditEntity.disjunction().add(AuditEntity.property("p", "age")
 .eq(20)).add(AuditEntity.property("a",
"number").eq(30)))
 .addOrder(AuditEntity.property("make").asc()
).getResultList();

Car result = (Car) auditReader.createQuery()
 .forEntitiesAtRevision(Car.class, 1)
 .traverseRelation("owner", JoinType.INNER, "p")
 .traverseRelation("address", JoinType.INNER, "a")
 .up().up().add(AuditEntity.property("p", "age")
 .eqProperty("a", "number")
).getSingleResult();

List<Car> resultList = auditReader.createQuery()
 .forEntitiesAtRevision(Car.class, 1)
 .traverseRelation("owner", JoinType.LEFT, "p")
 .up().add(AuditEntity.or(AuditEntity.property(
"p", "age").eq(20),
 AuditEntity.relatedId("owner").eq(null)
))
 .addOrder(AuditEntity.property("make").asc()
).getResultList();

List<Car> resultList = auditReader.createQuery()
 .forEntitiesAtRevision(Car.class, 1)
 .traverseRelation("owner", JoinType.LEFT, "p")
 .up().add(AuditEntity.and(AuditEntity.property(
"make").eq("car3"), AuditEntity.property("p", "age").eq(30))
)
 .getResultList();

List<Car> resultList = auditReader.createQuery()
 .forEntitiesAtRevision(Car.class, 1)
 .traverseRelation("owner", JoinType.LEFT, "p")
 .up().add(AuditEntity.or(AuditEntity.property(

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

50

6.6. PERFORMANCE TUNING

6.6.1. Alternative Batch Loading Algorithms
Hibernate allows you to load data for associations using one of four fetching strategies:
join, select, subselect and batch. Out of these four strategies, batch loading allows for the
biggest performance gains as it is an optimization strategy for select fetching. In this
strategy, Hibernate retrieves a batch of entity instances or collections in a single SELECT
statement by specifying a list of primary or foreign keys. Batch fetching is an optimization
of the lazy select fetching strategy.

There are two ways to configure batch fetching: per-class level or per-collection level.

Per-class Level
When Hibernate loads data on a per-class level, it requires the batch size of the
association to pre-load when queried. For example, consider that at runtime you
have 30 instances of a car object loaded in session. Each car object belongs to an
owner object. If you were to iterate through all the car objects and request their
owners, with lazy loading, Hibernate will issue 30 select statements - one for each
owner. This is a performance bottleneck.

You can instead, tell Hibernate to pre-load the data for the next batch of owners
before they have been sought via a query. When an owner object has been queried,
Hibernate will query many more of these objects in the same SELECT statement.

The number of owner objects to query in advance depends upon the batch-size
parameter specified at configuration time:

This tells Hibernate to query at least 10 more owner objects in expectation of them
being needed in the near future. When a user queries the owner of car A, the owner
of car B may already have been loaded as part of batch loading. When the user
actually needs the owner of car B, instead of going to the database (and issuing a
SELECT statement), the value can be retrieved from the current session.

In addition to the batch-size parameter, Hibernate 4.2.0 has introduced a new
configuration item to improve in batch loading performance. The configuration item
is called Batch Fetch Style configuration and specified by the
hibernate.batch_fetch_style parameter.

Three different batch fetch styles are supported: LEGACY, PADDED and DYNAMIC. To
specify which style to use, use
org.hibernate.cfg.AvailableSettings#BATCH_FETCH_STYLE.

LEGACY: In the legacy style of loading, a set of pre-built batch sizes based on
ArrayHelper.getBatchSizes(int) are utilized. Batches are loaded using the
next-smaller pre-built batch size from the number of existing batchable
identifiers.
Continuing with the above example, with a batch-size setting of 30, the pre-
built batch sizes would be [30, 15, 10, 9, 8, 7, .., 1]. An attempt to batch load 29

"make").eq("car3"), AuditEntity.property("p", "age").eq(10))
)
 .getResultList();

<class name="owner" batch-size="10"></class>

CHAPTER 6. HIBERNATE ENVERS

51

identifiers would result in batches of 15, 10, and 4. There will be 3 corresponding
SQL queries, each loading 15, 10 and 4 owners from the database.

PADDED - Padded is similar to LEGACY style of batch loading. It still utilizes pre-
built batch sizes, but uses the next-bigger batch size and pads the extra
identifier placeholders.
As with the example above, if 30 owner objects are to be initialized, there will
only be one query executed against the database.

However, if 29 owner objects are to be initialized, Hibernate will still execute
only one SQL select statement of batch size 30, with the extra space padded
with a repeated identifier.

Dynamic - While still conforming to batch-size restrictions, this style of batch
loading dynamically builds its SQL SELECT statement using the actual number of
objects to be loaded.
For example, for 30 owner objects, and a maximum batch size of 30, a call to
retrieve 30 owner objects will result in one SQL SELECT statement. A call to
retrieve 35 will result in two SQL statements, of batch sizes 30 and 5
respectively. Hibernate will dynamically alter the second SQL statement to keep
at 5, the required number, while still remaining under the restriction of 30 as the
batch-size. This is different to the PADDED version, as the second SQL will not
get PADDED, and unlike the LEGACY style, there is no fixed size for the second
SQL statement - the second SQL is created dynamically.

For a query of less than 30 identifiers, this style will dynamically only load the
number of identifiers requested.

Per-collection Level
Hibernate can also batch load collections honoring the batch fetch size and styles as
listed in the per-class section above.

To reverse the example used in the previous section, consider that you need to load
all the car objects owned by each owner object. If 10 owner objects are loaded in
the current session iterating through all owners will generate 10 SELECT statements,
one for every call to getCars() method. If you enable batch fetching for the cars
collection in the mapping of Owner, Hibernate can pre-fetch these collections, as
shown below.

Thus, with a batch size of five and using legacy batch style to load 10 collections,
Hibernate will execute two SELECT statements, each retrieving five collections.

6.6.2. Second Level Caching of Object References for Non-mutable
Data
Hibernate automatically caches data within memory for improved performance. This is
accomplished by an in-memory cache which reduces the number of times that database
lookups are required, especially for data that rarely changes.

Hibernate maintains two types of caches. The primary cache, also called the first-level
cache, is mandatory. This cache is associated with the current session and all requests
must pass through it. The secondary cache, also called the second-level cache, is optional,
and is only consulted after the primary cache has been consulted.

<class name="Owner"><set name="cars" batch-size="5"></set></class>

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

52

Data is stored in the second-level cache by first disassembling it into a state array. This
array is deep copied, and that deep copy is put into the cache. The reverse is done for
reading from the cache. This works well for data that changes (mutable data), but is
inefficient for immutable data.

Deep copying data is an expensive operation in terms of memory usage and processing
speed. For large data sets, memory and processing speed become a performance-limiting
factor. Hibernate allows you to specify that immutable data be referenced rather than
copied. Instead of copying entire data sets, Hibernate can now store the reference to the
data in the cache.

This can be done by changing the value of the configuration setting
hibernate.cache.use_reference_entries to true. By default,
hibernate.cache.use_reference_entries is set to false.

When hibernate.cache.use_reference_entries is set to true, an immutable data object
that does not have any associations is not copied into the second-level cache, and only a
reference to it is stored.

WARNING

When hibernate.cache.use_reference_entries is set to true,
immutable data objects with associations are still deep copied into the
second-level cache.



CHAPTER 6. HIBERNATE ENVERS

53

CHAPTER 7. HIBERNATE SEARCH

7.1. GETTING STARTED WITH HIBERNATE SEARCH

7.1.1. About Hibernate Search
Hibernate Search provides full-text search capability to Hibernate applications. It is
especially suited to search applications for which SQL-based solutions are not suited,
including: full-text, fuzzy and geolocation searches. Hibernate Search uses Apache Lucene
as its full-text search engine, but is designed to minimize the maintenance overhead. Once
it is configured, indexing, clustering and data synchronization is maintained transparently,
allowing you to focus on meeting your business requirements.

NOTE

The prior release of JBoss EAP included Hibernate 4.2 and Hibernate Search
4.6. JBoss EAP 7 includes Hibernate 5 and Hibernate Search 5.5.

Hibernate Search 5.5 works with Java 7 and now builds upon Lucene 5.3.x. If
you are using any native Lucene APIs make sure to align with this version.

7.1.2. Overview
Hibernate Search consists of an indexing component as well as an index search component,
both are backed by Apache Lucene. Each time an entity is inserted, updated or removed
from the database, Hibernate Search keeps track of this event through the Hibernate event
system and schedules an index update. All these updates are handled without having to
interact with the Apache Lucene APIs directly. Instead, interaction with the underlying
Lucene indexes is handled via an IndexManager. By default there is a one-to-one
relationship between IndexManager and Lucene index. The IndexManager abstracts the
specific index configuration, including the selected back end, reader strategy and the
DirectoryProvider.

Once the index is created, you can search for entities and return lists of managed entities
instead of dealing with the underlying Lucene infrastructure. The same persistence context
is shared between Hibernate and Hibernate Search. The FullTextSession class is built on
top of the Hibernate Session class so that the application code can use the unified
org.hibernate.Query or javax.persistence.Query APIs exactly the same way an HQL,
JPA-QL, or native query would.

Transactional batching mode is recommended for all operations, whether or not they are
JDBC-based.

NOTE

It is recommended, for both your database and Hibernate Search, to execute
your operations in a transaction, whether it is JDBC or JTA.

NOTE

Hibernate Search works perfectly fine in the Hibernate or EntityManager long
conversation pattern, known as atomic conversation.

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

54

7.1.3. About the Directory Provider
Apache Lucene, which is part of the Hibernate Search infrastructure, has the concept of a
Directory for storage of indexes. Hibernate Search handles the initialization and
configuration of a Lucene Directory instance via a Directory Provider.

The directory_provider property specifies the directory provider to be used to store the
indexes. The default file system directory provider is filesystem, which uses the local file
system to store indexes.

7.1.4. About the Worker
Updates to Lucene indexes are handled by the Hibernate Search Worker, which receives all
entity changes, queues them by context and applies them once a context ends. The most
common context is the transaction, but may be dependent on the number of entity changes
or some other application events.

For better efficiency, interactions are batched and generally applied once the context ends.
Outside a transaction, the index update operation is executed right after the actual
database operation. In the case of an ongoing transaction, the index update operation is
scheduled for the transaction commit phase and discarded in case of transaction rollback.
A worker may be configured with a specific batch size limit, after which indexing occurs
regardless of the context.

There are two immediate benefits to this method of handling index updates:

Performance: Lucene indexing works better when operation are executed in batch.

ACIDity: The work executed has the same scoping as the one executed by the
database transaction and is executed if and only if the transaction is committed.
This is not ACID in the strict sense, but ACID behavior is rarely useful for full text
search indexes since they can be rebuilt from the source at any time.

The two batch modes, no scope vs transactional, are the equivalent of autocommit versus
transactional behavior. From a performance perspective, the transactional mode is
recommended. The scoping choice is made transparently. Hibernate Search detects the
presence of a transaction and adjust the scoping.

7.1.5. Back End Setup and Operations

7.1.5.1. Back End

Hibernate Search uses various back ends to process batches of work. The back end is not
limited to the configuration option default.worker.backend. This property specifies a
implementation of the BackendQueueProcessor interface which is a part of a back-end
configuration. Additional settings are required to set up a back-end, for example the JMS
back-end.

7.1.5.2. Lucene

In the Lucene mode, all index updates for a node are executed by the same node to the
Lucene directories using the directory providers. Use this mode in a non-clustered
environment or in clustered environments with a shared directory store.

CHAPTER 7. HIBERNATE SEARCH

55

Figure 7.1. Lucene Back-end Configuration

Lucene mode targets non-clustered or clustered applications where the directory manages
the locking strategy. The primary advantage of Lucene mode is simplicity and immediate
visibility of changes in Lucene queries. The Near Real Time (NRT) back end is an alternative
back end for non-clustered and non-shared index configurations.

7.1.5.3. JMS

Index updates for a node are sent to the JMS queue. A unique reader processes the queue
and updates the master index. The master index is subsequently replicated regularly to
slave copies, to establish the master and slave pattern. The master is responsible for
Lucene index updates. The slaves accept read and write operations but process read
operations on local index copies. The master is solely responsible for updating the Lucene
index. Only the master applies the local changes in an update operation.

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

56

Figure 7.2. JMS Back-end Configuration

This mode targets clustered environment where throughput is critical and index update
delays are affordable. The JMS provider ensures reliability and uses the slaves to change
the local index copies.

7.1.6. Reader Strategies
When executing a query, Hibernate Search uses a reader strategy to interact with the
Apache Lucene indexes. Choose a reader strategy based on the profile of the application
like frequent updates, read mostly, asynchronous index update.

7.1.6.1. The Shared Strategy

Using the shared strategy, Hibernate Search shares the same IndexReader for a given
Lucene index across multiple queries and threads provided that the IndexReader remains
updated. If the IndexReader is not updated, a new one is opened and provided. Each

CHAPTER 7. HIBERNATE SEARCH

57

IndexReader is made of several SegmentReaders. The shared strategy reopens segments
that have been modified or created after the last opening and shares the already loaded
segments from the previous instance. This is the default strategy.

7.1.6.2. The Not-shared Strategy

Using the not-shared strategy, a Lucene IndexReader opens every time a query executes.
Opening and starting up a IndexReader is an expensive operation. As a result, opening an
IndexReader for each query execution is not an efficient strategy.

7.1.6.3. Custom Reader Strategies

You can write a custom reader strategy using an implementation of
org.hibernate.search.reader.ReaderProvider. The implementation must be thread
safe.

7.2. CONFIGURATION

7.2.1. Minimum Configuration
Hibernate Search has been designed to provide flexibility in its configuration and operation,
with default values carefully chosen to suit the majority of use cases. At a minimum a
Directory Provider must be configured, along with its properties. The default Directory
Provider is filesystem, which uses the local file system for index storage. For details of
available Directory Providers and their configuration, see DirectoryProvider Configuration.

If you are using Hibernate directly, settings such as the DirectoryProvider must be set in
the configuration file, either hibernate.properties or hibernate.cfg.xml. If you are
using Hibernate via JPA, the configuration file is persistence.xml.

7.2.2. Configuring the IndexManager
Hibernate Search offers several implementations for this interface:

directory-based: the default implementation which uses the Lucene Directory
abstraction to manage index files.

near-real-time: avoids flushing writes to disk at each commit. This index manager
is also Directory based, but uses Lucene’s near real-time, NRT, functionality.

To specify an IndexManager other than the default, specify the following property:

hibernate.search.[default|<indexname>].indexmanager = near-real-time

7.2.2.1. Directory-based

The Directory-based implementation is the default IndexManager implementation. It is
highly configurable and allows separate configurations for the reader strategy, back ends,
and directory providers.

7.2.2.2. Near Real Time

The NRTIndexManager is an extension of the default IndexManager and leverages the

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

58

Lucene NRT, Near Real Time, feature for low latency index writes. However, it ignores
configuration settings for alternative back ends other than lucene and acquires exclusive
write locks on the Directory.

The IndexWriter does not flush every change to the disk to provide low latency. Queries
can read the updated states from the unflushed index writer buffers. However, this means
that if the IndexWriter is killed or the application crashes, updates can be lost so the
indexes must be rebuilt.

The Near Real Time configuration is recommended for non-clustered websites with limited
data due to the mentioned disadvantages and because a master node can be individually
configured for improved performance as well.

7.2.2.3. Custom

Specify a fully qualified class name for the custom implementation to set up a customized
IndexManager. Set up a no-argument constructor for the implementation as follows:

[default|<indexname>].indexmanager = my.corp.myapp.CustomIndexManager

The custom index manager implementation does not require the same components as the
default implementations. For example, delegate to a remote indexing service which does
not expose a Directory interface.

7.2.3. DirectoryProvider Configuration
A DirectoryProvider is the Hibernate Search abstraction around a Lucene Directory and
handles the configuration and the initialization of the underlying Lucene resources.
Directory Providers and Their Properties shows the list of the directory providers available
in Hibernate Search together with their corresponding options.

Each indexed entity is associated with a Lucene index (except of the case where multiple
entities share the same index). The name of the index is given by the index property of the
@Indexed annotation. If the index property is not specified the fully qualified name of the
indexed class will be used as name (recommended).

The DirectoryProvider and any additional options can be configured by using the prefix
hibernate.search.<indexname>. The name default (hibernate.search.default) is
reserved and can be used to define properties which apply to all indexes. Configuring
Directory Providers shows how hibernate.search.default.directory_provider is used
to set the default directory provider to be the filesystem one.
hibernate.search.default.indexBase sets then the default base directory for the
indexes. As a result the index for the entity Status is created in
/usr/lucene/indexes/org.hibernate.example.Status.

The index for the Rule entity, however, is using an in-memory directory, because the
default directory provider for this entity is overridden by the property
hibernate.search.Rules.directory_provider.

Finally the Action entity uses a custom directory provider CustomDirectoryProvider
specified via hibernate.search.Actions.directory_provider.

Specifying the Index Name

package org.hibernate.example;

CHAPTER 7. HIBERNATE SEARCH

59

Configuring Directory Providers

hibernate.search.default.directory_provider = filesystem
hibernate.search.default.indexBase=/usr/lucene/indexes
hibernate.search.Rules.directory_provider = ram
hibernate.search.Actions.directory_provider =
com.acme.hibernate.CustomDirectoryProvider

NOTE

Using the described configuration scheme you can easily define common rules
like the directory provider and base directory, and override those defaults later
on a per index basis.

Directory Providers and Their Properties

ram
None

filesystem
File system based directory. The directory used will be <indexBase>/< indexName >

indexBase : base directory

indexName: override @Indexed.index (useful for sharded indexes)

locking_strategy : optional, see LockFactory Configuration

filesystem_access_type: allows to determine the exact type of FSDirectory
implementation used by this DirectoryProvider. Allowed values are auto (the
default value, selects NIOFSDirectory on non Windows systems,
SimpleFSDirectory on Windows), simple (SimpleFSDirectory), nio
(NIOFSDirectory), mmap (MMapDirectory). See the Javadocs for these Directory
implementations before changing this setting. Even though NIOFSDirectory or
MMapDirectory can bring substantial performance boosts they also have their
issues.

filesystem-master
File system based directory. Like filesystem. It also copies the index to a source
directory (aka copy directory) on a regular basis.
The recommended value for the refresh period is (at least) 50% higher that the time to
copy the information (default 3600 seconds - 60 minutes).

@Indexed
public class Status { ... }

@Indexed(index="Rules")
public class Rule { ... }

@Indexed(index="Actions")
public class Action { ... }

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

60

Note that the copy is based on an incremental copy mechanism reducing the average
copy time.

DirectoryProvider typically used on the master node in a JMS back end cluster.

The buffer_size_on_copy optimum depends on your operating system and available
RAM; most people reported good results using values between 16 and 64MB.

indexBase: base directory

indexName: override @Indexed.index (useful for sharded indexes)

sourceBase: source (copy) base directory.

source: source directory suffix (default to @Indexed.index). The actual source
directory name being <sourceBase>/<source>

refresh: refresh period in seconds (the copy will take place every refresh
seconds). If a copy is still in progress when the following refresh period elapses,
the second copy operation will be skipped.

buffer_size_on_copy: The amount of MegaBytes to move in a single low level
copy instruction; defaults to 16MB.

locking_strategy : optional, see LockFactory Configuration

filesystem_access_type: allows to determine the exact type of FSDirectory
implementation used by this DirectoryProvider. Allowed values are auto (the
default value, selects NIOFSDirectory on non Windows systems,
SimpleFSDirectory on Windows), simple (SimpleFSDirectory), nio
(NIOFSDirectory), mmap (MMapDirectory). See the Javadocs for these Directory
implementations before changing this setting. Even though NIOFSDirectory or
MMapDirectory can bring substantial performance boosts, there are also issues
of which you need to be aware.

filesystem-slave
File system based directory. Like filesystem, but retrieves a master version (source) on
a regular basis. To avoid locking and inconsistent search results, 2 local copies are kept.
The recommended value for the refresh period is (at least) 50% higher that the time to
copy the information (default 3600 seconds - 60 minutes).

Note that the copy is based on an incremental copy mechanism reducing the average
copy time. If a copy is still in progress when refresh period elapses, the second copy
operation will be skipped.

DirectoryProvider typically used on slave nodes using a JMS back end.

The buffer_size_on_copy optimum depends on your operating system and available
RAM; most people reported good results using values between 16 and 64MB.

indexBase: Base directory

indexName: override @Indexed.index (useful for sharded indexes)

sourceBase: Source (copy) base directory.

CHAPTER 7. HIBERNATE SEARCH

61

source: Source directory suffix (default to @Indexed.index). The actual source
directory name being <sourceBase>/<source>

refresh: refresh period in second (the copy will take place every refresh
seconds).

buffer_size_on_copy: The amount of MegaBytes to move in a single low level
copy instruction; defaults to 16MB.

locking_strategy : optional, see LockFactory Configuration

retry_marker_lookup : optional, default to 0. Defines how many times
Hibernate Search checks for the marker files in the source directory before
failing. Waiting 5 seconds between each try.

retry_initialize_period : optional, set an integer value in seconds to enable the
retry initialize feature: if the slave cannot find the master index it will try again
until it is found in background, without preventing the application to start:
fullText queries performed before the index is initialized are not blocked but will
return empty results. When not enabling the option or explicitly setting it to zero
it will fail with an exception instead of scheduling a retry timer. To prevent the
application from starting without an invalid index but still control an initialization
timeout, see retry_marker_lookup instead.

filesystem_access_type: allows to determine the exact type of FSDirectory
implementation used by this DirectoryProvider. Allowed values are auto (the
default value, selects NIOFSDirectory on non Windows systems,
SimpleFSDirectory on Windows), simple (SimpleFSDirectory), nio
(NIOFSDirectory), mmap (MMapDirectory). See the Javadocs for these Directory
implementations before changing this setting. Even though NIOFSDirectory or
MMapDirectory can bring substantial performance boosts you need also to be
aware of the issues.

NOTE

If the built-in directory providers do not fit your needs, you can write your own
directory provider by implementing the
org.hibernate.store.DirectoryProvider interface. In this case, pass the
fully qualified class name of your provider into the directory_provider
property. You can pass any additional properties using the prefix
hibernate.search.<indexname>.

7.2.4. Worker Configuration
It is possible to refine how Hibernate Search interacts with Lucene through the worker
configuration. There exist several architectural components and possible extension points.
Let’s have a closer look.

Use the worker configuration to refine how Infinispan Query interacts with Lucene. Several
architectural components and possible extension points are available for this configuration.

First there is a Worker. An implementation of the Worker interface is responsible for
receiving all entity changes, queuing them by context and applying them once a context
ends. The most intuitive context, especially in connection with ORM, is the transaction. For

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

62

this reason Hibernate Search will per default use the TransactionalWorker to scope all
changes per transaction. One can, however, imagine a scenario where the context depends
for example on the number of entity changes or some other application lifecycle events.

Table 7.1. Scope Configuration

Property Description

hibernate.search.worker.scope The fully qualified class name of the Worker
implementation to use. If this property is not
set, empty or transaction the default
TransactionalWorker is used.

hibernate.search.worker.* All configuration properties prefixed with
hibernate.search.worker are passed to
the Worker during initialization. This allows
adding custom, worker specific parameters.

hibernate.search.worker.batch_size Defines the maximum number of indexing
operation batched per context. Once the limit
is reached indexing will be triggered even
though the context has not ended yet. This
property only works if the Worker
implementation delegates the queued work to
BatchedQueueingProcessor, which is what the
TransactionalWorker does.

