
Red Hat OpenShift AI Self-Managed 2-
latest

Serving models

Serve models in Red Hat OpenShift AI Self-Managed

Last Updated: 2024-08-27

Red Hat OpenShift AI Self-Managed 2-latest Serving models

Serve models in Red Hat OpenShift AI Self-Managed

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Serve models in Red Hat OpenShift AI Self-Managed. Serving trained models enables you to test
and implement them into intelligent applications.

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT MODEL SERVING

CHAPTER 2. SERVING SMALL AND MEDIUM-SIZED MODELS
2.1. CONFIGURING MODEL SERVERS

2.1.1. Enabling the multi-model serving platform
2.1.2. Adding a custom model-serving runtime for the multi-model serving platform
2.1.3. Adding a model server for the multi-model serving platform
2.1.4. Deleting a model server

2.2. WORKING WITH DEPLOYED MODELS
2.2.1. Deploying a model by using the multi-model serving platform
2.2.2. Viewing a deployed model
2.2.3. Updating the deployment properties of a deployed model
2.2.4. Deleting a deployed model

2.3. CONFIGURING MONITORING FOR THE MULTI-MODEL SERVING PLATFORM
2.4. VIEWING MODEL-SERVING RUNTIME METRICS FOR THE MULTI-MODEL SERVING PLATFORM
2.5. MONITORING MODEL PERFORMANCE

2.5.1. Viewing performance metrics for all models on a model server
2.5.2. Viewing HTTP request metrics for a deployed model

CHAPTER 3. SERVING LARGE MODELS
3.1. ABOUT THE SINGLE-MODEL SERVING PLATFORM

3.1.1. Components
3.1.2. Installation options
3.1.3. Authorization
3.1.4. Monitoring
3.1.5. Supported model-serving runtimes
3.1.6. Inference endpoints

3.1.6.1. Example commands
3.1.6.2. Additional resources

3.2. ABOUT KSERVE DEPLOYMENT MODES
3.2.1. Serverless mode
3.2.2. Raw deployment mode

3.3. CONFIGURING AUTOMATED INSTALLATION OF KSERVE
3.4. MANUALLY INSTALLING KSERVE

3.4.1. Installing KServe dependencies
3.4.1.1. Creating an OpenShift Service Mesh instance
3.4.1.2. Creating a Knative Serving instance
3.4.1.3. Creating secure gateways for Knative Serving

3.4.2. Installing KServe
3.4.3. Manually adding an authorization provider

3.4.3.1. Installing the Red Hat Authorino Operator
3.4.3.2. Creating an Authorino instance
3.4.3.3. Configuring an OpenShift Service Mesh instance to use Authorino
3.4.3.4. Configuring authorization for KServe

3.4.4. Configuring persistent volume claims (PVC) on KServe
3.5. ADDING AN AUTHORIZATION PROVIDER FOR THE SINGLE-MODEL SERVING PLATFORM
3.6. DEPLOYING MODELS BY USING THE SINGLE-MODEL SERVING PLATFORM

3.6.1. Enabling the single-model serving platform
3.6.2. Adding a custom model-serving runtime for the single-model serving platform
3.6.3. Deploying models on the single-model serving platform

3.7. MAKING INFERENCE REQUESTS TO MODELS DEPLOYED ON THE SINGLE-MODEL SERVING
PLATFORM

4

5
5
5
5
8
9

10
10
12
12
14
14
16
16
16
17

19
19
19
19
19

20
20
21
23
24
25
25
25
26
29
30
30
32
35
39
40
41
41

43
45
47
48
48
49
49
51

53

Table of Contents

1

3.7.1. Accessing the authorization token for a deployed model
3.7.2. Accessing the inference endpoint for a deployed model

3.7.2.1. Deploying models on single node openshift using kserve raw deployment mode
3.8. CONFIGURING MONITORING FOR THE SINGLE-MODEL SERVING PLATFORM
3.9. VIEWING MODEL-SERVING RUNTIME METRICS FOR THE SINGLE-MODEL SERVING PLATFORM
3.10. MONITORING MODEL PERFORMANCE

3.10.1. Viewing performance metrics for a deployed model
3.11. OPTIMIZING MODEL-SERVING RUNTIMES

3.11.1. Optimizing the vLLM model-serving runtime
3.12. PERFORMANCE TUNING ON THE SINGLE-MODEL SERVING PLATFORM

3.12.1. Resolving CUDA out-of-memory errors

54
54
55
60
62
63
64
65
65
68
68

Red Hat OpenShift AI Self-Managed 2-latest Serving models

2

Table of Contents

3

CHAPTER 1. ABOUT MODEL SERVING
Serving trained models on Red Hat OpenShift AI means deploying the models on your OpenShift cluster
to test and then integrate them into intelligent applications. Deploying a model makes it available as a
service that you can access by using an API. This enables you to return predictions based on data inputs
that you provide through API calls. This process is known as model inferencing. When you serve a model
on OpenShift AI, the inference endpoints that you can access for the deployed model are shown in the
dashboard.

OpenShift AI provides the following model serving platforms:

Single-model serving platform

For deploying large models such as large language models (LLMs), OpenShift AI includes a single-
model serving platform that is based on the KServe component. Because each model is deployed
from its own model server, the single-model serving platform helps you to deploy, monitor, scale, and
maintain large models that require increased resources.

Multi-model serving platform

For deploying small and medium-sized models, OpenShift AI includes a multi-model serving platform
that is based on the ModelMesh component. On the multi-model serving platform, you can deploy
multiple models on the same model server. Each of the deployed models shares the server resources.
This approach can be advantageous on OpenShift clusters that have finite compute resources or
pods.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

4

https://github.com/kserve/kserve
https://github.com/kserve/modelmesh

CHAPTER 2. SERVING SMALL AND MEDIUM-SIZED MODELS
For deploying small and medium-sized models, OpenShift AI includes a multi-model serving platform
that is based on the ModelMesh component. On the multi-model serving platform, multiple models can
be deployed from the same model server and share the server resources.

2.1. CONFIGURING MODEL SERVERS

2.1.1. Enabling the multi-model serving platform

To use the multi-model serving platform, you must first enable the platform.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the admin group (for example,
rhoai-admins) in OpenShift.

Your cluster administrator has not edited the OpenShift AI dashboard configuration to disable
the ability to select the multi-model serving platform, which uses the ModelMesh component.
For more information, see Dashboard configuration options .

Procedure

1. In the left menu of the OpenShift AI dashboard, click Settings → Cluster settings.

2. Locate the Model serving platforms section.

3. Select the Multi-model serving platform checkbox.

4. Click Save changes.

2.1.2. Adding a custom model-serving runtime for the multi-model serving platform

A model-serving runtime adds support for a specified set of model frameworks and the model formats
supported by those frameworks. By default, the multi-model serving platform includes the OpenVINO
Model Server runtime. You can also add your own custom runtime if the default runtime does not meet
your needs, such as supporting a specific model format.

As an administrator, you can use the Red Hat OpenShift AI dashboard to add and enable a custom
model-serving runtime. You can then choose the custom runtime when you create a new model server
for the multi-model serving platform.

NOTE

OpenShift AI enables you to add your own custom runtimes, but does not support the
runtimes themselves. You are responsible for correctly configuring and maintaining
custom runtimes. You are also responsible for ensuring that you are licensed to use any
custom runtimes that you add.

Prerequisites

You have logged in to OpenShift AI as an administrator.

CHAPTER 2. SERVING SMALL AND MEDIUM-SIZED MODELS

5

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest//html/managing_resources/customizing-the-dashboard#ref-dashboard-configuration-options_dashboard

You are familiar with how to add a model server to your project . When you have added a custom
model-serving runtime, you must configure a new model server to use the runtime.

You have reviewed the example runtimes in the kserve/modelmesh-serving repository. You can
use these examples as starting points. However, each runtime requires some further
modification before you can deploy it in OpenShift AI. The required modifications are described
in the following procedure.

NOTE

OpenShift AI includes the OpenVINO Model Server runtime by default. You do
not need to add this runtime to OpenShift AI.

Procedure

1. From the OpenShift AI dashboard, click Settings > Serving runtimes.
The Serving runtimes page opens and shows the model-serving runtimes that are already
installed and enabled.

2. To add a custom runtime, choose one of the following options:

To start with an existing runtime (for example the OpenVINO Model Server runtime), click
the action menu (⋮) next to the existing runtime and then click Duplicate.

To add a new custom runtime, click Add serving runtime.

3. In the Select the model serving platforms this runtime supports list, select Multi-model
serving platform.

NOTE

The multi-model serving platform supports only the REST protocol. Therefore,
you cannot change the default value in the Select the API protocol this runtime
supports list.

4. Optional: If you started a new runtime (rather than duplicating an existing one), add your code
by choosing one of the following options:

Upload a YAML file

a. Click Upload files.

b. In the file browser, select a YAML file on your computer. This file might be the one of
the example runtimes that you downloaded from the kserve/modelmesh-serving
repository.
The embedded YAML editor opens and shows the contents of the file that you
uploaded.

Enter YAML code directly in the editor

a. Click Start from scratch.

b. Enter or paste YAML code directly in the embedded editor. The YAML that you paste
might be copied from one of the example runtimes in the kserve/modelmesh-serving
repository.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

6

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-small-and-medium-sized-models_model-serving#adding-a-model-server-for-the-multi-model-serving-platform_model-serving
https://github.com/kserve/modelmesh-serving/tree/main/config/runtimes
https://github.com/kserve/modelmesh-serving/tree/main/config/runtimes
https://github.com/kserve/modelmesh-serving/tree/main/config/runtimes

5. Optional: If you are adding one of the example runtimes in the kserve/modelmesh-serving
repository, perform the following modifications:

a. In the YAML editor, locate the kind field for your runtime. Update the value of this field to
ServingRuntime.

b. In the kustomization.yaml file in the kserve/modelmesh-serving repository, take note of the
newName and newTag values for the runtime that you want to add. You will specify these
values in a later step.

c. In the YAML editor for your custom runtime, locate the containers.image field.

d. Update the value of the containers.image field in the format newName:newTag, based on
the values that you previously noted in the kustomization.yaml file. Some examples are
shown.

Nvidia Triton Inference Server

image: nvcr.io/nvidia/tritonserver:23.04-py3

Seldon Python MLServer

image: seldonio/mlserver:1.3.2

TorchServe

image: pytorch/torchserve:0.7.1-cpu

6. In the metadata.name field, ensure that the value of the runtime you are adding is unique (that
is, the value doesn’t match a runtime that you have already added).

7. Optional: To configure a custom display name for the runtime that you are adding, add a
metadata.annotations.openshift.io/display-name field and specify a value, as shown in the
following example:

apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
 name: mlserver-0.x
 annotations:
 openshift.io/display-name: MLServer

NOTE

If you do not configure a custom display name for your runtime, OpenShift AI
shows the value of the metadata.name field.

8. Click Add.
The Serving runtimes page opens and shows the updated list of runtimes that are installed.
Observe that the runtime you added is automatically enabled.

9. Optional: To edit your custom runtime, click the action menu (⋮) and select Edit.

Verification

The custom model-serving runtime that you added is shown in an enabled state on the Serving
runtimes page.

Additional resources

CHAPTER 2. SERVING SMALL AND MEDIUM-SIZED MODELS

7

https://github.com/kserve/modelmesh-serving/tree/main/config/runtimes
https://github.com/kserve/modelmesh-serving/blob/main/config/runtimes/kustomization.yaml
https://github.com/kserve/modelmesh-serving/tree/main/config/runtimes
https://github.com/kserve/modelmesh-serving/blob/main/config/runtimes/kustomization.yaml

Additional resources

To learn how to configure a model server that uses a custom model-serving runtime that you
have added, see Adding a model server to your data science project .

2.1.3. Adding a model server for the multi-model serving platform

When you have enabled the multi-model serving platform, you must configure a model server to deploy
models. If you require extra computing power for use with large datasets, you can assign accelerators to
your model server.

NOTE

In OpenShift AI 2-latest, Red Hat supports only NVIDIA GPU accelerators for model
serving.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you use specialized OpenShift AI groups, you are part of the user group or admin group (for
example, rhoai-users or rhoai-admins) in OpenShift.

You have created a data science project that you can add a model server to.

You have enabled the multi-model serving platform.

If you want to use a custom model-serving runtime for your model server, you have added and
enabled the runtime. See Adding a custom model-serving runtime .

If you want to use graphics processing units (GPUs) with your model server, you have enabled
GPU support in OpenShift AI. See Enabling NVIDIA GPUs.

Procedure

1. In the left menu of the OpenShift AI dashboard, click Data Science Projects.
The Data Science Projects page opens.

2. Click the name of the project that you want to configure a model server for.
A project details page opens.

3. Click the Models tab.

4. Perform one of the following actions:

If you see a Multi-model serving platform tile, click Add model server on the tile.

If you do not see any tiles, click the Add model server button.

The Add model server dialog opens.

5. In the Model server name field, enter a unique name for the model server.

6. From the Serving runtime list, select a model-serving runtime that is installed and enabled in
your OpenShift AI deployment.

NOTE

Red Hat OpenShift AI Self-Managed 2-latest Serving models

8

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-small-and-medium-sized-models_model-serving#adding-a-model-server-for-the-multi-model-serving-platform_model-serving
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-small-and-medium-sized-models_model-serving#adding-a-custom-model-serving-runtime-for-the-multi-model-serving-platform_model-serving
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/managing_resources/managing-cluster-resources_cluster-mgmt#enabling-nvidia-gpus_cluster-mgmt

NOTE

If you are using a custom model-serving runtime with your model server and want
to use GPUs, you must ensure that your custom runtime supports GPUs and is
appropriately configured to use them.

7. In the Number of model replicas to deploy field, specify a value.

8. From the Model server size list, select a value.

9. Optional: If you selected Custom in the preceding step, configure the following settings in the
Model server size section to customize your model server:

a. In the CPUs requested field, specify the number of CPUs to use with your model server.
Use the list beside this field to specify the value in cores or millicores.

b. In the CPU limit field, specify the maximum number of CPUs to use with your model server.
Use the list beside this field to specify the value in cores or millicores.

c. In the Memory requested field, specify the requested memory for the model server in
gibibytes (Gi).

d. In the Memory limit field, specify the maximum memory limit for the model server in
gibibytes (Gi).

10. Optional: From the Accelerator list, select an accelerator.

a. If you selected an accelerator in the preceding step, specify the number of accelerators to
use.

11. Optional: In the Model route section, select the Make deployed models available through an
external route checkbox to make your deployed models available to external clients.

12. Optional: In the Token authorization section, select the Require token authentication
checkbox to require token authentication for your model server. To finish configuring token
authentication, perform the following actions:

a. In the Service account name field, enter a service account name for which the token will be
generated. The generated token is created and displayed in the Token secret field when
the model server is configured.

b. To add an additional service account, click Add a service account and enter another service
account name.

13. Click Add.

The model server that you configured appears on the Models tab for the project, in the
Models and model servers list.

14. Optional: To update the model server, click the action menu (⋮) beside the model server and
select Edit model server.

2.1.4. Deleting a model server

When you no longer need a model server to host models, you can remove it from your data science
project.

NOTE

CHAPTER 2. SERVING SMALL AND MEDIUM-SIZED MODELS

9

NOTE

When you remove a model server, you also remove the models that are hosted on that
model server. As a result, the models are no longer available to applications.

Prerequisites

You have created a data science project and an associated model server.

You have notified the users of the applications that access the models that the models will no
longer be available.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group
(for example, rhoai-users or rhoai-admins) in OpenShift.

