& RedHat

Red Hat JBoss Web Server 6.0

Red Hat JBoss Web Server Operator

Installing and using the Red Hat JBoss Web Server Operator 2.0 for OpenShift

Last Updated: 2024-02-07

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

Installing and using the Red Hat JBoss Web Server Operator 2.0 for OpenShift

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Install and use the Red Hat JBoss Web Server Operator 2.0 to manage web applications in Red Hat
OpenShift

Table of Contents

PROVIDING FEEDBACK ON RED HAT JBOSS WEB SERVER DOCUMENTATION

MAKING OPEN SOURCEMOREINCLUSIVE i

MAKING OPEN SOURCEMOREINCLUSIVE i

CHAPTER 1. RED HAT JBOSS WEB SERVEROPERATORiiiiiiiiiiie,

CHAPTER 2. WHAT IS NEW IN THE JWS OPERATOR 2.0 RELEASE?

Level-2 Operator capabilities

Enabling level-2 seamless integration for new images
Level-2 seamless integration for rebuilding existing images
Support for Red Hat JBoss Web Server metering labels
Enhanced weblmage parameter

Enhanced webApp parameter

CHAPTER 3. JWS OPERATOR INSTALLATION FROM OPERATORHUB

3.1 INSTALLING THE JWS OPERATOR BY USING THE WEB CONSOLE
3.2. INSTALLING THE JWS OPERATOR BY USING THE COMMAND LINE

CHAPTER 4. DEPLOYING AN EXISTING JWSIMAGE ...t

CHAPTER 5. JWS OPERATORDELETION FROMACLUSTERoooiiiin,

5.1. DELETING THE JWS OPERATOR BY USING THE WEB CONSOLE
5.2. DELETING THE JWS OPERATOR BY USING THE COMMAND LINE

CHAPTER 6. CREATING A SECRET FOR A GENERIC OR GITHUB WEBHOOK

CHAPTER 7. JWS OPERATOR CRD PARAMETERS

7.1. CRD PARAMETER HIERARCHY
7.2. CRD PARAMETER DETAILS

Table of Contents

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

PROVIDING FEEDBACK ON RED HAT JBOSS WEB SERVER DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT JBOSS WEB SERVER
DOCUMENTATION

To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket
2. Enter a brief description of the issue in the Summary.

3. Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

4. Clicking Submit creates and routes the issue to the appropriate documentation team.

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12315922&summary=(issue+created via+link)&issuetype=1&priority=3&labels=customer-feedback&components=12328243

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

CHAPTER 1. RED HAT JBOSS WEB SERVER OPERATOR

An Operator is a Kubernetes-native application that makes it easy to manage complex stateful
applications in Kubernetes and OpenShift environments. Red Hat JBoss Web Server (JWS) provides an
Operator to manage JWS for OpenShift images. You can use the JWS Operator to create, configure,
manage, and seamlessly upgrade instances of web server applications in OpenShift.

Operators include the following key concepts:

® The Operator Framework is a toolkit to manage Operators in an effective, automated, and
scalable way. The Operator Framework consists of three main components:

© You can use OperatorHub to discover Operators that you want to install.

© You can use the Operator Lifecycle Manager (OLM) to install and manage Operators in your
OpenShift cluster.

© You can use the Operator SDK if you want to develop your own custom Operators.

® An Operator group is an OLM resource that provides multitenant configuration to OLM-
installed Operators. An Operator group selects target namespaces in which to generate role-
based access control (RBAC) for all Operators that are deployed in the same namespace as the
OperatorGroup object.

® Custom resource definitions (CRDs) are a Kubernetes extension mechanism that Operators use.
CRDs allow the custom objects that an Operator manages to behave like native Kubernetes
objects. The JWS Operator provides a set of CRD parameters that you can specify in custom
resource files for web server applications that you want to deploy.
This document describes how to install the JWS Operator, deploy an existing JWS image, and delete

Operators from a cluster. This document also provides details of the CRD parameters that the JWS
Operator provides.

NOTE
Before you follow the instructions in this guide, you must ensure that an OpenShift
cluster is already installed and configured as a prerequisite. For more information about
' installing and configuring OpenShift clusters, see the OpenShift Container Platform
Installing guide.
' For a faster but less detailed guide to deploying a prepared image or building an image

from an existing image stream, see the JWS Operator QuickStart guide.

IMPORTANT

Red Hat supports images for JWS 5.4 or later versions only.

Additional resources

® Understanding Operators

® |nstalling and configuring OpenShift Container Platform clusters

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/index
https://github.com/web-servers/jws-operator/blob/2.0.x/QuickStart.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/index#understanding-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/index

CHAPTER 2. WHAT IS NEW IN THE JWS OPERATOR 2.0 RELEASE"

CHAPTER 2. WHAT IS NEW IN THE JWS OPERATOR 2.0
RELEASE?

The JWS Operator 2.0 release provides level-2 Operator capabilities such as seamless integration. JWS
Operator 2.0 also supports Red Hat JBoss Web Server metering labels and includes some enhanced
Custom Resource Definition (CRD) parameters.

Level-2 Operator capabilities
JWS Operator 2.0 provides the following level-2 Operator capability features:

® FEnables seamless upgrades
® Supports patch and minor version upgrades

® Manages web servers deployed by the JWS Operator 1.1.x.