Once a context ends it is time to prepare and apply the index changes. This can be done
synchronously or asynchronously from within a new thread. Synchronous updates have the
advantage that the index is at all times in sync with the databases. Asynchronous updates,
on the other hand, can help to minimize the user response time. The drawback is potential
discrepancies between database and index states.

NOTE

The following options can be different on each index; in fact they need the
indexName prefix or use default to set the default value for all indexes.

Table 7.2. Execution Configuration

Property Description

hibernate.search.<indexName>. ​
worker.execution

sync: synchronous execution (default)

async: asynchronous execution

hibernate.search.<indexName>. ​
worker.thread_pool.size

The back end can apply updates from the
same transaction context (or batch) in parallel,
using a thread pool. The default value is 1. You
can experiment with larger values if you have
many operations per transaction.

CHAPTER 7. HIBERNATE SEARCH

63

hibernate.search.<indexName>. ​
worker.buffer_queue.max

Defines the maximal number of work queue if
the thread pool is starved. Useful only for
asynchronous execution. Default to infinite. If
the limit is reached, the work is done by the
main thread.

Property Description

So far all work is done within the same virtual machine (VM), no matter which execution
mode. The total amount of work has not changed for the single VM. Luckily there is a better
approach, namely delegation. It is possible to send the indexing work to a different server
by configuring hibernate.search.default.worker.backend. Again this option can be
configured differently for each index.

Table 7.3. Back-end Configuration

Property Description

hibernate.search.<indexName>. ​
worker.backend

lucene: The default back end which runs
index updates in the same VM. Also used when
the property is undefined or empty.

jms: JMS back end. Index updates are send to
a JMS queue to be processed by an indexing
master. See JMS Back-end Configuration for
additional configuration options and for a more
detailed description of this setup.

blackhole: Mainly a test/developer setting
which ignores all indexing work

You can also specify the fully qualified name of
a class implementing
BackendQueueProcessor. This way you can
implement your own communication layer. The
implementation is responsible for returning a
Runnable instance which on execution will
process the index work.

Table 7.4. JMS Back-end Configuration

Property Description

hibernate.search.<indexName>. ​
worker.jndi.*

Defines the JNDI properties to initiate the
InitialContext, if necessary. JNDI is only used by
the JMS back end.

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

64

hibernate.search.<indexName>. ​
worker.jms.connection_factory

Mandatory for the JMS back end. Defines the
JNDI name to lookup the JMS connection
factory from (/ConnectionFactory by
default in Red Hat JBoss Enterprise Application
Platform)

hibernate.search.<indexName>. ​
worker.jms.queue

Mandatory for the JMS back end. Defines the
JNDI name to lookup the JMS queue from. The
queue will be used to post work messages.

Property Description

WARNING

As you probably noticed, some of the shown properties are correlated
which means that not all combinations of property values make sense. In
fact you can end up with a non-functional configuration. This is especially
true for the case that you provide your own implementations of some of
the shown interfaces. Make sure to study the existing code before you
write your own Worker or BackendQueueProcessor implementation.

7.2.4.1. JMS Master/Slave Back End

This section describes in greater detail how to configure the master/slave Hibernate Search
architecture.



CHAPTER 7. HIBERNATE SEARCH

65

Figure 7.3. JMS Backend Configuration

7.2.4.2. Slave Nodes

Every index update operation is sent to a JMS queue. Index querying operations are
executed on a local index copy.

JMS Slave Configuration

slave configuration

DirectoryProvider
(remote) master location
hibernate.search.default.sourceBase =
/mnt/mastervolume/lucenedirs/mastercopy

local copy location
hibernate.search.default.indexBase = /Users/prod/lucenedirs

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

66

refresh every half hour
hibernate.search.default.refresh = 1800

appropriate directory provider
hibernate.search.default.directory_provider = filesystem-slave

Back-end configuration
hibernate.search.default.worker.backend = jms
hibernate.search.default.worker.jms.connection_factory =
/ConnectionFactory
hibernate.search.default.worker.jms.queue = queue/hibernatesearch
#optional jndi configuration (check your JMS provider for more
information)

Optional asynchronous execution strategy
hibernate.search.default.worker.execution = async
hibernate.search.default.worker.thread_pool.size = 2
hibernate.search.default.worker.buffer_queue.max = 50

NOTE

A file system local copy is recommended for faster search results.

7.2.4.3. Master Node

Every index update operation is taken from a JMS queue and executed. The master index is
copied on a regular basis.

Index update operations in the JMS queue are executed and the master index is copied
regularly.

JMS Master Configuration

master configuration

DirectoryProvider
(remote) master location where information is copied to
hibernate.search.default.sourceBase =
/mnt/mastervolume/lucenedirs/mastercopy

local master location
hibernate.search.default.indexBase = /Users/prod/lucenedirs

refresh every half hour
hibernate.search.default.refresh = 1800

appropriate directory provider
hibernate.search.default.directory_provider = filesystem-master

Back-end configuration
#Back-end is the default for Lucene

In addition to the Hibernate Search framework configuration, a message-driven bean has to
be written and set up to process the index works queue through JMS.

CHAPTER 7. HIBERNATE SEARCH

67

Message-driven Bean Processing the Indexing Queue

This example inherits from the abstract JMS controller class available in the Hibernate
Search source code and implements a Java EE MDB. This implementation is given as an
example and can be adjusted to make use of non Java EE message-driven beans.

7.2.5. Tuning Lucene Indexing

7.2.5.1. Tuning Lucene Indexing Performance

Hibernate Search is used to tune the Lucene indexing performance by specifying a set of
parameters which are passed through to underlying Lucene IndexWriter such as
mergeFactor, maxMergeDocs, and maxBufferedDocs. Specify these parameters either as
default values applying for all indexes, on a per index basis, or even per shard.

There are several low level IndexWriter settings which can be tuned for different use
cases. These parameters are grouped by the indexwriter keyword:

hibernate.search.[default|<indexname>].indexwriter.<parameter_name>

If no value is set for an indexwriter value in a specific shard configuration, Hibernate
Search checks the index section, then at the default section.

The configuration in the following table will result in these settings applied on the second
shard of the Animal index:

max_merge_docs = 10

merge_factor = 20

ram_buffer_size = 64MB

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(propertyName="destination",
 propertyValue="queue/hibernatesearch"),
 @ActivationConfigProperty(propertyName="DLQMaxResent",
propertyValue="1")
 })
public class MDBSearchController extends
AbstractJMSHibernateSearchController
 implements MessageListener {
 @PersistenceContext EntityManager em;

 //method retrieving the appropriate session
 protected Session getSession() {
 return (Session) em.getDelegate();
 }

 //potentially close the session opened in #getSession(), not needed
here
 protected void cleanSessionIfNeeded(Session session)
 }
}

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

68

term_index_interval = Lucene default

All other values will use the defaults defined in Lucene.

The default for all values is to leave them at Lucene’s own default. The values listed in
Indexing Performance and Behavior Properties depend for this reason on the version of
Lucene you are using. The values shown are relative to version 2.4.

NOTE

Previous versions of Hibernate Search had the notion of batch and
transaction properties. This is no longer the case as the back end will always
perform work using the same settings.

Table 7.5. Indexing Performance and Behavior Properties

Property Description Default Value

hibernate.search.
[default|
<indexname>]. ​
exclusive_index_use

Set to true when no other process will need to
write to the same index. This enables
Hibernate Search to work in exclusive mode on
the index and improve performance when
writing changes to the index.

true (improved
performance,
releases locks
only at
shutdown)

hibernate.search.
[default|
<indexname>].max_que
ue_length

Each index has a separate "pipeline" which
contains the updates to be applied to the
index. When this queue is full adding more
operations to the queue becomes a blocking
operation. Configuring this setting does not
make much sense unless the
worker.execution is configured as async.

1000

hibernate.search.
[default|
<indexname>].indexwr
iter.max_buffered_de
lete_terms

Determines the minimal number of delete
terms required before the buffered in-memory
delete terms are applied and flushed. If there
are documents buffered in memory at the
time, they are merged and a new segment is
created.

Disabled
(flushes by RAM
usage)

hibernate.search.
[default|
<indexname>].indexwr
iter.max_buffered_do
cs

Controls the amount of documents buffered in
memory during indexing. The bigger the more
RAM is consumed.

Disabled
(flushes by RAM
usage)

hibernate.search.
[default|
<indexname>].indexwr
iter.max_merge_docs

Defines the largest number of documents
allowed in a segment. Smaller values perform
better on frequently changing indexes, larger
values provide better search performance if
the index does not change often.

Unlimited
(Integer.MAX_VA
LUE)

CHAPTER 7. HIBERNATE SEARCH

69

hibernate.search.
[default|
<indexname>].indexwr
iter.merge_factor

Controls segment merge frequency and size.

Determines how often segment indexes are
merged when insertion occurs. With smaller
values, less RAM is used while indexing, and
searches on unoptimized indexes are faster,
but indexing speed is slower. With larger
values, more RAM is used during indexing, and
while searches on unoptimized indexes are
slower, indexing is faster. Thus larger values
(> 10) are best for batch index creation, and
smaller values (< 10) for indexes that are
interactively maintained. The value must not
be lower than 2.

10

hibernate.search.
[default|
<indexname>].indexwr
iter.merge_min_size

Controls segment merge frequency and size.
Segments smaller than this size (in MB) are
always considered for the next segment merge
operation. Setting this too large might result in
expensive merge operations, even though
they are less frequent. See also
org.apache.lucene.index.LogDocMerge
Policy.minMergeSize.

0 MB (actually
~1K)

hibernate.search. ​
[default|
<indexname>]. ​
indexwriter.merge_ma
x_size

Controls segment merge frequency and size.

Segments larger than this size (in MB) are
never merged in bigger segments.

This helps reduce memory requirements and
avoids some merging operations at the cost of
optimal search speed. When optimizing an
index this value is ignored.

See also
org.apache.lucene.index.LogDocMerge
Policy.maxMergeSize.

Unlimited

hibernate.search.
[default|
<indexname>].indexwr
iter.merge_max_optim
ize_size

Controls segment merge frequency and size.

Segments larger than this size (in MB) are not
merged in bigger segments even when
optimizing the index (see merge_max_size
setting as well).

Applied to
org.apache.lucene.index.LogDocMerge
Policy.maxMergeSizeForOptimize.

Unlimited

Property Description Default Value

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

70

hibernate.search.
[default|
<indexname>].indexwr
iter.merge_calibrate
_by_deletes

Controls segment merge frequency and size.

Set to false to not consider deleted
documents when estimating the merge policy.

Applied to
org.apache.lucene.index.LogMergePol
icy.calibrateSizeByDeletes.

true

hibernate.search.
[default|
<indexname>].indexwr
iter.ram_buffer_size

Controls the amount of RAM in MB dedicated
to document buffers. When used together
max_buffered_docs a flush occurs for
whichever event happens first.

Generally for faster indexing performance it is
best to flush by RAM usage instead of
document count and use as large a RAM buffer
as you can.

16 MB

hibernate.search.
[default|
<indexname>].indexwr
iter.term_index_inte
rval

Set the interval between indexed terms.

Large values cause less memory to be used by
IndexReader, but slow random-access to
terms.Small values cause more memory to be
used by an IndexReader, and speed random-
access to terms. See Lucene documentation
for more details.

128

hibernate.search.
[default|
<indexname>].indexwr
iter.use_compound_fi
le

The advantage of using the compound file
format is that less file descriptors are used.
The disadvantage is that indexing takes more
time and temporary disk space. You can set
this parameter to false in an attempt to
improve the indexing time, but you could run
out of file descriptors if mergeFactor is also
large.

Boolean parameter, use true or false. The
default value for this option is true.

true

Property Description Default Value

CHAPTER 7. HIBERNATE SEARCH

71

hibernate.search. ​
enable_dirty_check

Not all entity changes require a Lucene index
update. If all of the updated entity properties
(dirty properties) are not indexed, Hibernate
Search skips the re-indexing process.

Disable this option if you use custom
FieldBridges which need to be invoked at
each update event (even though the property
for which the field bridge is configured has not
changed).

This optimization will not be applied on classes
using a @ClassBridge or a @DynamicBoost.

Boolean parameter, use true or false. The
default value for this option is true.

true

Property Description Default Value

WARNING

The blackhole back end is not meant to be used in production, only as a
tool to identify indexing bottlenecks.

7.2.5.2. The Lucene IndexWriter

There are several low level IndexWriter settings which can be tuned for different use
cases. These parameters are grouped by the indexwriter keyword:

default.<indexname>.indexwriter.<parameter_name>

If no value is set for indexwriter in a shard configuration, Hibernate Search looks at the
index section and then at the default section.

7.2.5.3. Performance Option Configuration

The following configuration will result in these settings being applied on the second shard of
the Animal index:

Example performance option configuration

default.Animals.2.indexwriter.max_merge_docs = 10
default.Animals.2.indexwriter.merge_factor = 20
default.Animals.2.indexwriter.term_index_interval = default
default.indexwriter.max_merge_docs = 100
default.indexwriter.ram_buffer_size = 64

max_merge_docs = 10



Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

72

merge_factor = 20

ram_buffer_size = 64MB

term_index_interval = Lucene default

All other values will use the defaults defined in Lucene.

The Lucene default values are the default setting for Hibernate Search. Therefore, the
values listed in the following table depend on the version of Lucene being used. The values
shown are relative to version 2.4. For more information about Lucene indexing
performance, see the Lucene documentation.

NOTE

The back end will always perform work using the same settings.

Table 7.6. Indexing Performance and Behavior Properties

Property Description Default Value

default.
<indexname>.exclusiv
e_index_use

Set to true when no other process will need to
write to the same index. This enables
Hibernate Search to work in exclusive mode on
the index and improve performance when
writing changes to the index.

true (improved
performance,
releases locks
only at
shutdown)

default.
<indexname>.max_queu
e_length

Each index has a separate "pipeline" which
contains the updates to be applied to the
index. When this queue is full adding more
operations to the queue becomes a blocking
operation. Configuring this setting does not
make much sense unless the
worker.execution is configured as async.

1000

default.
<indexname>.indexwri
ter.max_buffered_del
ete_terms

Determines the minimal number of delete
terms required before the buffered in-memory
delete terms are applied and flushed. If there
are documents buffered in memory at the
time, they are merged and a new segment is
created.

Disabled
(flushes by RAM
usage)

default.
<indexname>.indexwri
ter.max_buffered_doc
s

Controls the amount of documents buffered in
memory during indexing. The bigger the more
RAM is consumed.

Disabled
(flushes by RAM
usage)

default.
<indexname>.indexwri
ter.max_merge_docs

Defines the largest number of documents
allowed in a segment. Smaller values perform
better on frequently changing indexes, larger
values provide better search performance if
the index does not change often.

Unlimited
(Integer.MAX_VA
LUE)

CHAPTER 7. HIBERNATE SEARCH

73

default.
<indexname>.indexwri
ter.merge_factor

Controls segment merge frequency and size.

Determines how often segment indexes are
merged when insertion occurs. With smaller
values, less RAM is used while indexing, and
searches on unoptimized indexes are faster,
but indexing speed is slower. With larger
values, more RAM is used during indexing, and
while searches on unoptimized indexes are
slower, indexing is faster. Thus larger values
(> 10) are best for batch index creation, and
smaller values (< 10) for indexes that are
interactively maintained. The value must not
be lower than 2.

10

default.
<indexname>.indexwri
ter.merge_min_size

Controls segment merge frequency and size.

Segments smaller than this size (in MB) are
always considered for the next segment merge
operation.

Setting this too large might result in expensive
merge operations, even though they are less
frequent.

See also
org.apache.lucene.index.LogDocMerge
Policy.minMergeSize.

0 MB (actually
~1K)

default.
<indexname>.indexwri
ter.merge_max_size

Controls segment merge frequency and size.

Segments larger than this size (in MB) are
never merged in bigger segments.

This helps reduce memory requirements and
avoids some merging operations at the cost of
optimal search speed. When optimizing an
index this value is ignored.

See also
org.apache.lucene.index.LogDocMerge
Policy.maxMergeSize.

Unlimited

default.
<indexname>.indexwri
ter.merge_max_optimi
ze_size

Controls segment merge frequency and size.

Segments larger than this size (in MB) are not
merged in bigger segments even when
optimizing the index (see merge_max_size
setting as well).

Applied to
org.apache.lucene.index.LogDocMerge
Policy.maxMergeSizeForOptimize.

Unlimited

Property Description Default Value

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

74

default.
<indexname>.indexwri
ter.merge_calibrate_
by_deletes

Controls segment merge frequency and size.

Set to false to not consider deleted
documents when estimating the merge policy.

Applied to
org.apache.lucene.index.LogMergePol
icy.calibrateSizeByDeletes.

true

default.
<indexname>.indexwri
ter.ram_buffer_size

Controls the amount of RAM in MB dedicated
to document buffers. When used together
max_buffered_docs a flush occurs for
whichever event happens first.

Generally for faster indexing performance it is
best to flush by RAM usage instead of
document count and use as large a RAM buffer
as you can.

16 MB

default.
<indexname>.indexwri
ter.term_index_inter
val

Set the interval between indexed terms.

Large values cause less memory to be used by
IndexReader, but slow random-access to
terms. Small values cause more memory to be
used by an IndexReader, and speed random-
access to terms. See Lucene documentation
for more details.

128

default.
<indexname>.indexwri
ter.use_compound_fil
e

The advantage of using the compound file
format is that less file descriptors are used.
The disadvantage is that indexing takes more
time and temporary disk space. You can set
this parameter to false in an attempt to
improve the indexing time, but you could run
out of file descriptors if mergeFactor is also
large.

Boolean parameter, use true or false. The
default value for this option is true.

true

Property Description Default Value

CHAPTER 7. HIBERNATE SEARCH

75

default.enable_dirty
_check

Not all entity changes require a Lucene index
update. If all of the updated entity properties
(dirty properties) are not indexed, Hibernate
Search skips the re-indexing process.

Disable this option if you use custom
FieldBridges which need to be invoked at
each update event (even though the property
for which the field bridge is configured has not
changed).

This optimization will not be applied on classes
using a @ClassBridge or a @DynamicBoost.

Boolean parameter, use true or false. The
default value for this option is true.

true

Property Description Default Value

7.2.5.4. Tuning the Indexing Speed

When the architecture permits it, keep default.exclusive_index_use=true for improved
index writing efficiency.

When tuning indexing speed the recommended approach is to focus first on optimizing the
object loading, and then use the timings you achieve as a baseline to tune the indexing
process. Set the blackhole as worker back end and start your indexing routines. This back
end does not disable Hibernate Search. It generates the required change sets to the index,
but discards them instead of flushing them to the index. In contrast to setting the
hibernate.search.indexing_strategy to manual, using blackhole will possibly load
more data from the database because associated entities are re-indexed as well.

hibernate.search.[default|<indexname>].worker.backend blackhole

WARNING

The blackhole back end is not to be used in production, only as a
diagnostic tool to identify indexing bottlenecks.

7.2.5.5. Control Segment Size

The following options configure the maximum size of segments created:

merge_max_size

merge_max_optimize_size

merge_calibrate_by_deletes



Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

76

Control Segment Size

//to be fairly confident no files grow above 15MB, use:
hibernate.search.default.indexwriter.ram_buffer_size = 10
hibernate.search.default.indexwriter.merge_max_optimize_size = 7
hibernate.search.default.indexwriter.merge_max_size = 7

Set the max_size for merge operations to less than half of the hard limit segment size, as
merging segments combines two segments into one larger segment.

A new segment may initially be a larger size than expected, however a segment is never
created significantly larger than the ram_buffer_size. This threshold is checked as an
estimate.

7.2.6. LockFactory Configuration
The Lucene Directory can be configured with a custom locking strategy via LockingFactory
for each index managed by Hibernate Search.

Some locking strategies require a filesystem level lock, and may be used on RAM-based
indexes. When using this strategy the IndexBase configuration option must be specified to
point to a filesystem location in which to store the lock marker files.

To select a locking factory, set the hibernate.search.<index>.locking_strategy option
to one the following options:

simple

native

single

none

Table 7.7. List of Available LockFactory Implementations

Name Class Description

LockF
actory
Config
uratio
n
simpl
e

org.apache.lucene.store.​
SimpleFSLockFactory

Safe implementation based on Java’s File API,
it marks the usage of the index by creating a
marker file.

If for some reason you had to kill your
application, you will need to remove this file
before restarting it.

CHAPTER 7. HIBERNATE SEARCH

77

nativ
e

org.apache.lucene.store.​
NativeFSLockFactory

As does simple this also marks the usage of
the index by creating a marker file, but this
one is using native OS file locks so that even if
the JVM is terminated the locks will be cleaned
up.

This implementation has known problems on
NFS, avoid it on network shares.

native is the default implementation for the
filesystem, filesystem-master and
filesystem-slave directory providers.

singl
e

org.apache.lucene.store.​
SingleInstanceLockFactory

This LockFactory does not use a file marker
but is a Java object lock held in memory;
therefore it is possible to use it only when you
are sure the index is not going to be shared by
any other process.

This is the default implementation for the ram
directory provider.

none org.apache.lucene.store.​
NoLockFactory

Changes to this index are not coordinated by a
lock.

Name Class Description

The following is an example of locking strategy configuration:

hibernate.search.default.locking_strategy = simple
hibernate.search.Animals.locking_strategy = native
hibernate.search.Books.locking_strategy =
org.custom.components.MyLockingFactory

7.2.7. Index Format Compatibility
Hibernate Search does not currently offer a backwards compatible API or tool to facilitate
porting applications to newer versions. The API uses Apache Lucene for index writing and
searching. Occasionally an update to the index format may be required. In this case, there
is a possibility that data will need to be re-indexed if Lucene is unable to read the old
format.

WARNING

Back up indexes before attempting to update the index format.

Hibernate Search exposes the hibernate.search.lucene_version configuration property.



Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

78

This property instructs Analyzers and other Lucene classes to conform to their behavior as
defined in an older version of Lucene. See also org.apache.lucene.util.Version
contained in the lucene-core.jar. If the option is not specified, Hibernate Search instructs
Lucene to use the version default. It is recommended that the version used is explicitly
defined in the configuration to prevent automatic changes when an upgrade occurs. After
an upgrade, the configuration values can be updated explicitly if required.

Force Analyzers to Be Compatible with a Lucene 3.0 Created Index

hibernate.search.lucene_version = LUCENE_30

The configured SearchFactory is global and affects all Lucene APIs that contain the
relevant parameter. If Lucene is used and Hibernate Search is bypassed, apply the same
value to it for consistent results.

7.3. HIBERNATE SEARCH FOR YOUR APPLICATION

7.3.1. First Steps with Hibernate Search
To get started with Hibernate Search for your application, follow these topics.

Enable Hibernate Search Using Maven

Indexing

Searching

Analyzer

7.3.2. Enable Hibernate Search Using Maven
Use the following configuration in your Maven project to add hibernate-search-orm
dependencies:

7.3.3. Add Annotations

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search-orm</artifactId>
 <version>5.5.1.Final-redhat-1</version>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search-orm</artifactId>
 <scope>provided</scope>
 </dependency>
</dependencies>

CHAPTER 7. HIBERNATE SEARCH

79

For this section, consider the example in which you have a database containing details of
books. Your application contains the Hibernate managed classes example.Book and
example.Author and you want to add free text search capabilities to your application to
enable searching for books.

