
Red Hat JBoss Enterprise Application
Platform 8.0

Using single sign-on with JBoss EAP

Guide to using single sign-on to add authentication to applications deployed on
JBoss EAP

Last Updated: 2024-05-07

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on
with JBoss EAP

Guide to using single sign-on to add authentication to applications deployed on JBoss EAP

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using single sign-on to add authentication to applications deployed on JBoss EAP.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. SINGLE SIGN-ON IN JBOSS EAP

CHAPTER 2. SECURING APPLICATIONS DEPLOYED ON JBOSS EAP WITH SINGLE SIGN-ON
2.1. CREATING AN EXAMPLE APPLICATION TO SECURE WITH SINGLE SIGN-ON

2.1.1. Creating a Maven project for web-application development
2.1.2. Creating a web application

2.2. CREATING A REALM AND USERS IN RED HAT BUILD OF KEYCLOAK
2.3. SECURING APPLICATIONS WITH OIDC

2.3.1. Application security with OpenID Connect in JBoss EAP
Deployment configuration
Subsystem configuration

2.3.2. Creating an OIDC client in Red Hat build of Keycloak
2.3.3. Securing a web application using OpenID Connect

2.4. SECURING APPLICATIONS WITH SAML
2.4.1. Application security with SAML in JBoss EAP

Deployment configuration
Subsystem configuration

2.4.2. Creating a SAML client in Red Hat build of Keycloak
2.4.3. Securing web applications using SAML

CHAPTER 3. PROPAGATING AN IDENTITY FROM A SERVLET TO A JAKARTA ENTERPRISE BEAN WHEN
USING OIDC

3.1. IDENTITY PROPAGATION TO JAKARTA ENTERPRISE BEANS WHEN USING OIDC
3.2. SECURING JAKARTA ENTERPRISE BEANS APPLICATIONS USING VIRTUAL SECURITY DOMAIN
3.3. PROPAGATING IDENTITY FROM VIRTUAL SECURITY DOMAIN TO A SECURITY DOMAIN

CHAPTER 4. SECURING THE JBOSS EAP MANAGEMENT CONSOLE WITH AN OPENID PROVIDER
4.1. JBOSS EAP MANAGEMENT CONSOLE SECURITY WITH OIDC
4.2. CONFIGURING RED HAT BUILD OF KEYCLOAK TO SECURE JBOSS EAP MANAGEMENT CONSOLE
4.3. SECURING THE JBOSS EAP MANAGEMENT CONSOLE USING OPENID CONNECT

CHAPTER 5. REFERENCE
5.1. ELYTRON-OIDC-CLIENT SUBSYSTEM ATTRIBUTES
5.2. SECURITY-DOMAIN ATTRIBUTES
5.3. VIRTUAL-SECURITY-DOMAIN ATTRIBUTES

3

4

5

6
6
6
8

10
12
13
13
14
15
16
19
19

20
21
21
22

27
27
28
29

31
31
31

33

35
35
54
55

Table of Contents

1

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

2

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION
To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket.

2. Enter a brief description of the issue in the Summary.

3. Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

4. Clicking Submit creates and routes the issue to the appropriate documentation team.

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION

3

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12316621&summary=(userfeedback)&issuetype=13&description=[Please+include+the+Document+URL,+the+section+number+and +describe+the+issue]&priority=3&labels=[ddf]&components=12391723&customfield_10010

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. SINGLE SIGN-ON IN JBOSS EAP
Single sign-on (SSO) is a process of authenticating identities for multiple clients from a central identity
provider. For example, a user needs only one set of login credentials to log in to different applications
that use the same SSO provider.

JBoss EAP supports the following SSO protocols:

OpenID Connect (OIDC)

OpenID Connect is an authentication protocol based on the OAuth 2.0 framework of specifications
specified in RFC 6749 and RFC 6750.

Security Assertion Mark-up Language v2 (SAML v2)

SAML is a data format and protocol that enables the exchange of authentication and authorization
information between two parties, typically an identity provider and a service provider. This
information is exchanged in the form of SAML tokens that contain assertions, and are issued by
Identity Providers to subjects for authenticating with Service Providers. Subjects can reuse SAML
tokens issued by an identity provider with multiple service providers, supporting browser-based
Single Sign-On in SAML v2.

You can use SSO to secure applications deployed on JBoss EAP running on bare metal as well as JBoss
EAP running on Red Hat OpenShift Container Platform. For information about securing applications
deployed on JBoss EAP running on Red Hat OpenShift Container Platform with SSO, see the Using
JBoss EAP on OpenShift Container Platform.

CHAPTER 1. SINGLE SIGN-ON IN JBOSS EAP

5

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.3/html-single/red_hat_single_sign-on_for_openshift/index

CHAPTER 2. SECURING APPLICATIONS DEPLOYED ON
JBOSS EAP WITH SINGLE SIGN-ON

You can secure applications with Single Sign-on (SSO) to delegate authentication to an SSO-provider
such as Red Hat build of Keycloak. You can use either OpenID Connect (OIDC) or Security Assertion
Markup Language v2 (SAML v2) as the SSO protocols.

To secure applications with SSO, follow these procedures:

Create an example application to secure with Single sign-on : Use this procedure to create a
simple web-application for securing with SSO. If you already have an application to secure with
SSO, skip this step.

Create a realm and users in Red Hat build of Keycloak

Secure your application with SSO by using either OIDC or SAML as the protocol:

Secure applications with OIDC

Secure applications with SAML

2.1. CREATING AN EXAMPLE APPLICATION TO SECURE WITH SINGLE
SIGN-ON

Create a web-application to deploy on JBoss EAP and secure it with Single sign-on (SSO) with OpenID
Connect (OIDC) or Security Assertion Mark-up Language (SAML).

NOTE

The following procedures are provided as an example only. If you already have an
application that you want to secure, you can skip these and go directly to Creating a
realm and users in Red Hat build of Keycloak.

2.1.1. Creating a Maven project for web-application development

For creating a web-application, create a Maven project with the required dependencies and the
directory structure.

IMPORTANT

The following procedure is provided only as an example and should not be used in a
production environment. For information about creating applications for JBoss EAP, see
Getting started with developing applications for JBoss EAP deployment .

Prerequisites

You have installed Maven. For more information, see Downloading Apache Maven.

Procedure

1. Set up a Maven project using the mvn command. The command creates the directory structure
for the project and the pom.xml configuration file.

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

6

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/getting_started_with_developing_applications_for_jboss_eap_deployment/
https://maven.apache.org/download.cgi

Syntax

$ mvn archetype:generate \
-DgroupId=${group-to-which-your-application-belongs} \
-DartifactId=${name-of-your-application} \
-DarchetypeGroupId=org.apache.maven.archetypes \
-DarchetypeArtifactId=maven-archetype-webapp \
-DinteractiveMode=false

Example

$ mvn archetype:generate \
-DgroupId=com.example.app \
-DartifactId=simple-webapp-example \
-DarchetypeGroupId=org.apache.maven.archetypes \
-DarchetypeArtifactId=maven-archetype-webapp \
-DinteractiveMode=false

2. Navigate to the application root directory:

Syntax

$ cd <name-of-your-application>

Example

$ cd simple-webapp-example

3. Replace the content of the generated pom.xml file with the following text:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.app</groupId>
 <artifactId>simple-webapp-example</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>war</packaging>

 <name>simple-webapp-example Maven Webapp</name>
 <!-- FIXME change it to the project's website -->
 <url>http://www.example.com</url>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <maven.compiler.source>11</maven.compiler.source>
 <maven.compiler.target>11</maven.compiler.target>
 <version.maven.war.plugin>3.4.0</version.maven.war.plugin>
 </properties>

CHAPTER 2. SECURING APPLICATIONS DEPLOYED ON JBOSS EAP WITH SINGLE SIGN-ON

7

Verification

In the application root directory, enter the following command:

$ mvn install

You get an output similar to the following:

...
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 0.795 s
[INFO] Finished at: 2022-04-28T17:39:48+05:30
[INFO] --

Next steps

Creating a web application

2.1.2. Creating a web application

Create a web application containing a servlet that returns the user name obtained from the logged-in
user’s principal. If there is no logged-in user, the servlet returns the text "NO AUTHENTICATED USER".

In this procedure, <application_home> refers to the directory that contains the pom.xml configuration
file for the application.

 <dependencies>
 <dependency>
 <groupId>jakarta.servlet</groupId>
 <artifactId>jakarta.servlet-api</artifactId>
 <version>6.0.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

 <build>
 <finalName>${project.artifactId}</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>${version.maven.war.plugin}</version>
 </plugin>
 <plugin>
 <groupId>org.wildfly.plugins</groupId>
 <artifactId>wildfly-maven-plugin</artifactId>
 <version>4.2.2.Final</version>
 </plugin>
 </plugins>
 </build>
</project>

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

8

Prerequisites

You have created a Maven project.
For more information, see Creating a Maven project for web-application development .

JBoss EAP is running.

Procedure

1. Create a directory to store the Java files.

Syntax

$ mkdir -p src/main/java/<path_based_on_artifactID>

Example

$ mkdir -p src/main/java/com/example/app

2. Navigate to the new directory.

Syntax

$ cd src/main/java/<path_based_on_artifactID>

Example

$ cd src/main/java/com/example/app

3. Create a file SecuredServlet.java with the following content:

package com.example.app;

import java.io.IOException;
import java.io.PrintWriter;
import java.security.Principal;

import jakarta.servlet.ServletException;
import jakarta.servlet.annotation.WebServlet;
import jakarta.servlet.http.HttpServlet;
import jakarta.servlet.http.HttpServletRequest;
import jakarta.servlet.http.HttpServletResponse;

/**
 * A simple secured HTTP servlet. It returns the user name of obtained
 * from the logged-in user's Principal. If there is no logged-in user,
 * it returns the text "NO AUTHENTICATED USER".
 */

@WebServlet("/secured")
public class SecuredServlet extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws

CHAPTER 2. SECURING APPLICATIONS DEPLOYED ON JBOSS EAP WITH SINGLE SIGN-ON

9

4. In the application root directory, compile your application with the following command:

$ mvn package
...
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 1.015 s
[INFO] Finished at: 2022-04-28T17:48:53+05:30
[INFO] --

5. Deploy the application.

$ mvn wildfly:deploy

Verification

In a browser, navigate to http://localhost:8080/simple-webapp-example/secured.
You get the following message:

Secured Servlet
Current Principal 'NO AUTHENTICATED USER'

Because no authentication mechanism is added, you can access the application.