Enabling level-2 seamless integration for new images

The DeploymentConfig object definition includes a trigger that OpenShift uses to deploy new pods
when a new image is pushed to the image stream. The image stream can monitor the repository for new
images or you can instruct the image stream that a new image is available for use.

Procedure

1. In your project namespace, create an image stream by using the oc import-image command to
import the tag and other information for an image.
For example:

oc import-image <my-image>-imagestream:latest \
--from=quay.io/$user/<my-image>:latest \
--confirm

In the preceding example, replace each occurrence of <my-images with the name of the image
that you want to import.

The preceding command creates an image stream named <my-images>-imagestream by
importing information for the quay.io/$user/<my-image> image. For more information about
the format and management of image streams, see Managing image streams.

2. Create a custom resource of the WebServer kind for the web application that you want the
JWS Operator to deploy whenever the image stream is updated. You can define the custom
resource in YAML file format.

For example:

apiVersion: web.servers.org/vialphai
kind: WebServer
metadata:
name: <my-image>
spec:
Add fields here
applicationName: my-app
useSessionClustering: true
replicas: 2

https://docs.openshift.com/container-platform/4.10/openshift_images/image-streams-manage.html

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

weblmageStream:
imageStreamNamespace: <project-name>
imageStreamName: <my-image>-imagestream

3. Trigger an update to the image stream by using the oc tag command.
For example:

I oc tag quay.io/$user/<my-image> <my-image>-imagestream:latest --scheduled

The preceding command causes OpenShift Container Platform to update the specified image
stream tag periodically. This period is a cluster-wide setting that is set to 15 minutes by default.

Level-2 seamless integration for rebuilding existing images

The BuildConfig object definition includes a trigger for image stream updates and a webhook, which is
either a GitHub or Generic webhook, that enables the rebuilding of images when the webhook is
triggered by Git or GitHub.

For more information about creating a secret for a webhook, see Creating a secret for a generic or
GitHub webhook.

For more information about configuring a generic or GitHub webhook in a custom resource WebServer
file, see JWS Operator CRD parameters.

Support for Red Hat JBoss Web Server metering labels
JWS Operator 2.0 supports the ability to add metering labels to the Red Hat JBoss Web Server pods
that the JWS Operator creates.

Red Hat JBoss Web Server can use the following metering labels:
e com.company: Red_Hat
e rht.prod_name: Red_Hat_Runtimes
e rht.prod_ver: 2023-Q4
e rht.comp: JBoss_Web_Server
e rht.comp_ver: 6.0.0
e rht.subcomp: Tomcat 10
e rht.subcomp_t: application

You can add labels under the metadata section in the custom resource WebServer file for a web
application that you want to deploy. For example:

apiVersion: web.servers.org/vialphai
kind: WebServer
metadata:
name: <my-image>
labels:
com.company: Red_Hat
rht.prod_name: Red_Hat_Runtimes
rht.prod_ver: 2023-Q4
rht.comp: JBoss_Web_Server

CHAPTER 2. WHAT IS NEW IN THE JWS OPERATOR 2.0 RELEASE"

rht.comp_ver: 6.0.0

rht.subcomp: Tomcat 10

rht.subcomp_t: application
spec:

NOTE

If you change any label key or label value for a deployed web server, the JWS Operator
redeploys the web server application. If the deployed web server was built from source
code, the JWS Operator also rebuilds the web server application.

Enhanced weblmage parameter
In the JWS Operator 2.0 release, the weblmage parameter in the CRD contains the following additional

fields:

imagePullSecret
The secret that the JWS Operator uses to pull images from the repository

NOTE

The secret must contain the key .dockerconfigjson. The JWS Operator mounts
and uses the secret (for example, --authfile /mount_point/.dockerconfigjson)
to pull the images from the repository. The Secret object definition file might
contain server username and password values or tokens to allow access to
images in the image stream, the builder image, and images built by the JWS
Operator.

webApp
A set of parameters that describe how the JWS Operator builds the web server application

Enhanced webApp parameter
In the JWS Operator 2.0 release, the webApp parameter in the CRD contains the following additional

fields:

name
The name of the web server application

sourceRepositoryURL
The URL where the application source files are located

sourceRepositoryRef
The branch of the source repository that the Operator uses

sourceRepositoryContextDir
The subdirectory where the pom.xml file is located and where the mvn install command must
be run

webAppWarlmage
The URL of the images where the JWS Operator pushes the built image

webAppWarlmagePushSecret
The secret that the JWS Operator uses to push images to the repository

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

® builder
A set of parameters that contain all the information required to build the web application and
create and push the image to the image repository

NOTE

To ensure that the builder can operate successfully and run commands with
different user IDs, the builder must have access to the anyuid security context
constraint (SCC).

To grant the builder access to the anyuid SCC, enter the following command:

oc adm policy add-scc-to-user anyuid -z builder

The builder parameter contains the following fields:

o image
The image of the container where the web application is built (for example,
quay.io/$user/tomcat10-buildah)

o imagePullSecret
The secret (if specified) that the JWS Operator uses to pull the builder image from the
repository

o applicationBuildScript
The script that the builder image uses to build the application .war file and move it to the
/mnt directory

NOTE

If you do not specify a value for this parameter, the builder image uses a
default script that uses Maven and Buildah.