Example: Entities Book and Author Before Adding Hibernate Search
Specific Annotations

To achieve this you have to add a few annotations to the Book and Author class. The first
annotation @Indexed marks Book as indexable. By design Hibernate Search stores an
untokenized ID in the index to ensure index unicity for a given entity. @DocumentId marks
the property to use for this purpose and is in most cases the same as the database primary
key. The @DocumentId annotation is optional in the case where an @Id annotation exists.

package example;
...
@Entity
public class Book {

 @Id
 @GeneratedValue
 private Integer id;

 private String title;

 private String subtitle;

 @ManyToMany
 private Set<Author> authors = new HashSet<Author>();

 private Date publicationDate;

 public Book() {}

 // standard getters/setters follow here
 ...
}

package example;
...
@Entity
public class Author {

 @Id
 @GeneratedValue
 private Integer id;

 private String name;

 public Author() {}

 // standard getters/setters follow here
 ...
}

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

80

Next the fields you want to make searchable must be marked as such. In this example,
start with title and subtitle and annotate both with @Field. The parameter
index=Index.YES will ensure that the text will be indexed, while analyze=Analyze.YES
ensures that the text will be analyzed using the default Lucene analyzer. Usually, analyzing
means chunking a sentence into individual words and potentially excluding common words
like 'a' or ‘the’. We will talk more about analyzers a little later on. The third parameter we
specify within @Field, store=Store.NO, ensures that the actual data will not be stored in
the index. Whether this data is stored in the index or not has nothing to do with the ability
to search for it. From Lucene’s perspective it is not necessary to keep the data once the
index is created. The benefit of storing it is the ability to retrieve it via projections.

Without projections, Hibernate Search will per default execute a Lucene query in order to
find the database identifiers of the entities matching the query criteria and use these
identifiers to retrieve managed objects from the database. The decision for or against
projection has to be made on a case to case basis. The default behavior is recommended
since it returns managed objects whereas projections only return object arrays. Note that
index=Index.YES, analyze=Analyze.YES and store=Store.NO are the default values for
these parameters and could be omitted.

Another annotation not yet discussed is @DateBridge. This annotation is one of the built-in
field bridges in Hibernate Search. The Lucene index is purely string based. For this reason
Hibernate Search must convert the data types of the indexed fields to strings and vice-
versa. A range of predefined bridges are provided, including the DateBridge which will
convert a java.util.Date into a String with the specified resolution. For more details see
Bridges.

This leaves us with @IndexedEmbedded. This annotation is used to index associated entities
(@ManyToMany, @*ToOne, @Embedded and @ElementCollection) as part of the owning entity.
This is needed since a Lucene index document is a flat data structure which does not know
anything about object relations. To ensure that the authors' name will be searchable you
have to ensure that the names are indexed as part of the book itself. On top of
@IndexedEmbedded you will also have to mark all fields of the associated entity you want to
have included in the index with @Indexed. For more details see Embedded and Associated
Objects.

These settings should be sufficient for now. For more details on entity mapping see
Mapping an Entity.

Example: Entities After Adding Hibernate Search Annotations

package example;
...
@Entity

public class Book {

 @Id
 @GeneratedValue
 private Integer id;

 private String title;

 private String subtitle;

 @Field(index = Index.YES, analyze=Analyze.NO, store = Store.YES)
 @DateBridge(resolution = Resolution.DAY)

CHAPTER 7. HIBERNATE SEARCH

81

7.3.4. Indexing
Hibernate Search will transparently index every entity persisted, updated or removed
through Hibernate Core. However, you have to create an initial Lucene index for the data
already present in your database. Once you have added the above properties and
annotations it is time to trigger an initial batch index of your books. You can achieve this by
using one of the following code snippets (see also):

Example: Using the Hibernate Session to Index Data

Example: Using JPA to Index Data

After executing the above code, you should be able to see a Lucene index under
/var/lucene/indexes/example.Book. Inspect this index with Luke to help you to
understand how Hibernate Search works.

 private Date publicationDate;

 @ManyToMany
 private Set<Author> authors = new HashSet<Author>();

 public Book() {
 }

 // standard getters/setters follow here
 ...
}

package example;
...
@Entity
public class Author {

 @Id
 @GeneratedValue
 private Integer id;

 private String name;

 public Author() {
 }

 // standard getters/setters follow here
 ...
}

FullTextSession fullTextSession =
org.hibernate.search.Search.getFullTextSession(session);
fullTextSession.createIndexer().startAndWait();

EntityManager em = entityManagerFactory.createEntityManager();
FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager(em);
fullTextEntityManager.createIndexer().startAndWait();

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

82

http://code.google.com/p/luke/

7.3.5. Searching
To execute a search, create a Lucene query using either the Lucene API or the Hibernate
Search query DSL. Wrap the query in a org.hibernate.Query to get the required
functionality from the Hibernate API. The following code prepares a query against the
indexed fields. Executing the code returns a list of Books.

Example: Using a Hibernate Search Session to Create and Execute a
Search

Example: Using JPA to Create and Execute a Search

FullTextSession fullTextSession = Search.getFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();

// create native Lucene query using the query DSL
// alternatively you can write the Lucene query using the Lucene query
parser
// or the Lucene programmatic API. The Hibernate Search DSL is recommended
though
QueryBuilder qb = fullTextSession.getSearchFactory()
 .buildQueryBuilder().forEntity(Book.class).get();
org.apache.lucene.search.Query query = qb
 .keyword()
 .onFields("title", "subtitle", "authors.name", "publicationDate")
 .matching("Java rocks!")
 .createQuery();

// wrap Lucene query in a org.hibernate.Query
org.hibernate.Query hibQuery =
 fullTextSession.createFullTextQuery(query, Book.class);

// execute search
List result = hibQuery.list();

tx.commit();
session.close();

EntityManager em = entityManagerFactory.createEntityManager();
FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);
em.getTransaction().begin();

// create native Lucene query using the query DSL
// alternatively you can write the Lucene query using the Lucene query
parser
// or the Lucene programmatic API. The Hibernate Search DSL is recommended
though
QueryBuilder qb = fullTextEntityManager.getSearchFactory()
 .buildQueryBuilder().forEntity(Book.class).get();
org.apache.lucene.search.Query query = qb
 .keyword()
 .onFields("title", "subtitle", "authors.name", "publicationDate")
 .matching("Java rocks!")
 .createQuery();

CHAPTER 7. HIBERNATE SEARCH

83

7.3.6. Analyzer
Assuming that the title of an indexed book entity is Refactoring: Improving the Design
of Existing Code and that hits are required for the following queries: refactor,
refactors, refactored, and refactoring. Select an analyzer class in Lucene that applies
word stemming when indexing and searching. Hibernate Search offers several ways to
configure the analyzer (see Default Analyzer and Analyzer by Class for more information):

Set the analyzer property in the configuration file. The specified class becomes the
default analyzer.

Set the @Analyzer annotation at the entity level.

Set the @Analyzer annotation at the field level.

Specify the fully qualified class name or the analyzer to use, or see an analyzer defined by
the @AnalyzerDef annotation with the @Analyzer annotation. The Solr analyzer framework
with its factories are utilized for the latter option. For more information about factory
classes, see the Solr JavaDoc or read the corresponding section on the Solr Wiki.

In the example, a StandardTokenizerFactory is used by two filter factories:
LowerCaseFilterFactory and SnowballPorterFilterFactory. The tokenizer splits words at
punctuation characters and hyphens but keeping email addresses and internet hostnames
intact. The standard tokenizer is ideal for this and other general operations. The lowercase
filter converts all letters in the token into lowercase and the snowball filter applies
language specific stemming.

If using the Solr framework, use the tokenizer with an arbitrary number of filters.

Example: Using @AnalyzerDef and the Solr Framework to Define and Use
an Analyzer

// wrap Lucene query in a javax.persistence.Query
javax.persistence.Query persistenceQuery =
 fullTextEntityManager.createFullTextQuery(query, Book.class);

// execute search
List result = persistenceQuery.getResultList();

em.getTransaction().commit();
em.close();

@Indexed
@AnalyzerDef(
 name = "customanalyzer",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = SnowballPorterFilterFactory.class,
 params = { @Parameter(name = "language", value = "English") })
 })
public class Book implements Serializable {

 @Field
 @Analyzer(definition = "customanalyzer")

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

84

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Use @AnalyzerDef to define an analyzer, then apply it to entities and properties using
@Analyzer. In the example, the customanalyzer is defined but not applied on the entity.
The analyzer is only applied to the title and subtitle properties. An analyzer definition is
global. Define the analyzer for an entity and reuse the definition for other entities as
required.

7.4. MAPPING ENTITIES TO THE INDEX STRUCTURE

7.4.1. Mapping an Entity
All the metadata information required to index entities is described through annotations, so
there is no need for XML mapping files. You can still use Hibernate mapping files for the
basic Hibernate configuration, but the Hibernate Search specific configuration has to be
expressed via annotations.

7.4.1.1. Basic Mapping

Let us start with the most commonly used annotations for mapping an entity.

The Lucene-based Query API uses the following common annotations to map entities:

@Indexed

@Field

@NumericField

@Id

7.4.1.2. @Indexed

Foremost we must declare a persistent class as indexable. This is done by annotating the
class with @Indexed (all entities not annotated with @Indexed will be ignored by the
indexing process):

 private String title;

 @Field
 @Analyzer(definition = "customanalyzer")
 private String subtitle;

 @IndexedEmbedded
 private Set authors = new HashSet();

 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.YES)
 @DateBridge(resolution = Resolution.DAY)
 private Date publicationDate;

 public Book() {
 }

 // standard getters/setters follow here
 ...
}

CHAPTER 7. HIBERNATE SEARCH

85

You can optionally specify the index attribute of the @Indexed annotation to change the
default name of the index.

7.4.1.3. @Field

For each property (or attribute) of your entity, you have the ability to describe how it will be
indexed. The default (no annotation present) means that the property is ignored by the
indexing process.

NOTE

Prior to Hibernate Search 5, numeric field encoding was only chosen if
explicitly requested via @NumericField. As of Hibernate Search 5 this
encoding is automatically chosen for numeric types. To avoid numeric
encoding you can explicitly specify a non numeric field bridge via
@Field.bridge or @FieldBridge. The package
org.hibernate.search.bridge.builtin contains a set of bridges which
encode numbers as strings, for example
org.hibernate.search.bridge.builtin.IntegerBridge.

@Field does declare a property as indexed and allows to configure several aspects of the
indexing process by setting one or more of the following attributes:

name : describe under which name, the property should be stored in the Lucene
Document. The default value is the property name (following the JavaBeans
convention)

store : describe whether or not the property is stored in the Lucene index. You can
store the value Store.YES (consuming more space in the index but allowing
projection, store it in a compressed way Store.COMPRESS (this does consume more
CPU), or avoid any storage Store.NO (this is the default value). When a property is
stored, you can retrieve its original value from the Lucene Document. This is not
related to whether the element is indexed or not.

index: describe whether the property is indexed or not. The different values are
Index.NO, meaning that it is not indexed and cannot be found by a query and
Index.YES, meaning that the element gets indexed and is searchable. The default
value is Index.YES. Index.NO can be useful for cases where a property is not
required to be searchable, but should be available for projection.

NOTE

Index.NO in combination with Analyze.YES or Norms.YES is not useful,
since analyze and norms require the property to be indexed

analyze: determines whether the property is analyzed (Analyze.YES) or not
(Analyze.NO). The default value is Analyze.YES.

@Entity
@Indexed
public class Essay {
...
}

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

86

NOTE

Whether or not you want to analyze a property depends on whether
you wish to search the element as is, or by the words it contains. It
make sense to analyze a text field, but probably not a date field.

NOTE

Fields used for sorting must not be analyzed.

norms: describes whether index time boosting information should be stored
(Norms.YES) or not (Norms.NO). Not storing it can save a considerable amount of
memory, but there will not be any index time boosting information available. The
default value is Norms.YES.

termVector: describes collections of term-frequency pairs. This attribute enables
the storing of the term vectors within the documents during indexing. The default
value is TermVector.NO.
The different values of this attribute are:

Value Definition

TermVector.YES Store the term vectors of each document. This
produces two synchronized arrays, one contains
document terms and the other contains the term’s
frequency.

TermVector.NO Do not store term vectors.

TermVector.WITH_OFFSETS Store the term vector and token offset information.
This is the same as TermVector.YES plus it contains
the starting and ending offset position information
for the terms.

TermVector.WITH_POSITIONS Store the term vector and token position
information. This is the same as TermVector.YES
plus it contains the ordinal positions of each
occurrence of a term in a document.

TermVector.WITH_POSITION_OFFS
ETS

Store the term vector, token position and offset
information. This is a combination of the YES,
WITH_OFFSETS and WITH_POSITIONS.

indexNullAs : Per default null values are ignored and not indexed. However, using
indexNullAs you can specify a string which will be inserted as token for the null
value. Per default this value is set to Field.DO_NOT_INDEX_NULL indicating that
null values should not be indexed. You can set this value to
Field.DEFAULT_NULL_TOKEN to indicate that a default null token should be used.
This default null token can be specified in the configuration using
hibernate.search.default_null_token. If this property is not set and you specify
Field.DEFAULT_NULL_TOKEN the string "null" will be used as default.

CHAPTER 7. HIBERNATE SEARCH

87

NOTE

When the indexNullAs parameter is used it is important to use the
same token in the search query to search for null values. It is also
advisable to use this feature only with un-analyzed fields (Analyze.NO).

WARNING

When implementing a custom FieldBridge or TwoWayFieldBridge it
is up to the developer to handle the indexing of null values (see
JavaDocs of LuceneOptions.indexNullAs()).

7.4.1.4. @NumericField

There is a companion annotation to @Field called @NumericField that can be specified in
the same scope as @Field or @DocumentId. It can be specified for Integer, Long, Float, and
Double properties. At index time the value will be indexed using a Trie structure. When a
property is indexed as numeric field, it enables efficient range query and sorting, orders of
magnitude faster than doing the same query on standard @Field properties. The
@NumericField annotation accept the following parameters:

Value Definition

forField (Optional) Specify the name of the related @Field that will be
indexed as numeric. It is only mandatory when the property
contains more than a @Field declaration

precisionStep (Optional) Change the way that the Trie structure is stored in the
index. Smaller precisionSteps lead to more disk space usage and
faster range and sort queries. Larger values lead to less space
used and range query performance more close to the range query
in normal @Fields. Default value is 4.

@NumericField supports only Double, Long, Integer and Float. It is not possible to take any
advantage from similar functionality in Lucene for the other numeric types, so remaining
types should use the string encoding via the default or custom TwoWayFieldBridge.

It is possible to use a custom NumericFieldBridge assuming you can deal with the
approximation during type transformation:

Example: Defining a Custom NumericFieldBridge



public class BigDecimalNumericFieldBridge extends NumericFieldBridge {
 private static final BigDecimal storeFactor = BigDecimal.valueOf(100);

 @Override
 public void set(String name, Object value, Document document,
LuceneOptions luceneOptions) {
 if (value != null) {

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

88

7.4.1.5. @Id

Finally, the id (identifier) property of an entity is a special property used by Hibernate
Search to ensure index uniqueness of a given entity. By design, an id must be stored and
must not be tokenized. To mark a property as an index identifier, use the @DocumentId
annotation. If you are using JPA and you have specified @Id you can omit @DocumentId.
The chosen entity identifier will also be used as the document identifier.

Infinispan Query uses the entity’s id property to ensure the index is uniquely identified. By
design, an ID is stored and must not be converted into a token. To mark a property as index
ID, use the @DocumentId annotation.

Example: Specifying Indexed Properties

The example above defines an index with four fields: id , Abstract, text and grade . Note
that by default the field name is not capitalized, following the JavaBean specification. The
grade field is annotated as numeric with a slightly larger precision step than the default.

7.4.1.6. Mapping Properties Multiple Times

 BigDecimal decimalValue = (BigDecimal) value;
 Long indexedValue = Long.valueOf(decimalValue.multiply(
storeFactor).longValue());
 luceneOptions.addNumericFieldToDocument(name, indexedValue,
document);
 }
 }

 @Override
 public Object get(String name, Document document) {
 String fromLucene = document.get(name);
 BigDecimal storedBigDecimal = new BigDecimal(fromLucene);
 return storedBigDecimal.divide(storeFactor);
 }

}

@Entity
@Indexed
public class Essay {
 ...
 @Id
 @DocumentId
 public Long getId() { return id; }

 @Field(name="Abstract", store=Store.YES)
 public String getSummary() { return summary; }

 @Lob
 @Field
 public String getText() { return text; }

 @Field @NumericField(precisionStep = 6)
 public float getGrade() { return grade; }
}

CHAPTER 7. HIBERNATE SEARCH

89

Sometimes you need to map a property multiple times per index, with slightly different
indexing strategies. For example, sorting a query by field requires the field to be un-
analyzed. To search by words on this property and still sort it, it needs to be indexed - once
analyzed and once un-analyzed. @Fields allows you to achieve this goal.

Example: Using @Fields to Map a Property Multiple Times

In this example the field summary is indexed twice, once as summary in a tokenized way, and
once as summary_forSort in an untokenized way.

7.4.1.7. Embedded and Associated Objects

Associated objects as well as embedded objects can be indexed as part of the root entity
index. This is useful if you expect to search a given entity based on properties of associated
objects. The aim is to return places where the associated city is Atlanta (In the Lucene
query parser language, it would translate into address.city:Atlanta). The place fields will
be indexed in the Place index. The Place index documents will also contain the fields
address.id, address.street, and address.city which you will be able to query.

Example: Indexing Associations

@Entity
@Indexed(index = "Book")
public class Book {
 @Fields({
 @Field,
 @Field(name = "summary_forSort", analyze = Analyze.NO, store
= Store.YES)
 })
 public String getSummary() {
 return summary;
 }
 ...
}

@Entity
@Indexed
public class Place {
 @Id
 @GeneratedValue
 @DocumentId
 private Long id;

 @Field
 private String name;

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })
 @IndexedEmbedded
 private Address address;

}

@Entity
public class Address {
 @Id

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

90

Because the data is denormalized in the Lucene index when using the @IndexedEmbedded
technique, Hibernate Search must be aware of any change in the Place object and any
change in the Address object to keep the index up to date. To ensure the Lucene document
is updated when it is Address changes, mark the other side of the bidirectional relationship
with @ContainedIn.

NOTE

@ContainedIn is useful on both associations pointing to entities and on
embedded (collection of) objects.

To expand upon this, the following example demonstrates nesting @IndexedEmbedded.

Example: Nested Usage of @IndexedEmbedded and @ContainedIn

 @GeneratedValue
 private Long id;

 @Field
 private String street;

 @Field
 private String city;

 @ContainedIn
 @OneToMany(mappedBy="address")
 private Set<Place> places;
 ...
}

@Entity
@Indexed
public class Place {
 @Id
 @GeneratedValue
 @DocumentId
 private Long id;

 @Field
 private String name;

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })
 @IndexedEmbedded
 private Address address;

}

@Entity
public class Address {
 @Id
 @GeneratedValue
 private Long id;

 @Field
 private String street;

CHAPTER 7. HIBERNATE SEARCH

91

Any @*ToMany, @*ToOne and @Embedded attribute can be annotated with @IndexedEmbedded.
The attributes of the associated class will then be added to the main entity index. The
index will contain the following fields:

id

name

address.street

address.city

address.ownedBy_name

The default prefix is propertyName., following the traditional object navigation convention.
You can override it using the prefix attribute as it is shown on the ownedBy property.

NOTE

The prefix cannot be set to an empty string.

The depth property is necessary when the object graph contains a cyclic dependency of
classes (not instances). For example, if Owner points to Place. Hibernate Search will stop
including Indexed embedded attributes after reaching the expected depth (or the object
graph boundaries are reached). A class having a self reference is an example of cyclic
dependency. In our example, because depth is set to 1, any @IndexedEmbedded attribute in
Owner will be ignored.

Using @IndexedEmbedded for object associations allows you to express queries (using
Lucene’s query syntax) such as:

Return places where the name contains JBoss and where the address city is Atlanta.
In Lucene query this would be:

+name:jboss +address.city:atlanta

 @Field
 private String city;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_")
 private Owner ownedBy;

 @ContainedIn
 @OneToMany(mappedBy="address")
 private Set<Place> places;
 ...
}

@Embeddable
public class Owner {
 @Field
 private String name;
 ...
}

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

92

Return places where the name contains JBoss and where the owner’s name contains
Joe. In Lucene query this would be

+name:jboss +address.ownedBy_name:joe

This behavior mimics the relational join operation in a more efficient way (at the cost of
data duplication). Remember that, out of the box, Lucene indexes have no notion of
association, the join operation does not exist. It might help to keep the relational model
normalized while benefiting from the full text index speed and feature richness.

NOTE

An associated object can itself (but does not have to) be @Indexed

When @IndexedEmbedded points to an entity, the association has to be directional and the
other side has to be annotated @ContainedIn (as seen in the previous example). If not,
Hibernate Search has no way to update the root index when the associated entity is
updated (in our example, a Place index document has to be updated when the associated
Address instance is updated).

Sometimes, the object type annotated by @IndexedEmbedded is not the object type targeted
by Hibernate and Hibernate Search. This is especially the case when interfaces are used in
lieu of their implementation. For this reason you can override the object type targeted by
Hibernate Search using the targetElement parameter.

Example: Using the targetElement Property of @IndexedEmbedded

7.4.1.8. Limiting Object Embedding to Specific Paths

The @IndexedEmbedded annotation provides also an attribute includePaths which can be
used as an alternative to depth, or be combined with it.

@Entity
@Indexed
public class Address {
 @Id
 @GeneratedValue
 @DocumentId
 private Long id;

 @Field
 private String street;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_",)
 @Target(Owner.class)
 private Person ownedBy;
 ...
}

@Embeddable
public class Owner implements Person { ... }

CHAPTER 7. HIBERNATE SEARCH

93

When using only depth all indexed fields of the embedded type will be added recursively at
the same depth. This makes it harder to select only a specific path without adding all other
fields as well, which might not be needed.

To avoid unnecessarily loading and indexing entities you can specify exactly which paths
are needed. A typical application might need different depths for different paths, or in other
words it might need to specify paths explicitly, as shown in the example below:

Example: Using the includePaths Property of @IndexedEmbedded

Using a mapping as in the example above, you would be able to search on a Person by
name and/or surname, and/or the name of the parent. It will not index the surname of the
parent, so searching on parent’s surnames will not be possible but speeds up indexing,
saves space and improve overall performance.

The @IndexedEmbeddedincludePaths will include the specified paths in addition to what
you would index normally specifying a limited value for depth. When using includePaths,
and leaving depth undefined, behavior is equivalent to setting depth=0: only the included
paths are indexed.

Example: Using the includePaths Property of @IndexedEmbedded

@Entity
@Indexed
public class Person {

 @Id
 public int getId() {
 return id;
 }

 @Field
 public String getName() {
 return name;
 }

 @Field
 public String getSurname() {
 return surname;
 }

 @OneToMany
 @IndexedEmbedded(includePaths = { "name" })
 public Set<Person> getParents() {
 return parents;
 }

 @ContainedIn
 @ManyToOne
 public Human getChild() {
 return child;
 }

 ...//other fields omitted

@Entity

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

94

In the example above, every human will have its name and surname attributes indexed.
The name and surname of parents will also be indexed, recursively up to second line
because of the depth attribute. It will be possible to search by name or surname, of the
person directly, his parents or of his grand parents. Beyond the second level, we will in
addition index one more level but only the name, not the surname.