Next steps

Creating a realm and users in Red Hat build of Keycloak

2.2. CREATING A REALM AND USERS IN RED HAT BUILD OF
KEYCLOAK

A realm in Red Hat build of Keycloak is equivalent to a tenant. Each realm allows an administrator to
create isolated groups of applications and users.

ServletException, IOException {
 try (PrintWriter writer = resp.getWriter()) {
 writer.println("<html>");
 writer.println(" <head><title>Secured Servlet</title></head>");
 writer.println(" <body>");
 writer.println(" <h1>Secured Servlet</h1>");
 writer.println(" <p>");
 writer.print(" Current Principal '");
 Principal user = req.getUserPrincipal();
 writer.print(user != null ? user.getName() : "NO AUTHENTICATED USER");
 writer.print("'");
 writer.println(" </p>");
 writer.println(" </body>");
 writer.println("</html>");
 }
 }

}

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

10

http://localhost:8080/simple-webapp-example/secured

The following procedure outlines the minimum steps required to get started with securing applications
deployed to JBoss EAP with Red Hat build of Keycloak for testing purposes. For detailed configurations,
see the Red Hat build of Keycloak Server Administration Guide .

NOTE

The following procedure is provided as an example only. If you already have configured a
realm and users in Red Hat build of Keycloak, you can skip this procedure and go directly
to securing applications. For more information, see:

Securing applications with OIDC

Securing applications with SAML

Prerequisites

You have administrator access to Red Hat build of Keycloak.

Procedure

1. Start the Red Hat build of Keycloak server at a port other than 8080 because JBoss EAP
default port is 8080.

NOTE

The start-dev command is not meant for production environments. For more
information, see Trying Red Hat build of Keycloak in development mode in the
Red Hat build of Keycloak Server Guide.

Syntax

$ <path_to_rhbk>/bin/kc.sh start-dev --http-port <offset-number>

Example

$ /home/servers/rhbk-22.0/bin/kc.sh start-dev --http-port 8180

2. Log in to the Admin Console at http://localhost:<port>/. For example, http://localhost:8180/.

3. Create a realm.

a. Hover over Master, and click Create Realm.

b. Enter a name for the realm. For example, example_realm.

c. Ensure that Enabled is set to ON.

d. Click Create.

For more information, see Creating a realm in the Red Hat build of Keycloak Server
Administration Guide.

4. Create a user.

CHAPTER 2. SECURING APPLICATIONS DEPLOYED ON JBOSS EAP WITH SINGLE SIGN-ON

11

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_guide/#configuration-starting-red-hat-build-of-keycloak-in-development-mode
http://localhost:8180/
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-creating-a-realm_server_administration_guide

a. Click Users, then click Add user,

b. Enter a user name. For example, user1.

c. Click Create.

For more information, see Creating users in the Red Hat build of Keycloak Server Administration
Guide.

5. Set credentials for the user.

a. Click Credentials.

b. Set a password for the user. For example, passwordUser1. Toggle Temporary to OFF and
click Set Password. In the confirmation prompt, click Save.

For more information, see Defining user credentials in the Red Hat build of Keycloak Server
Administration Guide.

6. Create a role.
This is the role name you configure in JBoss EAP for authorization.

a. Click Realm Roles, then Create role.

b. Enter a role name, such as Admin.

c. Click Save.

7. Assign the role to the user.

a. Click Users.

b. Click the user to which you want to assign the role.

c. Click Role Mapping.

d. Click Assign role.

e. Select the role to assign. For example, Admin. Click Assign.

For more information, see Creating a realm role in the Red Hat build of Keycloak Server
Administration Guide.

Next steps

To use this realm to secure applications deployed to JBoss EAP, follow these procedures:

Securing applications with OIDC

Securing applications with SAML

Additional resources

Red Hat build of Keycloak Getting Started Guide

2.3. SECURING APPLICATIONS WITH OIDC

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

12

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-creating-user_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#ref-user-credentials_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-creating-realm-roles_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/getting_started_guide/

Use the JBoss EAP native OpenID Connect (OIDC) client to secure your applications using an external
OpenID provider. OIDC is an identity layer that enables clients, such as JBoss EAP, to verify a user’s
identity based on authentication performed by an OpenID provider. For example, you can secure your
JBoss EAP applications using Red Hat build of Keycloak as the OpenID provider.

To secure applications with OIDC, follow these procedures:

Creating an OIDC client in JBoss EAP

Securing a web application using OpenID Connect

2.3.1. Application security with OpenID Connect in JBoss EAP

When you secure your applications using an OpenID provider, you do not need to configure any security
domain resources locally. The elytron-oidc-client subsystem provides a native OpenID Connect (OIDC)
client in JBoss EAP to connect with OpenID providers (OP). JBoss EAP automatically creates a virtual
security domain for your application, based on your OpenID provider configurations. The elytron-oidc-
client subsystem acts as the Relying Party (RP).

NOTE

The JBoss EAP native OIDC client does not support RP-Initiated logout.

IMPORTANT

It is recommended to use the OIDC client with Red Hat build of Keycloak. You can use
other OpenID providers if they can be configured to use access tokens that are JSON
Web Tokens (JWTs) and can be configured to use the RS256, RS384, RS512, ES256,
ES384, or ES512 signature algorithm.

To enable the use of OIDC, you can configure either the elytron-oidc-client subsystem or an
application itself. JBoss EAP activates the OIDC authentication as follows:

When you deploy an application to JBoss EAP, the elytron-oidc-client subsystem scans the
deployment to detect if the OIDC authentication mechanism is required.

If the subsystem detects OIDC configuration for the deployment in either the elytron-oidc-
client subsystem or the application deployment descriptor, JBoss EAP enables the OIDC
authentication mechanism for the application.

If the subsystem detects OIDC configuration in both places, the configuration in the elytron-
oidc-client subsystem secure-deployment attribute takes precedence over the configuration
in the application deployment descriptor.

Deployment configuration
To secure an application with OIDC by using a deployment descriptor, update the application’s
deployment configuration as follows:

Set the auth-method property to OIDC in the application deployment descriptor web.xml file.

Example deployment descriptor update

<login-config>
 <auth-method>OIDC</auth-method>
</login-config>

CHAPTER 2. SECURING APPLICATIONS DEPLOYED ON JBOSS EAP WITH SINGLE SIGN-ON

13

1

2

3

4

1

2

3

4

5

Create a file called oidc.json in the WEB-INF directory with the OIDC configuration
information.

Example oidc.json contents

The name to identify the OIDC client with the OpenID provider.

The OpenID provider URL.

Require HTTPS for external requests.

The client secret that was registered with the OpenID provider.

Subsystem configuration
You can secure applications with OIDC by configuring the elytron-oidc-client subsystem in the
following ways:

Create a single configuration for multiple deployments if you use the same OpenID provider for
each application.

Create a different configuration for each deployment if you use different OpenID providers for
different applications.

Example XML configuration for a single deployment:

The deployment runtime name.

The name to identify the OIDC client with the OpenID provider.

The OpenID provider URL.

Require HTTPS for external requests.

The client secret that was registered with the OpenID provider.

{
 "client-id" : "customer-portal", 1
 "provider-url" : "http://localhost:8180/realms/demo", 2
 "ssl-required" : "external", 3
 "credentials" : {
 "secret" : "234234-234234-234234" 4
 }
}

<subsystem xmlns="urn:wildfly:elytron-oidc-client:1.0">
 <secure-deployment name="DEPLOYMENT_RUNTIME_NAME.war"> 1
 <client-id>customer-portal</client-id> 2
 <provider-url>http://localhost:8180/realms/demo</provider-url> 3
 <ssl-required>external</ssl-required> 4
 <credential name="secret" secret="0aa31d98-e0aa-404c-b6e0-e771dba1e798" /> 5
 </secure-deployment
</subsystem>

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

14

1

2

To secure multiple applications using the same OpenID provider, configure the provider separately, as
shown in the example:

A deployment: customer-portal.war

Another deployment: product-portal.war

Additional resources

OpenID Connect specification

elytron-oidc-client subsystem attributes

OpenID Connect Libraries

2.3.2. Creating an OIDC client in Red Hat build of Keycloak

Create an OpenID Connect (OIDC) client in Red Hat build of Keycloak to use with JBoss EAP to secure
applications.

The following procedure outlines the minimum steps required to get started with securing applications
deployed to JBoss EAP with Red Hat build of Keycloak for testing purposes. For detailed configurations,
see Managing OpenID Connect clients in the Red Hat build of Keycloak Server Administration Guide.

Prerequisites

You have created a realm and defined users in Red Hat build of Keycloak.
For more information, see Creating a realm and users in JBoss EAP

Procedure

1. Navigate to the Red Hat build of Keycloak Admin Console.

2. Create a client.

a. Click Clients, then click Create client.