Additional resources

® Operator Capability Levels

10

https://operatorframework.io/operator-capabilities/

CHAPTER 3. JWS OPERATOR INSTALLATION FROM OPERATORHUE

CHAPTER 3. JWS OPERATOR INSTALLATION FROM
OPERATORHUB

You can install the JWS Operator from OperatorHub to facilitate the deployment and management of
JBoss Web Server applications in an OpenShift cluster. OperatorHub is a component of the Operator
Framework that you can use to discover Operators that you want to install. OperatorHub works in
conjunction with the Operator Lifecycle Manger (OLM), which installs and manages Operatorsin a
cluster.

You can install the JWS Operator from OperatorHub in either of the following ways:

® Use the OpenShift web console.

® Use the oc command-line tool.

3.1. INSTALLING THE JWS OPERATOR BY USING THE WEB CONSOLE

If you want to install the JWS Operator by using a graphical user interface, you can use the OpenShift
web console to install the JWS Operator.

NOTE
When you install the JWS Operator by using the web console, and the Operator is using

SingleNamespace installation mode, the OperatorGroup and Subscription objects are
installed automatically.

Prerequisites

® You have deployed an OpenShift Container Platform cluster by using an account with cluster
administrator and Operator installation permissions.

Procedure
1. Open the web console and select Operators > OperatorHub.
2. In the Filter by keyword search field, type "JWS".
3. Select the JWS Operator.

4. On the JBoss Web Server Operator menu, select the Capability level that you want to use
and click Install.

5. On the Install Operator page, perform the following steps:

a. Select the Update channel where the JWS Operator is available.

NOTE

The JWS Operator is currently available through one channel only.

b. Select the Installation mode for the Operator.
You can install the Operator to all namespaces or to a specific namespace on the cluster. If
you select the specific namespace option, use the Installed Namespace field to specify the
namespace where you want to install the Operator.

1

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

NOTE

If you do not specify a namespace, the Operator is installed to all
namespaces on the cluster by default.

c. Select the Approval strategy for the Operator.
Consider the following guidelines:

e |f you select Automatic updates, when a new version of the Operator is available, the
OLM upgrades the running instance of your Operator automatically.

e |f you select Manual updates, when a newer version of the Operator is available, the
OLM creates an update request. As a cluster administrator, you must then manually

approve the update request to ensure that the Operator is updated to the new version.

6. Click Install.

NOTE

If you have selected a Manual approval strategy, you must approve the install
plan before the installation is complete.

The JWS Operator then appears in the Installed Operators section of the Operators tab.

3.2. INSTALLING THE JWS OPERATOR BY USING THE COMMAND
LINE

If you want to install the JWS Operator by using a command-line interface, you can use the oc
command-line tool to install the JWS Operator. The JWS Operator that Red Hat provides is named jws-
operator.

The steps to install the JWS Operator from the command line include verifying the supported
installation modes and available channels for the Operator and creating a Subscription object.

Depending on the installation mode that the Operator uses, you might also need to create an Operator
group in the project namespace before you create the Subscription object.

Prerequisites

® You have deployed an OpenShift Container Platform cluster by using an account with Operator
installation permissions.

® You have installed the oc tool on your local system.

Procedure
1. Toinspect the JWS Operator, perform the following steps:

a. View the list of JWS Operators that are available to the cluster from OperatorHub:
I $ oc get packagemanifests -n openshift-marketplace | grep jws

The preceding command displays the name, catalog, and age of each available Operator.

For example:

12

CHAPTER 3. JWS OPERATOR INSTALLATION FROM OPERATORHUE

NAME CATALOG AGE
jws-operator Red Hat Operators 16h

b. Inspect the JWS Operator to verify the supported installation modes and available channels
for the Operator:

I $ oc describe packagemanifests jws-operator -n openshift-marketplace

2. Check the actual list of Operator groups:
I $ oc get operatorgroups -n <project_name>
In the preceding example, replace <project_names with your OpenShift project name.

The preceding command displays the name and age of each available Operator group.

For example:

NAME AGE
mygroup 17h

3. If you need to create an Operator group, perform the following steps:

NOTE

If the Operator you want to install uses SingleNamespace installation mode and
you do not already have an appropriate Operator group in place, you must
complete this step to create an Operator group. You must ensure that you create
only one Operator group in the specified namespace.

If the Operator you want to install uses AlINamespaces installation mode or you
already have an appropriate Operator group in place, you can ignore this step.

a. Create a YAML file for the OperatorGroup object.
For example:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: <operatorgroup_name>
namespace: <project_name>
spec:
targetNamespaces:
- <project_name>

In the preceding example, replace <operatorgroup_names with the name of the Operator
group that you want to create, and replace <project_names with the name of the project
where you want to install the Operator. To view the project name, you can run the oc

project -q command.

b. Create the OperatorGroup object from the YAML file:

I $ oc apply -f <filename>.yaml|

13

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

In the preceding example, replace <filenames.yaml with the name of the YAML file that
you have created for the OperatorGroup object.

4. To create a Subscription object, perform the following steps:

a. Create a YAML file for the Subscription object.
For example:

apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: jws-operator
namespace: <project_name>
spec:
channel: alpha
name: jws-operator
source: redhat-operators
sourceNamespace: openshift-marketplace

In the preceding example, replace <project_names> with the name of the project where you
want to install the Operator. To view the project name, you can run the oc project -q
command.

The namespace that you specify must have an OperatorGroup object that has the

same installation mode setting as the Operator. If the Operator uses AlINamespaces
installation mode, replace <project_name> with openshift-operators, which already
provides an appropriate Operator group. If the Operator uses SingleNamespace
installation mode, ensure that this namespace has only one OperatorGroup object.

