
Red Hat OpenShift AI Self-Managed
2.10

Working with distributed workloads

Use distributed workloads for faster and more efficient data processing and model
training

Last Updated: 2024-06-26

Red Hat OpenShift AI Self-Managed 2.10 Working with distributed
workloads

Use distributed workloads for faster and more efficient data processing and model training

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Distributed workloads enable data scientists to use multiple cluster nodes in parallel for faster and
more efficient data processing and model training. The CodeFlare framework simplifies task
orchestration and monitoring, and offers seamless integration for automated resource scaling and
optimal node utilization with advanced GPU support.

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. OVERVIEW OF DISTRIBUTED WORKLOADS
1.1. OVERVIEW OF KUEUE RESOURCES

1.1.1. Resource flavour
1.1.2. Cluster queue
1.1.3. Local queue

CHAPTER 2. CONFIGURING DISTRIBUTED WORKLOADS
2.1. CONFIGURING THE DISTRIBUTED WORKLOADS COMPONENTS
2.2. CONFIGURING QUOTA MANAGEMENT FOR DISTRIBUTED WORKLOADS
2.3. CONFIGURING THE CODEFLARE OPERATOR

CHAPTER 3. RUNNING DISTRIBUTED WORKLOADS
3.1. RUNNING DISTRIBUTED DATA SCIENCE WORKLOADS FROM NOTEBOOKS
3.2. RUNNING DISTRIBUTED DATA SCIENCE WORKLOADS FROM DATA SCIENCE PIPELINES
3.3. RUNNING DISTRIBUTED DATA SCIENCE WORKLOADS IN A DISCONNECTED ENVIRONMENT

CHAPTER 4. MONITORING DISTRIBUTED WORKLOADS
4.1. VIEWING PROJECT METRICS FOR DISTRIBUTED WORKLOADS
4.2. VIEWING THE STATUS OF DISTRIBUTED WORKLOADS

3

4
4
4
5
6

8
8

10
13

15
15
17

20

23
23
24

Table of Contents

1

Red Hat OpenShift AI Self-Managed 2.10 Working with distributed workloads

2

PREFACE
To train complex machine-learning models or process data more quickly, data scientists can use the
distributed workloads feature to run their jobs on multiple OpenShift worker nodes in parallel. This
approach significantly reduces the task completion time, and enables the use of larger datasets and
more complex models.

PREFACE

3

CHAPTER 1. OVERVIEW OF DISTRIBUTED WORKLOADS
You can use the distributed workloads feature to queue, scale, and manage the resources required to
run data science workloads across multiple nodes in an OpenShift cluster simultaneously. Typically, data
science workloads include several types of artificial intelligence (AI) workloads, including machine
learning (ML) and Python workloads.

Distributed workloads provide the following benefits:

You can iterate faster and experiment more frequently because of the reduced processing time.

You can use larger datasets, which can lead to more accurate models.

You can use complex models that could not be trained on a single node.

You can submit distributed workloads at any time, and the system then schedules the
distributed workload when the required resources are available.

The distributed workloads infrastructure includes the following components:

CodeFlare Operator

Secures deployed Ray clusters and grants access to their URLs

CodeFlare SDK

Defines and controls the remote distributed compute jobs and infrastructure for any Python-based
environment

NOTE

The CodeFlare SDK is not installed as part of OpenShift AI, but it is contained in some
of the notebook images provided by OpenShift AI.

KubeRay

Manages remote Ray clusters on OpenShift for running distributed compute workloads

Kueue

Manages quotas and how distributed workloads consume them, and manages the queueing of
distributed workloads with respect to quotas

You can run distributed workloads from data science pipelines, from Jupyter notebooks, or from
Microsoft Visual Studio Code files.

NOTE

Data Science Pipelines (DSP) workloads are not managed by the distributed workloads
feature, and are not included in the distributed workloads metrics.

1.1. OVERVIEW OF KUEUE RESOURCES

Cluster administrators can configure Kueue resource flavors, cluster queues, and local queues to
manage distributed workload resources across multiple nodes in an OpenShift cluster.

1.1.1. Resource flavour

Red Hat OpenShift AI Self-Managed 2.10 Working with distributed workloads

4

The Kueue ResourceFlavor object describes the resource variations that are available in a cluster.