Procedure

1. From the OpenShift AI dashboard, click Data Science Projects.
The Data Science Projects page opens.

2. Click the name of the project from which you want to delete the model server.
A project details page opens.

3. Click the Models tab.

4. Click the action menu (⋮) beside the project whose model server you want to delete and then
click Delete model server.
The Delete model server dialog opens.

5. Enter the name of the model server in the text field to confirm that you intend to delete it.

6. Click Delete model server.

Verification

The model server that you deleted is no longer displayed on the Models tab for the project.

2.2. WORKING WITH DEPLOYED MODELS

2.2.1. Deploying a model by using the multi-model serving platform

You can deploy trained models on OpenShift AI to enable you to test and implement them into
intelligent applications. Deploying a model makes it available as a service that you can access by using an
API. This enables you to return predictions based on data inputs.

When you have enabled the multi-model serving platform, you can deploy models on the platform.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group
(for example, rhoai-users) in OpenShift.

You have enabled the multi-model serving platform.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

10

You have created a data science project and added a model server.

You have access to S3-compatible object storage.

For the model that you want to deploy, you know the associated folder path in your S3-
compatible object storage bucket.

Procedure

1. In the left menu of the OpenShift AI dashboard, click Data Science Projects.
The Data Science Projects page opens.

2. Click the name of the project that you want to deploy a model in.
A project details page opens.

3. Click the Models tab.

4. Click Deploy model.

5. Configure properties for deploying your model as follows:

a. In the Model name field, enter a unique name for the model that you are deploying.

b. From the Model framework list, select a framework for your model.

NOTE

The Model framework list shows only the frameworks that are supported by
the model-serving runtime that you specified when you configured your
model server.

c. To specify the location of the model you want to deploy from S3-compatible object
storage, perform one of the following sets of actions:

To use an existing data connection

i. Select Existing data connection.

ii. From the Name list, select a data connection that you previously defined.

iii. In the Path field, enter the folder path that contains the model in your specified
data source.

To use a new data connection

i. To define a new data connection that your model can access, select New data
connection.

ii. In the Name field, enter a unique name for the data connection.

iii. In the Access key field, enter the access key ID for the S3-compatible object
storage provider.

iv. In the Secret key field, enter the secret access key for the S3-compatible object
storage account that you specified.

v. In the Endpoint field, enter the endpoint of your S3-compatible object storage

CHAPTER 2. SERVING SMALL AND MEDIUM-SIZED MODELS

11

v. In the Endpoint field, enter the endpoint of your S3-compatible object storage
bucket.

vi. In the Region field, enter the default region of your S3-compatible object storage
account.

vii. In the Bucket field, enter the name of your S3-compatible object storage bucket.

viii. In the Path field, enter the folder path in your S3-compatible object storage that
contains your data file.

d. Click Deploy.

Verification

Confirm that the deployed model is shown on the Models tab for the project, and on the Model
Serving page of the dashboard with a checkmark in the Status column.

2.2.2. Viewing a deployed model

To analyze the results of your work, you can view a list of deployed models on Red Hat OpenShift AI. You
can also view the current statuses of deployed models and their endpoints.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group
(for example, rhoai-users or rhoai-admins) in OpenShift.

Procedure

1. From the OpenShift AI dashboard, click Model Serving.
The Deployed models page opens.

For each model, the page shows details such as the model name, the project in which the model
is deployed, the model-serving runtime that the model uses, and the deployment status.

2. Optional: For a given model, click the link in the Inference endpoint column to see the
inference endpoints for the deployed model.

Verification

A list of previously deployed data science models is displayed on the Deployed models page.

2.2.3. Updating the deployment properties of a deployed model

You can update the deployment properties of a model that has been deployed previously. This allows
you to change the model’s data connection and name.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group

Red Hat OpenShift AI Self-Managed 2-latest Serving models

12

If you are using specialized OpenShift AI groups, you are part of the user group or admin group
(for example, rhoai-users or rhoai-admins) in OpenShift.

You have deployed a model on OpenShift AI.

Procedure

1. From the OpenShift AI dashboard, click Model serving.
The Deployed models page opens.

2. Click the action menu (⋮) beside the model whose deployment properties you want to update
and click Edit.
The Deploy model dialog opens.

3. Update the deployment properties of the model as follows:

a. In the Model Name field, enter a new, unique name for the model.

b. From the Model framework list, select a framework for your model.

NOTE

The Model framework list shows only the frameworks that are supported by
the model-serving runtime that you specified when you configured your
model server.

c. To update how you have specified the location of your model, perform one of the following
sets of actions:

If you previously specified an existing data connection

i. In the Path field, update the folder path that contains the model in your specified
data source.

If you previously specified a new data connection

i. In the Name field, update a unique name for the data connection.

ii. In the Access key field, update the access key ID for the S3-compatible object
storage provider.

iii. In the Secret key field, update the secret access key for the S3-compatible object
storage account that you specified.

iv. In the Endpoint field, update the endpoint of your S3-compatible object storage
bucket.

v. In the Region field, update the default region of your S3-compatible object storage
account.

vi. In the Bucket field, update the name of your S3-compatible object storage bucket.

vii. In the Path field, update the folder path in your S3-compatible object storage that
contains your data file.

d. Click Deploy.

CHAPTER 2. SERVING SMALL AND MEDIUM-SIZED MODELS

13

Verification

The model whose deployment properties you updated is displayed on the Model Serving page
of the dashboard.

2.2.4. Deleting a deployed model

You can delete models you have previously deployed. This enables you to remove deployed models that
are no longer required.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group
(for example, rhoai-users or rhoai-admins) in OpenShift.

You have deployed a model.

Procedure

1. From the OpenShift AI dashboard, click Model serving.
The Deployed models page opens.

2. Click the action menu (⋮) beside the deployed model that you want to delete and click Delete.
The Delete deployed model dialog opens.

3. Enter the name of the deployed model in the text field to confirm that you intend to delete it.

4. Click Delete deployed model.

Verification

The model that you deleted is no longer displayed on the Deployed models page.

2.3. CONFIGURING MONITORING FOR THE MULTI-MODEL SERVING
PLATFORM

The multi-model serving platform includes model and model server metrics for the ModelMesh
component. ModelMesh generates its own set of metrics and does not rely on the underlying model-
serving runtimes to provide them. The set of metrics that ModelMesh generates includes metrics for
model request rates and timings, model loading and unloading rates, times and sizes, internal queuing
delays, capacity and usage, cache state, and least recently-used models. For more information, see
ModelMesh metrics.

After you have configured monitoring, you can view metrics for the ModelMesh component.

Prerequisites

You have cluster administrator privileges for your OpenShift cluster.

You have downloaded and installed the OpenShift command-line interface (CLI). See Installing
the OpenShift CLI.

You are familiar with creating a config map for monitoring a user-defined workflow. You will

Red Hat OpenShift AI Self-Managed 2-latest Serving models

14

https://github.com/kserve/modelmesh-serving/blob/main/docs/monitoring.md
https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli

You are familiar with creating a config map for monitoring a user-defined workflow. You will
perform similar steps in this procedure.

You are familiar with enabling monitoring for user-defined projects in OpenShift. You will
perform similar steps in this procedure.

You have assigned the monitoring-rules-view role to users that will monitor metrics.

Procedure

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a cluster
administrator, log in to the OpenShift CLI as shown in the following example:

$ oc login <openshift_cluster_url> -u <admin_username> -p <password>

2. Define a ConfigMap object in a YAML file called uwm-cm-conf.yaml with the following
contents:

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 logLevel: debug
 retention: 15d

The user-workload-monitoring-config object configures the components that monitor user-
defined projects. Observe that the retention time is set to the recommended value of 15 days.

3. Apply the configuration to create the user-workload-monitoring-config object.

$ oc apply -f uwm-cm-conf.yaml

4. Define another ConfigMap object in a YAML file called uwm-cm-enable.yaml with the
following contents:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: true

The cluster-monitoring-config object enables monitoring for user-defined projects.

5. Apply the configuration to create the cluster-monitoring-config object.

$ oc apply -f uwm-cm-enable.yaml

CHAPTER 2. SERVING SMALL AND MEDIUM-SIZED MODELS

15

https://docs.openshift.com/container-platform/4.16/observability/monitoring/configuring-the-monitoring-stack.html#creating-user-defined-workload-monitoring-configmap_configuring-the-monitoring-stack
https://docs.openshift.com/container-platform/4.16/observability/monitoring/enabling-monitoring-for-user-defined-projects.html
https://docs.openshift.com/container-platform/4.16/observability/monitoring/enabling-monitoring-for-user-defined-projects.html#granting-users-permission-to-monitor-user-defined-projects_enabling-monitoring-for-user-defined-projects

2.4. VIEWING MODEL-SERVING RUNTIME METRICS FOR THE MULTI-
MODEL SERVING PLATFORM

After a cluster administrator has configured monitoring for the multi-model serving platform, non-admin
users can use the OpenShift web console to view model-serving runtime metrics for the ModelMesh
component.

Prerequisites

A cluster administrator has configured monitoring for the multi-model serving platform.

You have been assigned the monitoring-rules-view role.

You are familiar with how to monitor project metrics in the OpenShift web console.

Procedure

1. Log in to the OpenShift web console.

2. Switch to the Developer perspective.

3. In the left menu, click Observe.

4. As described in monitoring project metrics, use the web console to run queries for
modelmesh_* metrics.

2.5. MONITORING MODEL PERFORMANCE

In the multi-model serving platform, you can view performance metrics for all models deployed on a
model server and for a specific model that is deployed on the model server.

2.5.1. Viewing performance metrics for all models on a model server

You can monitor the following metrics for all the models that are deployed on a model server:

HTTP requests per 5 minutes - The number of HTTP requests that have failed or succeeded
for all models on the server.

Average response time (ms) - For all models on the server, the average time it takes the model
server to respond to requests.

CPU utilization (%) - The percentage of the CPU’s capacity that is currently being used by all
models on the server.

Memory utilization (%) - The percentage of the system’s memory that is currently being used
by all models on the server.

You can specify a time range and a refresh interval for these metrics to help you determine, for
example, when the peak usage hours are and how the models are performing at a specified time.

Prerequisites

You have installed Red Hat OpenShift AI.

On the OpenShift cluster where OpenShift AI is installed, user workload monitoring is enabled.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

16

https://docs.openshift.com/container-platform/4.16/observability/monitoring/enabling-monitoring-for-user-defined-projects.html#granting-users-permission-to-monitor-user-defined-projects_enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/building_applications/odc-monitoring-project-and-application-metrics-using-developer-perspective#odc-monitoring-your-project-metrics_monitoring-project-and-application-metrics-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/building_applications/odc-monitoring-project-and-application-metrics-using-developer-perspective#odc-monitoring-your-project-metrics_monitoring-project-and-application-metrics-using-developer-perspective

You have logged in to OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group
(for example, rhoai-users or rhoai-admins) in OpenShift.

You have deployed models on the multi-model serving platform.

Procedure

1. From the OpenShift AI dashboard navigation menu, click Data Science Projects.
The Data Science Projects page opens.

2. Click the name of the project that contains the data science models that you want to monitor.

3. In the project details page, click the Models tab.

4. In the row for the model server that you are interested in, click the action menu (⋮) and then
select View model server metrics.

5. Optional: On the metrics page for the model server, set the following options:

Time range - Specifies how long to track the metrics. You can select one of these values: 1
hour, 24 hours, 7 days, and 30 days.

Refresh interval - Specifies how frequently the graphs on the metrics page are refreshed
(to show the latest data). You can select one of these values: 15 seconds, 30 seconds, 1
minute, 5 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, and 1 day.

6. Scroll down to view data graphs for HTTP requests per 5 minutes, average response time, CPU
utilization, and memory utilization.

Verification

On the metrics page for the model server, the graphs provide data on performance metrics.

2.5.2. Viewing HTTP request metrics for a deployed model

You can view a graph that illustrates the HTTP requests that have failed or succeeded for a specific
model that is deployed on the multi-model serving platform.

Prerequisites

You have installed Red Hat OpenShift AI.

On the OpenShift cluster where OpenShift AI is installed, user workload monitoring is enabled.

The following dashboard configuration options are set to the default values as shown:

disablePerformanceMetrics:false
disableKServeMetrics:false

For more information, see Dashboard configuration options .

You have logged in to OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group

CHAPTER 2. SERVING SMALL AND MEDIUM-SIZED MODELS

17

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/managing_resources/customizing-the-dashboard#ref-dashboard-configuration-options_dashboard

If you are using specialized OpenShift AI groups, you are part of the user group or admin group
(for example, rhoai-users or rhoai-admins) in OpenShift.

You have deployed models on the multi-model serving platform.

Procedure

1. From the OpenShift AI dashboard navigation menu, select Model Serving.

2. On the Deployed models page, select the model that you are interested in.

3. Optional: On the Endpoint performance tab, set the following options:

Time range - Specifies how long to track the metrics. You can select one of these values: 1
hour, 24 hours, 7 days, and 30 days.

Refresh interval - Specifies how frequently the graphs on the metrics page are refreshed
(to show the latest data). You can select one of these values: 15 seconds, 30 seconds, 1
minute, 5 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, and 1 day.

Verification

The Endpoint performance tab shows a graph of the HTTP metrics for the model.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

18

CHAPTER 3. SERVING LARGE MODELS
For deploying large models such as large language models (LLMs), Red Hat OpenShift AI includes a
single model serving platform that is based on the KServe component. Because each model is deployed
from its own model server, the single model serving platform helps you to deploy, monitor, scale, and
maintain large models that require increased resources.

3.1. ABOUT THE SINGLE-MODEL SERVING PLATFORM

For deploying large models such as large language models (LLMs), OpenShift AI includes a single-
model serving platform that is based on the KServe component. Because each model is deployed on its
own model server, the single-model serving platform helps you to deploy, monitor, scale, and maintain
large models that require increased resources.

3.1.1. Components

KServe: A Kubernetes custom resource definition (CRD) that orchestrates model serving for all
types of models. KServe includes model-serving runtimes that implement the loading of given
types of model servers. KServe also handles the lifecycle of the deployment object, storage
access, and networking setup.

Red Hat OpenShift Serverless: A cloud-native development model that allows for serverless
deployments of models. OpenShift Serverless is based on the open source Knative project.

Red Hat OpenShift Service Mesh: A service mesh networking layer that manages traffic flows
and enforces access policies. OpenShift Service Mesh is based on the open source Istio project.

3.1.2. Installation options

To install the single-model serving platform, you have the following options:

Automated installation

If you have not already created a ServiceMeshControlPlane or KNativeServing resource on your
OpenShift cluster, you can configure the Red Hat OpenShift AI Operator to install KServe and
configure its dependencies.
For more information about automated installation, see Configuring automated installation of
KServe.

Manual installation

If you have already created a ServiceMeshControlPlane or KNativeServing resource on your
OpenShift cluster, you cannot configure the Red Hat OpenShift AI Operator to install KServe and
configure its dependencies. In this situation, you must install KServe manually.
For more information about manual installation, see Manually installing KServe.

3.1.3. Authorization

You can add Authorino as an authorization provider for the single-model serving platform. Adding an
authorization provider allows you to enable token authorization for models that you deploy on the
platform, which ensures that only authorized parties can make inference requests to the models.

To add Authorino as an authorization provider on the single-model serving platform, you have the
following options:

CHAPTER 3. SERVING LARGE MODELS

19

https://github.com/kserve/kserve
https://github.com/opendatahub-io/kserve
https://docs.openshift.com/serverless/1.32/about/about-serverless.html
https://knative.dev/docs/
https://docs.openshift.com/container-platform/4.16/service_mesh/v2x/ossm-architecture.html
https://istio.io/
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#configuring-automated-installation-of-kserve_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#manually-installing-kserve_serving-large-models
https://github.com/kuadrant/authorino

If automated installation of the single-model serving platform is possible on your cluster, you
can include Authorino as part of the automated installation process.