<subsystem xmlns="urn:wildfly:elytron-oidc-client:1.0">
 <provider name="${OpenID_provider_name}">
 <provider-url>http://localhost:8080/realms/demo</provider-url>
 <ssl-required>external</ssl-required>
 </provider>
 <secure-deployment name="customer-portal.war"> 1
 <provider>${OpenID_provider_name}</provider>
 <client-id>customer-portal</client-id>
 <credential name="secret" secret="0aa31d98-e0aa-404c-b6e0-e771dba1e798" />
 </secure-deployment>
 <secure-deployment name="product-portal.war"> 2
 <provider>${OpenID_provider_name}</provider>
 <client-id>product-portal</client-id>
 <credential name="secret" secret="0aa31d98-e0aa-404c-b6e0-e771dba1e798" />
 </secure-deployment>
</subsystem>

CHAPTER 2. SECURING APPLICATIONS DEPLOYED ON JBOSS EAP WITH SINGLE SIGN-ON

15

https://openid.net/connect/
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/securing_applications_and_services_guide/#other_openid_connect_libraries
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#oidc_clients

b. Ensure that Client type is set to OpenID Connect.

c. Enter a client ID. For example, jbeap-oidc.

d. Click Next.

e. In the Capability Config tab, ensure that Authentication Flow is set to Standard flow and
Direct access grants.

f. Click Next.

g. In the Login settings tab, enter the value for Valid redirect URIs. Enter the URL where the
page should redirect after successful authentication, for example,
http://localhost:8080/simple-webapp-example/secured/*.

h. Click Save.

3. View the adapter configuration.

a. Click Action, then Download adapter config.

b. Select Keycloak OIDC JSON as the Format Option to see the connection parameters.

When configuring your JBoss EAP application to use Red Hat build of Keycloak as the
identity provider, you use the parameters as follows:

Next steps

Securing a web application using OpenID Connect

Additional resources

Securing Applications and Services Guide

2.3.3. Securing a web application using OpenID Connect

You can secure an application by either updating its deployment configuration or by configuring the
elytron-oidc-client subsystem.

If you use the application created in the procedure, Creating a web application , the value of the Principal

{
 "realm": "example_realm",
 "auth-server-url": "http://localhost:8180/",
 "ssl-required": "external",
 "resource": "jbeap-oidc",
 "public-client": true,
 "confidential-port": 0
}

"provider-url" : "http://localhost:8180/realms/example_realm",
"ssl-required": "external",
"client-id": "jbeap-oidc",
"public-client": true,
"confidential-port": 0

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

16

http://localhost:8080/simple-webapp-example/secured/*
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/securing_applications_and_services_guide/

1

comes from the ID token from the OpenID provider. By default, the Principal is the value of the "sub"
claim from the token. You can also use the value of “email”, “preferred_username”, “name”,
“given_name”, “family_name”, or “nickname” claims as the Principal. Specify which claim value from the
ID token is to be used as the Principal in one of the following places:

The elytron-oidc-client subsystem attribute principal-attribute.

The oidc.json file.

There are two ways in which you can configure applications to use OIDC:

By configuring the elytron-oidc-client subsystem.
Use this method if you do not want to add configuration to the application deployment.

By updating the deployment configuration
Use this method if you do not want to add configuration to the server and prefer to keep the
configuration within the application deployment.

Prerequisites

You have deployed applications on JBoss EAP.

Procedure

1. Configure the application’s web.xml to protect the application resources.

Only allow the users with the role Admin to access the application. To allow users with any
role to access the application, use the wildcard ** as the value for role-name.

2. To secure the application with OpenID Connect, either update the deployment configuration or

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 metadata-complete="false">

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>secured</web-resource-name>
 <url-pattern>/secured</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <role-name>Admin</role-name> 1
 </auth-constraint>
 </security-constraint>

 <security-role>
 <role-name>*</role-name>
 </security-role>
</web-app>

CHAPTER 2. SECURING APPLICATIONS DEPLOYED ON JBOSS EAP WITH SINGLE SIGN-ON

17

1

2. To secure the application with OpenID Connect, either update the deployment configuration or
configure the elytron-oidc-client subsystem.

NOTE

If you configure OpenID Connect in both the deployment configuration and the
elytron-oidc-client subsystem, the configuration in the elytron-oidc-client
subsystem secure-deployment attribute takes precedence over the
configuration in the application deployment descriptor.

Updating the deployment configuration.

i. Add login configuration to the application’s web.xml specifying authentication method
as OIDC.

Use OIDC to secure the application.

ii. Create a file oidc.json in the WEB-INF directory, like this:

Configuring the elytron-oidc-client subsystem:

To secure your application, use the following management CLI command:

/subsystem=elytron-oidc-client/secure-deployment=simple-oidc-
example.war/:add(client-id=jbeap-oidc,provider-
url=http://localhost:8180/realms/example_realm,public-client=true,ssl-
required=external)

3. In the application root directory, compile your application with the following command:

$ mvn package

4. Deploy the application.

$ mvn wildfly:deploy

Verification

<web-app>
...
 <login-config>
 <auth-method>OIDC</auth-method> 1
 </login-config>
...
</web-app>

{
 "provider-url" : "http://localhost:8180/realms/example_realm",
 "ssl-required": "external",
 "client-id": "jbeap-oidc",
 "public-client": true,
 "confidential-port": 0
}

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

18

Verification

1. In a browser, navigate to http://localhost:8080/simple-webapp-example/secured.
You are redirected to Red Hat build of Keycloak login page.

2. You can log in with your credentials for the user you defined in Red Hat build of Keycloak.

Your application is now secured using OIDC.

Additional resources

elytron-oidc-client subsystem attributes

2.4. SECURING APPLICATIONS WITH SAML

You can use the Galleon layers provided by the Keycloak SAML adapter feature pack to secure web
applications with Security Assertion Markup Language (SAML).

For information about Keycloak SAML adapter feature pack, see Keycloak SAML adapter feature pack
for securing applications using SAML.

To secure applications with SAML, follow these procedures:

Securing web applications using SAML

2.4.1. Application security with SAML in JBoss EAP

Keycloak SAML adapter Galleon pack is a Galleon feature pack that includes three layers: keycloak-
saml, keycloak-client-saml, and keycloak-client-saml-ejb. Use the layers in the feature pack to install
the necessary modules and configurations in JBoss EAP to use Red Hat build of Keycloak as an identity
provider for single sign-on using Security Assertion Markup Language (SAML).

The following table describes the use cases for each layer.

Layer Applicable for Description

keycloak-saml OpenShift Use this layer for Source to Image
(s2i) with automatic registration
of the SAML client. You must use
this layer along with the cloud-
default-config layer.

keycloak-client-saml Bare metal, OpenShift Use this layer for web-applications
on bare metal, and for Source to
Image (s2i) with keycloak-saml
subsystem configuration provided
in a CLI script or in the
deployment configuration.

keycloak-client-saml-ejb Bare metal Use this layer for applications
where you want to propagate
identities to Jakarta Enterprise
Beans.

To enable the use of SAML, you can configure either the keycloak-saml subsystem or an application

CHAPTER 2. SECURING APPLICATIONS DEPLOYED ON JBOSS EAP WITH SINGLE SIGN-ON

19

http://localhost:8080/simple-webapp-example/secured

To enable the use of SAML, you can configure either the keycloak-saml subsystem or an application
itself.

Deployment configuration
To secure an application with SAML by using a deployment descriptor, update the application’s
deployment configuration as follows:

Set the auth-method property to SAML in the application deployment descriptor web.xml file.

Example deployment descriptor update

Create a file called keycloak-saml.xml in the WEB-INF directory with the SAML configuration
information. You can obtain this file from the SAML provider.

Example keycloak-saml.xml

The values of PrivateKeyPem, and CertificatePem are unique for each client.

<login-config>
 <auth-method>SAML</auth-method>
</login-config>

<keycloak-saml-adapter>
 <SP entityID=""
 sslPolicy="EXTERNAL"
 logoutPage="SPECIFY YOUR LOGOUT PAGE!">
 <Keys>
 <Key signing="true">
 <PrivateKeyPem>PRIVATE KEY NOT SET UP OR KNOWN</PrivateKeyPem>
 <CertificatePem>...</CertificatePem>
 </Key>
 </Keys>
 <IDP entityID="idp"
 signatureAlgorithm="RSA_SHA256"
 signatureCanonicalizationMethod="http://www.w3.org/2001/10/xml-exc-c14n#">
 <SingleSignOnService signRequest="true"
 validateResponseSignature="true"
 validateAssertionSignature="false"
 requestBinding="POST"

bindingUrl="http://localhost:8180/realms/example_saml_realm/protocol/saml"/>
 <SingleLogoutService signRequest="true"
 signResponse="true"
 validateRequestSignature="true"
 validateResponseSignature="true"
 requestBinding="POST"
 responseBinding="POST"

postBindingUrl="http://localhost:8180/realms/example_saml_realm/protocol/saml"

redirectBindingUrl="http://localhost:8180/realms/example_saml_realm/protocol/saml"/>
 </IDP>
 </SP>
</keycloak-saml-adapter>

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

20

Subsystem configuration
You can secure applications with SAML by configuring the keycloak-saml subsystem. You can obtain
the client configuration file containing the subsystem configuration commands from Red Hat build of
Keycloak. For more information, see Generating client adapter config .

2.4.2. Creating a SAML client in Red Hat build of Keycloak

Create a Security Assertion Markup Language (SAML) client in Red Hat build of Keycloak to use with
JBoss EAP to secure applications.

The following procedure outlines the minimum steps required to get started with securing applications
deployed to JBoss EAP with Red Hat build of Keycloak for testing purposes. For detailed configurations,
see Creating a SAML client in the Red Hat build of Keycloak Server Administration Guide.

Prerequisites

You have created a realm and defined users in Red Hat build of Keycloak.
For more information, see Creating a realm and users in JBoss EAP

Procedure

1. Navigate to the Red Hat build of Keycloak Admin Console.

2. Create a client.

a. Click Clients, then click Create client.

b. Select SAML as the Client type.

c. Enter the URL for the application you want to secure as the Client ID. For example,
http://localhost:8080/simple-webapp-example/secured/.