Ensure that the source setting matches the Catalog Source value that was displayed when
you verified the available channels for the Operator (for example, redhat-operators).

b. Create the Subscription object from the YAML file:
I $ oc apply -f <filename>.yaml|

In the preceding example, replace <filenames.yaml with the name of the YAML file that
you have created for the Subscription object.

Verification
® To verify that the JWS Operator is installed successfully, enter the following command:
I $ oc get csv -n <project_name>

In the preceding example, replace <project_names> with the name of the project where you
have installed the Operator.

The preceding command displays details of the installed Operator.

For example:

14

CHAPTER 3. JWS OPERATOR INSTALLATION FROM OPERATORHUE

NAME DISPLAY VERSION REPLACES PHASE
jws- JWS Operator 2.0x jws- Succeeded
operator.v2.0.x operator.v2.0.y

In the preceding output, 2.0.x represents the current Operator version (for example, 2.0.6), and

2.0.y represents the previous Operator version that the current version replaces (for example,
2.0.5).

15

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

CHAPTER 4. DEPLOYING AN EXISTING JWS IMAGE

You can use the JWS Operator to facilitate the deployment of an existing image for a web server
application that you want to deploy in an OpenShift cluster. In this situation, you must create a custom
resource WebServer file for the web server application that you want to deploy. The JWS Operator
uses the custom resource WebServer file to handle the application deployment.

Prerequisites

® You have installed the JWS Operator from OperatorHub.
To ensure that the JWS Operator is installed, enter the following command:

I $ oc get deployment.apps/jws-operator-controller-manager

The preceding command displays the name and status details of the Operator.

For example:

NAME READY UP-TO-DATE AVAILABLE AGE
jws-operator 1/1 1 1 15h
NOTE

If you want to view more detailed output, you can use the following command:

oc describe deployment.apps/jws-operator-controller-manager

Procedure

1. Prepare your image and push it to the location where you want to display the image (for
example, quay.io/ <USERNAME>/tomcat-demo:latest).

2. To create a custom resource file for your web server application, perform the following steps:

a. Create a YAML file named, for example, webservers_cr.yami.

b. Enter details in the following format:

apiVersion: web.servers.org/vialphai
kind: WebServer
metadata:
name: <image name>
spec:
Add fields here
applicationName: <application name>
replicas: 2
weblmage:
applicationlmage: <URL of the image>

For example:

apiVersion: web.servers.org/vialphai
kind: WebServer
metadata:

16

CHAPTER 4. DEPLOYING AN EXISTING JWS IMAGE

name: example-image-webserver
spec:
Add fields here
applicationName: jws-app
replicas: 2
weblmage:
applicationimage: quay.io/<USERNAME>/tomcat-demo:latest

3. To deploy your web application, perform the following steps:
a. Go to the directory where you have created the web application.

b. Enter the following command:
I $ oc apply -f webservers_cr.yaml

The preceding command displays a message to confirm that the web application is
deployed.

For example:
I webserver/example-image-webserver created

When you run the preceding command, the Operator also creates a route automatically.

4. Verify the route that the Operator has automatically created:

I $ oc get routes

5. Optional: Delete the webserver that you created in Step 3:

I $ oc delete webserver example-image-webserver

NOTE

Alternatively, you can delete the webserver by deleting the YAML file. For
example:

oc delete -f webservers_cr.yaml

Additional resources

® Route configuration: Creating an HTTP-based route

17

https://docs.openshift.com/container-platform/4.7/networking/routes/route-configuration.html

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

CHAPTER 5. JWS OPERATOR DELETION FROM A CLUSTER

If you no longer need to use the JWS Operator, you can subsequently delete the JWS Operator from a
cluster.

You can delete the JWS Operator from a cluster in either of the following ways:
® Use the OpenShift web console.

® Use the oc command-line tool.

5.1. DELETING THE JWS OPERATOR BY USING THE WEB CONSOLE

If you want to delete the JWS Operator by using a graphical user interface, you can use the OpenShift
web console to delete the JWS Operator.

Prerequisites

® You have deployed an OpenShift Container Platform cluster by using an account with cluster
admin permissions.

' NOTE
If you do not have cluster admin permissions, you can circumvent this
requirement. For more information, see Allowing non-cluster administrators to

install Operators.

Procedure

1. Open the web console and click Operators > Installed Operators

2. Select the Actions menu and click Uninstall Operator.

NOTE

The Uninstall Operator option automatically removes the Operator, any
Operator deployments, and Pods.

Deleting the Operator does not remove any custom resource definitions or
custom resources for the Operator, including CRDs or CRs. If the Operator has
deployed applications on the cluster, or if the Operator has configured resources
outside the cluster, you must clean up these applications and resources manually.

5.2. DELETING THE JWS OPERATOR BY USING THE COMMAND LINE

If you want to delete the JWS Operator by using a command-line interface, you can use the oc
command-line tool to delete the JWS Operator.

Prerequisites

® You have deployed an OpenShift Container Platform cluster by using an account with cluster
admin permissions.

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html/operators/administrator-tasks#olm-creating-policy

CHAPTER 5. JWS OPERATOR DELETION FROM A CLUSTER

NOTE
If you do not have cluster admin permissions, you can circumvent this

requirement. For more information, see Allowing non-cluster administrators to
install Operators.