If you need to manually install the single-model serving platform, you must also manually
configure Authorino.

For guidance on choosing an installation option for the single-model serving platform, see Installation
options.

3.1.4. Monitoring

You can configure monitoring for the single-model serving platform and use Prometheus to scrape
metrics for each of the pre-installed model-serving runtimes.

3.1.5. Supported model-serving runtimes

OpenShift AI includes several preinstalled model-serving runtimes. You can use preinstalled model-
serving runtimes to start serving models without modifying or defining the runtime yourself. You can
also add a custom runtime to support a model.

For help adding a custom runtime, see Adding a custom model-serving runtime for the single-model
serving platform.

Table 3.1. Model-serving runtimes

Name Description Exported model format

Caikit Text Generation Inference
Server (Caikit-TGIS)
ServingRuntime for KServe (1)

A composite runtime for serving
models in the Caikit format

Caikit Text Generation

Caikit Standalone ServingRuntime
for KServe (2)

A runtime for serving models in
the Caikit embeddings format for
embeddings tasks

Caikit Embeddings

OpenVINO Model Server A scalable, high-performance
runtime for serving models that
are optimized for Intel
architectures

PyTorch, TensorFlow, OpenVINO
IR, PaddlePaddle, MXNet, Caffe,
Kaldi

Text Generation Inference Server
(TGIS) Standalone
ServingRuntime for KServe (3)

A runtime for serving TGI-
enabled models

PyTorch Model Formats

vLLM ServingRuntime for KServe A high-throughput and memory-
efficient inference and serving
runtime for large language
models

Supported models

1. The composite Caikit-TGIS runtime is based on Caikit and Text Generation Inference Server
(TGIS). To use this runtime, you must convert your models to Caikit format. For an example, see
Converting Hugging Face Hub models to Caikit format in the caikit-tgis-serving repository.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

20

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#adding-a-custom-model-serving-runtime-for-the-single-model-serving-platform_serving-large-models
https://docs.vllm.ai/en/latest/models/supported_models.html
https://github.com/opendatahub-io/caikit
https://github.com/IBM/text-generation-inference
https://github.com/opendatahub-io/caikit-tgis-serving/blob/main/demo/kserve/built-tip.md#bootstrap-process
https://github.com/opendatahub-io/caikit-tgis-serving/tree/main

2. The Caikit Standalone runtime is based on Caikit NLP. To use this runtime, you must convert
your models to the Caikit embeddings format. For an example, see Bootstrap Model.

3. Text Generation Inference Server (TGIS) is based on an early fork of Hugging Face TGI.
Red Hat will continue to develop the standalone TGIS runtime to support TGI models. If a model
is incompatible in the current version of OpenShift AI, support might be added in a future
version. In the meantime, you can also add your own custom runtime to support a TGI model.
For more information, see Adding a custom model-serving runtime for the single-model serving
platform.

Table 3.2. Deployment requirements

Name Default
protocol

Additonal
protocol

Model mesh
support

Single node
OpenShift
support

Deployment
mode

Caikit Text
Generation
Inference
Server (Caikit-
TGIS)
ServingRuntim
e for KServe

REST gRPC No Yes Raw and
serverless

Caikit
Standalone
ServingRuntim
e for KServe

REST gRPC No Yes Raw and
serverless

OpenVINO
Model Server

REST None Yes Yes Raw and
serverless

Text
Generation
Inference
Server (TGIS)
Standalone
ServingRuntim
e for KServe
(3)

gRPC None No Yes Raw and
serverless

vLLM
ServingRuntim
e for KServe

REST None No Yes Raw and
serverless

Additional resources

Inference endpoints

3.1.6. Inference endpoints

These examples show how to use inference endpoints to query the model.

CHAPTER 3. SERVING LARGE MODELS

21

https://github.com/caikit/caikit-nlp/tree/main
https://github.com/markstur/caikit-embeddings/blob/df9c9bc93187c0a17cb66b86d609f2cd102be97d/demo/server/bootstrap_model.py
https://github.com/IBM/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#adding-a-custom-model-serving-runtime-for-the-single-model-serving-platform_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#inference-endpoints

Caikit TGIS ServingRuntime for KServe

:443/api/v1/task/text-generation

:443/api/v1/task/server-streaming-text-generation

Caikit Standalone ServingRuntime for KServe

If you are serving multiple models, you can query /info/models or :443
caikit.runtime.info.InfoService/GetModelsInfo to view a list of served models.

REST endpoints

/api/v1/task/embedding

/api/v1/task/embedding-tasks

/api/v1/task/sentence-similarity

/api/v1/task/sentence-similarity-tasks

/api/v1/task/rerank

/api/v1/task/rerank-tasks

/info/models

/info/version

/info/runtime

gRPC endpoints

:443 caikit.runtime.Nlp.NlpService/EmbeddingTaskPredict

:443 caikit.runtime.Nlp.NlpService/EmbeddingTasksPredict

:443 caikit.runtime.Nlp.NlpService/SentenceSimilarityTaskPredict

:443 caikit.runtime.Nlp.NlpService/SentenceSimilarityTasksPredict

:443 caikit.runtime.Nlp.NlpService/RerankTaskPredict

:443 caikit.runtime.Nlp.NlpService/RerankTasksPredict

:443 caikit.runtime.info.InfoService/GetModelsInfo

:443 caikit.runtime.info.InfoService/GetRuntimeInfo

NOTE

By default, the Caikit Standalone Runtime exposes REST endpoints. To use gRPC
protocol, manually deploy a custom Caikit Standalone ServingRuntime. For more
information, see Adding a custom model-serving runtime for the single-model serving
platform.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

22

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#adding-a-custom-model-serving-runtime-for-the-single-model-serving-platform_serving-large-models

An example manifest is available in the caikit-tgis-serving GitHub repository.

TGIS Standalone ServingRuntime for KServe

:443 fmaas.GenerationService/Generate

:443 fmaas.GenerationService/GenerateStream

NOTE

To query the endpoint for the TGIS standalone runtime, you must also
download the files in the proto directory of the OpenShift AI text-
generation-inference repository.

OpenVINO Model Server

/v2/models/<model-name>/infer

vLLM ServingRuntime for KServe

:443/version

:443/docs

:443/v1/models

:443/v1/chat/completions

:443/v1/completions

:443/v1/embeddings

:443/tokenize

:443/detokenize

NOTE

The vLLM runtime is compatible with the OpenAI REST API. For a list of
models that the vLLM runtime supports, see Supported models .

NOTE

To use the embeddings inference endpoint in vLLM, you must use an
embeddings model that the vLLM supports. You cannot use the embeddings
endpoint with generative models. For more information, see Supported
embeddings models in vLLM.

As indicated by the paths shown, the single-model serving platform uses the HTTPS port of
your OpenShift router (usually port 443) to serve external API requests.

3.1.6.1. Example commands

NOTE

CHAPTER 3. SERVING LARGE MODELS

23

https://github.com/opendatahub-io/caikit-tgis-serving/blob/main/demo/kserve/custom-manifests/caikit/caikit-standalone/caikit-standalone-servingruntime-grpc.yaml
https://github.com/opendatahub-io/text-generation-inference/blob/main/proto
https://docs.vllm.ai/en/latest/models/supported_models.html
https://github.com/vllm-project/vllm/pull/3734

NOTE

If you enabled token authorization when deploying the model, add the Authorization
header and specify a token value.

Caikit TGIS ServingRuntime for KServe

curl --json '{"model_id": "<model_name__>", "inputs": "<text>"}'
https://<inference_endpoint_url>:443/api/v1/task/server-streaming-text-generation -H 'Authorization:
Bearer <token>'

Caikit Standalone ServingRuntime for KServe

REST

curl -H 'Content-Type: application/json' -d '{"inputs": "<text>", "model_id": "<model_id>"}'
<inference_endpoint_url>/api/v1/task/embedding -H 'Authorization: Bearer <token>'

gRPC

grpcurl -insecure -d '{"text": "<text>"}' -H \"mm-model-id: <model_id>\" <inference_endpoint_url>:443
caikit.runtime.Nlp.NlpService/EmbeddingTaskPredict -H 'Authorization: Bearer <token>'

TGIS Standalone ServingRuntime for KServe

grpcurl -proto text-generation-inference/proto/generation.proto -d '{"requests": [{"text":"<text>"}]}' -H
'Authorization: Bearer <token>' -insecure <inference_endpoint_url>:443
fmaas.GenerationService/Generate

OpenVINO Model Server

curl -ks <inference_endpoint_url>/v2/models/<model_name>/infer -d '{ "model_name": "
<model_name>", "inputs": [{ "name": "<name_of_model_input>", "shape": [<shape>], "datatype": "
<data_type>", "data": [<data>] }]}' -H 'Authorization: Bearer <token>'

vLLM ServingRuntime for KServe

curl -v https://<inference_endpoint_url>:443/v1/chat/completions -H "Content-Type: application/json" -
d '{ "messages": [{ "role": "<role>", "content": "<content>" }] -H 'Authorization: Bearer <token>'

3.1.6.2. Additional resources

Text Generation Inference Server (TGIS)

Caikit API documentation

Caikit NLP GitHub project

OpenVINO KServe-compatible REST API documentation

OpenAI API documentation

Supported runtimes

Red Hat OpenShift AI Self-Managed 2-latest Serving models

24

https://github.com/IBM/text-generation-inference
https://caikit.readthedocs.io/en/latest/autoapi/caikit/index.html
https://github.com/caikit/caikit-nlp
https://docs.openvino.ai/2023.3/ovms_docs_rest_api_kfs.html
https://platform.openai.com/docs/api-reference/introduction
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#ref-supported-runtimes

3.2. ABOUT KSERVE DEPLOYMENT MODES

By default, you can deploy models on the single-model serving platform with KServe by using Red Hat
OpenShift Serverless, which is a cloud-native development model that allows for serverless deployments
of models. OpenShift Serverless is based on the open source Knative project. In addition, serverless
mode is dependent on the Red Hat OpenShift Serverless Operator.

Alternatively, you can use raw deployment mode, which is not dependent on the Red Hat OpenShift
Serverless Operator. With raw deployment mode, you can deploy models with Kubernetes resources,
such as Deployment, Service, Ingress, and Horizontal Pod Autoscaler.

IMPORTANT

Deploying a machine learning model using KServe raw deployment mode is a Limited
Availability feature. Limited Availability means that you can install and receive support for
the feature only with specific approval from the Red Hat AI Business Unit. Without such
approval, the feature is unsupported. In addition, this feature is only supported on Self-
Managed deployments of single node OpenShift.

There are both advantages and disadvantages to using each of these deployment modes:

3.2.1. Serverless mode

Advantages:

Enables autoscaling based on request volume:

Resources scale up automatically when receiving incoming requests.

Optimizes resource usage and maintains performance during peak times.

Supports scale down to and from zero using Knative:

Allows resources to scale down completely when there are no incoming requests.

Saves costs by not running idle resources.

Disadvantages:

Has customization limitations:

Serverless is limited to Knative, such as when mounting multiple volumes.

Dependency on Knative for scaling:

Introduces additional complexity in setup and management compared to traditional scaling
methods.

3.2.2. Raw deployment mode

Advantages:

Enables deployment with Kubernetes resources, such as Deployment, Service, Ingress, and
Horizontal Pod Autoscaler:

Provides full control over Kubernetes resources, allowing for detailed customization and

CHAPTER 3. SERVING LARGE MODELS

25

https://docs.openshift.com/serverless/1.32/about/about-serverless.html
https://knative.dev/docs/

Provides full control over Kubernetes resources, allowing for detailed customization and
configuration of deployment settings.

Unlocks Knative limitations, such as being unable to mount multiple volumes:

Beneficial for applications requiring complex configurations or multiple storage mounts.

Disadvantages:

Does not support automatic scaling:

Does not support automatic scaling down to zero resources when idle.

Might result in higher costs during periods of low traffic.

Requires manual management of scaling.

3.3. CONFIGURING AUTOMATED INSTALLATION OF KSERVE

If you have not already created a ServiceMeshControlPlane or KNativeServing resource on your
OpenShift cluster, you can configure the Red Hat OpenShift AI Operator to install KServe and configure
its dependencies.

IMPORTANT

If you have created a ServiceMeshControlPlane or KNativeServing resource on your
cluster, the Red Hat OpenShift AI Operator cannot install KServe and configure its
dependencies and the installation does not proceed. In this situation, you must follow the
manual installation instructions to install KServe.

Prerequisites

You have cluster administrator privileges for your OpenShift cluster.

Your cluster has a node with 4 CPUs and 16 GB memory.

You have downloaded and installed the OpenShift command-line interface (CLI). For more
information, see Installing the OpenShift CLI.

You have installed the Red Hat OpenShift Service Mesh Operator and dependent Operators.

NOTE

To enable automated installation of KServe, install only the required Operators
for Red Hat OpenShift Service Mesh. Do not perform any additional
configuration or create a ServiceMeshControlPlane resource.

You have installed the Red Hat OpenShift Serverless Operator.

NOTE

To enable automated installation of KServe, install only the Red Hat OpenShift
Serverless Operator. Do not perform any additional configuration or create a
KNativeServing resource.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

26

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://docs.openshift.com/container-platform/4.16/service_mesh/v2x/installing-ossm.html#ossm-install-ossm-operator_installing-ossm
https://docs.openshift.com/serverless/1.32/install/install-serverless-operator.html

You have installed the Red Hat OpenShift AI Operator and created a DataScienceCluster
object.

To add Authorino as an authorization provider so that you can enable token authorization for
deployed models, you have installed the Red Hat - Authorino Operator. See Installing the
Authorino Operator.

Procedure

1. Log in to the OpenShift web console as a cluster administrator.

2. In the web console, click Operators → Installed Operators and then click the Red Hat
OpenShift AI Operator.

3. Install OpenShift Service Mesh as follows:

a. Click the DSC Initialization tab.

b. Click the default-dsci object.

c. Click the YAML tab.

d. In the spec section, validate that the value of the managementState field for the
serviceMesh component is set to Managed, as shown:

spec:
 applicationsNamespace: redhat-ods-applications
 monitoring:
 managementState: Managed
 namespace: redhat-ods-monitoring
 serviceMesh:
 controlPlane:
 metricsCollection: Istio
 name: data-science-smcp
 namespace: istio-system
 managementState: Managed

NOTE

Do not change the istio-system namespace that is specified for the
serviceMesh component by default. Other namespace values are not
supported.

e. Click Save.
Based on the configuration you added to the DSCInitialization object, the Red Hat
OpenShift AI Operator installs OpenShift Service Mesh.

4. Install both KServe and OpenShift Serverless as follows:

a. In the web console, click Operators → Installed Operators and then click the Red Hat
OpenShift AI Operator.

b. Click the Data Science Cluster tab.

c. Click the default-dsc DSC object.

CHAPTER 3. SERVING LARGE MODELS

27

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/installing_and_uninstalling_openshift_ai_self-managed/installing-and-deploying-openshift-ai_install#installing-the-openshift-data-science-operator_operator-install
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/installing_and_uninstalling_openshift_ai_self-managed/installing-and-deploying-openshift-ai_install#installing-and-managing-openshift-ai-components_component-install
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#installing-the-authorino-operator_serving-large-models

d. Click the YAML tab.

e. In the spec.components section, configure the kserve component as shown.

spec:
 components:
 kserve:
 managementState: Managed
 serving:
 ingressGateway:
 certificate:
 secretName: knative-serving-cert
 type: SelfSigned
 managementState: Managed
 name: knative-serving

f. Click Save.
The preceding configuration creates an ingress gateway for OpenShift Serverless to receive
traffic from OpenShift Service Mesh. In this configuration, observe the following details:

The configuration shown generates a self-signed certificate to secure incoming traffic
to your OpenShift cluster and stores the certificate in the knative-serving-cert secret
that is specified in the secretName field. To provide your own certificate, update the
value of the secretName field to specify your secret name and change the value of the
type field to Provided.