This results in the following fields in the index:

id: as primary key

_hibernate_class: stores entity type

name: as direct field

surname: as direct field

parents.name: as embedded field at depth 1

parents.surname: as embedded field at depth 1

parents.parents.name: as embedded field at depth 2

parents.parents.surname: as embedded field at depth 2

@Indexed
public class Human {

 @Id
 public int getId() {
 return id;
 }

 @Field
 public String getName() {
 return name;
 }

 @Field
 public String getSurname() {
 return surname;
 }

 @OneToMany
 @IndexedEmbedded(depth = 2, includePaths = { "parents.parents.name" })
 public Set<Human> getParents() {
 return parents;
 }

 @ContainedIn
 @ManyToOne
 public Human getChild() {
 return child;
 }

 ...//other fields omitted

CHAPTER 7. HIBERNATE SEARCH

95

parents.parents.parents.name: as additional path as specified by includePaths.
The first parents. is inferred from the field name, the remaining path is the
attribute of includePaths

Having explicit control of the indexed paths might be easier if you are designing your
application by defining the needed queries first, as at that point you might know exactly
which fields you need, and which other fields are unnecessary to implement your use case.

7.4.2. Boosting
Lucene has the notion of boosting which allows you to give certain documents or fields
more or less importance than others. Lucene differentiates between index and search time
boosting. The following sections show you how you can achieve index time boosting using
Hibernate Search.

7.4.2.1. Static Index Time Boosting

To define a static boost value for an indexed class or property you can use the @Boost
annotation. You can use this annotation within @Field or specify it directly on method or
class level.

Example: Different Ways of Using @Boost

In the example above, Essay’s probability to reach the top of the search list will be
multiplied by 1.7. The summary field will be 3.0 (2 * 1.5, because @Field.boost and @Boost
on a property are cumulative) more important than the isbn field. The text field will be 1.2
times more important than the isbn field. Note that this explanation is wrong in strictest
terms, but it is simple and close enough to reality for all practical purposes.

7.4.2.2. Dynamic Index Time Boosting

The @Boost annotation used in Static Index Time Boosting defines a static boost factor
which is independent of the state of the indexed entity at runtime. However, there are use

@Entity
@Indexed

public class Essay {
 ...

 @Id
 @DocumentId
 public Long getId() { return id; }

 @Field(name="Abstract", store=Store.YES, boost=@Boost(2f))
 @Boost(1.5f)
 public String getSummary() { return summary; }

 @Lob
 @Field(boost=@Boost(1.2f))
 public String getText() { return text; }

 @Field
 public String getISBN() { return isbn; }
}

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

96

cases in which the boost factor may depend on the actual state of the entity. In this case
you can use the @DynamicBoost annotation together with an accompanying custom
BoostStrategy.

Example: Dynamic Boost

In the example above, a dynamic boost is defined on class level specifying
VIPBoostStrategy as implementation of the BoostStrategy interface to be used at indexing
time. You can place the @DynamicBoost either at class or field level. Depending on the
placement of the annotation either the whole entity is passed to the defineBoost method or
just the annotated field/property value. It is up to you to cast the passed object to the
correct type. In the example all indexed values of a VIP person would be double as
important as the values of a normal person.

NOTE

The specified BoostStrategy implementation must define a public no-arg
constructor.

Of course you can mix and match @Boost and @DynamicBoost annotations in your entity. All
defined boost factors are cumulative.

7.4.3. Analysis
Analysis is the process of converting text into single terms (words) and can be considered
as one of the key features of a full-text search engine. Lucene uses the concept of
Analyzers to control this process. In the following section we cover the multiple ways
Hibernate Search offers to configure the analyzers.

public enum PersonType {
 NORMAL,
 VIP
}

@Entity
@Indexed
@DynamicBoost(impl = VIPBoostStrategy.class)
public class Person {
 private PersonType type;

 //
}

public class VIPBoostStrategy implements BoostStrategy {
 public float defineBoost(Object value) {
 Person person = (Person) value;
 if (person.getType().equals(PersonType.VIP)) {
 return 2.0f;
 }
 else {
 return 1.0f;
 }
 }
}

CHAPTER 7. HIBERNATE SEARCH

97

7.4.3.1. Default Analyzer and Analyzer by Class

The default analyzer class used to index tokenized fields is configurable through the
hibernate.search.analyzer property. The default value for this property is
org.apache.lucene.analysis.standard.StandardAnalyzer.

You can also define the analyzer class per entity, property and even per @Field (useful
when multiple fields are indexed from a single property).

Example: Different Ways of Using @Analyzer

In this example, EntityAnalyzer is used to index tokenized property (name), except summary
and body which are indexed with PropertyAnalyzer and FieldAnalyzer respectively.

WARNING

Mixing different analyzers in the same entity is most of the time a bad
practice. It makes query building more complex and results less
predictable (for the novice), especially if you are using a QueryParser
(which uses the same analyzer for the whole query). As a rule of thumb,
for any given field the same analyzer should be used for indexing and
querying.

7.4.3.2. Named Analyzers

Analyzers can become quite complex to deal with. For this reason introduces Hibernate
Search the notion of analyzer definitions. An analyzer definition can be reused by many
@Analyzer declarations and is composed of:

a name: the unique string used to refer to the definition

@Entity
@Indexed
@Analyzer(impl = EntityAnalyzer.class)
public class MyEntity {
 @Id
 @GeneratedValue
 @DocumentId
 private Integer id;

 @Field
 private String name;

 @Field
 @Analyzer(impl = PropertyAnalyzer.class)
 private String summary;

 @Field(analyzer = @Analyzer(impl = FieldAnalyzer.class)
 private String body;
 ...
}



Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

98

a list of char filters: each char filter is responsible to pre-process input characters
before the tokenization. Char filters can add, change, or remove characters; one
common usage is for characters normalization

a tokenizer: responsible for tokenizing the input stream into individual words

a list of filters: each filter is responsible to remove, modify, or sometimes even
add words into the stream provided by the tokenizer

This separation of tasks - a list of char filters, and a tokenizer followed by a list of filters -
allows for easy reuse of each individual component and lets you build your customized
analyzer in a very flexible way (like Lego). Generally speaking the char filters do some pre-
processing in the character input, then the Tokenizer starts the tokenizing process by
turning the character input into tokens which are then further processed by the
TokenFilters. Hibernate Search supports this infrastructure by utilizing the Solr analyzer
framework.

Let us review a concrete example stated below. First a char filter is defined by its factory. In
our example, a mapping char filter is used, and will replace characters in the input based
on the rules specified in the mapping file. Next a tokenizer is defined. This example uses
the standard tokenizer. Last but not least, a list of filters is defined by their factories. In our
example, the StopFilter filter is built reading the dedicated words property file. The filter is
also expected to ignore case.

Example: @AnalyzerDef and the Solr Framework

NOTE

Filters and char filters are applied in the order they are defined in the
@AnalyzerDef annotation. Order matters!

Some tokenizers, token filters or char filters load resources like a configuration or metadata

@AnalyzerDef(name="customanalyzer",
 charFilters = {
 @CharFilterDef(factory = MappingCharFilterFactory.class, params = {
 @Parameter(name = "mapping",
 value = "org/hibernate/search/test/analyzer/solr/mapping-
chars.properties")
 })
 },
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class, params = {
 @Parameter(name="words",
 value=
"org/hibernate/search/test/analyzer/solr/stoplist.properties"),
 @Parameter(name="ignoreCase", value="true")
 })
})
public class Team {
 ...
}

CHAPTER 7. HIBERNATE SEARCH

99

file. This is the case for the stop filter and the synonym filter. If the resource charset is not
using the VM default, you can explicitly specify it by adding a resource_charset
parameter.

Example: Use a Specific Charset to Load the Property File

Once defined, an analyzer definition can be reused by an @Analyzer declaration as seen in
the following example.

Example: Referencing an Analyzer by Name

@AnalyzerDef(name="customanalyzer",
 charFilters = {
 @CharFilterDef(factory = MappingCharFilterFactory.class, params = {
 @Parameter(name = "mapping",
 value = "org/hibernate/search/test/analyzer/solr/mapping-
chars.properties")
 })
 },
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class, params = {
 @Parameter(name="words",
 value=
"org/hibernate/search/test/analyzer/solr/stoplist.properties"),
 @Parameter(name="resource_charset", value = "UTF-16BE"),
 @Parameter(name="ignoreCase", value="true")
 })
})
public class Team {
 ...
}

@Entity
@Indexed
@AnalyzerDef(name="customanalyzer", ...)
public class Team {
 @Id
 @DocumentId
 @GeneratedValue
 private Integer id;

 @Field
 private String name;

 @Field
 private String location;

 @Field
 @Analyzer(definition = "customanalyzer")
 private String description;
}

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

100

Analyzer instances declared by @AnalyzerDef are also available by their name in the
SearchFactory which is quite useful when building queries.

Fields in queries must be analyzed with the same analyzer used to index the field so that
they speak a common "language": the same tokens are reused between the query and the
indexing process. This rule has some exceptions but is true most of the time. Respect it
unless you know what you are doing.

7.4.3.3. Available Analyzers

Solr and Lucene come with many useful default char filters, tokenizers, and filters. You can
find a complete list of char filter factories, tokenizer factories and filter factories at
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters. Let us check a few of them.

Table 7.8. Available Char Filters

Factory Description Parameters

MappingCharFilterFactory Replaces one or more characters
with one or more characters, based
on mappings specified in the
resource file

mapping: points to a
resource file containing
the mappings using the
format: "á" ⇒ "a"; "ñ" ⇒
"n"; "ø" ⇒ "o"

HTMLStripCharFilterFactor
y

Remove HTML standard tags,
keeping the text

none

Table 7.9. Available Tokenizers

Factory Description Parameters

StandardTokenizerFactory Use the Lucene StandardTokenizer none

HTMLStripCharFilterFactor
y

Remove HTML tags, keep the text
and pass it to a StandardTokenizer.

none

PatternTokenizerFactory Breaks text at the specified regular
expression pattern.

pattern: the regular
expression to use for
tokenizing

group: says which pattern
group to extract into
tokens

Table 7.10. Available Filters

Analyzer analyzer =
fullTextSession.getSearchFactory().getAnalyzer("customanalyzer");

CHAPTER 7. HIBERNATE SEARCH

101

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Factory Description Parameters

StandardFilterFactory Remove dots from acronyms and 's
from words

none

LowerCaseFilterFactory Lowercases all words none

StopFilterFactory Remove words (tokens) matching a
list of stop words

words: points to a
resource file containing
the stop words

ignoreCase: true if case
should be ignored when
comparing stop words,
false otherwise

SnowballPorterFilterFactor
y

Reduces a word to its root in a given
language. (example: protect,
protects, protection share the same
root). Using such a filter allows
searches matching related words.

language: Danish, Dutch,
English, Finnish, French,
German, Italian,
Norwegian, Portuguese,
Russian, Spanish, Swedish
and a few more

We recommend to check all the implementations of
org.apache.lucene.analysis.TokenizerFactory and
org.apache.lucene.analysis.TokenFilterFactory in your IDE to see the
implementations available.

7.4.3.4. Dynamic Analyzer Selection

So far all the introduced ways to specify an analyzer were static. However, there are use
cases where it is useful to select an analyzer depending on the current state of the entity to
be indexed, for example in a multilingual applications. For an BlogEntry class for example
the analyzer could depend on the language property of the entry. Depending on this
property the correct language specific stemmer should be chosen to index the actual text.

To enable this dynamic analyzer selection Hibernate Search introduces the
AnalyzerDiscriminator annotation. Following example demonstrates the usage of this
annotation.

Example: Usage of @AnalyzerDiscriminator

@Entity
@Indexed
@AnalyzerDefs({
 @AnalyzerDef(name = "en",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = EnglishPorterFilterFactory.class
)
 }),
 @AnalyzerDef(name = "de",

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

102

The prerequisite for using @AnalyzerDiscriminator is that all analyzers which are going to
be used dynamically are predefined via @AnalyzerDef definitions. If this is the case, one
can place the @AnalyzerDiscriminator annotation either on the class or on a specific
property of the entity for which to dynamically select an analyzer. Via the impl parameter
of the AnalyzerDiscriminator you specify a concrete implementation of the Discriminator
interface. It is up to you to provide an implementation for this interface. The only method
you have to implement is getAnalyzerDefinitionName() which gets called for each field
added to the Lucene document. The entity which is getting indexed is also passed to the
interface method. The value parameter is only set if the AnalyzerDiscriminator is placed
on property level instead of class level. In this case the value represents the current value
of this property.

An implementation of the Discriminator interface has to return the name of an existing
analyzer definition or null if the default analyzer should not be overridden. The example
above assumes that the language parameter is either 'de' or 'en' which matches the
specified names in the @AnalyzerDefs.

 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = GermanStemFilterFactory.class)
 })
})
public class BlogEntry {

 @Id
 @GeneratedValue
 @DocumentId
 private Integer id;

 @Field
 @AnalyzerDiscriminator(impl = LanguageDiscriminator.class)
 private String language;

 @Field
 private String text;

 private Set<BlogEntry> references;

 // standard getter/setter
 ...
}

public class LanguageDiscriminator implements Discriminator {

 public String getAnalyzerDefinitionName(Object value, Object entity,
String field) {
 if (value == null || !(entity instanceof BlogEntry)) {
 return null;
 }
 return (String) value;

 }
}

CHAPTER 7. HIBERNATE SEARCH

103

7.4.3.5. Retrieving an Analyzer

Retrieving an analyzer can be used when multiple analyzers have been used in a domain
model, in order to benefit from stemming or phonetic approximation, etc. In this case, use
the same analyzers to building a query. Alternatively, use the Hibernate Search query DSL,
which selects the correct analyzer automatically. See

Whether you are using the Lucene programmatic API or the Lucene query parser, you can
retrieve the scoped analyzer for a given entity. A scoped analyzer is an analyzer which
applies the right analyzers depending on the field indexed. Remember, multiple analyzers
can be defined on a given entity each one working on an individual field. A scoped analyzer
unifies all these analyzers into a context-aware analyzer. While the theory seems a bit
complex, using the right analyzer in a query is very easy.

NOTE

When you use programmatic mapping for a child entity, you can only see the
fields defined by the child entity. Fields or methods inherited from a parent
entity (annotated with @MappedSuperclass) are not configurable. To configure
properties inherited from a parent entity, either override the property in the
child entity or create a programmatic mapping for the parent entity. This
mimics the usage of annotations where you cannot annotate a field or method
of a parent entity unless it is redefined in the child entity.

Example: Using the Scoped Analyzer When Building a Full-text Query

In the example above, the song title is indexed in two fields: the standard analyzer is used
in the field title and a stemming analyzer is used in the field title_stemmed. By using the
analyzer provided by the search factory, the query uses the appropriate analyzer
depending on the field targeted.

NOTE

You can also retrieve analyzers defined via @AnalyzerDef by their definition
name using searchFactory.getAnalyzer(String).

7.4.4. Bridges
When discussing the basic mapping for an entity one important fact was so far disregarded.
In Lucene all index fields have to be represented as strings. All entity properties annotated
with @Field have to be converted to strings to be indexed. The reason we have not

org.apache.lucene.queryParser.QueryParser parser = new QueryParser(
 "title",
 fullTextSession.getSearchFactory().getAnalyzer(Song.class)
);

org.apache.lucene.search.Query luceneQuery =
 parser.parse("title:sky Or title_stemmed:diamond");

org.hibernate.Query fullTextQuery =
 fullTextSession.createFullTextQuery(luceneQuery, Song.class);

List result = fullTextQuery.list(); //return a list of managed objects

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

104

mentioned it so far is, that for most of your properties Hibernate Search does the
translation job for you thanks to set of built-in bridges. However, in some cases you need a
more fine grained control over the translation process.

7.4.4.1. Built-in Bridges

Hibernate Search comes bundled with a set of built-in bridges between a Java property type
and its full text representation.

null
Per default null elements are not indexed. Lucene does not support null elements.
However, in some situation it can be useful to insert a custom token representing the
null value. See for more information.

java.lang.String
Strings are indexed as are short, Short, integer, Integer, long, Long, float, Float, double,

Double, BigInteger, BigDecimal
Numbers are converted into their string representation. Note that numbers cannot be
compared by Lucene (that is, used in ranged queries) out of the box: they have to be
padded.

NOTE

Using a Range query has drawbacks, an alternative approach is to use a
Filter query which will filter the result query to the appropriate range.
Hibernate Search also supports the use of a custom StringBridge as
described in Custom Bridges.

java.util.Date
Dates are stored as yyyyMMddHHmmssSSS in GMT time (200611072203012 for Nov 7th
of 2006 4:03PM and 12ms EST). You should not really bother with the internal format.
What is important is that when using a TermRangeQuery, you should know that the
dates have to be expressed in GMT time.
Usually, storing the date up to the millisecond is not necessary. @DateBridge defines
the appropriate resolution you are willing to store in the index
(@DateBridge(resolution=Resolution.DAY)). The date pattern will then be truncated
accordingly.

@Entity
@Indexed
public class Meeting {
 @Field(analyze=Analyze.NO)

 private Date date;
 ...

CHAPTER 7. HIBERNATE SEARCH

105

WARNING

A Date whose resolution is lower than MILLISECOND cannot be a
@DocumentId.

IMPORTANT

The default Date bridge uses Lucene’s DateTools to convert from and to
String. This means that all dates are expressed in GMT time. If your
requirements are to store dates in a fixed time zone you have to implement a
custom date bridge. Make sure you understand the requirements of your
applications regarding to date indexing and searching.

java.net.URI, java.net.URL
URI and URL are converted to their string representation.

java.lang.Class
Class are converted to their fully qualified class name. The thread context class loader is
used when the class is rehydrated.

7.4.4.2. Custom Bridges

Sometimes, the built-in bridges of Hibernate Search do not cover some of your property
types, or the String representation used by the bridge does not meet your requirements.
The following paragraphs describe several solutions to this problem.

7.4.4.2.1. StringBridge

The simplest custom solution is to give Hibernate Search an implementation of your
expected Object to String bridge. To do so you need to implement the
org.hibernate.search.bridge.StringBridge interface. All implementations have to be
thread-safe as they are used concurrently.

Example: Custom StringBridge Implementation



/**
 * Padding Integer bridge.
 * All numbers will be padded with 0 to match 5 digits
 *
 * @author Emmanuel Bernard
 */
public class PaddedIntegerBridge implements StringBridge {

 private int PADDING = 5;

 public String objectToString(Object object) {
 String rawInteger = ((Integer) object).toString();
 if (rawInteger.length() > PADDING)
 throw new IllegalArgumentException("Try to pad on a number
too big");

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

106

Given the string bridge defined in the previous example, any property or field can use this
bridge thanks to the @FieldBridge annotation:

7.4.4.2.2. Parameterized Bridge

Parameters can also be passed to the bridge implementation making it more flexible.
Following example implements a ParameterizedBridge interface and parameters are passed
through the @FieldBridge annotation.

Example: Passing Parameters to Your Bridge Implementation

 StringBuilder paddedInteger = new StringBuilder();
 for (int padIndex = rawInteger.length() ; padIndex < PADDING ;
padIndex++) {
 paddedInteger.append('0');
 }
 return paddedInteger.append(rawInteger).toString();
 }
}

@FieldBridge(impl = PaddedIntegerBridge.class)
private Integer length;

public class PaddedIntegerBridge implements StringBridge,
ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";
 private int padding = 5; //default

 public void setParameterValues(Map<String,String> parameters) {
 String padding = parameters.get(PADDING_PROPERTY);
 if (padding != null) this.padding = Integer.parseInt(padding);
 }

 public String objectToString(Object object) {
 String rawInteger = ((Integer) object).toString();
 if (rawInteger.length() > padding)
 throw new IllegalArgumentException("Try to pad on a number
too big");
 StringBuilder paddedInteger = new StringBuilder();
 for (int padIndex = rawInteger.length() ; padIndex < padding ;
padIndex++) {
 paddedInteger.append('0');
 }
 return paddedInteger.append(rawInteger).toString();
 }
}

//property
@FieldBridge(impl = PaddedIntegerBridge.class,
 params = @Parameter(name="padding", value="10")
)
private Integer length;

CHAPTER 7. HIBERNATE SEARCH

107

The ParameterizedBridge interface can be implemented by StringBridge,
TwoWayStringBridge, FieldBridge implementations.

All implementations have to be thread-safe, but the parameters are set during initialization
and no special care is required at this stage.

7.4.4.2.3. Type Aware Bridge

It is sometimes useful to get the type the bridge is applied on:

the return type of the property for field/getter-level bridges.

the class type for class-level bridges.

An example is a bridge that deals with enums in a custom fashion but needs to access the
actual enum type. Any bridge implementing AppliedOnTypeAwareBridge will get the type
the bridge is applied on injected. Like parameters, the type injected needs no particular
care with regard to thread-safety.

7.4.4.2.4. Two-Way Bridge

If you expect to use your bridge implementation on an id property (that is, annotated with
@DocumentId), you need to use a slightly extended version of StringBridge named
TwoWayStringBridge. Hibernate Search needs to read the string representation of the
identifier and generate the object out of it. There is no difference in the way the
@FieldBridge annotation is used.

Example: Implementing a TwoWayStringBridge Usable for id Properties

public class PaddedIntegerBridge implements TwoWayStringBridge,
ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";
 private int padding = 5; //default

 public void setParameterValues(Map parameters) {
 Object padding = parameters.get(PADDING_PROPERTY);
 if (padding != null) this.padding = (Integer) padding;
 }

 public String objectToString(Object object) {
 String rawInteger = ((Integer) object).toString();
 if (rawInteger.length() > padding)
 throw new IllegalArgumentException("Try to pad on a number
too big");
 StringBuilder paddedInteger = new StringBuilder();
 for (int padIndex = rawInteger.length() ; padIndex < padding ;
padIndex++) {
 paddedInteger.append('0');
 }
 return paddedInteger.append(rawInteger).toString();
 }

 public Object stringToObject(String stringValue) {
 return new Integer(stringValue);
 }

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

108

IMPORTANT

It is important for the two-way process to be idempotent (i.e., object =
stringToObject(objectToString(object))).

7.4.4.2.5. FieldBridge

Some use cases require more than a simple object to string translation when mapping a
property to a Lucene index. To give you the greatest possible flexibility you can also
implement a bridge as a FieldBridge. This interface gives you a property value and let you
map it the way you want in your Lucene Document. You can for example store a property
in two different document fields. The interface is very similar in its concept to the
Hibernate UserTypes.

Example: Implementing the FieldBridge Interface

}

//id property
@DocumentId
@FieldBridge(impl = PaddedIntegerBridge.class,
 params = @Parameter(name="padding", value="10")
private Integer id;

/**
 * Store the date in 3 different fields - year, month, day - to ease Range
Query per
 * year, month or day (eg get all the elements of December for the last 5
years).
 * @author Emmanuel Bernard
 */
public class DateSplitBridge implements FieldBridge {
 private final static TimeZone GMT = TimeZone.getTimeZone("GMT");

 public void set(String name, Object value, Document document,
LuceneOptions luceneOptions) {
 Date date = (Date) value;
 Calendar cal = GregorianCalendar.getInstance(GMT);
 cal.setTime(date);
 int year = cal.get(Calendar.YEAR);
 int month = cal.get(Calendar.MONTH) + 1;
 int day = cal.get(Calendar.DAY_OF_MONTH);

 // set year
 luceneOptions.addFieldToDocument(
 name + ".year",
 String.valueOf(year),
 document);

 // set month and pad it if needed
 luceneOptions.addFieldToDocument(
 name + ".month",
 month < 10 ? "0" : "" + String.valueOf(month),
 document);

CHAPTER 7. HIBERNATE SEARCH

109

In the example above, the fields are not added directly to Document. Instead the addition
is delegated to the LuceneOptions helper; this helper will apply the options you have
selected on @Field, like Store or TermVector, or apply the chosen @Boost value. It is
especially useful to encapsulate the complexity of COMPRESS implementations. Even though
it is recommended to delegate to LuceneOptions to add fields to the Document, nothing
stops you from editing the Document directly and ignore the LuceneOptions in case you
need to.

