‘® redhat.

Red Hat JBoss Fuse 6.1

Apache Camel Development Guide

Develop applications with Apache Camel

Last Updated: 2017-10-12

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Develop applications with Apache Camel

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice
Copyright © 2013 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative
Commons Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of
CC-BY-SA is available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it,
you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to
assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the
Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other
countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the
United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European
Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally
related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered
trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in
the United States and other countries and are used with the OpenStack Foundation's
permission. We are not affiliated with, endorsed or sponsored by the OpenStack
Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to developing routes with Apache Camel.

Table of Contents

Table of Contents

PART |. IMPLEMENTING ENTERPRISE INTEGRATION PATTERNS ot eueusn 9
CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS iuurnuns 10
1.1. IMPLEMENTING A ROUTEBUILDER CLASS 10
1.2. BASIC JAVA DSL SYNTAX 11
1.3. ROUTER SCHEMA IN A SPRING XML FILE 14
1.4. ENDPOINTS 16
1.5. PROCESSORS 20
CHAPTER 2. BASIC PRINCIPLES OF ROUTEBUILDINGt iiurennsnnns 30
2.1. PIPELINE PROCESSING 30
2.2. MULTIPLE INPUTS 33
2.3. EXCEPTION HANDLING 36
2.4. BEAN INTEGRATION 52
2.5. CREATING EXCHANGE INSTANCES 62
2.6. TRANSFORMING MESSAGE CONTENT 63
2.7. PROPERTY PLACEHOLDERS 74
2.8. ASPECT ORIENTED PROGRAMMING 84
2.9. THREADING MODEL 85
2.10. CONTROLLING START-UP AND SHUTDOWN OF ROUTES 93
2.11. SCHEDULED ROUTE POLICY 98
2.12. JMX NAMING 106
2.13. PERFORMANCE AND OPTIMIZATION 108
CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS 110
3.1. OVERVIEW OF THE PATTERNS 110
CHAPTER 4. MESSAGING SYSTEMSttt t s s s s nnnns 117
4.1. MESSAGE 117
4.2. MESSAGE CHANNEL 118
4.3. MESSAGE ENDPOINT 120
4.4. PIPES AND FILTERS 121
4.5. MESSAGE ROUTER 123
4.6. MESSAGE TRANSLATOR 125
CHAPTER 5. MESSAGING CHANNELSt s s s s nnnns 127
5.1. POINT-TO-POINT CHANNEL 127
5.2. PUBLISH-SUBSCRIBE CHANNEL 128
5.3. DEAD LETTER CHANNEL 130
5.4. GUARANTEED DELIVERY 139
5.5. MESSAGE BUS 141
CHAPTER 6. MESSAGE CONSTRUCTIONttt ennsnnnsnnnannsnns 143
6.1. CORRELATION IDENTIFIER 143
6.2. EVENT MESSAGE 143
6.3. RETURN ADDRESS 145
CHAPTER 7. MESSAGE ROUTINGttt st nn s s nsnnsnsnsnnnnsnnnns 147
7.1. CONTENT-BASED ROUTER 147
7.2. MESSAGE FILTER 148
7.3. RECIPIENT LIST 150
7.4. SPLITTER 159
7.5. AGGREGATOR 168

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

7.6. RESEQUENCER 187
7.7. ROUTING SLIP 191
7.8. THROTTLER 193
7.9. DELAYER 196
7.10. LOAD BALANCER 198
7.11. MULTICAST 207
7.12. COMPOSED MESSAGE PROCESSOR 214
7.13. SCATTER-GATHER 216
7.14. LOOP 219
7.15. SAMPLING 221
7.16. DYNAMIC ROUTER 223
CHAPTER 8. MESSAGE TRANSFORMATIONttt nrnnsnsnnnnnnnnnnns 227
8.1. CONTENT ENRICHER 227
8.2. CONTENT FILTER 232
8.3. NORMALIZER 233
8.4. CLAIM CHECK 234
8.5. SORT 236
8.6. VALIDATE 238
CHAPTER 9. MESSAGING ENDPOINTSttt s s s nnnnnnsnnnns 240
9.1. MESSAGING MAPPER 240
9.2. EVENT DRIVEN CONSUMER 241
9.3. POLLING CONSUMER 242
9.4. COMPETING CONSUMERS 242
9.5. MESSAGE DISPATCHER 244
9.6. SELECTIVE CONSUMER 246
9.7. DURABLE SUBSCRIBER 248
9.8. IDEMPOTENT CONSUMER 251
9.9. TRANSACTIONAL CLIENT 257
9.10. MESSAGING GATEWAY 257
9.11. SERVICE ACTIVATOR 258
CHAPTER 10. SYSTEM MANAGEMENTttt insnrsnnnnsnsnsnnnnsnnnns 261
10.1. DETOUR 261
10.2. LOGEIP 262
10.3. WIRE TAP 263
APPENDIX A. MIGRATING FROM SERVICEMIX EIPttt annnnnnnnsnns 269
A.1. MIGRATING ENDPOINTS 269
A.2. COMMON ELEMENTS 271
A.3. SERVICEMIX EIP PATTERNS 272
A.4. CONTENT-BASED ROUTER 273
A.5. CONTENT ENRICHER 275
A.6. MESSAGE FILTER 277
A.7. PIPELINE 278
A.8. RESEQUENCER 279
A.9. STATIC RECIPIENT LIST 281
A.10. STATIC ROUTING SLIP 282
A.11. WIRE TAP 283
A.12. XPATH SPLITTER 285
PART Il. ROUTING EXPRESSION AND PREDICATE LANGUAGES0t 287
CHAPTER 11. INTRODUCTIONt ittt s s s n s s n s s nsnsnnnnnnnnns 288

2

Table of Contents

11.1. OVERVIEW OF THE LANGUAGES 288
11.2. HOW TO INVOKE AN EXPRESSION LANGUAGE 289
CHAPTER 12. CONSTANT ittt it it s s s s s s s s n s nnnnnns 294
OVERVIEW 294
XML EXAMPLE 294
JAVA EXAMPLE 294
CHAPTER 13. ELttt s s s s s s s s n s nnnnnns 295
OVERVIEW 295
ADDING JUEL PACKAGE 295
STATIC IMPORT 295
VARIABLES 295
EXAMPLE 296
CHAPTER 14. THEFILELANGUAGEttt curtnnsnsnnnnsnsnsnnnnsnnnns 297
14.1. WHEN TO USE THE FILE LANGUAGE 297
14.2. FILE VARIABLES 298
14.3. EXAMPLES 300
CHAPTER 15. GROOVY i it ittt n s s s s s a s s n s nnsnsnsnnsnsnnnns 303
OVERVIEW 303
ADDING THE SCRIPT MODULE 303
STATIC IMPORT 303
BUILT-IN ATTRIBUTES 303
EXAMPLE 304
USING THE PROPERTIES COMPONENT 304
CHAPTER 16. HEADER ittt s s s s s s s n s nnnns 306
OVERVIEW 306
XML EXAMPLE 306
JAVA EXAMPLE 306
CHAPTER 17. JAVASCRIPTt ittt ittt s s s s s s s s s nnnn s nnnns 307
OVERVIEW 307
ADDING THE SCRIPT MODULE 307
STATIC IMPORT 307
BUILT-IN ATTRIBUTES 307
EXAMPLE 308
USING THE PROPERTIES COMPONENT 308
CHAPTER 18. JOSQLttt ittt st s s s s s s s s n s nnnn s nnnns 310
OVERVIEW 310
ADDING THE JOSQL MODULE 310
STATIC IMPORT 310
VARIABLES 310
EXAMPLE 311
CHAPTER 19. JXPATHttt it st s s s sa s nsnsnnnnsnnnns 312
OVERVIEW 312
ADDING JXPATH PACKAGE 312
VARIABLES 312
EXAMPLE 313
CHAPTER 20. MVEL i ittt it it s s s s s s s s s s nnnnnus 314
OVERVIEW 314

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

SYNTAX 314
ADDING THE MVEL MODULE 314
BUILT-IN VARIABLES 314
EXAMPLE 315
CHAPTER 21. THE OBJECT-GRAPH NAVIGATION LANGUAGE(OGNL) 316
OVERVIEW 316
ADDING THE OGNL MODULE 316
STATIC IMPORT 316
BUILT-IN VARIABLES 316
EXAMPLE 317
CHAPTER 22. PHP i i ittt it i s s s s s s s s s s s n s nnnus 318
OVERVIEW 318
ADDING THE SCRIPT MODULE 318
STATIC IMPORT 318
BUILT-IN ATTRIBUTES 318
EXAMPLE 319
USING THE PROPERTIES COMPONENT 319
CHAPTER 23. PROPERTY ... i ittt i n i n s s n s s s n s s nannsnsnnnnnnsnnnns 320
OVERVIEW 320
XML EXAMPLE 320
JAVA EXAMPLE 320
CHAPTER 24. PYTHON ittt s s s s s s s s s nnnns 321
OVERVIEW 321
ADDING THE SCRIPT MODULE 321
STATIC IMPORT 321
BUILT-IN ATTRIBUTES 321
EXAMPLE 322
USING THE PROPERTIES COMPONENT 322
CHAPTER 25. REF it ittt s s s s s s s s s n s nnnns 323
OVERVIEW 323
STATIC IMPORT 323
XML EXAMPLE 323
JAVA EXAMPLE 323
CHAPTER 26. RUBYttt s s s s s s s nnnnsnnnns 324
OVERVIEW 324
ADDING THE SCRIPT MODULE 324
STATIC IMPORT 324
BUILT-IN ATTRIBUTES 324
EXAMPLE 325
USING THE PROPERTIES COMPONENT 325
CHAPTER 27. THE SIMPLELANGUAGEttt ensnsnnnnsnsnsnnsnnnnnns 326
27.1. JAVA DSL 326
27.2. XML DSL 327
27.3. INVOKING AN EXTERNAL SCRIPT 328
27.4. EXPRESSIONS 329
27.5. PREDICATES 331
27.6. VARIABLE REFERENCE 333
27.7. OPERATOR REFERENCE 337

Table of Contents

CHAPTER 28. SPEL i it ittt s s s s s s s s s s n s nnnus 340
OVERVIEW 340
SYNTAX 340
ADDING SPEL PACKAGE 340
VARIABLES 340
XML EXAMPLE 341
JAVA EXAMPLE 341

CHAPTER 29. THE XPATHLANGUAGEttt s snsnnnnsnnnns 343
29.1. JAVA DSL 343
29.2. XML DSL 344
29.3. XPATH INJECTION 346
29.4. XPATH BUILDER 347
29.5. ENABLING SAXON 348
29.6. EXPRESSIONS 350
29.7. PREDICATES 353
29.8. USING VARIABLES AND FUNCTIONS 354
29.9. VARIABLE NAMESPACES 355
29.10. FUNCTION REFERENCE 356

CHAPTER 30. XQUERY i it ittt s s s s s s s n s nsnsnnnnnnsnnnns 358
OVERVIEW 358
JAVA SYNTAX 358
ADDING THE SAXON MODULE 358
STATIC IMPORT 358
VARIABLES 358
EXAMPLE 359

PART Ill. WEB SERVICES AND ROUTING WITH CAMELCXF it inenuann 360

CHAPTER 31. DEMONSTRATION CODE FOR CAMEL/CXF i ennrannsnns 361
31.1. DOWNLOADING AND INSTALLING THE DEMONSTRATIONS 361
31.2. RUNNING THE DEMONSTRATIONS 361

CHAPTER 32. JAVA-FIRST SERVICE IMPLEMENTATION ¢t enanrnnnns 365
32.1. JAVA-FIRST OVERVIEW 365
32.2. DEFINE SEI AND RELATED CLASSES 366
32.3. ANNOTATE SEI FOR JAX-WS 369
32.4. INSTANTIATE THE WS ENDPOINT 372
32.5. JAVA-TO-WSDL MAVEN PLUG-IN 374

CHAPTER 33. WSDL-FIRST SERVICE IMPLEMENTATIONc:iitiuenrnnnns 377
33.1. WSDL-FIRST OVERVIEW 377
33.2. CUSTOMERSERVICE WSDL CONTRACT 378
33.3. WSDL-TO-JAVA MAVEN PLUG-IN 381
33.4. INSTANTIATE THE WS ENDPOINT 383
33.5. DEPLOY TO AN OSGI CONTAINER 384

CHAPTER 34. IMPLEMENTING AWS CLIENTt it inrnnsnsnrnnnnsnnnns 388
34.1. WS CLIENT OVERVIEW 388
34.2. WSDL-TO-JAVA MAVEN PLUG-IN 389
34.3. INSTANTIATE THE WS CLIENT PROXY 391
34.4. INVOKE WS OPERATIONS 393
34.5. DEPLOY TO AN OSGI CONTAINER 393

CHAPTER 35. POJO-BASED ROUTE

CHAPTER 36. PAYLOAD-BASED ROUTE

CHAPTER 37. PROVIDER-BASED ROUTE

35.1. PROCESSING MESSAGES IN POJO FORMAT
35.2. WSDL-TO-JAVA MAVEN PLUG-IN

35.3. INSTANTIATE THE WS ENDPOINT

35.4. SORT MESSAGES BY OPERATION NAME
35.5. PROCESS OPERATION PARAMETERS

35.6. DEPLOY TO OSGI

36.1. PROCESSING MESSAGES IN PAYLOAD FORMAT
36.2. INSTANTIATE THE WS ENDPOINT

36.3. SORT MESSAGES BY OPERATION NAME

36.4. SOAP/HTTP-TO-JMS BRIDGE USE CASE

36.5. GENERATING RESPONSES USING TEMPLATES
36.6. TYPECONVERTER FOR CXFPAYLOAD

36.7. DEPLOY TO OSGI

37.1. PROVIDER-BASED JAX-WS ENDPOINT

37.2. CREATE A PROVIDER<?> IMPLEMENTATION CLASS
37.3. INSTANTIATE THE WS ENDPOINT

37.4. SORT MESSAGES BY OPERATION NAME

37.5. SOAP/HTTP-TO-JMS BRIDGE USE CASE

37.6. GENERATING RESPONSES USING TEMPLATES
37.7. TYYPECONVERTER FOR SAXSOURCE

37.8. DEPLOY TO OSGI

CHAPTER 38. PROXYING A WEB SERVICE

38.1. PROXYING WITH HTTP

38.2. PROXYING WITH POJO FORMAT
38.3. PROXYING WITH PAYLOAD FORMAT
38.4. HANDLING HTTP HEADERS

CHAPTER 39. FILTERING SOAP MESSAGE HEADERS

39.1. BASIC CONFIGURATION

39.2. HEADER FILTERING

39.3. IMPLEMENTING A CUSTOM FILTER
39.4. INSTALLING FILTERS

PART IV. PROGRAMMING EIP COMPONENTS

CHAPTER 40. UNDERSTANDING MESSAGE FORMATS

40.1. EXCHANGES

40.2. MESSAGES

40.3. BUILT-IN TYPE CONVERTERS
40.4. BUILT-IN UUID GENERATORS

CHAPTER 41. IMPLEMENTING A PROCESSOR

41.1. PROCESSING MODEL

41.2. IMPLEMENTING A SIMPLE PROCESSOR
41.3. ACCESSING MESSAGE CONTENT
41.4. THE EXCHANGEHELPER CLASS

CHAPTER 42. TYPE CONVERTERS

42.1. TYPE CONVERTER ARCHITECTURE

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

397
398
400
403
404
406

409
410
412
413
416
419
420

423
425
425
427
427
430
433
433

436
438
440
441

444
446
447
450

42.2. IMPLEMENTING TYPE CONVERTER USING ANNOTATIONS
42.3. IMPLEMENTING A TYPE CONVERTER DIRECTLY

CHAPTER 43. PRODUCER AND CONSUMER TEMPLATES

43.1. USING THE PRODUCER TEMPLATE
43.2. USING THE CONSUMER TEMPLATE

CHAPTER 44. IMPLEMENTING A COMPONENTcc.u..

44.1. COMPONENT ARCHITECTURE
44.2. HOW TO IMPLEMENT A COMPONENT
44.3. AUTO-DISCOVERY AND CONFIGURATION

CHAPTER 45. COMPONENT INTERFACE ¢ vt unnnsnsn

45.1. THE COMPONENT INTERFACE
45.2. IMPLEMENTING THE COMPONENT INTERFACE

CHAPTER 46. ENDPOINTINTERFACE ¢t urunnnsnsn

46.1. THE ENDPOINT INTERFACE
46.2. IMPLEMENTING THE ENDPOINT INTERFACE

CHAPTER 47. CONSUMER INTERFACE v iunensnss

47.1. THE CONSUMER INTERFACE
47.2. IMPLEMENTING THE CONSUMER INTERFACE

CHAPTER 48. PRODUCERINTERFACEt unensnsn

48.1. THE PRODUCER INTERFACE
48.2. IMPLEMENTING THE PRODUCER INTERFACE

CHAPTER 49. EXCHANGE INTERFACEt iusnnnnnnss

49.1. THE EXCHANGE INTERFACE

CHAPTER 50. MESSAGE INTERFACE it cviunnnnnsn

50.1. THE MESSAGE INTERFACE
50.2. IMPLEMENTING THE MESSAGE INTERFACE

Table of Contents

470
473

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

PART |. IMPLEMENTING ENTERPRISE INTEGRATION PATTERNS

PART |. IMPLEMENTING ENTERPRISE INTEGRATION
PATTERNS

Abstract

This part describes how to build routes using Apache Camel. It covers the basic building
blocks and EIP components.

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

CHAPTER 1. BUILDING BLOCKS FOR ROUTE
DEFINITIONS

Abstract

Apache Camel supports two alternative Domain Specific Languages (DSL) for defining
routes: a Java DSL and a Spring XML DSL. The basic building blocks for defining routes are
endpoints and processors, where the behavior of a processor is typically modified by
expressions or logical predicates. Apache Camel enables you to define expressions and
predicates using a variety of different languages.

1.1. IMPLEMENTING A ROUTEBUILDER CLASS

Overview

To use the Domain Specific Language (DSL), you extend theRouteBuilder class and
override its configure() method (where you define your routing rules).

You can define as many RouteBuilder classes as necessary. Each class is instantiated once
and is registered with the CamelContext object. Normally, the lifecycle of each
RouteBuilder object is managed automatically by the container in which you deploy the
router.

RouteBuilder classes

As a router developer, your core task is to implement one or more RouteBuilder classes.
There are two alternative RouteBuilder classes that you can inherit from:

e org.apache.camel.builder.RouteBuilder—this is the genericRouteBuilder base
class that is suitable for deploying into any container type. It is provided in the
camel-core artifact.

e org.apache.camel.spring.SpringRouteBuilder—this base class is specially
adapted to the Spring container. In particular, it provides extra support for the
following Spring specific features: looking up beans in the Spring registry (using the
beanRef () Java DSL command) and transactions (see theTransactions Guide for
details). It is provided in the camel-spring artifact.

The RouteBuilder class defines methods used to initiate your routing rules (for example,
from(), intercept(), and exception()).

Implementing a RouteBuilder

Example 1.1, “Implementation of a RouteBuilder Class” shows a minimalRouteBuilder
implementation. The configure() method body contains a routing rule; each rule is a
single Java statement.

| Example 1.1. Implementation of a RouteBuilder Class

‘ import org.apache.camel.builder.RouteBuilder;

public class MyRouteBuilder extends RouteBuilder {

10

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

public void configure() {
// Define routing rules here:
from("file:src/data?noop=true").to("file:target/messages");
// More rules can be included, in you like.

// ...
}
}

The form of the rule from(URL1).to(URLZ2) instructs the router to read files from the
directory src/data and send them to the directorytarget/messages. The option?
noop=true instructs the router to retain (not delete) the source files in thesrc/data
directory.

1.2. BASIC JAVA DSL SYNTAX

What is a DSL?

A Domain Specific Language (DSL) is a mini-language designed for a special purpose. A DSL
does not have to be logically complete but needs enough expressive power to describe
problems adequately in the chosen domain. Typically, a DSL does not require a dedicated
parser, interpreter, or compiler. A DSL can piggyback on top of an existing object-oriented
host language, provided DSL constructs map cleanly to constructs in the host language API.

Consider the following sequence of commands in a hypothetical DSL:

command01;
command02;
command03;

You can map these commands to Java method invocations, as follows:

I command@1() .command@2() .command03()

You can even map blocks to Java method invocations. For example:

I command@1() .startBlock().command02().command03().endBlock()

The DSL syntax is implicitly defined by the data types of the host language API. For
example, the return type of a Java method determines which methods you can legally
invoke next (equivalent to the next command in the DSL).

Router rule syntax

Apache Camel defines a router DSL for defining routing rules. You can use this DSL to
define rules in the body of a RouteBuilder.configure() implementation. Figure 1.1,
“Local Routing Rules” shows an overview of the basic syntax for defining local routing rules.

11

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Figure 1.1. Local Routing Rules

" 1. Source Target ——"=
X Processor ge
= Endpoint Endpoint<———
Ouf Out
from("SourceURL"). filter(xpath("...")). to("TargetURL")
| I |
Predicate
[
Processor

A local rule always starts with a from("EndpointURL") method, which specifies the source
of messages (consumer endpoint) for the routing rule. You can then add an arbitrarily long
chain of processors to the rule (for example, filter()). You typically finish off the rule with
a to("EndpointURL") method, which specifies the target producer endpoint) for the
messages that pass through the rule. However, it is not always necessary to end a rule with
to(). There are alternative ways of specifying the message target in a rule.

NOTE

You can also define a global routing rule, by starting the rule with a special
processor type (such as intercept(), exception(), orerrorHandler()).
Global rules are outside the scope of this guide.

Consumers and producers

A local rule always starts by defining a consumer endpoint, using from("EndpointURL"),
and typically (but not always) ends by defining a producer endpoint, using
to("EndpointURL"). The endpoint URLs,EndpointURL, can use any of the components
configured at deploy time. For example, you could use a file endpoint,
file:MyMessageDirectory, an Apache CXF endpoint, cxf:MyServiceName, or an Apache
ActiveMQ endpoint, activemq:queue:MyQName. For a complete list of component types, see

Exchanges

An exchange object consists of a message, augmented by metadata. Exchanges are of
central importance in Apache Camel, because the exchange is the standard form in which
messages are propagated through routing rules. The main constituents of an exchange are,
as follows:

e In message—is the current message encapsulated by the exchange. As the
exchange progresses through a route, this message may be modified. So the In
message at the start of a route is typically not the same as theln message at the
end of the route. The org.apache. camel.Message type provides a generic model of
a message, with the following parts:

o Body.

o Headers.

o Attachments.

12

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

It is important to realize that this is a generic model of a message. Apache Camel
supports a large variety of protocols and endpoint types. Hence, it is not possible to
standardize the format of the message body or the message headers. For example,
the body of a JMS message would have a completely different format to the body of
a HTTP message or a Web services message. For this reason, the body and the
headers are declared to be of Object type. The original content of the body and the
headers is then determined by the endpoint that created the exchange instance
(that is, the endpoint appearing in the from() command).

Out message—is a temporary holding area for a reply message or for a transformed
message. Certain processing nodes (in particular, the to() command) can modify
the current message by treating the /In message as a request, sending it to a
producer endpoint, and then receiving a reply from that endpoint. The reply
message is then inserted into the Out message slot in the exchange.

Normally, if an Out message has been set by the current node, Apache Camel
modifies the exchange as follows before passing it to the next node in the route:
the old In message is discarded and theOut message is moved to theln message
slot. Thus, the reply becomes the new current message. For a more detailed
discussion of how Apache Camel connects nodes together in a route, see
Section 2.1, “Pipeline Processing”.

There is one special case where an Out message is treated differently, however. If
the consumer endpoint at the start of a route is expecting a reply message, the Out
message at the very end of the route is taken to be the consumer endpoint's reply
message (and, what is more, in this case the final node must create an Out message
or the consumer endpoint would hang) .

Message exchange pattern (MEP)—affects the interaction between the exchange
and endpoints in the route, as follows:

o Consumer endpoint—the consumer endpoint that creates the original exchange
sets the initial value of the MEP. The initial value indicates whether the
consumer endpoint expects to receive a reply (for example, the InOut MEP) or
not (for example, the InOnly MEP).

o Producer endpoints—the MEP affects the producer endpoints that the exchange
encounters along the route (for example, when an exchange passes through a
to() node). For example, if the current MEP isInOnly, a to() node would not
expect to receive a reply from the endpoint. Sometimes you need to change the
current MEP in order to customize the exchange's interaction with a producer
endpoint. For more details, see Section 1.4, “Endpoints”.

e Exchange properties—a list of named properties containing metadata for the

current message.

Message exchange patterns

Using an Exchange object makes it easy to generalize message processing to different
message exchange patterns. For example, an asynchronous protocol might define an MEP
that consists of a single message that flows from the consumer endpoint to the producer
endpoint (an InOnly MEP). An RPC protocol, on the other hand, might define an MEP that
consists of a request message and a reply message (an InOut MEP). Currently, Apache
Camel supports the following MEPs:

e InOnly

13

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

e RobustInOnly
e InOut

e InOptionalOut
e OutOnly

e RobustOutOnly
e OutIn

e OutOptionalln

Where these message exchange patterns are represented by constants in the enumeration
type, org.apache.camel.ExchangePattern.

Grouped exchanges

Sometimes it is useful to have a single exchange that encapsulates multiple exchange
instances. For this purpose, you can use a grouped exchange. A grouped exchange is
essentially an exchange instance that contains a java.util.List of Exchange objects
stored in the Exchange.GROUPED_EXCHANGE exchange property. For an example of how to
use grouped exchanges, see Section 7.5, “Aggregator”.

Processors

A processor is a node in a route that can access and modify the stream of exchanges
passing through the route. Processors can take expression or predicate arguments, that
modify their behavior. For example, the rule shown in Figure 1.1, “Local Routing Rules”
includes a filter() processor that takes anxpath() predicate as its argument.

Expressions and predicates

Expressions (evaluating to strings or other data types) and predicates (evaluating to true or
false) occur frequently as arguments to the built-in processor types. For example, the
following filter rule propagates In messages, only if the foo header is equal to the value
bar:

I from("seda:a").filter(header("foo").isEqualTo("bar")).to("seda:b");

Where the filter is qualified by the predicate, header("foo") .isEqualTo("bar"). To
construct more sophisticated predicates and expressions, based on the message content,
you can use one of the expression and predicate languages (see Expression and Predicate
Languages).

1.3. ROUTER SCHEMA IN A SPRING XML FILE

Namespace

The router schema—which defines the XML DSL—belongs to the following XML schema
namespace:

I http://camel.apache.org/schema/spring

14

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

Specifying the schema location

The location of the router schema is normally specified to be
http://camel.apache.org/schema/spring/camel-spring.xsd, which references the
latest version of the schema on the Apache Web site. For example, the root beans element
of an Apache Camel Spring file is normally configured as shown in Example 1.2, “ Specifying
the Router Schema Location”.

xmlns:camel="http://camel.apache.org/schema/spring"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext id="camel"
xmlns="http://camel.apache.org/schema/spring">
<!-- Define your routing rules here -->
</camelContext>

<beans xmlns="http://www.springframework.org/schema/beans"
</beans>

‘ Example 1.2. Specifying the Router Schema Location

Runtime schema location

At run time, Apache Camel does not download the router schema from schema location
specified in the Spring file. Instead, Apache Camel automatically picks up a copy of the
schema from the root directory of the camel-spring JAR file. This ensures that the version
of the schema used to parse the Spring file always matches the current runtime version.
This is important, because the latest version of the schema posted up on the Apache Web
site might not match the version of the runtime you are currently using.

Using an XML editor

Generally, it is recommended that you edit your Spring files using a full-feature XML editor.
An XML editor's auto-completion features make it much easier to author XML that complies
with the router schema and the editor can warn you instantly, if the XML is badly-formed.

XML editors generally do rely on downloading the schema from the location that you
specify in the xsi:schemaLocation attribute. In order to be sure you are using the correct
schema version whilst editing, it is usually a good idea to select a specific version of the
camel-spring.xsd file. For example, to edit a Spring file for the 2.3 version of Apache
Camel, you could modify the beans element as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:camel="http://camel.apache.org/schema/spring"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

15

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring-2.3.0.xsd">

Change back to the default, camel-spring.xsd, when you are finished editing. To see
which schema versions are currently available for download, navigate to the Web page,
http://camel.apache.org/schema/spring.

1.4. ENDPOINTS

Overview

Apache Camel endpoints are the sources and sinks of messages in a route. An endpoint is a
very general sort of building block: the only requirement it must satisfy is that it acts either
as a source of messages (a consumer endpoint) or as a sink of messages (a producer
endpoint). Hence, there are a great variety of different endpoint types supported in Apache
Camel, ranging from protocol supporting endpoints, such as HTTP, to simple timer
endpoints, such as Quartz, that generate dummy messages at regular time intervals. One
of the major strengths of Apache Camel is that it is relatively easy to add a custom
component that implements a new endpoint type.

Endpoint URIs

Endpoints are identified by endpoint URIs, which have the following general form:

I scheme: contextPath[?queryOptions]

The URI scheme identifies a protocol, such ashttp, and the contextPath provides URI details
that are interpreted by the protocol. In addition, most schemes allow you to define query
options, queryOptions, which are specified in the following format:

I ?optionOl=value@l&option02=valued2s&. . .

For example, the following HTTP URI can be used to connect to the Google search engine
page:

I http://www.google.com

The following File URI can be used to read all of the files appearing under the
C:\temp\src\data directory:

I file://C:/temp/src/data

Not every scheme represents a protocol. Sometimes a scheme just provides access to a
useful utility, such as a timer. For example, the following Timer endpoint URI generates an
exchange every second (=1000 milliseconds). You could use this to schedule activity in a
route.

I timer://tickTock?period=1000

Specifying time periods in a URI

16

http://camel.apache.org/schema/spring

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

Many of the Apache Camel components have options whose value is a time period (for
example, for specifying timeout values and so on). By default, such time period options are
normally specified as a pure number, which is interpreted as a millisecond time period. But
Apache Camel also supports a more readable syntax for time periods, which enables you to
express the period in hours, minutes, and seconds. Formally, the human-readable time
period is a string that conforms to the following syntax:

I [NHour(h|hour)][NMin(m|minute)] [NSec(s|second)]

Where each term in square brackets, [], is optional and the notation, (A|B), indicates that
A and B are alternatives.

For example, you can configure timer endpoint with a 45 minute period as follows:

from("timer:foo?period=45m")
.to("log:foo");

You can also use arbitrary combinations of the hour, minute, and second units, as follows:

from("timer:foo?period=1h15m")
.to("log:foo");

from("timer:bar?period=2h30s")
.to("log:bar");

from("timer:bar?period=3h45m58s")
.to("log:bar");

Specifying raw values in URI options

By default, the option values that you specify in a URI are automatically URI-encoded. In
some cases this is undesirable beahavior. For example, when setting a password option, it
is preferable to transmit the raw character string without URI encoding.

It is possible to switch of URI encoding by specifying an option value with the syntax,
RAW(RawValue). For example,

from("SourceURI")
.to("ftp:joe@myftpserver.com?password=RAW(se+re?t&23)&binary=true")

In this example, the password value is transmitted as the literal value, se+re?t&23.

Apache Camel components

Each URI scheme maps to aApache Camel component, where a Apache Camel component
is essentially an endpoint factory. In other words, to use a particular type of endpoint, you
must deploy the corresponding Apache Camel component in your runtime container. For
example, to use JMS endpoints, you would deploy the JMS component in your container.

Apache Camel provides a large variety of different components that enable you to
integrate your application with various transport protocols and third-party products. For
example, some of the more commonly used components are: File, JMS, CXF (Web services),
HTTP, Jetty, Direct, and Mock. For the full list of supported components, see the Apache
Camel component documentation.

Most of the Apache Camel components are packaged separately to the Camel core. If you

17

http://camel.apache.org/components.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

use Maven to build your application, you can easily add a component (and its third-party
dependencies) to your application simply by adding a dependency on the relevant
component artifact. For example, to include the HTTP component, you would add the
following Maven dependency to your project POM file:

<!-- Maven POM File -->
<properties>
<camel-version>2.12.0.redhat-610379</camel-version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-http</artifactId>
<version>${camel-version}</version>
</dependency>

</dependencies>

The following components are built-in to the Camel core (in the camel-core artifact), so
they are always available:

e Bean

e Browse
o Dataset
e Direct
o File

e Log

e Mock
e Properties
e Ref

e SEDA
e Timer

e VM

Consumer endpoints

A consumer endpoint is an endpoint that appears at thestart of a route (that is, in afrom()
DSL command). In other words, the consumer endpoint is responsible for initiating
processing in a route: it creates a new exchange instance (typically, based on some
message that it has received or obtained), and provides a thread to process the exchange
in the rest of the route.

18

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

For example, the following JMS consumer endpoint pulls messages off the payments queue
and processes them in the route:

from("jms:queue:payments")
.process(SomeProcessor)
.to("TargetURI");

Or equivalently, in Spring XML:

<camelContext id="CamelContextID"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="jms:queue:payments"/>
<process ref="someProcessorId"/>
<to uri="TargetURI"/>
</route>
</camelContext>

Some components are consumer only—that is, they can only be used to define consumer
endpoints. For example, the Quartz component is used exclusively to define consumer
endpoints. The following Quartz endpoint generates an event every second (1000
milliseconds):

from("quartz://secondTimer?trigger.repeatInterval=1000")
.process(SomeProcessor)
.to("TargetURI");

If you like, you can specify the endpoint URI as a formatted string, using the fromF () Java
DSL command. For example, to substitute the username and password into the URI for an
FTP endpoint, you could write the route in Java, as follows:

fromF("ftp:%s@fusesource.com?password=%s", username, password)
.process(SomeProcessor)

.to("TargetURI");

Where the first occurrence of %s is replaced by the value of theusername string and the
second occurrence of %s is replaced by thepassword string. This string formatting
mechanism is implemented by String.format() and is similar to the formatting provided
by the C printf() function. For details, seejava.util.Formatter.

Producer endpoints

A producer endpoint is an endpoint that appears in themiddle or at theend of a route (for
example, in a to() DSL command). In other words, the producer endpoint receives an
existing exchange object and sends the contents of the exchange to the specified endpoint.

For example, the following JMS producer endpoint pushes the contents of the current
exchange onto the specified JMS queue:

from("SourceURI")
.process(SomeProcessor)
.to("jms:queue:orderForms");

Or equivalently in Spring XML:

19

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

<camelContext id="CamelContextID"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="SourceURI"/>
<process ref="someProcessorId"/>
<to uri="jms:queue:orderForms"/>
</route>
</camelContext>

Some components are producer only—that is, they can only be used to define producer
endpoints. For example, the HTTP endpoint is used exclusively to define producer
endpoints.

from("SourceURI")
.process(SomeProcessor)
.to("http://www.google.com/search?hl=en&g=camel+router");

If you like, you can specify the endpoint URI as a formatted string, using the toF() Java DSL
command. For example, to substitute a custom Google query into the HTTP URI, you could
write the route in Java, as follows:

from("SourceURI")
.process(SomeProcessor)
.toF("http://www.google.com/search?hl=en&g=%s", myGoogleQuery);

Where the occurrence of %s is replaced by your custom query string,myGoogleQuery. For
details, see java.util.Formatter.

1.5. PROCESSORS

Overview

To enable the router to do something more interesting than simply connecting a consumer
endpoint to a producer endpoint, you can add processors to your route. A processor is a
command you can insert into a routing rule to perform arbitrary processing of messages
that flow through the rule. Apache Camel provides a wide variety of different processors, as
shown in Table 1.1, “Apache Camel Processors”.

Table 1.1. Apache Camel Processors

Java DSL XML DSL Description

aggregate() aggregate Aggregator EIP: Creates an
aggregator, which combines
multiple incoming exchanges
into a single exchange.

aop() aop Use Aspect Oriented
Programming (AOP) to do
work before and after a
specified sub-route. See
Section 2.8, “Aspect Oriented
Programming”.

20

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

Java DSL XML DSL

bean(), beanRef() bean

choice() choice
convertBodyTo() convertBodyTo
delay() delay

doTry() doTry

end() N/A
enrich(),enrichRef() enrich

filter() filter
idempotentConsumer() idempotentConsumer
inheritErrorHandler() @inheritErrorHandler

Description

Process the current exchange
by invoking a method on a
Java object (or bean). See
Section 2.4, “Bean
Integration”.

Content Based Router EIP:
Selects a particular sub-route
based on the exchange
content, using when and
otherwise clauses.

Converts the In message body
to the specified type.

Delayer EIP: Delays the
propagation of the exchange
to the latter part of the route.

Creates a try/catch block for
handling exceptions, using
doCatch, doFinally, and
end clauses.

Ends the current command
block.

Content Enricher EIP:
Combines the current
exchange with data requested
from a specified producer
endpoint URI.

Message Filter EIP: Uses a
predicate expression to filter
incoming exchanges.

Idempotent Consumer EIP:
Implements a strategy to
suppress duplicate messages.

Boolean option that can be
used to disable the inherited
error handler on a particular
route node (defined as a sub-
clause in the Java DSL and as
an attribute in the XML DSL).

21

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Java DSL

inOnly()

inOut()

loadBalance()

log()

Loop()

markRollbackOnly()

markRollbackOnlyLast()

marshal()

22

XML DSL

inOnly

inOut

loadBalance

log

loop

@markRollbackOnly

@markRollbackOnlyLast

marshal

Description

Either sets the current
exchange's MEP to InOnly (if
no arguments) or sends the
exchange as an InOnly to the
specified endpoint(s).

Either sets the current
exchange's MEP to InOut (if no
arguments) or sends the
exchange as an InOut to the
specified endpoint(s).

Load Balancer EIP:
Implements load balancing
over a collection of endpoints.

Logs a message to the
console.

Loop EIP: Repeatedly resends
each exchange to the latter
part of the route.

(Transactions) Marks the
current transaction for
rollback only (no exception is
raised). In the XML DSL, this
option is set as a boolean
attribute on the rollback
element. See "Transaction
Guide".

(Transactions) If one or more
transactions have previously
been associated with this
thread and then suspended,
this command marks the
latest transaction for rollback
only (no exception is raised).
In the XML DSL, this option is
set as a boolean attribute on
the rollback element. See
"Transaction Guide".

Transforms into a low-level or
binary format using the
specified data format, in
preparation for sending over a
particular transport protocol.

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Transaction_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Transaction_Guide/

Java DSL

multicast()

onCompletion()

onException()

pipeline()

policy()

pollEnrich(),pollEnrich
Ref ()

process(),processRef

recipientList()

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

XML DSL

multicast

onCompletion

onException

pipeline

policy

pollEnrich

process

recipientList

Description

Multicast EIP: Multicasts the
current exchange to multiple
destinations, where each
destination gets its own copy
of the exchange.

Defines a sub-route
(terminated by end() in the
Java DSL) that gets executed
after the main route has
completed. For conditional
execution, use the onWhen
sub-clause. Can also be
defined on its own line (not in
a route).

Defines a sub-route
(terminated by end() in the
Java DSL) that gets executed
whenever the specified
exception occurs. Usually
defined on its own line (not in
a route).

Pipes and Filters EIP: Sends
the exchange to a series of
endpoints, where the output
of one endpoint becomes the
input of the next endpoint.
See also Section 2.1, “Pipeline
Processing”.

Apply a policy to the current
route (currently only used for
transactional policies—see
"Transaction Guide").

Content Enricher EIP:
Combines the current
exchange with data polled
from a specified consumer
endpoint URI.

Execute a custom processor
on the current exchange. See
the section called “Custom
processor” and Part 1V,
“Programming EIP
Components”.

Recipient List EIP: Sends the
exchange to a list of
recipients that is calculated at
runtime (for example, based
on the contents of a header).

23

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Transaction_Guide/

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Java DSL

removeHeader()

removeHeaders ()

removeProperty()

resequence()

rollback()

routingSlip()

sample()

setBody()

setExchangePattern()

24

XML DSL

removeHeader

removeHeaders

removeProperty

resequence

rollback

routingSlip

sample

setBody

setExchangePattern

Description

Removes the specified header
from the exchange's In
message.

Removes the headers
matching the specified
pattern from the exchange's
In message. The pattern can
have the form, prefix*—in
which case it matches every
name starting with prefix—
otherwise, it is interpreted as
a regular expression.

Removes the specified
exchange property from the
exchange.

Resequencer EIP: Re-orders
incoming exchanges on the
basis of a specified
comparotor operation.
Supports a batch mode and a
stream mode.

(Transactions) Marks the
current transaction for
rollback only (also raising an
exception, by default). See
"Transaction Guide".

Routing Slip EIP: Routes the
exchange through a pipeline
that is constructed
dynamically, based on the list
of endpoint URIs extracted
from a slip header.

Creates a sampling throttler,
allowing you to extract a
sample of exchanges from the
traffic on a route.

Sets the message body of the
exchange's In message.

Sets the current exchange's
MEP to the specified value.
See the section called
“Message exchange
patterns”.

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Transaction_Guide/

Java DSL

setHeader ()

setOutHeader()

setProperty()

sort()

split()

stop()

threads()

throttle()

throwException()

to()

toF ()

transacted()

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

XML DSL

setHeader

setOutHeader

setProperty()

sort

split

stop

threads

throttle

throwException

to

N/A

transacted

Description

Sets the specified header in
the exchange's In message.

Sets the specified header in
the exchange's Out message.

Sets the specified exchange
property.

Sorts the contents of the In
message body (where a
custom comparator can
optionally be specified).

Splitter EIP: Splits the current
exchange into a sequence of
exchanges, where each split
exchange contains a fragment
of the original message body.

Stops routing the current
exchange and marks it as
completed.

Creates a thread pool for
concurrent processing of the
latter part of the route.

Throttler EIP: Limit the flow
rate to the specified level
(exchanges per second).

Throw the specified Java
exception.

Send the exchange to one or
more endpoints. See

Section 2.1, “Pipeline
Processing”.

Send the exchange to an
endpoint, using string
formatting. That is, the
endpoint URI string can
embed substitutions in the
style of the C printf()
function.

Create a Spring transaction
scope that encloses the latter
part of the route. See
"Transaction Guide".

25

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Transaction_Guide/

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Java DSL XML DSL Description

transform() transform Message Translator EIP: Copy
the In message headers to the
Out message headers and set
the Out message body to the
specified value.

unmarshal() unmarshal Transforms the In message
body from a low-level or
binary format to a high-level
format, using the specified
data format.

validate() validate Takes a predicate expression
to test whether the current
message is valid. If the
predicate returns false,
throws a
PredicateValidationExce
ption exception.

wireTap() wireTap Wire Tap EIP: Sends a copy of
the current exchange to the
specified wire tap URI, using
the
ExchangePattern.InOnly
MEP.

Some sample processors

To get some idea of how to use processors in a route, see the following examples:
o the section called “Choice”.
o the section called “Filter”.
o the section called “Throttler”.

o the section called “Custom processor”.

Choice

The choice() processor is a conditional statement that is used to route incoming messages
to alternative producer endpoints. Each alternative producer endpoint is preceded by a
when () method, which takes a predicate argument. If the predicate is true, the following
target is selected, otherwise processing proceeds to the next when() method in the rule.
For example, the following choice() processor directs incoming messages to either
Targetl, Target2, or Target3, depending on the values ofPredicatel and PredicateZ2:

from("SourceURL")

.choice()
.when(Predicatel).to("Targetl")
.when(Predicate2?) .to("Target2")
.otherwise().to("Target3");

26

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

Or equivalently in Spring XML:

<camelContext id="buildSimpleRouteWithChoice"
xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="SourceURL" />
<choice>
<when>
<!-- First predicate -->
<simple>header.foo = 'bar'</simple>
<to uri="Targetl"/>
</when>
<when>
<!-- Second predicate -->
<simple>header.foo = 'manchu'</simple>
<to uri="Target2"/>
</when>
<otherwise>
<to uri="Target3"/>
</otherwise>
</choice>
</route>
</camelContext>

In the Java DSL, there is a special case where you might need to use the endChoice()
command. Some of the standard Apache Camel processors enable you to specify extra
parameters using special sub-clauses, effectively opening an extra level of nesting which is
usually terminated by the end() command. For example, you could specify a load balancer
clause as loadBalance() . roundRobin().to("mock:foo").to("mock:bar").end(), which
load balances messages between the mock: foo and mock:bar endpoints. If the load
balancer clause is embedded in a choice condition, however, it is necessary to terminate
the clause using the endChoice() command, as follows:

from("direct:start")
.choice()
.when(bodyAs (String.class).contains("Camel"))

. loadBalance().roundRobin().to("mock:foo").to("mock:bar").endChoice()

.otherwise()
.to("mock:result");

Filter

The filter() processor can be used to prevent uninteresting messages from reaching the
producer endpoint. It takes a single predicate argument: if the predicate is true, the
message exchange is allowed through to the producer; if the predicate is false, the
message exchange is blocked. For example, the following filter blocks a message exchange,
unless the incoming message contains a header, foo, with value equal tobar:

I from("SourceURL") .filter(header("foo").isEqualTo("bar")).to("TargetURL");
Or equivalently in Spring XML:

I <camelContext id="filterRoute"

27

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="SourceURL" />
<filter>
<simple>header.foo = 'bar'</simple>
<to uri="TargetURL"/>
</filter>
</route>
</camelContext>

Throttler

The throttle() processor ensures that a producer endpoint does not get overloaded. The
throttler works by limiting the number of messages that can pass through per second. If
the incoming messages exceed the specified rate, the throttler accumulates excess
messages in a buffer and transmits them more slowly to the producer endpoint. For
example, to limit the rate of throughput to 100 messages per second, you can define the
following rule:

I from("SourceURL") .throttle(100).to("TargetURL");
Or equivalently in Spring XML:

<camelContext id="throttleRoute"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="SourceURL" />
<throttle maximumRequestsPerPeriod="100" timePeriodMillis="1000">
<to uri="TargetURL"/>
</throttle>
</route>
</camelContext>

Custom processor

If none of the standard processors described here provide the functionality you need, you
can always define your own custom processor. To create a custom processor, define a class
that implements the org.apache.camel.Processor interface and overrides the process()
method. The following custom processor, MyProcessor, removes the header named foo
from incoming messages

public void process(org.apache.camel.Exchange exchange) {
1nMessage = exchange.getIn();
(inMessage != null) {

public class MyProcessor implements org.apache.camel.Processor {
inMessage. removeHeader("foo");

‘ Example 1.3. Implementing a Custom Processor Class

28

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

To insert the custom processor into a router rule, invoke the process() method, which
provides a generic mechanism for inserting processors into rules. For example, the

following rule invokes the processor defined in Example 1.3, “Implementing a Custom
Processor Class”:

org.apache.camel.Processor myProc = new MyProcessor();

from("SourceURL") .process(myProc).to("TargetURL");

29

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

Abstract

Apache Camel provides several processors and components that you can link together in a
route. This chapter provides a basic orientation by explaining the principles of building a
route using the provided building blocks.

2.1. PIPELINE PROCESSING

Overview

In Apache Camel, pipelining is the dominant paradigm for connecting nodes in a route
definition. The pipeline concept is probably most familiar to users of the UNIX operating
system, where it is used to join operating system commands. For example, 1s | moreis an
example of a command that pipes a directory listing, s, to the page-scrolling utility,more.
The basic idea of a pipeline is that the output of one command is fed into theinput of the
next. The natural analogy in the case of a route is for the Out message from one processor
to be copied to the In message of the next processor.

Processor nodes

Every node in a route, except for the initial endpoint, is a processor, in the sense that they
inherit from the org.apache.camel.Processor interface. In other words, processors make
up the basic building blocks of a DSL route. For example, DSL commands such as filter(),
delayer(), setBody(), setHeader(), and to() all represent processors. When considering
how processors connect together to build up a route, it is important to distinguish two
different processing approaches.

The first approach is where the processor simply modifies the exchange's /In message, as
shown in Figure 2.1, “Processor Modifying an In Message”. The exchange'sOut message
remains null in this case.

Figure 2.1. Processor Modifying an In Message

In In
Processor

The following route shows a setHeader () command that modifies the current/n message
by adding (or modifying) the BillingSystem heading:

from("activemq:orderQueue")
.setHeader("BillingSystem", xpath("/order/billingSystem"))
.to("activemqg:billingQueue");

The second approach is where the processor creates an Out message to represent the
result of the processing, as shown in Figure 2.2, “Processor Creating an Out Message”.