NOTE

If you provide your own certificate, the certificate must specify the
domain name used by the ingress controller of your OpenShift cluster.
You can check this value by running the following command:

$ oc get ingresses.config.openshift.io cluster -o
jsonpath='{.spec.domain}'

You must set the value of the managementState field to Managed for both the
kserve and serving components. Setting kserve.managementState to Managed
triggers automated installation of KServe. Setting serving.managementState to
Managed triggers automated installation of OpenShift Serverless. However,
installation of OpenShift Serverless will not be triggered if kserve.managementState is
not also set to Managed.

Verification

Verify installation of OpenShift Service Mesh as follows:

In the web console, click Workloads → Pods.

From the project list, select istio-system. This is the project in which OpenShift Service
Mesh is installed.

Confirm that there are running pods for the service mesh control plane, ingress gateway,
and egress gateway. These pods have the naming patterns shown in the following example:

NAME READY STATUS RESTARTS AGE

Red Hat OpenShift AI Self-Managed 2-latest Serving models

28

istio-egressgateway-7c46668687-fzsqj 1/1 Running 0 22h
istio-ingressgateway-77f94d8f85-fhsp9 1/1 Running 0 22h
istiod-data-science-smcp-cc8cfd9b8-2rkg4 1/1 Running 0 22h

Verify installation of OpenShift Serverless as follows:

In the web console, click Workloads → Pods.

From the project list, select knative-serving. This is the project in which OpenShift
Serverless is installed.

Confirm that there are numerous running pods in the knative-serving project, including
activator, autoscaler, controller, and domain mapping pods, as well as pods for the Knative
Istio controller (which controls the integration of OpenShift Serverless and OpenShift
Service Mesh). An example is shown.

NAME READY STATUS RESTARTS AGE
activator-7586f6f744-nvdlb 2/2 Running 0 22h
activator-7586f6f744-sd77w 2/2 Running 0 22h
autoscaler-764fdf5d45-p2v98 2/2 Running 0 22h
autoscaler-764fdf5d45-x7dc6 2/2 Running 0 22h
autoscaler-hpa-7c7c4cd96d-2lkzg 1/1 Running 0 22h
autoscaler-hpa-7c7c4cd96d-gks9j 1/1 Running 0 22h
controller-5fdfc9567c-6cj9d 1/1 Running 0 22h
controller-5fdfc9567c-bf5x7 1/1 Running 0 22h
domain-mapping-56ccd85968-2hjvp 1/1 Running 0 22h
domain-mapping-56ccd85968-lg6mw 1/1 Running 0 22h
domainmapping-webhook-769b88695c-gp2hk 1/1 Running 0 22h
domainmapping-webhook-769b88695c-npn8g 1/1 Running 0 22h
net-istio-controller-7dfc6f668c-jb4xk 1/1 Running 0 22h
net-istio-controller-7dfc6f668c-jxs5p 1/1 Running 0 22h
net-istio-webhook-66d8f75d6f-bgd5r 1/1 Running 0 22h
net-istio-webhook-66d8f75d6f-hld75 1/1 Running 0 22h
webhook-7d49878bc4-8xjbr 1/1 Running 0 22h
webhook-7d49878bc4-s4xx4 1/1 Running 0 22h

Verify installation of KServe as follows:

In the web console, click Workloads → Pods.

From the project list, select redhat-ods-applications.This is the project in which OpenShift
AI components are installed, including KServe.

Confirm that the project includes a running pod for the KServe controller manager, similar
to the following example:

NAME READY STATUS RESTARTS AGE
kserve-controller-manager-7fbb7bccd4-t4c5g 1/1 Running 0 22h
odh-model-controller-6c4759cc9b-cftmk 1/1 Running 0 129m
odh-model-controller-6c4759cc9b-ngj8b 1/1 Running 0 129m
odh-model-controller-6c4759cc9b-vnhq5 1/1 Running 0 129m

3.4. MANUALLY INSTALLING KSERVE

If you have already installed the Red Hat OpenShift Service Mesh Operator and created a

CHAPTER 3. SERVING LARGE MODELS

29

ServiceMeshControlPlane resource or if you have installed the Red Hat OpenShift Serverless
Operator and created a KNativeServing resource, the Red Hat OpenShift AI Operator cannot install
KServe and configure its dependencies. In this situation, you must install KServe manually.

IMPORTANT

The procedures in this section show how to perform a new installation of KServe and its
dependencies and are intended as a complete installation and configuration reference. If
you have already installed and configured OpenShift Service Mesh or OpenShift
Serverless, you might not need to follow all steps. If you are unsure about what updates to
apply to your existing configuration to use KServe, contact Red Hat Support.

3.4.1. Installing KServe dependencies

Before you install KServe, you must install and configure some dependencies. Specifically, you must
create Red Hat OpenShift Service Mesh and Knative Serving instances and then configure secure
gateways for Knative Serving.

3.4.1.1. Creating an OpenShift Service Mesh instance

The following procedure shows how to create a Red Hat OpenShift Service Mesh instance.

Prerequisites

You have cluster administrator privileges for your OpenShift cluster.

Your cluster has a node with 4 CPUs and 16 GB memory.

You have downloaded and installed the OpenShift command-line interface (CLI). See Installing
the OpenShift CLI.

You have installed the Red Hat OpenShift Service Mesh Operator and dependent Operators.

Procedure

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a cluster
administrator, log in to the OpenShift CLI as shown in the following example:

$ oc login <openshift_cluster_url> -u <admin_username> -p <password>

2. Create the required namespace for Red Hat OpenShift Service Mesh.

$ oc create ns istio-system

You see the following output:

namespace/istio-system created

3. Define a ServiceMeshControlPlane object in a YAML file named smcp.yaml with the following
contents:

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane

Red Hat OpenShift AI Self-Managed 2-latest Serving models

30

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://docs.openshift.com/container-platform/4.16/service_mesh/v2x/installing-ossm.html#ossm-install-ossm-operator_installing-ossm

metadata:
 name: minimal
 namespace: istio-system
spec:
 tracing:
 type: None
 addons:
 grafana:
 enabled: false
 kiali:
 name: kiali
 enabled: false
 prometheus:
 enabled: false
 jaeger:
 name: jaeger
 security:
 dataPlane:
 mtls: true
 identity:
 type: ThirdParty
 techPreview:
 meshConfig:
 defaultConfig:
 terminationDrainDuration: 35s
 gateways:
 ingress:
 service:
 metadata:
 labels:
 knative: ingressgateway
 proxy:
 networking:
 trafficControl:
 inbound:
 excludedPorts:
 - 8444
 - 8022

For more information about the values in the YAML file, see the Service Mesh control plane
configuration reference.

4. Create the service mesh control plane.

$ oc apply -f smcp.yaml

Verification

Verify creation of the service mesh instance as follows:

In the OpenShift CLI, enter the following command:

$ oc get pods -n istio-system

The preceding command lists all running pods in the istio-system project. This is the

CHAPTER 3. SERVING LARGE MODELS

31

https://docs.openshift.com/container-platform/4.16/service_mesh/v2x/ossm-reference-smcp.html

The preceding command lists all running pods in the istio-system project. This is the
project in which OpenShift Service Mesh is installed.

Confirm that there are running pods for the service mesh control plane, ingress gateway,
and egress gateway. These pods have the following naming patterns:

NAME READY STATUS RESTARTS AGE
istio-egressgateway-7c46668687-fzsqj 1/1 Running 0 22h
istio-ingressgateway-77f94d8f85-fhsp9 1/1 Running 0 22h
istiod-data-science-smcp-cc8cfd9b8-2rkg4 1/1 Running 0 22h

3.4.1.2. Creating a Knative Serving instance

The following procedure shows how to install Knative Serving and then create an instance.

Prerequisites

You have cluster administrator privileges for your OpenShift cluster.

Your cluster has a node with 4 CPUs and 16 GB memory.

You have downloaded and installed the OpenShift command-line interface (CLI). See Installing
the OpenShift CLI.

You have created a Red Hat OpenShift Service Mesh instance.

You have installed the Red Hat OpenShift Serverless Operator.

Procedure

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a cluster
administrator, log in to the OpenShift CLI as shown in the following example:

$ oc login <openshift_cluster_url> -u <admin_username> -p <password>

2. Check whether the required project (that is, namespace) for Knative Serving already exists.

$ oc get ns knative-serving

If the project exists, you see output similar to the following example:

NAME STATUS AGE
knative-serving Active 4d20h

3. If the knative-serving project doesn’t already exist, create it.

$ oc create ns knative-serving

You see the following output:

namespace/knative-serving created

4. Define a ServiceMeshMember object in a YAML file called default-smm.yaml with the

Red Hat OpenShift AI Self-Managed 2-latest Serving models

32

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#creating-a-service-mesh-instance_serving-large-models
https://docs.openshift.com/serverless/1.32/install/install-serverless-operator.html#serverless-install-cli_install-serverless-operator

4. Define a ServiceMeshMember object in a YAML file called default-smm.yaml with the
following contents:

apiVersion: maistra.io/v1
kind: ServiceMeshMember
metadata:
 name: default
 namespace: knative-serving
spec:
 controlPlaneRef:
 namespace: istio-system
 name: minimal

5. Create the ServiceMeshMember object in the istio-system namespace.

$ oc apply -f default-smm.yaml

You see the following output:

servicemeshmember.maistra.io/default created

6. Define a KnativeServing object in a YAML file called knativeserving-istio.yaml with the
following contents:

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
 annotations:
 serverless.openshift.io/default-enable-http2: "true"
spec:
 workloads:
 - name: net-istio-controller
 env:
 - container: controller
 envVars:
 - name: ENABLE_SECRET_INFORMER_FILTERING_BY_CERT_UID
 value: 'true'
 - annotations:
 sidecar.istio.io/inject: "true" 1
 sidecar.istio.io/rewriteAppHTTPProbers: "true" 2
 name: activator
 - annotations:
 sidecar.istio.io/inject: "true"
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 name: autoscaler
 ingress:
 istio:
 enabled: true
 config:
 features:
 kubernetes.podspec-affinity: enabled
 kubernetes.podspec-nodeselector: enabled
 kubernetes.podspec-tolerations: enabled

CHAPTER 3. SERVING LARGE MODELS

33

1

2

The preceding file defines a custom resource (CR) for a KnativeServing object. The CR also
adds the following actions to each of the activator and autoscaler pods:

Injects an Istio sidecar to the pod. This makes the pod part of the service mesh.

Enables the Istio sidecar to rewrite the HTTP liveness and readiness probes for the pod.

NOTE

If you configure a custom domain for a Knative service, you can use a TLS
certificate to secure the mapped service. To do this, you must create a TLS
secret, and then update the DomainMapping CR to use the TLS secret that you
have created. For more information, see Securing a mapped service using a TLS
certificate in the Red Hat OpenShift Serverless documentation.

7. Create the KnativeServing object in the specified knative-serving namespace.

$ oc apply -f knativeserving-istio.yaml

You see the following output:

knativeserving.operator.knative.dev/knative-serving created

Verification

Review the default ServiceMeshMemberRoll object in the istio-system namespace.

$ oc describe smmr default -n istio-system

In the description of the ServiceMeshMemberRoll object, locate the Status.Members field
and confirm that it includes the knative-serving namespace.

Verify creation of the Knative Serving instance as follows:

In the OpenShift CLI, enter the following command:

$ oc get pods -n knative-serving

The preceding command lists all running pods in the knative-serving project. This is the
project in which you created the Knative Serving instance.

Confirm that there are numerous running pods in the knative-serving project, including
activator, autoscaler, controller, and domain mapping pods, as well as pods for the Knative
Istio controller, which controls the integration of OpenShift Serverless and OpenShift
Service Mesh. An example is shown.

NAME READY STATUS RESTARTS AGE
activator-7586f6f744-nvdlb 2/2 Running 0 22h
activator-7586f6f744-sd77w 2/2 Running 0 22h
autoscaler-764fdf5d45-p2v98 2/2 Running 0 22h
autoscaler-764fdf5d45-x7dc6 2/2 Running 0 22h
autoscaler-hpa-7c7c4cd96d-2lkzg 1/1 Running 0 22h

Red Hat OpenShift AI Self-Managed 2-latest Serving models

34

https://docs.openshift.com/serverless/1.32/knative-serving/config-custom-domains/domain-mapping-custom-tls-cert.html

autoscaler-hpa-7c7c4cd96d-gks9j 1/1 Running 0 22h
controller-5fdfc9567c-6cj9d 1/1 Running 0 22h
controller-5fdfc9567c-bf5x7 1/1 Running 0 22h
domain-mapping-56ccd85968-2hjvp 1/1 Running 0 22h
domain-mapping-56ccd85968-lg6mw 1/1 Running 0 22h
domainmapping-webhook-769b88695c-gp2hk 1/1 Running 0 22h
domainmapping-webhook-769b88695c-npn8g 1/1 Running 0 22h
net-istio-controller-7dfc6f668c-jb4xk 1/1 Running 0 22h
net-istio-controller-7dfc6f668c-jxs5p 1/1 Running 0 22h
net-istio-webhook-66d8f75d6f-bgd5r 1/1 Running 0 22h
net-istio-webhook-66d8f75d6f-hld75 1/1 Running 0 22h
webhook-7d49878bc4-8xjbr 1/1 Running 0 22h
webhook-7d49878bc4-s4xx4 1/1 Running 0 22h

3.4.1.3. Creating secure gateways for Knative Serving

To secure traffic between your Knative Serving instance and the service mesh, you must create secure
gateways for your Knative Serving instance.

The following procedure shows how to use OpenSSL to generate a wildcard certificate and key and then
use them to create local and ingress gateways for Knative Serving.

IMPORTANT

If you have your own wildcard certificate and key to specify when configuring the
gateways, you can skip to step 11 of this procedure.

Prerequisites

You have cluster administrator privileges for your OpenShift cluster.

You have downloaded and installed the OpenShift command-line interface (CLI). See Installing
the OpenShift CLI.

You have created a Red Hat OpenShift Service Mesh instance.

You have created a Knative Serving instance.

If you intend to generate a wildcard certificate and key, you have downloaded and installed
OpenSSL.

Procedure

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a cluster
administrator, log in to the OpenShift CLI as shown in the following example:

$ oc login <openshift_cluster_url> -u <admin_username> -p <password>

IMPORTANT

If you have your own wildcard certificate and key to specify when configuring the
gateways, skip to step 11 of this procedure.

2. Set environment variables to define base directories for generation of a wildcard certificate and

CHAPTER 3. SERVING LARGE MODELS

35

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#creating-a-service-mesh-instance_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#creating-a-knative-serving-instance_serving-large-models
https://www.openssl.org/source/

2. Set environment variables to define base directories for generation of a wildcard certificate and
key for the gateways.

$ export BASE_DIR=/tmp/kserve
$ export BASE_CERT_DIR=${BASE_DIR}/certs

3. Set an environment variable to define the common name used by the ingress controller of your
OpenShift cluster.

$ export COMMON_NAME=$(oc get ingresses.config.openshift.io cluster -o
jsonpath='{.spec.domain}' | awk -F'.' '{print $(NF-1)"."$NF}')

4. Set an environment variable to define the domain name used by the ingress controller of your
OpenShift cluster.

$ export DOMAIN_NAME=$(oc get ingresses.config.openshift.io cluster -o
jsonpath='{.spec.domain}')

5. Create the required base directories for the certificate generation, based on the environment
variables that you previously set.