NOTE

Classes like LuceneOptions are created to shield your application from
changes in Lucene API and simplify your code. Use them if you can, but if you
need more flexibility you are not required to.

7.4.4.2.6. ClassBridge

It is sometimes useful to combine more than one property of a given entity and index this
combination in a specific way into the Lucene index. The @ClassBridge and @ClassBridges
annotations can be defined at the class level, as opposed to the property level. In this case
the custom field bridge implementation receives the entity instance as the value
parameter instead of a particular property. Though not shown in following example,
@ClassBridge supports the termVector attribute discussed in the Basic Mapping section.

Example: Implementing a Class Bridge

 // set day and pad it if needed
 luceneOptions.addFieldToDocument(
 name + ".day",
 day < 10 ? "0" : "" + String.valueOf(day),
 document);
 }
}

//property
@FieldBridge(impl = DateSplitBridge.class)
private Date date;

@Entity
@Indexed
(name="branchnetwork",
 store=Store.YES,
 impl = CatFieldsClassBridge.class,
 params = @Parameter(name="sepChar", value=" "))
public class Department {
 private int id;
 private String network;
 private String branchHead;
 private String branch;
 private Integer maxEmployees
 ...
}

public class CatFieldsClassBridge implements FieldBridge,
ParameterizedBridge {
 private String sepChar;

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

110

In this example, the particular CatFieldsClassBridge is applied to the department
instance, the field bridge then concatenate both branch and network and index the
concatenation.

7.5. QUERYING
Hibernate Search can execute Lucene queries and retrieve domain objects managed by an
InfinispanHibernate session. The search provides the power of Lucene without leaving the
Hibernate paradigm, giving another dimension to the Hibernate classic search mechanisms
(HQL, Criteria query, native SQL query).

Preparing and executing a query consists of following four steps:

Creating a FullTextSession

Creating a Lucene query using either Hibernate QueryHibernate Search query DSL
(recommended) or using the Lucene Query API

Wrapping the Lucene query using an org.hibernate.Query

Executing the search by calling for example list() or scroll()

To access the querying facilities, use a FullTextSession. This Search-specific session wraps
a regular org.hibernate.Session in order to provide query and indexing capabilities.

Example: Creating a FullTextSession

 public void setParameterValues(Map parameters) {
 this.sepChar = (String) parameters.get("sepChar");
 }

 public void set(String name, Object value, Document document,
LuceneOptions luceneOptions) {
 // In this particular class the name of the new field was passed
 // from the name field of the ClassBridge Annotation. This is not
 // a requirement. It just works that way in this instance. The
 // actual name could be supplied by hard coding it below.
 Department dep = (Department) value;
 String fieldValue1 = dep.getBranch();
 if (fieldValue1 == null) {
 fieldValue1 = "";
 }
 String fieldValue2 = dep.getNetwork();
 if (fieldValue2 == null) {
 fieldValue2 = "";
 }
 String fieldValue = fieldValue1 + sepChar + fieldValue2;
 Field field = new Field(name, fieldValue,
luceneOptions.getStore(),
 luceneOptions.getIndex(), luceneOptions.getTermVector());
 field.setBoost(luceneOptions.getBoost());
 document.add(field);
 }
}

CHAPTER 7. HIBERNATE SEARCH

111

Use the FullTextSession to build a full-text query using either the Hibernate Search query
DSL or the native Lucene query.

Use the following code when using the Hibernate Search query DSL:

As an alternative, write the Lucene query using either the Lucene query parser or the
Lucene programmatic API.

Example: Creating a Lucene Query Using the QueryParser

A Hibernate query built on the Lucene query is a org.hibernate.Query. This query remains
in the same paradigm as other Hibernate query facilities, such as HQL (Hibernate Query
Language), Native, and Criteria. Use methods such as list(), uniqueResult(), iterate() and
scroll() with the query.

The same extensions are available with the Hibernate Java Persistence APIs:

Example: Creating a Search Query Using the JPA API

Session session = sessionFactory.openSession();
...
FullTextSession fullTextSession = Search.getFullTextSession(session);

final QueryBuilder b =
fullTextSession.getSearchFactory().buildQueryBuilder().forEntity(
Myth.class).get();

org.apache.lucene.search.Query luceneQuery =
 b.keyword()
 .onField("history").boostedTo(3)
 .matching("storm")
 .createQuery();

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(
luceneQuery);
List result = fullTextQuery.list(); //return a list of managed objects

SearchFactory searchFactory = fullTextSession.getSearchFactory();
org.apache.lucene.queryParser.QueryParser parser =
 new QueryParser("title", searchFactory.getAnalyzer(Myth.class));
try {
 org.apache.lucene.search.Query luceneQuery = parser.parse(
"history:storm^3");
}
catch (ParseException e) {
 //handle parsing failure
}

org.hibernate.Query fullTextQuery =
fullTextSession.createFullTextQuery(luceneQuery);
List result = fullTextQuery.list(); //return a list of managed objects

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

112

NOTE

In these examples, the Hibernate API has been used. The same examples can
also be written with the Java Persistence API by adjusting the way the
FullTextQuery is retrieved.

7.5.1. Building Queries
Hibernate Search queries are built on Lucene queries, allowing users to use any Lucene
query type. When the query is built, Hibernate Search uses org.hibernate.Query as the
query manipulation API for further query processing.

7.5.1.1. Building a Lucene Query Using the Lucene API

With the Lucene API, use either the query parser (simple queries) or the Lucene
programmatic API (complex queries). Building a Lucene query is out of scope for the
Hibernate Search documentation. For details, see the online Lucene documentation or a
copy of Lucene in Action or Hibernate Search in Action.

7.5.1.2. Building a Lucene Query

The Lucene programmatic API enables full-text queries. However, when using the Lucene
programmatic API, the parameters must be converted to their string equivalent and must
also apply the correct analyzer to the right field. A ngram analyzer for example uses
several ngrams as the tokens for a given word and should be searched as such. It is
recommended to use the QueryBuilder for this task.

The Hibernate Search query API is fluent, with the following key characteristics:

Method names are in English. As a result, API operations can be read and
understood as a series of English phrases and instructions.

It uses IDE autocompletion which helps possible completions for the current input
prefix and allows the user to choose the right option.

It often uses the chaining method pattern.

 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

...
final QueryBuilder b = fullTextEntityManager.getSearchFactory()
 .buildQueryBuilder().forEntity(Myth.class).get();

org.apache.lucene.search.Query luceneQuery =
 b.keyword()
 .onField("history").boostedTo(3)
 .matching("storm")
 .createQuery();

javax.persistence.Query fullTextQuery =
fullTextEntityManager.createFullTextQuery(luceneQuery);

List result = fullTextQuery.getResultList(); //return a list of managed
objects

CHAPTER 7. HIBERNATE SEARCH

113

It is easy to use and read the API operations.

To use the API, first create a query builder that is attached to a given indexedentitytype.
This QueryBuilder knows what analyzer to use and what field bridge to apply. Several
QueryBuilders (one for each entity type involved in the root of your query) can be created.
The QueryBuilder is derived from the SearchFactory.

The analyzer used for a given field or fields can also be overridden.

The query builder is now used to build Lucene queries. Customized queries generated using
Lucene’s query parser or Query objects assembled using the Lucene programmatic API are
used with the Hibernate Search DSL.

7.5.1.3. Keyword Queries

The following example shows how to search for a specific word:

Table 7.11. Keyword Query Parameters

Parameter Description

keyword() Use this parameter to find a specific word.

onField() Use this parameter to specify in which lucene field to search the
word.

matching() Use this parameter to specify the match for search string

createQuery() Creates the Lucene query object.

The value "storm" is passed through the history FieldBridge. This is useful when
numbers or dates are involved.

The field bridge value is then passed to the analyzer used to index the field
history. This ensures that the query uses the same term transformation than the
indexing (lower case, ngram, stemming and so on). If the analyzing process
generates several terms for a given word, a boolean query is used with the SHOULD
logic (roughly an OR logic).

To search a property that is not of type string.

QueryBuilder mythQB = searchFactory.buildQueryBuilder().forEntity(
Myth.class).get();

QueryBuilder mythQB = searchFactory.buildQueryBuilder()
 .forEntity(Myth.class)
 .overridesForField("history","stem_analyzer_definition")
 .get();

Query luceneQuery =
mythQB.keyword().onField("history").matching("storm").createQuery();

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

114

NOTE

In plain Lucene, the Date object had to be converted to its string
representation, which in this case is the year.

This conversion works for any object, provided that the FieldBridge has an objectToString
method (and all built-in FieldBridge implementations do).

The next example searches a field that uses ngram analyzers. The ngram analyzers index
succession of ngrams of words, which helps to avoid user typos. For example, the 3-grams
of the word hibernate are hib, ibe, ber, ern, rna, nat, ate.

@Indexed
public class Myth {
 @Field(analyze = Analyze.NO)
 @DateBridge(resolution = Resolution.YEAR)
 public Date getCreationDate() { return creationDate; }
 public Date setCreationDate(Date creationDate) { this.creationDate =
creationDate; }
 private Date creationDate;

 ...
}

Date birthdate = ...;
Query luceneQuery =
mythQb.keyword().onField("creationDate").matching(birthdate).createQuery()
;

@AnalyzerDef(name = "ngram",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = StandardFilterFactory.class),
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class),
 @TokenFilterDef(factory = NGramFilterFactory.class,
 params = {
 @Parameter(name = "minGramSize", value = "3"),
 @Parameter(name = "maxGramSize", value = "3") })
 }
)

public class Myth {
 @Field(analyzer=@Analyzer(definition="ngram")
 public String getName() { return name; }
 public String setName(String name) { this.name = name; }
 private String name;

 ...
}

Date birthdate = ...;
Query luceneQuery = mythQb.keyword().onField("name").matching("Sisiphus")
 .createQuery();

CHAPTER 7. HIBERNATE SEARCH

115

The matching word "Sisiphus" will be lower-cased and then split into 3-grams: sis, isi, sip,
iph, phu, hus. Each of these ngram will be part of the query. The user is then able to find
the Sysiphus myth (with a y). All that is transparently done for the user.

NOTE

If the user does not want a specific field to use the field bridge or the analyzer
then the ignoreAnalyzer() or ignoreFieldBridge() functions can be called.

To search for multiple possible words in the same field, add them all in the matching clause.

To search the same word on multiple fields, use the onFields method.

Sometimes, one field should be treated differently from another field even if searching the
same term, use the andField() method for that.

In the previous example, only field name is boosted to 5.

7.5.1.4. Fuzzy Queries

To execute a fuzzy query (based on the Levenshtein distance algorithm), start with a
keyword query and add the fuzzy flag.

The threshold is the limit above which two terms are considering matching. It is a decimal
between 0 and 1 and the default value is 0.5. The prefixLength is the length of the prefix
ignored by the "fuzzyness". While the default value is 0, a nonzero value is recommended

//search document with storm or lightning in their history
Query luceneQuery =
 mythQB.keyword().onField("history").matching("storm
lightning").createQuery();

Query luceneQuery = mythQB
 .keyword()
 .onFields("history","description","name")
 .matching("storm")
 .createQuery();

Query luceneQuery = mythQB.keyword()
 .onField("history")
 .andField("name")
 .boostedTo(5)
 .andField("description")
 .matching("storm")
 .createQuery();

Query luceneQuery = mythQB
 .keyword()
 .fuzzy()
 .withThreshold(.8f)
 .withPrefixLength(1)
 .onField("history")
 .matching("starm")
 .createQuery();

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

116

for indexes containing a huge number of distinct terms.

7.5.1.5. Wildcard Queries

Wildcard queries are useful in circumstances where only part of the word is known. The ?
represents a single character and * represents multiple characters. Note that for
performance purposes, it is recommended that the query does not start with either ? or *.

NOTE

Wildcard queries do not apply the analyzer on the matching terms. The risk of
* or ? being mangled is too high.

7.5.1.6. Phrase Queries

So far we have been looking for words or sets of words, the user can also search exact or
approximate sentences. Use phrase() to do so.

Approximate sentences can be searched by adding a slop factor. The slop factor represents
the number of other words permitted in the sentence: this works like a within or near
operator.

7.5.1.7. Range Queries

A range query searches for a value in between given boundaries (included or not) or for a
value below or above a given boundary.

Query luceneQuery = mythQB
 .keyword()
 .wildcard()
 .onField("history")
 .matching("sto*")
 .createQuery();

Query luceneQuery = mythQB
 .phrase()
 .onField("history")
 .sentence("Thou shalt not kill")
 .createQuery();

Query luceneQuery = mythQB
 .phrase()
 .withSlop(3)
 .onField("history")
 .sentence("Thou kill")
 .createQuery();

//look for 0 <= starred < 3
Query luceneQuery = mythQB
 .range()
 .onField("starred")
 .from(0).to(3).excludeLimit()
 .createQuery();

CHAPTER 7. HIBERNATE SEARCH

117

7.5.1.8. Combining Queries

Queries can be combined to create more complex queries. The following aggregation
operators are available:

SHOULD: the query should contain the matching elements of the subquery.

MUST: the query must contain the matching elements of the subquery.

MUST NOT: the query must not contain the matching elements of the subquery.

The subqueries can be any Lucene query including a boolean query itself.

Example: SHOULD Query

Example: MUST Query

Example: MUST NOT Query

//look for myths strictly BC
Date beforeChrist = ...;
Query luceneQuery = mythQB
 .range()
 .onField("creationDate")
 .below(beforeChrist).excludeLimit()
 .createQuery();

//look for popular myths that are preferably urban
Query luceneQuery = mythQB
 .bool()
 .should(
mythQB.keyword().onField("description").matching("urban").createQuery())
 .must(mythQB.range().onField("starred").above(4).createQuery())
 .createQuery();

//look for popular urban myths
Query luceneQuery = mythQB
 .bool()
 .must(
mythQB.keyword().onField("description").matching("urban").createQuery())
 .must(mythQB.range().onField("starred").above(4).createQuery())
 .createQuery();

//look for popular modern myths that are not urban
Date twentiethCentury = ...;
Query luceneQuery = mythQB
 .bool()
 .must(
mythQB.keyword().onField("description").matching("urban").createQuery())
 .not()
 .must(mythQB.range().onField("starred").above(4).createQuery())
 .must(mythQB
 .range()

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

118

7.5.1.9. Query Options

The Hibernate Search query DSL is an easy-to-use and easy-to-read query API. In accepting
and producing Lucene queries, you can incorporate query types not yet supported by the
DSL.

The following is a summary of query options for query types and fields:

boostedTo (on query type and on field) boosts the whole query or the specific field
to a given factor.

withConstantScore (on query) returns all results that match the query have a
constant score equals to the boost.

filteredBy(Filter) (on query) filters query results using the Filter instance.

ignoreAnalyzer (on field) ignores the analyzer when processing this field.

ignoreFieldBridge (on field) ignores field bridge when processing this field.

Example: Combination of Query Options

7.5.1.10. Build a Hibernate Search Query

7.5.1.10.1. Generality

After building the Lucene query, wrap it within a Hibernate query. The query searches all
indexed entities and returns all types of indexed classes unless explicitly configured not to
do so.

Example: Wrapping a Lucene Query in a Hibernate Query

 .onField("creationDate")
 .above(twentiethCentury)
 .createQuery())
 .createQuery();

Query luceneQuery = mythQB
 .bool()
 .should(
mythQB.keyword().onField("description").matching("urban").createQuery())
 .should(mythQB
 .keyword()
 .onField("name")
 .boostedTo(3)
 .ignoreAnalyzer()
 .matching("urban").createQuery())
 .must(mythQB
 .range()
 .boostedTo(5).withConstantScore()
 .onField("starred").above(4).createQuery())
 .createQuery();

CHAPTER 7. HIBERNATE SEARCH

119

For improved performance, restrict the returned types as follows:

Example: Filtering the Search Result by Entity Type

The first part of the second example only returns the matching Customers. The second part
of the same example returns matching Actors and Items. The type restriction is
polymorphic. As a result, if the two subclasses Salesman and Customer of the base class
Person return, specify Person.class to filter based on result types.

7.5.1.10.2. Pagination

To avoid performance degradation, it is recommended to restrict the number of returned
objects per query. A user navigating from one page to another page is a very common use
case. The way to define pagination is similar to defining pagination in a plain HQL or
Criteria query.

Example: Defining Pagination for a Search Query

NOTE

It is still possible to get the total number of matching elements regardless of
the pagination via fulltextQuery.getResultSize().

7.5.1.10.3. Sorting

Apache Lucene contains a flexible and powerful result sorting mechanism. The default
sorting is by relevance and is appropriate for a large variety of use cases. The sorting
mechanism can be changed to sort by other properties using the Lucene Sort object to
apply a Lucene sorting strategy.

Example: Specifying a Lucene Sort

FullTextSession fullTextSession = Search.getFullTextSession(session);
org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(
luceneQuery);

fullTextQuery = fullTextSession
 .createFullTextQuery(luceneQuery, Customer.class);

// or

fullTextQuery = fullTextSession
 .createFullTextQuery(luceneQuery, Item.class, Actor.class);

org.hibernate.Query fullTextQuery =
 fullTextSession.createFullTextQuery(luceneQuery, Customer.class);
fullTextQuery.setFirstResult(15); //start from the 15th element
fullTextQuery.setMaxResults(10); //return 10 elements

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(query,
Book.class);
org.apache.lucene.search.Sort sort = new Sort(

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

120

NOTE

Fields used for sorting must not be tokenized. For more information about
tokenizing, see @Field.

7.5.1.10.4. Fetching Strategy

Hibernate Search loads objects using a single query if the return types are restricted to one
class. Hibernate Search is restricted by the static fetching strategy defined in the domain
model. It is useful to refine the fetching strategy for a specific use case as follows:

Example: Specifying FetchMode on a Query

In this example, the query will return all Books matching the LuceneQuery. The authors
collection will be loaded from the same query using an SQL outer join.

In a criteria query definition, the type is guessed based on the provided criteria query. As a
result, it is not necessary to restrict the return entity types.

IMPORTANT

The fetch mode is the only adjustable property. Do not use a restriction (a
where clause) on the Criteria query because the getResultSize() throws a
SearchException if used in conjunction with a Criteria with restriction.

If more than one entity is expected, do not use setCriteriaQuery.

7.5.1.10.5. Projection

In some cases, only a small subset of the properties is required. Use Hibernate Search to
return a subset of properties as follows:

Hibernate Search extracts properties from the Lucene index and converts them to their
object representation and returns a list of Object[]. Projections prevent a time consuming
database round-trip. However, they have following constraints:

The properties projected must be stored in the index (@Field(store=Store.YES)),
which increases the index size.

The properties projected must use a FieldBridge implementing
org.hibernate.search.bridge.TwoWayFieldBridge or
org.hibernate.search.bridge.TwoWayStringBridge, the latter being the simpler
version.

 new SortField("title", SortField.STRING));

List results = query.list();

Criteria criteria =
 s.createCriteria(Book.class).setFetchMode("authors", FetchMode.JOIN
);
s.createFullTextQuery(luceneQuery).setCriteriaQuery(criteria);

CHAPTER 7. HIBERNATE SEARCH

121

NOTE

All Hibernate Search built-in types are two-way.

Only the simple properties of the indexed entity or its embedded associations can
be projected. Therefore a whole embedded entity cannot be projected.

Projection does not work on collections or maps which are indexed via
@IndexedEmbedded.

Lucene provides metadata information about query results. Use projection constants to
retrieve the metadata.

Example: Using Projection to Retrieve Metadata

Fields can be mixed with the following projection constants:

FullTextQuery.THIS: returns the initialized and managed entity (as a non
projected query would have done).

FullTextQuery.DOCUMENT: returns the Lucene Document related to the object
projected.

FullTextQuery.OBJECT_CLASS: returns the class of the indexed entity.

FullTextQuery.SCORE: returns the document score in the query. Scores are handy
to compare one result against an other for a given query but are useless when
comparing the result of different queries.

FullTextQuery.ID: the ID property value of the projected object.

FullTextQuery.DOCUMENT_ID: the Lucene document ID. Be careful in using this
value as a Lucene document ID can change over time between two different
IndexReader opening.

FullTextQuery.EXPLANATION: returns the Lucene Explanation object for the
matching object/document in the given query. This is not suitable for retrieving
large amounts of data. Running explanation typically is as costly as running the
whole Lucene query per matching element. As a result, projection is recommended.

7.5.1.10.6. Customizing Object Initialization Strategies

By default, Hibernate Search uses the most appropriate strategy to initialize entities
matching the full text query. It executes one or more queries to retrieve the required
entities. This approach minimizes database trips where few of the retrieved entities are
present in the persistence context (the session) or the second level cache.

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
query.;
List results = query.list();
Object[] firstResult = (Object[]) results.get(0);
float score = firstResult[0];
Book book = firstResult[1];
String authorName = firstResult[2];

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

122

If entities are present in the second-level cache, force Hibernate Search to look into the
cache before retrieving a database object.

Example: Check the Second-level Cache Before Using a Query

ObjectLookupMethod defines the strategy to check if an object is easily accessible (without
fetching it from the database). Other options are:

ObjectLookupMethod.PERSISTENCE_CONTEXT is used if many matching entities are
already loaded into the persistence context (loaded in the Session or
EntityManager).

ObjectLookupMethod.SECOND_LEVEL_CACHE checks the persistence context and
then the second-level cache.

Set the following to search in the second-level cache:

Correctly configure and activate the second-level cache.

Enable the second-level cache for the relevant entity. This is done using annotations
such as @Cacheable.

Enable second-level cache read access for either Session, EntityManager or Query.
Use CacheMode.NORMAL in Hibernate native APIs or CacheRetrieveMode.USE in Java
Persistence APIs.

WARNING

Unless the second-level cache implementation is EHCache or Infinispan,
do not use ObjectLookupMethod.SECOND_LEVEL_CACHE. Other second-
level cache providers do not implement this operation efficiently.

Customize how objects are loaded from the database using DatabaseRetrievalMethod as
follows:

QUERY (default) uses a set of queries to load several objects in each batch. This
approach is recommended.

FIND_BY_ID loads one object at a time using the Session.get or
EntityManager.find semantic. This is recommended if the batch size is set for the
entity, which allows Hibernate Core to load entities in batches.

7.5.1.10.7. Limiting the Time of a Query

FullTextQuery query = session.createFullTextQuery(luceneQuery,
User.class);
query.initializeObjectWith(
 ObjectLookupMethod.SECOND_LEVEL_CACHE,
 DatabaseRetrievalMethod.QUERY
);



CHAPTER 7. HIBERNATE SEARCH

123

Limit the time a query takes in Hibernate Guide as follows:

Raise an exception when arriving at the limit.

Limit to the number of results retrieved when the time limit is raised.

7.5.1.10.8. Raise an Exception on Time Limit

If a query uses more than the defined amount of time, a QueryTimeoutException is raised
(org.hibernate.QueryTimeoutException or javax.persistence.QueryTimeoutException
depending on the programmatic API).

To define the limit when using the native Hibernate APIs, use one of the following
approaches:

Example: Defining a Timeout in Query Execution

The getResultSize(), iterate() and scroll() honor the timeout until the end of the method
call. As a result, Iterable or the ScrollableResults ignore the timeout. Additionally, explain()
does not honor this timeout period. This method is used for debugging and to check the
reasons for slow performance of a query.