30

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

Figure 2.2. Processor Creating an Out Message

Processor

In ‘ Out
—>

The following route shows a transform() command that creates anOut message with a
message body containing the string, DummyBody:

from("activemq:orderQueue")
.transform(constant ("DummyBody"))
.to("activemqg:billingQueue");

where constant ("DummyBody") represents a constant expression. You cannot pass the
string, DummyBody, directly, because the argument totransform() must be an expression

type.

Pipeline for InOnly exchanges

Figure 2.3, “Sample Pipeline for InOnly Exchanges”shows an example of a processor
pipeline for InOnly exchanges. Processor A acts by modifying theln message, while
processors B and C create an Out message. The route builder links the processors together
as shown. In particular, processors B and C are linked together in the form of a pipeline:
that is, processor B's Out message is moved to theln message before feeding the
exchange into processor C, and processor C's Out message is moved to the/n message
before feeding the exchange into the producer endpoint. Thus the processors' outputs and
inputs are joined into a continuous pipeline, as shown in Figure 2.3, “Sample Pipeline for
INOnly Exchanges”.

Figure 2.3. Sample Pipeline for InOnly Exchanges

Processor B Processor C

A A

In Out In Out

Consumer In In Producer
Endpoint Processor A Endpoint

Apache Camel employs the pipeline pattern by default, so you do not need to use any
special syntax to create a pipeline in your routes. For example, the following route pulls
messages from a userdataQueue queue, pipes the message through a Velocity template (to
produce a customer address in text format), and then sends the resulting text address to
the queue, envelopeAddressQueue:

from("activemq:userdataQueue")
.to(ExchangePattern.InOut, "velocity:file:AdressTemplate.vm")
.to("activemqg:envelopeAddresses");

Where the Velocity endpoint, velocity: file:AdressTemplate.vm, specifies the location of
a Velocity template file, file:AdressTemplate.vm, in the file system. Theto() command
changes the exchange pattern to InOut before sending the exchange to the Velocity

31

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

endpoint and then changes it back to InOnly afterwards. For more details of the Velocity
endpoint, see .

Pipeline for InOut exchanges

Figure 2.4, “Sample Pipeline for InOut Exchanges”shows an example of a processor
pipeline for InOut exchanges, which you typically use to support remote procedure call
(RPC) semantics. Processors A, B, and C are linked together in the form of a pipeline, with
the output of each processor being fed into the input of the next. The final Out message
produced by the producer endpoint is sent all the way back to the consumer endpoint,
where it provides the reply to the original request.

Figure 2.4. Sample Pipeline for InOut Exchanges

Processor A Processor B Processor C

1 A A
In Out In Out In Oul

\ 4

Consumer Producer
Endpoint P Endpoint
h out

Note that in order to support the InOut exchange pattern, it isessential that the last node
in the route (whether it is a producer endpoint or some other kind of processor) creates an
Out message. Otherwise, any client that connects to the consumer endpoint would hang
and wait indefinitely for a reply message. You should be aware that not all producer
endpoints create Out messages.

Consider the following route that processes payment requests, by processing incoming
HTTP requests:

from("jetty:http://localhost:8080/foo")
.to("cxf:bean:addAccountDetails")
.to("cxf:bean:getCreditRating")
.to("cxf:bean:processTransaction");

Where the incoming payment request is processed by passing it through a pipeline of Web
services, cxf:bean:addAccountDetails, cxf:bean:getCreditRating, and
cxf:bean:processTransaction. The final Web service,processTransaction, generates a
response (Out message) that is sent back through the JETTY endpoint.

When the pipeline consists of just a sequence of endpoints, it is also possible to use the
following alternative syntax:

from("jetty:http://localhost:8080/foo")
.pipeline("cxf:bean:addAccountDetails"”, "cxf:bean:getCreditRating”,
"cxf:bean:processTransaction");

Pipeline for InOptionalOut exchanges

The pipeline for InOptionalOut exchanges is essentially the same as the pipeline in
Figure 2.4, “Sample Pipeline for InOut Exchanges”. The difference between/nOut and
InOptionalOut is that an exchange with thelnOptionalOut exchange pattern is allowed to
have a null Out message as a reply. That is, in the case of annOptionalOut exchange, a

32

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

null Out message is copied to the/n message of the next node in the pipeline. By contrast,
in the case of an InOut exchange, anull Out message is discarded and the originalin
message from the current node would be copied to the In message of the next node
instead.

2.2. MULTIPLE INPUTS

Overview

A standard route takes its input from just a single endpoint, using the from(EndpointURL)
syntax in the Java DSL. But what if you need to define multiple inputs for your route?
Apache Camel provides several alternatives for specifying multiple inputs to a route. The
approach to take depends on whether you want the exchanges to be processed
independently of each other or whether you want the exchanges from different inputes to
be combined in some way (in which case, you should use the the section called “Content
enricher pattern”).

Multiple independent inputs

The simplest way to specify multiple inputs is using the multi-argument form of the from()
DSL command, for example:

I from("URI1", "URI2", "URI3").to("DestinationUri");

Or you can use the following equivalent syntax:

I from("URI1").from("URI2").from("URI3").to("DestinationUri");

In both of these examples, exchanges from each of the input endpoints, URI1, URI2, and
URI3, are processed independently of each other and in separate threads. In fact, you can
think of the preceding route as being equivalent to the following three separate routes:

from("URI1").to("DestinationUri");
from("URI2") .to("DestinationUri");
from("URI3").to("DestinationUri");

Segmented routes

For example, you might want to merge incoming messages from two different messaging
systems and process them using the same route. In most cases, you can deal with multiple
inputs by dividing your route into segments, as shown in Figure 2.5, “Processing Multiple
Inputs with Segmented Routes”.

Figure 2.5. Processing Multiple Inputs with Segmented Routes

from("activemg:Nyse") .to (InternalUrl)

N

from(InternalUrl) .to("activemg:USTxn")

from("activemg:Nasdaq") .to (InternalUrl)

The initial segments of the route take their inputs from some external queues—for example,

33

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

activemq:Nyse and activemq:Nasdag—and send the incoming exchanges to an internal
endpoint, InternalUrl. The second route segment merges the incoming exchanges, taking
them from the internal endpoint and sending them to the destination queue,
activemq:USTxn. ThelnternalUrl is the URL for an endpoint that is intended only for use
within a router application. The following types of endpoints are suitable for internal use:

o the section called “Direct endpoints”.
o the section called “SEDA endpoints”.
o the section called “VM endpoints”.

The main purpose of these endpoints is to enable you to glue together different segments
of a route. They all provide an effective way of merging multiple inputs into a single route.

Direct endpoints

The direct component provides the simplest mechanism for linking together routes. The
event model for the direct component is synchronous, so that subsequent segments of the
route run in the same thread as the first segment. The general format of a direct URL is
direct:EndpointID, where the endpoint ID,EndpointID, is simply a unique alphanumeric
string that identifies the endpoint instance.

For example, if you want to take the input from two message queues, activemq:Nyse and
activemq:Nasdaq, and merge them into a single message queue,activemq:USTxn, you can
do this by defining the following set of routes:

from("activemq:Nyse").to("direct:mergeTxns");
from("activemqg:Nasdaq").to("direct:mergeTxns");

from("direct:mergeTxns").to("activemq:USTxn");

Where the first two routes take the input from the message queues, Nyse and Nasdaq, and
send them to the endpoint, direct:mergeTxns. The last queue combines the inputs from
the previous two queues and sends the combined message stream to the activemq:USTxn
queue.

The implementation of the direct endpoint behaves as follows: whenever an exchange
arrives at a producer endpoint (for example, to("direct:mergeTxns")), the direct
endpoint passes the exchange directly to all of the consumers endpoints that have the
same endpoint ID (for example, from("direct:mergeTxns")). Direct endpoints can only be
used to communicate between routes that belong to the same CamelContext in the same
Java virtual machine (JVM) instance.

SEDA endpoints

The SEDA component provides an alternative mechanism for linking together routes. You
can use it in a similar way to the direct component, but it has a different underlying event
and threading model, as follows:

e Processing of a SEDA endpoint is not synchronous. That is, when you send an

exchange to a SEDA producer endpoint, control immediately returns to the
preceding processor in the route.

34

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

¢ SEDA endpoints contain a queue buffer (of java.util.concurrent.BlockingQueue
type), which stores all of the incoming exchanges prior to processing by the next
route segment.

e Each SEDA consumer endpoint creates a thread pool (the default size is 5) to
process exchange objects from the blocking queue.

e The SEDA component supports the competing consumers pattern, which guarantees
that each incoming exchange is processed only once, even if there are multiple
consumers attached to a specific endpoint.

One of the main advantages of using a SEDA endpoint is that the routes can be more
responsive, owing to the built-in consumer thread pool. The stock transactions example can
be re-written to use SEDA endpoints instead of direct endpoints, as follows:

from("activemqg:Nyse").to("seda:mergeTxns");
from("activemq:Nasdaq").to("seda:mergeTxns");

from("seda:mergeTxns").to("activemq:USTxn");

The main difference between this example and the direct example is that when using SEDA,
the second route segment (from seda:mergeTxns to activemq:USTxn) is processed by a
pool of five threads.

NOTE

There is more to SEDA than simply pasting together route segments. The
staged event-driven architecture (SEDA) encompasses a design philosophy for
building more manageable multi-threaded applications. The purpose of the
SEDA component in Apache Camel is simply to enable you to apply this design
philosophy to your applications. For more details about SEDA, see
http://www.eecs.harvard.edu/~mdw/proj/seda/.

L

VM endpoints

The VM component is very similar to the SEDA endpoint. The only difference is that,
whereas the SEDA component is limited to linking together route segments from within the
same CamelContext, the VM component enables you to link together routes from distinct
Apache Camel applications, as long as they are running within the same Java virtual
machine.

The stock transactions example can be re-written to use VM endpoints instead of SEDA
endpoints, as follows:

from("activemq:Nyse").to("vm:mergeTxns");
from("activemqg:Nasdaq").to("vm:mergeTxns");

And in a separate router application (running in the same Java VM), you can define the
second segment of the route as follows:

I from("vm:mergeTxns").to("activemq:USTxn");

Content enricher pattern

35

http://www.eecs.harvard.edu/~mdw/proj/seda/

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

The content enricher pattern defines a fundamentally different way of dealing with multiple
inputs to a route. When an exchange enters the enricher processor, the enricher contacts
an external resource to retrieve information, which is then added to the original message.
In this pattern, the external resource effectively represents a second input to the message.

For example, suppose you are writing an application that processes credit requests. Before
processing a credit request, you need to augment it with the data that assigns a credit
rating to the customer, where the ratings data is stored in a file in the directory,
src/data/ratings. You can combine the incoming credit request with data from the
ratings file using the pollEnrich() pattern and a GroupedExchangeAggregationStrategy
aggregation strategy, as follows:

from("jms:queue:creditRequests")
.pollEnrich("file:src/data/ratings?noop=true", new
GroupedExchangeAggregationStrategy())
.bean(new MergeCreditRequestAndRatings(), "merge")
.to("jms:queue:reformattedRequests");

Where the GroupedExchangeAggregationStrategy class is a standard aggregation
strategy from the org.apache.camel.processor.aggregate package that adds each new
exchange to a java.util.List instance and stores the resulting list in the
Exchange.GROUPED_EXCHANGE exchange property. In this case, the list contains two
elements: the original exchange (from the creditRequests JMS queue); and the enricher
exchange (from the file endpoint).

To access the grouped exchange, you can use code like the following:

public class MergeCreditRequestAndRatings {
public void merge(Exchange ex) {
// Obtain the grouped exchange
List<Exchange> list = ex.getProperty(Exchange.GROUPED_EXCHANGE,
List.class);

// Get the exchanges from the grouped exchange
Exchange originalEx = list.get(0);
Exchange ratingsEx = list.get(1l);

// Merge the exchanges

}

An alternative approach to this application would be to put the merge code directly into the
implementation of the custom aggregation strategy class.

For more details about the content enricher pattern, see Section 8.1, “Content Enricher”.

2.3. EXCEPTION HANDLING

Abstract

Apache Camel provides several different mechanisms, which let you handle exceptions at
different levels of granularity: you can handle exceptions within a route using doTry,
doCatch, and doFinally; or you can specify what action to take for each exception type

36

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

and apply this rule to all routes in a RouteBuilder using onException; or you can specify
what action to take for all exception types and apply this rule to all routes in a
RouteBuilder using errorHandler.

For more details about exception handling, see Section 5.3, “Dead Letter Channel”.

2.3.1. onException Clause

Overview

The onException clause is a powerful mechanism for trapping exceptions that occur in one
or more routes: it is type-specific, enabling you to define distinct actions to handle different
exception types; it allows you to define actions using essentially the same (actually, slightly
extended) syntax as a route, giving you considerable flexibility in the way you handle
exceptions; and it is based on a trapping model, which enables a single onException clause
to deal with exceptions occurring at any node in any route.

Trapping exceptions using onException

The onException clause is a mechanism fortrapping, rather than catching exceptions. That
is, once you define an onException clause, it traps exceptions that occur at any point in a
route. This contrasts with the Java try/catch mechanism, where an exception is caught,
only if a particular code fragment is explicitly enclosed in a try block.

What really happens when you define an onException clause is that the Apache Camel
runtime implicitly encloses each route node in a try block. This is why the onException
clause is able to trap exceptions at any point in the route. But this wrapping is done for you
automatically; it is not visible in the route definitions.

Java DSL example

In the following Java DSL example, the onException clause applies to all of the routes
defined in the RouteBuilder class. If aValidationException exception occurs while
processing either of the routes (from("seda:inputA") or from("seda:inputB")), the
onException clause traps the exception and redirects the current exchange to the
validationFailed JMS queue (which serves as a deadletter queue).

// Java
public class MyRouteBuilder extends RouteBuilder {

public void configure() {
onException(ValidationException.class)
.to("activemq:validationFailed");

from("seda:inputA")
.to("validation:foo/bar.xsd", "activemq:someQueue");

from("seda:inputB").to("direct:foo")
.to("rnc:mySchema.rnc", "activemq:anotherQueue");

XML DSL example

37

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

The preceding example can also be expressed in the XML DSL, using the onException
element to define the exception clause, as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:camel="http://camel.apache.org/schema/spring"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<onException>
<exception>com.mycompany.ValidationException</exception>
<to uri="activemqg:validationFailed"/>
</onException>
<route>
<from uri="seda:inputA"/>
<to uri="validation:foo/bar.xsd"/>
<to uri="activemq:someQueue"/>
</route>
<route>
<from uri="seda:inputB"/>
<to uri="rnc:mySchema.rnc"/>
<to uri="activemq:anotherQueue"/>
</route>
</camelContext>

</beans>

Trapping multiple exceptions

You can define multiple onException clauses to trap exceptions in aRouteBuilder scope.
This enables you to take different actions in response to different exceptions. For example,
the following series of onException clauses defined in the Java DSL define different
deadletter destinations for ValidationException, ValidationException, and Exception

onException(ValidationException.class).to("activemqg:validationFailed");
onException(java.io.IOException.class).to("activemqg:ioExceptions");
onException(Exception.class).to("activemq:exceptions");

You can define the same series of onException clauses in the XML DSL as follows:

<onException>
<exception>com.mycompany.ValidationException</exception>
<to uri="activemq:validationFailed"/>

</onException>

<onException>
<exception>java.io.IOException</exception>
<to uri="activemq:ioExceptions"/>

</onException>

<onException>

38

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

<exception>java.lang.Exception</exception>
<to uri="activemq:exceptions"/>
</onException>

You can also group multiple exceptions together to be trapped by the same onException
clause. In the Java DSL, you can group multiple exceptions as follows:

onException(ValidationException.class, BuesinessException.class)
.to("activemq:validationFailed");

In the XML DSL, you can group multiple exceptions together by defining more than one
exception element inside the onException element, as follows:

<onException>
<exception>com.mycompany.ValidationException</exception>
<exception>com.mycompany.BuesinessException</exception>
<to uri="activemq:validationFailed"/>

</onException>

When trapping multiple exceptions, the order of the onException clauses is significant.
Apache Camel initially attempts to match the thrown exception against the first clause. If
the first clause fails to match, the next onException clause is tried, and so on until a match
is found. Each matching attempt is governed by the following algorithm:

1. If the thrown exception is a chained exception (that is, where an exception has been
caught and rethrown as a different exception), the most nested exception type
serves initially as the basis for matching. This exception is tested as follows:

a. If the exception-to-test has exactly the type specified in the onException clause
(tested using instanceof), a match is triggered.

b. If the exception-to-test is a sub-type of the type specified in the onException
clause, a match is triggered.

2. If the most nested exception fails to yield a match, the next exception in the chain
(the wrapping exception) is tested instead. The testing continues up the chain until
either a match is triggered or the chain is exhausted.

Deadletter channel

The basic examples of onException usage have so far all exploited thedeadletter channel
pattern. That is, when an onException clause traps an exception, the current exchange is
routed to a special destination (the deadletter channel). The deadletter channel serves as a
holding area for failed messages that have not been processed. An administrator can
inspect the messages at a later time and decide what action needs to be taken.

For more details about the deadletter channel pattern, see Section 5.3, “Dead Letter
Channel”.

Use original message

By the time an exception is raised in the middle of a route, the message in the exchange
could have been modified considerably (and might not even by readable by a human).
Often, it is easier for an administrator to decide what corrective actions to take, if the

39

http://java.sun.com/j2se/1.4.2/docs/guide/lang/chained-exceptions.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

messages visible in the deadletter queue are the original messages, as received at the
start of the route.

In the Java DSL, you can replace the message in the exchange by the original message,
using the useOriginalMessage() DSL command, as follows:

onException(ValidationException.class)
.useOriginalMessage()
.to("activemq:validationFailed");

In the XML DSL, you can retrieve the original message by setting the useOriginalMessage
attribute on the onException element, as follows:

<onException useOriginalMessage="true">
<exception>com.mycompany.ValidationException</exception>
<to uri="activemq:validationFailed"/>

</onException>

Redelivery policy

Instead of interrupting the processing of a message and giving up as soon as an exception

is raised, Apache Camel gives you the option of attempting to redeliver the message at the
point where the exception occurred. In networked systems, where timeouts can occur and

temporary faults arise, it is often possible for failed messages to be processed successfully,
if they are redelivered shortly after the original exception was raised.

The Apache Camel redelivery supports various strategies for redelivering messages after an
exception occurs. Some of the most important options for configuring redelivery are as
follows:

maximumRedeliveries()

Specifies the maximum number of times redelivery can be attempted (default is 0). A
negative value means redelivery is always attempted (equivalent to an infinite value).

retryWhile()

Specifies a predicate (of Predicate type), which determines whether Apache Camel
ought to continue redelivering. If the predicate evaluates to true on the current
exchange, redelivery is attempted; otherwise, redelivery is stopped and no further
redelivery attempts are made.

This option takes precedence over the maximumRedeliveries () option.

In the Java DSL, redelivery policy options are specified using DSL commands in the
onException clause. For example, you can specify a maximum of six redeliveries, after
which the exchange is sent to the validationFailed deadletter queue, as follows:

onException(ValidationException.class)
.maximumRedeliveries(6)
.retryAttemptedLoglLevel(org.apache.camel.LogginLevel.WARN)
.to("activemq:validationFailed");

40

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

In the XML DSL, redelivery policy options are specified by setting attributes on the
redeliveryPolicy element. For example, the preceding route can be expressed in XML
DSL as follows:

<onException useOriginalMessage="true">
<exception>com.mycompany.ValidationException</exception>
<redeliveryPolicy maximumRedeliveries="6"/>
<to uri="activemq:validationFailed"/>

</onException>

The latter part of the route—after the redelivery options are set—is not processed until
after the last redelivery attempt has failed. For detailed descriptions of all the redelivery
options, see Section 5.3, “Dead Letter Channel”.

Alternatively, you can specify redelivery policy options in a redeliveryPolicyProfile
instance. You can then reference the redeliveryPolicyProfile instance using the
onException element's redeliverPolicyRef attribute. For example, the preceding route
can be expressed as follows:

<redeliveryPolicyProfile id="redelivPolicy" maximumRedeliveries="6"
retryAttemptedLogLevel="WARN" />

<onException useOriginalMessage="true"

redeliveryPolicyRef="redelivPolicy">
<exception>com.mycompany.ValidationException</exception>
<to uri="activemq:validationFailed"/>

</onException>

NOTE

The approach using redeliveryPolicyProfile is useful, if you want to re-use
the same redelivery policy in multiple onException clauses.

Conditional trapping

Exception trapping with onException can be made conditional by specifying theonWhen
option. If you specify the onWhen option in an onException clause, a match is triggered only
when the thrown exception matches the clause and the onWhen predicate evaluates to

true on the current exchange.

For example, in the following Java DSL fragment,the first onException clause triggers, only
if the thrown exception matches MyUserException and the user header is non-null in the
current exchange:

// Java

// Here we define onException() to catch MyUserException when
// there is a header[user] on the exchange that is not null
onException(MyUserException.class)
.onWhen(header("user").isNotNull())
.maximumRedeliveries(2)
.to(ERROR USER QUEUE) ;

// Here we define onException to catch MyUserException as a kind

41

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

// of fallback when the above did not match.
// Noitce: The order how we have defined these onException is
// important as Camel will resolve in the same order as they
// have been defined
onException(MyUserException.class)

.maximumRedeliveries(2)

.to(ERROR QUEUE);

The preceding onException clauses can be expressed in the XML DSL as follows:

<redeliveryPolicyProfile id="twoRedeliveries" maximumRedeliveries="2"/>

<onException redeliveryPolicyRef="twoRedeliveries">
<exception>com.mycompany.MyUserException</exception>

<onWhen>
<simple>${header.user} != null</simple>
</onWhen>
<to uri="activemq:error_user queue"/>
</onException>

<onException redeliveryPolicyRef="twoRedeliveries">
<exception>com.mycompany.MyUserException</exception>
<to uri="activemq:error_queue"/>

</onException>

Handling exceptions

By default, when an exception is raised in the middle of a route, processing of the current
exchange is interrupted and the thrown exception is propagated back to the consumer
endpoint at the start of the route. When an onException clause is triggered, the behavior
is essentially the same, except that the onException clause performs some processing
before the thrown exception is propagated back.

But this default behavior is not the only way to handle an exception. TheonException
provides various options to modify the exception handling behavior, as follows:

o the section called “Suppressing exception rethrow™—you have the option of
suppressing the rethrown exception after the onException clause has completed. In
other words, in this case the exception does not propagate back to the consumer
endpoint at the start of the route.

o the section called “Continuing processing”—you have the option of resuming normal
processing of the exchange from the point where the exception originally occurred.
Implicitly, this approach also suppresses the rethrown exception.

o the section called “Sending a response”—in the special case where the consumer
endpoint at the start of the route expects a reply (that is, having an InOut MEP), you
might prefer to construct a custom fault reply message, rather than propagating the
exception back to the consumer endpoint.

Suppressing exception rethrow

To prevent the current exception from being rethrown and propagated back to the
consumer endpoint, you can set the handled() option to true in the Java DSL, as follows:

42

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

onException(ValidationException.class)
.handled(true)
.to("activemq:validationFailed");

In the Java DSL, the argument to the handled () option can be of boolean type, of
Predicate type, or of Expression type (where any non-boolean expression is interpreted
as true, if it evaluates to a non-null value).

The same route can be configured to suppress the rethrown exception in the XML DSL,
using the handled element, as follows:

<onException>
<exception>com.mycompany.ValidationException</exception>
<handled>
<constant>true</constant>
</handled>
<to uri="activemq:validationFailed"/>
</onException>

Continuing processing

To continue processing the current message from the point in the route where the
exception was originally thrown, you can set the continued option to true in the Java DSL,
as follows:

onException(ValidationException.class)
.continued(true);

In the Java DSL, the argument to the continued() option can be of boolean type, of
Predicate type, or of Expression type (where any non-boolean expression is interpreted
as true, if it evaluates to a non-null value).

The same route can be configured in the XML DSL, using the continued element, as
follows:

<onException>
<exception>com.mycompany.ValidationException</exception>
<continued>
<constant>true</constant>
</continued>
</onException>

Sending a response

When the consumer endpoint that starts a route expects a reply, you might prefer to
construct a custom fault reply message, instead of simply letting the thrown exception
propagate back to the consumer. There are two essential steps you need to follow in this
case: suppress the rethrown exception using the handled option; and populate the
exchange's Out message slot with a custom fault message.

For example, the following Java DSL fragment shows how to send a reply message
containing the text string, Sorry, whenever theMyFunctionalException exception occurs:

43

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

// we catch MyFunctionalException and want to mark it as handled (= no
failure returned to client)
// but we want to return a fixed text response, so we transform OUT body
as Sorry.
onException(MyFunctionalException.class)

.handled(true)

.transform().constant("Sorry");

If you are sending a fault response to the client, you will often want to incorporate the text
of the exception message in the response. You can access the text of the current
exception message using the exceptionMessage() builder method. For example, you can
send a reply containing just the text of the exception message whenever the
MyFunctionalException exception occurs, as follows:

// we catch MyFunctionalException and want to mark it as handled (= no
failure returned to client)
// but we want to return a fixed text response, so we transform OUT body
and return the exception message
onException(MyFunctionalException.class)

.handled(true)

.transform(exceptionMessage());

The exception message text is also accessible from the Simple language, through the
exception.message variable. For example, you could embed the current exception text in
a reply message, as follows:

// we catch MyFunctionalException and want to mark it as handled (= no
failure returned to client)
// but we want to return a fixed text response, so we transform OUT body
and return a nice message
// using the simple language where we want insert the exception message
onException(MyFunctionalException.class)

.handled(true)

.transform().simple("Error reported: ${exception.message} - cannot
process this message.");

The preceding onException clause can be expressed in XML DSL as follows:

<onException>
<exception>com.mycompany.MyFunctionalException</exception>
<handled>
<constant>true</constant>
</handled>
<transform>
<simple>Error reported: ${exception.message} - cannot process this
message.</simple>
</transform>
</onException>

Exception thrown while handling an exception

An exception that gets thrown while handling an existing exception (in other words, one
that gets thrown in the middle of processing an onException clause) is handled in a special
way. Such an exception is handled by the special fallback exception handler, which handles

a4

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

the exception as follows:
o All existing exception handlers are ignored and processing fails immediately.
e The new exception is logged.
e The new exception is set on the exchange object.

The simple strategy avoids complex failure scenarios which could otherwise end up with an
onException clause getting locked into an infinite loop.

Scopes

The onException clauses can be effective in either of the following scopes:

e RouteBuilder scope—onException clauses defined as standalone statements inside
a RouteBuilder.configure() method affect all of the routes defined in that
RouteBuilder instance. On the other hand, theseonException clauses have no
effect whatsoever on routes defined inside any otherRouteBuilder instance. The
onException clauses must appear before the route definitions.

All of the examples up to this point are defined using the RouteBuilder scope.

e Route scope—onException clauses can also be embedded directly within a route.
These onException clauses affect only the route in which they are defined.

Route scope

You can embed an onException clause anywhere inside a route definition, but you must
terminate the embedded onException clause using theend() DSL command.

For example, you can define an embedded onException clause in the Java DSL, as follows:

// Java
from("direct:start")
.onException(0OrderFailedException.class)
.maximumRedeliveries(1)

.handled(true)
.beanRef("orderService", "orderFailed")
.to("mock:error")

.end()

.beanRef("orderService", "handleOrder")

.to("mock:result");

You can define an embedded onException clause in the XML DSL, as follows:

<route errorHandlerRef="deadLetter">

<from uri="direct:start"/>

<onException>
<exception>com.mycompany.OrderFailedException</exception>
<redeliveryPolicy maximumRedeliveries="1"/>
<handled>

<constant>true</constant>

</handled>
<bean ref="orderService" method="orderFailed"/>
<to uri="mock:error"/>

45

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

</onException>
<bean ref="orderService" method="handleOrder"/>
<to uri="mock:result"/>

</route>

2.3.2. Error Handler

Overview

The errorHandler() clause provides similar features to theonException clause, except
that this mechanism is not able to discriminate between different exception types. The
errorHandler () clause is the original exception handling mechanism provided by Apache
Camel and was available before the onException clause was implemented.

Java DSL example

The errorHandler() clause is defined in aRouteBuilder class and applies to all of the
routes in that RouteBuilder class. It is triggered whenever an exceptionof any kind occurs
in one of the applicable routes. For example, to define an error handler that routes all failed
exchanges to the ActiveMQ deadLetter queue, you can define aRouteBuilder as follows:

public class MyRouteBuilder extends RouteBuilder {

public void configure() {
errorHandler(deadLetterChannel("activemq:deadLetter"));

// The preceding error handler applies

// to all of the following routes:

from("activemq:orderQueue")
.to("pop3://fulfillment@acme.com");

from("file:src/data?noop=true")
.to("file:target/messages");

/] ...

}

Redirection to the dead letter channel will not occur, however, until all attempts at
redelivery have been exhausted.

XML DSL example

In the XML DSL, you define an error handler within a camelContext scope using the
errorHandler element. For example, to define an error handler that routes all failed
exchanges to the ActiveMQ deadLetter queue, you can define anerrorHandler element
as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:camel="http://camel.apache.org/schema/spring"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

46

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

<camelContext xmlns="http://camel.apache.org/schema/spring">
<errorHandler type="DeadLetterChannel"

<route>

<from uri="activemq:orderQueue"/>
<to uri="pop3://fulfillment@acme.com"/>

</route>
<route>

<from uri="file:src/data?noop=true"/>

<to uri="file:target/messages"/>

</route>
</camelContext>

</beans>

Types of error handler

deadLetterUri="activemq:deadlLetter"/>

Table 2.1, “Error Handler Types” provides an overview of the different types of error

handler you can define.

Table 2.1. Error Handler Types

Java DSL Builder

defaultErrorHandler()

deadLetterChannel()

loggingErrorChannel()

noErrorHandler()

XML DSL Type Attribute

DefaultErrorHandler

DeadLetterChannel

LoggingErrorChannel

NoErrorHandler

TransactionErrorHandler

Description

Propagates exceptions back
to the caller and supports the
redelivery policy, but it does
not support a dead letter
queue.

Supports the same features
as the default error handler
and, in addition, supports a
dead letter queue.

Logs the exception text
whenever an exception
occurs.

Dummy handler
implementation that can be
used to disable the error
handler.

An error handler for
transacted routes. A default
transaction error handler
instance is automatically used
for a route that is marked as
transacted.

47

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

2.3.3. doTry, doCatch, and doFinally

Overview

To handle exceptions within a route, you can use a combination of the doTry, doCatch, and
doFinally clauses, which handle exceptions in a similar way to Java'stry, catch, and
finally blocks.

Similarities between doCatch and Java catch

In general, the doCatch() clause in a route definition behaves in an analogous way to the
catch() statement in Java code. In particular, the following features are supported by the
doCatch() clause:

e Multiple doCatch clauses—you can have multipledoCatch clauses within a single
doTry block. ThedoCatch clauses are tested in the order they appear, just like Java
catch() statements. Apache Camel executes the firstdoCatch clause that matches
the thrown exception.

9 NOTE

This algorithm is different from the exception matching algorithm used
by the onException clause—see Section 2.3.1, “onException Clause”
for details.

e Rethrowing exceptions—you can rethrow the current exception from within a
doCatch clause using thehandled sub-clause (see the section called “Rethrowing
exceptions in doCatch”).

Special features of doCatch

There are some special features of the doCatch() clause, however, that have no analogue
in the Java catch() statement. The following features are specific todoCatch():

e Catching multiple exceptions—the doCatch clause allows you to specify a list of
exceptions to catch, in contrast to the Java catch() statement, which catches only
one exception (see the section called “Example”).

e Conditional catching—you can catch an exception conditionally, by appending an
onWhen sub-clause to thedoCatch clause (see the section called “Conditional
exception catching using onWhen").

Example

The following example shows how to write a doTry block in the Java DSL, where the
doCatch() clause will be executed, if either theIOException exception or the
IllegalStateException exception are raised, and thedoFinally() clause is always
executed, irrespective of whether an exception is raised or not.

from("direct:start")
.doTry()
.process(new ProcessorFail())
.to("mock:result")
.doCatch(IOException.class, IllegalStateException.class)

48

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

.to("mock:catch")
.doFinally()

.to("mock:finally")
.end();

Or equivalently, in Spring XML:

<route>
<from uri="direct:start"/>
<!-- here the try starts. its a try .. catch .. finally just as
regular java code -->
<doTry>
<process ref="processorFail"/>
<to uri="mock:result"/>
<doCatch>
<!-- catch multiple exceptions -->
<exception>java.io.IOException</exception>
<exception>java.lang.IllegalStateException</exception>
<to uri="mock:catch"/>
</doCatch>
<doFinally>
<to uri="mock:finally"/>
</doFinally>
</doTry>
</route>

Rethrowing exceptions in doCatch

It is possible to rethrow an exception in a doCatch() clause by calling thehandled () sub-
clause with its argument set to false, as follows:

from("direct:start")
.doTry()
.process(new ProcessorFail())
.to("mock:result")
.doCatch(IOException.class)
// mark this as NOT handled, eg the caller will also get the
exception
.handled(false)
.to("mock:io")
.doCatch(Exception.class)
// and catch all other exceptions
.to("mock:error")
.end();

In the preceding example, if the I0Exception is caught bydoCatch(), the current
exchange is sent to the mock:io endpoint, and then theIOException is rethrown. This
gives the consumer endpoint at the start of the route (in the from() command) an
opportunity to handle the exception as well.

The following example shows how to define the same route in Spring XML:

<route>
<from uri="direct:start"/>
<doTry>

49

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

<process ref="processorFail"/>
<to uri="mock:result"/>
<doCatch>
<exception>java.io.IOException</exception>
<!-- mark this as NOT handled, eg the caller will also get the
exception -->

<handled>
<constant>false</constant>
</handled>
<to uri="mock:io"/>
</doCatch>
<doCatch>
<!-- and catch all other exceptions they are handled by

default (ie handled = true) -->
<exception>java.lang.Exception</exception>
<to uri="mock:error"/>
</doCatch>
</doTry>
</route>

Conditional exception catching using onWhen

A special feature of the Apache Camel doCatch() clause is that you can conditionalize the
catching of exceptions based on an expression that is evaluated at run time. In other
words, if you catch an exception using a clause of the form,
doCatch(ExceptionList).doWhen(Expression), an exception will only be caught, if the
predicate expression, Expression, evaluates to true at run time.

For example, the following doTry block will catch the exceptions,I0Exception and
IllegalStateException, only if the exception message contains the word,Severe:

from("direct:start")

.doTry()

.process(new ProcessorFail())
.to("mock:result")

.doCatch(IOException.class, IllegalStateException.class)
.onWhen (exceptionMessage().contains("Severe"))
.to("mock:catch")

.doCatch(CamelExchangeException.class)
.to("mock:catchCamel")

.doFinally()

.to("mock:finally")

.end();

Or equivalently, in Spring XML:

<route>
<from uri="direct:start"/>
<doTry>
<process ref="processorFail"/>
<to uri="mock:result"/>
<doCatch>
<exception>java.io.IOException</exception>
<exception>java.lang.IllegalStateException</exception>
<onWhen>

50

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

<simple>${exception.message} contains 'Severe'</simple>

</onWhen>
<to uri="mock:catch"/>

</doCatch>

<doCatch>
<exception>org.apache.camel.CamelExchangeException</exception>
<to uri="mock:catchCamel"/>

</doCatch>

<doFinally>
<to uri="mock:finally"/>

</doFinally>

</doTry>
</route>

2.3.4. Propagating SOAP Exceptions

Overview

The Camel CXF component provides an integration with Apache CXF, enabling you to send
and receive SOAP messages from Apache Camel endpoints. You can easily define Apache
Camel endpoints in XML, which can then be referenced in a route using the endpoint's bean
ID. For more details, see CXF.

How to propagate stack trace information

It is possible to configure a CXF endpoint so that, when a Java exception is thrown on the
server side, the stack trace for the exception is marshalled into a fault message and
returned to the client. To enable this feaure, set the dataFormat to PAYLOAD and set the
faultStackTraceEnabled property to true in the cxfEndpoint element, as follows:

<cxf:cxfEndpoint id="router" address="http://localhost:9002/TestMessage"
wsdlURL="ship.wsdl"
endpointName="s:TestSoapEndpoint"
serviceName="s:TestService"
xmlns:s="http://test">
<cxf:properties>
<!-- enable sending the stack trace back to client; the default value
is false-->
<entry key="faultStackTraceEnabled" value="true" />
<entry key="dataFormat" value="PAYLOAD" />
</cxf:properties>
</cxf:cxfEndpoint>

For security reasons, the stack trace does not include the causing exception (that is, the
part of a stack trace that follows Caused by). If you want to include the causing exception
in the stack trace, set the exceptionMessageCauseEnabled property totrue in the
cxfEndpoint element, as follows:

<cxf:cxfEndpoint id="router" address="http://localhost:9002/TestMessage"
wsdlURL="ship.wsdl"
endpointName="s:TestSoapEndpoint"
serviceName="s:TestService"
xmlns:s="http://test">
<cxf:properties>

51

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

<!-- enable to show the cause exception message and the default value
is false -->
<entry key="exceptionMessageCauseEnabled" value="true" />
<!-- enable to send the stack trace back to client, the default value
is false-->
<entry key="faultStackTraceEnabled" value="true" />
<entry key="dataFormat" value="PAYLOAD" />
</cxf:properties>
</cxf:cxfEndpoint>

WARNING
You should only enable the exceptionMessageCauseEnabled flag for

testing and diagnostic purposes. It is normal practice for servers to
conceal the original cause of an exception to make it harder for hostile
users to probe the server.

2.4. BEAN INTEGRATION

Overview

Bean integration provides a general purpose mechanism for processing messages using
arbitrary Java objects. By inserting a bean reference into a route, you can call an arbitrary
method on a Java object, which can then access and modify the incoming exchange. The
mechanism that maps an exchange's contents to the parameters and return values of a
bean method is known as parameter binding. Parameter binding can use any combination of
the following approaches in order to initialize a method's parameters:

e Conventional method signatures — If the method signature conforms to certain
conventions, the parameter binding can use Java reflection to determine what
parameters to pass.

e Annotations and dependency injection — For a more flexible binding mechanism,
employ Java annotations to specify what to inject into the method's arguments. This
dependency injection mechanism relies on Spring 2.5 component scanning.
Normally, if you are deploying your Apache Camel application into a Spring
container, the dependency injection mechanism will work automatically.

o Explicitly specified parameters — You can specify parameters explicitly (either as
constants or using the Simple language), at the point where the bean is invoked.

Bean registry

Beans are made accessible through a bean registry, which is a service that enables you to
look up beans using either the class name or the bean ID as a key. The way that you create
an entry in the bean registry depends on the underlying framework—for example, plain
Java, Spring, Guice, or Blueprint. Registry entries are usually created implicitly (for
example, when you instantiate a Spring bean in a Spring XML file).

52

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

Registry plug-in strategy

Apache Camel implements a plug-in strategy for the bean registry, defining an integration
layer for accessing beans which makes the underlying registry implementation
transparent. Hence, it is possible to integrate Apache Camel applications with a variety of
different bean registries, as shown in Table 2.2, “Registry Plug-Ins”.

Table 2.2. Registry Plug-Ins

Registry Implementation Camel Component with Registry Plug-In
Spring bean registry camel-spring

Guice bean registry camel-guice

Blueprint bean registry camel-blueprint

OSGi service registry deployed in OSGi container

Normally, you do not have to worry about configuring bean registries, because the relevant
bean registry is automatically installed for you. For example, if you are using the Spring
framework to define your routes, the Spring ApplicationContextRegistry plug-in is
automatically installed in the current CamelContext instance.

Deployment in an OSGi container is a special case. When an Apache Camel route is
deployed into the OSGi container, the CamelContext automatically sets up a registry chain
for resolving bean instances: the registry chain consists of the OSGi reqistry, followed by
the Blueprint (or Spring) registry.

Accessing a bean created in Java

To process exchange objects using a Java bean (which is a plain old Java object or POJO),
use the bean () processor, which binds the inbound exchange to a method on the Java
object. For example, to process inbound exchanges using the class, MyBeanProcessor,
define a route like the following:

from("file:data/inbound")
.bean(MyBeanProcessor.class, "processBody")
.to("file:data/outbound");

Where the bean() processor creates an instance of MyBeanProcessor type and invokes the
processBody () method to process inbound exchanges. This approach is adequate if you
only want to access the MyBeanProcessor instance from a single route. However, if you
want to access the same MyBeanProcessor instance from multiple routes, use the variant
of bean() that takes theObject type as its first argument. For example:

MyBeanProcessor myBean = new MyBeanProcessor();
from("file:data/inbound")

.bean(myBean, "processBody")
.to("file:data/outbound");

53

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

from("activemqg:inboundData")
.bean(myBean, "processBody")
.to("activemqg:outboundData");

Accessing overloaded bean methods

If a bean defines overloaded methods, you can choose which of the overloaded methods to
invoke by specifying the method name along with its parameter types. For example, if the
MyBeanBrocessor class has two overloaded methods,processBody(String) and
processBody(String,String), you can invoke the latter overloaded method as follows:

from("file:data/inbound")
.bean(MyBeanProcessor.class, "processBody(String,String)")
.to("file:data/outbound");

Alternatively, if you want to identify a method by the number of parameters it takes, rather
than specifying the type of each parameter explicitly, you can use the wildcard character,
*. For example, to invoke a method namedprocessBody that takes two parameters,
irrespective of the exact type of the parameters, invoke the bean() processor as follows:

from("file:data/inbound")
.bean(MyBeanProcessor.class, "processBody(*,*)")
.to("file:data/outbound");

When specifying the method, you can use either a simple unqualified type name—for
example, processBody (Exchange)—or a fully qualified type name—for example,
processBody(org.apache.camel.Exchange).

NOTE

In the current implementation, the specified type name must be an exact
match of the parameter type. Type inheritance is not taken into account.

Specify parameters explicitly

You can specify parameter values explicitly, when you call the bean method. The following
simple type values can be passed:

e Boolean: true or false.

e Numeric: 123, 7, and so on.

e String: 'In single quotes' or"In double quotes".
o Null object: null.

The following example shows how you can mix explicit parameter values with type
specifiers in the same method invocation:

from("file:data/inbound")

.bean(MyBeanProcessor.class, "processBody(String, 'Sample string value',
true, 7)")

.to("file:data/outbound");

54

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

In the preceding example, the value of the first parameter would presumably be

determined by a parameter binding annotation (see the section called “Basic annotations”).

In addition to the simple type values, you can also specify parameter values using the
Simple language (Chapter 27, The Simple Language). This means that thefull power of the
Simple language is available when specifying parameter values. For example, to pass the
message body and the value of the title header to a bean method:

from("file:data/inbound")
.bean(MyBeanProcessor.class,

"processBodyAndHeader (${body}, ${header.title})")
.to("file:data/outbound");

You can also pass the entire header hash map as a parameter. For example, in the
following example, the second method parameter must be declared to be of type
java.util.Map:

from("file:data/inbound")
.bean(MyBeanProcessor.class,

"processBodyAndAllHeaders (${body}, ${header})")
.to("file:data/outbound");

Basic method signatures

To bind exchanges to a bean method, you can define a method signature that conforms to
certain conventions. In particular, there are two basic conventions for method signatures:

o the section called “Method signature for processing message bodies”.

o the section called “Method signature for processing exchanges”.

Method signature for processing message bodies

If you want to implement a bean method that accesses or modifies the incoming message

body, you must define a method signature that takes a single String argument and returns

a String value. For example:

// Java
package com.acme;

public class MyBeanProcessor {
public String processBody(String body) {
// Do whatever you like to 'body'...
return newBody;

Method signature for processing exchanges

For greater flexibility, you can implement a bean method that accesses the incoming
exchange. This enables you to access or modify all headers, bodies, and exchange
properties. For processing exchanges, the method signature takes a single
org.apache.camel.Exchange parameter and returns void. For example:

55

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

// Java
package com.acme;

public class MyBeanProcessor {
public void processExchange(Exchange exchange) {
// Do whatever you like to 'exchange'...
exchange.getIn().setBody("Here is a new message body!");

Accessing a bean created in Spring XML

Instead of creating a bean instance in Java, you can create an instance using Spring XML. In
fact, this is the only feasible approach if you are defining your routes in XML. To define a
bean in XML, use the standard Spring bean element. The following example shows how to
create an instance of MyBeanProcessor:

<beans ...>

<bean id="myBeanId" class="com.acme.MyBeanProcessor"/>
</beans>

It is also possible to pass data to the bean's constructor arguments using Spring syntax. For
full details of how to use the Spring bean element, see The |oC Container from the Spring
reference guide.

When you create an object instance using the bean element, you can reference it later
using the bean's ID (the value of the bean element's id attribute). For example, given the
bean element with ID equal tomyBeanId, you can reference the bean in a Java DSL route
using the beanRef () processor, as follows:

from("file:data/inbound").beanRef("myBeanId",
"processBody").to("file:data/outbound");

Where the beanRef () processor invokes the MyBeanProcessor.processBody() method on

the specified bean instance. You can also invoke the bean from within a Spring XML route,

using the Camel schema's bean element. For example:

<camelContext id="CamelContextID"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="file:data/inbound" />
<bean ref="myBeanId" method="processBody"/>
<to uri="file:data/outbound"/>
</route>
</camelContext>

Parameter binding annotations

The basic parameter bindings described in the section called “Basic method signatures”
might not always be convenient to use. For example, if you have a legacy Java class that
performs some data manipulation, you might want to extract data from an inbound
exchange and map it to the arguments of an existing method signature. For this kind of
parameter binding, Apache Camel provides the following kinds of Java annotation:

56

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

o the section called “Basic annotations”.
o the section called “Expression language annotations”.

e the section called “Inherited annotations”.

Basic annotations

Table 2.3, “Basic Bean Annotations” shows the annotations from theorg.apache. camel
Java package that you can use to inject message data into the arguments of a bean
method.

Table 2.3. Basic Bean Annotations

Annotation Meaning Parameter?
@Attachments Binds to a list of attachments.
@Body Binds to an inbound message
body.
@Header Binds to an inbound message String name of the header.
header.
@Headers Binds to a java.util.Map of
the inbound message
headers.
@OutHeaders Binds to a java.util.Map of
the outbound message
headers.
@Property Binds to a named exchange String name of the property.
property.
@Properties Binds to a java.util.Map of

the exchange properties.

For example, the following class shows you how to use basic annotations to inject message
data into the processExchange() method arguments.

// Java
import org.apache.camel.*;

public class MyBeanProcessor {
public void processExchange(
@Header (name="user") String user,
@Body String body,
Exchange exchange
) {

// Do whatever you like to 'exchange'...

57

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

exchange.getIn().setBody(body + "UserName = " + user);

Notice how you are able to mix the annotations with the default conventions. As well as
injecting the annotated arguments, the parameter binding also automatically injects the
exchange object into the org.apache.camel.Exchange argument.

Expression language annotations

The expression language annotations provide a powerful mechanism for injecting message
data into a bean method's arguments. Using these annotations, you can invoke an arbitrary
script, written in the scripting language of your choice, to extract data from an inbound
exchange and inject the data into a method argument. Table 2.4, “Expression Language
Annotations” shows the annotations from theorg.apache.camel.language package (and
sub-packages, for the non-core annotations) that you can use to inject message data into
the arguments of a bean method.

Table 2.4. Expression Language Annotations

Annotation Description

@Bean Injects a Bean expression.
@Constant Injects a Constant expression
@EL Injects an EL expression.
@Groovy Injects a Groovy expression.
@Header Injects a Header expression.
@JavaScript Injects a JavaScript expression.
@OGNL Injects an OGNL expression.
@PHP Injects a PHP expression.
@Python Injects a Python expression.
@Ruby Injects a Ruby expression.
@Simple Injects a Simple expression.
@XPath Injects an XPath expression.
@XQuery Injects an XQuery expression.

For example, the following class shows you how to use the @XPath annotation to extract a
username and a password from the body of an incoming message in XML format:

58

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

// Java
import org.apache.camel. language.*;

public class MyBeanProcessor {
public void checkCredentials(
@XPath("/credentials/username/text()") String user,
@XPath("/credentials/password/text()") String pass
) {

// Check the user/pass credentials...