® You have installed the oc tool on your local system.

Procedure

1. Check the current version of the subscribed Operator:
I $ oc get subscription jws-operator -n <project_name> -o yaml | grep currentCSV

In the preceding example, replace <project_names with the namespace of the project where
you installed the Operator. If your Operator was installed to all namespaces, replace
<project_name> with openshift-operators.

The preceding command displays the following output, where v2.0.x refers to the Operator
version (for example, v2.0.6):

f:currentCSV: {}
currentCSV: jws-operator.v2.0.x

2. Delete the subscription for the Operator:
I $ oc delete subscription jws-operator -n <project_name>

In the preceding example, replace <project_names with the namespace of the project where
you installed the Operator. If your operator was installed to all namespaces, replace
<project_name> with openshift-operators.

3. Delete the CSV for the Operator in the target namespace:
I $ oc delete clusterserviceversion <currentCSV> -n <project_name>

In the preceding example, replace <currentCSV> with the currentCSV value that you obtained
in Step 1 (for example, jws-operator.v2.0.6). Replace <project_name> with the namespace of
the project where you installed the Operator. If your operator was installed to all namespaces,
replace <project_names> with openshift-operators.

The preceding command displays a message to confirm that the CSV is deleted.

For example:

I clusterserviceversion.operators.coreos.com "jws-operator.v2.0.x" deleted

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html/operators/administrator-tasks#olm-creating-policy

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

CHAPTER 6. CREATING ASECRET FOR A GENERIC OR
GITHUB WEBHOOK

You can create a secret that you can use with a generic or GitHub webhook to trigger application builds
in a Git repository. Depending on the type of Git hosting platform that you use for your application
code, the JWS Operator provides a genericWebhookSecret parameter and a githubWebhookSecret
parameter that you can use to specify the secret in the custom resource file for a web application.

Procedure
1. Create an encoded secret string:

a. Create a file named, for example, secret.txt.

b. In the secret.txt file, enter the secret string in plain text.
For example:

I qwerty

c. To encode the string, enter the following command:
I base64 secret.ixt
The preceding command displays the encoded string.
For example:

I cXdlcnR5Cg==

2. Create a secret.yaml file that defines an object of kind Secret.
For example:

kind: Secret
apiVersion: v1
metadata:
name: jws-secret
data:
WebHookSecretKey: cXdlcnR5Cg==

In the preceding example, jws-secret is the name of the secret and eXdlecnR5Cg== is the
encoded secret string.

3. To create the secret, enter the following command:
I oc create -f secret.yaml

The preceding command displays a message to confirm that the secret is created.

For example:

I secret/jws-secret created

\/arifiratinn

20

CHAPTER 6. CREATING A SECRET FOR A GENERIC OR GITHUB WEBHOOK

v ernnivuLIvI

1. Get the URL for the webhook:
I oc describe BuildConfig | grep webhooks

The preceding command generates the webhook URL in the following format:

https://<host>:
<port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/
<secret>/generic

2. Create a minimal JSON file named, for example, payload.json:

| o

3. Tosend arequest to the webhook, enter the following curl command:

curl -H "X-GitHub-Event: push" -H "Content-Type: application/json" -k -X POST --data-binary
@payload.json https://<host>:
<port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/
<secret>/generic

In the preceding example, payload.json is the name of the minimal JSON file you have created.

Replace <hosts, <port>, <namespace>, and <name> in the URL string with values that are
appropriate for your environment. Replace <secret> with the name of the secret you have
created for the webhook.

The preceding command generates the following type of webhook response in JSON format:

{"kind":"Build","apiVersion":"build.openshift.io/v1","metadata":{"name":"test-
2","namespace":"jfc","selfLink":"/apis/build.openshift.io/v1/namespaces/jfc/buildconfigs/test-
2/instantiate","uid":"a72dd529-edc6-4e1c-898e-
7c0dbbeail76e","resourceVersion":"846159","creationTimestamp":"2020-10-
30T12:29:30Z","labels":{"application":"test","buildconfig":"test","openshift.io/build-
config.name":"test","openshift.io/build.start-policy":"Serial"},"annotations":{"openshift.io/build-
config.name":"test","openshift.io/build.number":"2"},"ownerReferences":
[{"apiVersion":"build.openshift.io/v1","kind":"BuildConfig","name":"test","uid":"1{78fa3f-2f3b-
421b-9f49-192184cc2280","controller":true}],"managedFields":[{"manager":"openshift-
apiserver","operation":"Update","apiVersion":"build.openshift.io/v1","time":"2020-10-
30T12:29:30Z","fieldsType":"FieldsV1","fieldsV1":{"f:metadata":{"f:annotations":{".":
{},"f:openshift.io/build-config.name":{},"f:openshift.io/build.number":{}},"f:labels":{".":
{},"f:application":{},"f:buildconfig":{},"f:openshift.io/build-config.name":
{},"f:openshift.io/build.start-policy":{}},"f:ownerReferences":{".":{},"k:{\"uid\":\"1{78fa3f-2f3b-
421b-9f49-192184cc2280\"}":{".":{},"f:apiVersion":{},"f:controller":{},"f:kind":{},"f:name":
{},"f:uid":{}}}},"f:spec™:{"f:output™:{"f:to":{".":{},"f:kind":{},"f:name":{}}},"f:serviceAccount":
{},"f:source™:{"f:contextDir":{},"f:git":{".":{},"f:ref":{},"f:uri":{}},"f:type"{}},"f:strategy":
{"f:sourceStrategy":{".":{},"f:env":{},"f:forcePull":{},"f:from":{".":{},"f:kind":{},"f:name":
{}1,"f:pullSecret":{".":{},"f:name":{}}},"f:type"{}},"f:triggeredBy":{}},"f:status":{"f:conditions":{".":
{1,"k:{\"type\":\"New\"}":{".":{},"f:lastTransitionTime":{},"f:lastUpdate Time":{},"f:status":
{},"f:type™:{}}},"f:config":{".":{},"f:kind":{},"f:name":{},"f:namespace":{}},"f:phase":{}}}}1},"spec":
{"serviceAccount":"builder","source":{"type":"Git","git":{"uri":"https://github.com/jfclere/demo-
webapp.git","ref":"master"},"contextDir":"/"},"strategy":{"type":"Source","sourceStrategy":
{"from":{"kind":"Dockerlmage","name":"image-registry.openshift-image-