The following is the standard way to limit execution time using the Java Persistence API
(JPA):

Example: Defining a Timeout in Query Execution

Query luceneQuery = ...;
FullTextQuery query = fullTextSession.createFullTextQuery(luceneQuery,
User.class);

//define the timeout in seconds
query.setTimeout(5);

//alternatively, define the timeout in any given time unit
query.setTimeout(450, TimeUnit.MILLISECONDS);

try {
 query.list();
}
catch (org.hibernate.QueryTimeoutException e) {
 //do something, too slow
}

Query luceneQuery = ...;
FullTextQuery query = fullTextEM.createFullTextQuery(luceneQuery,
User.class);

//define the timeout in milliseconds
query.setHint("javax.persistence.query.timeout", 450);

try {
 query.getResultList();
}
catch (javax.persistence.QueryTimeoutException e) {
 //do something, too slow

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

124

IMPORTANT

The example code does not guarantee that the query stops at the specified
results amount.

7.5.2. Retrieving the Results
After building the Hibernate query, it is executed the same way as an HQL or Criteria
query. The same paradigm and object semantic apply to a Lucene Query query and the
common operations like list(), uniqueResult(), iterate(), and scroll() are available.

7.5.2.1. Performance Considerations

If you expect a reasonable number of results (for example using pagination) and expect to
work on all of them, list() or uniqueResult() are recommended. list() work best if the
entity batch-size is set up properly. Note that Hibernate Search has to process all Lucene
Hits elements (within the pagination) when using list() , uniqueResult() and iterate().

If you wish to minimize Lucene document loading, scroll() is more appropriate. Do not
forget to close the ScrollableResults object when you are done, since it keeps Lucene
resources. If you expect to use scroll, but wish to load objects in batch, you can use
query.setFetchSize(). When an object is accessed, and if not already loaded, Hibernate
Search will load the next fetchSize objects in one pass.

IMPORTANT

Pagination is preferred over scrolling.

7.5.2.2. Result Size

It is sometimes useful to know the total number of matching documents:

to provide a total search results feature, as provided by Google searches. For
example, "1-10 of about 888,000,000 results"

to implement a fast pagination navigation

to implement a multi-step search engine that adds approximation if the restricted
query returns zero or not enough results

Of course it would be too costly to retrieve all the matching documents. Hibernate Search
allows you to retrieve the total number of matching documents regardless of the
pagination parameters. Even more interesting, you can retrieve the number of matching
elements without triggering a single object load.

Example: Determining the Result Size of a Query

}

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
//return the number of matching books without loading a single one
assert 3245 == ;

CHAPTER 7. HIBERNATE SEARCH

125

NOTE

Like Google, the number of results is approximation if the index is not fully up-
to-date with the database (asynchronous cluster for example).

7.5.2.3. ResultTransformer

Projection results are returned as Object arrays. If the data structure used for the object
does not match the requirements of the application, apply a ResultTransformer. The
ResultTransformer builds the required data structure after the query execution.

Example: Using ResultTransformer with Projections

Examples of ResultTransformer implementations can be found in the Hibernate Core
codebase.

7.5.2.4. Understanding Results

If the results of a query are not what you expected, the Luke tool is useful in understanding
the outcome. However, Hibernate Search also gives you access to the Lucene Explanation
object for a given result (in a given query). This class is considered fairly advanced to
Lucene users but can provide a good understanding of the scoring of an object. You have
two ways to access the Explanation object for a given result:

Use the fullTextQuery.explain(int) method

Use projection

The first approach takes a document ID as a parameter and return the Explanation object.
The document ID can be retrieved using projection and the FullTextQuery.DOCUMENT_ID
constant.

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
query.setMaxResult(10);
List results = query.list();
//return the total number of matching books regardless of pagination
assert 3245 == ;

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
query.setProjection("title", "mainAuthor.name");

query.setResultTransformer(new StaticAliasToBeanResultTransformer(
BookView.class, "title", "author"));
List<BookView> results = (List<BookView>) query.list();
for(BookView view : results) {
 log.info("Book: " + view.getTitle() + ", " + view.getAuthor());
}

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

126

WARNING

The Document ID is unrelated to the entity ID. Be careful not to confuse
these concepts.

In the second approach you project the Explanation object using the
FullTextQuery.EXPLANATION constant.

Example: Retrieving the Lucene Explanation Object Using Projection

Use the Explanation object only when required as it is roughly as expensive as running the
Lucene query again.

7.5.2.5. Filters

Apache Lucene has a powerful feature that allows you to filter query results according to a
custom filtering process. This is a very powerful way to apply additional data restrictions,
especially since filters can be cached and reused. Use cases include:

security

temporal data (example, view only last month’s data)

population filter (example, search limited to a given category)

Hibernate Search pushes the concept further by introducing the notion of parameterizable
named filters which are transparently cached. For people familiar with the notion of
Hibernate Core filters, the API is very similar:

Example: Enabling Fulltext Filters for a Query



FullTextQuery ftQuery = s.createFullTextQuery(luceneQuery, Dvd.class)
 .setProjection(
 FullTextQuery.DOCUMENT_ID,
 ,
 FullTextQuery.THIS);
@SuppressWarnings("unchecked") List<Object[]> results = ftQuery.list();
for (Object[] result : results) {
 Explanation e = (Explanation) result[1];
 display(e.toString());
}

fullTextQuery = s.createFullTextQuery(query, Driver.class);
fullTextQuery.enableFullTextFilter("bestDriver");
fullTextQuery.enableFullTextFilter("security").setParameter("login",
"andre");
fullTextQuery.list(); //returns only best drivers where andre has
credentials

CHAPTER 7. HIBERNATE SEARCH

127

In this example we enabled two filters on top of the query. You can enable or disable as
many filters as you like.

Declaring filters is done through the @FullTextFilterDef annotation. This annotation can be
on any @Indexed entity regardless of the query the filter is later applied to. This implies
that filter definitions are global and their names must be unique. A SearchException is
thrown in case two different @FullTextFilterDef annotations with the same name are
defined. Each named filter has to specify its actual filter implementation.

Example: Defining and Implementing a Filter

BestDriversFilter is an example of a simple Lucene filter which reduces the result set to
drivers whose score is 5. In this example the specified filter implements the
org.apache.lucene.search.Filter directly and contains a no-arg constructor.

If your Filter creation requires additional steps or if the filter you want to use does not have
a no-arg constructor, you can use the factory pattern:

Example: Creating a Filter Using the Factory Pattern

@FullTextFilterDefs({
 @FullTextFilterDef(name = "bestDriver", impl =
BestDriversFilter.class),
 @FullTextFilterDef(name = "security", impl =
SecurityFilterFactory.class)
})
public class Driver { ... }

public class BestDriversFilter extends org.apache.lucene.search.Filter {

 public DocIdSet getDocIdSet(IndexReader reader) throws IOException {
 OpenBitSet bitSet = new OpenBitSet(reader.maxDoc());
 TermDocs termDocs = reader.termDocs(new Term("score", "5"));
 while (termDocs.next()) {
 bitSet.set(termDocs.doc());
 }
 return bitSet;
 }
}

@FullTextFilterDef(name = "bestDriver", impl =
BestDriversFilterFactory.class)
public class Driver { ... }

public class BestDriversFilterFactory {

@Factory
 public Filter getFilter() {
 //some additional steps to cache the filter results per
IndexReader
 Filter bestDriversFilter = new BestDriversFilter();
 return new CachingWrapperFilter(bestDriversFilter);
 }
}

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

128

Hibernate Search will look for a @Factory annotated method and use it to build the filter
instance. The factory must have a no-arg constructor.

Infinispan Query uses a @Factory annotated method to build the filter instance. The factory
must have a no argument constructor.

Named filters come in handy where parameters have to be passed to the filter. For
example a security filter might want to know which security level you want to apply:

Example: Passing Parameters to a Defined Filter

Each parameter name should have an associated setter on either the filter or filter factory
of the targeted named filter definition.

Example: Using Parameters in the Actual Filter Implementation

Note the method annotated @Key returns a FilterKey object. The returned object has a
special contract: the key object must implement equals() / hashCode() so that two keys are
equal if and only if the given Filter types are the same and the set of parameters are the
same. In other words, two filter keys are equal if and only if the filters from which the keys
are generated can be interchanged. The key object is used as a key in the cache
mechanism.

@Key methods are needed only if:

the filter caching system is enabled (enabled by default)

the filter has parameters

fullTextQuery = s.createFullTextQuery(query, Driver.class);
fullTextQuery.enableFullTextFilter("security").setParameter("level", 5);

public class SecurityFilterFactory {
 private Integer level;

 /**
 * injected parameter
 */
 public void setLevel(Integer level) {
 this.level = level;
 }

 @Key public FilterKey getKey() {
 StandardFilterKey key = new StandardFilterKey();
 key.addParameter(level);
 return key;
 }

 @Factory
 public Filter getFilter() {
 Query query = new TermQuery(new Term("level", level.toString())
);
 return new CachingWrapperFilter(new QueryWrapperFilter(query));
 }
}

CHAPTER 7. HIBERNATE SEARCH

129

In most cases, using the StandardFilterKey implementation will be good enough. It
delegates the equals() / hashCode() implementation to each of the parameters equals and
hashcode methods.

As mentioned before the defined filters are per default cached and the cache uses a
combination of hard and soft references to allow disposal of memory when needed. The
hard reference cache keeps track of the most recently used filters and transforms the ones
least used to SoftReferences when needed. Once the limit of the hard reference cache is
reached additional filters are cached as SoftReferences. To adjust the size of the hard
reference cache, use hibernate.search.filter.cache_strategy.size (defaults to 128).
For advanced use of filter caching, implement your own FilterCachingStrategy. The
classname is defined by hibernate.search.filter.cache_strategy.

This filter caching mechanism should not be confused with caching the actual filter results.
In Lucene it is common practice to wrap filters using the IndexReader around a
CachingWrapperFilter. The wrapper will cache the DocIdSet returned from the
getDocIdSet(IndexReader reader) method to avoid expensive recomputation. It is
important to mention that the computed DocIdSet is only cachable for the same
IndexReader instance, because the reader effectively represents the state of the index at
the moment it was opened. The document list cannot change within an opened
IndexReader. A different/new IndexReader instance, however, works potentially on a
different set of Documents (either from a different index or simply because the index has
changed), hence the cached DocIdSet has to be recomputed.

Hibernate Search also helps with this aspect of caching. Per default the cache flag of
@FullTextFilterDef is set to FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTS which
will automatically cache the filter instance as well as wrap the specified filter around a
Hibernate specific implementation of CachingWrapperFilter. In contrast to Lucene’s version
of this class SoftReferences are used together with a hard reference count (see discussion
about filter cache). The hard reference count can be adjusted using
hibernate.search.filter.cache_docidresults.size (defaults to 5). The wrapping
behaviour can be controlled using the @FullTextFilterDef.cache parameter. There are
three different values for this parameter:

Value Definition

FilterCacheModeType.NONE No filter instance and no result is cached by Hibernate
Search. For every filter call, a new filter instance is
created. This setting might be useful for rapidly
changing data sets or heavily memory constrained
environments.

FilterCacheModeType.INSTANCE_ONL
Y

The filter instance is cached and reused across
concurrent Filter.getDocIdSet() calls. DocIdSet results
are not cached. This setting is useful when a filter uses
its own specific caching mechanism or the filter results
change dynamically due to application specific events
making DocIdSet caching in both cases unnecessary.

FilterCacheModeType.INSTANCE_AND
_DOCIDSETRESULTS

Both the filter instance and the DocIdSet results are
cached. This is the default value.

Filters should be cached in the following situations:

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

130

the system does not update the targeted entity index often (in other words, the
IndexReader is reused a lot)

the Filter’s DocIdSet is expensive to compute (compared to the time spent to
execute the query)

7.5.2.6. Using Filters in a Sharded Environment

In a sharded environment it is possible to execute queries on a subset of the available
shards. This can be done in two steps:

Query a Subset of Index Shards

1. Create a sharding strategy that does select a subset of IndexManagers depending
on a filter configuration.

2. Activate the filter at query time.

Example: Query a Subset of Index Shards
In this example the query is run against a specific customer shard if the customer filter is
activated.

public class CustomerShardingStrategy implements IndexShardingStrategy {

 // stored IndexManagers in an array indexed by customerID
 private IndexManager[] indexManagers;

 public void initialize(Properties properties, IndexManager[]
indexManagers) {
 this.indexManagers = indexManagers;
 }

 public IndexManager[] getIndexManagersForAllShards() {
 return indexManagers;
 }

 public IndexManager getIndexManagerForAddition(
 Class<?> entity, Serializable id, String idInString, Document
document) {
 Integer customerID =
Integer.parseInt(document.getFieldable("customerID").stringValue());
 return indexManagers[customerID];
 }

 public IndexManager[] getIndexManagersForDeletion(
 Class<?> entity, Serializable id, String idInString) {
 return getIndexManagersForAllShards();
 }

 /**
 * Optimization; don't search ALL shards and union the results; in
this case, we
 * can be certain that all the data for a particular customer Filter
is in a single
 * shard; simply return that shard by customerID.

CHAPTER 7. HIBERNATE SEARCH

131

In this example, if the filter named customer is present, only the shard dedicated to this
customer is queried, otherwise, all shards are returned. A given sharding strategy can react
to one or more filters and depends on their parameters.

The second step is to activate the filter at query time. While the filter can be a regular filter
(as defined in) which also filters Lucene results after the query, you can make use of a
special filter that will only be passed to the sharding strategy (and is otherwise ignored).

To use this feature, specify the ShardSensitiveOnlyFilter class when declaring your filter.

Note that by using the ShardSensitiveOnlyFilter, you do not have to implement any Lucene
filter. Using filters and sharding strategy reacting to these filters is recommended to speed
up queries in a sharded environment.

7.5.3. Faceting
Faceted search is a technique which allows the results of a query to be divided into multiple
categories. This categorization includes the calculation of hit counts for each category and
the ability to further restrict search results based on these facets (categories). The example
below shows a faceting example. The search results in fifteen hits which are displayed on
the main part of the page. The navigation bar on the left, however, shows the category
Computers & Internet with its subcategories Programming, Computer Science, Databases,

 */
 public IndexManager[] getIndexManagersForQuery(
 FullTextFilterImplementor[] filters) {
 FullTextFilter filter = getCustomerFilter(filters, "customer");
 if (filter == null) {
 return getIndexManagersForAllShards();
 }
 else {
 return new IndexManager[] { indexManagers[Integer.parseInt(
 filter.getParameter("customerID").toString())] };
 }
 }

 private FullTextFilter getCustomerFilter(FullTextFilterImplementor[]
filters, String name) {
 for (FullTextFilterImplementor filter: filters) {
 if (filter.getName().equals(name)) return filter;
 }
 return null;
 }
 }

@Indexed
@FullTextFilterDef(name="customer", impl=ShardSensitiveOnlyFilter.class)
public class Customer {
 ...
}

FullTextQuery query = ftEm.createFullTextQuery(luceneQuery,
Customer.class);
query.enableFulltextFilter("customer").setParameter("CustomerID", 5);
@SuppressWarnings("unchecked")
List<Customer> results = query.getResultList();

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

132

Software, Web Development, Networking and Home Computing. For each of these
subcategories the number of books is shown matching the main search criteria and
belonging to the respective subcategory. This division of the category Computers & Internet
is one concrete search facet. Another one is for example the average customer review.

Faceted search divides the results of a query into categories. The categorization includes
the calculation of hit counts for each category and the further restricts search results based
on these facets (categories). The following example displays a faceting search results in
fifteen hits displayed on the main page.

The left side navigation bar displays the categories and subcategories. For each of these
subcategories the number of books matches the main search criteria and belongs to the
respective subcategory. This division of the category Computers & Internet is one concrete
search facet. Another example is the average customer review.

Example: Search for Hibernate Search on Amazon
In Hibernate Search, the classes QueryBuilder and FullTextQuery are the entry point into
the faceting API. The former creates faceting requests and the latter accesses the
FacetManager. The FacetManager applies faceting requests on a query and selects facets
that are added to an existing query to refine search results. The examples use the entity Cd
as shown in the example below:

CHAPTER 7. HIBERNATE SEARCH

133

Example: Entity Cd

@Indexed
public class Cd {

 private int id;

 @Fields({
 @Field,
 @Field(name = "name_un_analyzed", analyze = Analyze.NO)
 })
 private String name;

 @Field(analyze = Analyze.NO)

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

134

NOTE

Prior to Hibernate Search 5.2, there was no need to explicitly use a @Facet
annotation. In Hibernate Search 5.2 it became necessary in order to use
Lucene’s native faceting API.

7.5.3.1. Creating a Faceting Request

The first step towards a faceted search is to create the FacetingRequest. Currently two
types of faceting requests are supported. The first type is called discrete faceting and the
second type range faceting request. In the case of a discrete faceting request you specify
on which index field you want to facet (categorize) and which faceting options to apply. An
example for a discrete faceting request can be seen in the following example:

Example: Creating a Discrete Faceting Request

When executing this faceting request a Facet instance will be created for each discrete
value for the indexed field label. The Facet instance will record the actual field value
including how often this particular field value occurs within the original query results.
orderedBy, includeZeroCounts and maxFacetCount are optional parameters which can be
applied on any faceting request. orderedBy allows to specify in which order the created
facets will be returned. The default is FacetSortOrder.COUNT_DESC, but you can also sort
on the field value or the order in which ranges were specified. includeZeroCount
determines whether facets with a count of 0 will be included in the result (by default they
are) and maxFacetCount allows to limit the maximum amount of facets returned.

 @NumericField
 private int price;

 Field(analyze = Analyze.NO)
 @DateBridge(resolution = Resolution.YEAR)
 private Date releaseYear;

 @Field(analyze = Analyze.NO)
 private String label;

// setter/getter
...

QueryBuilder builder = fullTextSession.getSearchFactory()
 .buildQueryBuilder()
 .forEntity(Cd.class)
 .get();
FacetingRequest labelFacetingRequest = builder.facet()
 .name("labelFaceting")
 .onField("label")
 .discrete()
 .orderedBy(FacetSortOrder.COUNT_DESC)
 .includeZeroCounts(false)
 .maxFacetCount(1)
 .createFacetingRequest();

CHAPTER 7. HIBERNATE SEARCH

135

NOTE

At the moment there are several preconditions an indexed field has to meet in
order to apply faceting on it. The indexed property must be of type String,
Date or a subtype of Number and null values should be avoided. Furthermore
the property has to be indexed with Analyze.NO and in case of a numeric
property @NumericField needs to be specified.

The creation of a range faceting request is quite similar except that we have to specify
ranges for the field values we are faceting on. A range faceting request can be seen below
where three different price ranges are specified. The below and above can only be specified
once, but you can specify as many from - to ranges as you want. For each range boundary
you can also specify via excludeLimit whether it is included into the range or not.

Example: Creating a Range Faceting Request

7.5.3.2. Applying a Faceting Request

A faceting request is applied to a query via the FacetManager class which can be retrieved
via the FullTextQuery class.

You can enable as many faceting requests as you like and retrieve them afterwards via
getFacets() specifying the faceting request name. There is also a disableFaceting() method
which allows you to disable a faceting request by specifying its name.

A faceting request can be applied on a query using the FacetManager, which can be
retrieved via the FullTextQuery.

Example: Applying a Faceting Request

QueryBuilder builder = fullTextSession.getSearchFactory()
 .buildQueryBuilder()
 .forEntity(Cd.class)
 .get();
FacetingRequest priceFacetingRequest = builder.facet()
 .name("priceFaceting")
 .onField("price")
 .range()
 .below(1000)
 .from(1001).to(1500)
 .above(1500).excludeLimit()
 .createFacetingRequest();

// create a fulltext query
Query luceneQuery = builder.all().createQuery(); // match all query
FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(
luceneQuery, Cd.class);

// retrieve facet manager and apply faceting request
FacetManager facetManager = fullTextQuery.getFacetManager();
facetManager.enableFaceting(priceFacetingRequest);

// get the list of Cds
List<Cd> cds = fullTextQuery.list();
...

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

136

Multiple faceting requests can be retrieved using getFacets() and specifying the faceting
request name.

The disableFaceting() method disables a faceting request by specifying its name.

7.5.3.3. Restricting Query Results

Last but not least, you can apply any of the returned Facets as additional criteria on your
original query in order to implement a "drill-down" functionality. For this purpose
FacetSelection can be utilized. FacetSelections are available via the FacetManager and
allow you to select a facet as query criteria (selectFacets), remove a facet restriction
(deselectFacets), remove all facet restrictions (clearSelectedFacets) and retrieve all
currently selected facets (getSelectedFacets). The following snippet shows an example.

7.5.4. Optimizing the Query Process
Query performance depends on several criteria:

The Lucene query.

The number of objects loaded: use pagination (always) or index projection (if
needed).

The way Hibernate Search interacts with the Lucene readers: defines the
appropriate reader strategy.

// retrieve the faceting results
List<Facet> facets = facetManager.getFacets("priceFaceting");
...

// create a fulltext query
Query luceneQuery = builder.all().createQuery(); // match all query
FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(
luceneQuery, clazz);

// retrieve facet manager and apply faceting request
FacetManager facetManager = fullTextQuery.getFacetManager();
facetManager.enableFaceting(priceFacetingRequest);

// get the list of Cd
List<Cd> cds = fullTextQuery.list();
assertTrue(cds.size() == 10);

// retrieve the faceting results
List<Facet> facets = facetManager.getFacets("priceFaceting");
assertTrue(facets.get(0).getCount() == 2)

// apply first facet as additional search criteria
facetManager.getFacetGroup("priceFaceting").selectFacets(facets.get(0
));

// re-execute the query
cds = fullTextQuery.list();
assertTrue(cds.size() == 2);

CHAPTER 7. HIBERNATE SEARCH

137

Caching frequently extracted values from the index. See Caching Index Values:
FieldCache for more information.

7.5.4.1. Caching Index Values: FieldCache

The primary function of a Lucene index is to identify matches to your queries. After the
query is performed the results must be analyzed to extract useful information. Hibernate
Search would typically need to extract the class type and the primary key.

Extracting the needed values from the index has a performance cost, which in some cases
might be very low and not noticeable, but in some other cases might be a good candidate
for caching.

The requirements depend on the kind of Projections being used, as in some cases the class
type is not needed as it can be inferred from the query context or other means.

Using the @CacheFromIndex annotation you can experiment with different kinds of caching
of the main metadata fields required by Hibernate Search:

It is possible to cache class types and IDs using this annotation:

CLASS: Hibernate Search will use a Lucene FieldCache to improve performance of
the class type extraction from the index.
This value is enabled by default, and is what Hibernate Search will apply if you do
not specify the @CacheFromIndex annotation.

ID: Extracting the primary identifier will use a cache. This is likely providing the best
performing queries, but will consume much more memory which in turn might
reduce performance.

NOTE

Measure the performance and memory consumption impact after warmup
(executing some queries). Performance may improve by enabling Field Caches
but this is not always the case.

Using a FieldCache has two downsides to consider:

Memory usage: these caches can be quite memory hungry. Typically the CLASS
cache has lower requirements than the ID cache.

Index warmup: when using field caches, the first query on a new index or segment
will be slower than when you do not have caching enabled.

With some queries, the class type will not be needed at all, in that case even if you enabled
the CLASS field cache, this might not be used; for example if you are targeting a single
class, obviously all returned values will be of that type (this is evaluated at each query

import static org.hibernate.search.annotations.FieldCacheType.CLASS;
import static org.hibernate.search.annotations.FieldCacheType.ID;

@Indexed
@CacheFromIndex({ CLASS, ID })
public class Essay {
 ...

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

138

execution).

For the ID FieldCache to be used, the IDs of targeted entities must be using a
TwoWayFieldBridge (as all builting bridges), and all types being loaded in a specific query
must use the fieldname for the id, and have IDs of the same type (this is evaluated at each
query execution).