$ mkdir ${BASE_DIR}
$ mkdir ${BASE_CERT_DIR}

6. Create the OpenSSL configuration for generation of a wildcard certificate.

$ cat <<EOF> ${BASE_DIR}/openssl-san.config
[req]
distinguished_name = req
[san]
subjectAltName = DNS:*.${DOMAIN_NAME}
EOF

7. Generate a root certificate.

$ openssl req -x509 -sha256 -nodes -days 3650 -newkey rsa:2048 \
-subj "/O=Example Inc./CN=${COMMON_NAME}" \
-keyout $BASE_DIR/root.key \
-out $BASE_DIR/root.crt

8. Generate a wildcard certificate signed by the root certificate.

$ openssl req -x509 -newkey rsa:2048 \
-sha256 -days 3560 -nodes \
-subj "/CN=${COMMON_NAME}/O=Example Inc." \
-extensions san -config ${BASE_DIR}/openssl-san.config \
-CA $BASE_DIR/root.crt \
-CAkey $BASE_DIR/root.key \
-keyout $BASE_DIR/wildcard.key \
-out $BASE_DIR/wildcard.crt

$ openssl x509 -in ${BASE_DIR}/wildcard.crt -text

Red Hat OpenShift AI Self-Managed 2-latest Serving models

36

9. Verify the wildcard certificate.

$ openssl verify -CAfile ${BASE_DIR}/root.crt ${BASE_DIR}/wildcard.crt

10. Export the wildcard key and certificate that were created by the script to new environment
variables.

$ export TARGET_CUSTOM_CERT=${BASE_CERT_DIR}/wildcard.crt
$ export TARGET_CUSTOM_KEY=${BASE_CERT_DIR}/wildcard.key

11. Optional: To export your own wildcard key and certificate to new environment variables, enter
the following commands:

$ export TARGET_CUSTOM_CERT=<path_to_certificate>
$ export TARGET_CUSTOM_KEY=<path_to_key>

NOTE

In the certificate that you provide, you must specify the domain name used by
the ingress controller of your OpenShift cluster. You can check this value by
running the following command:

$ oc get ingresses.config.openshift.io cluster -o jsonpath='{.spec.domain}'

12. Create a TLS secret in the istio-system namespace using the environment variables that you
set for the wildcard certificate and key.

$ oc create secret tls wildcard-certs --cert=${TARGET_CUSTOM_CERT} --
key=${TARGET_CUSTOM_KEY} -n istio-system

13. Create a gateways.yaml YAML file with the following contents:

apiVersion: v1
kind: Service 1
metadata:
 labels:
 experimental.istio.io/disable-gateway-port-translation: "true"
 name: knative-local-gateway
 namespace: istio-system
spec:
 ports:
 - name: http2
 port: 80
 protocol: TCP
 targetPort: 8081
 selector:
 knative: ingressgateway
 type: ClusterIP

apiVersion: networking.istio.io/v1beta1
kind: Gateway
metadata:
 name: knative-ingress-gateway 2

CHAPTER 3. SERVING LARGE MODELS

37

1

2

3

 namespace: knative-serving
spec:
 selector:
 knative: ingressgateway
 servers:
 - hosts:
 - '*'
 port:
 name: https
 number: 443
 protocol: HTTPS
 tls:
 credentialName: wildcard-certs
 mode: SIMPLE

apiVersion: networking.istio.io/v1beta1
kind: Gateway
metadata:
 name: knative-local-gateway 3
 namespace: knative-serving
spec:
 selector:
 knative: ingressgateway
 servers:
 - port:
 number: 8081
 name: https
 protocol: HTTPS
 tls:
 mode: ISTIO_MUTUAL
 hosts:
 - "*"

Defines a service in the istio-system namespace for the Knative local gateway.

Defines an ingress gateway in the knative-serving namespace. The gateway uses the
TLS secret you created earlier in this procedure. The ingress gateway handles external
traffic to Knative.

Defines a local gateway for Knative in the knative-serving namespace.

14. Apply the gateways.yaml file to create the defined resources.

$ oc apply -f gateways.yaml

You see the following output:

service/knative-local-gateway created
gateway.networking.istio.io/knative-ingress-gateway created
gateway.networking.istio.io/knative-local-gateway created

Verification

Review the gateways that you created.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

38

$ oc get gateway --all-namespaces

Confirm that you see the local and ingress gateways that you created in the knative-serving
namespace, as shown in the following example:

NAMESPACE NAME AGE
knative-serving knative-ingress-gateway 69s
knative-serving knative-local-gateway 2m

3.4.2. Installing KServe

To complete manual installation of KServe, you must install the Red Hat OpenShift AI Operator. Then,
you can configure the Operator to install KServe.

Prerequisites

You have cluster administrator privileges for your OpenShift cluster.

Your cluster has a node with 4 CPUs and 16 GB memory.

You have downloaded and installed the OpenShift command-line interface (CLI). See Installing
the OpenShift CLI.

You have created a Red Hat OpenShift Service Mesh instance.

You have created a Knative Serving instance.

You have created secure gateways for Knative Serving.

You have installed the Red Hat OpenShift AI Operator and created a DataScienceCluster
object.

Procedure

1. Log in to the OpenShift web console as a cluster administrator.

2. In the web console, click Operators → Installed Operators and then click the Red Hat
OpenShift AI Operator.

3. For installation of KServe, configure the OpenShift Service Mesh component as follows:

a. Click the DSC Initialization tab.

b. Click the default-dsci object.

c. Click the YAML tab.

d. In the spec section, add and configure the serviceMesh component as shown:

spec:
 serviceMesh:
 managementState: Unmanaged

e. Click Save.

CHAPTER 3. SERVING LARGE MODELS

39

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#creating-a-service-mesh-instance_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#creating-a-knative-serving-instance_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#creating-secure-gateways-for-knative-serving_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/installing_and_uninstalling_openshift_ai_self-managed/installing-and-deploying-openshift-ai_install#installing-the-openshift-data-science-operator_operator-install
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/installing_and_uninstalling_openshift_ai_self-managed/installing-and-deploying-openshift-ai_install#installing-and-managing-openshift-ai-components_component-install

4. For installation of KServe, configure the KServe and OpenShift Serverless components as
follows:

a. In the web console, click Operators → Installed Operators and then click the Red Hat
OpenShift AI Operator.

b. Click the Data Science Cluster tab.

c. Click the default-dsc DSC object.

d. Click the YAML tab.

e. In the spec.components section, configure the kserve component as shown:

spec:
 components:
 kserve:
 managementState: Managed

f. Within the kserve component, add the serving component, and configure it as shown:

spec:
 components:
 kserve:
 managementState: Managed
 serving:
 managementState: Unmanaged

g. Click Save.

3.4.3. Manually adding an authorization provider

You can add Authorino as an authorization provider for the single-model serving platform. Adding an
authorization provider allows you to enable token authorization for models that you deploy on the
platform, which ensures that only authorized parties can make inference requests to the models.

To manually add Authorino as an authorization provider, you must install the Red Hat - Authorino
Operator, create an Authorino instance, and then configure the OpenShift Service Mesh and KServe
components to use the instance.

IMPORTANT

To manually add an authorization provider, you must make configuration updates to your
OpenShift Service Mesh instance. To ensure that your OpenShift Service Mesh instance
remains in a supported state, make only the updates shown in this section.

Prerequisites

You have reviewed the options for adding Authorino as an authorization provider and identified
manual installation as the appropriate option. See Adding an authorization provider .

You have manually installed KServe and its dependencies, including OpenShift Service Mesh.
See Manually installing KServe.

When you manually installed KServe, you set the value of the managementState field for the

Red Hat OpenShift AI Self-Managed 2-latest Serving models

40

https://github.com/kuadrant/authorino
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#adding-an-authorization-provider_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#manually-installing-kserve_serving-large-models

When you manually installed KServe, you set the value of the managementState field for the
serviceMesh component to Unmanaged. This setting is required for manually adding
Authorino. See Installing KServe.

3.4.3.1. Installing the Red Hat Authorino Operator

Before you can add Autorino as an authorization provider, you must install the Red Hat - Authorino
Operator on your OpenShift cluster.

Prerequisites

You have cluster administrator privileges for your OpenShift cluster.

Procedure

1. Log in to the OpenShift web console as a cluster administrator.

2. In the web console, click Operators → OperatorHub.

3. On the OperatorHub page, in the Filter by keyword field, type Red Hat - Authorino.

4. Click the Red Hat - Authorino Operator.

5. On the Red Hat - Authorino Operator page, review the Operator information and then click
Install.

6. On the Install Operator page, keep the default values for Update channel, Version,
Installation mode, Installed Namespace and Update Approval.

7. Click Install.

Verification

In the OpenShift web console, click Operators → Installed Operators and confirm that the Red
Hat - Authorino Operator shows one of the following statuses:

Installing - installation is in progress; wait for this to change to Succeeded. This might take
several minutes.

Succeeded - installation is successful.

3.4.3.2. Creating an Authorino instance

When you have installed the Red Hat - Authorino Operator on your OpenShift cluster, you must create
an Authorino instance.

Prerequisites

You have installed the Red Hat - Authorino Operator.

You have privileges to add resources to the project in which your OpenShift Service Mesh
instance was created. See Creating an OpenShift Service Mesh instance .
For more information about OpenShift permissions, see Using RBAC to define and apply
permissions.

CHAPTER 3. SERVING LARGE MODELS

41

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#installing-kserve_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#creating-a-service-mesh-instance_serving-large-models
https://docs.openshift.com/container-platform/4.16/authentication/using-rbac.html

Procedure

1. Open a new terminal window.

2. Log in to the OpenShift command-line interface (CLI) as follows:

$ oc login <openshift_cluster_url> -u <username> -p <password>

3. Create a namespace to install the Authorino instance.

$ oc new-project <namespace_for_authorino_instance>

NOTE

The automated installation process creates a namespace called redhat-ods-
applications-auth-provider for the Authorino instance. Consider using the same
namespace name for the manual installation.

4. To enroll the new namespace for the Authorino instance in your existing OpenShift Service
Mesh instance, create a new YAML file with the following contents:

 apiVersion: maistra.io/v1
 kind: ServiceMeshMember
 metadata:
 name: default
 namespace: <namespace_for_authorino_instance>
 spec:
 controlPlaneRef:
 namespace: <namespace_for_service_mesh_instance>
 name: <name_of_service_mesh_instance>

5. Save the YAML file.

6. Create the ServiceMeshMember resource on your cluster.

$ oc create -f <file_name>.yaml

7. To configure an Authorino instance, create a new YAML file as shown in the following example:

 apiVersion: operator.authorino.kuadrant.io/v1beta1
 kind: Authorino
 metadata:
 name: authorino
 namespace: <namespace_for_authorino_instance>
 spec:
 authConfigLabelSelectors: security.opendatahub.io/authorization-group=default
 clusterWide: true
 listener:
 tls:
 enabled: false
 oidcServer:
 tls:
 enabled: false

Red Hat OpenShift AI Self-Managed 2-latest Serving models

42

8. Save the YAML file.

9. Create the Authorino resource on your cluster.

$ oc create -f <file_name>.yaml

10. Patch the Authorino deployment to inject an Istio sidecar, which makes the Authorino instance
part of your OpenShift Service Mesh instance.

$ oc patch deployment <name_of_authorino_instance> -n
<namespace_for_authorino_instance> -p '{"spec": {"template":{"metadata":{"labels":
{"sidecar.istio.io/inject":"true"}}}} }'

Verification

Confirm that the Authorino instance is running as follows:

1. Check the pods (and containers) that are running in the namespace that you created for
the Authorino instance, as shown in the following example:

$ oc get pods -n redhat-ods-applications-auth-provider -o="custom-
columns=NAME:.metadata.name,STATUS:.status.phase,CONTAINERS:.spec.containers[*
].name"

2. Confirm that the output resembles the following example:

NAME STATUS CONTAINERS
authorino-6bc64bd667-kn28z Running authorino,istio-proxy

As shown in the example, there is a single running pod for the Authorino instance. The pod
has containers for Authorino and for the Istio sidecar that you injected.

3.4.3.3. Configuring an OpenShift Service Mesh instance to use Authorino

When you have created an Authorino instance, you must configure your OpenShift Service Mesh
instance to use Authorino as an authorization provider.

IMPORTANT

To ensure that your OpenShift Service Mesh instance remains in a supported state, make
only the configuration updates shown in the following procedure.

Prerequisites

You have created an Authorino instance and enrolled the namespace for the Authorino instance
in your OpenShift Service Mesh instance.

You have privileges to modify the OpenShift Service Mesh instance. See Creating an OpenShift
Service Mesh instance.

Procedure

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a user that has

CHAPTER 3. SERVING LARGE MODELS

43

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#creating-a-service-mesh-instance_serving-large-models

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a user that has
privileges to update the OpenShift Service Mesh instance, log in to the OpenShift CLI as shown
in the following example:

$ oc login <openshift_cluster_url> -u <username> -p <password>

2. Create a new YAML file with the following contents:

spec:
 techPreview:
 meshConfig:
 extensionProviders:
 - name: redhat-ods-applications-auth-provider
 envoyExtAuthzGrpc:
 service: <name_of_authorino_instance>-authorino-
authorization.<namespace_for_authorino_instance>.svc.cluster.local
 port: 50051

3. Save the YAML file.

4. Use the oc patch command to apply the YAML file to your OpenShift Service Mesh instance.

$ oc patch smcp <name_of_service_mesh_instance> --type merge -n
<namespace_for_service_mesh_instance> --patch-file <file_name>.yaml

IMPORTANT

You can apply the configuration shown as a patch only if you have not already
specified other extension providers in your OpenShift Service Mesh instance. If
you have already specified other extension providers, you must manually edit
your ServiceMeshControlPlane resource to add the configuration.

Verification

Verify that your Authorino instance has been added as an extension provider in your OpenShift
Service Mesh configuration as follows:

1. Inspect the ConfigMap object for your OpenShift Service Mesh instance:

$ oc get configmap istio-<name_of_service_mesh_instance> -n
<namespace_for_service_mesh_instance> --output=jsonpath={.data.mesh}

2. Confirm that you see output similar to the following example, which shows that the
Authorino instance has been successfully added as an extension provider.

defaultConfig:
 discoveryAddress: istiod-data-science-smcp.istio-system.svc:15012
 proxyMetadata:
 ISTIO_META_DNS_AUTO_ALLOCATE: "true"
 ISTIO_META_DNS_CAPTURE: "true"
 PROXY_XDS_VIA_AGENT: "true"
 terminationDrainDuration: 35s
 tracing: {}
dnsRefreshRate: 300s

Red Hat OpenShift AI Self-Managed 2-latest Serving models

44

enablePrometheusMerge: true
extensionProviders:
- envoyExtAuthzGrpc:
 port: 50051
 service: authorino-authorino-authorization.opendatahub-auth-provider.svc.cluster.local
 name: opendatahub-auth-provider
ingressControllerMode: "OFF"
rootNamespace: istio-system
trustDomain: null%

3.4.3.4. Configuring authorization for KServe

To configure the single-model serving platform to use Authorino, you must create a global
AuthorizationPolicy resource that is applied to the KServe predictor pods that are created when you
deploy a model. In addition, to account for the multiple network hops that occur when you make an
inference request to a model, you must create an EnvoyFilter resource that continually resets the HTTP
host header to the one initially included in the inference request.

Prerequisites

You have created an Authorino instance and configured your OpenShift Service Mesh to use it.

You have privileges to update the KServe deployment on your cluster.

You have privileges to add resources to the project in which your OpenShift Service Mesh
instance was created. See Creating an OpenShift Service Mesh instance .