21

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

registry.svc:5000/jfc/jooss-webserver54-tomcat9-
openshift@sha256:75dcdf81011e113b8c8d0a40af32dc705851243baa13b6835270615417431
9e7"},"pullSecret":{"name":"builder-dockercfg-rvbh8"},"env":
[{"name":"MAVEN_MIRROR_URL"},{"name":"ARTIFACT_DIR"}],"forcePull":true}},"output":
{"to™:{"kind":"ImageStreamTag","name":"test:latest"}},"resources":{},"postCommit":
{},"nodeSelector":null,"triggeredBy":[{"message":"Generic WebHook","genericWebHook":
{"secret":"\u003csecret\u003e"}}]},"status":{"phase":"New","config":
{"kind":"BuildConfig","namespace":"jfc","name":"test"},"output":{},"conditions":
[{"type":"New","status":"True","lastUpdate Time":"2020-10-
30T12:29:30Z","lastTransitionTime":"2020-10-30T12:29:30Z"}]}}
{

"kind": "Status",

"apiVersion": "v1",

"metadata”: {

2
"status": "Success",
"message": "no git information found in payload, ignoring and continuing with build",

"code": 200

Additional resources

22

® Webhook Triggers

® JWS Operator CRD parameters

https://docs.openshift.com/container-platform/4.9/cicd/builds/triggering-builds-build-hooks.html#builds-webhook-triggers_triggering-builds-build-hooks

CHAPTER 7. JWS OPERATOR CRD PARAMETERS

CHAPTER 7. JWS OPERATOR CRD PARAMETERS

The JWS Operator provides a set of custom resource definition (CRD) parameters. When you create a
custom resource WebServer file for a web application, you can specify parameter valuesina <keys:
<values format. The JWS Operator uses the information that you specify in the custom resource
WebServer file to deploy the web application.

7.1. CRD PARAMETER HIERARCHY

The JWS Operator provides CRD parameters in the following hierarchical format:

applicationName: <value>
replicas: <value>
useSessionClustering: <value>
weblmage:
applicationlmage: <value>
imagePullSecret: <value>
webApp:
name: <value>
sourceRepositoryURL: <value>
sourceRepositoryRef: <value>
contextDir: <value>
webAppWarlmage: <value>
webAppWarlmagePushSecret: <value>
builder:
image: <value>
imagePullSecret: <value>
applicationBuildScript: <value>
webServerHealthCheck:
serverReadinessScript: <value>
serverLivenessScript: <value>
weblmageStream:
imageStreamName: <value>
imageStreamNamespace: <value>
webSources:
sourceRepositoryUrl: <value>
sourceRepositoryRef: <value>
contextDir: <value>
webSourcesParams:
mavenMirrorUrl: <value>
artifactDir: <value>
genericWebHookSecret: <value>
githubWebHookSecret: <value>
webServerHealthCheck:
serverReadinessScript: <value>
serverLivenessScript: <value>

NOTE

When you create a custom resource WebServer file, specify parameter names and values
in the same hierarchical format that the preceding example outlines. For more
information about creating a custom resource WebServer file, see Deploying an existing
JWS image.

23

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

7.2. CRD PARAMETER DETAILS

The following table describes the CRD parameters that the JWS Operator provides. This table shows
each parameter name in the context of any higher-level parameters that are above it in the hierarchy.

Parameter name Description

replicas The number of pods of the JBoss Web Server image
that you want to run

For example:
replicas: 2

applicationName The name of the web application that you want the
JWS Operator to deploy

The application name must be a unique value in the
OpenShift namespace or project. The JWS Operator
uses the application name that you specify to create
the route to access the web application.

For example:
applicationName: my-app

useSessionClustering Enables DNSping session clustering

This is set to false by default. If you set this
parameter to true, the image must be based on
JBoss Web Server images, because session
clustering uses the ENV_FILES environment
variable and a shell script to add the clustering in the
server.xml file.

NOTE

In this release, the session clustering
functionality is available as a
Technology Preview feature only.
The current Operator version uses
the DNS Membership Provider,
which is limited because of DNS
limitations.
InetAddress.getAlIByName()
results are cached, which means
session replications might not work
while scaling up.

For example:
useSessionClustering: true

24

CHAPTER 7. JWS OPERATOR CRD PARAMETERS

Parameter name Description

weblmage

weblmage:
applicationlmage

weblmage:
imagePullSecret

weblmage:
webApp

A set of parameters that controls how the JWS
Operator deploys pods from existing images

This parameter contains applicationlmage,
imagePullSecret, webApp, and
webServerHealthCheck fields.