7.6. MANUAL INDEX CHANGES
As Hibernate Core applies changes to the database, Hibernate Search detects these
changes and will update the index automatically (unless the EventListeners are disabled).
Sometimes changes are made to the database without using Hibernate, as when backup is
restored or your data is otherwise affected. In these cases Hibernate Search exposes the
Manual Index APIs to explicitly update or remove a single entity from the index, rebuild the
index for the whole database, or remove all references to a specific type.

All these methods affect the Lucene Index only, no changes are applied to the database.

7.6.1. Adding Instances to the Index
Using FullTextSession.index(T entity) you can directly add or update a specific object
instance to the index. If this entity was already indexed, then the index will be updated.
Changes to the index are only applied at transaction commit.

Directly add an object or instance to the index using FullTextSession.index(T entity).
The index is updated when the entity is indexed. Infinispan Query applies changes to the
index during the transaction commit.

Example: Indexing an Entity Using FullTextSession.index(T entity)

In case you want to add all instances for a type, or for all indexed types, the recommended
approach is to use a MassIndexer: see for more details.

Use a MassIndexer to add all instances for a type (or for all indexed types). See Using a
MassIndexer for more information.

7.6.2. Deleting Instances from the Index
It is possible to remove an entity or all entities of a given type from a Lucene index without
the need to physically remove them from the database. This operation is named purging
and is also done through the FullTextSession.

The purging operation permits the removal of a single entity or all entities of a given type
from a Lucene index without physically removing them from the database. This operation is
performed using the FullTextSession.

Example: Purging a Specific Instance of an Entity from the Index

FullTextSession fullTextSession = Search.getFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();
Object customer = fullTextSession.load(Customer.class, 8);
fullTextSession.index(customer);
tx.commit(); //index only updated at commit time

FullTextSession fullTextSession = Search.getFullTextSession(session);

CHAPTER 7. HIBERNATE SEARCH

139

It is recommended to optimize the index after such an operation.

NOTE

Methods index, purge, and purgeAll are available on FullTextEntityManager as
well.

NOTE

All manual indexing methods (index, purge, and purgeAll) only affect the
index, not the database, nevertheless they are transactional and as such they
will not be applied until the transaction is successfully committed, or you
make use of flushToIndexes.

7.6.3. Rebuilding the Index
If you change the entity mapping to the index, chances are that the whole Index needs to
be updated; For example if you decide to index an existing field using a different analyzer
you’ll need to rebuild the index for affected types. Also if the Database is replaced (like
restored from a backup, imported from a legacy system) you’ll want to be able to rebuild
the index from existing data. Hibernate Search provides two main strategies to choose
from:

Changing the entity mapping in the indexer may require the entire index to be updated.
For example, if an existing field is to be indexed using a different analyzer, the index will
need to be rebuilt for affected types.

Additionally, if the database is replaced by restoring from a backup or being imported from
a legacy system, the index will need to be rebuilt from existing data. Infinispan Query
provides two main strategies:

Using FullTextSession.flushToIndexes() periodically, while using
FullTextSession.index() on all entities.

Use a MassIndexer.

7.6.3.1. Using flushToIndexes()

This strategy consists of removing the existing index and then adding all entities back to
the index using FullTextSession.purgeAll() and FullTextSession.index(), however
there are some memory and efficiency constraints. For maximum efficiency Hibernate
Search batches index operations and executes them at commit time. If you expect to index
a lot of data you need to be careful about memory consumption since all documents are
kept in a queue until the transaction commit. You can potentially face an
OutOfMemoryException if you do not empty the queue periodically; to do this use
fullTextSession.flushToIndexes(). Every time fullTextSession.flushToIndexes() is
called (or if the transaction is committed), the batch queue is processed, applying all index
changes. Be aware that, once flushed, the changes cannot be rolled back.

Transaction tx = fullTextSession.beginTransaction();
for (Customer customer : customers) {
fullTextSession.purgeAll(Customer.class);
//optionally optimize the index
//fullTextSession.getSearchFactory().optimize(Customer.class);
tx.commit(); //index is updated at commit time

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

140

Example: Index Rebuilding Using index() and flushToIndexes()

NOTE

hibernate.search.default.worker.batch_size has been deprecated in
favor of this explicit API which provides better control

Try to use a batch size that guarantees that your application will not be out of memory:
with a bigger batch size objects are fetched faster from database but more memory is
needed.

7.6.3.2. Using a MassIndexer

Hibernate Search’s MassIndexer uses several parallel threads to rebuild the index. You can
optionally select which entities need to be reloaded or have it reindex all entities. This
approach is optimized for best performance but requires to set the application in
maintenance mode. Querying the index is not recommended when a MassIndexer is busy.

Example: Rebuild the Index Using a MassIndexer

This will rebuild the index, deleting it and then reloading all entities from the database.
Although it is simple to use, some tweaking is recommended to speed up the process.

WARNING

During the progress of a MassIndexer the content of the index is
undefined. If a query is performed while the MassIndexer is working most
likely some results will be missing.

fullTextSession.setFlushMode(FlushMode.MANUAL);
fullTextSession.setCacheMode(CacheMode.IGNORE);
transaction = fullTextSession.beginTransaction();
//Scrollable results will avoid loading too many objects in memory
ScrollableResults results = fullTextSession.createCriteria(Email.class)
 .setFetchSize(BATCH_SIZE)
 .scroll(ScrollMode.FORWARD_ONLY);
int index = 0;
while(results.next()) {
 index++;
 fullTextSession.index(results.get(0)); //index each element
 if (index % BATCH_SIZE == 0) {
 fullTextSession.flushToIndexes(); //apply changes to indexes
 fullTextSession.clear(); //free memory since the queue is
processed
 }
}
transaction.commit();

fullTextSession.createIndexer().startAndWait();



CHAPTER 7. HIBERNATE SEARCH

141

Example: Using a Tuned MassIndexer

This will rebuild the index of all User instances (and subtypes), and will create 12 parallel
threads to load the User instances using batches of 25 objects per query. These same 12
threads will also need to process indexed embedded relations and custom FieldBridges or
ClassBridges to output a Lucene document. The threads trigger lazy loading of additional
attributes during the conversion process. Because of this, a high number of threads working
in parallel is required. The number of threads working on actual index writing is defined by
the back-end configuration of each index.

It is recommended to leave cacheMode to CacheMode.IGNORE (the default), as in most
reindexing situations the cache will be a useless additional overhead. It might be useful to
enable some other CacheMode depending on your data as it could increase performance if
the main entity is relating to enum-like data included in the index.

NOTE

The ideal of number of threads to achieve best performance is highly
dependent on your overall architecture, database design and data values. All
internal thread groups have meaningful names so they should be easily
identified with most diagnostic tools, including thread dumps.

NOTE

The MassIndexer is unaware of transactions, therefore there is no need to
begin one or commit afterward. Because it is not transactional it is not
recommended to let users use the system during its processing, as it is
unlikely people will be able to find results and the system load might be too
high anyway.

Other parameters that affect indexing time and memory consumption are:

hibernate.search.[default|<indexname>].exclusive_index_use

hibernate.search.[default|<indexname>].indexwriter.max_buffered_docs

hibernate.search.[default|<indexname>].indexwriter.max_merge_docs

hibernate.search.[default|<indexname>].indexwriter.merge_factor

hibernate.search.[default|<indexname>].indexwriter.merge_min_size

hibernate.search.[default|<indexname>].indexwriter.merge_max_size

hibernate.search.[default|
<indexname>].indexwriter.merge_max_optimize_size

fullTextSession
 .createIndexer(User.class)
 .batchSizeToLoadObjects(25)
 .cacheMode(CacheMode.NORMAL)
 .threadsToLoadObjects(12)
 .idFetchSize(150)
 .progressMonitor(monitor) //a MassIndexerProgressMonitor implementation
 .startAndWait();

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

142

hibernate.search.[default|
<indexname>].indexwriter.merge_calibrate_by_deletes

hibernate.search.[default|<indexname>].indexwriter.ram_buffer_size

hibernate.search.[default|<indexname>].indexwriter.term_index_interval

Previous versions also had a max_field_length but this was removed from Lucene. It is
possible to obtain a similar effect by using a LimitTokenCountAnalyzer.

All .indexwriter parameters are Lucene specific and Hibernate Search passes these
parameters through.

The MassIndexer uses a forward only scrollable result to iterate on the primary keys to be
loaded, but MySQL’s JDBC driver will load all values in memory. To avoid this "optimization"
set idFetchSize to Integer.MIN_VALUE.

7.7. INDEX OPTIMIZATION
From time to time, the Lucene index needs to be optimized. The process is essentially a
defragmentation. Until an optimization is triggered Lucene only marks deleted documents
as such, no physical are applied. During the optimization process the deletions will be
applied which also affects the number of files in the Lucene Directory.

Optimizing the Lucene index speeds up searches but has no effect on the indexation
(update) performance. During an optimization, searches can be performed, but will most
likely be slowed down. All index updates will be stopped. It is recommended to schedule
optimization:

Optimizing the Lucene index speeds up searches, but has no effect on the index update
performance. Searches can be performed during an optimization process, however they will
be slower than expected. All index updates are on hold during the optimization. It is
therefore recommended to schedule optimization:

On an idle system or when searches are least frequent.

After a large number of index modifications are applied.

MassIndexer optimizes indexes by default at the start and at the end of processing. Use
MassIndexer.optimizeAfterPurge and MassIndexer.optimizeOnFinish to change this
default behavior. See Using a MassIndexer for more information.

7.7.1. Automatic Optimization
Hibernate Search can automatically optimize an index after either:

Infinispan Query automatically optimizes the index after:

a certain amount of operations (insertion or deletion).

a certain amount of transactions.

The configuration for automatic index optimization can be defined either globally or per
index:

Example: Defining Automatic Optimization Parameters

CHAPTER 7. HIBERNATE SEARCH

143

An optimization will be triggered to the Animal index as soon as either:

the number of additions and deletions reaches 1000.

the number of transactions reaches 50
(hibernate.search.Animal.optimizer.transaction_limit.max has priority over
hibernate.search.default.optimizer.transaction_limit.max).

If none of these parameters are defined, no optimization is processed automatically.

The default implementation of OptimizerStrategy can be overridden by implementing
org.hibernate.search.store.optimization.OptimizerStrategy and setting the
optimizer.implementation property to the fully qualified name of your implementation.
This implementation must implement the interface, be a public class and have a public
constructor taking no arguments.

Example: Loading a Custom OptimizerStrategy

The keyword default can be used to select the Hibernate Search default implementation;
all properties after the .optimizer key separator will be passed to the implementation’s
initialize method at start.

7.7.2. Manual Optimization
You can programmatically optimize (defragment) a Lucene index from Hibernate Search
through the SearchFactory:

Example: Programmatic Index Optimization

The first example optimizes the Lucene index holding Orders and the second optimizes all
indexes.

NOTE

searchFactory.optimize() has no effect on a JMS back end. You must apply
the optimize operation on the Master node.

hibernate.search.default.optimizer.operation_limit.max = 1000
hibernate.search.default.optimizer.transaction_limit.max = 100
hibernate.search.Animal.optimizer.transaction_limit.max = 50

hibernate.search.default.optimizer.implementation =
com.acme.worlddomination.SmartOptimizer
hibernate.search.default.optimizer.SomeOption = CustomConfigurationValue
hibernate.search.humans.optimizer.implementation = default

FullTextSession fullTextSession =
Search.getFullTextSession(regularSession);
SearchFactory searchFactory = fullTextSession.getSearchFactory();

searchFactory.optimize(Order.class);
// or
searchFactory.optimize();

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

144

searchFactory.optimize() is applied to the master node because it does not affect the
JMC back end.

7.7.3. Adjusting Optimization
Apache Lucene has a few parameters to influence how optimization is performed. Hibernate
Search exposes those parameters.

Further index optimization parameters include:

hibernate.search.[default|<indexname>].indexwriter.max_buffered_docs

hibernate.search.[default|<indexname>].indexwriter.max_merge_docs

hibernate.search.[default|<indexname>].indexwriter.merge_factor

hibernate.search.[default|<indexname>].indexwriter.ram_buffer_size

hibernate.search.[default|<indexname>].indexwriter.term_index_interval

7.8. ADVANCED FEATURES

7.8.1. Accessing the SearchFactory
The SearchFactory object keeps track of the underlying Lucene resources for Hibernate
Search. It is a convenient way to access Lucene natively. The SearchFactory can be
accessed from a FullTextSession:

Example: Accessing the SearchFactory

7.8.2. Using an IndexReader
Queries in Lucene are executed on an IndexReader. Hibernate Search might cache index
readers to maximize performance, or provide other efficient strategies to retrieve an
updated IndexReader minimizing I/O operations. Your code can access these cached
resources, but there are several requirements.

Example: Accessing an IndexReader

In this example the SearchFactory determines which indexes are needed to query this
entity (considering a sharding strategy). Using the configured ReaderProvider on each

FullTextSession fullTextSession =
Search.getFullTextSession(regularSession);
SearchFactory searchFactory = fullTextSession.getSearchFactory();

IndexReader reader =
searchFactory.getIndexReaderAccessor().open(Order.class);
try {
 //perform read-only operations on the reader
}
finally {
 searchFactory.getIndexReaderAccessor().close(reader);
}

CHAPTER 7. HIBERNATE SEARCH

145

index, it returns a compound IndexReader on top of all involved indexes. Because this
IndexReader is shared amongst several clients, you must adhere to the following rules:

Never call indexReader.close(), instead use readerProvider.closeReader(reader)
when necessary, preferably in a finally block.

Don not use this IndexReader for modification operations (it is a readonly
IndexReader, and any such attempt will result in an exception).

Aside from those rules, you can use the IndexReader freely, especially to do native Lucene
queries. Using the shared IndexReaders will make most queries more efficient than by
opening one directly from, for example, the file system.

As an alternative to the method open(Class…​ types) you can use open(String…​
indexNames), allowing you to pass in one or more index names. Using this strategy you
can also select a subset of the indexes for any indexed type if sharding is used.

Example: Accessing an IndexReader by Index Names

7.8.3. Accessing a Lucene Directory
A Directory is the most common abstraction used by Lucene to represent the index
storage; Hibernate Search does not interact directly with a Lucene Directory but abstracts
these interactions via an IndexManager: an index does not necessarily need to be
implemented by a Directory.

If you know your index is represented as a Directory and need to access it, you can get a
reference to the Directory via the IndexManager. Cast the IndexManager to a
DirectoryBasedIndexManager and then use getDirectoryProvider().getDirectory() to
get a reference to the underlying Directory. This is not recommended, we would encourage
to use the IndexReader instead.

7.8.4. Sharding Indexes
In some cases it can be useful to split (shard) the indexed data of a given entity into several
Lucene indexes.

WARNING

Sharding should only be implemented if the advantages outweigh the
disadvantages. Searching sharded indexes will typically be slower as all
shards have to be opened for a single search.

Possible use cases for sharding are:

A single index is so large that index update times are slowing the application down.

IndexReader reader =
searchFactory.getIndexReaderAccessor().open("Products.1", "Products.3");



Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

146

A typical search will only hit a subset of the index, such as when data is naturally
segmented by customer, region or application.

By default sharding is not enabled unless the number of shards is configured. To do this use
the hibernate.search.<indexName>.sharding_strategy.nbr_of_shards property.

Example: Enabling Index Sharding
In this example, five shards are enabled.

hibernate.search.<indexName>.sharding_strategy.nbr_of_shards = 5

Responsible for splitting the data into sub-indexes is the IndexShardingStrategy. The
default sharding strategy splits the data according to the hash value of the ID string
representation (generated by the FieldBridge). This ensures a fairly balanced sharding. You
can replace the default strategy by implementing a custom IndexShardingStrategy. To use
your custom strategy you have to set the hibernate.search.
<indexName>.sharding_strategy property.

Example: Specifying a Custom Sharding Strategy

hibernate.search.<indexName>.sharding_strategy =
my.shardingstrategy.Implementation

The IndexShardingStrategy property also allows for optimizing searches by selecting which
shard to run the query against. By activating a filter a sharding strategy can select a subset
of the shards used to answer a query (IndexShardingStrategy.getIndexManagersForQuery)
and thus speed up the query execution.

Each shard has an independent IndexManager and so can be configured to use a different
directory provider and back-end configuration. The IndexManager index names for the
Animal entity in the example below are Animal.0 to Animal.4. In other words, each shard
has the name of its owning index followed by . (dot) and its index number.

Example: Sharding Configuration for Entity Animal

hibernate.search.default.indexBase = /usr/lucene/indexes
hibernate.search.Animal.sharding_strategy.nbr_of_shards = 5
hibernate.search.Animal.directory_provider = filesystem
hibernate.search.Animal.0.indexName = Animal00
hibernate.search.Animal.3.indexBase = /usr/lucene/sharded
hibernate.search.Animal.3.indexName = Animal03

In the example above, the configuration uses the default id string hashing strategy and
shards the Animal index into 5 sub-indexes. All sub-indexes are filesystem instances and
the directory where each sub-index is stored is as followed:

for sub-index 0: /usr/lucene/indexes/Animal00 (shared indexBase but overridden
indexName)

for sub-index 1: /usr/lucene/indexes/Animal.1 (shared indexBase, default
indexName)

for sub-index 2: /usr/lucene/indexes/Animal.2 (shared indexBase, default
indexName)

CHAPTER 7. HIBERNATE SEARCH

147

for sub-index 3: /usr/lucene/shared/Animal03 (overridden indexBase, overridden
indexName)

for sub-index 4: /usr/lucene/indexes/Animal.4 (shared indexBase, default
indexName)

When implementing a IndexShardingStrategy any field can be used to determine the
sharding selection. Consider that to handle deletions, purge and purgeAll operations, the
implementation might need to return one or more indexes without being able to read all
the field values or the primary identifier. In that case the information is not enough to pick
a single index, all indexes should be returned, so that the delete operation will be
propagated to all indexes potentially containing the documents to be deleted.

7.8.5. Customizing Lucene’s Scoring Formula
Lucene allows the user to customize its scoring formula by extending
org.apache.lucene.search.Similarity. The abstract methods defined in this class match the
factors of the following formula calculating the score of query q for document d:

Extend org.apache.lucene.search.Similarity to customize Lucene’s scoring formula. The
abstract methods match the formula used to calculate the score of query q for document d
as follows:

*score(q,d) = coord(q,d) · queryNorm(q) · ∑ ~t in q~ (tf(t in d) ·
idf(t) ^2^ · t.getBoost() · norm(t,d))*

Factor Description

tf(t ind) Term frequency factor for the term (t) in the document (d).

idf(t) Inverse document frequency of the term.

coord(q,d) Score factor based on how many of the query terms are found in
the specified document.

queryNorm(q) Normalizing factor used to make scores between queries
comparable.

t.getBoost() Field boost.

norm(t,d) Encapsulates a few (indexing time) boost and length factors.

It is beyond the scope of this manual to explain this formula in more detail. See Similarity’s
Javadocs for more information.

Hibernate Search provides three ways to modify Lucene’s similarity calculation.

First you can set the default similarity by specifying the fully specified class name of your
Similarity implementation using the property hibernate.search.similarity. The default
value is org.apache.lucene.search.DefaultSimilarity.

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

148

You can also override the similarity used for a specific index by setting the similarity
property

hibernate.search.default.similarity = my.custom.Similarity

Finally you can override the default similarity on class level using the @Similarity
annotation.

As an example, let us assume it is not important how often a term appears in a document.
Documents with a single occurrence of the term should be scored the same as documents
with multiple occurrences. In this case your custom implementation of the method tf(float
freq) should return 1.0.

WARNING

When two entities share the same index they must declare the same
Similarity implementation. Classes in the same class hierarchy always
share the index, so it is not allowed to override the Similarity
implementation in a subtype.

Likewise, it does not make sense to define the similarity via the index
setting and the class-level setting as they would conflict. Such a
configuration will be rejected.

7.8.6. Exception Handling Configuration
Hibernate Search allows you to configure how exceptions are handled during the indexing
process. If no configuration is provided then exceptions are logged to the log output by
default. It is possible to explicitly declare the exception logging mechanism as follows:

The default exception handling occurs for both synchronous and asynchronous indexing.
Hibernate Search provides an easy mechanism to override the default error handling
implementation.

In order to provide your own implementation you must implement the ErrorHandler
interface, which provides the handle(ErrorContext context) method. ErrorContext
provides a reference to the primary LuceneWork instance, the underlying exception and any
subsequent LuceneWork instances that could not be processed due to the primary
exception.

@Entity
@Indexed
@Similarity(impl = DummySimilarity.class)
public class Book {
...
}



hibernate.search.error_handler = log

public interface ErrorContext {

CHAPTER 7. HIBERNATE SEARCH

149

To register this error handler with Hibernate Search you must declare the fully qualified
classname of your ErrorHandler implementation in the configuration properties:

7.8.7. Disable Hibernate Search
Hibernate Search can be partially or completely disabled as required. Hibernate Search’s
indexing can be disabled, for example, if the index is read-only, or you prefer to perform
indexing manually, rather than automatically. It is also possible to completely disable
Hibernate Search, preventing indexing and searching.

Disable Indexing
To disable Hibernate Search indexing, change the indexing_strategy configuration
option to manual, then restart JBoss EAP.

hibernate.search.indexing_strategy = manual

Disable Hibernate Search Completely
To disable Hibernate Search completely, disable all listeners by changing the
autoregister_listeners configuration option to false, then restart JBoss EAP.

hibernate.search.autoregister_listeners = false

7.9. MONITORING
Hibernate Search offers access to a Statistics object via
SearchFactory.getStatistics(). It allows you, for example, to determine which classes
are indexed and how many entities are in the index. This information is always available.
However, by specifying the hibernate.search.generate_statistics property in your
configuration you can also collect total and average Lucene query and object loading
timings.

Access to Statistics via JMX
To enable access to statistics via JMX, set the property hibernate.search.jmx_enabled to
true. This will automatically register the StatisticsInfoMBean bean, providing access to
statistics using the Statistics object. Depending on your configuration the
IndexingProgressMonitorMBean bean may also be registered.

Monitoring Indexing
If the mass indexer API is used, you can monitor indexing progress using the
IndexingProgressMonitorMBean bean. The bean is only bound to JMX while indexing is in
progress.

 List<LuceneWork> getFailingOperations();
 LuceneWork getOperationAtFault();
 Throwable getThrowable();
 boolean hasErrors();
}

hibernate.search.error_handler = CustomerErrorHandler

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

150

NOTE

JMX beans can be accessed remotely using JConsole by setting the system
property com.sun.management.jmxremote to true.

CHAPTER 7. HIBERNATE SEARCH

151

APPENDIX A. REFERENCE MATERIAL

A.1. HIBERNATE PROPERTIES
Table A.1. Connection Properties Configurable in the persistence.xml File

Property Name Value Description

javax.persistence.jd
bc.driver

org.hsqldb.jdbcDrive
r

The class name of the JDBC driver to
be used.

javax.persistence.jd
bc.user

sa The username.

javax.persistence.jd
bc.password

 The password.

javax.persistence.jd
bc.url

jdbc:hsqldb:. The JDBC connection URL.

Table A.2. Hibernate Configuration Properties

Property Name Description

hibernate.dialect The class name of a Hibernate
org.hibernate.dialect.Dialect. Allows Hibernate
to generate SQL optimized for a particular relational
database.

In most cases Hibernate will be able to choose the
correct org.hibernate.dialect.Dialect
implementation, based on the JDBC metadata returned
by the JDBC driver.

hibernate.show_sql Boolean. Writes all SQL statements to console. This is an
alternative to setting the log category
org.hibernate.SQL to debug.

hibernate.format_sql Boolean. Pretty print the SQL in the log and console.

hibernate.default_schema Qualify unqualified table names with the given
schema/tablespace in generated SQL.

hibernate.default_catalog Qualifies unqualified table names with the given catalog
in generated SQL.

hibernate.session_factory_name The org.hibernate.SessionFactory will be automatically
bound to this name in JNDI after it has been created. For
example, jndi/composite/name.