}

The @Bean annotation is a special case, because it enables you to inject the result of
invoking a registered bean. For example, to inject a correlation ID into a method argument,
you can use the @Bean annotation to invoke an ID generator class, as follows:

// Java
import org.apache.camel.language.*;

public class MyBeanProcessor {
public void processCorrelatedMsg(
@Bean("myCorrIdGenerator") String corrlId,
@Body String body
) {

// Check the user/pass credentials...

}

Where the string, myCorrIdGenerator, is the bean ID of the ID generator instance. The ID
generator class can be instantiated using the spring bean element, as follows:

<beans ...>

<bean id="myCorrIdGenerator" class="com.acme.MyIdGenerator"/>
</beans>

Where the MySimpleIdGenerator class could be defined as follows:

// Java
package com.acme;

public class MyIdGenerator {
private UserManager userManager;

public String generate(
@Header (name = "user") String user,
@Body String payload
) throws Exception {
User user = userManager.lookupUser(user);
String userId = user.getPrimaryId();
String id = userId + generateHashCodeForPayload(payload);

59

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

return id;

Notice that you can also use annotations in the referenced bean class, MyIdGenerator. The
only restriction on the generate() method signature is that it must return the correct type

to inject into the argument annotated by @Bean. Because the @Bean annotation does not let

you specify a method name, the injection mechanism simply invokes the first method in the
referenced bean that has the matching return type.

NOTE

Some of the language annotations are available in the core component
(@Bean, @Constant, @Simple, and @XPath). For non-core components, however,
you will have to make sure that you load the relevant component. For
example, to use the OGNL script, you must load the camel-ognl component.

Inherited annotations

Parameter binding annotations can be inherited from an interface or from a superclass. For
example, if you define a Java interface with a Header annotation and aBody annotation, as
follows:

// Java
import org.apache.camel.*;

public interface MyBeanProcessorIntf {
void processExchange(
@Header (name="user") String user,
@Body String body,
Exchange exchange
);

The overloaded methods defined in the implementation class, MyBeanProcessor, now
inherit the annotations defined in the base interface, as follows:

// Java
import org.apache.camel.*;

public class MyBeanProcessor implements MyBeanProcessorIntf {
public void processExchange(
String user, // Inherits Header annotation
String body, // Inherits Body annotation
Exchange exchange

) {
}

Interface implementations

The class that implements a Java interface is often protected, private or in package-only
scope. If you try to invoke a method on an implementation class that is restricted in this

60

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

way, the bean binding falls back to invoking the corresponding interface method, which is
publicly accessible.

For example, consider the following public BeanIntf interface:

// Java
public interface BeanIntf {

void processBodyAndHeader(String body, String title);
}

Where the BeanIntf interface is implemented by the following protectedBeanIntfImpl
class:

// Java
protected class BeanIntfImpl implements BeanIntf {
void processBodyAndHeader(String body, String title) {

}
}

The following bean invocation would fall back to invoking the public
BeanIntf.processBodyAndHeader method:

from("file:data/inbound")

.bean(BeanIntfImpl.class, "processBodyAndHeader(${body},
${header.title})")

.to("file:data/outbound");

Invoking static methods

Bean integration has the capability to invoke static methods without creating an instance of
the associated class. For example, consider the following Java class that defines the static
method, changeSomething():

// Java

public final class MyStaticClass {
private MyStaticClass() {
}

public static String changeSomething(String s) {
if ("Hello World".equals(s)) {
return "Bye World";

}

return null;

}

public void doSomething() {
// noop
}
}

You can use bean integration to invoke the static changeSomething method, as follows:

61

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

from("direct:a")
.bean(MyStaticClass.class, "changeSomething")
.to("mock:a");

Note that, although this syntax looks identical to the invocation of an ordinary function,
bean integration exploits Java reflection to identify the method as static and proceeds to
invoke the method without instantiating MyStaticClass.

Invoking an OSGi service

In the special case where a route is deployed into a Red Hat JBoss Fuse container, it is
possible to invoke an OSGi service directly using bean integration. For example, assuming
that one of the bundles in the OSGi container has exported the service,
org.fusesource.example.HelloWorldOsgiService, you could invoke thesayHello
method using the following bean integration code:

from("file:data/inbound")
.bean(org.fusesource.example.HelloWorldOsgiService.class, "sayHello")
.to("file:data/outbound");

You could also invoke the OSGi service from within a Spring or Blueprint XML file, using the

bean component, as follows:

<to uri="bean:org.fusesource.example.HelloWorldOsgiService?
method=sayHello"/>

The way this works is that Apache Camel sets up a chain of registries when it is deployed in
the OSGi container. First of all, it looks up the specified class name in the OSGi service
registry; if this lookup fails, it then falls back to the local Spring DM or Blueprint registry.

2.5. CREATING EXCHANGE INSTANCES

Overview

When processing messages with Java code (for example, in a bean class or in a processor
class), it is often necessary to create a fresh exchange instance. If you need to create an
Exchange object, the easiest approach is to invoke the methods of theExchangeBuilder
class, as described here.

ExchangeBuilder class

The fully qualified name of the ExchangeBuilder class is as follows:

I org.apache.camel.builder.ExchangeBuilder

The ExchangeBuilder exposes the static method,anExchange, which you can use to start
building an exchange object.

Example

62

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

For example, the following code creates a new exchange object containing the message
body string, Hello World!, and with headers containing username and password
credentials:

// Java
import org.apache.camel.Exchange;
import org.apache.camel.builder.ExchangeBuilder;

Exchange exch = ExchangeBuilder.anExchange(camelCtx)
.withBody("Hello World!")

.withHeader("username", "jdoe")
.withHeader("password", "pass")
Lbuild();

ExchangeBuilder methods

The ExchangeBuilder class supports the following methods:

ExchangeBuilder anExchange(CamelContext context)
(static method) Initiate building an exchange object.

Exchange build()
Build the exchange.

ExchangeBuilder withBody(Object body)
Set the message body on the exchange (that is, sets the exchange's In message body).

ExchangeBuilder withHeader(String key, Object value)
Set a header on the exchange (that is, sets a header on the exchange's In message).

ExchangeBuilder withPattern(ExchangePattern pattern)
Sets the exchange pattern on the exchange.

ExchangeBuilder withProperty(String key, Object value)
Sets a property on the exchange.

2.6. TRANSFORMING MESSAGE CONTENT

Abstract

Apache Camel supports a variety of approaches to transforming message content. In
addition to a simple native API for modifying message content, Apache Camel supports
integration with several different third-party libraries and transformation standards.

2.6.1. Simple Message Transformations

Overview

63

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

The Java DSL has a built-in API that enables you to perform simple transformations on
incoming and outgoing messages. For example, the rule shown in Example 2.1, “Simple
Transformation of Incoming Messages” appends the text, World!, to the end of the
incoming message body.

Example 2.1. Simple Transformation of Incoming Messages

I from("SourceURL") .setBody(body().append(" World!")).to("TargetURL");

Where the setBody() command replaces the content of the incoming message's body.

API for simple transformations

You can use the following API classes to perform simple transformations of the message
content in a router rule:

e org.apache.camel.model.ProcessorDefinition
e org.apache.camel.builder.Builder

e org.apache.camel.builder.ValueBuilder

ProcessorDefinition class

The org.apache.camel.model.ProcessorDefinition class defines the DSL commands
you can insert directly into a router rule—for example, the setBody() command in
Example 2.1, “Simple Transformation of Incoming Messages”. Table 2.5, “Transformation
Methods from the ProcessorDefinition Class” shows the ProcessorDefinition methods
that are relevant to transforming message content:

Table 2.5. Transformation Methods from the ProcessorDefinition Class

Method Description

Type convertBodyTo(Class type) Converts the IN message body to the specified
type.

Type removeFaultHeader(String name) Adds a processor which removes the header
on the FAULT message.

Type removeHeader(String name) Adds a processor which removes the header
on the IN message.

Type removeProperty(String name) Adds a processor which removes the exchange
property.

ExpressionClause<ProcessorDefinitio Adds a processor which sets the body on the

n<Type>> setBody() IN message.
Type setFaultBody(Expression Adds a processor which sets the body on the
expression) FAULT message.

64

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

Method Description

Type setFaultHeader(String name,
Expression expression)

ExpressionClause<ProcessorDefinitio
n<Type>> setHeader(String name)

Type setHeader(String name,
Expression expression)

ExpressionClause<ProcessorDefinitio
n<Type>> setOutHeader(String name)

Type setOutHeader(String name,
Expression expression)

ExpressionClause<ProcessorDefinitio
n<Type>> setProperty(String name)

Type setProperty(String name,
Expression expression)

ExpressionClause<ProcessorDefinitio
n<Type>> transform()

Type transform(Expression
expression)

Builder class

Adds a processor which sets the header on the
FAULT message.

Adds a processor which sets the header on the
IN message.

Adds a processor which sets the header on the
IN message.

Adds a processor which sets the header on the
OUT message.

Adds a processor which sets the header on the
OUT message.

Adds a processor which sets the exchange
property.

Adds a processor which sets the exchange
property.

Adds a processor which sets the body on the
OUT message.

Adds a processor which sets the body on the
OUT message.

The org.apache.camel.builder.Builder class provides access to message content in
contexts where expressions or predicates are expected. In other words, Builder methods
are typically invoked in the arguments of DSL commands—for example, the body ()
command in Example 2.1, “Simple Transformation of Incoming Messages”. Table 2.6,
“Methods from the Builder Class” summarizes the static methods available in theBuilder

class.

Table 2.6. Methods from the Builder Class

Method Description

static <E extends Exchange>
ValueBuilder<E> body()

static <E extends Exchange,T>
ValueBuilder<E> bodyAs(Class<T>

type)

Returns a predicate and value builder for the
inbound body on an exchange.

Returns a predicate and value builder for the
inbound message body as a specific type.

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Method Description

static <E extends Exchange>
ValueBuilder<E> constant(Object
value)

static <E extends Exchange>
ValueBuilder<E> faultBody()

static <E extends Exchange,T>
ValueBuilder<E>
faultBodyAs (Class<T> type)

static <E extends Exchange>
ValueBuilder<E> header(String name)

static <E extends Exchange>
ValueBuilder<E> outBody()

static <E extends Exchange>
ValueBuilder<E> outBodyAs(Class<T>
type)

static ValueBuilder property(String
name)

static ValueBuilder
regexReplaceAll(Expression content,
String regex, Expression
replacement)

static ValueBuilder
regexReplaceAll(Expression content,
String regex, String replacement)

static ValueBuilder sendTo(String
uri)

static <E extends Exchange>
ValueBuilder<E>
systemProperty(String name)

static <E extends Exchange>
ValueBuilder<E>
systemProperty(String name, String
defaultValue)

ValueBuilder class

Returns a constant expression.

Returns a predicate and value builder for the
fault body on an exchange.

Returns a predicate and value builder for the
fault message body as a specific type.

Returns a predicate and value builder for
headers on an exchange.

Returns a predicate and value builder for the
outbound body on an exchange.

Returns a predicate and value builder for the
outbound message body as a specific type.

Returns a predicate and value builder for
properties on an exchange.

Returns an expression that replaces all
occurrences of the regular expression with the
given replacement.

Returns an expression that replaces all
occurrences of the regular expression with the
given replacement.

Returns an expression processing the
exchange to the given endpoint uri.

Returns an expression for the given system
property.

Returns an expression for the given system
property.

The org.apache.camel.builder.ValueBuilder class enables you to modify values

66

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

returned by the Builder methods. In other words, the methods inValueBuilder provide a
simple way of modifying message content. Table 2.7, “Modifier Methods from the
ValueBuilder Class” summarizes the methods available in theValueBuilder class. That is,
the table shows only the methods that are used to modify the value they are invoked on
(for full details, see the APl Reference documentation).

Table 2.7. Modifier Methods from the ValueBuilder Class

Method Description

ValueBuilder<E> append(Object
value)

Predicate contains(Object value)

ValueBuilder<E> convertTo(Class
type)

ValueBuilder<E> convertToString()

Predicate endsWith(Object value)

<T> T evaluate(Exchange exchange,
Class<T> type)

Predicate in(Object... values)

Predicate in(Predicate...
predicates)

Predicate isEqualTo(Object value)

Predicate isGreaterThan(Object
value)

Predicate
isGreaterThanOrEqualTo(Object
value)

Predicate isInstanceOf(Class type)

Predicate isLessThan(Object value)

Appends the string evaluation of this
expression with the given value.

Create a predicate that the left hand
expression contains the value of the right hand
expression.

Converts the current value to the given type
using the registered type converters.

Converts the current value a String using the
registered type converters.

Returns true, if the current value is equal to
the given value argument.

Returns true, if the current value is greater
than the given value argument.

Returns true, if the current value is greater
than or equal to the given value argument.

Returns true, if the current value is an instance
of the given type.

Returns true, if the current value is less than
the given value argument.

67

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Method Description

Predicate isLessThanOrEqualTo(Object

value)

Predicate isNotEqualTo(Object value)

Predicate isNotNull()

Predicate isNull()

Predicate matches(Expression
expression)

Predicate not(Predicate predicate)

ValueBuilder prepend(Object value)

Predicate regex(String regex)

ValueBuilder<E>
regexReplaceAll(String regex,
Expression<E> replacement)

ValueBuilder<E>
regexReplaceAll(String regex, String
replacement)

ValueBuilder<E>
regexTokenize(String regex)

ValueBuilder sort(Comparator
comparator)

Predicate startsWith(Object value)

ValueBuilder<E> tokenize()

ValueBuilder<E> tokenize(String
token)

Returns true, if the current value is less than or
equal to the given value argument.

Returns true, if the current value is not equal
to the given value argument.

Returns true, if the current value is notnull.

Returns true, if the current value isnull.

Negates the predicate argument.

Prepends the string evaluation of this
expression to the given value.

Replaces all occurrencies of the regular
expression with the given replacement.

Replaces all occurrencies of the regular
expression with the given replacement.

Tokenizes the string conversion of this
expression using the given regular expression.

Sorts the current value using the given
comparator.

Returns true, if the current value matches the
string value of the value argument.

Tokenizes the string conversion of this
expression using the comma token separator.

Tokenizes the string conversion of this
expression using the given token separator.

2.6.2. Marshalling and Unmarshalling

Java DSL commands

638

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

You can convert between low-level and high-level message formats using the following
commands:

o marshal()— Converts a high-level data format to a low-level data format.

o unmarshal() — Converts a low-level data format to a high-level data format.

Data formats

Apache Camel supports marshalling and unmarshalling of the following data formats:
e Java serialization
o JAXB
¢ XMLBeans

e XStream

Java serialization

Enables you to convert a Java object to a blob of binary data. For this data format,
unmarshalling converts a binary blob to a Java object, and marshalling converts a Java
object to a binary blob. For example, to read a serialized Java object from an endpoint,
SourceURL, and convert it to a Java object, you use a rule like the following:

from("SourceURL") .unmarshal().serialization()
.<FurtherProcessing>.to("TargetURL");

Or alternatively, in Spring XML:

<camelContext id="serialization"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="SourceURL" />
<unmarshal>
<serialization/>
</unmarshal>
<to uri="TargetURL"/>
</route>
</camelContext>

JAXB

Provides a mapping between XML schema types and Java types (see
https://jaxb.dev.java.net/). For JAXB, unmarshalling converts an XML data type to a Java
object, and marshalling converts a Java object to an XML data type. Before you can use
JAXB data formats, you must compile your XML schema using a JAXB compiler to generate
the Java classes that represent the XML data types in the schema. This is called binding the
schema. After the schema is bound, you define a rule to unmarshal XML data to a Java
object, using code like the following:

org.apache.camel.spi.DataFormat jaxb = new
org.apache.camel.model.dataformat.JaxbDataFormat ("GeneratedPackageName") ;

69

https://jaxb.dev.java.net/

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

from("SourceURL") .unmarshal(jaxb)
.<FurtherProcessing>.to("TargetURL");

where GeneratedPackagename is the name of the Java package generated by the JAXB
compiler, which contains the Java classes representing your XML schema.

Or alternatively, in Spring XML:

<camelContext id="jaxb" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="SourceURL" />
<unmarshal>
<jaxb prettyPrint="true" contextPath="GeneratedPackageName" />
</unmarshal>
<to uri="TargetURL"/>
</route>
</camelContext>

XMLBeans

Provides an alternative mapping between XML schema types and Java types (see
http://xmlbeans.apache.org/). For XMLBeans, unmarshalling converts an XML data type to a
Java object and marshalling converts a Java object to an XML data type. For example, to
unmarshal XML data to a Java object using XMLBeans, you use code like the following:

from("SourceURL") .unmarshal() .xmlBeans ()
.<FurtherProcessing>.to("TargetURL");

Or alternatively, in Spring XML:

<camelContext id="xmlBeans" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="SourceURL" />
<unmarshal>
<xmlBeans prettyPrint="true"/>
</unmarshal>
<to uri="TargetURL"/>
</route>
</camelContext>

XStream

Provides another mapping between XML types and Java types (see
http://xstream.codehaus.org/). XStream is a serialization library (like Java serialization),
enabling you to convert any Java object to XML. For XStream, unmarshalling converts an
XML data type to a Java object, and marshalling converts a Java object to an XML data type.

from("SourceURL") .unmarshal() .xstream()
.<FurtherProcessing>.to("TargetURL");

NOTE

The XStream data format is currently not supported in Spring XML.

70

http://xmlbeans.apache.org/
http://xstream.codehaus.org/

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

2.6.3. Endpoint Bindings

What is a binding?

In Apache Camel, a binding is a way of wrapping an endpoint in a contract—for example, by
applying a Data Format, a Content Enricher or a validation step. A condition or
transformation is applied to the messages coming in, and a complementary condition or
transformation is applied to the messages going out.

DataFormatBinding

The DataFormatBinding class is useful for the specific case where you want to define a
binding that marshals and unmarshals a particular data format (see Section 2.6.2,
“Marshalling and Unmarshalling”). In this case, all that you need to do to create a binding is
to create a DataFormatBinding instance, passing a reference to the relevant data format in
the constructor.

For example, the XML DSL snippet in Example 2.2, “JAXB Binding” shows a binding (with ID,

jaxb) that is capable of marshalling and unmarshalling the JAXB data format when it is
associated with an Apache Camel endpoint:

Example 2.2. JAXB Binding
<beans ... >
<bean id="jaxb"
class="org.apache.camel.processor.binding.DataFormatBinding">

<constructor-arg ref="jaxbformat"/>
<bean id="jaxbformat"

</bean>
class="org.apache.camel.model.dataformat.JaxbDataFormat">
<property name="prettyPrint" value="true"/>
<property name="contextPath" value="org.apache.camel.example"/>
</bean>

</beans>

Associating a binding with an endpoint

The following alternatives are available for associating a binding with an endpoint:
o the section called “Binding URI”

o the section called “BindingComponent”

Binding URI

To associate a binding with an endpoint, you can prefix the endpoint URI with
binding:NameOfBinding, where NameOfBinding is the bean ID of the binding (for example,
the ID of a binding bean created in Spring XML).

71

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

For example, the following example shows how to associate ActiveMQ endpoints with the
JAXB binding defined in Example 2.2, “JAXB Binding”.

<beans ...>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="binding:jaxb:activemq:orderQueue"/>
<to uri="binding:jaxb:activemq:otherQueue"/>
</route>
</camelContext>

</beans>

BindingComponent

Instead of using a prefix to associate a binding with an endpoint, you can make the
association implicit, so that the binding does not need to appear in the URI. For existing
endpoints that do not have an implicit binding, the easiest way to achieve this is to wrap
the endpoint using the BindingComponent class.

For example, to associate the jaxb binding with activemq endpoints, you could define a
new BindingComponent instance as follows:

<beans ... >

<bean id="jaxbmq"
class="org.apache.camel.component.binding.BindingComponent">
<constructor-arg ref="jaxb"/>
<constructor-arg value="activemq:foo."/>
</bean>

<bean id="jaxb"
class="org.apache.camel.processor.binding.DataFormatBinding">
<constructor-arg ref="jaxbformat"/>
</bean>

<bean id="jaxbformat"
class="org.apache.camel.model.dataformat.JaxbDataFormat">
<property name="prettyPrint" value="true"/>
<property name="contextPath" value="org.apache.camel.example"/>
</bean>

</beans>

Where the (optional) second constructor argument to jaxbmq defines a URI prefix. You can
now use the jaxbmq ID as the scheme for an endpoint URI. For example, you can define the
following route using this binding component:

<beans ...>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="jaxbmq:firstQueue"/>
<to uri="jaxbmqg:otherQueue"/>

72

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

</route>
</camelContext>

</beans>

The preceding route is equivalent to the following route, which uses the binding URI
approach:

<beans ...>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="binding:jaxb:activemq: foo.firstQueue"/>
<to uri="binding:jaxb:activemq:foo.otherQueue"/>
</route>
</camelContext>

</beans>
NOTE

For developers that implement a custom Apache Camel component, it is
possible to achieve this by implementing an endpoint class that inherits from
the org.apache.camel.spi.HasBinding interface.

BindingComponent constructors

The BindingComponent class supports the following constructors:

public BindingComponent()
No arguments form. Use property injection to configure the binding component instance.

public BindingComponent(Binding binding)
Associate this binding component with the specified Binding object, binding.

public BindingComponent(Binding binding, String uriPrefix)

Associate this binding component with the specified Binding object, binding, and URI
prefix, uriPrefix. This is the most commonly used constructor.

public BindingComponent(Binding binding, String uriPrefix, String uriPostfix)

This constructor supports the additional URI post-fix, uriPostfix, argument, which is
automatically appended to any URIs defined using this binding component.

Implementing a custom binding

In addition to the DataFormatBinding, which is used for marshalling and unmarshalling
data formats, you can implement your own custom bindings. Define a custom binding as
follows:

1. Implement an org.apache.camel.Processor class to perform a transformation on
messages incoming to a consumer endpoint (appearing in a from element).

73

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

. Implement a complementary org.apache.camel.Processor class to perform the

reverse transformation on messages outgoing from a producer endpoint (appearing
in a to element).

. Implement the org.apache.camel.spi.Binding interface, which acts as a factory

for the processor instances.

Binding interface

Example 2.3, “The org.apache.camel.spi.Binding Interface” shows the definition of the
org.apache.camel.spi.Binding interface, which you must implement to define a custom
binding.

Example 2.3. The org.apache.camel.spi.Binding Interface

// Java
package org.apache.camel.spi;

import org.apache.camel.Processor;

/**

* Represents a Binding or contract

* which can be applied to an Endpoint; such as ensuring that a
particular

* Data Format is
used on messages in and out of an endpoint.

*/
public interface Binding {

/**

* Returns a new {@link Processor} which is used by a producer on an
endpoint to implement

* the producer side binding before the message is sent to the
underlying endpoint.

*/

Processor createProduceProcessor();

/**

* Returns a new {@link Processor} which is used by a consumer on an
endpoint to process the

* message with the binding before its passed to the endpoint
consumer producer.

*/

Processor createConsumeProcessor();

-~

When to use bindings

Bindings are useful when you need to apply the same kind of transformation to many
different kinds of endpoint.

2.7. PROPERTY PLACEHOLDERS

74

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

Overview

The property placeholders feature can be used to substitute strings into various contexts
(such as endpoint URIs and attributes in XML DSL elements), where the placeholder settings
are stored in Java properties files. This feature can be useful, if you want to share settings
between different Apache Camel applications or if you want to centralize certain
configuration settings.

For example, the following route sends requests to a Web server, whose host and port are
substituted by the placeholders, {{remote.host}} and {{remote.port}}:

I from("direct:start").to("http://{{remote.host}}:{{remote.port}}");

The placeholder values are defined in a Java properties file, as follows:

Java properties file
remote.host=myserver.com
remote.port=8080

Property files

Property settings are stored in one or more Java properties files and must conform to the
standard Java properties file format. Each property setting appears on its own line, in the
format Key=Value. Lines with# or ! as the first non-blank character are treated as
comments.

For example, a property file could have content as shown in Example 2.4, “Sample Property
File”.

Example 2.4. Sample Property File
Property placeholder settings
(in Java properties file format)

cool.end=mock:result
cool.result=result
cool.concat=mock:{{cool.result}}
cool.start=direct:cool
cool.showid=true

cheese.end=mock:cheese
cheese.quote=Camel rocks
cheese. type=Gouda

bean. foo=foo0
bean.bar=bar

Resolving properties

The properties component must be configured with the locations of one or more property
files before you can start using it in route definitions. You must provide the property values
using one of the following resolvers:

classpath:PathName, PathName, ...

75

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

(Default) Specifies locations on the classpath, wherePathName is a file pathname
delimited using forward slashes.

file:PathName, PathName, . ..

Specifies locations on the file system, where PathName is a file pathname delimited
using forward slashes.

ref:BeanID
Specifies the ID of a java.util.Properties object in the registry.

blueprint:BeanID

Specifies the ID of a cm:property-placeholder bean, which is used in the context of an
OSGi Blueprint file to access properties defined in the OSG/ Configuration Admin service.
For details, see the section called “Integration with OSGi Blueprint property
placeholders”.

For example, to specify the com/fusesource/cheese.properties property file and the
com/fusesource/bar.properties property file, both located on the classpath, you would
use the following location string:

I com/fusesource/cheese.properties,com/fusesource/bar.properties

NOTE

You can omit the classpath: prefix in this example, because the classpath
resolver is used by default.

Specifying locations using system properties and environment
variables

You can embed Java system properties and O/S environment variables in a location
PathName.

Java system properties can be embedded in a location resolver using the syntax,
${PropertyName}. For example, if the root directory of Red Hat JBoss Fuse is stored in the
Java system property, karaf.home, you could embed that directory value in a file location,
as follows:

I file:${karaf.home}/etc/foo.properties

0O/S environment variables can be embedded in a location resolver using the syntax,
${env:VarName}. For example, if the root directory of JBoss Fuse is stored in the
environment variable, SMX_HOME, you could embed that directory value in a file location, as
follows:

I file:${env:SMX HOME}/etc/foo.properties

Configuring the properties component

Before you can start using property placeholders, you must configure the properties
component, specifying the locations of one or more property files.

76

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

In the Java DSL, you can configure the properties component with the property file
locations, as follows:

// Java
import org.apache.camel.component.properties.PropertiesComponent;

PropertiesComponent pc = new PropertiesComponent();
pc.setlLocation("com/fusesource/cheese.properties, com/fusesource/bar.proper
ties");

context.addComponent ("properties", pc);

As shown in the addComponent () call, the name of the properties componentmust be set
to properties.

In the XML DSL, you can configure the properties component using the dedicated
propertyPlacholder element, as follows:

<camelContext ...>
<propertyPlaceholder
id="properties"
location="com/fusesource/cheese.properties,com/fusesource/bar.properties”

/>
</camelContext>

If you want the properties component to ignore any missing .properties files when it is
being initialized, you can set the ignoreMissinglLocation option to true (normally, a
missing .properties file would result in an error being raised).

Placeholder syntax

After it is configured, the property component automatically substitutes placeholders (in
the appropriate contexts). The syntax of a placeholder depends on the context, as follows:

e In endpoint URIs and in Spring XML files—the placeholder is specified as{{Key}}.

o When setting XML DSL attributes—xs:string attributes are set using the following
syntax:

I AttributeName="{{Key}}"

Other attribute types (for example, xs:int or xs:boolean) must be set using the
following syntax:

I prop:AttributeName="Key"

Where prop is associated with thehttp://camel.apache.org/schema/placeholder
namespace.

o When setting Java DSL EIP options—to set an option on an Enterprise Integration
Pattern (EIP) command in the Java DSL, add a placeholder() clause like the
following to the fluent DSL:

I .placeholder("OptionName", "Key")

77

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

e In Simple language expressions—the placeholder is specified as
${properties:Key}.

Substitution in endpoint URIs

Wherever an endpoint URI string appears in a route, the first step in parsing the endpoint
URI is to apply the property placeholder parser. The placeholder parser automatically
substitutes any property names appearing between double braces, {{Key}}. For example,
given the property settings shown in Example 2.4, “Sample Property File”, you could define
a route as follows:

from("{{cool.start}}")
.to("log:{{cool.start}}?showBodyType=false&showExchangeIld=
{{cool.showid}}")
.to("mock:{{cool.result}}");

By default, the placeholder parser looks up the properties bean ID in the registry to find
the property component. If you prefer, you can explicitly specify the scheme in the
endpoint URIs. For example, by prefixing properties: to each of the endpoint URIs, you
can define the following equivalent route:

from("properties: {{cool.start}}")
.to("properties:log:{{cool.start}}?showBodyType=false&showExchangeld=
{{cool.showid}}")
.to("properties:mock:{{cool.result}}");

When specifying the scheme explicitly, you also have the option of specifying options to the
properties component. For example, to override the property file location, you could set the
location option as follows:

from("direct:start").to("properties:{{bar.end}}?
location=com/mycompany/bar.properties");

Substitution in Spring XML files

You can also use property placeholders in the XML DSL, for setting various attributes of the
DSL elements. In this context, the placholder syntax also uses double braces, {{Key}}. For
example, you could define a jmxAgent element using property placeholders, as follows:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<propertyPlaceholder id="properties"
location="org/apache/camel/spring/jmx.properties"/>

<!-- we can use property placeholders when we define the JMX agent -->
<jmxAgent id="agent" registryPort="{{myjmx.port}}"
usePlatformMBeanServer="{{myjmx.usePlatform}}"
createConnector="true"
statisticsLevel="RoutesOnly"
/>

<route>
<from uri="seda:start"/>

78

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

<to uri="mock:result"/>
</route>
</camelContext>

Substitution of XML DSL attribute values

You can use the regular placeholder syntax for specifying attribute values of xs:string
type—for example, <jmxAgent registryPort="{{myjmx.port}}" ...>. But for attributes
of any other type (for example, xs:int or xs:boolean), you must use the special syntax,
prop:AttributeName="Key".

For example, given that a property file defines the stop. flag property to have the value,
true, you can use this property to set thestopOnException boolean attribute, as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:prop="http://camel.apache.org/schema/placeholder"
. >

<bean id="illegal" class="java.lang.IllegalArgumentException">
<constructor-arg index="0" value="Good grief!"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<propertyPlaceholder id="properties"

location="classpath:org/apache/camel/component/properties/myprop.propertie
SII

xmlns="http://camel.apache.org/schema/spring"/>

<route>
<from uri="direct:start"/>
<multicast prop:stopOnException="stop.flag">
<to uri="mock:a"/>
<throwException ref="damn"/>
<to uri="mock:b"/>
</multicast>
</route>

</camelContext>

</beans>

IMPORTANT

The prop prefix must be explicitly assigned to the
http://camel.apache.org/schema/placeholder namespace in your Spring
file, as shown in the beans element of the preceding example.

Substitution of Java DSL EIP options

79

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

When invoking an EIP command in the Java DSL, you can set any EIP option using the value
of a property placeholder, by adding a sub-clause of the form,
placeholder("OptionName", "Key").

For example, given that a property file defines the stop.flag property to have the value,
true, you can use this property to set thestopOnException option of the multicast EIP, as
follows:

from("direct:start")
.multicast().placeholder("stopOnException", "stop.flag")
.to("mock:a").throwException(new
IllegalAccessException("Damn")).to("mock:b");

Substitution in Simple language expressions

You can also substitute property placeholders in Simple language expressions, but in this
case the syntax of the placeholder is ${properties:Key}. For example, you can substitute
the cheese.quote placehoder inside a Simple expression, as follows:

from("direct:start")
.transform().simple("Hi ${body} do you think
${properties:cheese.quote}?");

It is also possible to override the location of the property file using the syntax,
${properties:Location:Key}. For example, to substitute thebar.quote placeholder
using the settings from the com/mycompany/bar.properties property file, you can define a
Simple expression as follows:

from("direct:start")
.transform().simple("Hi ${body}.
${properties:com/mycompany/bar.properties:bar.quote}.");

Integration with OSGi Blueprint property placeholders

If you deploy your route into the Red Hat JBoss Fuse OSGi container, you can integrate the
Apache Camel property placeholder mechanism with JBoss Fuse's Blueprint property
placeholder mechanism (in fact, the integration is enabled by default). There are two basic
approaches to setting up the integration, as follows:

o the section called “Implicit Blueprint integration”.

o the section called “Explicit Blueprint integration”.

Implicit Blueprint integration

If you define a camelContext element inside an OSGi Blueprint file, the Apache Camel
property placeholder mechanism automatically integrates with the Blueprint property
placeholder mechanism. That is, placeholders obeying the Apache Camel syntax (for
example, {{cool.end}}) that appear within the scope ofcamelContext are implicitly
resolved by looking up the Blueprint property placeholder mechanism.

For example, consider the following route defined in an OSGi Blueprint file, where the last
endpoint in the route is defined by the property placeholder, {{result}}:

80

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

<blueprint xmlns="http://www.0sgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-
cm/v1.0.0"
xsi:schemaLocation="
http://www.o0sgi.org/xmlns/blueprint/v1.0.0
http://www.o0sgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

<!-- 0SGI blueprint property placeholder -->
<cm:property-placeholder id="myblueprint.placeholder" persistent-
id="camel.blueprint">
<!-- list some properties for this test -->
<cm:default-properties>
<cm:property name="result" value="mock:result"/>
</cm:default-properties>
</cm:property-placeholder>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<!-- 1in the route we can use {{ }} placeholders which will look up
in blueprint,
as Camel will auto detect the 0SGi blueprint property
placeholder and use it -->
<route>
<from uri="direct:start"/>
<to uri="mock:foo"/>
<to uri="{{result}}"/>
</route>
</camelContext>

</blueprint>

The Blueprint property placeholder mechanism is initialized by creating a cm: property-
placeholder bean. In the preceding example, thecm:property-placeholder bean is
associated with the camel.blueprint persistent ID, where a persistent ID is the standard
way of referencing a group of related properties from the OSGi Configuration Adminn
service. In other words, the cm:property-placeholder bean provides access to all of the
properties defined under the camel.blueprint persistent ID. It is also possible to specify
default values for some of the properties (using the nested cm:property elements).

In the context of Blueprint, the Apache Camel placeholder mechanism searches for an
instance of cm:property-placeholder in the bean registry. If it finds such an instance, it
automatically integrates the Apache Camel placeholder mechanism, so that placeholders
like, {{result}}, are resolved by looking up the key in the Blueprint property placeholder
mechanism (in this example, through the myblueprint.placeholder bean).

NOTE

The default Blueprint placeholder syntax (accessing the Blueprint properties
directly) is ${Key}. Hence, outside the scope of a camelContext element, the
placeholder syntax you must use is ${Key}. Whereas, inside the scope of a
camelContext element, the placeholder syntax you must use is{{Key}}.

Explicit Blueprint integration

81

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

If you want to have more control over where the Apache Camel property placeholder
mechanism finds its properties, you can define a propertyPlaceholder element and
specify the resolver locations explicitly.

For example, consider the following Blueprint configuration, which differs from the previous
example in that it creates an explicit propertyPlaceholder instance:

<blueprint xmlns="http://www.0sgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-
cm/v1.0.0"
xsi:schemaLocation="
http://www.o0sgi.org/xmlns/blueprint/v1.0.0
http://www.o0sgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

<!-- 0SGI blueprint property placeholder -->
<cm:property-placeholder id="myblueprint.placeholder" persistent-
id="camel.blueprint">
<!-- list some properties for this test -->
<cm:default-properties>
<cm:property name="result" value="mock:result"/>
</cm:default-properties>
</cm:property-placeholder>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<!-- using Camel properties component and refer to the blueprint
property placeholder by its id -->

<propertyPlaceholder id="properties"
location="blueprint:myblueprint.placeholder"/>

<!-- 1in the route we can use {{ }} placeholders which will lookup
in blueprint -->
<route>
<from uri="direct:start"/>
<to uri="mock:foo"/>
<to uri="{{result}}"/>
</route>

</camelContext>
</blueprint>

In the preceding example, the propertyPlaceholder element specifies explicitly which
cm:property-placeholder bean to use by setting the location to
blueprint:myblueprint.placeholder. That is, theblueprint: resolver explicitly
references the ID, myblueprint.placeholder, of the cm:property-placeholder bean.

This style of configuration is useful, if there is more than one cm:property-placeholder
bean defined in the Blueprint file and you need to specify which one to use. It also makes it
possible to source properties from multiple locations, by specifying a comma-separated list
of locations. For example, if you wanted to look up properties both from the cm:property-
placeholder bean and from the properties file,nyproperties.properties, on the
classpath, you could define the propertyPlaceholder element as follows:

I <propertyPlaceholder id="properties"

82

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

location="blueprint:myblueprint.placeholder,classpath:myproperties.propert
ies"/>

Integration with Spring property placeholders

If you define your Apache Camel application using XML DSL in a Spring XML file, you can
integrate the Apache Camel property placeholder mechanism with Spring property
placeholder mechanism by declaring a Spring bean of type,
org.apache.camel.spring.spi.BridgePropertyPlaceholderConfigurer.

Define a BridgePropertyPlaceholderConfigurer, which replaces both Apache Camel's
propertyPlaceholder element and Spring'sctx:property-placeholder element in the
Spring XML file. You can then refer to the configured properties using either the Spring
${PropName} syntax or the Apache Camel{{PropName}} syntax.

For example, defining a bridge property placeholder that reads its property settings from
the cheese.properties file:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ctx="http://www.springframework.org/schema/context"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
>

<!-- Bridge Spring property placeholder with Camel -->
<!-- Do not use <ctx:property-placeholder ... > at the same time -->
<bean id="bridgePropertyPlaceholder"

class="org.apache.camel.spring.spi.BridgePropertyPlaceholderConfigurer">
<property name="location"

value="classpath:org/apache/camel/component/properties/cheese.properties"/
>

</bean>

<!-- A bean that uses Spring property placeholder -->
<!-- The ${hi} is a spring property placeholder -->
<bean id="hello"
class="org.apache.camel.component.properties.HelloBean">
<property name="greeting" value="${hi}"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!-- Use Camel's property placeholder {{ }} style -->
<route>
<from uri="direct:{{cool.bar}}"/>
<bean ref="hello"/>
<to uri="{{cool.end}}"/>
</route>

83

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

</camelContext>

</beans>

NOTE

Alternatively, you can set the location attribute of the
BridgePropertyPlaceholderConfigurer to point at a Spring properties file.
The Spring properties file syntax is fully supported.

2.8. ASPECT ORIENTED PROGRAMMING

Overview

The aspect oriented programming (AOP) feature in Apache Camel enables you to apply
before and after processing to a specified portion of a route. As a matter of fact, AOP does
not provide anything that you could not do with the regular route syntax. The advantage of
the AOP syntax, however, is that it enables you to specify before and after processing at a
single point in the route. In some cases, this gives a more readable syntax. The typical use
case for AOP is the application of a symmetrical pair of operations before and after a route
fragment is processed. For example, typical pairs of operations that you might want to
apply using AOP are: encrypt and decrypt; begin transaction and commit transaction;
allocate resources and deallocate resources; and so on.

Java DSL example

In Java DSL, the route fragment to which you apply before and after processing is
bracketed between aop() and end(). For example, the following route performs AOP
processing around the route fragment that calls the bean methods:

from("jms:queue:inbox")
.aop().around("log:before", "log:after")
.to("bean:order?method=validate")
.to("bean:order?method=handle")
.end()
.to("jms:queue:order");

Where the around() subclause specifies an endpoint, Log:before, where the exchange is
routed before processing the route fragment and an endpoint,log:after, where the
exchange is routed after processing the route fragment.

AOP options in the Java DSL

Starting an AOP block with aop () .around () is probably the most common use case, but
the AOP block supports other subclauses, as follows:

around () —specifies before and after endpoints.

°

°

begin ()—specifies before endpoint only.

after()—specifies after endpoint only.

°

e aroundFinally()—specifies a before endpoint, and an after endpoint that is always
called, even when an exception occurs in the enclosed route fragment.

84

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

o afterFinally()—specifies an after endpoint that is always called, even when an
exception occurs in the enclosed route fragment.

Spring XML example

In the XML DSL, the route fragment to which you apply before and after processing is
enclosed in the aop element. For example, the following Spring XML route performs AOP
processing around the route fragment that calls the bean methods:

<route>
<from uri="jms:queue:inbox"/>
<aop beforeUri="log:before" afterUri="log:after">
<to uri="bean:order?method=validate"/>
<to uri="bean:order?method=handle"/>
</aop>
<to uri="jms:queue:order"/>
</route>

Where the beforeUri attribute specifies the endpoint where the exchange is routedbefore
processing the route fragment, and the afterUri attribute specifies the endpoint where the
exchange is routed after processing the route fragment.

AOP options in the Spring XML

The aop element supports the following optional attributes:
e beforeUri
o afterUri
e afterFinallyUri

The various use cases described for the Java DSL can be obtained in Spring XML using the
appropriate combinations of these attributes. For example, the aroundFinally() Java DSL
subclause is equivalent to the combination of beforeUri and afterFinallyUri in Spring
XML.

2.9. THREADING MODEL

Java thread pool API

The Apache Camel threading model is based on the powerful Java concurrency API,
java.util.concurrent, that first became available in Sun's JDK 1.5. The key interface in this
APl is the ExecutorService interface, which represents a thread pool. Using the
concurrency API, you can create many different kinds of thread pool, covering a wide range
of scenarios.

Apache Camel thread pool API

The Apache Camel thread pool API builds on the Java concurrency APl by providing a central
factory (of org.apache.camel.spi.ExecutorServiceManager type) for all of the thread
pools in your Apache Camel application. Centralising the creation of thread pools in this
way provides several advantages, including:

85

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/package-summary.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

o Simplified creation of thread pools, using utility classes.

o Integrating thread pools with graceful shutdown.

e Threads automatically given informative names, which is beneficial for logging and

management.

Component threading model

Some Apache Camel components—such as SEDA, JMS, and Jetty—are inherently multi-

threaded. These components have all been implemented using the Apache Camel threading

model and thread pool API.

If you are planning to implement your own Apache Camel component, it is recommended
that you integrate your threading code with the Apache Camel threading model. For
example, if your component needs a thread pool, it is recommended that you create it

using the CamelContext's ExecutorServiceManager object.

Processor threading model

Some of the standard processors in Apache Camel create their own thread pool by default.

These threading-aware processors are also integrated with the Apache Camel threading

model and they provide various options that enable you to customize customize the thread

pools that they use.

Table 2.8, “Processor Threading Options” shows the various options for controlling and
setting thread pools on the threading-aware processors built-in to Apache Camel.

Table 2.8. Processor Threading Options

Processor

aggregate

multicast

recipientList

split

86

Java DSL

parallelProcessing()
executorService()
executorServiceRef ()

parallelProcessing()
executorService()
executorServiceRef ()

parallelProcessing()
executorService()
executorServiceRef ()

parallelProcessing()
executorService()
executorServiceRef ()

XML DSL

@parallelProcessing
@executorServiceRef

@parallelProcessing
@executorServiceRef

@parallelProcessing
@executorServiceRef

@parallelProcessing
@executorServiceRef

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

Processor Java DSL XML DSL

threads
executorService() @executorServiceRef
executorServiceRef() @poolSize
poolSize() @maxPoolSize
maxPoolSize() @keepAliveTime
keepAliveTime() @timeUnit
timeUnit() @maxQueueSize
maxQueueSize() @rejectedPolicy

rejectedPolicy()

wireTap

wireTap(String uri, I @executorServiceRef
ExecutorService

executorService)

wireTap(String uri,

String

executorServiceRef)

Creating a default thread pool

To create a default thread pool for one of the threading-aware processors, enable the
parallelProcessing option, using theparallelProcessing() sub-clause, in the Java DSL,
or the parallelProcessing attribute, in the XML DSL.

For example, in the Java DSL, you can invoke the multicast processor with a default thread
pool (where the thread pool is used to process the multicast destinations concurrently) as
follows:

from("direct:start")
.multicast().parallelProcessing()
.to("mock:first")
.to("mock:second")
.to("mock:third");

You can define the same route in XML DSL as follows

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<multicast parallelProcessing="true">
<to uri="mock:first"/>
<to uri="mock:second"/>
<to uri="mock:third"/>
</multicast>
</route>
</camelContext>

Default thread pool profile settings

87

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

The default thread pools are automatically created by a thread factory that takes its
settings from the default thread pool profile. The default thread pool profile has the settings
shown in Table 2.9, “Default Thread Pool Profile Settings” (assuming that these settings
have not been modified by the application code).

Table 2.9. Default Thread Pool Profile Settings

Thread Option Default Value

maxQueueSize 1000
poolSize 10
maxPoolSize 20
keepAliveTime 60 (seconds)
rejectedPolicy CallerRuns

Changing the default thread pool profile

It is possible to change the default thread pool profile settings, so that all subsequent
default thread pools will be created with the custom settings. You can change the profile
either in Java or in Spring XML.

For example, in the Java DSL, you can customize the poolSize option and the
maxQueueSize option in the default thread pool profile, as follows:

// Java
import org.apache.camel.spi.ExecutorServiceManager;
import org.apache.camel.spi.ThreadPoolProfile;

ExecutorServiceManager manager = context.getExecutorServiceManager();
ThreadPoolProfile defaultProfile = manager.getDefaultThreadPoolProfile();

// Now, customize the profile settings.
defaultProfile.setPoolSize(3);
defaultProfile.setMaxQueueSize(100);

In the XML DSL, you can customize the default thread pool profile, as follows:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<threadPoolProfile
id="changedProfile"
defaultProfile="true"
poolSize="3"
maxQueueSize="100"/>

</camelContext>

Note that it is essential to set the defaultProfile attribute to true in the preceding XML
DSL example, otherwise the thread pool profile would be treated like a custom thread pool

88

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

profile (see the section called “Creating a custom thread pool profile’), instead of replacing
the default thread pool profile.

Customizing a processor's thread pool

It is also possible to specify the thread pool for a threading-aware processor more directly,
using either the executorService or executorServiceRef options (where these options
are used instead of the parallelProcessing option). There are two approaches you can
use to customize a processor's thread pool, as follows:

e Specify a custom thread pool—explicitly create an ExecutorService (thread pool)
instance and pass it to the executorService option.

e Specify a custom thread pool profile—create and register a custom thread pool
factory. When you reference this factory using the executorServiceRef option, the
processor automatically uses the factory to create a custom thread pool instance.

When you pass a bean ID to the executorServiceRef option, the threading-aware
processor first tries to find a custom thread pool with that ID in the registry. If no thread
pool is registered with that ID, the processor then attempts to look up a custom thread pool
profile in the registry and uses the custom thread pool profile to instantiate a custom
thread pool.

Creating a custom thread pool

A custom thread pool can be any thread pool of java.util.concurrent.ExecutorService type.
The following approaches to creating a thread pool instance are recommended in Apache
Camel:

e Use the org.apache.camel.builder.ThreadPoolBuilder utility to build the thread
pool class.

e Use the org.apache.camel.spi.ExecutorServiceManager instance from the
current CamelContext to create the thread pool class.

Ultimately, there is not much difference between the two approaches, because the
ThreadPoolBuilder is actually defined using theExecutorServiceManager instance.
Normally, the ThreadPoolBuilder is preferred, because it offers a simpler approach. But
there is at least one kind of thread (the ScheduledExecutorService) that can only be
created by accessing the ExecutorServiceManager instance directory.

Table 2.10, “Thread Pool Builder Options” shows the options supported by the
ThreadPoolBuilder class, which you can set when defining a new custom thread pool.

Table 2.10. Thread Pool Builder Options

Builder Option Description

maxQueueSize() Sets the maximum number of pending tasks
that this thread pool can store in its incoming
task queue. A value of -1 specifies an
unbounded queue. Default value is taken from
default thread pool profile.

89

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Builder Option Description

poolSize() Sets the minimum number of threads in the
pool (this is also the initial pool size). Default
value is taken from default thread pool profile.

maxPoolSize() Sets the maximum number of threads that can
be in the pool. Default value is taken from
default thread pool profile.

keepAliveTime() If any threads are idle for longer than this
period of time (specified in seconds), they are
terminated. This allows the thread pool to
shrink when the load is light. Default value is
taken from default thread pool profile.

rejectedPolicy() Specifies what course of action to take, if the
incoming task queue is full. You can specify
four possible values:

CallerRuns

(Default value) Gets the caller thread to run
the latest incoming task. As a side effect,
this option prevents the caller thread from
receiving any more tasks until it has
finished processing the latest incoming
task.

Abort

Aborts the latest incoming task by throwing
an exception.

Discard
Quietly discards the latest incoming task.

DiscardOldest

Discards the oldest unhandled task and
then attempts to enqueue the latest
incoming task in the task queue.

build() Finishes building the custom thread pool and
registers the new thread pool under the ID
specified as the argument to build().