The full path to the name of the application image
that you want to deploy

For example:
applicationimage: quay.io/$user/my-image-
name

The name of the secret that the JWS Operator uses
to pull images from the repository

The secret must contain the key
.dockerconfigjson. The JWS Operator mounts
the secret and uses it similar to --authfile
/mount_point/.dockerconfigjson to pull the
images from the repository.

The Secret object definition file might contain
several username and password values or tokens to
allow access to images in the image stream, the
builder image, and images built by the JWS
Operator.

For example:
imagePullSecret: mysecret

A set of parameters that describe how the JWS
Operator builds the web application that you want to
add to the application image

If you do not specify the webApp parameter, the
JWS Operator deploys the web application without
building the application.

This parameter contains hame,
sourceRepositoryURL, sourceRepositoryRef,
contextDir, webAppWarlimage,
webAppWarlmagePushSecret, and builder
fields.

25

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

Parameter name Description

weblmage:
webApp:
hame

weblmage:
webApp:
sourceRepositoryURL

weblmage:
webApp:
sourceRepositoryRef

weblmage:
webApp:
contextDir

weblmage:
webApp:
webAppWarlmage

26

The name of the web application file
The default name is ROOT.war.

For example:
name: my-app.war

The URL where the application source files are
located

The source should contain a Maven pom.xml file to
support a Maven build. When Maven generates a
.war file for the application, the.war file is copied to
the webapps directory of the image that the JWS
Operator uses to deploy the application (for example,
/opt/jws-5.x/tomcat/webapps).

For example:
sourceRepositoryUrl:
'https://github.com/$user/demo-webapp.qgit’

The branch of the source repository that the JWS
Operator uses

For example:
sourceRepositoryRef: main

The subdirectory in the source repository where the
pom.xml file is located and the mvn install
command is run

For example:
contextDir: /

The URL of the images where the JWS Operator
pushes the built image

CHAPTER 7. JWS OPERATOR CRD PARAMETERS

Parameter name Description

weblmage:
webApp:
webAppWarlmagePushSecret

weblmage:
webApp:
builder

weblmage:
webApp:
builder:
image

The name of the secret that the JWS Operator uses
to push images to the repository

The secret must contain the key
.dockerconfigjson. The JWS Operator mounts
the secret and uses it similar to --authfile
/mount_point/.dockerconfigjson to push the
image to the repository.

If the JWS Operator uses a pull secret to pull images
from the repository, you must specify the name of
the pull secret as the value for the
webAppWarlmagePushSecret parameter. See
imagePullSecret for more information.

For example:
imagePullSecret: mysecret

A set of parameters that describe how the JWS
Operator builds the web application and creates and
pushes the image to the image repository

NOTE

To ensure that the builder can
operate successfully and run
commands with different user IDs,
the builder must have access to the
anyuid SCC (security context
constraint). To grant the builder
access to the anyuid SCC, enter the
following command:

oc adm policy add-scc-to-user
anyuid -z builder

This parameter contains image, imagePullSecret,
and applicationBuildScript fields.

The image of the container where the JWS Operator
builds the web application

For example:
image: quay.io/$user/tomcat10-buildah

27

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

Parameter name Description

weblmage:
webApp:
builder:
imagePullSecret

weblmage:
webApp:
builder:
applicationBuildScript

weblmage:
webServerHealthCheck

weblmage:
webServerHealthCheck:
serverReadinessScript

28

The name of the secret (if specified) that the JWS
Operator uses to pull the builder image from the
repository

The secret must contain the key
.dockerconfigjson. The JWS Operator mounts
the secret and uses it similar to --authfile
/mount_point/.dockerconfigjson to pull the
images from the repository.

The Secret object definition file might contain
several username and password values or tokens to
allow access to images in the image stream, the
builder image, and images built by the JWS
Operator.

For example:
imagePullSecret: mysecret

The script that the builder image uses to build the
application .war file and move it to the /mnt
directory

If you do not specify a value for this parameter, the
builder image uses a default script that uses Maven
and Buildah.

The health check that the JWS Operator uses

The default behavior is to use the health valve, which
does not require any parameters.

This parameter contains serverReadinessScript
and serverLivenessScript fields.

A string that specifies the logic for the pod readiness
health check

If this parameter is not specified, the JWS Operator
uses the default health check by using the OpenShift
internal registry to check
http://localhost:8080/health.

For example:

serverReadinessScript: /bin/bash -c "
/usr/bin/curl --noproxy ™' -s
'http://localhost:8080/health’ | /usr/bin/grep -i
'status.*UP™

CHAPTER 7. JWS OPERATOR CRD PARAMETERS

Parameter name Description

weblmage:
webServerHealthCheck:
serverLivenessScript

weblmageStream

weblmageStream:
imageStreamName

weblmageStream:
imageStreamNamespace

weblmageStream:
webSources

A string that specifies the logic for the pod liveness
health check

This parameter is optional.

A set of parameters that control how the JWS
Operator uses an image stream that provides images
to run or to build upon

The JWS Operator uses the latest image in the
image stream.

This parameter contains applicationlmage,
imagePullSecret, webApp, and
webServerHealthCheck fields.