Procedure

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a user that has
privileges to update the KServe deployment, log in to the OpenShift CLI as shown in the
following example:

$ oc login <openshift_cluster_url> -u <username> -p <password>

2. Create a new YAML file with the following contents:

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: kserve-predictor
spec:
 action: CUSTOM
 provider:
 name: redhat-ods-applications-auth-provider 1
 rules:
 - to:
 - operation:
 notPaths:
 - /healthz
 - /debug/pprof/
 - /metrics
 - /wait-for-drain

CHAPTER 3. SERVING LARGE MODELS

45

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#creating-a-service-mesh-instance_serving-large-models

1

 selector:
 matchLabels:
 component: predictor

The name that you specify must match the name of the extension provider that you added
to your OpenShift Service Mesh instance.

3. Save the YAML file.

4. Create the AuthorizationPolicy resource in the namespace for your OpenShift Service Mesh
instance.

$ oc create -n <namespace_for_service_mesh_instance> -f <file_name>.yaml

5. Create another new YAML file with the following contents:

apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:
 name: activator-host-header
spec:
 priority: 20
 workloadSelector:
 labels:
 component: predictor
 configPatches:
 - applyTo: HTTP_FILTER
 match:
 listener:
 filterChain:
 filter:
 name: envoy.filters.network.http_connection_manager
 patch:
 operation: INSERT_BEFORE
 value:
 name: envoy.filters.http.lua
 typed_config:
 '@type': type.googleapis.com/envoy.extensions.filters.http.lua.v3.Lua
 inlineCode: |
 function envoy_on_request(request_handle)
 local headers = request_handle:headers()
 if not headers then
 return
 end
 local original_host = headers:get("k-original-host")
 if original_host then
 port_seperator = string.find(original_host, ":", 7)
 if port_seperator then
 original_host = string.sub(original_host, 0, port_seperator-1)
 end
 headers:replace('host', original_host)
 end
 end

The EnvoyFilter resource shown continually resets the HTTP host header to the one initially

Red Hat OpenShift AI Self-Managed 2-latest Serving models

46

The EnvoyFilter resource shown continually resets the HTTP host header to the one initially
included in any inference request.

6. Create the EnvoyFilter resource in the namespace for your OpenShift Service Mesh instance.

$ oc create -n <namespace_for_service_mesh_instance> -f <file_name>.yaml

Verification

Check that the AuthorizationPolicy resource was successfully created.

$ oc get authorizationpolicies -n <namespace_for_service_mesh_instance>

Confirm that you see output similar to the following example:

NAME AGE
kserve-predictor 28h

Check that the EnvoyFilter resource was successfully created.

$ oc get envoyfilter -n <namespace_for_service_mesh_instance>

Confirm that you see output similar to the following example:

NAME AGE
activator-host-header 28h

3.4.4. Configuring persistent volume claims (PVC) on KServe

Enable persistent volume claims (PVC) on your inference service so you can provison persistent
storage. For more information about PVC, see Understanding persistent storage .

To enable PVC, from the OpenShift AI dashboard, select the Project dropdown and click knative-
serving. Then, follow the steps in Enabling PVC support.

Verification

Verify that the inference service allows PVC as follows:

In the OpenShift web console, change into the Administrator perspective.

Click Home → Search.

In Resources, search for InferenceService.

Click the name of the inference service.

Click the YAML tab.

Confirm that volumeMounts appears, similar to the following output:

apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:

CHAPTER 3. SERVING LARGE MODELS

47

{https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html/storage/understanding-persistent-storage}
{https://docs.redhat.com/en/documentation/red_hat_openshift_serverless/4.16/html/serving/configuring-serverless-applications#pvcs-for-serving}

 name: "sklearn-iris"
spec:
 predictor:
 model:
 runtime: kserve-mlserver
 modelFormat:
 name: sklearn
 storageUri: "gs://kfserving-examples/models/sklearn/1.0/model"
 volumeMounts:
 - name: my-dynamic-volume
 mountPath: /tmp/data
 volumes:
 - name: my-dynamic-volume
 persistentVolumeClaim:
 claimName: my-dynamic-pvc

3.5. ADDING AN AUTHORIZATION PROVIDER FOR THE SINGLE-
MODEL SERVING PLATFORM

You can add Authorino as an authorization provider for the single-model serving platform. Adding an
authorization provider allows you to enable token authorization for models that you deploy on the
platform, which ensures that only authorized parties can make inference requests to the models.

The method that you use to add Authorino as an authorization provider depends on how you install the
single-model serving platform. The installation options for the platform are described as follows:

Automated installation

If you have not already created a ServiceMeshControlPlane or KNativeServing resource on your
OpenShift cluster, you can configure the Red Hat OpenShift AI Operator to install KServe and its
dependencies. You can include Authorino as part of the automated installation process.
For more information about automated installation, including Authorino, see Configuring automated
installation of KServe.

Manual installation

If you have already created a ServiceMeshControlPlane or KNativeServing resource on your
OpenShift cluster, you cannot configure the Red Hat OpenShift AI Operator to install KServe and its
dependencies. In this situation, you must install KServe manually. You must also manually configure
Authorino.
For more information about manual installation, including Authorino, see Manually installing KServe.

3.6. DEPLOYING MODELS BY USING THE SINGLE-MODEL SERVING
PLATFORM

On the single-model serving platform, each model is deployed on its own model server. This helps you to
deploy, monitor, scale, and maintain large models that require increased resources.

IMPORTANT

Red Hat OpenShift AI Self-Managed 2-latest Serving models

48

https://github.com/kuadrant/authorino
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#configuring-automated-installation-of-kserve_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#manually-installing-kserve_serving-large-models

IMPORTANT

If you want to use the single-model serving platform to deploy a model from S3-
compatible storage that uses a self-signed SSL certificate, you must install a certificate
authority (CA) bundle on your OpenShift cluster. For more information, see Working with
certificates (OpenShift AI Self-Managed) or Working with certificates (OpenShift AI
Self-Managed in a disconnected environment).

3.6.1. Enabling the single-model serving platform

When you have installed KServe, you can use the Red Hat OpenShift AI dashboard to enable the single-
model serving platform. You can also use the dashboard to enable model-serving runtimes for the
platform.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the admin group (for example,
rhoai-admins) in OpenShift.

You have installed KServe.

Your cluster administrator has not edited the OpenShift AI dashboard configuration to disable
the ability to select the single-model serving platform, which uses the KServe component. For
more information, see Dashboard configuration options .

Procedure

1. Enable the single-model serving platform as follows:

a. In the left menu, click Settings → Cluster settings.

b. Locate the Model serving platforms section.

c. To enable the single-model serving platform for projects, select the Single-model serving
platform checkbox.

d. Click Save changes.

2. Enable preinstalled runtimes for the single-model serving platform as follows:

a. In the left menu of the OpenShift AI dashboard, click Settings → Serving runtimes.
The Serving runtimes page shows preinstalled runtimes and any custom runtimes that you
have added.

For more information about preinstalled runtimes, see Supported runtimes.

b. Set the runtime that you want to use to Enabled.
The single-model serving platform is now available for model deployments.

3.6.2. Adding a custom model-serving runtime for the single-model serving
platform

A model-serving runtime adds support for a specified set of model frameworks and the model formats
supported by those frameworks. You can use the pre-installed runtimes that are included with

CHAPTER 3. SERVING LARGE MODELS

49

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/installing_and_uninstalling_openshift_ai_self-managed/working-with-certificates_certs
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/installing_and_uninstalling_openshift_ai_self-managed_in_a_disconnected_environment/working-with-certificates_certs
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest//html/managing_resources/customizing-the-dashboard#ref-dashboard-configuration-options_dashboard
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#ref-supported-runtimes
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#about-the-single-model-serving-platform_serving-large-models

OpenShift AI. You can also add your own custom runtimes if the default runtimes do not meet your
needs. For example, if the TGIS runtime does not support a model format that is supported by Hugging
Face Text Generation Inference (TGI), you can create a custom runtime to add support for the model.

As an administrator, you can use the OpenShift AI interface to add and enable a custom model-serving
runtime. You can then choose the custom runtime when you deploy a model on the single-model serving
platform.

NOTE

OpenShift AI enables you to add your own custom runtimes, but does not support the
runtimes themselves. You are responsible for correctly configuring and maintaining
custom runtimes. You are also responsible for ensuring that you are licensed to use any
custom runtimes that you add.

Prerequisites

You have logged in to OpenShift AI as an administrator.

You have built your custom runtime and added the image to a container image repository such
as Quay.

Procedure

1. From the OpenShift AI dashboard, click Settings > Serving runtimes.
The Serving runtimes page opens and shows the model-serving runtimes that are already
installed and enabled.

2. To add a custom runtime, choose one of the following options:

To start with an existing runtime (for example, TGIS Standalone ServingRuntime for
KServe), click the action menu (⋮) next to the existing runtime and then click Duplicate.

To add a new custom runtime, click Add serving runtime.

3. In the Select the model serving platforms this runtime supports list, select Single-model
serving platform.

4. In the Select the API protocol this runtime supports list, select REST or gRPC.

5. Optional: If you started a new runtime (rather than duplicating an existing one), add your code
by choosing one of the following options:

Upload a YAML file

a. Click Upload files.

b. In the file browser, select a YAML file on your computer.
The embedded YAML editor opens and shows the contents of the file that you
uploaded.

Enter YAML code directly in the editor

a. Click Start from scratch.

b. Enter or paste YAML code directly in the embedded editor.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

50

https://huggingface.co/docs/text-generation-inference/supported_models
https://quay.io

NOTE

In many cases, creating a custom runtime will require adding new or custom
parameters to the env section of the ServingRuntime specification.

6. Click Add.
The Serving runtimes page opens and shows the updated list of runtimes that are installed.
Observe that the custom runtime that you added is automatically enabled. The API protocol
that you specified when creating the runtime is shown.

7. Optional: To edit your custom runtime, click the action menu (⋮) and select Edit.

Verification

The custom model-serving runtime that you added is shown in an enabled state on the Serving
runtimes page.

3.6.3. Deploying models on the single-model serving platform

When you have enabled the single-model serving platform, you can enable a pre-installed or custom
model-serving runtime and start to deploy models on the platform.

NOTE

Text Generation Inference Server (TGIS) is based on an early fork of Hugging Face TGI.
Red Hat will continue to develop the standalone TGIS runtime to support TGI models. If a
model does not work in the current version of OpenShift AI, support might be added in a
future version. In the meantime, you can also add your own, custom runtime to support a
TGI model. For more information, see Adding a custom model-serving runtime for the
single-model serving platform.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group
(for example, rhoai-users or rhoai-admins) in OpenShift.

You have installed KServe.

You have enabled the single-model serving platform.

You have created a data science project.

You have access to S3-compatible object storage.

For the model that you want to deploy, you know the associated folder path in your S3-
compatible object storage bucket.

To use the Caikit-TGIS runtime, you have converted your model to Caikit format. For an
example, see Converting Hugging Face Hub models to Caikit format in the caikit-tgis-serving
repository.

If you want to use graphics processing units (GPUs) with your model server, you have enabled
GPU support in OpenShift AI. See Enabling NVIDIA GPUs.

CHAPTER 3. SERVING LARGE MODELS

51

https://github.com/IBM/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#adding-a-custom-model-serving-runtime-for-the-single-model-serving-platform_serving-large-models
https://github.com/opendatahub-io/caikit-tgis-serving/blob/main/demo/kserve/built-tip.md#bootstrap-process
https://github.com/opendatahub-io/caikit-tgis-serving/tree/main
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/managing_resources/managing-cluster-resources_cluster-mgmt#enabling-nvidia-gpus_cluster-mgmt

To use the vLLM runtime, you have enabled GPU support in OpenShift AI and have installed
and configured the Node Feature Discovery operator on your cluster. For more information, see
Installing the Node Feature Discovery operator and Enabling NVIDIA GPUs

NOTE

In OpenShift AI 2-latest, Red Hat supports only NVIDIA GPU accelerators for model
serving.

Procedure

1. In the left menu, click Data Science Projects.
The Data Science Projects page opens.

2. Click the name of the project that you want to deploy a model in.
A project details page opens.

3. Click the Models tab.

4. Perform one of the following actions:

If you see a Single-model serving platform tile, click Deploy model on the tile.

If you do not see any tiles, click the Deploy model button.

The Deploy model dialog opens.

5. In the Model name field, enter a unique name for the model that you are deploying.

6. In the Serving runtime field, select an enabled runtime.

7. From the Model framework list, select a value.

8. In the Number of model replicas to deploy field, specify a value.

9. From the Model server size list, select a value.

10. Optional: In the Model route section, select the Make deployed models available through an
external route checkbox to make your deployed models available to external clients.

11. To require token authorization for inference requests to the deployed model, perform the
following actions:

a. Select Require token authorization.

b. In the Service account name field, enter the service account name that the token will be
generated for.

12. To specify the location of your model, perform one of the following sets of actions:

To use an existing data connection

a. Select Existing data connection.

b. From the Name list, select a data connection that you previously defined.

c. In the Path field, enter the folder path that contains the model in your specified data

Red Hat OpenShift AI Self-Managed 2-latest Serving models

52

https://docs.openshift.com/container-platform/4.16/hardware_enablement/psap-node-feature-discovery-operator.html#installing-the-node-feature-discovery-operator_node-feature-discovery-operator
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/managing_resources/managing-cluster-resources_cluster-mgmt#enabling-nvidia-gpus_cluster-mgmt

c. In the Path field, enter the folder path that contains the model in your specified data
source.

IMPORTANT

The OpenVINO Model Server runtime has specific requirements for how
you specify the model path. For more information, see known issue
RHOAIENG-3025 in the OpenShift AI release notes.

To use a new data connection

a. To define a new data connection that your model can access, select New data
connection.

b. In the Name field, enter a unique name for the data connection.

c. In the Access key field, enter the access key ID for your S3-compatible object storage
provider.

d. In the Secret key field, enter the secret access key for the S3-compatible object
storage account that you specified.

e. In the Endpoint field, enter the endpoint of your S3-compatible object storage bucket.

f. In the Region field, enter the default region of your S3-compatible object storage
account.

g. In the Bucket field, enter the name of your S3-compatible object storage bucket.

h. In the Path field, enter the folder path in your S3-compatible object storage that
contains your data file.

IMPORTANT

The OpenVINO Model Server runtime has specific requirements for how
you specify the model path. For more information, see known issue
RHOAIENG-3025 in the OpenShift AI release notes.

13. Click Deploy.

Verification

Confirm that the deployed model is shown on the Models tab for the project, and on the Model
Serving page of the dashboard with a checkmark in the Status column.

3.7. MAKING INFERENCE REQUESTS TO MODELS DEPLOYED ON THE
SINGLE-MODEL SERVING PLATFORM

When you deploy a model by using the single-model serving platform, the model is available as a service
that you can access using API requests. This enables you to return predictions based on data inputs. To
use API requests to interact with your deployed model, you must know the inference endpoint for the
model.

In addition, if you secured your inference endpoint by enabling token authorization, you must know how

CHAPTER 3. SERVING LARGE MODELS

53

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html-single/release_notes/index#known-issues_RHOAIENG-3025_relnotes
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html-single/release_notes/index#known-issues_RHOAIENG-3025_relnotes

In addition, if you secured your inference endpoint by enabling token authorization, you must know how
to access your authorization token so that you can specify this in your inference requests.

3.7.1. Accessing the authorization token for a deployed model

If you secured your model inference endpoint by enabling token authorization, you must know how to
access your authorization token so that you can specify it in your inference requests.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group
(for example, rhoai-users or rhoai-admins) in OpenShift.

You have deployed a model by using the single-model serving platform.