In Java DSL, you can define a custom thread pool using the ThreadPoolBuilder, as follows:

// Java
import org.apache.camel.builder.ThreadPoolBuilder;
import java.util.concurrent.ExecutorService;

ThreadPoolBuilder poolBuilder = new ThreadPoolBuilder(context);
ExecutorService customPool =

90

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

poolBuilder.poolSize(5).maxPoolSize(5).maxQueueSize(100).build("customPool
")

from("direct:start")
.multicast().executorService(customPool)
.to("mock:first")
.to("mock:second")
.to("mock:third");

Instead of passing the object reference, customPool, directly to theexecutorService()
option, you can look up the thread pool in the registry, by passing its bean ID to the
executorServiceRef () option, as follows:

// Java
from("direct:start")
.multicast().executorServiceRef ("customPool")
.to("mock:first")
.to("mock:second")
.to("mock:third");

In XML DSL, you access the ThreadPoolBuilder using the threadPool element. You can
then reference the custom thread pool using the executorServiceRef attribute to look up
the thread pool by ID in the Spring registry, as follows:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<threadPool id="customPool"
poolSize="5"
maxPoolSize="5"
maxQueueSize="100" />

<route>
<from uri="direct:start"/>
<multicast executorServiceRef="customPool">
<to uri="mock:first"/>
<to uri="mock:second"/>
<to uri="mock:third"/>
</multicast>
</route>
</camelContext>

Creating a custom thread pool profile

If you have many custom thread pool instances to create, you might find it more
convenient to define a custom thread pool profile, which acts as a factory for thread pools.
Whenever you reference a thread pool profile from a threading-aware processor, the
processor automatically uses the profile to create a new thread pool instance. You can
define a custom thread pool profile either in Java DSL or in XML DSL.

For example, in Java DSL you can create a custom thread pool profile with the bean ID,
customProfile, and reference it from within a route, as follows:

// Java
import org.apache.camel.spi.ThreadPoolProfile;

91

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

import org.apache.camel.impl.ThreadPoolProfileSupport;

// Create the custom thread pool profile

ThreadPoolProfile customProfile = new
ThreadPoolProfileSupport("customProfile");

customProfile.setPoolSize(5);

customProfile.setMaxPoolSize(5);

customProfile.setMaxQueueSize(100);
context.getExecutorServiceManager().registerThreadPoolProfile(customProfil
e);

// Reference the custom thread pool profile in a route
from("direct:start")
.multicast().executorServiceRef("customProfile")
.to("mock:first")
.to("mock:second")
.to("mock:third");

In XML DSL, use the threadPoolProfile element to create a custom pool profile (where
you let the defaultProfile option default to false, because this isnot a default thread
pool profile). You can create a custom thread pool profile with the bean ID, customProfile,
and reference it from within a route, as follows:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<threadPoolProfile
id="customProfile"
poolSize="5"

maxPoolSize="5"
maxQueueSize="100" />

<route>
<from uri="direct:start"/>
<multicast executorServiceRef="customProfile">
<to uri="mock:first"/>
<to uri="mock:second"/>
<to uri="mock:third"/>
</multicast>
</route>
</camelContext>

Sharing a thread pool between components

Some of the standard poll-based components—such as File and FTP—allow you to specify
the thread pool to use. This makes it possible for different components to share the same
thread pool, reducing the overall number of threads in the JVM.

For example, the File component and the FTP component both expose the
scheduledExecutorService property, which you can use to specify the component's
ExecutorService object.

Customizing thread names

To make the application logs more readable, it is often a good idea to customize the thread
names (which are used to identify threads in the log). To customize thread names, you can
configure the thread name pattern by calling thesetThreadNamePattern method on the

92

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

ExecutorServiceStrategy class or theExecutorServiceManager class. Alternatively, an
easier way to set the thread name pattern is to set the threadNamePattern property on
the CamelContext object.

The following placeholders can be used in a thread name pattern:

#camelIld#
The name of the current CamelContext.

#counter#
A unique thread identifier, implemented as an incrementing counter.

#name#
The regular Camel thread name.

#longName#
The long thread name—which can include endpoint parameters and so on.

The following is a typical example of a thread name pattern:
I Camel (#camelld#) thread #counter# - #name#

The following example shows how to set the threadNamePattern attribute on a Camel
context using XML DSL:

<camelContext xmlns="http://camel.apache.org/schema/spring"
threadNamePattern="Riding the thread #counter#" >
<route>
<from uri="seda:start"/>
<to uri="log:result"/>
<to uri="mock:result"/>
</route>
</camelContext>

2.10. CONTROLLING START-UP AND SHUTDOWN OF ROUTES

Overview

By default, routes are automatically started when your Apache Camel application (as
represented by the CamelContext instance) starts up and routes are automatically shut
down when your Apache Camel application shuts down. For non-critical deployments, the
details of the shutdown sequence are usually not very important. But in a production
environment, it is often crucial that existing tasks should run to completion during
shutdown, in order to avoid data loss. You typically also want to control the order in which
routes shut down, so that dependencies are not violated (which would prevent existing
tasks from running to completion).

For this reason, Apache Camel provides a set of features to support graceful shutdown of
applications. Graceful shutdown gives you full control over the stopping and starting of
routes, enabling you to control the shutdown order of routes and enabling current tasks to
run to completion.

93

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Setting the route ID

It is good practice to assign a route ID to each of your routes. As well as making logging
messages and management features more informative, the use of route IDs enables you to
apply greater control over the stopping and starting of routes.

For example, in the Java DSL, you can assign the route ID, myCustomerRouteld, to a route
by invoking the routeId() command as follows:

I from("SourceURI") .routeId("myCustomRouteId").process(...).to(TargetURI);

In the XML DSL, set the route element's id attribute, as follows:

<camelContext id="CamelContextID"
xmlns="http://camel.apache.org/schema/spring">
<route id="myCustomRouteId" >
<from uri="SourceURI"/>
<process ref="someProcessorId"/>
<to uri="TargetURI"/>
</route>
</camelContext>

Disabling automatic start-up of routes

By default, all of the routes that the CamelContext knows about at start time will be started
automatically. If you want to control the start-up of a particular route manually, however,
you might prefer to disable automatic start-up for that route.

To control whether a Java DSL route starts up automatically, invoke the autoStartup
command, either with a boolean argument (true or false) or aString argument (true or
false). For example, you can disable automatic start-up of a route in the Java DSL, as
follows:

from("SourceURI")
.routeId("nonAuto")
.autoStartup(false)
.to(TargetURI);

You can disable automatic start-up of a route in the XML DSL by setting the autoStartup
attribute to false on the route element, as follows:

<camelContext id="CamelContextID"
xmlns="http://camel.apache.org/schema/spring">
<route id="nonAuto" autoStartup="false">
<from uri="SourceURI"/>
<to uri="TargetURI"/>
</route>
</camelContext>

Manually starting and stopping routes

You can manually start or stop a route at any time in Java by invoking the startRoute()
and stopRoute() methods on the CamelContext instance. For example, to start the route
having the route ID, nonAuto, invoke thestartRoute() method on the CamelContext

24

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

instance, context, as follows:

// Java
context.startRoute("nonAuto");

To stop the route having the route ID, nonAuto, invoke thestopRoute() method on the
CamelContext instance, context, as follows:

// Java
context.stopRoute("nonAuto");

Startup order of routes

By default, Apache Camel starts up routes in a non-deterministic order. In some
applications, however, it can be important to control the startup order. To control the
startup order in the Java DSL, use the startupOrder() command, which takes a positive
integer value as its argument. The route with the lowest integer value starts first, followed
by the routes with successively higher startup order values.

For example, the first two routes in the following example are linked together through the
seda:buffer endpoint. You can ensure that the first route segment startafter the second
route segment by assigning startup orders (2 and 1 respectively), as follows:

.routeId("first")
.startupOrder(2)
.to("seda:buffer");

from("seda:buffer")
.routeId("second")
.startupOrder(1)
.to("mock:result");

// This route's startup order is unspecified

from("jetty:http://fooserver:8080")
from("jms:queue:foo").to("jms:queue:bar");

‘ Example 2.5. Startup Order in Java DSL

Or in Spring XML, you can achieve the same effect by setting the route element's
startupOrder attribute, as follows:

<from uri="jetty:http://fooserver:8080"/>
<to uri="seda:buffer"/>
</route>

<route id="second" startupOrder="1">
<from uri="seda:buffer"/>
<to uri="mock:result"/>

Example 2.6. Startup Order in XML DSL
</route>

| <route id="first" startupOrder="2">

95

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

<route>
<from uri="jms:queue:foo"/>
<to uri="jms:queue:bar"/>

<!-- This route's startup order is unspecified -->
</route>

Each route must be assigned a unique startup order value. You can choose any positive
integer value that is less than 1000. Values of 1000 and over are reserved for Apache
Camel, which automatically assigns these values to routes without an explicit startup value.
For example, the last route in the preceding example would automatically be assigned the
startup value, 1000 (so it starts up after the first two routes).

Shutdown sequence

When a CamelContext instance is shutting down, Apache Camel controls the shutdown
sequence using a pluggable shutdown strategy. The default shutdown strategy implements
the following shutdown sequence:

1. Routes are shut down in the reverse of the start-up order.

2. Normally, the shutdown strategy waits until the currently active exchanges have
finshed processing. The treatment of running tasks is configurable, however.

3. Overall, the shutdown sequence is bound by a timeout (default, 300 seconds). If the
shutdown sequence exceeds this timeout, the shutdown strategy will force
shutdown to occur, even if some tasks are still running.

Shutdown order of routes

Routes are shut down in the reverse of the start-up order. That is, when a start-up order is
defined using the startupOrder() command (in Java DSL) orstartupOrder attribute (in
XML DSL), the first route to shut down is the route with the highest integer value assigned
by the start-up order and the last route to shut down is the route with the lowest integer
value assigned by the start-up order.

For example, in Example 2.5, “Startup Order in Java DSL’, the first route segment to be

shut down is the route with the ID, first, and the second route segment to be shut down is
the route with the ID, second. This example illustrates a general rule, which you should
observe when shutting down routes: the routes that expose externally-accessible consumer
endpoints should be shut down first, because this helps to throttle the flow of messages
through the rest of the route graph.

NOTE

Apache Camel also provides the option shutdownRoute(Defer), which enables
you to specify that a route must be amongst the last routes to shut down
(overriding the start-up order value). But you should rarely ever need this
option. This option was mainly needed as a workaround for earlier versions of
Apache Camel (prior to 2.3), for which routes would shut down in the same
order as the start-up order.

Shutting down running tasks in a route

If a route is still processing messages when the shutdown starts, the shutdown strategy

296

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

normally waits until the currently active exchange has finished processing before shutting
down the route. This behavior can be configured on each route using the
shutdownRunningTask option, which can take either of the following values:

ShutdownRunningTask.CompleteCurrentTaskOnly

(Default) Usually, a route operates on just a single message at a time, so you can safely
shut down the route after the current task has completed.

ShutdownRunningTask.CompleteAllTasks

Specify this option in order to shut down batch consumers gracefully. Some consumer
endpoints (for example, File, FTP, Mail, iBATIS, and JPA) operate on a batch of messages
at a time. For these endpoints, it is more appropriate to wait until all of the messages in
the current batch have completed.

For example, to shut down a File consumer endpoint gracefully, you should specify the
CompleteAllTasks option, as shown in the following Java DSL fragment:

// Java
public void configure() throws Exception {
from("file:target/pending")
.routeId("first").startupOrder(2)
.shutdownRunningTask(ShutdownRunningTask.CompleteAllTasks)
.delay(1000) .to("seda:foo");

from("seda:foo")
.routeId("second").startupOrder(1)
.to("mock:bar");

}

The same route can be defined in the XML DSL as follows:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<!-- let this route complete all its pending messages when asked to
shut down -->
<route id="first"
startupOrder="2"
shutdownRunningTask="CompleteAllTasks">
<from uri="file:target/pending"/>
<delay><constant>1000</constant></delay>
<to uri="seda:foo"/>
</route>

<route id="second" startupOrder="1">
<from uri="seda:foo"/>
<to uri="mock:bar"/>
</route>
</camelContext>

Shutdown timeout

The shutdown timeout has a default value of 300 seconds. You can change the value of the
timeout by invoking the setTimeout () method on the shutdown strategy. For example, you
can change the timeout value to 600 seconds, as follows:

97

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

// Java
// context = CamelContext instance
context.getShutdownStrategy().setTimeout (600);

Integration with custom components

If you are implementing a custom Apache Camel component (which also inherits from the
org.apache.camel.Service interface), you can ensure that your custom code receives a
shutdown notification by implementing the org.apache.camel.spi.ShutdownPrepared
interface. This gives the component an opportunity execute custom code in preparation for
shutdown.

2.11. SCHEDULED ROUTE POLICY

2.11.1. Overview of Scheduled Route Policies

Overview

A scheduled route policy can be used to trigger events that affect a route at runtime. In
particular, the implementations that are currently available enable you to start, stop,
suspend, or resume a route at any time (or times) specified by the policy.

Scheduling tasks

The scheduled route policies are capable of triggering the following kinds of event:

e Start a route—start the route at the time (or times) specified. This event only has an
effect, if the route is currently in a stopped state, awaiting activation.

e Stop a route—stop the route at the time (or times) specified. This event only has an
effect, if the route is currently active.

e Suspend a route—temporarily de-activate the consumer endpoint at the start of the
route (as specified in from()). The rest of the route is still active, but clients will not
be able to send new messages into the route.

e Resume a route—re-activate the consumer endpoint at the start of the route,
returning the route to a fully active state.

Quartz component

The Quartz component is a timer component based on Terracotta's Quartz, which is an
open source implementation of a job scheduler. The Quartz component provides the
underlying implementation for both the simple scheduled route policy and the cron
scheduled route policy.

2.11.2. Simple Scheduled Route Policy

Overview

The simple scheduled route policy is a route policy that enables you to start, stop, suspend,
and resume routes, where the timing of these events is defined by providing the time and

98

http://www.quartz-scheduler.org/

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

date of an initial event and (optionally) by specifying a certain number of subsequent
repititions. To define a simple scheduled route policy, create an instance of the following
class:

I org.apache.camel.routepolicy.quartz.SimpleScheduledRoutePolicy

Dependency

The simple scheduled route policy depends on the Quartz component, camel-quartz. For
example, if you are using Maven as your build system, you would need to add a
dependency on the camel-quartz artifact.

Java DSL example

Example 2.7, “Java DSL Example of Simple Scheduled Route” shows how to schedule a
route to start up using the Java DSL. The initial start time, startTime, is defined to be 3
seconds after the current time. The policy is also configured to start the route a second
time, 3 seconds after the initial start time, which is configured by setting
routeStartRepeatCount to 1 and routeStartRepeatInterval to 3000 milliseconds.

In Java DSL, you attach the route policy to the route by calling the routePolicy() DSL
command in the route.

long startTime = System.currentTimeMillis() + 3000L;
policy.setRouteStartDate(new Date(startTime));
policy.setRouteStartRepeatCount(1);
policy.setRouteStartRepeatInterval (3000);

from("direct:start")
.routeId("test")
.routePolicy(policy)

// Java
SimpleScheduledRoutePolicy policy = new SimpleScheduledRoutePolicy();
.to("mock:success");

| Example 2.7. Java DSL Example of Simple Scheduled Route

NOTE

You can specify multiple policies on the route by calling routePolicy() with
multiple arguments.

XML DSL example

Example 2.8, “XML DSL Example of Simple Scheduled Route” shows how to schedule a
route to start up using the XML DSL.

In XML DSL, you attach the route policy to the route by setting the routePolicyRef
attribute on the route element.

Example 2.8. XML DSL Example of Simple Scheduled Route

29

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

<bean id="date" class="java.util.Data"/>

<bean id="startPolicy"

class="org.apache.camel. routepolicy.quartz.SimpleScheduledRoutePolicy">
<property name="routeStartDate" ref="date"/>
<property name="routeStartRepeatCount" value="1"/>
<property name="routeStartRepeatInterval"” value="3000"/>

</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route id="myroute" routePolicyRef="startPolicy">
<from uri="direct:start"/>
<to uri="mock:success"/>
</route>
</camelContext>

NOTE

You can specify multiple policies on the route by setting the value of
routePolicyRef as a comma-separated list of bean IDs.

Defining dates and times

The initial times of the triggers used in the simple scheduled route policy are specified
using the java.util.Date type.The most flexible way to define aDate instance is through
the java.util.GregorianCalendar class. Use the convenient constructors and methods of the
GregorianCalendar class to define a date and then obtain aDate instance by calling
GregorianCalendar.getTime().

For example, to define the time and date for January 1, 2011 at noon, call a
GregorianCalendar constructor as follows:

// Java
import java.util.GregorianCalendar;
import java.util.Calendar;

GregorianCalendar gc = new GregorianCalendar (
2011,
Calendar.JANUARY,
1,
12, // hourOfDay
0, // minutes
0 // seconds
);

java.util.Date triggerDate = gc.getTime();

The GregorianCalendar class also supports the definition of times in different time zones.
By default, it uses the local time zone on your computer.

Graceful shutdown

When you configure a simple scheduled route policy to stop a route, the route stopping

100

http://download-llnw.oracle.com/javase/1.5.0/docs/api/java/util/GregorianCalendar.html

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

algorithm is automatically integrated with the graceful shutdown procedure (see

Section 2.10, “Controlling Start-Up and Shutdown of Routes”). This means that the task
waits until the current exchange has finished processing before shutting down the route.
You can set a timeout, however, that forces the route to stop after the specified time,
irrespective of whether or not the route has finished processing the exchange.

Scheduling tasks

You can use a simple scheduled route policy to define one or more of the following
scheduling tasks:

o the section called “Starting a route”.
o the section called “Stopping a route”.
o the section called “Suspending a route”.

o the section called “Resuming a route”.

Starting a route

The following table lists the parameters for scheduling one or more route starts.

Parameter Type Default Description

routeStartDate java.util.Date None Specifies the date
and time when the
route is started for
the first time.

routeStartRepeat int 0 When set to a non-

Count zero value, specifies
how many times the
route should be

started.
routeStartRepeat long 0 Specifies the time
Interval interval between

starts, in units of
milliseconds.

Stopping a route

The following table lists the parameters for scheduling one or more route stops.

Parameter Type Default Description

routeStopDate java.util.Date None Specifies the date
and time when the
route is stopped for
the first time.

101

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Parameter

routeStopRepeatC
ount

routeStopRepeatI
nterval

routeStopGracePe
riod

routeStopTimeUni
t

Suspending a route

Type

int

long

int

long

Default

10000

TimeUnit.MILLISE
CONDS

Description

When set to a non-
zero value, specifies
how many times the
route should be
stopped.

Specifies the time
interval between
stops, in units of
milliseconds.

Specifies how long to
wait for the current
exchange to finish
processing (grace
period) before
forcibly stopping the
route. Set to O for an
infinite grace period.

Specifies the time
unit of the grace
period.

The following table lists the parameters for scheduling the suspension of a route one or

more times.

Parameter

routeSuspendDate

routeSuspendRepe
atCount

routeSuspendRepe
atInterval

Resuming a route

102

Type

java.util.Date

int

long

Default

None

Description

Specifies the date
and time when the
route is suspended
for the first time.

When set to a non-
zero value, specifies
how many times the
route should be
suspended.

Specifies the time
interval between
suspends, in units of
milliseconds.

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

The following table lists the parameters for scheduling the resumption of a route one or
more times.

Parameter Type Default Description

routeResumeDate java.util.Date None Specifies the date
and time when the
route is resumed for
the first time.

routeResumeRepea int 0 When set to a non-

tCount zero value, specifies
how many times the
route should be

resumed.
routeResumeRepea long 0 Specifies the time
tInterval interval between

resumes, in units of
milliseconds.

2.11.3. Cron Scheduled Route Policy

Overview

The cron scheduled route policy is a route policy that enables you to start, stop, suspend,
and resume routes, where the timing of these events is specified using cron expressions.
To define a cron scheduled route policy, create an instance of the following class:

I org.apache.camel. routepolicy.quartz.CronScheduledRoutePolicy

Dependency

The simple scheduled route policy depends on the Quartz component, camel-quartz. For
example, if you are using Maven as your build system, you would need to add a
dependency on the camel-quartz artifact.

Java DSL example

Example 2.9, “Java DSL Example of a Cron Scheduled Route”shows how to schedule a
route to start up using the Java DSL. The policy is configured with the cron expression, */3
* * *x * ? which triggers a start event every 3 seconds.

In Java DSL, you attach the route policy to the route by calling the routePolicy() DSL
command in the route.

Example 2.9. Java DSL Example of a Cron Scheduled Route
policy.setRouteStartTime("*/3 * * * * 21),

// Java
‘ CronScheduledRoutePolicy policy = new CronScheduledRoutePolicy();

103

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

.routePolicy(policy)
.to("mock:success");;

from("direct:start")
.routeId("test")
NOTE

You can specify multiple policies on the route by calling routePolicy() with
multiple arguments.

XML DSL example

Example 2.10, “XML DSL Example of a Cron Scheduled Route’shows how to schedule a
route to start up using the XML DSL.

In XML DSL, you attach the route policy to the route by setting the routePolicyRef
attribute on the route element.

Example 2.10. XML DSL Example of a Cron Scheduled Route

<bean id="date" class="org.apache.camel.routepolicy.quartz.SimpleDate"/>

<bean id="startPolicy"

class="org.apache.camel. routepolicy.quartz.CronScheduledRoutePolicy">
<property name="routeStartTime" value="*/3 * * * *x 7?1/>

</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route id="testRoute" routePolicyRef="startPolicy">
<from uri="direct:start"/>
<to uri="mock:success"/>
</route>
</camelContext>

NOTE

You can specify multiple policies on the route by setting the value of
routePolicyRef as a comma-separated list of bean IDs.

Defining cron expressions

The cron expression syntax has its origins in the UNIXcron utility, which schedules jobs to
run in the background on a UNIX system. A cron expression is effectively a syntax for
wildcarding dates and times that enables you to specify either a single event or multiple
events that recur periodically.

A cron expression consists of 6 or 7 fields in the following order:

I Seconds Minutes Hours DayOfMonth Month DayOfWeek [Year]

104

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

The Year field is optional and usually omitted, unless you want to define an event that
occurs once and once only. Each field consists of a mixture of literals and special
characters. For example, the following cron expression specifies an event that fires once
every day at midnight:

|0024**?

The * character is a wildcard that matches every value of a field. Hence, the preceding
expression matches every day of every month. The ? character is a dummy placeholder
that means ignore this field. It always appears either in theDayOfMonth field or in the
DayOfWeek field, because it is not logically consistent to specify both of these fields at the
same time. For example, if you want to schedule an event that fires once a day, but only
from Monday to Friday, use the following cron expression:

I 0 0 24 ? * MON-FRI

Where the hyphen character specifies a range, MON-FRI. You can also use the forward slash
character, /, to specify increments. For example, to specify that an event fires every 5
minutes, use the following cron expression:

IOO/S***?

For a full explanation of the cron expression syntax, see the Wikipedia article on CRON
expressions.

Scheduling tasks

You can use a cron scheduled route policy to define one or more of the following scheduling
tasks:

o the section called “Starting a route”.
o the section called “Stopping a route”.
o the section called “Suspending a route”.

o the section called “Resuming a route”.

Starting a route

The following table lists the parameters for scheduling one or more route starts.

Parameter Type Default Description

routeStartString String None Specifies a cron
expression that
triggers one or more
route start events.

Stopping a route

The following table lists the parameters for scheduling one or more route stops.

105

http://en.wikipedia.org/wiki/CRON_expression

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Parameter Type Default Description

routeStopTime String None Specifies a cron
expression that
triggers one or more
route stop events.

routeStopGracePe int 10000 Specifies how long to

riod wait for the current
exchange to finish
processing (grace
period) before
forcibly stopping the
route. Set to O for an
infinite grace period.

routeStopTimeUni long TimeUnit.MILLISE Specifies the time
t CONDS unit of the grace
period.

Suspending a route

The following table lists the parameters for scheduling the suspension of a route one or
more times.

Parameter Type Default Description

routeSuspendTime String None Specifies a cron
expression that
triggers one or more
route suspend
events.

Resuming a route

The following table lists the parameters for scheduling the resumption of a route one or
more times.

Parameter Type Default Description

routeResumeTime String None Specifies a cron
expression that
triggers one or more
route resume events.

2.12. JMX NAMING

Overview

106

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

Apache Camel allows you to customise the name of a CamelContext bean as it appears in
JMX, by defining a management name pattern for it. For example, you can customise the
name pattern of an XML CamelContext instance, as follows:

<camelContext id="myCamel" managementNamePattern="#name#">

</camelContext>

If you do not explicitly set a name pattern for the CamelContext bean, Apache Camel
reverts to a default naming strategy.

Default naming strategy

By default, the JMX name of a CamelContext bean is equal to the value of the bean'sid
attribute, prefixed by the current bundle ID. For example, if the id attribute on a
camelContext element ismyCamel and the current bundle ID is 250, the JMX name would be
250-myCamel. In cases where there is more than oneCamelContext instance with the same
id in the bundle, the J]MX name is disambiguated by adding a counter value as a suffix. For
example, if there are multiple instances of myCamel in the bundle, the corresponding JMX
MBeans are named as follows:

250-myCamel-1
250-myCamel-2
250-myCamel-3

Customising the JMX naming strategy

One drawback of the default naming strategy is that you cannot guarantee that a given
CamelContext bean will have the same JMX name between runs. If you want to have
greater consistency between runs, you can control the JMX name more precisely by
defining a JMX name pattern for the CamelContext instances.

Specifying a name pattern in Java

To specify a name pattern on a CamelContext in Java, call the setNamePattern method, as
follows:

// Java
I context.getManagementNameStrategy () .setNamePattern("#name#");

Specifying a name pattern in XML

To specify a name pattern on a CamelContext in XML, set themanagementNamePattern
attribute on the camelContext element, as follows:

I <camelContext id="myCamel" managementNamePattern="#name#">
Name pattern tokens

You can construct a JMX name pattern by mixing literal text with any of the following
tokens:

107

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Table 2.11. JMX Name Pattern Tokens

Token Description

#camelld# Value of the id attribute on the CamelContext bean.
#name# Same as #camelId#.
#counter# An incrementing counter (starting at1).
#bundleld# The OSGi bundle ID of the deployed bundle (OSGi only).
#symbolicName# The OSGi symbolic name (OSGi only).
#version# The OSGi bundle version (OSGi only).

Examples

Here are some examples of JMX name patterns you could define using the supported
tokens:

<camelContext id="fooContext" managementNamePattern="FooApplication-
#name#">

</camelContext>
<camelContext id="myCamel" managementNamePattern="#bundleID#-
#symbolicName#-#name#" >

</camelContext>

Ambiguous names

Because the customised naming pattern overrides the default naming strategy, it is
possible to define ambiguous JMX MBean names using this approach. For example:

<camelContext id="foo" managementNamePattern="SameOldSameOld"> ...
</camelContext>

<camelContext id="bar" managementNamePattern="SameOldSameOld"> ...
</camelContext>

In this case, Apache Camel would fail on start-up and report an MBean already exists
exception. You should, therefore, take extra care to ensure that you do not define
ambiguous name patterns.

2.13. PERFORMANCE AND OPTIMIZATION

Avoid unnecessary message copying

108

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDINC

You can avoid making an unnecessary copy of the original message, by setting the
allowUseOriginalMessage option to false on the CamelContext object. For example, in
Blueprint XML you can set this option as follows:

<camelContext xmlns="http://camel.apache.org/schema/blueprint"
allowUseOriginalMessage="false">

</camelContext>

You can safely set allowUseOriginalMessage to false, if the following conditions are
satisfied:

e You do not set useOriginalMessage=true on any of the error handlers or on the
onException element.

¢ You do not use the getOriginalMessage method anywhere in your Java application
code.

109

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

CHAPTER 3. INTRODUCING ENTERPRISE
INTEGRATION PATTERNS

Abstract

The Apache Camel's Enterprise Integration Patterns are inspired by a book of the same
name written by Gregor Hohpe and Bobby Woolf. The patterns described by these authors
provide an excellent toolbox for developing enterprise integration projects. In addition to
providing a common language for discussing integration architectures, many of the
patterns can be implemented directly using Apache Camel's programming interfaces and
XML configuration.

3.1. OVERVIEW OF THE PATTERNS

Enterprise Integration Patterns book

Apache Camel supports most of the patterns from the book, Enterprise Integration Patterns
by Gregor Hohpe and Bobby Woolf.

Messaging systems

The messaging systems patterns, shown in Table 3.1, “Messaging Systems”, introduce the
fundamental concepts and components that make up a messaging system.

Table 3.1. Messaging Systems

Icon Name Use Case

Message How can two applications
connected by a message
channel exchange a piece of
information?

Message Channel How does one application

b communicate with another
,:} application using messaging?

Message Endpoint How does an application
—— I:l connect to a messaging
channel to send and receive
messages?
Pipes and Filters How can we perform complex

- processing on a message
while still maintaining

independence and flexibility?

110

http://www.enterpriseintegrationpatterns.com/toc.html

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS

Icon Name Use Case

Message Router How can you decouple
/. individual processing steps so
that messages can be passed

to different filters depending
on a set of defined conditions?

Message Translator How do systems using
different data formats
communicate with each other
using messaging?

5\ J
LAY

o]

Messaging channels

A messaging channel is the basic component used for connecting the participants in a
messaging system. The patterns in Table 3.2, “Messaging Channels” describe the different
kinds of messaging channels available.

Table 3.2. Messaging Channels

Icon Name Use Case

Point to Point Channel How can the caller be sure
that exactly one receiver will
receive the document or will
perform the call?

Publish Subscribe Channel How can the sender broadcast
an event to all interested
receivers?

Dead Letter Channel What will the messaging

system do with a message it
cannot deliver?

Guaranteed Delivery How does the sender make
sure that a message will be
delivered, even if the
messaging system fails?

| 4 5 |

Message Bus What is an architecture that
enables separate, decoupled
applications to work together,
such that one or more of the
applications can be added or
removed without affecting the
others?

111

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Message construction

The message construction patterns, shown in Table 3.3, “Message Construction”, describe
the various forms and functions of the messages that pass through the system.

Table 3.3. Message Construction

Icon Name Use Case

Correlation Identifier How does a requestor identify
the request that generated
the received reply?

Return Address How does a replier know
where to send the reply?

Message routing

The message routing patterns, shown in Table 3.4, “Message Routing”, describe various
ways of linking message channels together, including various algorithms that can be
applied to the message stream (without modifying the body of the message).

Table 3.4. Message Routing

Name Use Case

o
‘
S

Content Based Router How do we handle a situation
where the implementation of
a single logical function (e.g.,
inventory check) is spread
across multiple physical

systems?

Message Filter How does a component avoid
receiving uninteresting
messages?

Recipient List How do we route a message

to a list of dynamically
specified recipients?

2=

Splitter How can we process a
O] message if it contains multiple
O elements, each of which

might have to be processed in
a different way?

112

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS

Name

Aggregator

Resequencer

Composed Message Processor

Scatter-Gather

Routing Slip

Throttler

Delayer

Load Balancer

Multicast

Loop

Use Case

How do we combine the
results of individual, but
related messages so that they
can be processed as a whole?

How can we get a stream of
related, but out-of-sequence,
messages back into the
correct order?

How can you maintain the
overall message flow when
processing a message
consisting of multiple
elements, each of which may
require different processing?

How do you maintain the
overall message flow when a
message needs to be sent to
multiple recipients, each of
which may send a reply?

How do we route a message
consecutively through a series
of processing steps when the
sequence of steps is not
known at design-time, and
might vary for each message?

How can | throttle messages
to ensure that a specific
endpoint does not get
overloaded, or that we don't
exceed an agreed SLA with
some external service?

How can | delay the sending
of a message?

How can | balance load across
a number of endpoints?

How can | route a message to
a number of endpoints at the
same time?

How can | repeat processing a
message in a loop?

113

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Icon Name Use Case

Sampling How can | sample one
message out of many in a
given period to avoid
downstream route does not
get overloaded?

Message transformation

The message transformation patterns, shown in Table 3.5, “Message Transformation”,
describe how to modify the contents of messages for various purposes.

Table 3.5. Message Transformation

Ilcon Name Use Case
Content Enricher How do we communicate with
[]—w |:| another system if the

message originator does not
have all the required data
items available?

Content Filter How do you simplify dealing
I:I O with a Ia.rge message, when

you are interested in only a
few data items?

Claim Check How can we reduce the data
volume of message sent
across the system without
sacrificing information

content?
o Normalizer How do you process
< e messagles that ar.e
& semantically equivalent, but

arrive in a different format?

Sort How can | sort the body of a
message?

Messaging endpoints

A messaging endpoint denotes the point of contact between a messaging channel and an
application. The messaging endpoint patterns, shown in Table 3.6, “Messaging Endpoints”,
describe various features and qualities of service that can be configured on an endpoint.

Table 3.6. Messaging Endpoints

114

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS

Icon Name Use Case

Messaging Mapper How do you move data
between domain objects and
the messaging infrastructure
while keeping the two
independent of each other?

Event Driven Consumer How can an application
automatically consume
messages as they become
available?

Polling Consumer How can an application
consume a message when the
application is ready?

B EEE L

Competing Consumers How can a messaging client
process multiple messages
concurrently?

Message Dispatcher How can multiple consumers
on a single channel
coordinate their message
processing?

Selective Consumer How can a message consumer
select which messages it
wants to receive?

Durable Subscriber How can a subscriber avoid
missing messages when it's
not listening for them?

E

Idempotent Consumer How can a message receiver
deal with duplicate messages?

Transactional Client How can a client control its
transactions with the
messaging system?

Messaging Gateway How do you encapsulate
access to the messaging
system from the rest of the
application?

B @

115

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Icon Name Use Case

Service Activator How can an application design
a service to be invoked both
via various messaging
technologies and via non-
messaging techniques?

System management

The system management patterns, shown in Table 3.7, “System Management”, describe
how to monitor, test, and administer a messaging system.

Table 3.7. System Management

Icon Name Use Case

Wire Tap How do you inspect messages
that travel on a point-to-point

; channel?

116

CHAPTER 4. MESSAGING SYSTEMS

CHAPTER 4. MESSAGING SYSTEMS

Abstract

This chapter introduces the fundamental building blocks of a messaging system, such as
endpoints, messaging channels, and message routers.

4.1. MESSAGE

Overview

A message is the smallest unit for transmitting data in a messaging system (represented by
the grey dot in the figure below). The message itself might have some internal structure—
for example, a message containing multiple parts—which is represented by geometrical
figures attached to the grey dot in Figure 4.1, “Message Pattern”.

Figure 4.1. Message Pattern

__%_%

oender Message Receiver

Types of message

Apache Camel defines the following distinct message types:

e /n message — A message that travels through a route from a consumer endpoint to
a producer endpoint (typically, initiating a message exchange).

e Out message — A message that travels through a route from a producer endpoint
back to a consumer endpoint (usually, in response to an /In message).

All of these message types are represented internally by the org.apache. camel.Message
interface.

Message structure

By default, Apache Camel applies the following structure to all message types:
e Headers — Contains metadata or header data extracted from the message.
e Body — Usually contains the entire message in its original form.

o Attachments — Message attachments (required for integrating with certain
messaging systems, such as |Bl).

It is important to remember that this division into headers, body, and attachments is an
abstract model of the message. Apache Camel supports many different components, that
generate a wide variety of message formats. Ultimately, it is the underlying component
implementation that decides what gets placed into the headers and body of a message.

117

http://java.sun.com/integration/

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Correlating messages

Internally, Apache Camel remembers the message IDs, which are used to correlate
individual messages. In practice, however, the most important way that Apache Camel
correlates messages is through exchange objects.

Exchange objects

An exchange object is an entity that encapsulates related messages, where the collection of
related messages is referred to as a message exchange and the rules governing the
sequence of messages are referred to as an exchange pattern. For example, two common
exchange patterns are: one-way event messages (consisting of an In message), and
request-reply exchanges (consisting of an In message, followed by anOut message).

Accessing messages

When defining a routing rule in the Java DSL, you can access the headers and body of a
message using the following DSL builder methods:

e header(String name), body() — Returns the named header and the body of the
current /In message.

e outBody() — Returns the body of the currentOut message.

For example, to populate the In message's username header, you can use the following
Java DSL route:

I from(SourceURL) .setHeader ("username", "John.Doe").to(TargetURL);

4.2. MESSAGE CHANNEL

Overview

A message channel is a logical channel in a messaging system. That is, sending messages
to different message channels provides an elementary way of sorting messages into
different message types. Message queues and message topics are examples of message
channels. You should remember that a logical channel is not the same as a physical
channel. There can be several different ways of physically realizing a logical channel.

In Apache Camel, a message channel is represented by an endpoint URI of a message-
oriented component as shown in Figure 4.2, “Message Channel Pattern”.

118

CHAPTER 4. MESSAGING SYSTEMS

Figure 4.2. Message Channel Pattern

Wessage
Channel .

mender Messaging Receiver
Application oystem Application

Message-oriented components

The following message-oriented components in Apache Camel support the notion of a
message channel:

e ActiveMQ
o JMS
¢« AMQP

ActiveMQ

In ActiveMQ, message channels are represented by queues or topics. The endpoint URI for a
specific queue, QueueName, has the following format:

I activemq:QueueName

The endpoint URI for a specific topic, TopicName, has the following format:

I activemq:topic:TopicName

For example, to send messages to the queue, Foo.Bar, use the following endpoint URI:
I activemq:Foo.Bar

See for more details and instructions on setting up the ActiveMQ component.

JMS

The Java Messaging Service (JMS) is a generic wrapper layer that is used to access many
different kinds of message systems (for example, you can use it to wrap ActiveMQ,
MQSeries, Tibco, BEA, Sonic, and others). In JMS, message channels are represented by
queues, or topics. The endpoint URI for a specific queue, QueueName, has the following
format:

I jms :QueueName

119

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

The endpoint URI for a specific topic, TopicName, has the following format:
I jms:topic:TopicName
See for more details and instructions on setting up the JMS component.

AMQP

In AMQP, message channels are represented by queues, or topics. The endpoint URI for a
specific queue, QueueName, has the following format:

I amgp : QueueName
The endpoint URI for a specific topic, TopicName, has the following format:
I amqp:topic:TopicName

See for more details and instructions on setting up the AMQP component.
4.3. MESSAGE ENDPOINT

Overview

A message endpoint is the interface between an application and a messaging system. As
shown in Figure 4.3, “Message Endpoint Pattern”, you can have a sender endpoint,
sometimes called a proxy or a service consumer, which is responsible for sending In
messages, and a receiver endpoint, sometimes called an endpoint or a service, which is
responsible for receiving In messages.

Figure 4.3. Message Endpoint Pattern

tﬁ—rﬁ rt@ 7z

Diata Data
Message Message
Endpaint Message Channel Endpaint
sender Receiver
Application Application

Types of endpoint

Apache Camel defines two basic types of endpoint:

e Consumer endpoint — Appears at the start of a Apache Camel route and readsn
messages from an incoming channel (equivalent to a receiver endpoint).

e Producer endpoint — Appears at the end of a Apache Camel route and writedn
messages to an outgoing channel (equivalent to a sender endpoint). It is possible to
define a route with multiple producer endpoints.

Endpoint URIs

120

CHAPTER 4. MESSAGING SYSTEMS

In Apache Camel, an endpoint is represented by an endpoint URI, which typically
encapsulates the following kinds of data:

e Endpoint URI for a consumer endpoint— Advertises a specific location (for example,
to expose a service to which senders can connect). Alternatively, the URI can specify
a message source, such as a message queue. The endpoint URI can include settings
to configure the endpoint.

e Endpoint URI for a producer endpoint— Contains details of where to send messages
and includes the settings to configure the endpoint. In some cases, the URI specifies
the location of a remote receiver endpoint; in other cases, the destination can have
an abstract form, such as a queue name.

An endpoint URI in Apache Camel has the following general form:

I ComponentPrefix:ComponentSpecificURI

Where ComponentPrefix is a URI prefix that identifies a particular Apache Camel component
(see for details of all the supported components). The remaining part of the URI,
ComponentSpecificURI, has a syntax defined by the particular component. For example, to
connect to the JMS queue, Foo.Bar, you can define an endpoint URI like the following:

I jms:Foo.Bar

To define a route that connects the consumer endpoint,
file://local/router/messages/foo, directly to the producer endpoint,jms:Foo.Bar, you
can use the following Java DSL fragment:

I from("file://local/router/messages/foo").to("jms:Foo.Bar");

Alternatively, you can define the same route in XML, as follows:

<camelContext id="CamelContextID"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="file://local/router/messages/foo"/>
<to uri="jms:Foo.Bar"/>
</route>
</camelContext>

4.4. PIPES AND FILTERS

Overview

The pipes and filters pattern, shown inFigure 4.4, “Pipes and Filters Pattern”, describes a
way of constructing a route by creating a chain of filters, where the output of one filter is
fed into the input of the next filter in the pipeline (analogous to the UNIX pipe command).
The advantage of the pipeline approach is that it enables you to compose services (some of
which can be external to the Apache Camel application) to create more complex forms of
message processing.

121

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Figure 4.4. Pipes and Filters Pattern

Pipe Fipe
t% t@

Incoming Fitter Fitter Fitter ‘Clean’
Crdder Crder

Authenticate

Pipeline for the InOut exchange pattern

Normally, all of the endpoints in a pipeline have an input (/n message) and an output Out
message), which implies that they are compatible with the InOut message exchange
pattern. A typical message flow through an InOut pipeline is shown inFigure 4.5, “Pipeline
for InOut Exchanges”.

Figure 4.5. Pipeline for InOut Exchanges

Decrypt Authenticate De-Dup

1 A A
In Out In Out In Oul

\ 4

Source endpoint Target endpoint

<
X

Out

Where the pipeline connects the output of each endpoint to the input of the next one. The
Out message from the final endpoint gets sent back to the original caller. You can define a
route for this pipeline, as follows:

from("jms:RawOrders") .pipeline("cxf:bean:decrypt",
"cxf:bean:authenticate", "cxf:bean:dedup", "jms:CleanOrders");

The same route can be configured in XML, as follows:

<camelContext id="buildPipeline"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="jms:RawOrders"/>
<to uri="cxf:bean:decrypt"/>
<to uri="cxf:bean:authenticate"/>
<to uri="cxf:bean:dedup"/>
<to uri="jms:CleanOrders"/>
</route>
</camelContext>

There is no dedicated pipeline element in XML. The preceding combination of from and to
elements is semantically equivalent to a pipeline. See the section called “Comparison of
pipeline() and to() DSL commands”.

Pipeline for the InOnly and RobustinOnly exchange patterns

When there are no Out messages available from the endpoints in the pipeline (as is the
case for the InOnly and RobustInOnly exchange patterns), a pipeline cannot be connected
in the normal way. In this special case, the pipeline is constructed by passing a copy of the

122

CHAPTER 4. MESSAGING SYSTEMS

original In message to each of the endpoints in the pipeline, as shown irFigure 4.6,
“Pipeline for InOnly Exchanges”. This type of pipeline is equivalent to a recipient list with
fixed destinations(see Section 7.3, “Recipient List”).

Figure 4.6. Pipeline for InOnly Exchanges

Source endpoint Target endpoint

The route for this pipeline is defined using the same syntax as an /InOut pipeline (either in
Java DSL or in XML).

Comparison of pipeline() and to() DSL commands

In the Java DSL, you can define a pipeline route using either of the following syntaxes:

e Using the pipeline() processor command — Use the pipeline processor to construct a
pipeline route as follows:

I from(SourceURI) .pipeline(FilterA, FilterB, TargetURI);

e Using the to() command — Use the to() command to construct a pipeline route as
follows:

I from(SourceURI) .to(FilterA, FilterB, TargetURI);
Alternatively, you can use the equivalent syntax:
I from(SourceURI).to(FilterA).to(FilterB).to(TargetURI);

Exercise caution when using the to() command syntax, because it isnot always equivalent
to a pipeline processor. In Java DSL, the meaning of to() can be modified by the preceding
command in the route. For example, when the multicast() command precedes the to()
command, it binds the listed endpoints into a multicast pattern, instead of a pipeline
pattern(see Section 7.11, “Multicast”).

4.5. MESSAGE ROUTER

Overview

A message router, shown inFigure 4.7, “Message Router Pattern”, is a type of filter that
consumes messages from a single consumer endpoint and redirects them to the
appropriate target endpoint, based on a particular decision criterion. A message router is
concerned only with redirecting messages; it does not modify the message content.

123

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Figure 4.7. Message Router Pattern

oLtizeLe 1

— O

inGILELE

outZueus 2

FLLLLLL

Message
Router

A message router can easily be implemented in Apache Camel using the choice()
processor, where each of the alternative target endpoints can be selected using a when()
subclause (for details of the choice processor, see Section 1.5, “Processors”).

Java DSL example

The following Java DSL example shows how to route messages to three alternative
destinations (either seda:a, seda:b, orseda:c) depending on the contents of thefoo
header:

from("seda:a").choice()
.when(header("foo").isEqualTo("bar")).to("seda:b")
.when(header("foo").isEqualTo("cheese")).to("seda:c")
.otherwise().to("seda:d");

XML configuration example

The following example shows how to configure the same route in XML:

<camelContext id="buildSimpleRouteWithChoice"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="seda:a"/>
<choice>
<when>
<xpath>$foo = 'bar'</xpath>
<to uri="seda:b"/>
</when>
<when>
<xpath>$foo = 'cheese'</xpath>
<to uri="seda:c"/>
</when>
<otherwise>
<to uri="seda:d"/>
</otherwise>
</choice>
</route>
</camelContext>

Choice without otherwise

124

CHAPTER 4. MESSAGING SYSTEMS

If you use choice() without anotherwise() clause, any unmatched exchanges are
dropped by default.

4.6. MESSAGE TRANSLATOR

Overview

The message translator pattern, shown inFigure 4.8, “Message Translator Pattern”
describes a component that modifies the contents of a message, translating it to a different
format. You can use Apache Camel's bean integration feature to perform the message
translation.

Figure 4.8. Message Translator Pattern

Translator

[

— || 2L ||—>

lncaming Message Tranzlated Message

Bean integration

You can transform a message using bean integration, which enables you to call a method
on any registered bean. For example, to call the method, myMethodName(), on the bean
with ID, myTransformerBean:

from("activemq:SomeQueue")
.beanRef("myTransformerBean", "myMethodName")
.to("mgseries:AnotherQueue");

Where the myTransformerBean bean is defined in either a Spring XML file or in JNDI. If, you
omit the method name parameter from beanRef (), the bean integration will try to deduce
the method name to invoke by examining the message exchange.

You can also add your own explicit Processor instance to perform the transformation, as
follows:

from("direct:start").process(new Processor() {
public void process(Exchange exchange) {
Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}).to("mock:result");

Or, you can use the DSL to explicitly configure the transformation, as follows:

I from("direct:start").setBody(body().append(" World!")).to("mock:result");

125

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

You can also use templating to consume a message from one destination, transform it with
something like Velocity or XQuery and then send it on to another destination. For example,
using the InOnly exchange pattern (one-way messaging) :

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm").
to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on theMy.Queue
queue on ActiveMQ with a template generated response, then you could use a route like
the following to send responses back to the JMSReplyTo destination:

from("activemq:My.Queue").
to("velocity:com/acme/MyResponse.vm");

126

CHAPTER 5. MESSAGING CHANNELS

CHAPTER 5. MESSAGING CHANNELS

Abstract

Messaging channels provide the plumbing for a messaging application. This chapter
describes the different kinds of messaging channels available in a messaging system, and
the roles that they play.

5.1. POINT-TO-POINT CHANNEL

Overview

A point-to-point channel, shown inFigure 5.1, “Point to Point Channel Pattern”is a message
channel that guarantees that only one receiver consumes any given message. This is in
contrast with a publish-subscribe channel, which allows multiple receivers to consume the
same message. In particular, with a point-to-point channel, it is possible for multiple
receivers to subscribe to the same channel. If more than one receiver competes to
consume a message, it is up to the message channel to ensure that only one receiver
actually consumes the message.