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

152

hibernate.max_fetch_depth Sets a maximum depth for the outer join fetch tree for
single-ended associations (one-to-one, many-to-one). A
0 disables default outer join fetching. The recommended
value is between 0 and 3.

hibernate.default_batch_fetch_size Sets a default size for Hibernate batch fetching of
associations. The recommended values are 4, 8, and 16.

hibernate.default_entity_mode Sets a default mode for entity representation for all
sessions opened from this SessionFactory. Values
include: dynamic-map, dom4j, pojo.

hibernate.order_updates Boolean. Forces Hibernate to order SQL updates by the
primary key value of the items being updated. This will
result in fewer transaction deadlocks in highly
concurrent systems.

hibernate.generate_statistics Boolean. If enabled, Hibernate will collect statistics
useful for performance tuning.

hibernate.use_identifier_rollback Boolean. If enabled, generated identifier properties will
be reset to default values when objects are deleted.

hibernate.use_sql_comments Boolean. If turned on, Hibernate will generate comments
inside the SQL, for easier debugging. Default value is
false.

hibernate.id.new_generator_mapping
s

Boolean. This property is relevant when using
@GeneratedValue. It indicates whether or not the new
IdentifierGenerator implementations are used for
javax.persistence.GenerationType.AUTO,
javax.persistence.GenerationType.TABLE and
javax.persistence.GenerationType.SEQUENCE. Default
value is true.

Property Name Description

APPENDIX A. REFERENCE MATERIAL

153

hibernate.ejb.naming_strategy Chooses the org.hibernate.cfg.NamingStrategy
implementation when using Hibernate EntityManager.
hibernate.ejb.naming_strategy is no longer
supported in Hibernate 5.0. If used, a deprecation
message will be logged indicating that it is no longer
supported and has been removed in favor of the split
ImplicitNamingStrategy and PhysicalNamingStrategy.

If the application does not use EntityManager, follow the
instructions here to configure the NamingStrategy:
Hibernate Reference Documentation - Naming
Strategies.

For an example on native bootstrapping using
MetadataBuilder and applying the implicit naming
strategy, see
http://docs.jboss.org/hibernate/orm/5.0/userguide/html_sin
gle/Hibernate_User_Guide.html#bootstrap-native-
metadata in the Hibernate 5.0 documentation. The
physical naming strategy can be applied by using
MetadataBuilder.applyPhysicalNamingStrategy
(). For further details on
org.hibernate.boot.MetadataBuilder, see
https://docs.jboss.org/hibernate/orm/5.0/javadocs/.

Property Name Description

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

154

http://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/Hibernate_User_Guide.html#naming
http://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/Hibernate_User_Guide.html#bootstrap-native-metadata
https://docs.jboss.org/hibernate/orm/5.0/javadocs/

hibernate.implicit_naming_strategy Specifies the
org.hibernate.boot.model.naming.ImplicitNam
ingStrategy class to be used.
hibernate.implicit_naming_strategy can also be
used to configure a custom class that implements
ImplicitNamingStrategy. Following short names are
defined for this setting:

default -
ImplicitNamingStrategyJpaCompliantImp
l

jpa -
ImplicitNamingStrategyJpaCompliantImp
l

legacy-jpa -
ImplicitNamingStrategyLegacyJpaImpl

legacy-hbm -
ImplicitNamingStrategyLegacyHbmImpl

component-path -
ImplicitNamingStrategyComponentPathIm
pl

The default setting is defined by the
ImplicitNamingStrategy in the default short
name. If the default setting is empty, the fallback is to
use ImplicitNamingStrategyJpaCompliantImpl.

hibernate.physical_naming_strategy Pluggable strategy contract for applying physical naming
rules for database object names. Specifies the
PhysicalNamingStrategy class to be used.
PhysicalNamingStrategyStandardImpl is used by
default. hibernate.physical_naming_strategy can
also be used to configure a custom class that
implements PhysicalNamingStrategy.

Property Name Description

IMPORTANT

For hibernate.id.new_generator_mappings, new applications should keep
the default value of true. Existing applications that used Hibernate 3.3.x may
need to change it to false to continue using a sequence object or table based
generator, and maintain backward compatibility.

Table A.3. Hibernate JDBC and Connection Properties

Property Name Description

APPENDIX A. REFERENCE MATERIAL

155

hibernate.jdbc.fetch_size A non-zero value that determines the JDBC
fetch size (calls
Statement.setFetchSize()).

hibernate.jdbc.batch_size A non-zero value enables use of JDBC2 batch
updates by Hibernate. The recommended
values are between 5 and 30.

hibernate.jdbc.batch_versioned_data Boolean. Set this property to true if the JDBC
driver returns correct row counts from
executeBatch(). Hibernate will then use
batched DML for automatically versioned data.
Default value is to false.

hibernate.jdbc.factory_class Select a custom org.hibernate.jdbc.Batcher.
Most applications will not need this
configuration property.

hibernate.jdbc.use_scrollable_resultset Boolean. Enables use of JDBC2 scrollable
resultsets by Hibernate. This property is only
necessary when using user-supplied JDBC
connections. Hibernate uses connection
metadata otherwise.

hibernate.jdbc.use_streams_for_binary Boolean. This is a system-level property. Use
streams when writing/reading binary or
serializable types to/from JDBC.

hibernate.jdbc.use_get_generated_keys Boolean. Enables use of JDBC3
PreparedStatement.getGeneratedKeys(
) to retrieve natively generated keys after
insert. Requires JDBC3+ driver and JRE1.4+.
Set to false if JDBC driver has problems with
the Hibernate identifier generators. By default,
it tries to determine the driver capabilities
using connection metadata.

hibernate.connection.provider_class The class name of a custom
org.hibernate.connection.ConnectionProvider
which provides JDBC connections to Hibernate.

hibernate.connection.isolation Sets the JDBC transaction isolation level.
Check java.sql.Connection for meaningful
values, but note that most databases do not
support all isolation levels and some define
additional, non-standard isolations. Standard
values are 1, 2, 4, 8.

Property Name Description

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

156

hibernate.connection.autocommit Boolean. This property is not recommended
for use. Enables autocommit for JDBC pooled
connections.

hibernate.connection.release_mode Specifies when Hibernate should release JDBC
connections. By default, a JDBC connection is
held until the session is explicitly closed or
disconnected. The default value auto will
choose after_statement for the JTA and
CMT transaction strategies, and
after_transaction for the JDBC transaction
strategy.

Available values are auto (default), on_close,
after_transaction, after_statement.

This setting only affects the session returned
from SessionFactory.openSession. For
the session obtained through
SessionFactory.getCurrentSession, the
CurrentSessionContext implementation
configured for use controls the connection
release mode for that session.

hibernate.connection.<propertyName> Pass the JDBC property <propertyName> to
DriverManager.getConnection().

hibernate.jndi.<propertyName> Pass the property <propertyName> to the
JNDI InitialContextFactory.

Property Name Description

Table A.4. Hibernate Cache Properties

Property Name Description

hibernate.cache.region.factory_clas
s

The class name of a custom CacheProvider.

hibernate.cache.use_minimal_puts Boolean. Optimizes second-level cache
operation to minimize writes, at the cost of
more frequent reads. This setting is most
useful for clustered caches and, in Hibernate3,
is enabled by default for clustered cache
implementations.

hibernate.cache.use_query_cache Boolean. Enables the query cache. Individual
queries still have to be set cacheable.

APPENDIX A. REFERENCE MATERIAL

157

hibernate.cache.use_second_level_ca
che

Boolean. Used to completely disable the
second level cache, which is enabled by
default for classes that specify a <cache>
mapping.

hibernate.cache.query_cache_factory The class name of a custom QueryCache
interface. The default value is the built-in
StandardQueryCache.

hibernate.cache.region_prefix A prefix to use for second-level cache region
names.

hibernate.cache.use_structured_entr
ies

Boolean. Forces Hibernate to store data in the
second-level cache in a more human-friendly
format.

hibernate.cache.default_cache_concu
rrency_strategy

Setting used to give the name of the default
org.hibernate.annotations.CacheConcurrencyStr
ategy to use when either @Cacheable or
@Cache is used. @Cache(strategy="..") is
used to override this default.

Property Name Description

Table A.5. Hibernate Transaction Properties

Property Name Description

hibernate.transaction.factory_class The classname of a TransactionFactory to
use with Hibernate Transaction API.
Defaults to JDBCTransactionFactory).

jta.UserTransaction A JNDI name used by
JTATransactionFactory to obtain the JTA
UserTransaction from the application
server.

hibernate.transaction.manager_looku
p_class

The classname of a
TransactionManagerLookup. It is required
when JVM-level caching is enabled or when
using hilo generator in a JTA environment.

hibernate.transaction.flush_before_
completion

Boolean. If enabled, the session will be
automatically flushed during the before
completion phase of the transaction. Built-in
and automatic session context management is
preferred.

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

158

hibernate.transaction.auto_close_se
ssion

Boolean. If enabled, the session will be
automatically closed during the after
completion phase of the transaction. Built-in
and automatic session context management is
preferred.

Property Name Description

Table A.6. Miscellaneous Hibernate Properties

Property Name Description

hibernate.current_session_context_c
lass

Supply a custom strategy for the scoping of
the "current" Session. Values include jta,
thread, managed, custom.Class.

hibernate.query.factory_class Chooses the HQL parser implementation:
org.hibernate.hql.internal.ast.ASTQ
ueryTranslatorFactory or
org.hibernate.hql.internal.classic.
ClassicQueryTranslatorFactory.

hibernate.query.substitutions Used to map from tokens in Hibernate queries
to SQL tokens (tokens might be function or
literal names). For example,
hqlLiteral=SQL_LITERAL,
hqlFunction=SQLFUNC.

hibernate.query.conventional_java_c
onstants

Indicates whether the Java constants follow
the Java naming conventions or not. Default is
false. Existing applications may set it to true
only if conventional Java constants are being
used in the applications.

Setting this to true has significant
performance improvement because then
Hibernate can determine if an alias should be
treated as a Java constant simply by checking
if the alias follows the Java naming
conventions.

When this property is set to false, Hibernate
determines an alias should be treated as a
Java constant by attempting to load the alias
as a class, which is an overhead for the
application. If alias fails to load as a class, then
Hibernate treats the alias as a Java constant.

APPENDIX A. REFERENCE MATERIAL

159

hibernate.hbm2ddl.auto Automatically validates or exports schema DDL
to the database when the SessionFactory is
created. With create-drop, the database
schema will be dropped when the
SessionFactory is closed explicitly. Property
value options are validate, update,
create, create-drop

hibernate.hbm2ddl.import_files Comma-separated names of the optional files
containing SQL DML statements executed
during the SessionFactory creation. This is
useful for testing or demonstrating. For
example, by adding INSERT statements, the
database can be populated with a minimal set
of data when it is deployed. An example value
is /humans.sql,/dogs.sql.

File order matters, as the statements of a
given file are executed before the statements
of the following files. These statements are
only executed if the schema is created, for
example if hibernate.hbm2ddl.auto is set
to create or create-drop.

hibernate.hbm2ddl.import_files_sql_
extractor

The classname of a custom
ImportSqlCommandExtractor. Defaults to the
built-in SingleLineSqlCommandExtractor. This
is useful for implementing a dedicated parser
that extracts a single SQL statement from
each import file. Hibernate also provides
MultipleLinesSqlCommandExtractor, which
supports instructions/comments and quoted
strings spread over multiple lines (mandatory
semicolon at the end of each statement).

hibernate.bytecode.use_reflection_o
ptimizer

Boolean. This is a system-level property, which
cannot be set in the hibernate.cfg.xml file.
Enables the use of bytecode manipulation
instead of runtime reflection. Reflection can
sometimes be useful when troubleshooting.
Hibernate always requires either cglib or
javassist even if the optimizer is turned off.

hibernate.bytecode.provider Both javassist or cglib can be used as byte
manipulation engines. The default is
javassist. The value is either javassist or
cglib.

Property Name Description

Table A.7. Hibernate SQL Dialects (hibernate.dialect)

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

160

RDBMS Dialect

DB2 org.hibernate.dialect.DB2Dialect

DB2 AS/400 org.hibernate.dialect.DB2400Dialect

DB2 OS390 org.hibernate.dialect.DB2390Dialect

Firebird org.hibernate.dialect.FirebirdDialect

FrontBase org.hibernate.dialect.FrontbaseDialect

H2 Database org.hibernate.dialect.H2Dialect

HypersonicSQL org.hibernate.dialect.HSQLDialect

Informix org.hibernate.dialect.InformixDialect

Ingres org.hibernate.dialect.IngresDialect

Interbase org.hibernate.dialect.InterbaseDialect

MariaDB 10 org.hibernate.dialect.MySQL57InnoDBDialect

MariaDB Galera Cluster 10 org.hibernate.dialect.MySQL57InnoDBDialect

Mckoi SQL org.hibernate.dialect.MckoiDialect

Microsoft SQL Server 2000 org.hibernate.dialect.SQLServerDialect

Microsoft SQL Server 2005 org.hibernate.dialect.SQLServer2005Dialect

Microsoft SQL Server 2008 org.hibernate.dialect.SQLServer2008Dialect

Microsoft SQL Server 2012 org.hibernate.dialect.SQLServer2012Dialect

Microsoft SQL Server 2014 org.hibernate.dialect.SQLServer2012Dialect

Microsoft SQL Server 2016 org.hibernate.dialect.SQLServer2012Dialect

MySQL5 org.hibernate.dialect.MySQL5Dialect

MySQL5.7 org.hibernate.dialect.MySQL57InnoDBDialect

MySQL5 with InnoDB org.hibernate.dialect.MySQL5InnoDBDialect

MySQL with MyISAM org.hibernate.dialect.MySQLMyISAMDialect

APPENDIX A. REFERENCE MATERIAL

161

Oracle (any version) org.hibernate.dialect.OracleDialect

Oracle 9i org.hibernate.dialect.Oracle9iDialect

Oracle 10g org.hibernate.dialect.Oracle10gDialect

Oracle 11g org.hibernate.dialect.Oracle10gDialect

Oracle 12c org.hibernate.dialect.Oracle12cDialect

Pointbase org.hibernate.dialect.PointbaseDialect

PostgreSQL org.hibernate.dialect.PostgreSQLDialect

PostgreSQL 9.2 org.hibernate.dialect.PostgreSQL9Dialect

PostgreSQL 9.3 org.hibernate.dialect.PostgreSQL9Dialect

PostgreSQL 9.4 org.hibernate.dialect.PostgreSQL94Dialect

Postgres Plus Advanced Server org.hibernate.dialect.PostgresPlusDialect

Progress org.hibernate.dialect.ProgressDialect

SAP DB org.hibernate.dialect.SAPDBDialect

Sybase org.hibernate.dialect.SybaseASE15Dialect

Sybase 15.7 org.hibernate.dialect.SybaseASE157Dialect

Sybase 16 org.hibernate.dialect.SybaseASE157Dialect

Sybase Anywhere org.hibernate.dialect.SybaseAnywhereDialect

RDBMS Dialect

IMPORTANT

The hibernate.dialect property should be set to the correct
org.hibernate.dialect.Dialect subclass for the application database. If a
dialect is specified, Hibernate will use sensible defaults for some of the other
properties. This means that they do not have to be specified manually.

Red Hat JBoss Enterprise Application Platform 7.1 Developing Hibernate Applications

162

Revised on 2018-10-11 12:31:18 UTC

APPENDIX A. REFERENCE MATERIAL

163

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. ABOUT HIBERNATE CORE
	1.2. HIBERNATE ENTITYMANAGER

	CHAPTER 2. HIBERNATE CONFIGURATION
	2.1. HIBERNATE CONFIGURATION
	2.2. SECOND-LEVEL CACHES
	2.2.1. About Second-level Caches
	2.2.2. Configure a Second-level Cache for Hibernate
	Configuring a Second-level Cache for Hibernate Using Hibernate Native Applications

	CHAPTER 3. HIBERNATE ANNOTATIONS
	3.1. HIBERNATE ANNOTATIONS

	CHAPTER 4. HIBERNATE QUERY LANGUAGE
	4.1. ABOUT HIBERNATE QUERY LANGUAGE
	Introduction to JPQL
	Introduction to HQL

	4.2. ABOUT HQL STATEMENTS
	About the UPDATE and DELETE Statements
	About the INSERT Statement

	4.3. ABOUT HQL ORDERING
	4.4. ABOUT COLLECTION MEMBER REFERENCES
	4.5. ABOUT QUALIFIED PATH EXPRESSIONS
	4.6. ABOUT HQL FUNCTIONS
	4.6.1. About HQL Standardized Functions
	4.6.2. About HQL Non-Standardized Functions
	4.6.3. About the Concatenation Operation

	4.7. ABOUT DYNAMIC INSTANTIATION
	4.8. ABOUT HQL PREDICATES
	HQL Predicates

	4.9. ABOUT RELATIONAL COMPARISONS
	4.10. BYTECODE ENHANCEMENT
	4.10.1. Lazy Attribute Loading

	CHAPTER 5. HIBERNATE SERVICES
	5.1. ABOUT HIBERNATE SERVICES
	5.2. ABOUT SERVICE CONTRACTS
	5.3. TYPES OF SERVICE DEPENDENCIES
	5.3.1. The Service Registry
	5.3.1.1. About the ServiceRegistry

	5.3.2. Custom Services
	5.3.2.1. About Custom Services

	5.3.3. The Boot-Strap Registry
	5.3.3.1. About the Boot-strap Registry
	5.3.3.2. BootstrapRegistry Services

	5.3.4. SessionFactory Registry
	5.3.4.1. SessionFactory Services

	5.3.5. Integrators
	5.3.5.1. Integrator Use Cases

	CHAPTER 6. HIBERNATE ENVERS
	6.1. ABOUT HIBERNATE ENVERS
	6.2. ABOUT AUDITING PERSISTENT CLASSES
	6.3. AUDITING STRATEGIES
	6.3.1. About Auditing Strategies
	6.3.2. Set the Auditing Strategy
	Define an Auditing Strategy

	6.3.3. Adding Auditing Support to a JPA Entity

	6.4. CONFIGURATION
	6.4.1. Configure Envers Parameters
	6.4.2. Enable or Disable Auditing at Runtime
	6.4.3. Configure Conditional Auditing
	6.4.4. Envers Configuration Properties

	6.5. QUERYING AUDIT INFORMATION
	6.5.1. Retrieve Auditing Information Through Queries
	6.5.2. Traversing Entity Associations Using Properties of Referenced Entities

	6.6. PERFORMANCE TUNING
	6.6.1. Alternative Batch Loading Algorithms
	6.6.2. Second Level Caching of Object References for Non-mutable Data

	CHAPTER 7. HIBERNATE SEARCH
	7.1. GETTING STARTED WITH HIBERNATE SEARCH
	7.1.1. About Hibernate Search
	7.1.2. Overview
	7.1.3. About the Directory Provider
	7.1.4. About the Worker
	7.1.5. Back End Setup and Operations
	7.1.5.1. Back End
	7.1.5.2. Lucene
	7.1.5.3. JMS

	7.1.6. Reader Strategies
	7.1.6.1. The Shared Strategy
	7.1.6.2. The Not-shared Strategy
	7.1.6.3. Custom Reader Strategies

	7.2. CONFIGURATION
	7.2.1. Minimum Configuration
	7.2.2. Configuring the IndexManager
	7.2.2.1. Directory-based
	7.2.2.2. Near Real Time
	7.2.2.3. Custom

	7.2.3. DirectoryProvider Configuration
	Directory Providers and Their Properties

	7.2.4. Worker Configuration
	7.2.4.1. JMS Master/Slave Back End
	7.2.4.2. Slave Nodes
	7.2.4.3. Master Node

	7.2.5. Tuning Lucene Indexing
	7.2.5.1. Tuning Lucene Indexing Performance
	7.2.5.2. The Lucene IndexWriter
	7.2.5.3. Performance Option Configuration
	7.2.5.4. Tuning the Indexing Speed
	7.2.5.5. Control Segment Size

	7.2.6. LockFactory Configuration
	7.2.7. Index Format Compatibility

	7.3. HIBERNATE SEARCH FOR YOUR APPLICATION
	7.3.1. First Steps with Hibernate Search
	7.3.2. Enable Hibernate Search Using Maven
	7.3.3. Add Annotations
	7.3.4. Indexing
	7.3.5. Searching
	7.3.6. Analyzer

	7.4. MAPPING ENTITIES TO THE INDEX STRUCTURE
	7.4.1. Mapping an Entity
	7.4.1.1. Basic Mapping
	7.4.1.2. @Indexed
	7.4.1.3. @Field
	7.4.1.4. @NumericField
	7.4.1.5. @Id
	7.4.1.6. Mapping Properties Multiple Times
	7.4.1.7. Embedded and Associated Objects
	7.4.1.8. Limiting Object Embedding to Specific Paths

	7.4.2. Boosting
	7.4.2.1. Static Index Time Boosting
	7.4.2.2. Dynamic Index Time Boosting

	7.4.3. Analysis
	7.4.3.1. Default Analyzer and Analyzer by Class
	7.4.3.2. Named Analyzers
	7.4.3.3. Available Analyzers
	7.4.3.4. Dynamic Analyzer Selection
	7.4.3.5. Retrieving an Analyzer

	7.4.4. Bridges
	7.4.4.1. Built-in Bridges
	7.4.4.2. Custom Bridges

	7.5. QUERYING
	7.5.1. Building Queries
	7.5.1.1. Building a Lucene Query Using the Lucene API
	7.5.1.2. Building a Lucene Query
	7.5.1.3. Keyword Queries
	7.5.1.4. Fuzzy Queries
	7.5.1.5. Wildcard Queries
	7.5.1.6. Phrase Queries
	7.5.1.7. Range Queries
	7.5.1.8. Combining Queries
	7.5.1.9. Query Options
	7.5.1.10. Build a Hibernate Search Query

	7.5.2. Retrieving the Results
	7.5.2.1. Performance Considerations
	7.5.2.2. Result Size
	7.5.2.3. ResultTransformer
	7.5.2.4. Understanding Results
	7.5.2.5. Filters
	7.5.2.6. Using Filters in a Sharded Environment

	7.5.3. Faceting
	7.5.3.1. Creating a Faceting Request
	7.5.3.2. Applying a Faceting Request
	7.5.3.3. Restricting Query Results

	7.5.4. Optimizing the Query Process
	7.5.4.1. Caching Index Values: FieldCache

	7.6. MANUAL INDEX CHANGES
	7.6.1. Adding Instances to the Index
	7.6.2. Deleting Instances from the Index
	7.6.3. Rebuilding the Index
	7.6.3.1. Using flushToIndexes()
	7.6.3.2. Using a MassIndexer

	7.7. INDEX OPTIMIZATION
	7.7.1. Automatic Optimization
	7.7.2. Manual Optimization
	7.7.3. Adjusting Optimization

	7.8. ADVANCED FEATURES
	7.8.1. Accessing the SearchFactory
	7.8.2. Using an IndexReader
	7.8.3. Accessing a Lucene Directory
	7.8.4. Sharding Indexes
	7.8.5. Customizing Lucene’s Scoring Formula
	7.8.6. Exception Handling Configuration
	7.8.7. Disable Hibernate Search

	7.9. MONITORING
	Access to Statistics via JMX
	Monitoring Indexing

	APPENDIX A. REFERENCE MATERIAL
	A.1. HIBERNATE PROPERTIES