Procedure

1. From the OpenShift AI dashboard, click Data Science Projects.
The Data Science Projects page opens.

2. Click the name of the project that contains your deployed model.
A project details page opens.

3. Click the Models tab.

4. In the Models and model servers list, expand the section for your model.
Your authorization token is shown in the Token authorization section, in the Token secret field.

5. Optional: To copy the authorization token for use in an inference request, click the Copy button

() next to the token value.

3.7.2. Accessing the inference endpoint for a deployed model

To make inference requests to your deployed model, you must know how to access the inference
endpoint that is available.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group
(for example, rhoai-users or rhoai-admins) in OpenShift.

You have deployed a model by using the single-model serving platform.

If you enabled token authorization for your deployed model, you have the associated token
value.

Procedure

1. From the OpenShift AI dashboard, click Model Serving.
The inference endpoint for the model is shown in the Inference endpoint field.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

54

2. Depending on what action you want to perform with the model (and if the model supports that
action), copy the inference endpoint shown and then add a path to the end of the URL.

NOTE

For a list of paths to use with the supported runtimes, see Inference endpoints.

1. Use the endpoint to make API requests to your deployed model.

NOTE

For a list of sample commands, see Inference endpoints.

Additional resources

Text Generation Inference Server (TGIS)

Caikit API documentation

Caikit Text Embedding GitHub project

OpenVINO KServe-compatible REST API documentation

OpenAI API documentation

3.7.2.1. Deploying models on single node openshift using kserve raw deployment mode

You can deploy a machine learning model by using KServe raw deployment mode on single node
OpenShift. Raw deployment mode offers several advantages over Knative, such as the ability to mount
multiple volumes.

IMPORTANT

Deploying a machine learning model using KServe raw deployment mode on single node
OpenShift is a Limited Availability feature. Limited Availability means that you can install
and receive support for the feature only with specific approval from the Red Hat AI
Business Unit. Without such approval, the feature is unsupported.

Prerequisites

You have logged in to Red Hat OpenShift AI.

You have cluster administrator privileges for your OpenShift cluster.

You have created an OpenShift cluster that has a node with at least 4 CPUs and 16 GB memory.

You have installed the Red Hat OpenShift AI (RHOAI) Operator.

You have installed the OpenShift command-line interface (CLI). For more information about
installing the OpenShift command-line interface (CLI), see Getting started with the OpenShift
CLI.

You have installed KServe.

You have access to S3-compatible object storage.

CHAPTER 3. SERVING LARGE MODELS

55

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#inference-endpoints
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#inference-endpoints
https://github.com/IBM/text-generation-inference
https://caikit.readthedocs.io/en/latest/autoapi/caikit/index.html
https://github.com/markstur/caikit-embeddings
https://docs.openvino.ai/2023.3/ovms_docs_rest_api_kfs.html
https://platform.openai.com/docs/api-reference/introduction
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html/cli_tools/openshift-cli-oc#cli-getting-started

For the model that you want to deploy, you know the associated folder path in your S3-
compatible object storage bucket.

To use the Caikit-TGIS runtime, you have converted your model to Caikit format. For an
example, see Converting Hugging Face Hub models to Caikit format in the caikit-tgis-serving
repository.

If you want to use graphics processing units (GPUs) with your model server, you have enabled
GPU support in OpenShift AI. See Enabling GPU support in OpenShift AI .

To use the vLLM runtime, you have enabled GPU support in OpenShift AI and have installed
and configured the Node Feature Discovery operator on your cluster. For more information, see
Installing the Node Feature Discovery operator and Enabling GPU support in OpenShift AI

Procedure

1. Open a command-line terminal and log in to your OpenShift cluster as cluster administrator:

$ oc login <openshift_cluster_url> -u <admin_username> -p <password>

2. By default, OpenShift uses a service mesh for network traffic management. As KServe raw
deployment mode does not require a service mesh, disable Red Hat OpenShift Service Mesh:

a. Enter the following command to disable Red Hat OpenShift Service Mesh:

$ oc edit dsci -n redhat-ods-operator

b. In the YAML editor, change the value of managementState for the serviceMesh
component to Removed as shown:

spec:
 components:
 serviceMesh:
 managementState: Removed

c. Save the changes.

3. Create a project:

$ oc new-project <project_name> --description="<description>" --display-name="
<display_name>"

For information about creating projects, see Working with projects.

4. Create a data science cluster:

a. In the Red Hat OpenShift web console Administrator view, click Operators → Installed
Operators and then click the Red Hat OpenShift AI Operator.

b. Click the Data Science Cluster tab.

c. Click the Create DataScienceCluster button.

d. In the Configure via field, click the YAML view radio button.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

56

https://github.com/opendatahub-io/caikit-tgis-serving/blob/main/demo/kserve/built-tip.md#bootstrap-process
https://github.com/opendatahub-io/caikit-tgis-serving/tree/main
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/managing_resources/managing-cluster-resources_cluster-mgmt#enabling-gpu-support_cluster-mgmt
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html/specialized_hardware_and_driver_enablement/psap-node-feature-discovery-operator#installing-the-node-feature-discovery-operator_psap-node-feature-discovery-operator
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/managing_resources/managing-cluster-resources_cluster-mgmt#enabling-gpu-support_cluster-mgmt
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html/building_applications/projects#working-with-projects

e. In the spec.components section of the YAML editor, configure the kserve component as
shown:

 kserve:
 defaultDeploymentMode: RawDeployment
 managementState: Managed
 serving:
 managementState: Removed
 name: knative-serving

f. Click Create.

5. Create a secret file:

a. At your command-line terminal, create a YAML file to contain your secret and add the
following YAML code:

apiVersion: v1
kind: Secret
metadata:
 annotations:
 serving.kserve.io/s3-endpoint: <AWS_ENDPOINT>
 serving.kserve.io/s3-usehttps: "1"
 serving.kserve.io/s3-region: <AWS_REGION>
 serving.kserve.io/s3-useanoncredential: "false"
 name: <Secret-name>
stringData:
 AWS_ACCESS_KEY_ID: "<AWS_ACCESS_KEY_ID>"
 AWS_SECRET_ACCESS_KEY: "<AWS_SECRET_ACCESS_KEY>"

IMPORTANT

If you are deploying a machine learning model in a disconnected deployment,
add serving.kserve.io/s3-verifyssl: '0' to the metadata.annotations
section.

b. Save the file with the file name secret.yaml.

c. Apply the secret.yaml file:

$ oc apply -f secret.yaml -n <namespace>

6. Create a service account:

a. Create a YAML file to contain your service account and add the following YAML code:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: models-bucket-sa
secrets:
- name: s3creds

For information about service accounts, see Understanding and creating service accounts .

CHAPTER 3. SERVING LARGE MODELS

57

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html/authentication_and_authorization/understanding-and-creating-service-accounts

b. Save the file with the file name serviceAccount.yaml.

c. Apply the serviceAccount.yaml file:

$ oc apply -f serviceAccount.yaml -n <namespace>

7. Create a YAML file for the serving runtime to define the container image that will serve your
model predictions. Here is an example using the OpenVino Model Server:

apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
 name: ovms-runtime
spec:
 annotations:
 prometheus.io/path: /metrics
 prometheus.io/port: "8888"
 containers:
 - args:
 - --model_name={{.Name}}
 - --port=8001
 - --rest_port=8888
 - --model_path=/mnt/models
 - --file_system_poll_wait_seconds=0
 - --grpc_bind_address=0.0.0.0
 - --rest_bind_address=0.0.0.0
 - --target_device=AUTO
 - --metrics_enable
 image:
quay.io/modh/openvino_model_server@sha256:6c7795279f9075bebfcd9aecbb4a4ce4177eec4
1fb3f3e1f1079ce6309b7ae45
 name: kserve-container
 ports:
 - containerPort: 8888
 protocol: TCP
 multiModel: false
 protocolVersions:
 - v2
 - grpc-v2
 supportedModelFormats:
 - autoSelect: true
 name: openvino_ir
 version: opset13
 - name: onnx
 version: "1"
 - autoSelect: true
 name: tensorflow
 version: "1"
 - autoSelect: true
 name: tensorflow
 version: "2"
 - autoSelect: true
 name: paddle
 version: "2"

Red Hat OpenShift AI Self-Managed 2-latest Serving models

58

 - autoSelect: true
 name: pytorch
 version: "2"

a. If you are using the OpenVINO Model Server example above, ensure that you insert the
correct values required for any placeholders in the YAML code.

b. Save the file with an appropriate file name.

c. Apply the file containing your serving run time:

$ oc apply -f <serving run time file name> -n <namespace>

8. Create an InferenceService custom resource (CR). Create a YAML file to contain the
InferenceService CR. Using the OpenVINO Model Server example used previously, here is the
corresponding YAML code:

apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
 annotations:
 serving.knative.openshift.io/enablePassthrough: "true"
 sidecar.istio.io/inject: "true"
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 serving.kserve.io/deploymentMode: RawDeployment
 name: <InferenceService-Name>
spec:
 predictor:
 scaleMetric:
 minReplicas: 1
 scaleTarget:
 canaryTrafficPercent:
 serviceAccountName: <serviceAccountName>
 model:
 env: []
 volumeMounts: []
 modelFormat:
 name: onnx
 runtime: ovms-runtime
 storageUri: s3://<bucket_name>/<model_directory_path>
 resources:
 requests:
 memory: 5Gi
 volumes: []

a. In your YAML code, ensure the following values are set correctly:

serving.kserve.io/deploymentMode must contain the value RawDeployment.

modelFormat must contain the value for your model format, such as onnx.

storageUri must contain the value for your model s3 storage directory, for example
s3://<bucket_name>/<model_directory_path>.

runtime must contain the value for the name of your serving runtime, for example,
ovms-runtime.

CHAPTER 3. SERVING LARGE MODELS

59

b. Save the file with an appropriate file name.

c. Apply the file containing your InferenceService CR:

$ oc apply -f <InferenceService CR file name> -n <namespace>

9. Verify that all pods are running in your cluster:

$ oc get pods -n <namespace>

Example output:

NAME READY STATUS RESTARTS AGE
<isvc_name>-predictor-xxxxx-2mr5l 1/1 Running 2 165m
console-698d866b78-m87pm 1/1 Running 2 165m

10. After you verify that all pods are running, forward the service port to your local machine:

$ oc -n <namespace> port-forward pod/<pod-name> <local_port>:<remote_port>

Ensure that you replace <namespace>, <pod-name>, <local_port>, <remote_port> (this is the
model server port, for example, 8888) with values appropriate to your deployment.

Verification

Use your preferred client library or tool to send requests to the localhost inference URL.

3.8. CONFIGURING MONITORING FOR THE SINGLE-MODEL SERVING
PLATFORM

The single-model serving platform includes metrics for supported runtimes of the KServe component.
KServe does not generate its own metrics and relies on the underlying model-serving runtimes to
provide them. The set of available metrics for a deployed model depends on its model-serving runtime.

In addition to runtime metrics for KServe, you can also configure monitoring for OpenShift Service
Mesh. The OpenShift Service Mesh metrics help you to understand dependencies and traffic flow
between components in the mesh.

Prerequisites

You have cluster administrator privileges for your OpenShift cluster.

You have created OpenShift Service Mesh and Knative Serving instances and installed KServe.

You have downloaded and installed the OpenShift command-line interface (CLI). See Installing
the OpenShift CLI.

You are familiar with creating a config map for monitoring a user-defined workflow. You will
perform similar steps in this procedure.

You are familiar with enabling monitoring for user-defined projects in OpenShift. You will
perform similar steps in this procedure.

You have assigned the monitoring-rules-view role to users that will monitor metrics.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

60

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#about-the-single-model-serving-platform_serving-large-models
https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://docs.openshift.com/container-platform/4.16/observability/monitoring/configuring-the-monitoring-stack.html#creating-user-defined-workload-monitoring-configmap_configuring-the-monitoring-stack
https://docs.openshift.com/container-platform/4.16/observability/monitoring/enabling-monitoring-for-user-defined-projects.html
https://docs.openshift.com/container-platform/4.16/observability/monitoring/enabling-monitoring-for-user-defined-projects.html#granting-users-permission-to-monitor-user-defined-projects_enabling-monitoring-for-user-defined-projects

Procedure

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a cluster
administrator, log in to the OpenShift CLI as shown in the following example:

$ oc login <openshift_cluster_url> -u <admin_username> -p <password>

2. Define a ConfigMap object in a YAML file called uwm-cm-conf.yaml with the following
contents:

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |
 prometheus:
 logLevel: debug
 retention: 15d

The user-workload-monitoring-config object configures the components that monitor user-
defined projects. Observe that the retention time is set to the recommended value of 15 days.

3. Apply the configuration to create the user-workload-monitoring-config object.

$ oc apply -f uwm-cm-conf.yaml

4. Define another ConfigMap object in a YAML file called uwm-cm-enable.yaml with the
following contents:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: true

The cluster-monitoring-config object enables monitoring for user-defined projects.

5. Apply the configuration to create the cluster-monitoring-config object.

$ oc apply -f uwm-cm-enable.yaml

6. Create ServiceMonitor and PodMonitor objects to monitor metrics in the service mesh control
plane as follows:

a. Create an istiod-monitor.yaml YAML file with the following contents:

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 name: istiod-monitor

CHAPTER 3. SERVING LARGE MODELS

61

 namespace: istio-system
spec:
 targetLabels:
 - app
 selector:
 matchLabels:
 istio: pilot
 endpoints:
 - port: http-monitoring
 interval: 30s

b. Deploy the ServiceMonitor CR in the specified istio-system namespace.

$ oc apply -f istiod-monitor.yaml

You see the following output:

servicemonitor.monitoring.coreos.com/istiod-monitor created

c. Create an istio-proxies-monitor.yaml YAML file with the following contents:

apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
 name: istio-proxies-monitor
 namespace: istio-system
spec:
 selector:
 matchExpressions:
 - key: istio-prometheus-ignore
 operator: DoesNotExist
 podMetricsEndpoints:
 - path: /stats/prometheus
 interval: 30s

d. Deploy the PodMonitor CR in the specified istio-system namespace.

$ oc apply -f istio-proxies-monitor.yaml

You see the following output:

podmonitor.monitoring.coreos.com/istio-proxies-monitor created

3.9. VIEWING MODEL-SERVING RUNTIME METRICS FOR THE SINGLE-
MODEL SERVING PLATFORM

When a cluster administrator has configured monitoring for the single-model serving platform, non-
admin users can use the OpenShift web console to view model-serving runtime metrics for the KServe
component.

Prerequisites

A cluster administrator has configured monitoring for the single-model serving platform.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

62

You have been assigned the monitoring-rules-view role.

You are familiar with how to monitor project metrics in the OpenShift web console.

Procedure

1. Log in to the OpenShift web console.

2. Switch to the Developer perspective.

3. In the left menu, click Observe.

4. As described in monitoring project metrics, use the web console to run queries for caikit_*,
tgi_*, ovms_* and vllm:* model-serving runtime metrics. You can also run queries for istio_*
metrics that are related to OpenShift Service Mesh. Some examples are shown.

a. The following query displays the number of successful inference requests over a period of
time for a model deployed with the vLLM runtime:

sum(increase(vllm:request_success_total{namespace=${namespace},model_name=${m
odel_name}}[${rate_interval}]))

b. The following query displays the number of successful inference requests over a period of
time for a model deployed with the standalone TGIS runtime:

sum(increase(tgi_request_success{namespace=${namespace}, pod=~${model_name}-
predictor-.*}[${rate_interval}]))

c. The following query displays the number of successful inference requests over a period of
time for a model deployed with the Caikit Standalone runtime:

sum(increase(predict_rpc_count_total{namespace=${namespace},code=OK,model_id=$
{model_name}}[${rate_interval}]))

d. The following query displays the number of successful inference requests over a period of
time for a model deployed with the OpenVINO Model Server runtime:

sum(increase(ovms_requests_success{namespace=${namespace},name=${model_nam
e}}[${rate_interval}]))

Additional resources

OVMS metrics

TGIS metrics

vLLM metrics

3.10. MONITORING MODEL PERFORMANCE

In the single-model serving platform, you can view performance metrics for a specific model that is
deployed on the platform.