Figure 5.1. Point to Point Channel Pattern

BN R e PN

Sender Order QOrder Order Paoint-to-Point Order Qrder Order Receiver
#3 #H # Channel #3 2 #1

Components that support point-to-point channel
The following Apache Camel components support the point-to-point channel pattern:

e JMS

°

ActiveMQ
e SEDA
o JPA

e XMPP

JMS

In JMS, a point-to-point channel is represented by a queue. For example, you can specify the
endpoint URI for a JMS queue called Foo.Bar as follows:

I jms:queue:Foo.Bar

The qualifier, queue:, is optional, because the JMS component creates a queue endpoint by
default. Therefore, you can also specify the following equivalent endpoint URI:

127

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

I jms:Foo.Bar

See for more details.

ActiveMQ

In ActiveMQ, a point-to-point channel is represented by a queue. For example, you can
specify the endpoint URI for an ActiveMQ queue called Foo.Bar as follows:

I activemq:queue:Foo.Bar

See for more details.

SEDA

The Apache Camel Staged Event-Driven Architecture (SEDA) component is implemented
using a blocking queue. Use the SEDA component if you want to create a lightweight point-
to-point channel that is internal to the Apache Camel application. For example, you can
specify an endpoint URI for a SEDA queue called SedaQueue as follows:

I seda:SedaQueue

JPA

The Java Persistence API (JPA) component is an EJB 3 persistence standard that is used to
write entity beans out to a database. See for more details.

XMPP

The XMPP (Jabber) component supports the point-to-point channel pattern when it is used in
the person-to-person mode of communication. See for more details.

5.2. PUBLISH-SUBSCRIBE CHANNEL

Overview

A publish-subscribe channel, shown inFigure 5.2, “Publish Subscribe Channel Pattern”, is a
message channel that enables multiple subscribers to consume any given message. This is
in contrast with a point-to-point channel. Publish-subscribe channels are frequently used as
a means of broadcasting events or notifications to multiple subscribers.

128

CHAPTER 5. MESSAGING CHANNELS

—%

Address subscriber
Changed

- 9, — = -9, —

Fublizsher Address Address aubscrber
Changed Changed

— 9%, —

Fublizh-Subscribe Address aubscrber
Channel Changed

Figure 5.2. Publish Subscribe Channel Pattern

Components that support publish-subscribe channel

The following Apache Camel components support the publish-subscribe channel pattern:
e JMS
o ActiveMQ

o XMPP

o SEDA for working with SEDA in the sameCamelContext which can work in pub-sub,
but allowing multiple consumers.

e VM as SEDA, but for use within the same JVM.

JMS

In JMS, a publish-subscribe channel is represented by a topic. For example, you can specify
the endpoint URI for a JMS topic called StockQuotes as follows:

I jms:topic:StockQuotes
See for more details.

ActiveMQ

In ActiveMQ, a publish-subscribe channel is represented by a topic. For example, you can
specify the endpoint URI for an ActiveMQ topic called StockQuotes, as follows:

129

CamelContext

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

I activemq:topic:StockQuotes

See for more details.

XMPP

The XMPP (Jabber) component supports the publish-subscribe channel pattern when it is
used in the group communication mode. See for more details.

Static subscription lists

If you prefer, you can also implement publish-subscribe logic within the Apache Camel
application itself. A simple approach is to define a static subscription list, where the target
endpoints are all explicitly listed at the end of the route. However, this approach is not as
flexible as a JMS or ActiveMQ topic.

Java DSL example

The following Java DSL example shows how to simulate a publish-subscribe channel with a
single publisher, seda:a, and three subscribers,seda:b, seda:c, and seda:d:

I from("seda:a").to("seda:b", "seda:c", "seda:d");

‘“’ NOTE
' This only works for the InOnly message exchange pattern.

XML configuration example

The following example shows how to configure the same route in XML:

<camelContext id="buildStaticRecipientList"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="seda:a"/>
<to uri="seda:b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>
</route>
</camelContext>

5.3. DEAD LETTER CHANNEL

Overview

The dead letter channel pattern, shown inFigure 5.3, “Dead Letter Channel Pattern”,
describes the actions to take when the messaging system fails to deliver a message to the
intended recipient. This includes such features as retrying delivery and, if delivery
ultimately fails, sending the message to a dead letter channel, which archives the
undelivered messages.

130

CHAPTER 5. MESSAGING CHANNELS

Figure 5.3. Dead Letter Channel Pattern

Daitvary Fails
— = — X
sener Meseage Channel Intended
Fecelver
Reroute Delivary -
"]

Dead Dead Letter
Message Channel

Creating a dead letter channel in Java DSL

The following example shows how to create a dead letter channel using Java DSL:

errorHandler(deadLetterChannel("seda:errors"));
from("seda:a").to("seda:b");

Where the errorHandler () method is a Java DSL interceptor, which implies thatall of the
routes defined in the current route builder are affected by this setting. The
deadLetterChannel() method is a Java DSL command that creates a new dead letter
channel with the specified destination endpoint, seda:errors.

The errorHandler () interceptor provides a catch-all mechanism for handlingall error

types. If you want to apply a more fine-grained approach to exception handling, you can
use the onException clauses instead(see the section called “onException clause”).

XML DSL example

You can define a dead letter channel in the XML DSL, as follows:

<route errorHandlerRef="myDeadLetterErrorHandler">

</route>

<bean id="myDeadLetterErrorHandler"

class="org.apache.camel.builder.DeadLetterChannelBuilder">
<property name="deadLetterUri" value="jms:queue:dead"/>

<property name="redeliveryPolicy" ref="myRedeliveryPolicyConfig"/>
</bean>

<bean id="myRedeliveryPolicyConfig"
class="org.apache.camel.processor.RedeliveryPolicy">

131

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

<property name="maximumRedeliveries" value="3"/>
<property name="redeliveryDelay" value="5000"/>
</bean>

Redelivery policy

Normally, you do not send a message straight to the dead letter channel, if a delivery
attempt fails. Instead, you re-attempt delivery up to some maximum limit, and after all
redelivery attempts fail you would send the message to the dead letter channel. To
customize message redelivery, you can configure the dead letter channel to have a
redelivery policy. For example, to specify a maximum of two redelivery attempts, and to
apply an exponential backoff algorithm to the time delay between delivery attempts, you
can configure the dead letter channel as follows:

errorHandler(deadLetterChannel("seda:errors").maximumRedeliveries(2) .useEx
ponentialBackOff());
from("seda:a").to("seda:b");

Where you set the redelivery options on the dead letter channel by invoking the relevant
methods in a chain (each method in the chain returns a reference to the current
RedeliveryPolicy object). Table 5.1, “Redelivery Policy Settings” summarizes the
methods that you can use to set redelivery policies.

Table 5.1. Redelivery Policy Settings

Method Signature Default Description
backOffMultiplier(doubl 2 If exponential backoff is
e multiplier) enabled, let m be the backoff

multiplier and let d be the
initial delay. The sequence of
redelivery attempts are then
timed as follows:

d, m*d, m*m*d,
m*m*m*d,

collisionAvoidancePerce 15 If collision avoidance is
nt(double enabled, let p be the collision
collisionAvoidancePerce avoidance percent. The

nt) collision avoidance policy

then tweaks the next delay by
a random amount, up to
plus/minus p% of its current
value.

delayPattern(String None Apache Camel 2.0:
delayPattern)

132

Method Signature Default
disableRedelivery() true
handled(boolean true
handled)

initialRedeliveryDelay(1000
long
initialRedeliveryDelay)

logStackTrace(boolean false
logStackTrace)

maximumRedeliveries(int 0
maximumRedeliveries)

maximumRedeliveryDelay(60000
long maxDelay)

onRedelivery(Processor None
processor)

redeliveryDelay(long 0
int)

CHAPTER 5. MESSAGING CHANNELS

Description

Apache Camel 2.0: Disables
the redelivery feature. To
enable redelivery, set
maximumRedeliveries() to
a positive integer value.

Apache Camel 2.0: If true,
the current exception is
cleared when the message is
moved to the dead letter
channel; if false, the
exception is propagated back
to the client.

Specifies the delay (in
milliseconds) before
attempting the first
redelivery.

Apache Camel 2.0: If true,
the JVM stack trace is
included in the error logs.

Apache Camel 2.0: Maximum
number of delivery attempts.

Apache Camel 2.0: When
using an exponential backoff
strategy (see
useExponentialBackOff()
), it is theoretically possible
for the redelivery delay to
increase without limit. This
property imposes an upper
limit on the redelivery delay
(in milliseconds)

Apache Camel 2.0: Configures
a processor that gets called
before every redelivery
attempt.

Apache Camel 2.0: Specifies
the delay (in milliseconds)
between redelivery attempts.

133

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Method Signature Default Description

retriesExhaustedLoglLeve LoggingLevel.ERROR Apache Camel 2.0: Specifies

1(LoggingLevel the logging level at which to

logLevel) log delivery failure (specified
as an

org.apache.camel.Loggin
gLevel constant).

retryAttemptedLogLevel(LogginglLevel.DEBUG Apache Camel 2.0: Specifies

LoggingLevel loglLevel) the logging level at which to
redelivery attempts (specified
as an

org.apache.camel.Loggin
gLevel constant).

useCollisionAvoidance() false Enables collision avoidence,
which adds some
randomization to the backoff
timings to reduce contention
probability.

useOriginalMessage() false Apache Camel 2.0: If this
feature is enabled, the
message sent to the dead
letter channel is a copy of the
original message exchange,
as it existed at the beginning
of the route (in the from()

node).
useExponentialBack0ff() false Enables exponential backoff.
allowRedeliveryWhileSto true Controls whether redelivery is
pping() attempted during graceful

shutdown or while a route is
stopping. A delivery that is
already in progress when
stopping is initiated will not be
interrupted.

Redelivery headers

If Apache Camel attempts to redeliver a message, it automatically sets the headers
described in Table 5.2, “Dead Letter Redelivery Headers” on the In message.

Table 5.2. Dead Letter Redelivery Headers

Header Name Type Description

134

CHAPTER 5. MESSAGING CHANNELS

Header Name Type Description

CamelRedeliveryCounter Integer Apache Camel 2.0: Counts the
number of unsuccessful
delivery attempts. This value
is also set in
Exchange.REDELIVERY_COU
NTER.

CamelRedelivered Boolean Apache Camel 2.0: True, if
one or more redelivery
attempts have been made.
This value is also set in
Exchange.REDELIVERED.

CamelRedeliveryMaxCount Integer Apache Camel 2.6: Holds the

er maximum redelivery setting
(also set in the
Exchange.REDELIVERY_MAX
_COUNTER exchange
property). This header is
absent if you use
retryWhile or have
unlimited maximum
redelivery configured.

Redelivery exchange properties

If Apache Camel attempts to redeliver a message, it automatically sets the exchange
properties described in Table 5.3, “Redelivery Exchange Properties”.

Table 5.3. Redelivery Exchange Properties

Exchange Property Name Type Description

Exchange.FAILURE_ROUTE_ String Provides the route ID of the

ID route that failed. The literal
name of this property is
CamelFailureRoutelId.

Using the original message

Available as of Apache Camel 2.0 Because an exchange object is subject to modification
as it passes through the route, the exchange that is current when an exception is raised is
not necessarily the copy that you would want to store in the dead letter channel. In many
cases, it is preferable to log the message that arrived at the start of the route, before it was
subject to any kind of transformation by the route. For example, consider the following
route:

from("jms:queue:order:input")
.to("bean:validateOrder");
.to("bean:transformOrder")

135

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

I .to("bean:handleOrder");

The preceding route listen for incoming JMS messages and then processes the messages
using the sequence of beans: validateOrder, transformOrder, and handleOrder. But
when an error occurs, we do not know in which state the message is in. Did the error
happen before the transformOrder bean or after? We can ensure that the original
message from jms:queue:order:input is logged to the dead letter channel by enabling
the useOriginalMessage option as follows:

// will use original body
errorHandler(deadLetterChannel("jms:queue:dead")
.useOriginalMessage () .maximumRedeliveries(5).redeliveryDelay(5000);

Redeliver delay pattern

Available as of Apache Camel 2.0 ThedelayPattern option is used to specify delays for
particular ranges of the redelivery count. The delay pattern has the following syntax:
limitl:delayl;limit2:delay2;1limit3:delay3;..., where eachdelayN is applied to
redeliveries in the range limitN <= redeliveryCount < limitN+1

For example, consider the pattern, 5:1000;10:5000;20:20000, which defines three groups
and results in the following redelivery delays:

o Attempt number 1..4 = 0 milliseconds (as the first group starts with 5).
o Attempt number 5..9 = 1000 milliseconds (the first group).

o Attempt number 10..19 = 5000 milliseconds (the second group).

o Attempt number 20.. = 20000 milliseconds (the last group).

You can start a group with limit 1 to define a starting delay. For example, 1:1000;5:5000
results in the following redelivery delays:

o Attempt number 1..4 = 1000 millis (the first group)
o Attempt number 5.. = 5000 millis (the last group)
There is no requirement that the next delay should be higher than the previous and you

can use any delay value you like. For example, the delay pattern, 1:5000;3:1000, starts
with a 5 second delay and then reduces the delay to 1 second.

Which endpoint failed?

When Apache Camel routes messages, it updates an Exchange property that contains the
last endpoint the Exchange was sent to. Hence, you can obtain the URI for the current
exchange's most recent destination using the following code:

// Java
String lastEndpointUri = exchange.getProperty(Exchange.TO ENDPOINT,
String.class);

Where Exchange.TO_ENDPOINT is a string constant equal toCamelToEndpoint. This
property is updated whenever Camel sends a message to any endpoint.

136

Exchange
Exchange

CHAPTER 5. MESSAGING CHANNELS

If an error occurs during routing and the exchange is moved into the dead letter queue,
Apache Camel will additionally set a property named CamelFailureEndpoint, which
identifies the last destination the exchange was sent to before the error occcured. Hence,
you can access the failure endpoint from within a dead letter queue using the following
code:

// Java
String failedEndpointUri = exchange.getProperty(Exchange.FAILURE ENDPOINT,
String.class);

Where Exchange.FAILURE_ENDPOINT is a string constant equal toCamelFailureEndpoint.

NOTE

These properties remain set in the current exchange, even if the failure occurs
after the given destination endpoint has finished processing. For example,
consider the following route:

from("activemq:queue:foo")
.to("http://someserver/somepath")
.beanRef("foo");

Now suppose that a failure happens in the foo bean. In this case the
Exchange.TO_ENDPOINT property and the Exchange.FAILURE_ENDPOINT
property still contain the value, http://someserver/somepath.

onRedelivery processor

When a dead letter channel is performing redeliveries, it is possible to configure a
Processor that is executed justbefore every redelivery attempt. This can be used for
situations where you need to alter the message before it is redelivered.

For example, the following dead letter channel is configured to call the
MyRedeliverProcessor before redelivering exchanges:

// we configure our Dead Letter Channel to invoke

// MyRedeliveryProcessor before a redelivery is

// attempted. This allows us to alter the message before

errorHandler(deadLetterChannel("mock:error").maximumRedeliveries(5)
.onRedelivery(new MyRedeliverProcessor())
// setting delay to zero is just to make unit teting faster
.redeliveryDelay(0OL));

Where the MyRedeliveryProcessor process is implemented as follows:

// This is our processor that is executed before every redelivery attempt
// here we can do what we want in the java code, such as altering the
message

public class MyRedeliverProcessor implements Processor {

public void process(Exchange exchange) throws Exception {
// the message is being redelivered so we can alter it

// we just append the redelivery counter to the body

137

http://someserver/somepath

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

// you can of course do all kind of stuff instead

String body = exchange.getIn().getBody(String.class);

int count =
exchange.getIn().getHeader(Exchange.REDELIVERY COUNTER, Integer.class);

exchange.getIn().setBody(body + count);

// the maximum redelivery was set to 5

int max =
exchange.getIn().getHeader(Exchange.REDELIVERY MAX COUNTER,
Integer.class);

assertEquals (5, max);

}

Control redelivery during shutdown or stopping

If you stop a route or initiate graceful shutdown, the default behavior of the error handler is
to continue attempting redelivery. Because this is typically not the desired behavior, you
have the option of disabling redelivery during shutdown or stopping, by setting the
allowRedeliveryWhileStopping option to false, as shown in the following example:

errorHandler(deadLetterChannel("jms:queue:dead")
.allowRedeliveryWhileStopping(false)
.maximumRedeliveries(20)
.redeliveryDelay(1000)
.retryAttemptedLoglLevel (LoggingLevel.INFO));

NOTE

The allowRedeliveryWhileStopping option is true by default, for backwards
compatibility reasons. During aggressive shutdown, however, redelivery is
always suppressed, irrespective of this option setting (for example, after
graceful shutdown has timed out).

onException clause

Instead of using the errorHandler () interceptor in your route builder, you can define a
series of onException() clauses that define different redelivery policies and different dead
letter channels for various exception types. For example, to define distinct behavior for
each of the NullPointerException, IOException, and Exception types, you can define
the following rules in your route builder using Java DSL:

onException(NullPointerException.class)
.maximumRedeliveries(1)
.setHeader("messageInfo", "Oh dear! An NPE.")
.to("mock:npe_error");

onException(IOException.class)
.initialRedeliveryDelay(5000L)
.maximumRedeliveries(3)
.backOffMultiplier(1.0)
.useExponentialBackOff()
.setHeader("messageInfo", "Oh dear! Some kind of I/0 exception.")

138

CHAPTER 5. MESSAGING CHANNELS

.to("mock:io_error");

onException(Exception.class)
.initialRedeliveryDelay(1000L)
.maximumRedeliveries(2)
.setHeader("messageInfo", "Oh dear! An exception.")
.to("mock:error");

from("seda:a").to("seda:b");

Where the redelivery options are specified by chaining the redelivery policy methods (as
listed in Table 5.1, “Redelivery Policy Settings”), and you specify the dead letter channel's
endpoint using the to() DSL command. You can also call other Java DSL commands in the
onException() clauses. For example, the preceding example callssetHeader() to record
some error details in a message header named, messageInfo.

In this example, the NullPointerException and the IOException exception types are
configured specially. All other exception types are handled by the generic Exception
exception interceptor. By default, Apache Camel applies the exception interceptor that
most closely matches the thrown exception. If it fails to find an exact match, it tries to
match the closest base type, and so on. Finally, if no other interceptor matches, the
interceptor for the Exception type matches all remaining exceptions.

5.4. GUARANTEED DELIVERY

Overview

Guaranteed delivery means that once a message is placed into a message channel, the
messaging system guarantees that the message will reach its destination, even if parts of
the application should fail. In general, messaging systems implement the guaranteed
delivery pattern, shown in Figure 5.4, “Guaranteed Delivery Pattern”, by writing messages
to persistent storage before attempting to deliver them to their destination.

1 %

Feceiver

Figure 5.4. Guaranteed Delivery Pattern

Y

Sender

Disk Disk

Computer 1 Computer 2

Components that support guaranteed delivery

The following Apache Camel components support the guaranteed delivery pattern:
e JMS

e ActiveMQ

139

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

e ActiveMQ Journal

e File Component

JMS

In JMS, the deliveryPersistent query option indicates whether or not persistent storage
of messages is enabled. Usually it is unnecessary to set this option, because the default
behavior is to enable persistent delivery. To configure all the details of guaranteed delivery,
it is necessary to set configuration options on the JMS provider. These details vary,
depending on what JMS provider you are using. For example, MQSeries, TibCo, BEA, Sonic,
and others, all provide various qualities of service to support guaranteed delivery.

See for more details.

ActiveMQ

In ActiveMQ, message persistence is enabled by default. From version 5 onwards, ActiveMQ
uses the AMQ message store as the default persistence mechanism. There are several
different approaches you can use to enabe message persistence in ActiveMQ.

The simplest option (different from Figure 5.4, “Guaranteed Delivery Pattern”) is to enable
persistence in a central broker and then connect to that broker using a reliable protocol.
After a message is been sent to the central broker, delivery to consumers is guaranteed.
For example, in the Apache Camel configuration file, META-INF/spring/camel-
context.xml, you can configure the ActiveMQ component to connect to the central broker
using the OpenWire/TCP protocol as follows:

<beans ... >

<bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="tcp://somehost:61616"/>
</bean>

</beans>
If you prefer to implement an architecture where messages are stored locally before being
sent to a remote endpoint (similar to Figure 5.4, “Guaranteed Delivery Pattern”), you do
this by instantiating an embedded broker in your Apache Camel application. A simple way
to achieve this is to use the ActiveMQ Peer-to-Peer protocol, which implicitly creates an
embedded broker to communicate with other peer endpoints. For example, in the camel-

context.xml configuration file, you can configure the ActiveMQ component to connect to
all of the peers in group, GroupA, as follows:

<beans ... >
<bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="peer://GroupA/brokerl"/>
</bean>
</beans>

Where brokerl is the broker name of the embedded broker (other peers in the group

140

CHAPTER 5. MESSAGING CHANNELS

should use different broker names). One limiting feature of the Peer-to-Peer protocol is that
it relies on IP multicast to locate the other peers in its group. This makes it unsuitable for
use in wide area networks (and in some local area networks that do not have IP multicast
enabled).

A more flexible way to create an embedded broker in the ActiveMQ component is to exploit
ActiveMQ's VM protocol, which connects to an embedded broker instance. If a broker of the
required name does not already exist, the VM protocol automatically creates one. You can

use this mechanism to create an embedded broker with custom configuration. For example:

<beans ... >

<bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="vm://brokerl?
brokerConfig=xbean:activemq.xml"/>
</bean>

</beans>
Where activemq.xml is an ActiveMQ file which configures the embedded broker instance.
Within the ActiveMQ configuration file, you can choose to enable one of the following

persistence mechanisms:

AMQ persistence(the default) — A fast and reliable message store that is native to
ActiveMQ. For details, see amqgPersistenceAdapter and AMQ Message Store.

°

JDBC persistence — Uses JDBC to store messages in any |DBC-compatible database.
For details, see jdbcPersistenceAdapter and ActiveMQ Persistence.

°

Journal persistence — A fast persistence mechanism that stores messages in a
rolling log file. For details, see journalPersistenceAdapter and ActiveMQ Persistence.

°

o Kaha persistence — A persistence mechanism developed specifically for ActiveMQ.
For details, see kahaPersistenceAdapter and ActiveMQ Persistence.

See for more details.

ActiveMQ Journal

The ActiveMQ Journal component is optimized for a special use case where multiple,
concurrent producers write messages to queues, but there is only one active consumer.
Messages are stored in rolling log files and concurrent writes are aggregated to boost
efficiency.

See for more details.

5.5. MESSAGE BUS

Overview

Message bus refers to a messaging architecture, shown inFigure 5.5, “Message Bus
Pattern”, that enables you to connect diverse applications running on diverse computing
platforms. In effect, the Apache Camel and its components constitute a message bus.

141

http://tinyurl.com/activemq-amqPersistenceAdapter
http://activemq.apache.org/amq-message-store.html
http://tinyurl.com/activemq-jdbPersistenceAdapter
http://activemq.apache.org/persistence.html
http://tinyurl.com/activemq-journalPA
http://activemq.apache.org/persistence.html
http://tinyurl.com/activemq-kahaPA
http://activemq.apache.org/persistence.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Figure 5.5. Message Bus Pattern

Application

Application —

Message Application
Bus

The following features of the message bus pattern are reflected in Apache Camel:

142

o Common communication infrastructure — The router itself provides the core of the

common communication infrastructure in Apache Camel. However, in contrast to
some message bus architectures, Apache Camel provides a heterogeneous
infrastructure: messages can be sent into the bus using a wide variety of different
transports and using a wide variety of different message formats.

o Adapters — Where necessary, Apache Camel can translate message formats and

propagate messages using different transports. In effect, Apache Camel is capable
of behaving like an adapter, so that external applications can hook into the message
bus without refactoring their messaging protocols.

In some cases, it is also possible to integrate an adapter directly into an external
application. For example, if you develop an application using Apache CXF, where the
service is implemented using JAX-WS and JAXB mappings, it is possible to bind a
variety of different transports to the service. These transport bindings function as
adapters.

CHAPTER 6. MESSAGE CONSTRUCTION

CHAPTER 6. MESSAGE CONSTRUCTION

Abstract

The message construction patterns describe the various forms and functions of the
messages that pass through the system.

6.1. CORRELATION IDENTIFIER

Overview

The correlation identifier pattern, shown inFigure 6.1, “Correlation Identifier Pattern”,
describes how to match reply messages with request messages, given that an
asynchronous messaging system is used to implement a request-reply protocol. The
essence of this idea is that request messages should be generated with a unique token, the
request ID, that identifies the request message and reply messages should include a token,
the correlation ID, that contains the matching request ID.

Apache Camel supports the Correlation Identifier from the EIP patterns by getting or setting
a header on a Message.

When working with the ActiveMQ or JMS components, the correlation identifier header is
called JMSCorrelationID. You can add your own correlation identifier to any message
exchange to help correlate messages together in a single conversation (or business
process). A correlation identifier is usually stored in a Apache Camel message header.

Some EIP patterns spin off a sub message and, in those cases, Apache Camel adds a
correlation ID to the Exchange as a property with they key,Exchange.CORRELATION_ID,
which links back to the source Exchange. For example, the Splitter, Multicast, Recipient List,
and Wire Tap EIPs do this.

Figure 6.1. Correlation Identifier Pattern

Gr:iurrefat."ﬂn Message /0
—
7 Ml
5 Requests
EE

Requestor Feplies ' Replier

Glﬂrrefat.fﬂn in

6.2. EVENT MESSAGE

143

EIP
Exchange
Exchange

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Event Message

Camel supports the Event Message from the Introducing Enterprise Integration Patterns by
supporting the Exchange Pattern on a Message which can be set tolnOnly to indicate a
oneway event message. Camel Components then implement this pattern using the
underlying transport or protocols.

_...|E|

Dbserver

E — 2 [E]

=Ubject Event Obszerver
Message

[E]

|E| = aFriceChangedEvent Observer

The default behaviour of many Components is InOnly such as forJMS, File or SEDA

Explicitly specifying InOnly

If you are using a component which defaults to InOut you can override the Exchange
Pattern for an endpoint using the pattern property.

I foo:bar?exchangePattern=In0Only

From 2.0 onwards on Camel you can specify the Exchange Pattern using the dsl.

Using the Fluent Builders

from("mq:someQueue").
inOnly().
bean(Foo.class);

or you can invoke an endpoint with an explicit pattern

from("mq:someQueue").
inOnly("mq:anotherQueue");

Using the Spring XML Extensions

<route>
<from uri="mq:someQueue"/>

144

http://www.enterpriseintegrationpatterns.com/EventMessage.html
Exchange Pattern
Exchange Pattern
Exchange Pattern
Fluent Builders
Spring XML Extensions

CHAPTER 6. MESSAGE CONSTRUCTION

<inOnly uri="bean:foo"/>
</route>

<route>
<from uri="mq:someQueue"/>
<inOnly uri="mq:anotherQueue"/>
</route>

6.3. RETURN ADDRESS

Return Address

Apache Camel supports the Return Address from the Introducing Enterprise Integration
Patterns using the JMSReplyTo header.

Reply Rleply
Chanpel 1 Chanpel 2

Fequest
Channel

Fequestaor 1 @_mﬂgplier

Requestor 2

Feply
Channel 2 Feeply

For example when using JMS with InOut, the component will by default be returned to the
address given in JMSReplyTo.

Example

Requestor Code

getMockEndpoint ("mock:bar").expectedBodiesReceived("Bye World");
template.sendBodyAndHeader("direct:start”, "World", "JIMSReplyTo",
"queue:bar");

Route Using the Fluent Builders

from("direct:start").to("activemq:queue:foo?preserveMessageQos=true");
from("activemq:queue:foo").transform(body().prepend("Bye "));
from("activemq:queue:bar?disableReplyTo=true").to("mock:bar");

145

http://www.enterpriseintegrationpatterns.com/ReturnAddress.html
Fluent Builders

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Route Using the Spring XML Extensions

<route>

<from uri="direct:start"/>

<to uri="activemq:queue:foo?preserveMessageQos=true"/>
</route>

<route>
<from uri="activemq:queue:foo"/>
<transform>
<simple>Bye ${in.body}</simple>
</transform>
</route>

<route>
<from uri="activemq:queue:bar?disableReplyTo=true"/>

<to uri="mock:bar"/>
</route>

For a complete example of this pattern, see this junit test case

146

Spring XML Extensions
http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/JmsInOnlyWithReplyToAsHeaderTest.java?view=markup

CHAPTER 7. MESSAGE ROUTING

CHAPTER 7. MESSAGE ROUTING

Abstract
The message routing patterns describe various ways of linking message channels together.

This includes various algorithms that can be applied to the message stream (without
modifying the body of the message).

7.1. CONTENT-BASED ROUTER

Overview

A content-based router, shown inFigure 7.1, “Content-Based Router Pattern”, enables you
to route messages to the appropriate destination based on the message contents.

Figure 7.1. Content-Based Router Pattern

— Widget
Inventory
t% —» —/:
.._
(Gadget
NewOrder o »
Router O @ P Inventary

Java DSL example

The following example shows how to route a request from an input, seda:a, endpoint to
either seda:b, queue:c, orseda:d depending on the evaluation of various predicate
expressions:

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("seda:a").choice()
.when(header("foo").isEqualTo("bar")).to("seda:b")
.when(header("foo").isEqualTo("cheese")).to("seda:c")
.otherwise().to("seda:d");

};

XML configuration example

The following example shows how to configure the same route in XML.:

<camelContext id="buildSimpleRouteWithChoice"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="seda:a"/>
<choice>
<when>
<xpath>$foo = 'bar'</xpath>

147

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

<to uri="seda:b"/>
</when>
<when>
<xpath>$foo = 'cheese'</xpath>
<to uri="seda:c"/>
</when>
<otherwise>
<to uri="seda:d"/>
</otherwise>
</choice>
</route>
</camelContext>

7.2. MESSAGE FILTER

Overview

A message filter is a processor that eliminates undesired messages based on specific
criteria. In Apache Camel, the message filter pattern, shown in Figure 7.2, “Message Filter
Pattern”, is implemented by thefilter() Java DSL command. Thefilter() command
takes a single predicate argument, which controls the filter. When the predicate is true,
the incoming message is allowed to proceed, and when the predicate is false, the
incoming message is blocked.

Figure 7.2. Message Filter Pattern

Widoet Gadoget Widget Widget

Widget
Quote Quote

uote Quote GQuote Message

Filter

Java DSL example

The following example shows how to create a route from endpoint, seda:a, to endpoint,
seda:b, that blocks all messages except for those messages whosefoo header have the
value, bar:

RouteBuilder builder = new RouteBuilder() {
public void configure() {

from("seda:a").filter(header("foo").isEqualTo("bar")).to("seda:b");
}
b

To evaluate more complex filter predicates, you can invoke one of the supported scripting
languages, such as XPath, XQuery, or SQL (see Expression and Predicate Languages). The
following example defines a route that blocks all messages except for those containing a
person element whose name attribute is equal toJames:

148

CHAPTER 7. MESSAGE ROUTING

from("direct:start").
filter().xpath("/person[@name="'James']").
to("mock:result");

XML configuration example

The following example shows how to configure the route with an XPath predicate in XML
(see Expression and Predicate Languages):

<camelContext id="simpleFilterRoute"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="seda:a"/>
<filter>
<xpath>$foo = 'bar'</xpath>
<to uri="seda:b"/>
</filter>
</route>
</camelContext>

FILTERED ENDPOINT REQUIRED INSIDE </FILTER> TAG
Make sure you put the endpoint you want to filter (for example, <to

uri="seda:b"/>) before the closing </filter> tag or the filter will not be
applied (in 2.8+, omitting this will result in an error).

Filtering with beans

Here is an example of using a bean to define the filter behavior:

from("direct:start")
.filter().method(MyBean.class,

"isGoldCustomer").to("mock:result").end()
.to("mock:end");

public static class MyBean {
public boolean isGoldCustomer(@Header("level") String level) {
return level.equals("gold");

}

Using stop()
Available as of Camel 2.0

Stop is a special type of filter that filters out all messages. Stop is convenient to use in a
Content-Based Routerwhen you need to stop further processing in one of the predicates.

In the following example, we do not want messages with the word Bye in the message body
to propagate any further in the route. We prevent this in the when() predicate using
.stop().

I from("direct:start")

149

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

.choice()
.when(bodyAs (String.class).contains("Hello")).to("mock:hello")
.when(bodyAs (String.class).contains("Bye")).to("mock:bye").stop()
.otherwise().to("mock:other")

.end()

.to("mock:result");

Knowing if Exchange was filtered or not

Available as of Camel 2.5

The Message Filter EIP will add a property on the Exchange which states if it was filtered or
not.

The property has the key Exchannge.FILTER_MATCHED which has the String value of

CamelFilterMatched. Its value is a boolean indicatingtrue or false. If the value istrue
then the Exchange was routed in the filter block.

7.3. RECIPIENT LIST

Overview

A recipient list, shown inFigure 7.3, “Recipient List Pattern”, is a type of router that sends
each incoming message to multiple different destinations. In addition, a recipient list
typically requires that the list of recipients be calculated at run time.

Figure 7.3. Recipient List Pattern

Recipient Channel

— — @ —
rtﬂ—'*:}—*

G)—
rtﬂ—'*:}—*

o<

Recipient List

L

Recipient list with fixed destinations

The simplest kind of recipient list is where the list of destinations is fixed and known in
advance, and the exchange pattern is InOnly. In this case, you can hardwire the list of
destinations into the to() Java DSL command.

150

CHAPTER 7. MESSAGE ROUTING

NOTE

The examples given here, for the recipient list with fixed destinations, work
only with thelnOnly exchange pattern (similar to apipeline). If you want to
create a recipient list for exchange patterns with Out messages, use the
multicast pattern instead.

Java DSL example

The following example shows how to route an InOnly exchange from a consumer endpoint,
queue:a, to a fixed list of destinations:

I from("seda:a").to("seda:b", "seda:c", "seda:d");

XML configuration example

The following example shows how to configure the same route in XML.:

<camelContext id="buildStaticRecipientList"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="seda:a"/>
<to uri="seda:b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>
</route>
</camelContext>

Recipient list calculated at run time

In most cases, when you use the recipient list pattern, the list of recipients should be
calculated at runtime. To do this use the recipientList() processor, which takes a list of
destinations as its sole argument. Because Apache Camel applies a type converter to the
list argument, it should be possible to use most standard Java list types (for example, a
collection, a list, or an array). For more details about type converters, see Section 40.3,
“Built-In Type Converters”.

The recipients receive a copy of the same exchange instance and Apache Camel executes
them sequentially.

Java DSL example

The following example shows how to extract the list of destinations from a message header
called recipientListHeader, where the header value is a comma-separated list of
endpoint URIs:

I from("direct:a").recipientList(header("recipientListHeader").tokenize(",")
);

In some cases, if the header value is a list type, you might be able to use it directly as the
argument to recipientList(). For example:

I from("seda:a").recipientList(header("recipientListHeader"));

151

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

However, this example is entirely dependent on how the underlying component parses this
particular header. If the component parses the header as a simple string, this example will
not work. The header must be parsed into some type of Java list.

XML configuration example

The following example shows how to configure the preceding route in XML, where the
header value is a comma-separated list of endpoint URIs:

<camelContext id="buildDynamicRecipientList"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="seda:a"/>
<recipientList delimiter=",">
<header>recipientListHeader</header>
</recipientList>
</route>
</camelContext>

Sending to multiple recipients in parallel

Available as of Camel 2.2

The Recipient List supports parallelProcessing, which is similar to the corresponding
feature in Splitter. Use the parallel processing feature to send the exchange to multiple
recipients concurrently—for example:

I from("direct:a").recipientList(header("myHeader")).parallelProcessing();

In Spring XML, the parallel processing feature is implemented as an attribute on the
recipientList tag—for example:

<route>
<from uri="direct:a"/>
<recipientList parallelProcessing="true">
<header>myHeader</header>
</recipientList>
</route>

Stop on exception

Available as of Camel 2.2

The Recipient List supports the stopOnException feature, which you can use to stop
sending to any further recipients, if any recipient fails.

I from("direct:a").recipientList(header("myHeader")).stopOnException();

And in Spring XML its an attribute on the recipient list tag.

In Spring XML, the stop on exception feature is implemented as an attribute on the
recipientList tag—for example:

152

CHAPTER 7. MESSAGE ROUTING

<route>
<from uri="direct:a"/>
<recipientList stopOnException="true">
<header>myHeader</header>
</recipientList>
</route>

4 NOTE

You can combine parallelProcessing and stopOnException in the same
route.

Ignore invalid endpoints

Available as of Camel 2.3

The Recipient List supports the ignoreInvalidEndpoints option, which enables the

recipient list to skip invalid endpoints (Routing Slip also supports this option). For example:

I from("direct:a").recipientList(header("myHeader")).ignoreInvalidEndpoints(
);

And in Spring XML, you can enable this option by setting the ignoreInvalidEndpoints
attribute on the recipientList tag, as follows

<route>
<from uri="direct:a"/>
<recipientList ignorelInvalidEndpoints="true">
<header>myHeader</header>
</recipientList>
</route>

Consider the case where myHeader contains the two endpoints,direct: foo,xxx:bar. The
first endpoint is valid and works. The second is invalid and, therefore, ignored. Apache
Camel logs at INFO level whenever an invalid endpoint is encountered.

Using custom AggregationStrategy
Available as of Camel 2.2

You can use a custom AggregationStrategy with the Recipient List, which is useful for
aggregating replies from the recipients in the list. By default, Apache Camel uses the
UseLatestAggregationStrategy aggregation strategy, which keeps just the last received
reply. For a more sophisticated aggregation strategy, you can define your own
implementation of the AggregationStrategy interface—see Aggregator EIP for details. For
example, to apply the custom aggregation strategy, MyOwnAggregationStrategy, to the
reply messages, you can define a Java DSL route as follows:

from("direct:a")
.recipientList(header("myHeader")).aggregationStrategy(new
MyOwnAggregationStrategy())
.to("direct:b");

153

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

In Spring XML, you can specify the custom aggregation strategy as an attribute on the
recipientList tag, as follows:

<route>
<from uri="direct:a"/>
<recipientList strategyRef="myStrategy">
<header>myHeader</header>

</recipientList>
<to uri="direct:b"/>
</route>

<bean id="myStrategy" class="com.mycompany.MyOwnAggregationStrategy"/>

Using custom thread pool

Available as of Camel 2.2

This is only needed when you use parallelProcessing. By default Camel uses a thread
pool with 10 threads. Notice this is subject to change when we overhaul thread pool
management and configuration later (hopefully in Camel 2.2).

You configure this just as you would with the custom aggregation strategy.

Using method call as recipient list

You can use a Bean to provide the recipients, for example:

from("activemq:queue:test").recipientList().method(MessageRouter.class,
“routeTo");

Where the MessageRouter bean is defined as follows:

public class MessageRouter {
public String routeTo() {

String queueName = "activemq:queue:test2";
return queueName;

Bean as recipient list

You can make a bean behave as a recipient list by adding the @RecipientList annotation
to a methods that returns a list of recipients. For example:

public class MessageRouter {

@RecipientList
public String routeTo() {
String queuelList = "activemq:queue:testl,activemq:queue:test2";

return queuelList;

154

CHAPTER 7. MESSAGE ROUTING

In this case, do not include the recipientList DSL command in the route. Define the route
as follows:

I from("activemq:queue:test").bean(MessageRouter.class, "routeTo");

Using timeout

Available as of Camel 2.5

If you use parallelProcessing, you can configure a totaltimeout value in milliseconds.
Camel will then process the messages in parallel until the timeout is hit. This allows you to
continue processing if one message is slow.

In the example below, the recipientlist header has the value,
direct:a,direct:b,direct:c, so that the message is sent to three recipients. We have a
timeout of 250 milliseconds, which means only the last two messages can be completed
within the timeframe. The aggregation therefore yields the string result, BC.

from("direct:start")
.recipientList(header("recipients"), ",")
.aggregationStrategy(new AggregationStrategy() {
public Exchange aggregate(Exchange oldExchange, Exchange
newExchange) {
if (oldExchange == null) {
return newExchange;

}

String body = oldExchange.getIn().getBody(String.class);
oldExchange.getIn().setBody(body +
newExchange.getIn().getBody(String.class));
return oldExchange;
}
})
.parallelProcessing().timeout(250)
// use end to indicate end of recipientList clause
.end()
.to("mock:result");

from("direct:a").delay(500).to("mock:A").setBody(constant("A"));
from("direct:b").to("mock:B").setBody(constant("B"));

from("direct:c").to("mock:C").setBody(constant("C"));

9 NOTE

This timeout feature is also supported bysplitter and bothmulticast and
recipientList.

By default if a timeout occurs the AggregationStrategy is not invoked. However you can
implement a specialized version

// Java
I public interface TimeoutAwareAggregationStrategy extends

155

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

AggregationStrategy {

/**

* A timeout occurred
>k

* @param oldExchange the oldest exchange (is &Llt;tt>null</tt> on
first aggregation as we only have the new exchange)

* @param index the index
* @param total the total
* @param timeout the timeout value in millis
*/
void timeout(Exchange oldExchange, int index, int total, long
timeout);

This allows you to deal with the timeout in the AggregationStrategy if you really need to.

TIMEOUT IS TOTAL

The timeout is total, which means that after X time, Camel will aggregate the
messages which has completed within the timeframe. The remainders will be
cancelled. Camel will also only invoke the timeout method in the
TimeoutAwareAggregationStrategy once, for the first index which caused
the timeout.

Apply custom processing to the outgoing messages

Before recipientList sends a message to one of the recipient endpoints, it creates a
message replica, which is a shallow copy of the original message. If you want to perform
some custom processing on each message replica before the replica is sent to its endpoint,
you can invoke the onPrepare DSL command in the recipientList clause. TheonPrepare
command inserts a custom processor just after the message has been shallow-copied and
just before the message is dispatched to its endpoint. For example, in the following route,
the CustomProc processor is invoked on the message replica foreach recipient endpoint.:

from("direct:start")
.recipientList().onPrepare(new CustomProc());
A common use case for the onPrepare DSL command is to perform a deep copy of some or
all elements of a message. This allows each message replica to be modified independently
of the others. For example, the following CustomProc processor class performs a deep copy

of the message body, where the message body is presumed to be of type, BodyType, and
the deep copy is performed by the method, BodyType.deepCopy().

// Java
import org.apache.camel.*;

public class CustomProc implements Processor {

public void process(Exchange exchange) throws Exception {
BodyType body = exchange.getIn().getBody(BodyType.class);

// Make a deep copy of of the body object

BodyType clone = BodyType.deepCopy();
exchange.getIn().setBody(clone);

156

CHAPTER 7. MESSAGE ROUTING

// Headers and attachments have already been
// shallow-copied. If you need deep copies,
// add some more code here.

Options

The recipientList DSL command supports the following options:

Name Default Value Description

delimiter , Delimiter used if the
Expression returned multiple
endpoints.

strategyRef Refers to an

AggregationStrategy to be
used to assemble the replies
from the recipients, into a
single outgoing message from
the Recipient List. By default
Camel will use the last reply
as the outgoing message.

parallelProcessing false Camel 2.2: If enables then
sending messages to the
recipients occurs
concurrently. Note the caller
thread will still wait until all
messages has been fully
processed, before it
continues. Its only the
sending and processing the
replies from the recipients
which happens concurrently.

executorServiceRef Camel 2.2: Refers to a
custom Thread Pool to be
used for parallel processing.
Notice if you set this option,
then parallel processing is
automatic implied, and you do
not have to enable that option
as well.

157

Expression
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
Threading Model

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

stopOnException

ignoreInvalidEndpoints

streaming

timeout

onPrepareRef

158

false

false

false

Camel 2.2: Whether or not to
stop continue processing
immediately when an
exception occurred. If disable,
then Camel will send the
message to all recipients
regardless if one of them
failed. You can deal with
exceptions in the
AggregationStrategy class
where you have full control
how to handle that.

Camel 2.3: If an endpoint uri
could not be resolved, should
it be ignored. Otherwise
Camel will thrown an
exception stating the
endpoint uri is not valid.

Camel 2.5: If enabled then
Camel will process replies
out-of-order, eg in the order
they come back. If disabled,
Camel will process replies in
the same order as the
Expression specified.

Camel 2.5: Sets a total
timeout specified in millis. If
the Recipient List hasn't been
able to send and process all
replies within the given
timeframe, then the timeout
triggers and the Recipient List
breaks out and continues.
Notice if you provide a
TimeoutAwareAggregationStra
tegy then the timeout
method is invoked before
breaking out.

Camel 2.8: Refers to a
custom Processor to prepare
the copy of the Exchange
each recipient will receive.
This allows you to do any
custom logic, such as deep-
cloning the message payload
if that's needed etc.

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
Expression
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html

CHAPTER 7. MESSAGE ROUTING

shareUnitOfWork false Camel 2.8: Whether the unit
of work should be shared. See
the same option on Splitter for
more details.

7.4. SPLITTER

Overview

A splitter is a type of router that splits an incoming message into a series of outgoing
messages. Each of the outgoing messages contains a piece of the original message. In
Apache Camel, the splitter pattern, shown in Figure 7.4, “Splitter Pattern”, is implemented
by the split() Java DSL command.

Figure 7.4. Splitter Pattern

B

Order Order Order
lterm 1 lterm 2 lterm 3

Mew Order plitter

The Apache Camel splitter actually supports two patterns, as follows:
o Simple splitter—implements the splitter pattern on its own.

o Splitter/aggregator—combines the splitter pattern with the aggregator pattern, such
that the pieces of the message are recombined after they have been processed.

Java DSL example

The following example defines a route from seda:a to seda:b that splits messages by
converting each line of an incoming message into a separate outgoing message:

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("seda:a")
.split(bodyAs(String.class).tokenize("\n"))
.to("seda:b");

b
The splitter can use any expression language, so you can split messages using any of the
supported scripting languages, such as XPath, XQuery, or SQL (see Part I, “Routing

Expression and Predicate Languages”). The following example extractshbar elements from
ah incoming message and insert them into separate outgoing messages:

159

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

from("activemq:my.queue")
.split(xpath("//foo/bar"))
.to("file://some/directory")

XML configuration example

The following example shows how to configure a splitter route in XML, using the XPath
scripting language:

<camelContext id="buildSplitter"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="seda:a"/>
<split>
<xpath>//foo/bar</xpath>
<to uri="seda:b"/>
</split>
</route>
</camelContext>

You can use the tokenize expression in the XML DSL to split bodies or headers using a
token, where the tokenize expression is defined using the tokenize element. In the
following example, the message body is tokenized using the \n separator character. To use
a regular expression pattern, set regex=true in the tokenize element.

<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<split>
<tokenize token="\n"/>
<to uri="mock:result"/>
</split>
</route>
</camelContext>

Splitting into groups of lines

To split a big file into chunks of 1000 lines, you can define a splitter route as follows in the
Java DSL:

from("file:inbox")
.split().tokenize("\n", 1000).streaming()
.to("activemq:queue:order");

The second argument to tokenize specifies the number of lines that should be grouped
into a single chunk. The streaming() clause directs the splitter not to read the whole file at
once (resulting in much better performance if the file is large).

The same route can be defined in XML DSL as follows:

<route>
<from uri="file:inbox"/>
<split streaming="true">

160

CHAPTER 7. MESSAGE ROUTING

<tokenize token="\n" group="1000"/>
<to uri="activemq:queue:order"/>
</split>
</route>

The output when using the group option is always of java.lang.String type.

Splitter reply

If the exchange that enters the splitter has the InOut message-exchange pattern (that s, a
reply is expected), the splitter returns a copy of the original input message as the reply
message in the Out message slot. You can override this default behavior by implementing
your own aggregation strategy.

Parallel execution

If you want to execute the resulting pieces of the message in parallel, you can enable the
parallel processing option, which instantiates a thread pool to process the message pieces.
For example:

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar");
from("activemqg:my.queue").split(xPathBuilder).parallelProcessing().to("act
ivemq:my.parts");

You can customize the underlying ThreadPoolExecutor used in the parallel splitter. For
example, you can specify a custom executor in the Java DSL as follows:

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar");
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(8, 16, OL,
TimeUnit.MILLISECONDS, new LinkedBlockingQueue());
from("activemq:my.queue")

.split(xPathBuilder)

.parallelProcessing()

.executorService(threadPoolExecutor)

.to("activemq:my.parts");

You can specify a custom executor in the XML DSL as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:parallel-custom-pool"/>
<split executorServiceRef="threadPoolExecutor">
<xpath>/invoice/lineltems</xpath>
<to uri="mock:result"/>
</split>
</route>
</camelContext>

<bean id="threadPoolExecutor"

class="java.util.concurrent.ThreadPoolExecutor">
<constructor-arg index="0" value="8"/>
<constructor-arg index="1" value="16"/>
<constructor-arg index="2" value="0"/>
<constructor-arg index="3" value="MILLISECONDS"/>

161

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

<constructor-arg index="4"><bean
class="java.util.concurrent.LinkedBlockingQueue"/></constructor-arg>
</bean>

Using a bean to perform splitting

As the splitter can use any expression to do the splitting, we can use a bean to perform
splitting, by invoking the method () expression. The bean should return an iterable value
such as: java.util.Collection, java.util.Iterator, or an array.