IMPORTANT

The client ID must exactly match the URL of your application. If the client ID
does not match, you get an error similar to the following:

2023-05-17 19:54:31,586 WARN [org.keycloak.events] (executor-thread-
0) type=LOGIN_ERROR, realmId=eba0f106-389f-4216-a676-
05fcd0c0c72e, clientId=null, userId=null, ipAddress=127.0.0.1,
error=client_not_found, reason=Cannot_match_source_hash

d. Enter a client name. For example, jbeap-saml.

e. Click Next.

f. Enter the following information:

Root URL: The URL for your application, for example, http://localhost:8080/simple-
webapp-example/.

Home URL: The URL for your application, for example, http://localhost:8080/simple-
webapp-example/.

IMPORTANT

CHAPTER 2. SECURING APPLICATIONS DEPLOYED ON JBOSS EAP WITH SINGLE SIGN-ON

21

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#client_installation
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#client-saml-configuration
http://localhost:8080/simple-webapp-example/secured/
http://localhost:8080/simple-webapp-example/
http://localhost:8080/simple-webapp-example/

IMPORTANT

If you do not set the Home URL, SP entityID in the client configuration
remains blank and causes errors.

If using the management CLI commands, you get the following error:

Can't reset to root in the middle of the path @72

You can resolve the error by defining the value for SP entityID in the
respective configuration files.

Valid Redirect URIs: The URIs that are allowed after a user logs in, for example,
http://localhost:8080/simple-webapp-example/secured/*.

Master SAML Processing URL: The URL for your application followed by saml. For
example, http://localhost:8080/simple-webapp-example/saml.

IMPORTANT

If you do not append saml to the URL, you get a redirection error.

For more information, see Creating a SAML client .

You can now use the configured client to secure web applications deployed on JBoss EAP. For more
information, see Securing web applications using SAML.

Next steps

Securing web applications using SAML

Additional resources

Red Hat build of Keycloak Server Administration Guide

2.4.3. Securing web applications using SAML

The Keycloak SAML adapter feature pack provides two layers for non-OpenShift deployments:
keycloak-client-saml, and keycloak-client-saml-ejb. Use the keycloak-client-saml layer to secure
servlet based-web applications, and the keycloak-client-saml-ejb to secure Jakarta Enterprise Beans
applications.

There are two ways in which you can configure applications to use SAML:

By configuring the keycloak-saml subsystem.
Use this method if you do not want to add configuration to the application deployment.

By updating the deployment configuration
Use this method if you do not want to add configuration to the server and prefer to keep the
configuration within the application deployment.

Prerequisites

A SAML client has been created in Red Hat build of Keycloak.

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

22

http://localhost:8080/simple-webapp-example/secured/*
http://localhost:8080/simple-webapp-example/saml
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#client-saml-configuration
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/

1

For more information, see Creating a SAML client in Red Hat build of Keycloak .

JBoss EAP has been installed by using the jboss-eap-installation-manager.
For more information, see Installing JBoss EAP 8.0 using the jboss-eap-installation-manager
in the Red Hat JBoss Enterprise Application Platform Installation Methods guide.

Procedure

1. Add the required Keycloak SAML adapter layer to the server by using jboss-eap-installation-
manager. Following are the details of the available layers:

Feature pack: org.keycloak:keycloak-saml-adapter-galleon-pack.

Layers:

keycloak-client-saml: Use this layer to secure servlets.

keycloak-client-saml-ejb: Use this layer to propagate identities from servlets to
Jakarta Enterprise Beans.
For information about adding feature packs and layers in JBoss EAP, see Adding
Feature Packs to existing JBoss EAP Servers using the jboss-eap-installation-manager
in the Red Hat JBoss Enterprise Application Platform Installation Methods guide.

2. Configure the application’s web.xml to protect the application resources.

Only allow the users with the role Admin to access the application. To allow users with any
role to access the application, use the wildcard ** as the value for role-name.

3. Secure your applications with SAML either by using the management CLI, or by updating the
application deployment.

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 metadata-complete="false">

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>secured</web-resource-name>
 <url-pattern>/secured</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <role-name>Admin</role-name> 1
 </auth-constraint>
 </security-constraint>

 <security-role>
 <role-name>*</role-name>
 </security-role>
</web-app>

CHAPTER 2. SECURING APPLICATIONS DEPLOYED ON JBOSS EAP WITH SINGLE SIGN-ON

23

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/assembly_installing-jboss-eap-8-using-the-cli-installer-method_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/jboss_eap_installation_methods/#assembly_adding-feature-packs-in-your-jboss-eap-installation-using-the-jboss-eap-installation-manager_default

1

By updating the application deployment.

a. Add login configuration to the application’s web.xml specifying authentication method
as SAML.

Use SAML to secure the application.

b. Download the configuration keycloak-saml.xml file from Red Hat build of Keycloak and
save it in the WEB-INF/ directory of your application.
For more information, see Generating client adapter config .

Example keycloak-saml.xml

<web-app>
...
 <login-config>
 <auth-method>SAML</auth-method> 1
 </login-config>
...
</web-app>

<keycloak-saml-adapter>
 <SP entityID=""
 sslPolicy="EXTERNAL"
 logoutPage="SPECIFY YOUR LOGOUT PAGE!">
 <Keys>
 <Key signing="true">
 <PrivateKeyPem>PRIVATE KEY NOT SET UP OR
KNOWN</PrivateKeyPem>
 <CertificatePem>...</CertificatePem>
 </Key>
 </Keys>
 <IDP entityID="idp"
 signatureAlgorithm="RSA_SHA256"
 signatureCanonicalizationMethod="http://www.w3.org/2001/10/xml-exc-
c14n#">
 <SingleSignOnService signRequest="true"
 validateResponseSignature="true"
 validateAssertionSignature="false"
 requestBinding="POST"

bindingUrl="http://localhost:8180/realms/example_saml_realm/protocol/saml"/>
 <SingleLogoutService signRequest="true"
 signResponse="true"
 validateRequestSignature="true"
 validateResponseSignature="true"
 requestBinding="POST"
 responseBinding="POST"

postBindingUrl="http://localhost:8180/realms/example_saml_realm/protocol/saml"

redirectBindingUrl="http://localhost:8180/realms/example_saml_realm/protocol/saml"
/>

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

24

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#client_installation

The values of PrivateKeyPem, and CertificatePem are unique for each client.

By using the management CLI.

a. Download the client configuration file keycloak-saml-subsystem.cli from Red Hat
build of Keycloak.
For more information, see Generating client adapter config .

Example keycloak-saml-subsystem.cli

/subsystem=keycloak-saml/secure-deployment=YOUR-WAR.war/:add

/subsystem=keycloak-saml/secure-deployment=YOUR-
WAR.war/SP="http://localhost:8080/simple-webapp-
example/"/:add(sslPolicy=EXTERNAL,logoutPage="SPECIFY YOUR LOGOUT
PAGE!"

/subsystem=keycloak-saml/secure-deployment=YOUR-
WAR.war/SP="http://localhost:8080/simple-webapp-
example/"/Key=KEY1:add(signing=true, \
PrivateKeyPem="...", CertificatePem="...")

/subsystem=keycloak-saml/secure-deployment=YOUR-
WAR.war/SP="http://localhost:8080/simple-webapp-example/"/IDP=idp/:add(\
 SingleSignOnService={ \
 signRequest=true, \
 validateResponseSignature=true, \
 validateAssertionSignature=false, \
 requestBinding=POST, \
 bindingUrl=http://localhost:8180/realms/example-saml-realm/protocol/saml}, \
 SingleLogoutService={ \
 signRequest=true, \
 signResponse=true, \
 validateRequestSignature=true, \
 validateResponseSignature=true, \
 requestBinding=POST, \
 responseBinding=POST, \
 postBindingUrl=http://localhost:8180/realms/example-saml-realm/protocol/saml,
\
 redirectBindingUrl=http://localhost:8180/realms/example-saml-
realm/protocol/saml} \
)

/subsystem=keycloak-saml/secure-deployment=YOUR-
WAR.war/SP="http://localhost:8080/simple-webapp-example/"/IDP=idp/:write-
attribute(name=signatureAlgorithm,value=RSA_SHA256)

/subsystem=keycloak-saml/secure-deployment=YOUR-
WAR.war/SP="http://localhost:8080/simple-webapp-example/"/IDP=idp/:write-
attribute(name=signatureCanonicalizationMethod,value=http://www.w3.org/2001/10/xm
l-exc-c14n#)

 </IDP>
 </SP>
</keycloak-saml-adapter>

CHAPTER 2. SECURING APPLICATIONS DEPLOYED ON JBOSS EAP WITH SINGLE SIGN-ON

25

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#client_installation

The values of PrivateKeyPem, and CertificatePem are unique for each client.

b. Update every occurrence of YOUR-WAR.war in the client configuration file with the
name of your application WAR, for example simple-webapp-example.war.

NOTE

The generated CLI script has a missing) at the end of the second
statement:

/subsystem=keycloak-saml/secure-deployment=YOUR-
WAR.war/SP=""/:add(sslPolicy=EXTERNAL,logoutPage="SPECIFY
YOUR LOGOUT PAGE!"

You must add the missing)

c. Configure JBoss EAP by running keycloak-saml-subsystem.cli script using the
management CLI.

$ <EAP_HOME>/bin/jboss-cli.sh -c --file=<path_to_the_file>/keycloak-saml-
subsystem.cli

4. Deploy the application.

$ mvn wildfly:deploy

Verification

1. In a browser, navigate to the application URL. For example, http://localhost:8080/simple-
webapp-example/secured.
You are redirected to the Red Hat build of Keycloak login page.

2. You can log in with your credentials for the user you defined in Red Hat build of Keycloak.

Your application is now secured using SAML.