CHAPTER 3. SERVING LARGE MODELS

63

https://docs.openshift.com/container-platform/4.16/observability/monitoring/enabling-monitoring-for-user-defined-projects.html#granting-users-permission-to-monitor-user-defined-projects_enabling-monitoring-for-user-defined-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/building_applications/odc-monitoring-project-and-application-metrics-using-developer-perspective#odc-monitoring-your-project-metrics_monitoring-project-and-application-metrics-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/building_applications/odc-monitoring-project-and-application-metrics-using-developer-perspective#odc-monitoring-your-project-metrics_monitoring-project-and-application-metrics-using-developer-perspective
https://docs.openvino.ai/2024/ovms_docs_metrics.html#available-metrics-families
https://github.com/IBM/text-generation-inference?tab=readme-ov-file#metrics
https://docs.vllm.ai/en/latest/serving/metrics.html

3.10.1. Viewing performance metrics for a deployed model

You can monitor the following metrics for a specific model that is deployed on the single-model serving
platform:

Number of requests - The number of requests that have failed or succeeded for a specific
model.

Average response time (ms) - The average time it takes a specific model to respond to
requests.

CPU utilization (%) - The percentage of the CPU limit per model replica that is currently
utilized by a specific model.

Memory utilization (%) - The percentage of the memory limit per model replica that is utilized
by a specific model.

You can specify a time range and a refresh interval for these metrics to help you determine, for
example, when the peak usage hours are and how the model is performing at a specified time.

Prerequisites

You have installed Red Hat OpenShift AI.

A cluster admin has enabled user workload monitoring (UWM) for user-defined projects on your
OpenShift cluster. For more information, see Enabling monitoring for user-defined projects and
Configuring monitoring for the single-model serving platform.

You have logged in to OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group
(for example, rhoai-users or rhoai-admins) in OpenShift.

The following dashboard configuration options are set to the default values as shown:

disablePerformanceMetrics:false
disableKServeMetrics:false

For more information, see Dashboard configuration options .

You have deployed a model on the single-model serving platform by using a preinstalled
runtime.

NOTE

Metrics are only supported for models deployed by using a preinstalled model-
serving runtime or a custom runtime that is duplicated from a preinstalled
runtime.

Procedure

1. From the OpenShift AI dashboard navigation menu, click Data Science Projects.
The Data Science Projects page opens.

2. Click the name of the project that contains the data science models that you want to monitor.

Red Hat OpenShift AI Self-Managed 2-latest Serving models

64

https://docs.openshift.com/container-platform/4.16/observability/monitoring/enabling-monitoring-for-user-defined-projects.html
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#configuring-monitoring-for-the-single-model-serving-platform_serving-large-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/managing_resources/customizing-the-dashboard#ref-dashboard-configuration-options_dashboard

3. In the project details page, click the Models tab.

4. Select the model that you are interested in.

5. On the Endpoint performance tab, set the following options:

Time range - Specifies how long to track the metrics. You can select one of these values: 1
hour, 24 hours, 7 days, and 30 days.

Refresh interval - Specifies how frequently the graphs on the metrics page are refreshed
(to show the latest data). You can select one of these values: 15 seconds, 30 seconds, 1
minute, 5 minutes, 15 minutes, 30 minutes, 1 hour, 2 hours, and 1 day.

6. Scroll down to view data graphs for number of requests, average response time, CPU utilization,
and memory utilization.

Verification

The Endpoint performance tab shows graphs of metrics for the model.

3.11. OPTIMIZING MODEL-SERVING RUNTIMES

You can optionally enhance the preinstalled model-serving runtimes available in OpenShift AI to
leverage additional benefits and capabilities, such as optimized inferencing, reduced latency, and fine-
tuned resource allocation.

3.11.1. Optimizing the vLLM model-serving runtime

You can configure the vLLM ServingRuntime for KServe runtime to use speculative decoding, a
parallel processing technique to optimize inferencing time for large language models (LLMs).

You can also configure the runtime to support inferencing for vision-language models (VLMs). VLMs
are a subset of multi-modal models that integrate both visual and textual data.

To configure the vLLM ServingRuntime for KServe runtime for speculative decoding or multi-modal
inferencing, you must add additional arguments in the vLLM model-serving runtime.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the admin group (for example,
oai-admin-group) in OpenShift.

If you used the pre-installed vLLM ServingRuntime for KServe runtime, you duplicated the
runtime to create a custom version. For more information about duplicating the pre-installed
vLLM runtime, see Adding a custom model-serving runtime for the single-model serving
platform.

If you are using the vLLM model-serving runtime for speculative decoding with a draft model,
you have stored the original model and the speculative model in the same folder within your S3-
compatible object storage.

Procedure

1. From the OpenShift AI dashboard, click Settings > Serving runtimes.

The Serving runtimes page opens and shows the model-serving runtimes that are already

CHAPTER 3. SERVING LARGE MODELS

65

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#adding-a-custom-model-serving-runtime-for-the-single-model-serving-platform_serving-large-models

The Serving runtimes page opens and shows the model-serving runtimes that are already
installed and enabled.

2. Find the custom vLLM model-serving runtime that you created, click the action menu (⋮) next
to the runtime and select Edit.
The embedded YAML editor opens and shows the contents of the custom model-serving
runtime.

3. To configure the vLLM model-serving runtime for speculative decoding by matching n-grams in
the prompt:

a. Add the following arguments:

containers:
 - args:
 - --speculative-model=[ngram]
 - --num-speculative-tokens=<NUM_SPECULATIVE_TOKENS>
 - --ngram-prompt-lookup-max=<NGRAM_PROMPT_LOOKUP_MAX>
 - --use-v2-block-manager

b. Replace <NUM_SPECULATIVE_TOKENS> and <NGRAM_PROMPT_LOOKUP_MAX>
with your own values.

NOTE

Inferencing throughput varies depending on the model used for speculating
with n-grams.

4. To configure the vLLM model-serving runtime for speculative decoding with a draft model:

a. Remove the --model argument:

containers:
 - args:
 - --model=/mnt/models

b. Add the following arguments:

containers:
 - args:
 - --port=8080
 - --served-model-name={{.Name}}
 - --distributed-executor-backend=mp
 - --model=/mnt/models/<path_to_original_model>
 - --speculative-model=/mnt/models/<path_to_speculative_model>
 - --num-speculative-tokens=<NUM_SPECULATIVE_TOKENS>
 - --use-v2-block-manager

c. Replace <path_to_speculative_model> and <path_to_original_model> with the paths to
the speculative model and original model on your S3-compatible object storage.

d. Replace <NUM_SPECULATIVE_TOKENS> with your own value.

5. To configure the vLLM model-serving runtime for multi-modal inferencing:

a. Add the following arguments:

Red Hat OpenShift AI Self-Managed 2-latest Serving models

66

a. Add the following arguments:

containers:
 - args:
 - --trust-remote-code

NOTE

Only use the --trust-remote-code argument with models from trusted
sources.

6. Click Update.
The Serving runtimes page opens and shows the list of runtimes that are installed. Confirm
that the custom model-serving runtime you updated is shown.

7. Deploy the model by using the custom runtime as described in Deploying models on the single-
model serving platform.

Verification

If you have configured the vLLM model-serving runtime for speculative decoding, use the
following example command to verify API requests to your deployed model:

curl -v https://<inference_endpoint_url>:443/v1/chat/completions
-H "Content-Type: application/json"
-H "Authorization: Bearer <token>"

If you have configured the vLLM model-serving runtime for multi-modal inferencing, use the
following example command to verify API requests to the vision-language model (VLM) that
you have deployed:

curl -v https://<inference_endpoint_url>:443/v1/chat/completions
-H "Content-Type: application/json"
-H "Authorization: Bearer <token>"
-d '{"model":"<model_name>",
 "messages":
 [{"role":"<role>",
 "content":
 [{"type":"text", "text":"<text>"
 },
 {"type":"image_url", "image_url":"<image_url_link>"
 }
]
 }
]
 }'

Additional resources

vLLM Engine Arguments

OpenAI Compatible Server

3.12. PERFORMANCE TUNING ON THE SINGLE-MODEL SERVING

CHAPTER 3. SERVING LARGE MODELS

67

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/{default-url}/serving_models/serving-large-models_serving-large-models#adding-a-custom-model-serving-runtime-for-the-single-model-serving-platform_serving-large-models
https://docs.vllm.ai/en/latest/models/engine_args.html
https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html

3.12. PERFORMANCE TUNING ON THE SINGLE-MODEL SERVING
PLATFORM

Certain performance issues might require you to tune the parameters of your inference service or
model-serving runtime.

3.12.1. Resolving CUDA out-of-memory errors

In certain cases, depending on the model and hardware accelerator used, the TGIS memory auto-tuning
algorithm might underestimate the amount of GPU memory needed to process long sequences. This
miscalculation can lead to Compute Unified Architecture (CUDA) out-of-memory (OOM) error
responses from the model server. In such cases, you must update or add additional parameters in the
TGIS model-serving runtime, as described in the following procedure.

Prerequisites

You have logged in to Red Hat OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the admin group (for example,
rhoai-admins) in OpenShift.

Procedure

1. From the OpenShift AI dashboard, click Settings > Serving runtimes.
The Serving runtimes page opens and shows the model-serving runtimes that are already
installed and enabled.

2. Based on the runtime that you used to deploy your model, perform one of the following actions:

If you used the pre-installed TGIS Standalone ServingRuntime for KServe runtime,
duplicate the runtime to create a custom version and then follow the remainder of this
procedure. For more information about duplicating the pre-installed TGIS runtime, see
Adding a custom model-serving runtime for the single-model serving platform .

If you were already using a custom TGIS runtime, click the action menu (⋮) next to the
runtime and select Edit.
The embedded YAML editor opens and shows the contents of the custom model-serving
runtime.

3. Add or update the BATCH_SAFETY_MARGIN environment variable and set the value to 30.
Similarly, add or update the ESTIMATE_MEMORY_BATCH_SIZE environment variable and set
the value to 8.

spec:
 containers:
 env:
 - name: BATCH_SAFETY_MARGIN
 value: 30
 - name: ESTIMATE_MEMORY_BATCH
 value: 8

NOTE

Red Hat OpenShift AI Self-Managed 2-latest Serving models

68

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#adding-a-custom-model-serving-runtime-for-the-single-model-serving-platform_serving-large-models

NOTE

The BATCH_SAFETY_MARGIN parameter sets a percentage of free GPU
memory to hold back as a safety margin to avoid OOM conditions. The default
value of BATCH_SAFETY_MARGIN is 20. The
ESTIMATE_MEMORY_BATCH_SIZE parameter sets the batch size used in the
memory auto-tuning algorithm. The default value of
ESTIMATE_MEMORY_BATCH_SIZE is 16.

4. Click Update.
The Serving runtimes page opens and shows the list of runtimes that are installed. Observe
that the custom model-serving runtime you updated is shown.

5. To redeploy the model for the parameter updates to take effect, perform the following actions:

a. From the OpenShift AI dashboard, click Model Serving > Deployed Models.

b. Find the model you want to redeploy, click the action menu (⋮) next to the model, and
select Delete.

c. Redeploy the model as described in Deploying models on the single-model serving
platform.

Verification

You receive successful responses from the model server and no longer see CUDA OOM errors.

CHAPTER 3. SERVING LARGE MODELS

69

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2-latest/html/serving_models/serving-large-models_serving-large-models#deploying-models-on-the-single-model-serving-platform_serving-large-models

	Table of Contents
	CHAPTER 1. ABOUT MODEL SERVING
	CHAPTER 2. SERVING SMALL AND MEDIUM-SIZED MODELS
	2.1. CONFIGURING MODEL SERVERS
	2.1.1. Enabling the multi-model serving platform
	2.1.2. Adding a custom model-serving runtime for the multi-model serving platform
	2.1.3. Adding a model server for the multi-model serving platform
	2.1.4. Deleting a model server

	2.2. WORKING WITH DEPLOYED MODELS
	2.2.1. Deploying a model by using the multi-model serving platform
	2.2.2. Viewing a deployed model
	2.2.3. Updating the deployment properties of a deployed model
	2.2.4. Deleting a deployed model

	2.3. CONFIGURING MONITORING FOR THE MULTI-MODEL SERVING PLATFORM
	2.4. VIEWING MODEL-SERVING RUNTIME METRICS FOR THE MULTI-MODEL SERVING PLATFORM
	2.5. MONITORING MODEL PERFORMANCE
	2.5.1. Viewing performance metrics for all models on a model server
	2.5.2. Viewing HTTP request metrics for a deployed model

	CHAPTER 3. SERVING LARGE MODELS
	3.1. ABOUT THE SINGLE-MODEL SERVING PLATFORM
	3.1.1. Components
	3.1.2. Installation options
	3.1.3. Authorization
	3.1.4. Monitoring
	3.1.5. Supported model-serving runtimes
	3.1.6. Inference endpoints
	3.1.6.1. Example commands
	3.1.6.2. Additional resources

	3.2. ABOUT KSERVE DEPLOYMENT MODES
	3.2.1. Serverless mode
	3.2.2. Raw deployment mode

	3.3. CONFIGURING AUTOMATED INSTALLATION OF KSERVE
	3.4. MANUALLY INSTALLING KSERVE
	3.4.1. Installing KServe dependencies
	3.4.1.1. Creating an OpenShift Service Mesh instance
	3.4.1.2. Creating a Knative Serving instance
	3.4.1.3. Creating secure gateways for Knative Serving

	3.4.2. Installing KServe
	3.4.3. Manually adding an authorization provider
	3.4.3.1. Installing the Red Hat Authorino Operator
	3.4.3.2. Creating an Authorino instance
	3.4.3.3. Configuring an OpenShift Service Mesh instance to use Authorino
	3.4.3.4. Configuring authorization for KServe

	3.4.4. Configuring persistent volume claims (PVC) on KServe

	3.5. ADDING AN AUTHORIZATION PROVIDER FOR THE SINGLE-MODEL SERVING PLATFORM
	3.6. DEPLOYING MODELS BY USING THE SINGLE-MODEL SERVING PLATFORM
	3.6.1. Enabling the single-model serving platform
	3.6.2. Adding a custom model-serving runtime for the single-model serving platform
	3.6.3. Deploying models on the single-model serving platform

	3.7. MAKING INFERENCE REQUESTS TO MODELS DEPLOYED ON THE SINGLE-MODEL SERVING PLATFORM
	3.7.1. Accessing the authorization token for a deployed model
	3.7.2. Accessing the inference endpoint for a deployed model
	3.7.2.1. Deploying models on single node openshift using kserve raw deployment mode

	3.8. CONFIGURING MONITORING FOR THE SINGLE-MODEL SERVING PLATFORM
	3.9. VIEWING MODEL-SERVING RUNTIME METRICS FOR THE SINGLE-MODEL SERVING PLATFORM
	3.10. MONITORING MODEL PERFORMANCE
	3.10.1. Viewing performance metrics for a deployed model

	3.11. OPTIMIZING MODEL-SERVING RUNTIMES
	3.11.1. Optimizing the vLLM model-serving runtime

	3.12. PERFORMANCE TUNING ON THE SINGLE-MODEL SERVING PLATFORM
	3.12.1. Resolving CUDA out-of-memory errors