The following route defines a method () expression that calls a method on the
mySplitterBean bean instance:

from("direct:body")

// here we use a P0JO bean mySplitterBean to do the split of the
payload

.split()

.method("mySplitterBean", "splitBody")

.to("mock:result");
from("direct:message")

// here we use a P0JO bean mySplitterBean to do the split of the
message

// with a certain header value

.split()

.method("mySplitterBean", "splitMessage")

.to("mock:result");

Where mySplitterBean is an instance of theMySplitterBean class, which is defined as
follows:

public class MySplitterBean {

/**

* The split body method returns something that is iteratable such as
a java.util.List.
*
* @param body the payload of the incoming message
* @return a list containing each part split
*/
public List<String> splitBody(String body) {
// since this is based on an unit test you can of couse
// use different logic for splitting as Apache Camel have out
// of the box support for splitting a String based on comma
// but this is for show and tell, since this is java code
// you have the full power how you like to split your messages
List<String> answer = new ArrayList<String>();
String[] parts = body.split(",");
for (String part : parts) {
answer.add(part);
}
return answer;

}

/**
* The split message method returns something that is iteratable such

162

CHAPTER 7. MESSAGE ROUTING

as a java.util.List.
*
* @param header the header of the incoming message with the name user
* @param body the payload of the incoming message
* @return a list containing each part split
*/
public List<Message> splitMessage(@Header(value = "user") String
header, @Body String body) {
// we can leverage the Parameter Binding Annotations
// http://camel.apache.org/parameter-binding-annotations.html
// to access the message header and body at same time,
// then create the message that we want, splitter will
// take care rest of them.
// *NOTE* this feature requires Apache Camel version >= 1.6.1
List<Message> answer = new ArraylList<Message>();
String[] parts = header.split(",");
for (String part : parts) {
DefaultMessage message = new DefaultMessage();
message.setHeader("user", part);
message.setBody(body) ;
answer.add(message) ;
}

return answer;

Exchange properties

The following properties are set on each split exchange:

header type description

CamelSplitIndex int Apache Camel 2.0: A split
counter that increases for
each Exchange being split.
The counter starts from 0.

CamelSplitSize int Apache Camel 2.0: The total
number of Exchanges that
was split. This header is not
applied for stream based
splitting.

CamelSplitComplete boolean Apache Camel 2.4: Whether or
not this Exchange is the last.

Splitter/aggregator pattern

It is a common pattern for the message pieces to be aggregated back into a single
exchange, after processing of the individual pieces has completed. To support this pattern,
the split() DSL command lets you provide anAggregationStrategy object as the second
argument.

163

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Java DSL example

The following example shows how to use a custom aggregation strategy to recombine a
split message after all of the message pieces have been processed:

from("direct:start")
.split(body().tokenize("@"), new MyOrderStrategy())
// each split message is then send to this bean where we can
process it
.to("bean:My0OrderService?method=handleOrder")
// this is important to end the splitter route as we do not want
to do more routing
// on each split message
.end()
// after we have split and handled each message we want to send a
single combined
// response back to the original caller, so we let this bean build it
for us
// this bean will receive the result of the aggregate strategy:
MyOrderStrategy
.to("bean:MyOrderService?method=buildCombinedResponse")

AggregationStrategy implementation

The custom aggregation strategy, MyOrderStrategy, used in the preceding route is
implemented as follows:

/**
* This is our own order aggregation strategy where we can control
* how each split message should be combined. As we do not want to
* lose any message, we copy from the new to the old to preserve the
* order lines as long we process them
*/
public static class MyOrderStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange)
{
// put order together in old exchange by adding the order from new
exchange

if (oldExchange == null) {
// the first time we aggregate we only have the new exchange,
// so we just return it
return newExchange;

}

String orders = oldExchange.getIn().getBody(String.class);
String newlLine = newExchange.getIn().getBody(String.class);
LOG.debug("Aggregate old orders: " + orders);
LOG.debug("Aggregate new order: " + newlLine);

// put orders together separating by semi colon

orders = orders + ":;" + newlLine;
// put combined order back on old to preserve it

164

CHAPTER 7. MESSAGE ROUTING

oldExchange.getIn().setBody(orders);

// return old as this is the one that has all the orders gathered
until now
return oldExchange;

}

Stream based processing

When parallel processing is enabled, it is theoretically possible for a later message piece to
be ready for aggregation before an earlier piece. In other words, the message pieces might
arrive at the aggregator out of order. By default, this does not happen, because the splitter
implementation rearranges the message pieces back into their original order before
passing them into the aggregator.

If you would prefer to aggregate the message pieces as soon as they are ready (and
possibly out of order), you can enable the streaming option, as follows:

from("direct:streaming")
.split(body().tokenize(","), new MyOrderStrategy())
.parallelProcessing()
.streaming()
.to("activemqg:my.parts")
.end()
.to("activemqg:all.parts");

You can also supply a custom iterator to use with streaming, as follows:

// Java
import static org.apache.camel.builder.ExpressionBuilder.beanExpression;

from("direct:streaming")
.split(beanExpression(new MyCustomIteratorFactory(), "iterator"))
.streaming().to("activemq:my.parts")

STREAMING AND XPATH

You cannot use streaming mode in conjunction with XPath. XPath requires the
complete DOM XML document in memory.

Stream based processing with XML

If an incoming messages is a very large XML file, you can process the message most
efficiently using the tokenizeXML sub-command in streaming mode.

For example, given a large XML file that contains a sequence of order elements, you can
split the file into order elements using a route like the following:

from("file:inbox")
.split().tokenizeXML("order").streaming()
.to("activemqg:queue:order");

You can do the same thing in XML, by defining a route like the following:

165

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

<route>
<from uri="file:inbox"/>
<split streaming="true">
<tokenize token="order" xml="true"/>
<to uri="activemq:queue:order"/>
</split>
</route>

It is often the case that you need access to namespaces that are defined in one of the
enclosing (ancestor) elements of the token elements. You can copy namespace definitions
from one of the ancestor elements into the token element, by specifing which element you
want to inherit namespace definitions from.

In the Java DSL, you specify the ancestor element as the second argument of tokenizeXML.
For example, to inherit namespace definitions from the enclosing orders element:

from("file:inbox")
.split().tokenizeXML("order", "orders").streaming()
.to("activemqg:queue:order");

In the XML DSL, you specify the ancestor element using the inheritNamespaceTagName
attribute. For example:

<route>
<from uri="file:inbox"/>
<split streaming="true">
<tokenize token="order"
xml="true"
inheritNamespaceTagName="orders" />
<to uri="activemq:queue:order"/>
</split>
</route>

Options

The split DSL command supports the following options:

Name Default Value Description

strategyRef Refers to an
AggregationStrategy to be
used to assemble the replies
from the sub-messages, into a
single outgoing message from
the Splitter. See the section
titled What does the splitter
return below for whats used
by default.

166

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html

parallelProcessing

executorServiceRef

stopOnException

streaming

false

false

false

CHAPTER 7. MESSAGE ROUTING

If enables then processing the
sub-messages occurs
concurrently. Note the caller
thread will still wait until all
sub-messages has been fully
processed, before it
continues.

Refers to a custom Thread
Pool to be used for parallel
processing. Notice if you set
this option, then parallel
processing is automatic
implied, and you do not have
to enable that option as well.

Camel 2.2: Whether or not to
stop continue processing
immediately when an
exception occurred. If disable,
then Camel continue splitting
and process the sub-
messages regardless if one of
them failed. You can deal with
exceptions in the
AggregationStrategy class
where you have full control
how to handle that.

If enabled then Camel will
split in a streaming fashion,
which means it will split the
input message in chunks. This
reduces the memory
overhead. For example if you
split big messages its
recommended to enable
streaming. If streaming is
enabled then the sub-
message replies will be
aggregated out-of-order, eg in
the order they come back. If
disabled, Camel will process
sub-message replies in the
same order as they where
splitted.

167

Threading Model
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

timeout Camel 2.5: Sets a total
timeout specified in millis. If
the Recipient List hasn't been
able to split and process all
replies within the given
timeframe, then the timeout
triggers and the Splitter
breaks out and continues.
Notice if you provide a
TimeoutAwareAggregationStra
tegy then the timeout
method is invoked before
breaking out.

onPrepareRef Camel 2.8: Refers to a
custom Processor to prepare
the sub-message of the
Exchange, before its
processed. This allows you to
do any custom logic, such as
deep-cloning the message
payload if that's needed etc.

shareUnitOfWork false Camel 2.8: Whether the unit
of work should be shared. See
further below for more details.

7.5. AGGREGATOR

Overview

The aggregator pattern, shown inFigure 7.5, “Aggregator Pattern”, enables you to combine
a batch of related messages into a single message.

Figure 7.5. Aggregator Pattern

% % Y]

lnventory Inventory Inventary
ltern 1 lterm 2 lterm 3 Agaregator Inventory
Order

To control the aggregator's behavior, Apache Camel allows you to specify the properties
described in Enterprise Integration Patterns, as follows:

e Correlation expression — Determines which messages should be aggregated

together. The correlation expression is evaluated on each incoming message to
produce a correlation key. Incoming messages with the same correlation key are

168

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html

CHAPTER 7. MESSAGE ROUTING

then grouped into the same batch. For example, if you want to aggregate all
incoming messages into a single message, you can use a constant expression.

Completeness condition — Determines when a batch of messages is complete. You
can specify this either as a simple size limit or, more generally, you can specify a
predicate condition that flags when the batch is complete.

e Aggregation algorithm — Combines the message exchanges for a single correlation

key into a single message exchange.

For example, consider a stock market data system that receives 30,000 messages per
second. You might want to throttle down the message flow if your GUI tool cannot cope with
such a massive update rate. The incoming stock quotes can be aggregated together simply
by choosing the latest quote and discarding the older prices. (You can apply a delta
processing algorithm, if you prefer to capture some of the history.)

How the aggregator works

Figure 7.6, “Aggregator Implementation” shows an overview of how the aggregator works,
assuming it is fed with a stream of exchanges that have correlation keys such as A, B, C, or

D.

Figure 7.6. Aggregator Implementation

Correlator Stfa%glgy
5

Timeout/Iinterval Thread

Completion

Timeout/Interval
--------------------------- Optional Thread Pool

@ ©)

Aggregation

Repository

The incoming stream of exchanges shown in Figure 7.6, “Aggregator Implementation” is
processed as follows:

1.

2.

The correlator is responsible for sorting exchanges based on the correlation key. For
each incoming exchange, the correlation expression is evaluated, yielding the
correlation key. For example, for the exchange shown in Figure 7.6, “Aggregator
Implementation”, the correlation key evaluates to A.

The aggregation strategy is responsible for merging exchanges with the same
correlation key. When a new exchange, A, comes in, the aggregator looks up the
corresponding aggregate exchange, A', in the aggregation repository and combines
it with the new exchange.

Until a particular aggregation cycle is completed, incoming exchanges are

continuously aggregated with the corresponding aggregate exchange. An
aggregation cycle lasts until terminated by one of the completion mechanisms.

169

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

3. If a completion predicate is specified on the aggregator, the aggregate exchange is
tested to determine whether it is ready to be sent to the next processor in the
route. Processing continues as follows:

o If complete, the aggregate exchange is processed by the latter part of the route.
There are two alternative models for this: synchronous (the default), which
causes the calling thread to block, or asynchronous (if parallel processing is
enabled), where the aggregate exchange is submitted to an executor thread
pool (as shown in Figure 7.6, “Aggregator Implementation”).

o If not complete, the aggregate exchange is saved back to the aggregation
repository.

4. In parallel with the synchronous completion tests, it is possible to enable an
asynchronous completion test by enabling either the completionTimeout option or
the completionInterval option. These completion tests run in a separate thread
and, whenever the completion test is satisfied, the corresponding exchange is
marked as complete and starts to be processed by the latter part of the route
(either synchronously or asynchronously, depending on whether parallel processing
is enabled or not).

5. If parallel processing is enabled, a thread pool is responsible for processing
exchanges in the latter part of the route. By default, this thread pool contains ten
threads, but you have the option of customizing the pool (the section called
“Threading options”).

Java DSL example

The following example aggregates exchanges with the same StockSymbol header value,
using the UseLatestAggregationStrategy aggregation strategy. For a givenStockSymbol
value, if more than three seconds elapse since the last exchange with that correlation key
was received, the aggregated exchange is deemed to be complete and is sent to the mock
endpoint.

from("direct:start")
.aggregate(header("id"), new UselLatestAggregationStrategy())
.completionTimeout (3000)
.to("mock:aggregated");

XML DSL example

The following example shows how to configure the same route in XML.:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy"
completionTimeout="3000">
<correlationExpression>
<simple>header.StockSymbol</simple>
</correlationExpression>
<to uri="mock:aggregated"/>
</aggregate>
</route>
</camelContext>

170

CHAPTER 7. MESSAGE ROUTING

<bean id="aggregatorStrategy"

class="org.apache.camel.processor.aggregate.UseLatestAggregationStrategy"/
>

Specifying the correlation expression

In the Java DSL, the correlation expression is always passed as the first argument to the
aggregate() DSL command. You are not limited to using the Simple expression language
here. You can specify a correlation expression using any of the expression languages or
scripting languages, such as XPath, XQuery, SQL, and so on.

For exampe, to correlate exchanges using an XPath expression, you could use the following
Java DSL route:

from("direct:start")
.aggregate(xpath("/stockQuote/@symbol"), new
UselLatestAggregationStrategy())
.completionTimeout (3000)
.to("mock:aggregated");

If the correlation expression cannot be evaluated on a particular incoming exchange, the
aggregator throws a CamelExchangeException by default. You can suppress this exception
by setting the ignoreInvalidCorrelationKeys option. For example, in the Java DSL:

I from(...).aggregate(...).ignoreInvalidCorrelationKeys()

In the XML DSL, you can set the ignoreInvalidCorrelationKeys option is set as an
attribute, as follows:

<aggregate strategyRef="aggregatorStrategy"
ignoreInvalidCorrelationKeys="true"
L

</aggregate>

Specifying the aggregation strategy

In Java DSL, you can either pass the aggregation strategy as the second argument to the
aggregate() DSL command or specify it using theaggregationStrategy() clause. For
example, you can use the aggregationStrategy() clause as follows:

from("direct:start")
.aggregate(header("id"))
.aggregationStrategy(new UselLatestAggregationStrategy())
.completionTimeout(3000)
.to("mock:aggregated");

Apache Camel provides the following basic aggregation strategies (where the classes
belong to the org.apache.camel.processor.aggregate Java package):

UseLatestAggregationStrategy

171

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Return the last exchange for a given correlation key, discarding all earlier exchanges
with this key. For example, this strategy could be useful for throttling the feed from a
stock exchange, where you just want to know the latest price of a particular stock
symbol.

UseOriginalAggregationStrategy

Return the first exchange for a given correlation key, discarding all later exchanges with
this key. You must set the first exchange by calling
UseOriginalAggregationStrategy.setOriginal() before you can use this strategy.

GroupedExchangeAggregationStrategy

Concatenates all of the exchanges for a given correlation key into a list, which is stored
in the Exchange.GROUPED_EXCHANGE exchange property. See the section called “Grouped
exchanges”.

Implementing a custom aggregation strategy

If you want to apply a different aggregation strategy, you can implement one of the
following aggregation strategy base interfaces:

org.apache.camel.processor.aggregate.AggregationStrategy
The basic aggregation strategy interface.

org.apache.camel.processor.aggregate.TimeoutAwareAggregationStrategy

Implement this interface, if you want your implementation to receive a notification when
an aggregation cycle times out. The timeout notification method has the following
signature:

I void timeout (Exchange oldExchange, int index, int total, long timeout)

org.apache.camel.processor.aggregate.CompletionAwareAggregationStrategy

Implement this interface, if you want your implementation to receive a notification when
anh aggregation cycle completes normally. The notification method has the following
signature:

I void onCompletion(Exchange exchange)

For example, the following code shows two different custom aggregation strategies,
StringAggregationStrategy and ArrayListAggregationStrategy::

//simply combines Exchange String body values using '+' as a delimiter
class StringAggregationStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange)
if (oldExchange == null) {
return newExchange;

}

String oldBody = oldExchange.getIn().getBody(String.class);

172

CHAPTER 7. MESSAGE ROUTING

String newBody = newExchange.getIn().getBody(String.class);
oldExchange.getIn().setBody(oldBody + "+" + newBody);
return oldExchange;

}

//simply combines Exchange body values into an ArrayList<Object>
class ArraylListAggregationStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange)

Object newBody = newExchange.getIn().getBody();
ArrayList<Object> list = null;
if (oldExchange == null) {
list = new ArrayList<Object>();
list.add(newBody);
newExchange.getIn().setBody(list);
return newExchange;
} else {
list = oldExchange.getIn().getBody(ArrayList.class);
list.add(newBody);
return oldExchange;
}
}

NOTE

Since Apache Camel 2.0, the AggregationStrategy.aggregate() callback
method is also invoked for the very first exchange. On the first invocation of
the aggregate method, the oldExchange parameter is null and the
newExchange parameter contains the first incoming exchange.

To aggregate messages using the custom strategy class, ArrayListAggregationStrategy,
define a route like the following:

from("direct:start")
.aggregate(header("StockSymbol"), new ArrayListAggregationStrategy())
.completionTimeout (3000)
.to("mock:result");

You can also configure a route with a custom aggregation strategy in XML, as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy"
completionTimeout="3000">
<correlationExpression>
<simple>header.StockSymbol</simple>
</correlationExpression>
<to uri="mock:aggregated"/>
</aggregate>
</route>

173

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

</camelContext>

<bean id="aggregatorStrategy"
class="com.my package name.ArrayListAggregationStrategy"/>

Controlling the lifecycle of a custom aggregation strategy

You can implement a custom aggregation strategy so that its lifecycle is aligned with the
lifecycle of the enterprise integration pattern that is controlling it. This can be useful for
ensuring that the aggregation strategy can shut down gracefully.

To implement an aggregation strategy with lifecycle support, you must implement the
org.apache.camel.Service interface (in addition to theAggregationStrategy interface)
and provide implementations of the start() and stop() lifecycle methods. For example,
the following code example shows an outline of an aggregation strategy with lifecycle
support:

// Java

import org.apache.camel.processor.aggregate.AggregationStrategy;
import org.apache.camel.Service;

import java.lang.Exception;

class MyAggStrategyWithLifecycleControl
implements AggregationStrategy, Service {

public Exchange aggregate(Exchange oldExchange, Exchange newExchange)

{
// Implementation not shown...
}
public void start() throws Exception {
// Actions to perform when the enclosing EIP starts up
}
public void stop() throws Exception {
// Actions to perform when the enclosing EIP is stopping
}
}

Exchange properties

The following properties are set on each aggregated exchange:

Table 7.1. Aggregated Exchange Properties

Header Type Description
Exchange.AGGREGATED_SIZ int The total number of
E exchanges aggregated into

this exchange.

174

CHAPTER 7. MESSAGE ROUTING

Header Type Description
Exchange.AGGREGATED_COM String Indicates the mechanism
PLETED_BY responsible for completing the

aggregate exchange. Possible
values are: predicate, size,
timeout, interval, or
consumer.

The following properties are set on exchanges redelivered by the HawtDB aggregation
repository (see the section called “Persistent aggregation repository”):

Table 7.2. Redelivered Exchange Properties

Header Type Description
Exchange.REDELIVERY_COU int Sequence number of the
NTER current redelivery attempt

(starting at 1).

Specifying a completion condition

It is mandatory to specify at least one completion condition, which determines when an
aggregate exchange leaves the aggregator and proceeds to the next node on the route.
The following completion conditions can be specified:

completionPredicate

Evaluates a predicate after each exchange is aggregated in order to determine
completeness. A value of true indicates that the aggregate exchange is complete.

completionSize

Completes the aggregate exchange after the specified number of incoming exchanges
are aggregated.

completionTimeout

(Incompatible with completionInterval) Completes the aggregate exchange, if no
incoming exchanges are aggregated within the specified timeout.

In other words, the timeout mechanism keeps track of a timeout for each correlation key
value. The clock starts ticking after the latest exchange with a particular key value is
received. If another exchange with the same key value is not received within the
specified timeout, the corresponding aggregate exchange is marked complete and sent
to the next node on the route.

completionInterval

(Incompatible with completionTimeout) Completes all outstanding aggregate
exchanges, after each time interval (of specified length) has elapsed.

The time interval is not tailored to each aggregate exchange. This mechanism forces

simultaneous completion of all outstanding aggregate exchanges. Hence, in some cases,
this mechanism could complete an aggregate exchange immediately after it started

175

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

aggregating.

completionFromBatchConsumer

When used in combination with a consumer endpoint that supports the batch consumer
mechanism, this completion option automatically figures out when the current batch of
exchanges is complete, based on information it receives from the consumer endpoint.
See the section called “Batch consumer”.

forceCompletionOnStop

When this option is enabled, it forces completion of all outstanding aggregate exchanges
when the current route context is stopped.

The preceding completion conditions can be combined arbitrarily, except for the
completionTimeout and completionInterval conditions, which cannot be simultaneously
enabled. When conditions are used in combination, the general rule is that the first
completion condition to trigger is the effective completion condition.

Specifying the completion predicate

You can specify an arbitrary predicate expression that determines when an aggregated
exchange is complete. There are two possible ways of evaluating the predicate expression:

e On the latest aggregate exchange—this is the default behavior.

e On the latest incoming exchange—this behavior is selected when you enable the
eagerCheckCompletion option.

For example, if you want to terminate a stream of stock quotes every time you receive an
ALERT message (as indicated by the value of aMsgType header in the latest incoming
exchange), you can define a route like the following:

from("direct:start")
.aggregate(
header("id"),
new UselLatestAggregationStrategy()
)
.completionPredicate(
header("MsgType") .isEqualTo("ALERT")
)
.eagerCheckCompletion()
.to("mock:result");

The following example shows how to configure the same route using XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy"
eagerCheckCompletion="true">
<correlationExpression>
<simple>header.StockSymbol</simple>

</correlationExpression>
<completionPredicate>

176

CHAPTER 7. MESSAGE ROUTING

<simple>$MsgType = 'ALERT'</simple>
</completionPredicate>
<to uri="mock:result"/>
</aggregate>
</route>
</camelContext>

<bean id="aggregatorStrategy"

class="org.apache.camel.processor.aggregate.UseLatestAggregationStrategy"/
>

Specifying a dynamic completion timeout

It is possible to specify a dynamic completion timeout, where the timeout value is
recalculated for every incoming exchange. For example, to set the timeout value from the
timeout header in each incoming exchange, you could define a route as follows:

from("direct:start")
.aggregate(header("StockSymbol"), new UselLatestAggregationStrategy())
.completionTimeout (header("timeout"))
.to("mock:aggregated");

You can configure the same route in the XML DSL, as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy">
<correlationExpression>
<simple>header.StockSymbol</simple>
</correlationExpression>
<completionTimeout>
<header>timeout</header>
</completionTimeout>
<to uri="mock:aggregated"/>
</aggregate>
</route>
</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.UselLatestAggregationStrategy"/>

NOTE

You can also add a fixed timeout value and Apache Camel will fall back to use
this value, if the dynamic value is null or 0.

Specifying a dynamic completion size

It is possible to specify a dynamic completion size, where the completion size is
recalculated for every incoming exchange. For example, to set the completion size from
the mySize header in each incoming exchange, you could define a route as follows:

177

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

from("direct:start")
.aggregate(header("StockSymbol"), new UselLatestAggregationStrategy())
.completionSize(header("mySize"))
.to("mock:aggregated");

And the same example using Spring XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<aggregate strategyRef="aggregatorStrategy">
<correlationExpression>
<simple>header.StockSymbol</simple>
</correlationExpression>
<completionSize>
<header>mySize</header>
</completionSize>
<to uri="mock:aggregated"/>
</aggregate>
</route>
</camelContext>

<bean id="aggregatorStrategy"
class="org.apache.camel.processor.UseLatestAggregationStrategy"/>

—

NOTE

You can also add a fixed size value and Apache Camel will fall back to use this
value, if the dynamic value is null or 0.

Forcing completion with a special message

It is possible to force completion of all outstanding aggregate messages, by sending a
message with a special header to the route. There are two alternative header settings you
can use to force completion:

Exchange.AGGREGATION_COMPLETE_ALL_GROUPS

Set to true, to force completion of the current aggregation cycle. This message acts
purely as a signal and is not included in any aggregation cycle. After processing this
signal message, the content of the message is discarded.

Exchange.AGGREGATION_COMPLETE_ALL_GROUPS_INCLUSIVE

Set to true, to force completion of the current aggregation cycle. This message is
included in the current aggregation cycle.

Enforcing unique correlation keys

In some aggregation scenarios, you might want to enforce the condition that the correlation
key is unique for each batch of exchanges. In other words, when the aggregate exchange
for a particular correlation key completes, you want to make sure that no further aggregate
exchanges with that correlation key are allowed to proceed. For example, you might want
to enforce this condition, if the latter part of the route expects to process exchanges with
unique correlation key values.

178

CHAPTER 7. MESSAGE ROUTING

Depending on how the completion conditions are configured, there might be a risk of more
than one aggregate exchange being generated with a particular correlation key. For
example, although you might define a completion predicate that is designed to wait until all
the exchanges with a particular correlation key are received, you might also define a
completion timeout, which could fire before all of the exchanges with that key have arrived.
In this case, the late-arriving exchanges could give rise to a second aggregate exchange
with the same correlation key value.

For such scenarios, you can configure the aggregator to suppress aggregate exchanges
that duplicate previous correlation key values, by setting the
closeCorrelationKeyOnCompletion option. In order to suppress duplicate correlation key
values, it is necessary for the aggregator to record previous correlation key values in a
cache. The size of this cache (the number of cached correlation keys) is specified as an
argument to the closeCorrelationKeyOnCompletion() DSL command. To specify a cache
of unlimited size, you can pass a value of zero or a negative integer. For example, to
specify a cache size of 10000 key values:

from("direct:start")

.aggregate(header("UniqueBatchID"), new MyConcatenateStrategy())
.completionSize(header("mySize"))
.closeCorrelationKeyOnCompletion(10000)

.to("mock:aggregated");

If an aggregate exchange completes with a duplicate correlation key value, the aggregator
throws a ClosedCorrelationKeyException exception.

Grouped exchanges

You can combine all of the aggregated exchanges in an outgoing batch into a single
org.apache.camel.impl.GroupedExchange holder class. To enable grouped exchanges,
specify the groupExchanges () option, as shown in the following Java DSL route:

from("direct:start")
.aggregate(header("StockSymbol"))
.completionTimeout (3000)
.groupExchanges()
.to("mock:result");

The grouped exchange that is sent to mock: result contains the list of aggregated
exchanges stored in the exchange property, Exchange . GROUPED_EXCHANGE. The following
line of code shows how a subsequent processor can access the contents of the grouped
exchange in the form of a list:

// Java
List<Exchange> grouped = ex.getProperty(Exchange.GROUPED EXCHANGE,
List.class);

NOTE
When you enable the grouped exchanges feature, you must not configure an

aggregation strategy (the grouped exchanges feature is itself an aggregation
strategy).

179

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Batch consumer

The aggregator can work together with the batch consumer pattern to aggregate the total
number of messages reported by the batch consumer (a batch consumer endpoint sets the
CamelBatchSize, CamelBatchIndex , and CamelBatchComplete properties on the incoming
exchange). For example, to aggregate all of the files found by a File consumer endpoint,
you could use a route like the following:

from("file://inbox")
.aggregate(xpath("//order/@customerId”), new

AggregateCustomerOrderStrategy())
.completionFromBatchConsumer()
.to("bean:processOrder");

Currently, the following endpoints support the batch consumer mechanism: File, FTP, Mail,
iBatis, and JPA.

Persistent aggregation repository

If you want pending aggregated exchanges to be stored persistently, you can use either the
HawtDB component or theSQL Component for persistence support as a persistent
aggregation repository. For example, if using HawtDB, you need to include a dependency
on the camel-hawtdb component in your Maven POM. You can then configure a route to
use the HawtDB aggregation repository as follows:

public void configure() throws Exception {
HawtDBAggregationRepository repo = new AggregationRepository("repol",
“target/data/hawtdb.dat");

from("direct:start")
.aggregate(header("id"), new UselLatestAggregationStrategy())
.completionTimeout(3000)
.aggregationRepository(repo)
.to("mock:aggregated");
}

The HawtDB aggregation repository has a feature that enables it to recover and retry any
failed exchanges (that is, any exchange that raised an exception while it was being
processed by the latter part of the route). Figure 7.7, “Recoverable Aggregation
Repository” shows an overview of the recovery mechanism.

Figure 7.7. Recoverable Aggregation Repository

...... process()

Recovery Thread @

redeliver

' No ‘ Dead-letter queue |

Agaregaton

Repository!

Max. REVITY]
Scan —» redeliveries?

i,

The recovery mechanism works as follows:

180

CHAPTER 7. MESSAGE ROUTING

1. The aggregator creates a dedicated recovery thread, which runs in the background,
scanning the aggregation repository to find any failed exchanges.

2. Each failed exchange is checked to see whether its current redelivery count
exceeds the maximum redelivery limit. If it is under the limit, the recovery task
resubmits the exchange for processing in the latter part of the route.

3. If the current redelivery count is over the limit, the failed exchange is passed to the
dead letter queue.

For more details about the HawtDB component, see .

Threading options

As shown in Figure 7.6, “Aggregator Implementation”, the aggregator is dsecoupled from
the latter part of the route, where the exchanges sent to the latter part of the route are
processed by a dedicated thread pool. By default, this pool contains just a single thread. If
you want to specify a pool with multiple threads, enable the parallelProcessing option,
as follows:

from("direct:start")
.aggregate(header("id"), new UselLatestAggregationStrategy())
.completionTimeout (3000)
.parallelProcessing()
.to("mock:aggregated");

By default, this creates a pool with 10 worker threads.

If you want to exercise more control over the created thread pool, specify a custom
java.util.concurrent.ExecutorService instance using the executorService option (in
which case it is unnecessary to enable the parallelProcessing option).

Aggregating into a List

A common aggregation scenario involves aggregating a series of incoming message bodies
into a List object. To facilitate this scenario, Apache Camel provides the
AbstractListAggregationStrategy abstract class, which you can quickly extend to create
an aggregation strategy for this case. Incoming message bodies of type, T, are aggregated
into a completed exchange, with a message body of type List<T>.

For example, to aggregate a series of Integer message bodies into aList<Integer>
object, you could use an aggregation strategy defined as follows:

import
org.apache.camel.processor.aggregate.AbstractListAggregationStrategy;
JHH

* Strategy to aggregate integers into a List<Integer>.

*/

public final class MyListOfNumbersStrategy extends
AbstractListAggregationStrategy<Integer> {

@Override

public Integer getValue(Exchange exchange) {
// the message body contains a number, so just return that as-is

181

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

return exchange.getIn().getBody(Integer.class);

Aggregator options

The aggregator supports the following options:

Table 7.3. Aggregator Options

Option

correlationExpression

aggregationStrategy

strategyRef

182

Default

Description

Mandatory Expression which
evaluates the correlation key
to use for aggregation. The
Exchange which has the same
correlation key is aggregated
together. If the correlation
key could not be evaluated

an Exception is thrown. You
can disable this by using the
ignoreBadCorrelationKey
S option.

Mandatory
AggregationStrategy
which is used to merge the
incoming Exchange with the
existing already merged
exchanges. At first call the
oldExchange parameter is
null. On subsequent
invocations the
oldExchange contains the
merged exchanges and
newExchange is of course
the new incoming Exchange.
From Camel 2.9.2 onwards,
the strategy can optionally be
a
TimeoutAwareAggregation
Strategy implementation,
which supports a timeout
callback

A reference to lookup the
AggregationStrategy in
the Registry.

Expression
Registry

CHAPTER 7. MESSAGE ROUTING

Option Default Description

completionSize Number of messages
aggregated before the
aggregation is complete. This
option can be set as either a
fixed value or using an
Expression which allows you
to evaluate a size dynamically
- will use Integer as result.
If both are set Camel will
fallback to use the fixed value
if the Expression result was
nullor0.

completionTimeout Time in millis that an
aggregated exchange should
be inactive before its
complete. This option can be
set as either a fixed value or
using an Expression which
allows you to evaluate a
timeout dynamically - will use
Long as result. If both are set
Camel will fallback to use the
fixed value if the Expression
result was null or 0. You
cannot use this option
together with
completioninterval, only one
of the two can be used.

completionInterval A repeating period in millis by
which the aggregator will
complete all current
aggregated exchanges.
Camel has a background task
which is triggered every
period. You cannot use this
option together with
completionTimeout, only one
of them can be used.

completionPredicate A Predicate to indicate when
an aggregated exchange is
complete.

183

Expression
Expression
Expression
Expression
Predicate

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Option Default Description
completionFromBatchCons false This option is if the exchanges
umer are coming from a Batch

Consumer. Then when
enabled the Aggregator will
use the batch size
determined by the Batch
Consumer in the message
header CamelBatchSize.
See more details at Batch
Consumer. This can be used
to aggregate all files
consumed from a File
endpoint in that given poll.

eagerCheckCompletion false Whether or not to eager
check for completion when a
new incoming Exchange has
been received. This option
influences the behavior of the
completionPredicate
option as the Exchange being
passed in changes
accordingly. When false the
Exchange passed in the
Predicate is the aggregated
Exchange which means any
information you may store on
the aggregated Exchange
from the
AggregationStrategy is
available for the Predicate.
When true the Exchange
passed in the Predicate is the
incoming Exchange, which
means you can access data
from the incoming Exchange.

forceCompletionOnStop false If true, complete all
aggregated exchanges when
the current route context is
stopped.

184

Batch Consumer
Batch Consumer
Batch Consumer
Exchange
Exchange
Predicate
Predicate
Predicate

Option

groupExchanges

ignorelInvalidCorrelatio
nKeys

closeCorrelationKeyOnCo
mpletion

Default

false

false

CHAPTER 7. MESSAGE ROUTING

Description

If enabled then Camel will
group all aggregated
Exchanges into a single
combined
org.apache.camel.impl.G
roupedExchange holder
class that holds all the
aggregated Exchanges. And
as a result only one Exchange
is being sent out from the
aggregator. Can be used to
combine many incoming
Exchanges into a single
output Exchange without
coding a custom
AggregationStrategy
yourself.

Whether or not to ignore
correlation keys which could
not be evaluated to a value.
By default Camel will throw
an Exception, but you can
enable this option and ignore
the situation instead.

Whether or not /ate
Exchanges should be
accepted or not. You can
enable this to indicate that if a
correlation key has already
been completed, then any
new exchanges with the same
correlation key be denied.
Camel will then throw a
closedCorrelationKeyExc
eption exception. When
using this option you pass in a
integer which is a number
for a LRUCache which keeps
that last X number of closed
correlation keys. You can pass
in 0 or a negative value to
indicate a unbounded cache.
By passing in a number you
are ensured that cache wont
grown too big if you use a log
of different correlation keys.

185

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Option Default

discardOnCompletionTime false
out

aggregationRepository

aggregationRepositoryRe
f

parallelProcessing false

executorService

executorServiceRef

186

Description

Camel 2.5: Whether or not
exchanges which complete
due to a timeout should be
discarded. If enabled, then
when a timeout occurs the
aggregated message will not
be sent out but dropped
(discarded).

Allows you to plug in you own
implementation of
org.apache.camel.spi.Ag
gregationRepository
which keeps track of the
current inflight aggregated
exchanges. Camel uses by
default a memory based
implementation.

Reference to lookup a
aggregationRepository in
the Registry.

When aggregated are
completed they are being
send out of the aggregator.
This option indicates whether
or not Camel should use a
thread pool with multiple
threads for concurrency. If no
custom thread pool has been
specified then Camel creates
a default pool with 10
concurrent threads.

If using
parallelProcessing you
can specify a custom thread
pool to be used. In fact also if
you are not using
parallelProcessing this
custom thread pool is used to
send out aggregated
exchanges as well.

Reference to lookup a
executorService in the
Registry

Registry
Registry

Option Default

timeoutCheckerExecutorS
ervice

timeoutCheckerExecutorS
erviceRef

optimisticLocking false

optimisticLockRetryPoli
cy

7.6. RESEQUENCER

Overview

CHAPTER 7. MESSAGE ROUTING

Description

If using one of the
completionTimeout,
completionTimeoutExpres
sion, or
completionInterval
options, a background thread
is created to check for the
completion for every
aggregator. Set this option to
provide a custom thread pool
to be used rather than
creating a new thread for
every aggregator.

Reference to look up a
timeoutCheckerExecutorsS
ervice in the registry.

Turns on optimistic locking,
which can be used in
combination with an
aggregation repository.

Configures the retry policy for
optimistic locking.

The resequencer pattern, shown inFigure 7.8, “Resequencer Pattern”, enables you to
resequence messages according to a sequencing expression. Messages that generate a low
value for the sequencing expression are moved to the front of the batch and messages

that generate a high value are moved to the back.

Figure 7.8. Resequencer Pattern

o [et

Resequencer

Apache Camel supports two resequencing algorithms:

e Batch resequencing — Collects messages into a batch, sorts the messages and

sends them to their output.

187

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

e Stream resequencing — Re-orders (continuous) message streams based on the
detection of gaps between messages.

By default the resequencer does not support duplicate messages and will only keep the last
message, in cases where a message arrives with the same message expression. However,
in batch mode you can enable the resequencer to allow duplicates.

Batch resequencing

The batch resequencing algorithm is enabled by default. For example, to resequence a
batch of incoming messages based on the value of a timestamp contained in the
TimeStamp header, you can define the following route in Java DSL:

I from("direct:start").resequence(header("TimeStamp")).to("mock:result");

By default, the batch is obtained by collecting all of the incoming messages that arrive in a
time interval of 1000 milliseconds (default batch timeout), up to a maximum of 100
messages (default batch size). You can customize the values of the batch timeout and the
batch size by appending a batch() DSL command, which takes aBatchResequencerConfig
instance as its sole argument. For example, to modify the preceding route so that the
batch consists of messages collected in a 4000 millisecond time window, up to a maximum
of 300 messages, you can define the Java DSL route as follows:

import org.apache.camel.model.config.BatchResequencerConfig;

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start").resequence(header("TimeStamp")).batch(new
BatchResequencerConfig(300,4000L)).to("mock:result");
}
b

You can also specify a batch resequencer pattern using XML configuration. The following
example defines a batch resequencer with a batch size of 300 and a batch timeout of 4000
milliseconds:

<camelContext id="resequencerBatch"
xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start" />
<resequence>
<!--
batch-config can be omitted for default (batch) resequencer
settings
-=->

<batch-config batchSize="300" batchTimeout="4000" />
<simple>header.TimeStamp</simple>
<to uri="mock:result" />
</resequence>
</route>
</camelContext>

Batch options

188

CHAPTER 7. MESSAGE ROUTING

Table 7.4, “Batch Resequencer Options” shows the options that are available in batch
mode only.

Table 7.4. Batch Resequencer Options

Java DSL XML DSL Default Description

allowDuplicates(batch- false If true, do not

) config/@allowDup discard duplicate
licates messages from the

batch (where
duplicate means that
the message
expression evaluates
to the same value).

reverse() batch- false If true, put the
config/@reverse messages in reverse

order (where the
default ordering
applied to a message
expression is based
on Java's string
lexical ordering, as
defined by
String.compareTo()).

For example, if you want to resequence messages from JMS queues based on JMSPriority,
you would need to combine the options, allowDuplicates and reverse, as follows:

from("jms:queue:foo")

// sort by JMSPriority by allowing duplicates (message can have
same JMSPriority)

// and use reverse ordering so 9 is first output (most important),
and 0 is last

// use batch mode and fire every 3th second

.resequence(header ("JMSPriority")).batch().timeout(3000).allowDuplicates()
.reverse()
.to("mock:result");

Stream resequencing

To enable the stream resequencing algorithm, you must append stream() to the

resequence() DSL command. For example, to resequence incoming messages based on

the value of a sequence number in the seqnum header, you define a DSL route as follows:
from("direct:start").resequence(header("segnum")).stream().to("mock:result
")

The stream-processing resequencer algorithm is based on the detection of gaps in a

message stream, rather than on a fixed batch size. Gap detection, in combination with
timeouts, removes the constraint of needing to know the number of messages of a

189

http://download-llnw.oracle.com/docs/cd/E17476_01/javase/1.5.0/docs/api/java/lang/String.html#compareTo%28java.lang.String%29

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

sequence (that is, the batch size) in advance. Messages must contain a unique sequence
number for which a predecessor and a successor is known. For example a message with
the sequence number 3 has a predecessor message with the sequence number2 and a
successor message with the sequence number 4. The message sequence2,3,5 has a gap
because the successor of 3 is missing. The resequencer therefore must retain messages
until message 4 arrives (or a timeout occurs).

By default, the stream resequencer is configured with a timeout of 1000 milliseconds, and a
maximum message capacity of 100. To customize the stream's timeout and message
capacity, you can pass a StreamResequencerConfig object as an argument tostream().
For example, to configure a stream resequencer with a message capacity of 5000 and a
timeout of 4000 milliseconds, you define a route as follows:

// Java
import org.apache.camel.model.config.StreamResequencerConfig;

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("direct:start").resequence(header("seqnum")).
stream(new StreamResequencerConfig (5000, 4000L)).
to("mock:result");

};

If the maximum time delay between successive messages (that is, messages with adjacent
sequence numbers) in a message stream is known, the resequencer's timeout parameter
should be set to this value. In this case, you can guarantee that all messages in the stream
are delivered in the correct order to the next processor. The lower the timeout value that is
compared to the out-of-sequence time difference, the more likely it is that the resequencer
will deliver messages out of sequence. Large timeout values should be supported by
sufficiently high capacity values, where the capacity parameter is used to prevent the
resequencer from running out of memory.

If you want to use sequence numbers of some type other than long, you would must define
a custom comparator, as follows:

// Java

ExpressionResultComparator<Exchange> comparator = new MyComparator();
StreamResequencerConfig config = new StreamResequencerConfig(5000, 4000L,
comparator);
from("direct:start").resequence(header("seqgnum")).stream(config).to("mock:
result");

You can also specify a stream resequencer pattern using XML configuration. The following
example defines a stream resequencer with a message capacity of 5000 and a timeout of
4000 milliseconds:

<camelContext id="resequencerStream"
xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<resequence>

<stream-config capacity="5000" timeout="4000"/>
<simple>header.seqgnum</simple>
<to uri="mock:result" />

190

CHAPTER 7. MESSAGE ROUTING

</resequence>
</route>
</camelContext>

Ignore invalid exchanges

The resequencer EIP throws a CamelExchangeException exception, if the incoming
exchange is not valid—that is, if the sequencing expression cannot be evaluated for some
reason (for example, due to a missing header). You can use the ignoreInvalidExchanges
option to ignore these exceptions, which means the resequencer will skip any invalid
exchanges.

from("direct:start")
.resequence(header("seqno")).batch().timeout(1000)
// ignore invalid exchanges (they are discarded)
.ignoreInvalidExchanges()
.to("mock:result");

Reject old messages

The reject0ld option can be used to prevent messages being sent out of order, regardless
of the mechanism used to resequence messages. When the reject0ld option is enabled,
the resequencer rejects an incoming message (by throwing a MessageRejectedException
exception), if the incoming messages is older (as defined by the current comparator) than
the last delivered message.

from("direct:start")
.onException(MessageRejectedException.class).handled(true).to("mock:er

ror").end()
.resequence(header("seqno")).stream().timeout(1000).reject0Old()
.to("mock:result");

7.7. ROUTING SLIP

Overview

The routing slip pattern, shown inFigure 7.9, “Routing Slip Pattern”, enables you to route a
message consecutively through a series of processing steps, where the sequence of steps is
not known at design time and can vary for each message. The list of endpoints through
which the message should pass is stored in a header field (the slip), which Apache Camel
reads at run time to construct a pipeline on the fly.

191

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Figure 7.9. Routing Slip Pattern

Froc A,

- fmllr— | [

Attach Routing Zlip
1o Mezzage =

—

Foute Mezzage
According to Slip

Froc C

The slip header

The routing slip appears in a user-defined header, where the header value is a comma-
separated list of endpoint URIs. For example, a routing slip that specifies a sequence of
security tasks—decrypting, authenticating, and de-duplicating a message—might look like
the following:

I cxf:bean:decrypt,cxf:bean:authenticate, cxf:bean:dedup

The current endpoint property

From Camel 2.5 the Routing Slip will set a property (Exchange.SLIP_ENDPOINT) on the
exchange which contains the current endpoint as it advanced though the slip. This enables
you to find out how far the exchange has progressed through the slip.

The Routing Slip will compute the slipbeforehand which means, the slip is only computed

once. If you need to compute the slip on-the-fly then use theDynamic Router pattern
instead.

Java DSL example

The following route takes messages from the direct:a endpoint and reads a routing slip
from the aRoutingSlipHeader header:

I from("direct:b").routingSlip("aRoutingSlipHeader");

You can specify the header name either as a string literal or as an expression.

You can also customize the URI delimiter using the two-argument form of routingSlip().
The following example defines a route that uses the aRoutingSlipHeader header key for
the routing slip and uses the # character as the URI delimiter:

I from("direct:c").routingSlip("aRoutingSlipHeader", "#");

XML configuration example

192

CHAPTER 7. MESSAGE ROUTING

The following example shows how to configure the same route in XML:

<camelContext id="buildRoutingSlip"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:c"/>
<routingSlip uriDelimiter="#">
<headerName>aRoutingSlipHeader</headerName>
</routingSlip>
</route>
</camelContext>

Ignore invalid endpoints

The Routing Slip now supports ignoreInvalidEndpoints, which the Recipient List pattern
also supports. You can use it to skip endpoints that are invalid. For example

I from("direct:a").routingSlip("myHeader").ignoreInvalidEndpoints();

In Spring XML, this feature is enabled by setting the ignoreInvalidEndpoints attribute on
the <routingSlip> tag:

<route>
<from uri="direct:a"/>
<routingSlip ignorelInvalidEndpoints="true">
<headerName>myHeader</headerName>
</routingSlip>
</route>

Consider the case where myHeader contains the two endpoints,direct: foo,xxx:bar. The
first endpoint is valid and works. The second is invalid and, therefore, ignored. Apache
Camel logs at INFO level whenever an invalid endpoint is encountered

Options

The routingSlip DSL command supports the following options:

Name Default Value Description

uriDelimiter , Delimiter used if the
Expression returned multiple
endpoints.

ignoreInvalidEndpoints false If an endpoint uri could not be

resolved, should it be ignored.
Otherwise Camel will thrown
an exception stating the
endpoint uri is not valid.

7.8. THROTTLER

193

Expression

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Overview

A throttler is a processor that limits the flow rate of incoming messages. You can use this
pattern to protect a target endpoint from getting overloaded. In Apache Camel, you can
implement the throttler pattern using the throttle() Java DSL command.

Video demo

There is a video demo of how to implement the throttler pattern at
http://vimeo.com/27592682.