Resources in a cluster can be homogenous or heterogeneous:

Homogeneous resources are identical across the cluster: same node type, CPUs, memory,
accelerators, and so on.

Heterogeneous resources have variations across the cluster.

If a cluster has homogeneous resources, or if it is not necessary to manage separate quotas for different
flavors of a resource, a cluster administrator can create an empty ResourceFlavor object named
default-flavor, without any labels or taints, as follows:

Empty Kueue resource flavor for homegeneous resources

If a cluster has heterogeneous resources, cluster administrators can define a different resource flavor
for each variation in the resources available. Example variations include different CPUs, different
memory, or different accelerators. Cluster administrators can then associate the resource flavors with
cluster nodes by using labels, taints, and tolerations, as shown in the following example.

Example Kueue resource flavor for heterogeneous resources

NOTE

In OpenShift AI 2.10, Red Hat supports only a single cluster queue per cluster (that is,
homogenous clusters), and only empty resource flavors.

For more information about configuring resource flavors, see Resource Flavor in the Kueue
documentation.

1.1.2. Cluster queue

The Kueue ClusterQueue object manages a pool of cluster resources such as pods, CPUs, memory, and

apiVersion: kueue.x-k8s.io/v1beta1
kind: ResourceFlavor
metadata:
 name: default-flavor

apiVersion: kueue.x-k8s.io/v1beta1
kind: ResourceFlavor
metadata:
 name: "spot"
spec:
 nodeLabels:
 instance-type: spot
 nodeTaints:
 - effect: NoSchedule
 key: spot
 value: "true"
 tolerations:
 - key: "spot-taint"
 operator: "Exists"
 effect: "NoSchedule"

CHAPTER 1. OVERVIEW OF DISTRIBUTED WORKLOADS

5

https://kueue.sigs.k8s.io/docs/concepts/resource_flavor/

The Kueue ClusterQueue object manages a pool of cluster resources such as pods, CPUs, memory, and
accelerators. A cluster can have multiple cluster queues, and each cluster queue can reference multiple
resource flavors.

Cluster administrators can configure cluster queues to define the resource flavors that the queue
manages, and assign a quota for each resource in each resource flavor. Cluster administrators can also
configure usage limits and queueing strategies to apply fair sharing rules across multiple cluster queues
in a cluster.

The following example configures a cluster queue to assign a quota of 9 CPUs, 36 GiB memory, 5 pods,
and 5 NVIDIA GPUs.

Example cluster queue

The cluster queue starts a distributed workload only if the total required resources are within these
quota limits. If the sum of the requests for a resource in a distributed workload is greater than the
specified quota for that resource in the cluster queue, the cluster queue does not admit the distributed
workload.

For more information about configuring cluster queues, see Cluster Queue in the Kueue documentation.

1.1.3. Local queue

The Kueue LocalQueue object groups closely related distributed workloads in a project. Cluster
administrators can configure local queues to specify the project name and the associated cluster queue.
Each local queue then grants access to the resources that its specified cluster queue manages. A cluster
administrator can optionally define one local queue in a project as the default local queue for that
project.

When configuring a distributed workload, the user specifies the local queue name. If a cluster
administrator configured a default local queue, the user can omit the local queue specification from the
distributed workload code.

Kueue allocates the resources for a distributed workload from the cluster queue that is associated with
the local queue, if the total requested resources are within the quota limits specified in that cluster
queue.

apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
 name: "cluster-queue"
spec:
 namespaceSelector: {} # match all.
 resourceGroups:
 - coveredResources: ["cpu", "memory", "pods", "nvidia.com/gpu"]
 flavors:
 - name: "default-flavor"
 resources:
 - name: "cpu"
 nominalQuota: 9
 - name: "memory"
 nominalQuota: 36Gi
 - name: "pods"
 nominalQuota: 5
 - name: "nvidia.com/gpu"
 nominalQuota: '5'

Red Hat OpenShift AI Self-Managed 2.10 Working with distributed workloads

6

https://kueue.sigs.k8s.io/docs/concepts/cluster_queue/

The following example configures a local queue called team-a-queue for the team-a project, and
specifies cluster-queue as the associated cluster queue.