Additional resources

Keycloak SAML adapter feature pack for securing applications using SAML

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

26

http://localhost:8080/simple-webapp-example/secured

CHAPTER 3. PROPAGATING AN IDENTITY FROM A SERVLET
TO A JAKARTA ENTERPRISE BEAN WHEN USING OIDC

You can propagate the security identity obtained from an OpenID Connect (OIDC) provider from a
Servlet to Jakarta Enterprise Beans in two ways:

Using the same virtual security domain to secure both Servlet and Jakarta Enterprise Beans.

Propagating the identity from a virtual security domain associated with a Servlet to the security
domain securing Jakarta Enterprise Beans.

3.1. IDENTITY PROPAGATION TO JAKARTA ENTERPRISE BEANS
WHEN USING OIDC

When you secure an application with OpenID Connect (OIDC), the elytron-oidc-client subsystem
automatically creates a virtual security domain for you. You can propagate the security identity in the
virtual security domain, obtained from the OIDC provider, to Jakarta Enterprise Beans that your
application invokes.

The following table illustrates the required configurations depending on the security domain you use and
how the applications are deployed.

Security domain to use to secure
Jakarta Enterprise Beans

Servlet and Jakarta Enterprise
Beans are in the same WAR or
EAR

Servlet and Jakarta Enterprise
Beans are in different WAR or
EAR

Virtual security domain No configuration is required.

The virtual security domain
automatically outflows the
security identity to the Jakarta
Enterprise Beans provided that
no security domain configuration
has been explicitly specified for
the Jakarta Enterprise Beans.

Configure as follows:

Create a virtual-
security-domain
resource.

Add a
@SecurityDomain
annotation to your
Jakarta Enterprise
Beans that references
the name of a virtual-
security-domain
resource.
For more information,
see Securing Jakarta
Enterprise Beans
applications using virtual
security domain.

CHAPTER 3. PROPAGATING AN IDENTITY FROM A SERVLET TO A JAKARTA ENTERPRISE BEAN WHEN USING OIDC

27

A different security domain To outflow a security identity from a virtual security domain to another
security domain, you must configure the following resources:

virtual-security-domain: Specify that security identities
established by a virtual security domain should automatically
be outflowed to other security domains.

security-domain: Indicate that it should trust security
identities established by the virtual security domain you
configured.

For more information, see Propagating identity from virtual security
domain to a security domain.

Security domain to use to secure
Jakarta Enterprise Beans

Servlet and Jakarta Enterprise
Beans are in the same WAR or
EAR

Servlet and Jakarta Enterprise
Beans are in different WAR or
EAR

3.2. SECURING JAKARTA ENTERPRISE BEANS APPLICATIONS USING
VIRTUAL SECURITY DOMAIN

You can use the virtual security domain created by the elytron-oidc-client subsystem to secure Jakarta
Enterprise Beans both when the Jakarta Enterprise Beans is located in the same deployment as the
Servlet that invokes it, and when they are located in different deployments.

If the Jakarta Enterprise Beans is located in the same deployment as the Servlet invoking it, no
configuration is required to outflow a security identity from the Servlet to the Jakarta Enterprise Beans.

Follow the steps in this procedure to outflow a security identity from a Servlet to Jakarta Enterprise
Beans that are located in different deployments.

Prerequisites

You have secured the application from which you invoke the Jakarta Enterprise Beans using an
OpenID Connect (OIDC) provider.

You have created the Jakarta Enterprise Beans to secure.

Procedure

1. Create a virtual-security-domain resource referencing the WAR that contains the Servlet
secured with OIDC or the EAR that contains a subdeployment that is secured with OIDC.

Syntax

/subsystem=elytron/virtual-security-domain=<deployment_name>:add()

Example

/subsystem=elytron/virtual-security-domain=simple-ear-example.ear:add()

2. Add org.jboss.ejb3.annotation.SecurityDomain annotation in the Jakarta Enterprise Beans
application referencing the virtual security domain resource to use to secure the application.

Syntax

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

28

Syntax

Example

If you invoke this Jakarta Enterprise Beans from a Servlet secured with OIDC, the principal
returned by whoAmI () will match the principal the Servlet obtained from the OIDC provider.

3. Deploy the Jakarta Enterprise Beans.

Example

$ mvn wildfly:deploy

Additional resources

virtual-security-domain attributes

3.3. PROPAGATING IDENTITY FROM VIRTUAL SECURITY DOMAIN TO
A SECURITY DOMAIN

You can propagate the security identity from a virtual security domain, obtained from an OpenID
Connect (OIDC) provider to a different security domain. You might want to do this if you want the
security identity’s roles to be determined by the security domain you propagate the identity to and not
the virtual security domain.

The steps in the following procedure apply both when the Servlet invoking a Jakarta Enterprise Beans
and the Jakarta Enterprise Beans are in the same deployment and when they are in separate
deployments.

Prerequisites

You have secured the application from which you invoke the Jakarta Enterprise Beans using an
OIDC provider.

You have created the Jakarta Enterprise Beans to secure.

@SecurityDomain("<deployment_name>")

...
@SecurityDomain("simple-ear-example.ear")
@Remote(RemoteHello.class)
@Stateless
public class RemoteHelloBean implements RemoteHello {

 @Resource
 private SessionContext context;

 @Override
 public String whoAmI() {
 return context.getCallerPrincipal().getName();
 }

}

CHAPTER 3. PROPAGATING AN IDENTITY FROM A SERVLET TO A JAKARTA ENTERPRISE BEAN WHEN USING OIDC

29

You secured the Jakarta Enterprise Beans with a security domain.

Procedure

1. Create a virtual-security-domain resource referencing the WAR that contains the Servlet
secured with OIDC or the EAR that contains a subdeployment that is secured with OIDC.

Syntax

/subsystem=elytron/virtual-security-domain=<deployment_name>:add(outflow-security-
domains=[<domain_to_propagate_to>])

Example

/subsystem=elytron/virtual-security-domain=simple-ear-example.ear:add(outflow-security-
domains=[exampleEJBSecurityDomain])

2. Update the security domain configuration for the Jakarta Enterprise Beans to trust the virtual-
security-domain.

Syntax

/subsystem=elytron/security-domain=<security_domain_name>:write-attribute(name=trusted-
virtual-security-domains,value=[<deployment_name>])

Example

/subsystem=elytron/security-domain=exampleEJBSecurityDomain:write-
attribute(name=trusted-virtual-security-domains,value=[simple-ear-example.ear])

3. Reload the server.

reload

4. Deploy the Jakarta Enterprise Beans.

Example

$ mvn wildfly:deploy

Additional resources

security-domain attributes

virtual-security-domain attributes

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

30

CHAPTER 4. SECURING THE JBOSS EAP MANAGEMENT
CONSOLE WITH AN OPENID PROVIDER

You can secure the JBoss EAP management console with an external identity provider, such as Red Hat
build of Keycloak, using OIDC. By using an external identity provider, you can delegate authentication to
the identity provider.

To secure the JBoss EAP management console using OIDC, follow these procedures:

Configuring Red Hat build of Keycloak to secure JBoss EAP management console

Securing the JBoss EAP management console using OpenID Connect

4.1. JBOSS EAP MANAGEMENT CONSOLE SECURITY WITH OIDC

You can secure the JBoss EAP management console with OpenID Connect (OIDC) by configuring an
OIDC provider, such as Red Hat build of Keycloak, and the elytron-oidc-client subsystem.

IMPORTANT

Securing the management console of JBoss EAP running as a managed domain with
OIDC is not supported.

JBoss EAP management console security with OIDC works as follows:

When you configure a secure-server resource in the elytron-oidc-client subsystem, the JBoss
EAP management console redirects to the OIDC provider login page for login.

JBoss EAP then uses the secure-deployment resource configuration to secure the
management interface with bearer token authentication.

NOTE

OIDC relies on accessing a web application in a browser. Therefore, the JBoss EAP
management CLI can’t be secured with OIDC.

RBAC support

You can configure and assign roles in the OIDC provider to implement role-based access control
(RBAC) to the JBoss EAP management console. JBoss EAP includes or excludes the users roles for
RBAC as defined in the JBoss EAP RBAC configuration. For more information about RBAC, see Role-
Based Access Control in the JBoss EAP 7.4 Security Architecture guide.

Additional resources

Configuring Red Hat build of Keycloak to secure JBoss EAP management console

Securing the JBoss EAP management console using OpenID Connect

4.2. CONFIGURING RED HAT BUILD OF KEYCLOAK TO SECURE
JBOSS EAP MANAGEMENT CONSOLE

Configure the required users, roles, and clients in the OpenID Connect (OIDC) provider to secure the

CHAPTER 4. SECURING THE JBOSS EAP MANAGEMENT CONSOLE WITH AN OPENID PROVIDER

31

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/security_architecture/index#rbac

Configure the required users, roles, and clients in the OpenID Connect (OIDC) provider to secure the
JBoss EAP management console.

Two clients are required to secure the management console with OIDC. The clients must be configured
as follows:

A client configured for standard flow.

A client configured as bearer-only client.

The following procedure outlines the minimum steps required to get started with securing the JBoss
EAP management console using OIDC for testing purposes. For detailed configurations, see the Red
Hat build of Keycloak documentation.

Prerequisites

You have administrator access to Red Hat build of Keycloak.

Red Hat build of Keycloak is running.

Procedure

1. Create a realm in Red Hat build of Keycloak using the Red Hat build of Keycloak admin console;
for example, example_jboss_infra. You will use this realm to create the required users, roles,
and clients.
For more information, see Creating a realm.

2. Create a user. For example, user1.
For more information, see Creating users.

3. Create a password for the user. For example, passwordUser1.
For more information, see Setting a password for a user .

4. Create a role. For example, Administrator.
To enable role-based access control (RBAC) in JBoss EAP, the name should be one of the
standard RBAC roles like Administrator. For more information about RBAC in JBoss EAP, see
Role-Based Access Control in the JBoss EAP 7.4 Security Architecture guide.