Java DSL example

To limit the flow rate to 100 messages per second, define a route as follows:

I from("seda:a").throttle(100).to("seda:b");

If necessary, you can customize the time period that governs the flow rate using the
timePeriodMillis () DSL command. For example, to limit the flow rate to 3 messages per
30000 milliseconds, define a route as follows:

I from("seda:a").throttle(3).timePeriodMillis(30000).to("mock: result");
XML configuration example
The following example shows how to configure the preceding route in XML:

<camelContext id="throttleRoute"
xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="seda:a"/>
<!-- throttle 3 messages per 30 sec -->

<throttle timePeriodMillis="30000">
<constant>3</constant>
<to uri="mock:result"/>
</throttle>
</route>
</camelContext>

Dynamically changing maximum requests per period

Available os of Camel 2.8 Since we use anExpression, you can adjust this value at
runtime, for example you can provide a header with the value. At runtime Camel evaluates
the expression and converts the result to a java.lang.Long type. In the example below we
use a header from the message to determine the maximum requests per period. If the
header is absent, then the Throttler uses the old value. So that allows you to only provide a
header if the value is to be changed:

<camelContext id="throttleRoute"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:expressionHeader"/>
<throttle timePeriodMillis="500">

194

http://vimeo.com/27592682
Expression

CHAPTER 7. MESSAGE ROUTING

<!-- use a header to determine how many messages to throttle per 0.5
sec -->
<header>throttleValue</header>
<to uri="mock:result"/>
</throttle>
</route>
</camelContext>

Asynchronous delaying

The throttler can enable non-blocking asynchronous delaying, which means that Apache
Camel schedules a task to be executed in the future. The task is responsible for processing
the latter part of the route (after the throttler). This allows the caller thread to unblock and
service further incoming messages. For example:

I from("seda:a").throttle(100).asyncDelayed().to("seda:b");

Options

The throttle DSL command supports the following options:

Name Default Value Description
maximumRequestsPerPerio Maximum number of requests
d per period to throttle. This

option must be provided and
a positive number. Notice, in
the XML DSL, from Camel 2.8
onwards this option is
configured using an
Expression instead of an
attribute.

timePeriodMillis 1000 The time period in millis, in
which the throttler will allow
at most
maximumRequestsPerPerio
d number of messages.

asyncDelayed false Camel 2.4: If enabled then
any messages which is
delayed happens
asynchronously using a
scheduled thread pool.

executorServiceRef Camel 2.4: Refers to a
custom Thread Pool to be
used if asyncDelay has been
enabled.

195

Expression
Threading Model

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

callerRunsWhenRejected true Camel 2.4: Is used if
asyncDelayed was enabled.
This controls if the caller
thread should execute the
task if the thread pool
rejected the task.

7.9. DELAYER

Overview

A delayer is a processor that enables you to apply arelative time delay to incoming
messages.

Java DSL example

You can use the delay() command to add arelative time delay, in units of milliseconds, to
incoming messages. For example, the following route delays all incoming messages by 2
seconds:

I from("seda:a").delay(2000).to("mock:result");

Alternatively, you can specify the time delay using an expression:

I from("seda:a").delay(header("MyDelay")).to("mock:result");

The DSL commands that follow delay() are interpreted as sub-clauses ofdelay(). Hence,
in some contexts it is necessary to terminate the sub-clauses of delay() by inserting the
end() command. For example, whendelay() appears inside anonException() clause, you
would terminate it as follows:

from("direct:start")
.onException(Exception.class)
.maximumRedeliveries(2)
.backOffMultiplier(1.5)
.handled(true)
.delay(1000)
.log("Halting for some time")
.to("mock:halt")
.end()
.end()
.to("mock:result");

XML configuration example

The following example demonstrates the delay in XML DSL:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="seda:a"/>
<delay>

196

CHAPTER 7. MESSAGE ROUTING

<header>MyDelay</header>
</delay>
<to uri="mock:result"/>
</route>
<route>
<from uri="seda:b"/>
<delay>
<constant>1000</constant>
</delay>
<to uri="mock:result"/>
</route>
</camelContext>

Creating a custom delay

You can use an expression combined with a bean to determine the delay as follows:

from("activemq:foo").
delay() .expression().method("someBean", "computeDelay").
to("activemqg:bar");

Where the bean class could be defined as follows:

public class SomeBean {
public long computeDelay() {
long delay = 0;
// use java code to compute a delay value in millis
return delay;

Asynchronous delaying

You can let the delayer use non-blocking asynchronous delaying, which means that Apache
Camel schedules a task to be executed in the future. The task is responsible for processing
the latter part of the route (after the delayer). This allows the caller thread to unblock and
service further incoming messages. For example:

from("activemq:queue:foo")
.delay(1000)
.asyncDelayed()
.to("activemq:aDelayedQueue");

The same route can be written in the XML DSL, as follows:

<route>
<from uri="activemq:queue:foo"/>
<delay asyncDelayed="true">
<constant>1000&Llt; /constant>
</delay>
<to uri="activemq:aDealyedQueue"/>
</route>

197

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Options

The delayer pattern supports the following options:

Name Default Value Description

asyncDelayed false Camel 2.4: If enabled then
delayed messages happens
asynchronously using a
scheduled thread pool.

executorServiceRef Camel 2.4: Refers to a
custom Thread Pool to be
used if asyncDelay has been
enabled.

callerRunsWhenRejected true Camel 2.4: Is used if
asyncDelayed was enabled.
This controls if the caller
thread should execute the
task if the thread pool
rejected the task.

7.10. LOAD BALANCER

Overview

The load balancer pattern allows you to delegate message processing to one of several
endpoints, using a variety of different load-balancing policies.

Java DSL example

The following route distributes incoming messages between the target endpoints, mock:x,
mock:y, mock:z, using a round robin load-balancing policy:

I from("direct:start").loadBalance().roundRobin().to("mock:x", "mock:y",
"mock:z");

XML configuration example

The following example shows how to configure the same route in XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>

<from uri="direct:start"/>

<loadBalance>
<roundRobin/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>

198

Threading Model

CHAPTER 7. MESSAGE ROUTING

</loadBalance>
</route>
</camelContext>

Load-balancing policies
The Apache Camel load balancer supports the following load-balancing policies:
e Round robin
e Random
e Sticky
e Topic
e the section called “Failover”
o the section called “Weighted round robin and weighted random”

e the section called “Custom Load Balancer”

Round robin

The round robin load-balancing policy cycles through all of the target endpoints, sending
each incoming message to the next endpoint in the cycle. For example, if the list of target
endpoints is, mock:x, mock:y, mock:z, then the incoming messages are sent to the
following sequence of endpoints: mock:x, mock:y, mock:z, mock:x, mock:y, mock:z, and so
on.

You can specify the round robin load-balancing policy in Java DSL, as follows:

I from("direct:start").loadBalance().roundRobin().to("mock:x", "mock:y",
"mock:z");

Alternatively, you can configure the same route in XML, as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>
<roundRobin/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>
</loadBalance>
</route>
</camelContext>

Random

The random load-balancing policy chooses the target endpoint randomly from the specified
list.

199

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

You can specify the random load-balancing policy in Java DSL, as follows:

from("direct:start").loadBalance().random().to("mock:x", "mock:y",
"mock:z");

Alternatively, you can configure the same route in XML, as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>
<random/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>
</loadBalance>
</route>
</camelContext>

Sticky

The sticky load-balancing policy directs the In message to an endpoint that is chosen by
calculating a hash value from a specified expression. The advantage of this load-balancing
policy is that expressions of the same value are always sent to the same server. For
example, by calculating the hash value from a header that contains a username, you
ensure that messages from a particular user are always sent to the same target endpoint.
Another useful approach is to specify an expression that extracts the session ID from an
incoming message. This ensures that all messages belonging to the same session are sent
to the same target endpoint.

You can specify the sticky load-balancing policy in Java DSL, as follows:

from("direct:start").loadBalance().sticky(header("username")).to("mock:x",
"mock:y", "mock:z");

Alternatively, you can configure the same route in XML, as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>
<sticky>
<expression>
<simple>header.username</simple>
</expression>
</sticky>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>
</loadBalance>
</route>
</camelContext>

200

CHAPTER 7. MESSAGE ROUTING

Topic

The topic load-balancing policy sends a copy of each In message toall of the listed
destination endpoints (effectively broadcasting the message to all of the destinations, like a
JMS topic).

You can use the Java DSL to specify the topic load-balancing policy, as follows:

I from("direct:start").loadBalance().topic().to("mock:x", "mock:y",
"mock:z");

Alternatively, you can configure the same route in XML, as follows:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>
<topic/>
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>
</loadBalance>
</route>
</camelContext>

Failover

Available as of Apache Camel 2.0 The failover load balancer is capable of trying the
next processor in case an Exchange failed with an exception during processing. You can
configure the failover with a list of specific exceptions that trigger failover. If you do not
specify any exceptions, failover is triggered by any exception. The failover load balancer
uses the same strategy for matching exceptions as the onException exception clause.

ENABLE STREAM CACHING IF USING STREAMS

If you use streaming, you should enable Stream Caching when using the
failover load balancer. This is needed so the stream can be re-read when
failing over.

The failover load balancer supports the following options:

Option Type Default Description

201

http://camel.apache.org/stream-caching.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

inheritErrorHand boolean true Camel 2.3: Specifies
ler whether to use the
errorHandler

configured on the
route. If you want to
fail over immediately
to the next endpoint,
you should disable
this option (value of
false). If you enable
this option, Apache
Camel will first
attempt to process
the message using
the errorHandler.

For example, the
errorHandler
might be configured
to redeliver
messages and use
delays between
attempts. Apache
Camel will initially try
to redeliver to the
original endpoint, and
only fail over to the
next endpoint when
the errorHandler is

exhausted.
maximumFailoverA int -1 Camel 2.3: Specifies
ttempts the maximum

number of attempts
to fail over to a new
endpoint. The value,
0, implies that no
failover attempts are
made and the value,
-1, implies an infinite
number of failover
attempts.

202

CHAPTER 7. MESSAGE ROUTING

roundRobin boolean false Camel 2.3: Specifies
whether the
failover load
balancer should
operate in round
robin mode or not. If
not, it will always
start from the first
endpoint when a new
message is to be
processed. In other
words it restarts from
the top for every
message. If round
robin is enabled, it
keeps state and
continues with the
next endpoint in a
round robin fashion.
When using round
robin it will not stick
to last known good
endpoint, it will
always pick the next
endpoint to use.

The following example is configured to fail over, only if an I0OException exception is
thrown:

from("direct:start")

// here we will load balance if IOException was thrown

// any other kind of exception will result in the Exchange as failed

// to failover over any kind of exception we can just omit the
exception

// in the failOver DSL

.loadBalance().failover(IOException.class)

.to("direct:x", "direct:y", "direct:z");

You can optionally specify multiple exceptions to fail over, as follows:

// enable redelivery so failover can react
errorHandler(defaultErrorHandler () .maximumRedeliveries(5));

from("direct:foo")
.loadBalance()
.failover(IOException.class, MyOtherException.class)
.to("direct:a", "direct:b");

You can configure the same route in XML, as follows:

<route errorHandlerRef="myErrorHandler">
<from uri="direct:foo"/>
<loadBalance>
<failover>
<exception>java.io.IOException</exception>
<exception>com.mycompany.MyOtherException</exception>
</failover>

203

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

<to uri="direct:a"/>
<to uri="direct:b"/>
</loadBalance>
</route>

The following example shows how to fail over in round robin mode:

from("direct:start")
// Use failover load balancer in stateful round robin mode,
// which means it will fail over immediately in case of an exception
// as it does NOT inherit error handler. It will also keep retrying,
as
// it is configured to retry indefinitely.
.loadBalance().failover(-1, false, true)
.to("direct:bad", "direct:bad2", "direct:good", "direct:good2");

You can configure the same route in XML, as follows:

<route>
<from uri="direct:start"/>
<loadBalance>
<!-- failover using stateful round robin,
which will keep retrying the 4 endpoints indefinitely.
You can set the maximumFailoverAttempt to break out after X
attempts -->
<failover roundRobin="true"/>
<to uri="direct:bad"/>
<to uri="direct:bad2"/>
<to uri="direct:good"/>
<to uri="direct:good2"/>
</loadBalance>
</route>

Weighted round robin and weighted random

In many enterprise environments, where server nodes of unequal processing power are
hosting services, it is usually preferable to distribute the load in accordance with the
individual server processing capacities. A weighted round robin algorithm or aweighted
random algorithm can be used to address this problem.

The weighted load balancing policy allows you to specify a processing load distribution ratio
for each server with respect to the others. You can specify this value as a positive
processing weight for each server. A larger number indicates that the server can handle a
larger load. The processing weight is used to determine the payload distribution ratio of
each processing endpoint with respect to the others.

The parameters that can be used are

Table 7.5. Weighted Options

Option Type Default Description

204

CHAPTER 7. MESSAGE ROUTING

roundRobin boolean false The default value for
round-robin is false.
In the absence of this
setting or parameter,
the load-balancing
algorithm used is

random.
distributionRati String , The
oDelimiter distributionRati

oDelimiter is the
delimiter used to
specify the
distributionRati
0. If this attribute is
not specified, comma
, is the default
delimiter.

The following Java DSL examples show how to define a weighted round-robin route and a
weighted random route:

// Java

// round-robin

from("direct:start")
.loadBalance() .weighted(true, "4:2:1" distributionRatioDelimiter=":")
.to("mock:x", "mock:y", "mock:z");

//random

from("direct:start")
.loadBalance() .weighted(false, "4,2,1")
.to("mock:x", "mock:y", "mock:z");

You can configure the round-robin route in XML, as follows:

<!-- round-robin -->
<route>
<from uri="direct:start"/>
<loadBalance>
<weighted roundRobin="true" distributionRatio="4:2:1"
distributionRatioDelimiter=":" />
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>
</loadBalance>
</route>

Custom Load Balancer

You can use a custom load balancer (eg your own implementation) also.

An example using Java DSL:

205

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

from("direct:start")
// using our custom load balancer
.loadBalance(new MyLoadBalancer())
.to("mock:x", "mock:y", "mock:z");

And the same example using XML DSL:

<!-- this is the implementation of our custom load balancer -->
<bean id="myBalancer"
class="org.apache.camel.processor.CustomLoadBalanceTest$MyLoadBalancer"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<loadBalance>
<!-- refer to my custom load balancer -->
<custom ref="myBalancer"/>
<!-- these are the endpoints to balancer -->
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>
</loadBalance>
</route>
</camelContext>

Notice in the XML DSL above we use <custom> which is only available in Camel 2.8
onwards. In older releases you would have to do as follows instead:

<loadBalance ref="myBalancer">
<!-- these are the endpoints to balancer -->
<to uri="mock:x"/>
<to uri="mock:y"/>
<to uri="mock:z"/>
</loadBalance>

To implement a custom load balancer you can extend some support classes such as
LoadBalancerSupport and SimpleLoadBalancerSupport. The former supports the
asynchronous routing engine, and the latter does not. Here is an example:

public static class MyLoadBalancer extends LoadBalancerSupport {

public boolean process(Exchange exchange, AsyncCallback callback) {
String body = exchange.getIn().getBody(String.class);
try {
if ("x".equals(body)) {
getProcessors().get(0).process(exchange);
} else if ("y".equals(body)) {
getProcessors().get(1l).process(exchange);
} else {
getProcessors().get(2).process(exchange);
}
} catch (Throwable e) {
exchange.setException(e);
}

callback.done(true);

206

CHAPTER 7. MESSAGE ROUTING

return true;

7.11. MULTICAST

Overview

The multicast pattern, shown inFigure 7.10, “Multicast Pattern”, is a variation of the
recipient list with a fixed destination pattern, which is compatible with thenOut message
exchange pattern. This is in contrast to recipient list, which is only compatible with the
InOnly exchange pattern.

Figure 7.10. Multicast Pattern

Recipient Channel

— — @ —
tﬂ—':}—*

G)—
—*tﬂ—'*:}—*

ta— =<2

Recipient List

L

Multicast with a custom aggregation strategy

Whereas the multicast processor receives multiple Out messages in response to the
original request (one from each of the recipients), the original caller is only expecting to
receive a single reply. Thus, there is an inherent mismatch on the reply leg of the message
exchange, and to overcome this mismatch, you must provide a custom aggregation
strategy to the multicast processor. The aggregation strategy class is responsible for
aggregating all of the Out messages into a single reply message.

Consider the example of an electronic auction service, where a seller offers an item for sale
to a list of buyers. The buyers each put in a bid for the item, and the seller automatically
selects the bid with the highest price. You can implement the logic for distributing an offer
to a fixed list of buyers using the multicast() DSL command, as follows:

from("cxf:bean:offer").multicast(new HighestBidAggregationStrategy()).
to("cxf:bean:Buyerl", "cxf:bean:Buyer2", "cxf:bean:Buyer3");
Where the seller is represented by the endpoint, cxf:bean:offer, and the buyers are
represented by the endpoints, cxf:bean:Buyerl, cxf:bean:Buyer2, cxf:bean:Buyer3. To
consolidate the bids received from the various buyers, the multicast processor uses the
aggregation strategy, HighestBidAggregationStrategy. You can implement the
HighestBidAggregationStrategy in Java, as follows:

I // Java

207

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

import org.apache.camel.processor.aggregate.AggregationStrategy;
import org.apache.camel.Exchange;

public class HighestBidAggregationStrategy implements AggregationStrategy
{

public Exchange aggregate(Exchange oldExchange, Exchange newExchange)

{
float oldBid = oldExchange.getOut().getHeader("Bid", Float.class);
float newBid = newExchange.getOut().getHeader("Bid", Float.class);
return (newBid > oldBid) ? newExchange : oldExchange;
}
}

Where it is assumed that the buyers insert the bid price into a header named, Bid. For
more details about custom aggregation strategies, see Section 7.5, “Aggregator”.

Parallel processing

By default, the multicast processor invokes each of the recipient endpoints one after
another (in the order listed in the to() command). In some cases, this might cause
unacceptably long latency. To avoid these long latency times, you have the option of
enabling parallel processing by adding the parallelProcessing() clause. For example, to
enable parallel processing in the electronic auction example, define the route as follows:

from("cxf:bean:offer")
.multicast(new HighestBidAggregationStrategy())
.parallelProcessing()
.to("cxf:bean:Buyerl", "cxf:bean:Buyer2", "cxf:bean:Buyer3");

Where the multicast processor now invokes the buyer endpoints, using a thread pool that
has one thread for each of the endpoints.

If you want to customize the size of the thread pool that invokes the buyer endpoints, you
can invoke the executorService() method to specify your own custom executor service.
For example:

from("cxf:bean:offer")
.multicast(new HighestBidAggregationStrategy())
.executorService(MyExecutor)
.to("cxf:bean:Buyerl", "cxf:bean:Buyer2", "cxf:bean:Buyer3");

Where MyExecutor is an instance of java.util.concurrent.ExecutorService type.

When the exchange has an InOut pattern, an aggregation strategy is used to aggregate
reply messages. The default aggregation strategy takes the latest reply message and
discards earlier replies. For example, in the following route, the custom strategy,
MyAggregationStrategy, is used to aggregate the replies from the endpointsdirect:a,
direct:b, anddirect:c:

from("direct:start")
.multicast(new MyAggregationStrategy())
.parallelProcessing()
.timeout(500)

208

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

CHAPTER 7. MESSAGE ROUTING

.to("direct:a", "direct:b", "direct:c")
.end()
.to("mock:result");

XML configuration example

The following example shows how to configure a similar route in XML, where the route uses
a custom aggregation strategy and a custom thread executor:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd
">

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="cxf:bean:offer"/>
<multicast strategyRef="highestBidAggregationStrategy"
parallelProcessing="true"
threadPoolRef="myThreadExcutor">
<to uri="cxf:bean:Buyerl"/>
<to uri="cxf:bean:Buyer2"/>
<to uri="cxf:bean:Buyer3"/>
</multicast>
</route>
</camelContext>

<bean id="highestBidAggregationStrategy"
class="com.acme.example.HighestBidAggregationStrategy"/>
<bean id="myThreadExcutor" class="com.acme.example.MyThreadExcutor"/>

</beans>

Where both the parallelProcessing attribute and the threadPoolRef attribute are
optional. It is only necessary to set them if you want to customize the threading behavior of
the multicast processor.

Apply custom processing to the outgoing messages

Before multicast sends a message to one of the recipient endpoints, it creates a message
replica, which is a shallow copy of the original message. If you want to perform some
custom processing on each message replica before the replica is sent to its endpoint, you
can invoke the onPrepare DSL command in themulticast clause. The onPrepare
command inserts a custom processor just after the message has been shallow-copied and
just before the message is dispatched to its endpoint. For example, in the following route,
the CustomProc processor is invoked on the message sent todirect:a and the CustomProc
processor is also invoked on the message sent to direct:b.

from("direct:start")
.multicast().onPrepare(new CustomProc())

209

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

I .to("direct:a").to("direct:b");

A common use case for the onPrepare DSL command is to perform a deep copy of some or
all elements of a message. For example, the following CustomProc processor class performs
a deep copy of the message body, where the message body is presumed to be of type,
BodyType, and the deep copy is performed by the methodBodyType.deepCopy().

// Java
import org.apache.camel.*;

public class CustomProc implements Processor {

public void process(Exchange exchange) throws Exception {
BodyType body = exchange.getIn().getBody(BodyType.class);

// Make a deep copy of of the body object
BodyType clone = BodyType.deepCopy();
exchange.getIn().setBody(clone);

// Headers and attachments have already been

// shallow-copied. If you need deep copies,
// add some more code here.

NOTE

Although the multicast syntax allows you to invoke theprocess DSL
command in the multicast clause, this does not make sense semantically and
it does not have the same effect asonPrepare (in fact, in this context, the
process DSL command has no effect).

Using onPrepare to execute custom logic when preparing messages

The Multicast will copy the sourceExchange and multicast each copy. However the copy is
a shallow copy, so in case you have mutateable message bodies, then any changes will be
visible by the other copied messages. If you want to use a deep clone copy then you need
to use a custom onPrepare which allows you to do this using theProcessor interface.

Notice the onPrepare can be used for any kind of custom logic which you would like to
execute before the Exchange is being multicasted.

4 NOTE
Its best practice to design for immutable objects.

For example if you have a mutable message body as this Animal class:

public class Animal implements Serializable {

private int id;
private String name;

public Animal() {

210

Exchange
Processor

CHAPTER 7. MESSAGE ROUTING

}

public Animal(int id, String name) {
this.id = id;
this.name = name;

}

public Animal deepClone() {
Animal clone = new Animal();
clone.setId(getId());
clone.setName(getName());
return clone;

}

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;
}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

@Override
public String toString() {
return id + " " + name;
}
}

Then we can create a deep clone processor which clones the message body:

public class AnimalDeepClonePrepare implements Processor {

public void process(Exchange exchange) throws Exception {
Animal body = exchange.getIn().getBody(Animal.class);

// do a deep clone of the body which wont affect when doing
multicasting

Animal clone = body.deepClone();
exchange.getIn().setBody(clone);

}

Then we can use the AnimalDeepClonePrepare class in the Multicast route using the
onPrepare option as shown:

211

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

from("direct:start")
.multicast().onPrepare(new
AnimalDeepClonePrepare()).to("direct:a").to("direct:b");

And the same example in XML DSL

<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<!-- use on prepare with multicast -->

<multicast onPrepareRef="animalDeepClonePrepare">
<to uri="direct:a"/>
<to uri="direct:b"/>
</multicast>
</route>

<route>
<from uri="direct:a"/>
<process ref="processorA"/>
<to uri="mock:a"/>

</route>

<route>
<from uri="direct:b"/>
<process ref="processorB"/>
<to uri="mock:b"/>

</route>
</camelContext>
<!-- the on prepare Processor which performs the deep cloning -->

<bean id="animalDeepClonePrepare"
class="org.apache.camel.processor.AnimalDeepClonePrepare"/>

<!-- processors used for the last two routes, as part of unit test -->
<bean id="processorA"
class="org.apache.camel.processor.MulticastOnPrepareTest$ProcessorA"/>
<bean id="processorB"
class="org.apache.camel.processor.MulticastOnPrepareTest$ProcessorB"/>

Options

The multicast DSL command supports the following options:

Name Default Value Description

strategyRef Refers to an
AggregationStrategy to be
used to assemble the replies
from the multicasts, into a
single outgoing message from
the Multicast. By default
Camel will use the last reply
as the outgoing message.

212

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html

parallelProcessing

executorServiceRef

stopOnException

streaming

timeout

false

false

false

CHAPTER 7. MESSAGE ROUTING

If enables then sending
messages to the multicasts
occurs concurrently. Note the
caller thread will still wait until
all messages has been fully
processed, before it
continues. Its only the
sending and processing the
replies from the multicasts
which happens concurrently.

Refers to a custom Thread
Pool to be used for parallel
processing. Notice if you set
this option, then parallel
processing is automatic
implied, and you do not have
to enable that option as well.

Camel 2.2: Whether or not to
stop continue processing
immediately when an
exception occurred. If disable,
then Camel will send the
message to all multicasts
regardless if one of them
failed. You can deal with
exceptions in the
AggregationStrategy class
where you have full control
how to handle that.

If enabled then Camel will
process replies out-of-order,
eg in the order they come
back. If disabled, Camel will
process replies in the same
order as multicasted.

Camel 2.5: Sets a total
timeout specified in millis. If
the Multicast hasn't been able
to send and process all replies
within the given timeframe,
then the timeout triggers and
the Multicast breaks out and
continues. Notice if you
provide a
TimeoutAwareAggregationStra
tegy then the timeout
method is invoked before
breaking out.

213

Threading Model
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

onPrepareRef Camel 2.8: Refers to a
custom Processor to prepare
the copy of the Exchange
each multicast will receive.
This allows you to do any
custom logic, such as deep-
cloning the message payload
if that's needed etc.

shareUnitOfWork false Camel 2.8: Whether the unit
of work should be shared. See
the same option on Splitter for
more details.

7.12. COMPOSED MESSAGE PROCESSOR

Composed Message Processor

The composed message processor pattern, as shown inFigure 7.11, “Composed Message
Processor Pattern”, allows you to process a composite message by splitting it up, routing
the sub-messages to appropriate destinations, and then re-aggregating the responses back
into a single message.

Figure 7.11. Composed Message Processor Pattern

Widget Inventory

O O
— O-»0O0 e O-»0 f—
i O — |
MNew Order Splitter Router Agregator walicated

Croer

Gadget Inventary

Composite Message Processor

Java DSL example

The following example checks that a multipart order can be filled, where each part of the
order requires a check to be made at a different inventory:

// split up the order so individual OrderItems can be validated by the
appropriate bean
from("direct:start")
.split().body()
.choice()
.when().method("orderItemHelper", "isWidget")
.to("bean:widgetInventory")
.otherwise()
.to("bean:gadgetInventory")

214

CHAPTER 7. MESSAGE ROUTING

.end()
.to("seda:aggregate");

// collect and re-assemble the validated OrderItems into an order again
from("seda:aggregate")

.aggregate(new MyOrderAggregationStrategy())

.header("orderId")

.completionTimeout (1000L)

.to("mock:result");

XML DSL example

The preceding route can also be written in XML DSL, as follows:

<route>
<from uri="direct:start"/>
<split>
<simple>body</simple>
<choice>
<when>
<method bean="orderItemHelper" method="isWidget"/>
<to uri="bean:widgetInventory"/>
</when>
<otherwise>
<to uri="bean:gadgetInventory"/>
</otherwise>
</choice>
<to uri="seda:aggregate"/>
</split>
</route>

<route>
<from uri="seda:aggregate"/>
<aggregate strategyRef="myOrderAggregatorStrategy"
completionTimeout="1000">
<correlationExpression>
<simple>header.orderId</simple>
</correlationExpression>
<to uri="mock:result"/>
</aggregate>
</route>

Processing steps

Processing starts by splitting the order, using a Splitter. The Splitter then sends individual
OrderItems to a Content Based Router, which routes messages based on the item type.
Widget items get sent for checking in thewidgetInventory bean and gadget items get
sent to the gadgetInventory bean. Once theseOrderItems have been validated by the
appropriate bean, they are sent on to the Aggregator which collects and re-assembles the
validated OrderItems into an order again.

Each received order has a header containing an order ID. We make use of the order ID
during the aggregation step: the .header("orderId") qualifier on theaggregate() DSL
command instructs the aggregator to use the header with the key, orderId, as the
correlation expression.

215

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

For full details, check the example source here:

7.13. SCATTER-GATHER

Scatter-Gather

The scatter-gather pattern, as shown inFigure 7.12, “Scatter-Gather Pattern”, enables you
to route messages to a number of dynamically specified recipients and re-aggregate the
responses back into a single message.

Figure 7.12. Scatter-Gather Pattern

CDuote
— Vendor A —

tﬁ Broadcast
- Vendor B I—> —
Cluote Request
— Vendor C I—> —
Ty« o<
4— O=O
O

"Best" Quote

Agaregator

Dynamic scatter-gather example

The following example outlines an application that gets the best quote for beer from
several different vendors. The examples uses a dynamic Recipient List to request a quote
from all vendors and an Aggregator to pick the best quote out of all the responses. The
routes for this application are defined as follows:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<recipientList>
<header>1list0fVendors</header>
</recipientList>
</route>
<route>

<from uri="seda:quoteAggregator"/>

<aggregate strategyRef="aggregatorStrategy" completionTimeout="1000">
<correlationExpression>

<header>quoteRequestId</header>

</correlationExpression>
<to uri="mock:result"/>

</aggregate>

</route>
</camelContext>

In the first route, the Recipient List looks at the List0fVendors header to obtain the list of

216

CHAPTER 7. MESSAGE ROUTING

recipients. Hence, the client that sends messages to this application needs to add a
list0fVendors header to the message.Example 7.1, “Messaging Client Sample” shows
some sample code from a messaging client that adds the relevant header data to outgoing
messages.

headers.put("listOfVendors", "bean:vendorl, bean:vendor2,
bean:vendor3");

headers.put("quoteRequestId", "quoteRequest-1");
template.sendBodyAndHeaders("direct:start", "<quote request

Map<String, Object> headers = new HashMap<String, Object>();
item=\"beer\"/>", headers);

| Example 7.1. Messaging Client Sample

The message would be distributed to the following endpoints: bean:vendorl,
bean:vendor2, and bean:vendor3. These beans are all implemented by the following class:

public class MyVendor {
private int beerPrice;

@Produce(uri = "seda:quoteAggregator")
private ProducerTemplate quoteAggregator;

public MyVendor(int beerPrice) {
this.beerPrice = beerPrice;

}

public void getQuote(@XPath("/quote request/@item") String item,
Exchange exchange) throws Exception {
if ("beer".equals(item)) {
exchange.getIn().setBody(beerPrice);
quoteAggregator.send(exchange);
} else {
throw new Exception("No quote available for " + item);

}
}

The bean instances, vendorl, vendor2, and vendor3, are instantiated using Spring XML
syntax, as follows:

<bean id="aggregatorStrategy"
class="org.apache.camel.spring.processor.scattergather.LowestQuoteAggregat
ionStrategy"/>

<bean id="vendorl"
class="org.apache.camel.spring.processor.scattergather.MyVendor">
<constructor-arg>
<value>l</value>
</constructor-arg>
</bean>

<bean id="vendor2"
class="org.apache.camel.spring.processor.scattergather.MyVendor">

217

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

<constructor-arg>
<value>2</value>
</constructor-arg>
</bean>

<bean id="vendor3"
class="org.apache.camel.spring.processor.scattergather.MyVendor">
<constructor-arg>
<value>3</value>
</constructor-arg>
</bean>

Each bean is initialized with a different price for beer (passed to the constructor argument).
When a message is sent to each bean endpoint, it arrives at the MyVendor.getQuote
method. This method does a simple check to see whether this quote request is for beer
and then sets the price of beer on the exchange for retrieval at a later step. The message
is forwarded to the next step using POJO Producing (see the @Produce annotation).

At the next step, we want to take the beer quotes from all vendors and find out which one
was the best (that is, the lowest). For this, we use an Aggregator with a custom aggregation
strategy. The Aggregator needs to identify which messages are relevant to the current
quote, which is done by correlating messages based on the value of the quoteRequestId
header (passed to the correlationExpression). As shown inExample 7.1, “Messaging
Client Sample”, the correlation ID is set toquoteRequest-1 (the correlation ID should be
unique). To pick the lowest quote out of the set, you can use a custom aggregation strategy
like the following:

public class LowestQuoteAggregationStrategy implements AggregationStrategy
{

{

public Exchange aggregate(Exchange oldExchange, Exchange newExchange)

// the first time we only have the new exchange
if (oldExchange == null) {
return newExchange;

}

if (oldExchange.getIn().getBody(int.class) <
newExchange.getIn().getBody(int.class)) {
return oldExchange;
} else {
return newExchange;

}

Static scatter-gather example

You can specify the recipients explicitly in the scatter-gather application by employing a
static Recipient List. The following example shows the routes you would use to implement a
static scatter-gather scenario:

from("direct:start").multicast().to("seda:vendorl", "seda:vendor2",
"seda:vendor3");

from("seda:vendorl").to("bean:vendorl").to("seda:quoteAggregator");

218

POJO Producing

CHAPTER 7. MESSAGE ROUTING

from("seda:vendor2").to("bean:vendor2").to("seda:quoteAggregator");
from("seda:vendor3").to("bean:vendor3").to("seda:quoteAggregator");

from("seda:quoteAggregator")
.aggregate(header("quoteRequestId"), new
LowestQuoteAggregationStrategy()).to("mock: result")

7.14. LOOP

Loop

The loop pattern enables you to process a message multiple times. It is used mainly for
testing.

DEFAULT MODE

Notice by default the loop uses the same exchange throughout the looping. So
the result from the previous iteration is used for the next (eg Pipes and
Filters). From Camel 2.8 onwards you can enable copy mode instead. See the
options table for more details.

Exchange properties

On each loop iteration, two exchange properties are set, which can optionally be read by
any processors included in the loop.

Property Description

CamelLoopSize Apache Camel 2.0: Total number of loops

CamelLoopIndex Apache Camel 2.0: Index of the current
iteration (0 based)

Java DSL examples

The following examples show how to take a request from the direct:x endpoint and then
send the message repeatedly to mock: result. The number of loop iterations is specified
either as an argument to loop() or by evaluating an expression at run time, where the
expression must evaluate to anint (or else aRuntimeCamelException is thrown).

The following example passes the loop count as a constant:

I from("direct:a").loop(8).to("mock:result");

The following example evaluates a simple expression to determine the loop count:
I from("direct:b").loop(header("loop")).to("mock: result");

The following example evaluates an XPath expression to determine the loop count:

I from("direct:c").loop().xpath("/hello/@times").to("mock: result");

219

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

XML configuration example

You can configure the same routes in Spring XML.

The following example passes the loop count as a constant:

<route>
<from uri="direct:a"/>
<loop>
<constant>8</constant>
<to uri="mock:result"/>
</loop>
</route>

The following example evaluates a simple expression to determine the loop count:

<route>
<from uri="direct:b"/>
<loop>
<header>loop</header>
<to uri="mock:result"/>
</loop>
</route>

Using copy mode

Now suppose we send a message to direct:start endpoint containing the letter A. The
output of processing this route will be that, each mock:loop endpoint will receive AB as
message.

from("direct:start")
// instruct loop to use copy mode, which mean it will use a copy of
the input exchange
// for each loop iteration, instead of keep using the same exchange
all over
.loop(3).copy()
.transform(body().append("B"))
.to("mock:loop")
.end()
.to("mock:result");

However if we do not enable copy mode thenmock:loop will receive AB, ABB, ABBB
messages.

from("direct:start")
// by default loop will keep using the same exchange so on the 2nd
and 3rd iteration its
// the same exchange that was previous used that are being looped all
over
.loop(3)
.transform(body().append("B"))
.to("mock:loop")
.end()

220

CHAPTER 7. MESSAGE ROUTING

I .to("mock:result");

The equivalent example in XML DSL in copy mode is as follows:

<route>
<from uri="direct:start"/>
<!-- enable copy mode for loop eip -->

<loop copy="true">
<constant>3</constant>
<transform>

<simple>${body}B</simple>

</transform>
<to uri="mock:loop"/>

</loop>

<to uri="mock:result"/>

</route>

Options

The loop DSL command supports the following options:

Name Default Value Description

copy false Camel 2.8: Whether or not
copy mode is used. If false
then the same Exchange is
being used throughout the
looping. So the result from
the previous iteration will be
visible for the next iteration.
Instead you can enable copy
mode, and then each iteration
is restarting with a fresh copy
of the input Exchange.

7.15. SAMPLING

Sampling Throttler

A sampling throttler allows you to extract a sample of exchanges from the traffic through a
route. It is configured with a sampling period during which only a single exchange is
allowed to pass through. All other exchanges will be stopped.

By default, the sample period is 1 second.

Java DSL example

Use the sample() DSL command to invoke the sampler as follows:

// Sample with default sampling period (1 second)
from("direct:sample")
.sample()

221

Exchange

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

.to("mock:result");

// Sample with explicitly specified sample period
from("direct:sample-configured")
.sample(1l, TimeUnit.SECONDS)
.to("mock:result");

// Alternative syntax for specifying sampling period

from("direct:sample-configured-via-dsl")
.sample().samplePeriod(1l).timeUnits(TimeUnit.SECONDS)
.to("mock:result");

from("direct:sample-messageFrequency")
.sample(10)
.to("mock:result");

from("direct:sample-messageFrequency-via-dsl")
.sample().sampleMessageFrequency(5)
.to("mock:result");

Spring XML example

In Spring XML, use the sample element to invoke the sampler, where you have the option of
specifying the sampling period using the samplePeriod and units attributes:

<route>
<from uri="direct:sample"/>
<sample samplePeriod="1" units="seconds">
<to uri="mock:result"/>
</sample>
</route>
<route>
<from uri="direct:sample-messageFrequency"/>
<sample messageFrequency="10">
<to uri="mock:result"/>
</sample>
</route>
<route>
<from uri="direct:sample-messageFrequency-via-dsl"/>
<sample messageFrequency="5">
<to uri="mock:result"/>
</sample>
</route>

Options

The sample DSL command supports the following options:

Name Default Value Description

222

CHAPTER 7. MESSAGE ROUTING

messageFrequency Samples the message every
N'th message. You can only
use either frequency or
period.

samplePeriod 1 Samples the message every
N'th period. You can only use
either frequency or period.

units SECOND Time unit as an enum of
java.util.concurrent.Ti
meUnit from the JDK.

7.16. DYNAMIC ROUTER

Dynamic Router

The Dynamic Router pattern, as shown inFigure 7.13, “Dynamic Router Pattern”, enables
you to route a message consecutively through a series of processing steps, where the
sequence of steps is not known at design time. The list of endpoints through which the
message should pass is calculated dynamically at run time. Each time the message returns
from an endpoint, the dynamic router calls back on a bean to discover the next endpoint in
the route.

Figure 7.13. Dynamic Router Pattern

Dynamic Router Cutput Channel
| A
Mezzage Router
[nput Channel Qutput Channel
— G|~ — |-G 5
—
Qutput Channel

—@h—| C

Dwvnamic Fule Baze

Control Channel

In Camel 2.5 we introduced adynamicRouter in the DSL, which is like a dynamicRouting
Slip that evaluates the slipon-the-fly.

223

http://www.enterpriseintegrationpatterns.com/DynamicRouter.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

BEWARE
You must ensure the expression used for the dynamicRouter (such as a

bean), returns null to indicate the end. Otherwise, thedynamicRouter
will continue in an endless loop.

Dynamic Router in Camel 2.5 onwards

From Camel 2.5, the Dynamic Router updates the exchange property,
Exchange.SLIP_ENDPOINT, with the current endpoint as it advances through the slip. This
enables you to find out how far the exchange has progressed through the slip. (It's a slip
because the Dynamic Router implementation is based onRouting Slip).

Java DSL

In Java DSL you can use the dynamicRouter as follows:

from("direct:start")
// use a bean as the dynamic router
.dynamicRouter(bean(DynamicRouterTest.class, "slip"));

Which will leverage a Bean to compute the slipon-the-fly, which could be implemented as
follows:

// Java
/**

* Use this method to compute dynamic where we should route next.
*
* @param body the message body
* @return endpoints to go, or <tt>null</tt> to indicate the end
*/
public String slip(String body) {
bodies.add(body);
invoked++;

if (invoked == 1) {
return "mock:a";

} else if (invoked == 2) {
return "mock:b,mock:c";

} else if (invoked == 3) {
return "direct:foo";

} else if (invoked == 4) {
return "mock:result";

}

// no more so return null
return null;

}

224

CHAPTER 7. MESSAGE ROUTING

NOTE

The preceding example is not thread safe. You would have to store the state
on the Exchange to ensure thread safety.

Spring XML
The same example in Spring XML would be:

<bean id="mySlip" class="org.apache.camel.processor.DynamicRouterTest"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<dynamicRouter>
<!-- use a method call on a bean as dynamic router -->
<method ref="mySlip" method="slip"/>
</dynamicRouter>
</route>
<route>

<from uri="direct:foo"/>
<transform><constant>Bye World</constant></transform>
<to uri="mock:foo"/>

</route>

</camelContext>

Options

The dynamicRouter DSL command supports the following options:

Name Default Value Description

uriDelimiter , Delimiter used if the
Expression returned multiple
endpoints.

ignoreInvalidEndpoints false If an endpoint uri could not be

resolved, should it be ignored.
Otherwise Camel will thrown
an exception stating the
endpoint uri is not valid.

@DynamicRouter annotation

You can also use the @DynamicRouter annotation. For example:

// Java
public class MyDynamicRouter {

@Consume(uri = "activemq:foo")

225

Expression

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

@ynamicRouter
public String route(@XPath("/customer/id") String customerId,
@Header("Location") String location, Document body) {
// query a database to find the best match of the endpoint based
on the input parameteres
// return the next endpoint uri, where to go. Return null to
indicate the end.

}
}

The route method is invoked repeatedly as the message progresses through the slip. The
idea is to return the endpoint URI of the next destination. Return null to indicate the end.

You can return multiple endpoints if you like, just as the Routing Slip, where each endpoint
is separated by a delimiter.

226

CHAPTER 8. MESSAGE TRANSFORMATION

CHAPTER 8. MESSAGE TRANSFORMATION

Abstract

The message transformation patterns describe how to modify the contents of messages for
various purposes.

8.1. CONTENT ENRICHER

Overview

The content enricher pattern describes a scenario where the message destination requires
more data than is present in the original message. In this case, you would use a content
enricher to pull in the extra data from an external resource.

Figure 8.1. Content Enricher Pattern

Enricher
’DHEI%’E
Basic Messzage Enriched Message
Hesource

Models of content enrichment

Apache Camel supports two kinds of content enricher, as follows:

e enrich()—obtains additional data from the resource by sending a copy of the
current exchange to a producer endpoint and then using the data from the resulting
reply (the exchange created by the enricher is always an InOut exchange).

e pollEnrich()—obtains the additional data by polling aconsumer endpoint for data.
Effectively, the consumer endpoint from the main route and the consumer endpoint

in pollEnrich() are coupled, such that exchanges incoming on the main route
trigger a poll of the pollEnrich() endpoint.

Content enrichment using enrich()

AggregationStrategy aggregationStrategy =
from("direct:start")

.enrich("direct:resource", aggregationStrategy)
to("direct:result");

227

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

from("direct:resource")

The content enricher (enrich) retrieves additional data from aresource endpoint in order to
enrich an incoming message (contained in the orginal exchange). An aggregation strategy
combines the original exchange and the resource exchange. The first parameter of the
AggregationStrategy.aggregate(Exchange, Exchange) method corresponds to the the
original exchange, and the second parameter corresponds to the resource exchange. The
results from the resource endpoint are stored in the resource exchange's Out message.
Here is a sample template for implementing your own aggregation strategy class:

public class ExampleAggregationStrategy implements AggregationStrategy {

public Exchange aggregate(Exchange original, Exchange resource) {

Object originalBody = original.getIn().getBody();

Object resourceResponse = resource.getOut().getBody();

Object mergeResult = ... // combine original body and resource

response

if (original.getPattern().isOutCapable()) {
original.getOut().setBody(mergeResult);

} else {
original.getIn().setBody(mergeResult);

}

return original;

}

Using this template, the original exchange can have any exchange pattern. The resource
exchange created by the enricher is always an InOut exchange.

Spring XML enrich example

The preceding example can also be implemented in Spring XML:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<enrich uri="direct:resource" strategyRef="aggregationStrategy"/>
<to uri="direct:result"/>
</route>
<route>
<from uri="direct:resource"/>
</route>
</camelContext>

<bean id="aggregationStrategy" class="..." />
Default aggregation strategy

The aggregation strategy is optional. If you do not provide it, Apache Camel will use the
body obtained from the resource by default. For example:

228

CHAPTER 8. MESSAGE TRANSFORMATION

from("direct:start")
.enrich("direct:resource")
.to("direct:result");

In the preceding route, the message sent to the direct:result endpoint contains the
output from the direct:resource, because this example does not use any custom
aggregation.

In XML DSL, just omit the strategyRef attribute, as follows:

<route>
<from uri="direct:start"/>
<enrich uri="direct:resource"/>
<to uri="direct:result"/>
</route>

Enrich Options

The enrich DSL command supports the following options:

Name Default Value Description

uri The endpoint uri for the
external servie to enrich from.
You must use either uri or
ref.

ref Refers to the endpoint for the
external servie to enrich from.
You must use either uri or
ref.

strategyRef Refers to an

AggregationStrategy to be
used to merge the reply from
the external service, into a
single outgoing message. By
default Camel will use the
reply from the external
service as outgoing message.

Content enrich using pollEnrich

The pollEnrich command treats the resource endpoint as aconsumer. Instead of sending
an exchange to the resource endpoint, it polls the endpoint. By default, the poll returns
immediately, if there is no exchange available from the resource endpoint. For example,
the following route reads a file whose name is extracted from the header of an incoming
JMS message:

from("activemq:queue:order")
.pollEnrich("file://order/data/additional?fileName=orderId")
.to("bean:processOrder");

229

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

And if you want to wait at most 20 seconds for the file to be ready, you can use a timeout
as follows:

from("activemq:queue:order")
.pollEnrich("file://order/data/additional?fileName=orderId", 20000) //
timeout is in milliseconds
.to("bean:processOrder");

You can also specify an aggregation strategy for pollEnrich, as follows:

.pollEnrich("file://order/data/additional?fileName=orderId", 20000,
aggregationStrategy)
NOTE

The resource exchange passed to the aggregation strategy's aggregate()
method might be null, if the poll times out before an exchange is received.

DATA FROM CURRENT EXCHANGE NOT USED

pollEnrich does not access any data from the current Exchange, so
that, when polling, it cannot use any of the existing headers you may
have set on the Exchange. For example, you cannot set a filename in the

Exchange.FILE_NAME header and use pollEnrich to consume only that
file. For that, you must set the filename in the endpoint URI.

Polling methods used by pollEnrich()

In general, the pollEnrich() enricher polls the consumer endpoint using one of the
following polling methods:

e receiveNoWait() (used by default)
e receive()
e receive(long timeout)

The pollEnrich() command's timeout argument (specified in milliseconds) determines
which method gets called, as follows:

e Timeout is @ or not specified, receiveNoWait is called.
e Timeout is negative, receive is called.

e Otherwise, receive(timeout) is called.

pollEnrich example

230

CHAPTER 8. MESSAGE TRANSFORMATION

In this example we enrich the message by loading the content from the file named
inbox/data.txt

from("direct:start")
.pollEnrich("file:inbox?fileName=data.txt")
.to("direct:result");

And in XML DSL you do:

<route>
<from uri="direct:start"/>
<pollEnrich uri="file:inbox?fileName=data.txt"/>
<to uri="direct:result"/>

</route>

If there is no file then the message is empty. We can use a timeout to either wait (potential
forever) until a file exists, or use a timeout to wait a period. For example to wait up til 5
seconds you can do:

<route>
<from uri="direct:start"/>
<pollEnrich uri="file:inbox?fileName=data.txt" timeout="5000"/>
<to uri="direct:result"/>

</route>

PollEnrich Options

The pollEnrich DSL command supports the following options:

Name Default Value Description

uri The endpoint uri for the
external servie to enrich from.
You must use either uri or
ref.

ref Refers to the endpoint for the
external servie to enrich from.
You must use either uri or
ref.

strategyRef Refers to an

AggregationStrategy to be
used to merge the reply from
the external service, into a
single outgoing message. By
default Camel will use the
reply from the external
service as outgoing message.

231

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

timeout 0 Timeout in millis to use when
polling from the external
service. See below for
important details about the
timeout.

8.2. CONTENT FILTER

Overview

The content filter pattern describes a scenario where you need to filter out extraneous
content from a message before delivering it to its intended recipient. For example, you
might employ a content filter to strip out confidential information from a message.

Figure 8.2. Content Filter Pattern

_ontent Filter

— =]

Message Message

A common way to filter messages is to use an expression in the DSL, written in one of the
supported scripting languages (for example, XSLT, XQuery or JoSQL).
Implementing a content filter

A content filter is essentially an application of a message processing technique for a
particular purpose. To implement a content filter, you can employ any of the following
message processing techniques:

e Message translator—see message translators.
e Processors—see Chapter 41, Implementing a Processor.

e Bean integration.