The name of the image stream that you have created
to allow the JWS Operator to find the base images

For example:
imageStreamName: my-image-name-
imagestream:latest

The namespace or project where you have created
the image stream

For example:
imageStreamNamespace: my-namespace

A set of parameters that describe where the
application source files are located and how to build
them

If you do not specify the webSources parameter,
the JWS Operator deploys the latest image in the
image stream.

This parameter contains sourceRepositoryUrl,
sourceRepositoryRef, contextDir, and
webSourcesParams fields.

29

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

Parameter name Description

weblmageStream:
webSources:
sourceRepositoryUrl

weblmageStream:
webSources:
sourceRepositoryRef

weblmageStream:
webSources:
contextDir

weblmageStream:
webSources:
webSourcesParams

weblmageStream:
webSources:
webSourcesParams:
mavenMirrorUrl

30

The URL where the application source files are
located

The source should contain a Maven pom.xml file to
support a Maven build. When Maven generates a
.war file for the application, the.war file is copied to
the webapps directory of the image that the JWS
Operator uses to deploy the application (for example,
/opt/jws-5.x/tomcat/webapps).

For example:
sourceRepositoryUrl:
'https://github.com/$user/demo-webapp.git’

The branch of the source repository that the JWS
Operator uses

For example:
sourceRepositoryRef: main

The subdirectory in the source repository where the
pom.xml file is located and the mvn install
command is run

For example:
contextDir: /

A set of parameters that describe how to build the
application images

This parameter is optional.

This parameter contains mavenMirrorUrl,
artifactDir, genericWebHookSecret, and
githubWebHookSecret fields.

The Maven proxy URL that Maven uses to build the
web application

This parameter is required if the cluster does not
have internet access.

weblmageStream:
webSources:
webSourcesParams:
artifactDir

weblmageStream:
webSources:
webSourcesParams:
genericWebHookSecret

weblmageStream:
webSources:
webSourcesParams:
githubWebHookSecret

weblmageStream:
webServerHealthCheck

CHAPTER 7. JWS OPERATOR CRD PARAMETERS

Parameter name Description

The directory where Maven stores the .war file that
Maven generates for the web application

The contents of this directory are copied to the
webapps directory of the image that the JWS
Operator uses to deploy the application (for example,
/opt/jws-5.x/tomcat/webapps).

The default value is target.

The name of a secret for a generic webhook that can
trigger a build

For more information about creating a secret, see
Creating a secret for a generic or GitHub webhook

For more information about using generic webhooks,
see Webhook Triggers.

For example:
genericWebHookSecret: my-secret

The name of a secret for a GitHub webhook that can
trigger a build

For more information about creating a secret, see
Creating a secret for a generic or GitHub webhook

For more information about using GitHub webhooks,
see Webhook Triggers.

¢ NOTE
You cannot perform manual tests of
a GitHub webhook. GitHub

4 generates the payload and it is not

empty.

The health check that the JWS Operator uses

The default behavior is to use the health valve, which
does not require any parameters.

This parameter contains serverReadinessScript
and serverLivenessScript fields.

31

https://docs.openshift.com/container-platform/4.9/cicd/builds/triggering-builds-build-hooks.html#builds-webhook-triggers_triggering-builds-build-hooks
https://docs.openshift.com/container-platform/4.9/cicd/builds/triggering-builds-build-hooks.html#builds-webhook-triggers_triggering-builds-build-hooks

Red Hat JBoss Web Server 6.0 Red Hat JBoss Web Server Operator

Parameter name Description

weblmageStream: A string that specifies the logic for the pod readiness
webServerHealthCheck: health check

serverReadinessScript
If this parameter is not specified, the JWS Operator

uses the default health check by using the OpenShift
internal registry to check
http://localhost:8080/health.

For example:

serverReadinessScript: /bin/bash -c "
/ust/bin/curl --noproxy ™' -s
'http://localhost:8080/health’ | /usr/bin/grep -i
'status.*UP™

weblmageStream: A string that specifies the logic for the pod liveness
webServerHealthCheck: health check

serverLivenessScript
This parameter is optional.

32

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT JBOSS WEB SERVER DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. RED HAT JBOSS WEB SERVER OPERATOR
	CHAPTER 2. WHAT IS NEW IN THE JWS OPERATOR 2.0 RELEASE?
	Level-2 Operator capabilities
	Enabling level-2 seamless integration for new images
	Level-2 seamless integration for rebuilding existing images
	Support for Red Hat JBoss Web Server metering labels
	Enhanced webImage parameter
	Enhanced webApp parameter

	CHAPTER 3. JWS OPERATOR INSTALLATION FROM OPERATORHUB
	3.1. INSTALLING THE JWS OPERATOR BY USING THE WEB CONSOLE
	3.2. INSTALLING THE JWS OPERATOR BY USING THE COMMAND LINE

	CHAPTER 4. DEPLOYING AN EXISTING JWS IMAGE
	CHAPTER 5. JWS OPERATOR DELETION FROM A CLUSTER
	5.1. DELETING THE JWS OPERATOR BY USING THE WEB CONSOLE
	5.2. DELETING THE JWS OPERATOR BY USING THE COMMAND LINE

	CHAPTER 6. CREATING A SECRET FOR A GENERIC OR GITHUB WEBHOOK
	CHAPTER 7. JWS OPERATOR CRD PARAMETERS
	7.1. CRD PARAMETER HIERARCHY
	7.2. CRD PARAMETER DETAILS