For more information about creating roles in Red Hat build of Keycloak, see Creating a realm
role.

5. Assign roles to users.
For more information, see Assigning role mappings .

6. Create an OpenID Connect client, for example, jboss-console.

Ensure that the following capability configuration values are checked:

Standard flow

Direct access grants

Set the following attributes at the minimum on the Login settings page:

Set Valid Redirect URIs to the management console URI. For example,
http://localhost:9990.

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

32

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-creating-a-realm_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-creating-user_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-setting-password-user_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/security_architecture/index#rbac
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-creating-realm-roles_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-assigning-role-mappings_server_administration_guide
http://localhost:9990

Set Web Origins to the management console URI. For example, http://localhost:9990.

7. Create another OpenID Connect client, for example, jboss-management, as a bearer-only
client.

In capability configuration, uncheck the following options:

Standard flow

Direct access grants

You do not need to specify any fields on the Login settings page.

You can now secure the JBoss EAP management console by using the clients you defined. For more
information, see Securing the JBoss EAP management console using OpenID Connect .

Additional resources

JBoss EAP management console security with OIDC

4.3. SECURING THE JBOSS EAP MANAGEMENT CONSOLE USING
OPENID CONNECT

When you secure the JBoss EAP management console using OpenID Connect (OIDC), JBoss EAP
redirects to the OIDC provider for users to log in to the management console.

Prerequisites

You have configured the required clients in the OIDC provider.
For more information, see Configuring Red Hat build of Keycloak to secure JBoss EAP
management console.

Procedure

1. Configure the OIDC provider in the elytron-oidc-client subsystem.

Syntax

/subsystem=elytron-oidc-client/provider=keycloak:add(provider-url=<OIDC_provider_URL>)

Example

/subsystem=elytron-oidc-client/provider=keycloak:add(provider-
url=http://localhost:8180/realms/example_jboss_infra)

2. Create a secure-deployment resource called wildfly-management to protect the
management interface.

Syntax

/subsystem=elytron-oidc-client/secure-deployment=wildfly-
management:add(provider=<OIDC_provider_name>,client-
id=<OIDC_client_name>,principal-attribute=<attribute_to_use_as_principal>,bearer-
only=true,ssl-required=<internal_or_external>)

CHAPTER 4. SECURING THE JBOSS EAP MANAGEMENT CONSOLE WITH AN OPENID PROVIDER

33

http://localhost:9990

Example

/subsystem=elytron-oidc-client/secure-deployment=wildfly-
management:add(provider=keycloak,client-id=jboss-management,principal-
attribute=preferred_username,bearer-only=true,ssl-required=EXTERNAL)

3. OPTIONAL: You can enable role-based access control (RBAC) using the following commands.

/core-service=management/access=authorization:write-attribute(name=provider,value=rbac)
/core-service=management/access=authorization:write-attribute(name=use-identity-
roles,value=true)

4. Create a secure-server resource called wildfly-console that references the jboss-console
client.

Syntax

/subsystem=elytron-oidc-client/secure-server=wildfly-
console:add(provider=<OIDC_provider_name>,client-id=<OIDC_client_name>,public-
client=true)

Example

/subsystem=elytron-oidc-client/secure-server=wildfly-console:add(provider=keycloak,client-
id=jboss-console,public-client=true)

IMPORTANT

The JBoss EAP management console requires that the secure-server resource
be specifically named wildfly-console.

Verification

1. Access the management console. By default, the management console is available at
http://localhost:9990.
You are redirected to the OIDC provider.

2. Log in with the credentials of the user you created in the OIDC provider.

The JBoss EAP management console is now secured with OIDC.

Additional resources

JBoss EAP management console security with OIDC

elytron-oidc-client subsystem attributes

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

34

http://localhost:9990

CHAPTER 5. REFERENCE

5.1. ELYTRON-OIDC-CLIENT SUBSYSTEM ATTRIBUTES

The elytron-oidc-client subsystem provides attributes to configure its behavior.

Table 5.1. elytron-oidc-client subsystem attributes

Attribute Description

provider Configuration for an OpenID Connect provider.

secure-deployment A deployment secured by an OpenID Connect
provider.

realm Configuration for a Red Hat build of Keycloak realm.
This is provided for convenience. You can copy the
configuration in the keycloak client adapter and use it
here. Using the provider is recommended instead.

Use the three elytron-oidc-client attributes for the following purposes:

provider: For configuring the OpenID Connect provider. For more information, see provider
attributes.

secure-deployment: For configuring the deployment secured by an OpenID Connect. For more
information, see secure-deployment attributes

realm: For configuring Red Hat build of Keycloak. For more information, see realm attributes.
The use of realm is not recommended. It is provided for convenience. You can copy the
configuration in the keycloak client adapter and use it here. Using the provider attribute is
recommended instead.

Table 5.2. provider attributes

Attribute Default
value

Description

allow-any-hostname false If you set the value to true, hostname verification is skipped when
communicating with the OpenID provider. This is useful when
testing. Do not set this to true in a production environment.

always-refresh-token If set to true, the subsystem refreshes the token every time your
application receives a web request, and sends a new request to the
OpenID provider to obtain a new access token.

CHAPTER 5. REFERENCE

35

auth-server-url The base URL of the Red Hat build of Keycloak realm authorization
server. If you use this attribute, you must also define the realm
attribute.

You can alternatively use the provider-url attribute to provide
both base URL and the realm in a single attribute.

autodetect-bearer-only false Set whether to automatically detect bearer-only requests.

When a bearer-only request is received and autodetect-bearer-
only is set to true, the application cannot participate in browser
logins.

Use this attribute to automatically detect Simple Object Access
Protocol (SOAP) or REST clients based on headers like X-
Requested-With, SOAPAction or Accept.

client-id The client-id of JBoss EAP registered with the OpenID provider.

client-key-password If you specify client-keystore, specify it’s password in this
attribute.

client-keystore If your application communicates with the OpenID provider over
HTTPS, set the path to the client keystore in this attribute.

client-keystore-
password

 If you specify the client keystore, provide the password for
accessing it in this attribute.

confidential-port 8443 Specify the confidential port (SSL/TLS) used by the OpenID
provider.

connection-pool-size Specify the connection pool size to be used when communicating
with the OpenID provider.

connection-timeout-
millis

-1L Specify the timeout for establishing a connection with the remote
host in milliseconds. The minimum is -1L, and the maximum
2147483647L.-1L indicates that the value is undefined, which is
the default.

connection-ttl-millis -1L Specify the amount of time in milliseconds for the connection to
be kept alive. The minimum is -1L, and the maximum
2147483647L. -1L indicates that the value is undefined, which is
the default.

cors-allowed-headers If Cross-Origin Resource Sharing (CORS) is enabled, this sets the
value of the Access-Control-Allow-Headers header. This
should be a comma-separated string. This is optional. If not set,
this header is not returned in CORS responses.

Attribute Default
value

Description

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

36

cors-allowed-methods If Cross-Origin Resource Sharing (CORS) is enabled, this sets the
value of the Access-Control-Allow-Methods header. This should
be a comma-separated string. This is optional. If not set, this
header is not returned in CORS responses.

cors-exposed-headers If CORS is enabled, this sets the value of the Access-Control-
Expose-Headers header. This should be a comma-separated
string. This is optinal. If not set, this header is not returned in CORS
responses.

cors-max-age Set the value for Cross-Origin Resource Sharing (CORS) Max-Age
header. The value can be between -1L and 2147483647L. This
attribute only takes effect if enable-cors is set to true.

disable-trust-manager Specify whether or not to make use of a trust manager when
communicating with the OpenID provider over HTTPS.

enable-cors false Enable Red Hat build of Keycloak Cross-Origin Resource Sharing
(CORS) support.

expose-token false If set to true, an authenticated browser client can obtain the
signed access token, through a Javascript HTTP invocation, via the
URL root/k_query_bearer_token. This is optional. This is
specific to Red Hat build of Keycloak.

ignore-oauth-query-
parameter

false Disable query parameter parsing for access_token.

principal-attribute Specify which claim value from the ID token to use as the principal
for the identity

provider-url Specify the OpenID provider URL.

proxy-url Specify the URL for the HTTP proxy if you use one.

realm-public-key Specify the public key of the realm.

register-node-at-
startup

false If set to true, a registration request is sent to Red Hat build of
Keycloak. This attribute is useful only when your application is
clustered.

register-node-period Specify how often to re-register the node.

socket-timeout-millis Specify the timeout for socket waiting for data in milliseconds.

Attribute Default
value

Description

CHAPTER 5. REFERENCE

37

ssl-required external Specify whether communication with the OpenID provider should
be over HTTPS. The value can be one of the following:

all - all communication happens over HTTPS.

external - Only the communication with external clients
happens over HTTPs.

none - HTTPs is not used.

token-signature-
algorithm

RS256 Specify the token signature algorithm used by the OpenID
provider. The supported algorithms are:

RS256

RS384

RS512

ES256

ES384

ES512

token-store Specify cookie or session storage for auth-session data.

truststore Specify the truststore used for client HTTPS requests.

truststore-password Specify the truststore password.

verify-token-audience false If set to true, then during bearer-only authentication,verify if
token contains this client name (resource) as an audience.

Attribute Default
value

Description

Table 5.3. secure-deployment attributes

Attribute Default value Description

allow-any-hostname false If you set the value to true,
hostname verification is skipped
when communicating with the
OpenID provider. This is useful
when testing. Do not set this to
ture in a production environment.

always-refresh-token If set to true, JBoss EAP
refreshes tokens on every web
request.