XML configuration example

The following example shows how to configure the same route in XML:

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="activemq:My.Queue"/>
<to uri="xslt:classpath:com/acme/content filter.xsl"/>
<to uri="activemq:Another.Queue"/>
</route>
</camelContext>

232

http://activemq.apache.org/camel/bean-integration.html

CHAPTER 8. MESSAGE TRANSFORMATION

Using an XPath filter

You can also use XPath to filter out part of the message you are interested in:

<route>

<from uri="activemq:Input"/>

<setBody><xpath resultType="org.w3c.dom.Document">//foo:bar</xpath>
</setBody>

<to uri="activemq:Output"/>
</route>

8.3. NORMALIZER

Overview

The normalizer pattern is used to process messages that are semantically equivalent, but
arrive in different formats. The normalizer transforms the incoming messages into a
common format.

In Apache Camel, you can implement the normalizer pattern by combining a content-based
router, which detects the incoming message's format, with a collection of differentmessage
translators, which transform the different incoming formats into a common format.

Figure 8.3. Normalizer Pattern

Mormalizer
-~ Y8

AT IR IRX XY

Different Message Common Format

Faormats Fouter
S e
: — | P

Translators

LY

FY

Java DSL example

This example shows a Message Normalizer that converts two types of XML messages into a
common format. Messages in this common format are then filtered.

Using the Fluent Builders

// we need to normalize two types of incoming messages
from("direct:start")
.choice()
.when() .xpath("/employee").to("bean:normalizer?
method=employeeToPerson")
.when().xpath("/customer").to("bean:normalizer?

233

Fluent Builders

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

method=customerToPerson")
.end()
.to("mock:result");

In this case we're using a Java bean as the normalizer. The class looks like this

// Java
public class MyNormalizer {
public void employeeToPerson(Exchange exchange,
@XPath("/employee/name/text()") String name) {
exchange.getOut().setBody(createPerson(name));

}

public void customerToPerson(Exchange exchange,
@XPath("/customer/@name") String name) {
exchange.getOut().setBody(createPerson(name));

}

private String createPerson(String name) {
return "<person name=\"" + name + "\"/>";

}

XML configuration example

The same example in the XML DSL

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<choice>
<when>
<xpath>/employee</xpath>
<to uri="bean:normalizer?method=employeeToPerson"/>
</when>
<when>
<xpath>/customer</xpath>
<to uri="bean:normalizer?method=customerToPerson"/>
</when>
</choice>
<to uri="mock:result"/>
</route>
</camelContext>

<bean id="normalizer" class="org.apache.camel.processor.MyNormalizer"/>

8.4. CLAIM CHECK

Claim Check

The claim check pattern, shown inFigure 8.4, “Claim Check Pattern”, allows you to replace
message content with a claim check (a unique key), which can be used to retrieve the
message content at a later time. The message content is stored temporarily in a persistent

234

CHAPTER 8. MESSAGE TRANSFORMATION

store like a database or file system. This pattern is very useful when message content is
very large (thus it would be expensive to send around) and not all components require all
information.

It can also be useful in situations where you cannot trust the information with an outside
party; in this case, you can use the Claim Check to hide the sensitive portions of data.

Figure 8.4. Claim Check Pattern

Check Luggage Data Enricher
N =T —[=a]
Eﬂ.

N - \
Message hessage Message
W Diata wi Claim Check Wi Diata

Diata Store

Java DSL example

The following example shows how to replace a message body with a claim check and
restore the body at a later step.

from("direct:start").to("bean:checkLuggage"”, "mock:testCheckpoint",
"bean:dataEnricher", "mock:result");

The next step in the pipeline is the mock:testCheckpoint endpoint, which checks that the

message body has been removed, the claim check added, and so on.

XML DSL example

The preceding example can also be written in XML, as follows:

<route>
<from uri="direct:start"/>
<pipeline>
<to uri="bean:checkLuggage"/>
<to uri="mock:testCheckpoint"/>
<to uri="bean:dataEnricher"/>
<to uri="mock:result"/>
</pipeline>
</route>

checkLuggage bean

The message is first sent to the checkLuggage bean which is implemented as follows:

I public static final class CheckLuggageBean {

235

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

public void checkLuggage(Exchange exchange, @Body String body,

@XPath("/order/@custId") String custId) {

// store the message body into the data store, using the custId as
the claim check

dataStore.put(custIld, body);

// add the claim check as a header

exchange.getIn().setHeader("claimCheck", custId);

// remove the body from the message

exchange.getIn().setBody(null);

}

This bean stores the message body into the data store, using the custId as the claim
check. In this example, we are using a HashMap to store the message body; in a real
application you would use a database or the file system. The claim check is added as a
message header for later use and, finally, we remove the body from the message and pass
it down the pipeline.

testCheckpoint endpoint

The example route is just a Pipeline. In a real application, you would substitute some other
steps for the mock:testCheckpoint endpoint.

dataEnricher bean

To add the message body back into the message, we use the dataEnricher bean, which is
implemented as follows:

public static final class DataEnricherBean {
public void addDataBackIn(Exchange exchange, @Header("claimCheck")

String claimCheck) {

// query the data store using the claim check as the key and add
the data

// back into the message body

exchange.getIn().setBody(dataStore.get(claimCheck));

// remove the message data from the data store

dataStore.remove(claimCheck);

// remove the claim check header

exchange.getIn().removeHeader("claimCheck");

}

This bean queries the data store, using the claim check as the key, and then adds the
recovered data back into the message body. The bean then deletes the message data from
the data store and removes the claimCheck header from the message.

8.5. SORT

Sort

The sort pattern is used to sort the contents of a message body, assuming that the
message body contains a list of items that can be sorted.

By default, the contents of the message are sorted using a default comparator that handles

236

CHAPTER 8. MESSAGE TRANSFORMATION

numeric values or strings. You can provide your own comparator and you can specify an
expression that returns the list to be sorted (the expression must be convertible to
java.util.List).

Java DSL example

The following example generates the list of items to sort by tokenizing on the line break
character:

from("file://inbox").sort(body().tokenize("\n")).to("bean:MyServiceBean.pr
ocessLine");

You can pass in your own comparator as the second argument to sort():

from("file://inbox").sort(body().tokenize("\n"), new
MyReverseComparator()).to("bean:MyServiceBean.processLine");

XML configuration example

You can configure the same routes in Spring XML.

The following example generates the list of items to sort by tokenizing on the line break
character:

<route>
<from uri="file://inbox"/>
<sort>
<simple>body</simple>
</sort>
<beanRef ref="myServiceBean" method="processLine"/>
</route>

And to use a custom comparator, you can reference it as a Spring bean:

<route>
<from uri="file://inbox"/>
<sort comparatorRef="myReverseComparator">
<simple>body</simple>
</sort>
<beanRef ref="MyServiceBean" method="processLine"/>
</route>

<bean id="myReverseComparator" class="com.mycompany.MyReverseComparator"/>

Besides <simple>, you can supply an expression using any language you like, so long as it
returns a list.

Options

The sort DSL command supports the following options:

Name Default Value Description

237

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

comparatorRef Refers to a custom
java.util.Comparator to
use for sorting the message
body. Camel will by default
use a comparator which does
a A..Z sorting.

8.6. VALIDATE

Overview

The validate pattern provides a convenient syntax to check whether the content of a
message is valid. The validate DSL command takes a predicate expression as its sole
argument: if the predicate evaluates to true, the route continues processing normally; if
the predicate evaluates to false, aPredicateValidationException is thrown.

Java DSL example

The following route validates the body of the current message using a regular expression:

from("jms:queue:incoming")
.validate(body(String.class).regex (""\\w{10}\\,\\d{2}\\,\\w{24}$"))
.to("bean:MyServiceBean.processLine");

You can also validate a message header—for example:

from("jms:queue:incoming")
.validate(header("bar").isGreaterThan(100))
.to("bean:MyServiceBean.processLine");

And you can use validate with the simple expression language:

from("jms:queue:incoming")
.validate(simple("${in.header.bar} == 100"))
.to("bean:MyServiceBean.processLine");

XML DSL example

To use validate in the XML DSL, the recommended approach is to use the simple
expression language:

<route>
<from uri="jms:queue:incoming"/>
<validate>
<simple>${body} regex "“\\w{1O}\\,\\d{2}\\,\\w{24}$</simple>
</validate>
<beanRef ref="myServiceBean" method="processLine"/>
</route>

<bean id="myServiceBean" class="com.mycompany.MyServiceBean"/>

238

http://camel.apache.org/simple.html
http://camel.apache.org/simple.html

CHAPTER 8. MESSAGE TRANSFORMATION

You can also validate a message header—for example:

<route>
<from uri="jms:queue:incoming"/>
<validate>
<simple>${in.header.bar} == 100</simple>
</validate>

<beanRef ref="myServiceBean" method="processLine"/>
</route>

<bean id="myServiceBean" class="com.mycompany.MyServiceBean"/>

239

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

CHAPTER 9. MESSAGING ENDPOINTS

Abstract

The messaging endpoint patterns describe various features and qualities of service that can
be configured on an endpoint.

9.1. MESSAGING MAPPER

Overview

The messaging mapper pattern describes how to map domain objects to and from a
canonical message format, where the message format is chosen to be as platform neutral
as possible. The chosen message format should be suitable for transmission through a
message bus, where the message bus is the backbone for integrating a variety of different
systems, some of which might not be object-oriented.

Many different approaches are possible, but not all of them fulfill the requirements of a
messaging mapper. For example, an obvious way to transmit an object is to use object
serialization, which enables you to write an object to a data stream using an unambiguous
encoding (supported natively in Java). However, this is not a suitable approach to use for
the messaging mapper pattern, however, because the serialization format is understood
only by Java applications. Java object serialization creates an impedance mismatch between
the original application and the other applications in the messaging system.

The requirements for a messaging mapper can be summarized as follows:

o The canonical message format used to transmit domain objects should be suitable
for consumption by non-object oriented applications.

e The mapper code should be implemented separately from both the domain object
code and the messaging infrastructure. Apache Camel helps fulfill this requirement
by providing hooks that can be used to insert mapper code into a route.

e The mapper might need to find an effective way of dealing with certain object-
oriented concepts such as inheritance, object references, and object trees. The
complexity of these issues varies from application to application, but the aim of the
mapper implementation must always be to create messages that can be processed
effectively by non-object-oriented applications.

Finding objects to map

You can use one of the following mechanisms to find the objects to map:

e Find a registered bean. — For singleton objects and small numbers of objects, you
could use the CamelContext registry to store references to beans. For example, if a
bean instance is instantiated using Spring XML, it is automatically entered into the
registry, where the bean is identified by the value of its id attribute.

e Select objects using the JoSQL language. — If all of the objects you want to access

are already instantiated at runtime, you could use the JoSQL language to locate a
specific object (or objects). For example, if you have a class,

240

CHAPTER 9. MESSAGING ENDPOINTS

org.apache.camel.builder.sql.Person, with aname bean property and the
incoming message has a UserName header, you could select the object whosename
property equals the value of the UserName header using the following code:

import static org.apache.camel.builder.sql.SqlBuilder.sql;

import org.apache.camel.Expression;

Expression expression = sql("SELECT * FROM
org.apache.camel.builder.sql.Person where name = :UserName");
Object value = expression.evaluate(exchange);

Where the syntax, : HeaderName, is used to substitute the value of a header in a
JoSQL expression.

e Dynamic — For a more scalable solution, it might be necessary to read object data
from a database. In some cases, the existing object-oriented application might
already provide a finder object that can load objects from the database. In other
cases, you might have to write some custom code to extract objects from a
database, and in these cases the JIDBC component and the SQL component might be

useful.

9.2. EVENT DRIVEN CONSUMER

Overview

The event-driven consumer pattern, shown inFigure 9.1, “Event Driven Consumer Pattern”,
is a pattern for implementing the consumer endpoint in a Apache Camel component, and is
only relevant to programmers who need to develop a custom component in Apache Camel.
Existing components already have a consumer implementation pattern hard-wired into

them.

Figure 9.1. Event Driven Consumer Pattern

oender

Message

P

Event-Driven
Consurmer

Heceiver

Consumers that conform to this pattern provide an event method that is automatically
called by the messaging channel or transport layer whenever an incoming message is
received. One of the characteristics of the event-driven consumer pattern is that the
consumer endpoint itself does not provide any threads to process the incoming messages.
Instead, the underlying transport or messaging channel implicitly provides a processor
thread when it invokes the exposed event method (which blocks for the duration of the
message processing).

For more details about this implementation pattern, see Section 44.1.3, “Consumer
Patterns and Threading” and Chapter 47, Consumer Interface.

241

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

9.3. POLLING CONSUMER

Overview

The polling consumer pattern, shown inFigure 9.2, “Polling Consumer Pattern”, is a pattern
for implementing the consumer endpoint in a Apache Camel component, so it is only
relevant to programmers who need to develop a custom component in Apache Camel.
Existing components already have a consumer implementation pattern hard-wired into
them.

Consumers that conform to this pattern expose polling methods, receive(), receive(long
timeout), and receiveNoWait () that return a new exchange object, if one is available from
the monitored resource. A polling consumer implementation must provide its own thread
pool to perform the polling.

For more details about this implementation pattern, see Section 44.1.3, “Consumer
Patterns and Threading”, Chapter 47, Consumer Interface, and Section 43.2, “Using the
Consumer Template”.

Figure 9.2. Polling Consumer Pattern

-4 S

Faolling
Sender Message Consumer
Heceiver

Scheduled poll consumer

Many of the Apache Camel consumer endpoints employ a scheduled poll pattern to receive
messages at the start of a route. That is, the endpoint appears to implement an event-
driven consumer interface, but internally a scheduled poll is used to monitor a resource
that provides the incoming messages for the endpoint.

See Section 47.2, “Implementing the Consumer Interface” for details of how to implement
this pattern.

Quartz component

You can use the quartz component to provide scheduled delivery of messages using the
Quartz enterprise scheduler. Seeand Quartz Component for details.

9.4. COMPETING CONSUMERS

Overview

The competing consumers pattern, shown inFigure 9.3, “Competing Consumers Pattern”,
enables multiple consumers to pull messages from the same queue, with the guarantee
that each message is consumed once only. This pattern can be used to replace serial

242

http://activemq.apache.org/camel/quartz.html

CHAPTER 9. MESSAGING ENDPOINTS

message processing with concurrent message processing (bringing a corresponding
reduction in response latency).

Figure 9.3. Competing Consumers Pattern

Consumer
=
| t 3| ﬁ? | t 1]
mender Messages Consumer
Receiver

“,

Consurmer

Recejver

The following components demonstrate the competing consumers pattern:
o the section called “JMS based competing consumers”

o the section called “SEDA based competing consumers”

JMS based competing consumers

A regular JMS queue implicitly guarantees that each message can only be consumed at
once. Hence, a JMS queue automatically supports the competing consumers pattern. For
example, you could define three competing consumers that pull messages from the JMS
gueue, HighVolumeQ, as follows:

from("jms:HighVolumeQ").to("cxf:bean:replicafl");
from("jms:HighVolumeQ").to("cxf:bean:replica02");
from("jms:HighVolumeQ").to("cxf:bean:replicaf3");

Where the CXF (Web services) endpoints, replica0l, replica02, and replica03, process
messages from the HighVolumeQ queue in parallel.

Alternatively, you can set the JMS query option, concurrentConsumers, to create a thread
pool of competing consumers. For example, the following route creates a pool of three
competing threads that pick messages from the specified queue:

243

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

I from("jms:HighVolumeQ?concurrentConsumers=3").to("cxf:bean:replicall");

And the concurrentConsumers option can also be specified in XML DSL, as follows:

<route>
<from uri="jms:HighVolumeQ?concurrentConsumers=3"/>
<to uri="cxf:bean:replicab®l"/>

</route>

NOTE

JMS topics cannot support the competing consumers pattern. By definition, a
JMS topic is intended to send multiple copies of the same message to different
consumers. Therefore, it is not compatible with the competing consumers
pattern.

SEDA based competing consumers

The purpose of the SEDA component is to simplify concurrent processing by breaking the
computation into stages. A SEDA endpoint essentially encapsulates an in-memory blocking
gueue (implemented by java.util.concurrent.BlockingQueue). Therefore, you can use a
SEDA endpoint to break a route into stages, where each stage might use multiple threads.
For example, you can define a SEDA route consisting of two stages, as follows:

// Stage 1: Read messages from file system.
from("file://var/messages").to("seda:fanout");

// Stage 2: Perform concurrent processing (3 threads).
from("seda: fanout").to("cxf:bean:replica0l");
from("seda: fanout").to("cxf:bean:replica02");
from("seda: fanout").to("cxf:bean:replica®3")

14

Where the first stage contains a single thread that consumes message from a file endpoint,
file://var/messages, and routes them to a SEDA endpoint,seda: fanout. The second
stage contains three threads: a thread that routes exchanges to cxf:bean:replica0l, a
thread that routes exchanges to cxf:bean:replica02, and a thread that routes exchanges
to cxf:bean:replica03. These three threads compete to take exchange instances from the
SEDA endpoint, which is implemented using a blocking queue. Because the blocking queue
uses locking to prevent more than one thread from accessing the queue at a time, you are
guaranteed that each exchange instance can only be consumed once.

For a discussion of the differences between a SEDA endpoint and a thread pool created by
thread(), see.

9.5. MESSAGE DISPATCHER

Overview

The message dispatcher pattern, shown inFigure 9.4, “Message Dispatcher Pattern”, is
used to consume messages from a channel and then distribute them locally to performers,
which are responsible for processing the messages. In a Apache Camel application,
performers are usually represented by in-process endpoints, which are used to transfer
messages to another section of the route.

244

CHAPTER 9. MESSAGING ENDPOINTS

Figure 9.4. Message Dispatcher Pattern

Ferfarmer
| t 3] ﬁz | t 1]
mender Messages Message Ferformer
Dizpatcher
Ferfarmer

Recejver

You can implement the message dispatcher pattern in Apache Camel using one of the
following approaches:

o the section called “JMS selectors”
o the section called “JMS selectors in ActiveMQ”

e the section called “Content-based router”

JMS selectors

If your application consumes messages from a JMS queue, you can implement the message
dispatcher pattern using JMS selectors. A JMS selector is a predicate expression involving
JMS headers and JMS properties. If the selector evaluates to true, the JMS message is
allowed to reach the consumer, and if the selector evaluates to false, the JMS message is
blocked. In many respects, a JMS selector is like a filter processor, but it has the additional
advantage that the filtering is implemented inside the JMS provider. This means that a JMS
selector can block messages before they are transmitted to the Apache Camel application.
This provides a significant efficiency advantage.

In Apache Camel, you can define a JMS selector on a consumer endpoint by setting the
selector query option on a JMS endpoint URI. For example:

from("jms:dispatcher?selector=CountryCode='US'").to("cxf:bean:replicadl");
from("jms:dispatcher?selector=CountryCode="'IE'").to("cxf:bean:replica02");
from("jms:dispatcher?selector=CountryCode='DE'").to("cxf:bean:replicaf3");

Where the predicates that appear in a selector string are based on a subset of the SQL92
conditional expression syntax (for full details, see the JMS specification). The identifiers

245

http://java.sun.com/products/jms/docs.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

appearing in a selector string can refer either to JMS headers or to JMS properties. For
example, in the preceding routes, the sender sets a JMS property called CountryCode.

If you want to add a JMS property to a message from within your Apache Camel application,
you can do so by setting a message header (either on In message or onOut messages).
When reading or writing to JMS endpoints, Apache Camel maps JMS headers and JMS
properties to, and from, its native message headers.

Technically, the selector strings must be URL encoded according to the application/x-
www-form-urlencoded MIME format (see the HTML specification). In practice, the
&(ampersand) character might cause difficulties because it is used to delimit each query
option in the URI. For more complex selector strings that might need to embed the &
character, you can encode the strings using the java.net.URLEncoder utility class. For
example:

from("jms:dispatcher?selector=" +
java.net.URLEncoder.encode("CountryCode="'US"'", "UTF-8")).
to("cxf:bean:replicafl");

Where the UTF-8 encoding must be used.

JMS selectors in ActiveMQ

You can also define JMS selectors on ActiveMQ endpoints. For example:

from("activemqg:dispatcher?
selector=CountryCode="US""
from("activemq:dispatcher?
selector=CountryCode="IE'").to("cxf:bean:replicaf2");
from("activemq:dispatcher?

selector=CountryCode='DE'").to("cxf:bean:replical3");

) .to("cxf:bean:replicafl");

For more details, see ActiveMQ: JMS Selectors and ActiveMQ Message Properties.

Content-based router

The essential difference between the content-based router pattern and the message
dispatcher pattern is that a content-based router dispatches messages to physically
separate destinations (remote endpoints), and a message dispatcher dispatches messages
locally, within the same process space. In Apache Camel, the distinction between these two
patterns is determined by the target endpoint. The same router logic is used to implement
both a content-based router and a message dispatcher. When the target endpoint is
remote, the route defines a content-based router. When the target endpoint is in-process,
the route defines a message dispatcher.

For details and examples of how to use the content-based router pattern see Section 7.1,
“Content-Based Router”.

9.6. SELECTIVE CONSUMER

Overview

246

http://www.w3.org/TR/html4/
http://activemq.apache.org/selectors.html
http://activemq.apache.org/activemq-message-properties.html

CHAPTER 9. MESSAGING ENDPOINTS

The selective consumer pattern, shown inFigure 9.5, “Selective Consumer Pattern”,
describes a consumer that applies a filter to incoming messages, so that only messages
meeting specific selection criteria are processed.

Figure 9.5. Selective Consumer Pattern

=% %% %

o _ selective
Specifying Messages with Consumer
Froducer selection Yalues

Heceiver

You can implement the selective consumer pattern in Apache Camel using one of the
following approaches:

o the section called “JMS selector”
o the section called “JMS selector in ActiveMQ”

o the section called “Message filter”

JMS selector

A JMS selector is a predicate expression involving JMS headers and JMS properties. If the
selector evaluates to true, the JMS message is allowed to reach the consumer, and if the
selector evaluates to false, the JMS message is blocked. For example, to consume
messages from the queue, selective, and select only those messages whose country code
property is equal to US, you can use the following Java DSL route:

from("jms:selective?selector=" +
java.net.URLEncoder.encode("CountryCode="'US"'", "UTF-8")).
to("cxf:bean:replica@l");

Where the selector string, CountryCode="'US"', must be URL encoded (using UTF-8
characters) to avoid trouble with parsing the query options. This example presumes that
the JMS property, CountryCode, is set by the sender. For more details about JMS selectors,
see the section called “JMS selectors”.

NOTE
If a selector is applied to a JMS queue, messages that are not selected remain

on the queue and are potentially available to other consumers attached to the
same queue.

JMS selector in ActiveMQ

You can also define JMS selectors on ActiveMQ endpoints. For example:

from("acivemq:selective?selector=" +
java.net.URLEncoder.encode("CountryCode="'US"'", "UTF-8")).
to("cxf:bean:replicafl");

247

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide
For more details, see ActiveMQ: JMS Selectors and ActiveMQ Message Properties.

Message filter

If it is not possible to set a selector on the consumer endpoint, you can insert a filter
processor into your route instead. For example, you can define a selective consumer that
processes only messages with a US country code using Java DSL, as follows:

I from("seda:a").filter(header("CountryCode").isEqualTo("US")).process(myPro
cessor);

The same route can be defined using XML configuration, as follows:

<camelContext id="buildCustomProcessorWithFilter"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="seda:a"/>
<filter>
<xpath>$CountryCode = 'US'</xpath>
<process ref="#myProcessor"/>
</filter>
</route>
</camelContext>

For more information about the Apache Camel filter processor, see Message Filter.

WARNING
Be careful about using a message filter to select messages from a JMS

queue. When using a filter processor, blocked messages are simply
discarded. Hence, if the messages are consumed from a queue (which
allows each message to be consumed only once—see Section 9.4,
“Competing Consumers”), then blocked messages are not processed at
all. This might not be the behavior you want.

9.7. DURABLE SUBSCRIBER

Overview

A durable subscriber, as shown inFigure 9.6, “Durable Subscriber Pattern”, is a consumer
that wants to receive all of the messages sent over a particular publish-subscribe channel,
including messages sent while the consumer is disconnected from the messaging system.
This requires the messaging system to store messages for later replay to the disconnected
consumer. There also has to be a mechanism for a consumer to indicate that it wants to
establish a durable subscription. Generally, a publish-subscribe channel (or topic) can have
both durable and non-durable subscribers, which behave as follows:

o hon-durable subscriber—Can have two states:connected and disconnected.
While a non-durable subscriber is connected to a topic, it receives all of the topic's

2438

http://activemq.apache.org/selectors.html
http://activemq.apache.org/activemq-message-properties.html

CHAPTER 9. MESSAGING ENDPOINTS

messages in real time. However, a non-durable subscriber never receives messages
sent to the topic while the subscriber is disconnected.

o durable subscriber—Can have two states:connected and inactive. The inactive
state means that the durable subscriber is disconnected from the topic, but wants to
receive the messages that arrive in the interim. When the durable subscriber
reconnects to the topic, it receives a replay of all the messages sent while it was
inactive.

Figure 9.6. Durable Subscriber Pattern

(11

i

=

Durahble
subscriber

Receiver

Fublizher

Publish-Subscribe Mon-Durable
Channel Subscriber

Receiver

JMS durable subscriber

The JMS component implements the durable subscriber pattern. In order to set up a durable
subscription on a JMS endpoint, you must specify a client ID, which identifies this particular
connection, and a durable subscription name, which identifies the durable subscriber. For
example, the following route sets up a durable subscription to the JMS topic, news, with a
client ID of conn01 and a durable subscription name ofJohn.Doe:

from("jms:topic:news?clientId=conn@l&durableSubscriptionName=John.Doe").
to("cxf:bean:newsprocessor");

You can also set up a durable subscription using the ActiveMQ endpoint:

from("activemq:topic:news?
clientId=conn@l&durableSubscriptionName=John.Doe").
to("cxf:bean:newsprocessor");

If you want to process the incoming messages concurrently, you can use a SEDA endpoint
to fan out the route into multiple, parallel segments, as follows:

from("jms:topic:news?clientId=conn@l&durableSubscriptionName=John.Doe").
to("seda: fanout");

from("seda:fanout").to("cxf:bean:newsproc0l");
from("seda: fanout").to("cxf:bean:newsproc02");

249

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

I from("seda:fanout").to("cxf:bean:newsproc03");

Where each message is processed only once, because the SEDA component supports the
competing consumers pattern.
Alternative example

Another alternative is to combine the Message Dispatcher or Content-Based Router with
File component or JPA component components for durable subscribers then something like
SEDA component for non-durable.

Here is a simple example of creating durable subscribers to a topic

Using the Fluent Builders

from("direct:start").to("activemq:topic:foo");

from("activemq:topic:foo?
clientId=1&durableSubscriptionName=barl").to("mock:resultl");

from("activemq:topic:foo?
clientId=2&durableSubscriptionName=bar2").to("mock: result2");

Using the Spring XML Extensions

<route>

<from uri="direct:start"/>

<to uri="activemq:topic:foo"/>
</route>

<route>
<from uri="activemq:topic:foo?
clientId=1&durableSubscriptionName=barl"/>
<to uri="mock:resultl"/>
</route>

<route>
<from uri="activemq:topic:foo?
clientId=2&durableSubscriptionName=bar2"/>

<to uri="mock:result2"/>
</route>

Here is another example of JMS durable subscribers, but this time usingvirtual topics
(recommended by AMQ over durable subscriptions)

Using the Fluent Builders
from("direct:start").to("activemq:topic:VirtualTopic.fo0");
from("activemq:queue:Consumer.l.VirtualTopic.foo").to("mock:resultl");
from("activemq:queue:Consumer.2.VirtualTopic.foo").to("mock: result2");

Using the Spring XML Extensions

250

Fluent Builders
Spring XML Extensions
http://activemq.apache.org/virtual-destinations.html
Fluent Builders
Spring XML Extensions

CHAPTER 9. MESSAGING ENDPOINTS

<route>

<from uri="direct:start"/>

<to uri="activemq:topic:VirtualTopic.foo"/>
</route>

<route>
<from uri="activemq:queue:Consumer.1l.VirtualTopic.foo"/>
<to uri="mock:resultl"/>

</route>

<route>
<from uri="activemq:queue:Consumer.2.VirtualTopic.foo"/>
<to uri="mock:result2"/>

</route>

9.8. IDEMPOTENT CONSUMER

Overview

The idempotent consumer pattern is used to filter out duplicate messages. For example,
consider a scenario where the connection between a messaging system and a consumer
endpoint is abruptly lost due to some fault in the system. If the messaging system was in
the middle of transmitting a message, it might be unclear whether or not the consumer
received the last message. To improve delivery reliability, the messaging system might
decide to redeliver such messages as soon as the connection is re-established.
Unfortunately, this entails the risk that the consumer might receive duplicate messages
and, in some cases, the effect of duplicating a message may have undesirable
consequences (such as debiting a sum of money twice from your account). In this scenario,
an idempotent consumer could be used to weed out undesired duplicates from the
message stream.

Camel provides the following Idempotent Consumer implementations:
e MemoryIdempotentRepository
o File
e HazelcastldempotentRepository

JdbcMessageldRepository

°

°

JpaMessageldRepository

Idempotent consumer with in-memory cache

In Apache Camel, the idempotent consumer pattern is implemented by the
idempotentConsumer() processor, which takes two arguments:

e messageIdExpression — An expression that returns a message ID string for the
current message.

o messageIdRepository — A reference to a message ID repository, which stores the
IDs of all the messages received.

As each message comes in, the idempotent consumer processor looks up the current

251

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

message ID in the repository to see if this message has been seen before. If yes, the
message is discarded; if no, the message is allowed to pass and its ID is added to the
repository.

The code shown in Example 9.1, “Filtering Duplicate Messages with an In-memory Cache”
uses the TransactionID header to filter out duplicates.

ssageIdRepository;

RouteBuilder builder = new RouteBuilder() {
public void configure() {
from("seda:a")

.idempotentConsumer(
header("TransactionID"),
memoryMessageIdRepository(200)

) .to("seda:b");

-~

Example 9.1. Filtering Duplicate Messages with an In-memory Cache
import static
org.apache.camel.processor.idempotent.MemoryMessageIdRepository.memoryMe

Where the call to memoryMessageIdRepository(200) creates an in-memory cache that can
hold up to 200 message IDs.

You can also define an idempotent consumer using XML configuration. For example, you
can define the preceding route in XML, as follows:

<camelContext id="buildIdempotentConsumer"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="seda:a"/>
<idempotentConsumer messageldRepositoryRef="MsgIDRepos">
<simple>header.TransactionID</simple>
<to uri="seda:b"/>
</idempotentConsumer>
</route>
</camelContext>

<bean id="MsgIDRepos"
class="org.apache.camel.processor.idempotent.MemoryMessageIdRepository">

<!-- Specify the in-memory cache size. -->
<constructor-arg type="int" value="200"/>
</bean>

Idempotent consumer with JPA repository

The in-memory cache suffers from the disadvantages of easily running out of memory and
not working in a clustered environment. To overcome these disadvantages, you can use a
Java Persistent API (JPA) based repository instead. The JPA message ID repository uses an
object-oriented database to store the message IDs. For example, you can define a route
that uses a JPA repository for the idempotent consumer, as follows:

252

CHAPTER 9. MESSAGING ENDPOINTS

import org.springframework.orm.jpa.JpaTemplate;

import org.apache.camel.spring.SpringRouteBuilder;

import static

org.apache.camel.processor.idempotent. jpa.JpaMessageldRepository.jpaMessag
eIdRepository;

RouteBuilder builder = new SpringRouteBuilder() {
public void configure() {
from("seda:a").idempotentConsumer (
header("TransactionID"),
jpaMessageIdRepository(bean(JpaTemplate.class),
"myProcessorName")
).to("seda:b");
}
b

The JPA message ID repository is initialized with two arguments:
o JpaTemplate instance—Provides the handle for the JPA database.
e processor name—Ildentifies the current idempotent consumer processor.

The SpringRouteBuilder.bean() method is a shortcut that references a bean defined in
the Spring XML file. The JpaTemplate bean provides a handle to the underlying JPA
database. See the JPA documentation for details of how to configure this bean.

For more details about setting up a JPA repository, see JPA Component documentation, the
Spring JPAdocumentation, and the sample code in theCamel JPA unit test

Spring XML example

The following example uses the myMessagelId header to filter out duplicates:

<!-- repository for the idempotent consumer -->
<bean id="myRepo"
class="org.apache.camel.processor.idempotent.MemoryIdempotentRepository"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<idempotentConsumer messageldRepositoryRef="myRepo">
<!-- use the messageld header as key for identifying duplicate
messages -->
<header>messageld</header>
<!-- if not a duplicate send it to this mock endpoint -->
<to uri="mock:result"/>
</idempotentConsumer>
</route>
</camelContext>

Idempotent consumer with JDBC repository

A JDBC repository is also supported for storing message IDs in the idempotent consumer
pattern. The implementation of the JDBC repository is provided by the SQL component, so if

253

http://activemq.apache.org/camel/jpa.html
http://static.springframework.org/spring/docs/2.5.x/reference/orm.html#orm-jpa
https://svn.apache.org/repos/asf/activemq/camel/trunk/components/camel-jpa/src/test

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

you are using the Maven build system, add a dependency on the camel-sql artifact.

You can use the SingleConnectionDataSource JDBC wrapper class from the Spring
persistence APl in order to instantiate the connection to a SQL database. For example, to
instantiate a JDBC connection to a HyperSQL database instance, you could define the
following JDBC data source:

<bean id="dataSource"

class="org.springframework. jdbc.datasource.SingleConnectionDataSource">
<property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
<property name="url" value="jdbc:hsqldb:mem:camel jdbc"/>
<property name="username" value="sa"/>
<property name="password" value=""/>

</bean>

NOTE

The preceding JDBC data source uses the HyperSQL mem protocol, which
creates a memory-only database instance. This is a toy implementation of the
HyperSQL database which is not actually persistent.

Using the preceding data source, you can define an idempotent consumer pattern that
uses the JDBC message ID repository, as follows:

<bean id="messageldRepository"
class="org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository
>

<constructor-arg ref="dataSource" />

<constructor-arg value="myProcessorName" />
</bean>

<camel:camelContext>

<camel:errorHandler id="deadlLetterChannel" type="DeadLetterChannel"
deadLetterUri="mock:error">

<camel:redeliveryPolicy maximumRedeliveries="0"
maximumRedeliveryDelay="0" logStackTrace="false" />
</camel:errorHandler>

<camel:route id="JdbcMessageIdRepositoryTest"”
errorHandlerRef="deadLetterChannel">
<camel:from uri="direct:start" />
<camel:idempotentConsumer messageIdRepositoryRef="messageIdRepository">
<camel:header>messageld</camel:header>
<camel:to uri="mock:result" />
</camel:idempotentConsumer>
</camel:route>
</camel:camelContext>

How to handle duplicate messages in the route
Available as of Camel 2.8

You can now set the skipDuplicate option to false which instructs the idempotent
consumer to route duplicate messages as well. However the duplicate message has been

254

http://hsqldb.org/

CHAPTER 9. MESSAGING ENDPOINTS

marked as duplicate by having a property on the Exchange set to true. We can leverage
this fact by using a Content-Based Router or Message Filter to detect this and handle
duplicate messages.

For example in the following example we use the Message Filter to send the message to a
duplicate endpoint, and then stop continue routing that message.

from("direct:start")
// instruct idempotent consumer to not skip duplicates as we will
filter then our self

.idempotentConsumer(header("messageld")).messageIldRepository(repo).skipDup
licate(false)
.filter(property(Exchange.DUPLICATE MESSAGE).isEqualTo(true))
// filter out duplicate messages by sending them to someplace
else and then stop
.to("mock:duplicate")
.stop()
.end()
// and here we process only new messages (no duplicates)
.to("mock:result");

The sample example in XML DSL would be:

<!-- idempotent repository, just use a memory based for testing -->
<bean id="myRepo"
class="org.apache.camel.processor.idempotent.MemoryIdempotentRepository"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">

<route>
<from uri="direct:start"/>
<!-- we do not want to skip any duplicate messages -->

<idempotentConsumer messageldRepositoryRef="myRepo"
skipDuplicate="false">
<!-- use the messageld header as key for identifying
duplicate messages -->
<header>messageld</header>
<!-- we will to handle duplicate messages using a filter -->
<filter>
<!-- the filter will only react on duplicate messages,
if this property is set on the Exchange -->
<property>CamelDuplicateMessage</property>

<!-- and send the message to this mock, due its part of
an unit test -->
<!-- but you can of course do anything as its part of the
route -->
<to uri="mock:duplicate"/>
<!-- and then stop -->
<stop/>
</filter>
<!-- here we route only new messages -->

<to uri="mock:result"/>
</idempotentConsumer>
</route>
</camelContext>

255

Exchange

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

How to handle duplicate message in a clustered environment with a
data grid

If you have running Camel in a clustered environment, a in memory idempotent repository
doesn't work (see above). You can setup either a central database or use the idempotent
consumer implementation based on the Hazelcast data grid. Hazelcast finds the nodes over
multicast (which is default - configure Hazelcast for tcp-ip) and creates automatically a map
based repository:

HazelcastIdempotentRepository idempotentRepo = new
HazelcastIdempotentRepository("myrepo");

from("direct:in").idempotentConsumer (header("messageIld"),
idempotentRepo).to("mock:out");

You have to define how long the repository should hold each message id (default is to
delete it never). To avoid that you run out of memory you should create an eviction
strategy based on the Hazelcast configuration. For additional information see camel-
hazelcast.

See this little tutorial, how setup such an idempotent repository on two cluster nodes using
Apache Karaf.

Options

The Idempotent Consumer has the following options:

Option Default Description

eager true Camel 2.0: Eager controls
whether Camel adds the
message to the repository
before or after the exchange
has been processed. If
enabled before then Camel
will be able to detect
duplicate messages even
when messages are currently
in progress. By disabling
Camel will only detect
duplicates when a message
has successfully been
processed.

messageIdRepositoryRef null A reference to a
IdempotentRepository to
lookup in the registry. This
option is mandatory when
using XML DSL.

256

http://www.hazelcast.com/
http://www.hazelcast.com/documentation.jsp#MapEviction
Hazelcast Idempotent Repository Tutorial

CHAPTER 9. MESSAGING ENDPOINTS

skipDuplicate true Camel 2.8: Sets whether to
skip duplicate messages. If set
to false then the message
will be continued. However
the Exchange has been
marked as a duplicate by
having the
Exchange.DUPLICATE_MESS
AG exchange property set to a
Boolean.TRUE value.

9.9. TRANSACTIONAL CLIENT

Overview

The transactional client pattern, shown inFigure 9.7, “Transactional Client Pattern”, refers
to messaging endpoints that can participate in a transaction. Apache Camel supports
transactions using Spring transaction management.

Figure 9.7. Transactional Client Pattern

transaction transaction

12”_,

—
Transactional Transactional
Message
Froducer Consurmer
Sender Feceiver

Transaction oriented endpoints

Not all Apache Camel endpoints support transactions. Those that do are called transaction
oriented endpoints (or TOEs). For example, both the JMS component and the ActiveMQ
component support transactions.

To enable transactions on a component, you must perform the appropriate initialization

before adding the component to the CamelContext. This entails writing code to initialize
your transactional components explicitly.

References

The details of configuring transactions in Apache Camel are beyond the scope of this guide.
For full details of how to use transactions, see the Apache Camel Transaction Guide.

9.10. MESSAGING GATEWAY

Overview

257

Exchange
http://static.springframework.org/spring/docs/2.5.x/reference/transaction.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

The messaging gateway pattern, shown inFigure 9.8, “Messaging Gateway Pattern”,
describes an approach to integrating with a messaging system, where the messaging
system's APl remains hidden from the programmer at the application level. One of the
more common example is when you want to translate synchronous method calls into
request/reply message exchanges, without the programmer being aware of this.

Figure 9.8. Messaging Gateway Pattern

E 3

Messaging
Gateway

Messaging hMessaging
=ystem Sateway

Application Application

The following Apache Camel components provide this kind of integration with the
messaging system:

9.11. SERVICE ACTIVATOR

Overview

The service activator pattern, shown inFigure 9.9, “Service Activator Pattern”, describes
the scenario where a service's operations are invoked in response to an incoming request
message. The service activator identifies which operation to call and extracts the data to
use as the operation's parameters. Finally, the service activator invokes an operation using
the data extracted from the message. The operation invocation can be either oneway
(request only) or two-way (request/reply).

Figure 9.9. Service Activator Pattern

-
Request Service
9 - ..
Reply Service
Activator
Fequestar Replier

258

CHAPTER 9. MESSAGING ENDPOINTS

In many respects, a service activator resembles a conventional remote procedure call (RPC),
where operation invocations are encoded as messages. The main difference is that a
service activator needs to be more flexible. An RPC framework standardizes the request

and reply message encodings (for example, Web service operations are encoded as SOAP
messages), whereas a service activator typically needs to improvise the mapping between
the messaging system and the service's operations.

Bean integration

The main mechanism that Apache Camel provides to support the service activator pattern
is bean integration. Bean integration provides a general framework for mapping incoming
messages to method invocations on Java objects. For example, the Java fluent DSL provides
the processors bean() and beanRef () that you can insert into a route to invoke methods
on a registered Java bean. The detailed mapping of message data to Java method
parameters is determined by the bean binding, which can be implemented by adding
annotations to the bean class.

For example, consider the following route which calls the Java method,
BankBean.getUserAccBalance(), to service requests incoming on a JMS/ActiveMQ queue:

from("activemq:BalanceQueries")
.setProperty("userid",

xpath("/Account/BalanceQuery/UserID").stringResult())
.beanRef ("bankBean", "getUserAccBalance")
.to("velocity:file:src/scripts/acc_balance.vm")
.to("activemq:BalanceResults");

The messages pulled from the ActiveMQ endpoint, activemq:BalanceQueries, have a
simple XML format that provides the user ID of a bank account. For example:

<?xml version='1].0"' encoding='UTF-8'?>
<Account>
<BalanceQuery>
<UserID>James.Strachan</UserID>
</BalanceQuery>
</Account>

The first processor in the route, setProperty(), extracts the user ID from the/ln message
and stores it in the userid exchange property. This is preferable to storing it in a header,
because the In headers are not available after invoking the bean.

The service activation step is performed by the beanRef () processor, which binds the
incoming message to the getUserAccBalance() method on the Java object identified by
the bankBean bean ID. The following code shows a sample implementation of théBankBean
class:

package tutorial;
import org.apache.camel.language.XPath;

public class BankBean {
public int getUserAccBalance(@XPath("/Account/BalanceQuery/UserID")
String user) {
if (user.equals("James.Strachan")) {
return 1200;

259

http://activemq.apache.org/camel/bean-integration.html

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

}
else {

return 0;
}

}

Where the binding of message data to method parameter is enabled by the @XPath
annotation, which injects the content of the UserID XML element into theuser method
parameter. On completion of the call, the return value is inserted into the body of the Out
message which is then copied into the In message for the next step in the route. In order
for the bean to be accessible to the beanRef () processor, you must instantiate an instance
in Spring XML. For example, you can add the following lines to the META-
INF/spring/camel-context.xml configuration file to instantiate the bean:

<?xml version="1.0" encoding="UTF-8"7>
<beans ... >

<bean id="bankBean" class="tutorial.BankBean"/>
</beans>

Where the bean ID, bankBean, identifes this bean instance in the registry.

The output of the bean invocation is injected into a Velocity template, to produce a properly
formatted result message. The Velocity endpoint,
velocity:file:src/scripts/acc_balance.vm, specifies the location of a velocity script
with the following contents:

<?xml version='1.0"' encoding='UTF-8'?>
<Account>
<BalanceResult>
<UserID>${exchange.getProperty("userid")}</UserID>
<Balance>${body}</Balance>
</BalanceResult>
</Account>

The exchange instance is available as the Velocity variable, exchange, which enables you to
retrieve the userid exchange property, using ${exchange.getProperty("userid")}. The
body of the current In message, ${body}, contains the result of thegetUserAccBalance()
method invocation.

260

CHAPTER 10. SYSTEM MANAGEMENT

CHAPTER 10. SYSTEM MANAGEMENT

Abstract

The system management patterns describe how to monitor, test, and administer a
messaging system.

10.1. DETOUR

Detour

The Detour from the Introducing Enterprise Integration Patterns allows you to send
messages through additional steps if a control condition is met. It can be useful for turning
on extra validation, testing, debugging code when needed.

sSource

» | Destination

Example

In this example we essentially have a route like
from("direct:start").to("mock:result") with a conditional detour to themock:detour
endpoint in the middle of the route..

from("direct:start").choice()
.when().method("controlBean", "isDetour").to("mock:detour").end()
.to("mock:result");

Using the Spring XML Extensions

<route>
<from uri="direct:start"/>
<choice>
<when>
<method bean="controlBean" method="isDetour"/>
<to uri="mock:detour"/>
</when>
</choice>
<to uri="mock:result"/>
</split>
</route>

261

http://www.enterpriseintegrationpatterns.com/Detour.html
Spring XML Extensions

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

whether the detour is turned on or off is decided by the ControlBean. So, when the detour
is on the message is routed to mock:detour and thenmock: result. When the detour is off,
the message is routed to mock:result.

For full details, check the example source here:

camel-core/src/test/java/org/apache/camel/processor/DetourTest.java

10.2. LOGEIP

Overview

Apache Camel provides several ways to perform logging in a route:
e Using the log DSL command.
e Using the Log component, which can log the message content.
e Using the Tracer, which traces message flow.

e Using a Processor or a Bean endpoint to perform logging in Java.

DIFFERENCE BETWEEN THE LOG DSL COMMAND AND THE LOG
COMPONENT

The log DSL is much lighter and meant for logging human logs such as
Starting to do It can only log a message based on theSimple
language. In contrast, the Log component is a fully featured logging
component. The Log component is capable of logging the message itself and
you have many URI options to control the logging.

Java DSL example

Since Apache Camel 2.2, you can use thelog DSL command to construct a log message
at run time using the Simple expression language. For example, you can create a log
message within a route, as follows:

I from("direct:start").log("Processing ${id}").to("bean:foo0");

This route constructs a String format message at run time. The log message will by logged
at INFO level, using the route ID as the log name. By default, routes are named
consecutively, route-1, route-2 and so on. But you can use the DSL command,
routeId("myCoolRoute"), to specify a custom route ID.

The log DSL also provides variants that enable you to set the logging level and the log
name explicitly. For example, to set the logging level explicitly to LoggingLevel.DEBUG,
you can invoke the log DSL as follows:

has overloaded methods to set the logging level and/or name as well.

from("direct:start").log(LogginglLevel.DEBUG, "Processing
${id}").to("bean:foo0");

To set the log name to fileRoute, you can invoke the log DSL as follows:

262

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DetourTest.java
Simple

CHAPTER 10. SYSTEM MANAGEMENT

from("file://target/files").log(LoggingLevel.DEBUG, "fileRoute",
"Processing file ${file:name}").to("bean:foo0");

XML DSL example

In XML DSL, the log DSL is represented by the log element and the log message is
specified by setting the message attribute to a Simple expression, as follows:

<route id="foo0">
<from uri="direct:foo"/>
<log message="Got ${body}"/>
<to uri="mock: foo"/>
</route>

The log element supports themessage, LloggingLevel and lLogName attributes. For example:

<route id="baz">
<from uri="direct:baz"/>
<log message="Me Got ${body}" loggingLevel="FATAL" logName="cool"/>
<to uri="mock:baz"/>

</route>

10.3. WIRE TAP

Wire Tap

The wire tap pattern, as shown inFigure 10.1, “Wire Tap Pattern”, enables you to route a
copy of the message to a separate tap location, while the original message is forwarded to
the ultimate destination.

Figure 10.1. Wire Tap Pattern

Wire Tap

Source —;— Destination

]

STREAMS

If you Wire Tap a stream message body, you should consider enablingStream
Caching to ensure the message body can be re-read. See more details at
Stream Caching

WireTap node

263

Stream Caching
Stream Caching

Red Hat JBoss Fuse 6.1 Apache Camel Development Guide

Apache Camel 2.0 introduces the wireTap node for doing wire taps. ThewireTap node
copies the original exchange to a tapped exchange, whose exchange pattern is set t