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

38

auth-server-url The base URL of the Red Hat
build of Keycloak realm
authorization server You can
alternatively use the provider-
url attribute.

autodetect-bearer-only false Set whether to automatically
detect bearer-only requests.
When a bearer-only request is
received and autodetect-
bearer-only is set to true, the
application cannot participate in
browser logins.

bearer-only false Set this to true to secure the
application with Bearer Token
authentication. When Bearer
Token authentication is enabled,
users are not redirected to the
OpenID provider to log in; instead,
the elytron-oidc-client
subsystem attempts to verify the
user’s bearer token.

client-id The unique identifier for a client
registered in the OpenID provider.

client-key-password If you specify client-keystore,
specify its password in this
attribute.

client-keystore If your application communicates
with the OpenID provider over
HTTPS, set the path to the client
keystore in this attribute.

client-keystore-password If you specify the client
keystore, provide the password
for accessing it in this attribute.

confidential-port 8443 Specify the confidential port
(SSL/TLS) used by OpenID
provider.

connection-pool-size Specify the connection pool size
to be used when communicating
with the OpenID provider.

Attribute Default value Description

CHAPTER 5. REFERENCE

39

connection-timeout-millis -1L Specify the timeout for
establishing a connection with the
remote host in milliseconds. The
minimum is -1L, and the maximum
2147483647L. -1L indicates that
the value is undefined, which is
the default.

connection-ttl-millis -1L Specify the amount of time in
milliseconds for the connection to
be kept alive. The minimum is -1L,
and the maximum 2147483647L.
-1L indicates that the value is
undefined, which is the default.

cors-allowed-headers If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Allow-Headers header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

cors-allowed-methods If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Allow-Methods header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

cors-exposed-headers If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Expose-Headers header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

cors-max-age Set the value for Cross-Origin
Resource Sharing (CORS) Max-
Age header. The value can be
between -1L and 2147483647L.
This attribute only takes effect if
enable-cors is set to true.

Attribute Default value Description

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

40

credential Specify the credential to use to
communicate with the OpenID
provider.

disable-trust-manager Specify whether or not to make
use of a trust manager when
communicating with the OpenID
provider over HTTPS.

enable-cors false Enable Red Hat build of Keycloak
Cross-Origin Resource Sharing
(CORS) support.

enable-basic-auth false Enable Basic Authentication to
specify the credentials to be used
to obtain a bearer token.

expose-token false If set to true, an authenticated
browser client can obtain the
signed access token, through a
Javascript HTTP invocation, via
the URL
root/k_query_bearer_token.
This is optional.This is specific to
Red Hat build of Keycloak.

ignore-oauth-query-parameter false Disable query parameter parsing
for access_token.

min-time-between-jwks-requests If the subsystem detects a token
signed by an unknown public key,
JBoss EAP tries to download new
public key from the elytron-
oidc-client server. The attribute
specifies the interval, in seconds,
that JBoss EAP waits before
subsequent download
attempts.The value can be
between -1L and 2147483647L.

principal-attribute

 Specify which claim value from
the ID token to use as the
principal for the identity

provider

 Specify the OpenID provider. provider-url

 Specify the OpenID provider URL. proxy-url

Attribute Default value Description

CHAPTER 5. REFERENCE

41

 Specify the URL for the HTTP
proxy if you use one.

public-client

false If set to true, no client credentials
are sent when communicating
with the OpenID provider. This is
optional.

realm

 The realm with which to connect
in Red Hat build of Keycloak.

realm-public-key

 Specify the public key of the
OpenID provider in PEM format.

redirect-rewrite-rule

 Specify the rewrite rule to apply
to the redirect URI.

register-node-at-startup

false If set to true, a registration
request is sent to Red Hat build of
Keycloak. This attribute is useful
only when your application is
clustered.

register-node-period

 Specify how often to re-register
the node in seconds.

resource

 Specify the name of the
application you are securing with
OIDC. Alternatively, you can
specify the client-id.

socket-timeout-millis

 Specify the timeout for socket
waiting for data in milliseconds.

ssl-required

Attribute Default value Description

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

42

external Specify whether communication
with the OpenID provider should
be over HTTPS. The value can be
one of the following:

all - all communication
happens over HTTPS.

external - Only the
communication with
external clients happens
over HTTPs.

none - HTTPs is not
used.

token-minimum-time-to-live

 The adapter refreshes the token if
the current token is expired or is
to expire within the amount of
time you set in seconds.

token-signature-algorithm

RS256 Specify the token signature
algorithm used by the OpenID
provider. The supported
algorithms are:

RS256

RS384

RS512

ES256

ES384

ES512

token-store

 Specify cookie or session storage
for auth-session data.

truststore

 Specify the truststore used for
adapter client HTTPS requests.

truststore-password

 Specify the truststore password. turn-off-change-session-id-on-
login

false The session id is changed by
default on a successful login. Set
the value to true to turn this off.

use-resource-role-mappings

Attribute Default value Description

CHAPTER 5. REFERENCE

43

false Use resource-level permissions
obtained from token.

verify-token-audience

Attribute Default value Description

Table 5.4. secure-server attributes

Attribute Default value Description

adapter-state-cookie-path If set, this defines the path used in
cookies set by the subsystem. If
not set,"" is used as the path.

allow-any-hostname false If you set the value to true,
hostname verification is skipped
when communicating with the
OpenID provider. This is useful
when testing. Do not set this to
true in a production environment.

always-refresh-token If set to true, the subsystem
refreshes the token every time
your application receives a web
request, and sends a new request
to the OpenID provider to obtain
a new access token.

auth-server-url-for-backend-
requests

 Specifies the URL to use only for
backend requests to invoke
OpenID provider directly without
having to go through a load
balancer or a reverse proxy.

auth-server-url The base URL of the Red Hat
build of Keycloak realm
authorization server You can
alternatively use the provider-
url attribute.

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

44

autodetect-bearer-only false Set whether to automatically
detect bearer-only requests.

When a bearer-only request is
received and autodetect-
bearer-only is set to true, the
application cannot participate in
browser logins.

Use this attribute to automatically
detect Simple Object Access
Protocol (SOAP) or REST clients
based on headers like X-
Requested-With,
SOAPAction or Accept.

bearer-only false Set this to true to secure the
application with Bearer Token
authentication.

When Bearer Token
authentication is enabled, users
are not redirected to the OpenID
provider to log in; instead, the
elytron-oidc-client subsystem
attempts to verify the user’s
bearer token.

client-id The unique identifier for a client
registered in the OpenID provider.

client-key-password If you specify client-keystore,
specify its password in this
attribute.

client-keystore-password If you specify the client
keystore, provide the password
for accessing it in this attribute.

client-keystore When communicating with the
OpenID provider over HTTPS, set
the path to the client keystore in
this attribute.

confidential-port 8443 Specify the confidential port
(SSL/TLS) used by OpenID
provider.

Attribute Default value Description

CHAPTER 5. REFERENCE

45

connection-pool-size Specify the connection pool size
to be used when communicating
with the OpenID provider.

connection-timeout-millis -1L Specify the timeout for
establishing a connection with the
remote host in milliseconds. The
minimum is -1L, and the maximum
2147483647L. -1L indicates that
the value is undefined, which is
the default.

connection-ttl-millis -1L Specify the amount of time in
milliseconds for the connection to
be kept alive. The minimum is -1L,
and the maximum 2147483647L.
-1L indicates that the value is
undefined, which is the default.

cors-allowed-headers If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Allow-Headers header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

cors-allowed-methods If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Allow-Methods header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

cors-exposed-headers If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Expose-Headers header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

Attribute Default value Description

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

46

cors-max-age Set the value for Cross-Origin
Resource Sharing (CORS) Max-
Age header. The value can be
between -1L and 2147483647L.
This attribute only takes effect if
enable-cors is set to true.

credential Specify the credential to use to
communicate with the OpenID
provider.

disable-trust-manager Specify whether or not to make
use of a trust manager when
communicating with the OpenID
provider over HTTPS.

enable-basic-auth false Enable Basic Authentication to
specify the credentials to be used
to obtain a bearer token.

enable-cors false Enable Red Hat build of Keycloak
Cross-Origin Resource Sharing
(CORS) support.

expose-token false If set to true, an authenticated
browser client can obtain the
signed access token, through a
Javascript HTTP invocation, via
the URL
root/k_query_bearer_token.
This is optional.This is specific to
Red Hat build of Keycloak.

ignore-oauth-query-parameter false Disable query parameter parsing
for access_token.

min-time-between-jwks-requests If the subsystem detects a token
signed by an unknown public key,
JBoss EAP tries to download new
public key from the elytron-
oidc-client server. However,
JBoss EAP deosn’t try to
download new public key if it has
already tried it in less than the
value, in seconds, that you set for
this attribute. The value can be
between -1L and 2147483647L.

Attribute Default value Description

CHAPTER 5. REFERENCE

47

principal-attribute Specify which claim value from
the ID token to use as the
principal for the identity

principal-attribute Specify which claim value from
the ID token to use as the
principal for the identity.

provider Specify the OpenID provider.

provider-url Specify the OpenID provider URL.

proxy-url Specify the URL for the HTTP
proxy if you use one.

public-client false If set to true, no client credentials
are sent when communicating
with the OpenID provider. This is
optional.

public-key-cache-ttl The maximum interval between
two requests to retrieve new
public keys in seconds.

realm-public-key Specify the public key of the
OpenID provider in PEM format.

realm The realm with which to connect
in Red Hat build of Keycloak.

redirect-rewrite-rule Specify the rewrite rule to apply
to the redirect URI.

register-node-at-startup false If set to true, a registration
request is sent to Red Hat build of
Keycloak. This attribute is useful
only when your application is
clustered.

register-node-period Specify how often to re-register
the node in seconds.

resource Specify the name of the
application you are securing with
OIDC. Alternatively, you can
specify the client-id.

Attribute Default value Description

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

48

socket-timeout-millis Specify the timeout for socket
waiting for data in milliseconds.

ssl-required external Specify whether communication
with the OpenID provider should
be over HTTPS. The value can be
one of the following:

all - all communication
happens over HTTPS.

external - Only the
communication with
external clients happens
over HTTPs.

none - HTTPs is not
used.

token-minimum-time-to-live The adapter refreshes the token if
the current token is expired or is
to expire within the amount of
time you set in seconds.

token-signature-algorithm RS256 Specify the token signature
algorithm used by the OpenID
provider. The supported
algorithms are:

RS256

RS384

RS512

ES256

ES384

ES512

token-store Specify cookie or session storage
for auth-session data.

truststore-password Specify the truststore password.

truststore Specify the truststore used for
adapter client HTTPS requests.

turn-off-change-session-id-on-
login

false The session id is changed by
default on a successful login. Set
the value to true to turn this off.

Attribute Default value Description

CHAPTER 5. REFERENCE

49

use-resource-role-mappings false Use resource-level permissions
obtained from token.

verify-token-audience false If set to true, then during bearer-
only authentication, the adapter
verifies if token contains this
client name (resource) as an
audience.

Attribute Default value Description

Table 5.5. realm attributes

Attribute Default value Description

allow-any-hostname false If you set the value to true,
hostname verification is skipped
when communicating with the
OpenID provider. This is useful
when testing. Do not set this to
ture in a production environment.

always-refresh-token If set to true, the subsystem
refreshes the token every time
your application receives a web
request, and sends a new request
to the OpenID provider to obtain
a new access token.

auth-server-url The base URL of the Red Hat
build of Keycloak realm
authorization server You can
alternatively use the provider-
url attribute.

autodetect-bearer-only false Set whether to automatically
detect bearer-only requests.
When a bearer-only request is
received and autodetect-
bearer-only is set to true, the
application cannot participate in
browser logins.

client-key-password If you specify client-keystore,
specify it’s password in this
attribute.

client-keystore If your application communicates
with the OpenID provider over
HTTPS, set the path to the client
keystore in this attribute.

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

50

client-keystore-password If you specify the client
keystore, provide the password
for accessing it in this attribute.

confidential-port 8443 Specify the confidential port
(SSL/TLS) used by Red Hat build
of Keycloak.

connection-pool-size Specify the connection pool size
to be used when communicating
with Red Hat build of Keycloak.

connection-timeout-millis -1L Specify the timeout for
establishing a connection with the
remote host in milliseconds. The
minimum is -1L, and the maximum
2147483647L. -1L indicates that
the value is undefined, which is
the default.

connection-ttl-millis -1L Specify the amount of time in
milliseconds for the connection to
be kept alive. The minimum is -1L,
and the maximum 2147483647L.
-1L indicates that the value is
undefined, which is the default.

cors-allowed-headers If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Allow-Headers header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

cors-allowed-methods If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Allow-Methods header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

Attribute Default value Description

CHAPTER 5. REFERENCE

51

cors-exposed-headers If Cross-Origin Resource Sharing
(CORS) is enabled, this sets the
value of the Access-Control-
Expose-Headers header. This
should be a comma-separated
string. This is optional. If not set,
this header is not returned in
CORS responses.

cors-max-age Set the value for Cross-Origin
Resource Sharing (CORS) Max-
Age header. The value can be
between -1L and 2147483647L.
This attribute only takes effect if
enable-cors is set to true.

disable-trust-manager Specify whether or not to make
use of a trust manager when
communicating with the OpenID
provider over HTTPS._

enable-cors false Enable Red Hat build of Keycloak
Cross-Origin Resource Sharing
(CORS) support.

expose-token false If set to true, an authenticated
browser client can obtain the
signed access token, through a
Javascript HTTP invocation, via
the URL
root/k_query_bearer_token.
This is optional.

ignore-oauth-query-parameter false Disable query parameter parsing
for access_token.

principal-attribute Specify which claim value from
the ID token to use as the
principal for the identity

provider-url Specify the OpenID provider URL.

proxy-url Specify the URL for the HTTP
proxy if you use one.

realm-public-key Specify the public key of the
realm.

Attribute Default value Description

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

52

register-node-at-startup false If set to true, a registration
request is sent to Red Hat build of
Keycloak. This attribute is useful
only when your application is
clustered.

register-node-period Specify how often to re-register
the node.

socket-timeout-millis Specify the timeout for socket
waiting for data in milliseconds.

ssl-required external Specify whether communication
with the OpenID provider should
be over HTTPS. The value can be
one of the following:

all - all communication
happens over HTTPS.

external - Only the
communication with
external clients happens
over HTTPs.

none - HTTPs is not
used.

token-signature-algorithm RS256 Specify the token signature
algorithm used by the OpenID
provider. The supported
algorithms are:

RS256

RS384

RS512

ES256

ES384

ES512

token-store Specify cookie or session storage
for auth-session data.

truststore Specify the truststore used for
client HTTPS requests.

Attribute Default value Description

CHAPTER 5. REFERENCE

53

truststore-password Specify the truststore password.

verify-token-audience false If set to true, then during bearer-
only authentication, the adapter
verifies if token contains this
client name (resource) as an
audience.

Attribute Default value Description

Additional resources

Application security with OpenID Connect in JBoss EAP

Securing a web application using OpenID Connect

5.2. SECURITY-DOMAIN ATTRIBUTES

You can configure security-domain by setting its attributes.

Attribute Description

default-realm The default realm contained by this security domain.

evidence-decoder A reference to an EvidenceDecoder to be used by this domain.

outflow-anonymous This attribute specifies whether the anonymous identity should
be used if outflow to a security domain is not possible, which
happens in the following scenarios:

The domain to outflow to does not trust this domain.

The identity being outflowed to a domain does not exist
in that domain

Outflowing anonymous identity clears any previously established
identity for that domain.

outflow-security-domains The list of security domains that the security identity from this
domain should automatically outflow to.

permission-mapper A reference to a PermissionMapper to be used by this domain.

post-realm-principal-transformer A reference to a principal transformer to be applied after the
realm has operated on the supplied identity name.

pre-realm-principal-transformer A reference to a principal transformer to be applied before the
realm is selected.

principal-decoder A reference to a PrincipalDecoder to be used by this domain.

Red Hat JBoss Enterprise Application Platform 8.0 Using single sign-on with JBoss EAP

54

realm-mapper Reference to the RealmMapper to be used by this domain.

realms The list of realms contained by this security domain.

role-decoder Reference to the RoleDecoder to be used by this domain.

role-mapper Reference to the RoleMapper to be used by this domain.

security-event-listener Reference to a listener for security events.

trusted-security-domains The list of security domains that are trusted by this security
domain.

trusted-virtual-security-domains The list of virtual security domains that are trusted by this
security domain.

Attribute Description

5.3. VIRTUAL-SECURITY-DOMAIN ATTRIBUTES

You can configure virtual-security-domain by setting its attributes.

Table 5.6. virtual-security-domain attributes

Attribute Description

outflow-anonymous Set this attribute to true to outflow anonymous identity if
outflowing the security identity to a security domain is not
possible, which happens in the following scenarios:

The domain to outflow to does not trust this virtual
domain.

The identity being outflowed to a domain does not exist
in that domain

Outflowing anonymous identity has the effect of clearing any
identity already established for that domain.

The default value is false.

outflow-security-domains The list of security domains that the security identity from this
virtual domain should automatically outflow to.

CHAPTER 5. REFERENCE

55

	Table of Contents
	PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. SINGLE SIGN-ON IN JBOSS EAP
	CHAPTER 2. SECURING APPLICATIONS DEPLOYED ON JBOSS EAP WITH SINGLE SIGN-ON
	2.1. CREATING AN EXAMPLE APPLICATION TO SECURE WITH SINGLE SIGN-ON
	2.1.1. Creating a Maven project for web-application development
	2.1.2. Creating a web application

	2.2. CREATING A REALM AND USERS IN RED HAT BUILD OF KEYCLOAK
	2.3. SECURING APPLICATIONS WITH OIDC
	2.3.1. Application security with OpenID Connect in JBoss EAP
	Deployment configuration
	Subsystem configuration

	2.3.2. Creating an OIDC client in Red Hat build of Keycloak
	2.3.3. Securing a web application using OpenID Connect

	2.4. SECURING APPLICATIONS WITH SAML
	2.4.1. Application security with SAML in JBoss EAP
	Deployment configuration
	Subsystem configuration

	2.4.2. Creating a SAML client in Red Hat build of Keycloak
	2.4.3. Securing web applications using SAML

	CHAPTER 3. PROPAGATING AN IDENTITY FROM A SERVLET TO A JAKARTA ENTERPRISE BEAN WHEN USING OIDC
	3.1. IDENTITY PROPAGATION TO JAKARTA ENTERPRISE BEANS WHEN USING OIDC
	3.2. SECURING JAKARTA ENTERPRISE BEANS APPLICATIONS USING VIRTUAL SECURITY DOMAIN
	3.3. PROPAGATING IDENTITY FROM VIRTUAL SECURITY DOMAIN TO A SECURITY DOMAIN

	CHAPTER 4. SECURING THE JBOSS EAP MANAGEMENT CONSOLE WITH AN OPENID PROVIDER
	4.1. JBOSS EAP MANAGEMENT CONSOLE SECURITY WITH OIDC
	4.2. CONFIGURING RED HAT BUILD OF KEYCLOAK TO SECURE JBOSS EAP MANAGEMENT CONSOLE
	4.3. SECURING THE JBOSS EAP MANAGEMENT CONSOLE USING OPENID CONNECT

	CHAPTER 5. REFERENCE
	5.1. ELYTRON-OIDC-CLIENT SUBSYSTEM ATTRIBUTES
	5.2. SECURITY-DOMAIN ATTRIBUTES
	5.3. VIRTUAL-SECURITY-DOMAIN ATTRIBUTES