Example local queue

In this example, the kueue.x-k8s.io/default-queue: "true" annotation defines this local queue as the
default local queue for the team-a project. If a user submits a distributed workload in the team-a project
and that distributed workload does not specify a local queue in the cluster configuration, Kueue
automatically routes the distributed workload to the team-a-queue local queue. The distributed
workload can then access the resources that the cluster-queue cluster queue manages.

For more information about configuring local queues, see Local Queue in the Kueue documentation.

apiVersion: kueue.x-k8s.io/v1beta1
kind: LocalQueue
metadata:
 namespace: team-a
 name: team-a-queue
 annotations:
 kueue.x-k8s.io/default-queue: "true"
spec:
 clusterQueue: cluster-queue

CHAPTER 1. OVERVIEW OF DISTRIBUTED WORKLOADS

7

https://kueue.sigs.k8s.io/docs/concepts/local_queue/

CHAPTER 2. CONFIGURING DISTRIBUTED WORKLOADS
To configure the distributed workloads feature for your data scientists to use in OpenShift AI, you must
create the required Kueue resources, enable several components in the Red Hat OpenShift AI Operator,
and optionally configure the CodeFlare Operator.

2.1. CONFIGURING THE DISTRIBUTED WORKLOADS COMPONENTS

To configure the distributed workloads feature for your data scientists to use in OpenShift AI, you must
enable several components.

Prerequisites

You have logged in to OpenShift Container Platform with the cluster-admin role.

You have access to the data science cluster.

You have installed Red Hat OpenShift AI.

You have sufficient resources. In addition to the minimum OpenShift AI resources described in
Installing and deploying OpenShift AI (for disconnected environments, see Deploying
OpenShift AI in a disconnected environment), you need 1.6 vCPU and 2 GiB memory to deploy
the distributed workloads infrastructure.

You have access to a Ray cluster image. For information about how to create a Ray cluster, see
the Ray Clusters documentation.

NOTE

Mutual Transport Layer Security (mTLS) is enabled by default in the CodeFlare
component in OpenShift AI. OpenShift AI 2.10 does not support the
submissionMode=K8sJobMode setting in the Ray job specification, so the
KubeRay Operator cannot create a submitter Kubernetes Job to submit the Ray
job. Instead, users must configure the Ray job specification to set
submissionMode=HTTPMode only, so that the KubeRay Operator sends a
request to the RayCluster to create a Ray job.

You have access to the data sets and models that the distributed workload uses.

You have access to the Python dependencies for the distributed workload.

You have removed any previously installed instances of the CodeFlare Operator, as described in
the Knowledgebase solution How to migrate from a separately installed CodeFlare Operator in
your data science cluster.

If you want to use graphics processing units (GPUs), you have enabled GPU support in
OpenShift AI. See Enabling GPU support in OpenShift AI .

NOTE

In OpenShift AI 2.10, Red Hat supports only NVIDIA GPU accelerators for
distributed workloads.

If you want to use self-signed certificates, you have added them to a central Certificate

Red Hat OpenShift AI Self-Managed 2.10 Working with distributed workloads

8

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/installing_and_uninstalling_openshift_ai_self-managed/installing-and-deploying-openshift-ai_install
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/installing_and_uninstalling_openshift_ai_self-managed_in_a_disconnected_environment/deploying-openshift-ai-in-a-disconnected-environment_install
https://docs.ray.io/en/latest/cluster/getting-started.html
https://access.redhat.com/solutions/7043796
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/managing_resources/managing-cluster-resources_cluster-mgmt#enabling-gpu-support_cluster-mgmt

Authority (CA) bundle as described in Working with certificates (for disconnected
environments, see Working with certificates). No additional configuration is necessary to use
those certificates with distributed workloads. The centrally configured self-signed certificates
are automatically available in the workload pods at the following mount points:

Cluster-wide CA bundle:

Custom CA bundle:

Procedure

1. In the OpenShift Container Platform console, click Operators → Installed Operators.

2. Search for the Red Hat OpenShift AI Operator, and then click the Operator name to open the
Operator details page.

3. Click the Data Science Cluster tab.

4. Click the default instance name (for example, default-dsc) to open the instance details page.

5. Click the YAML tab to show the instance specifications.

6. Enable the required distributed workloads components. In the spec:components section, set
the managementState field correctly for the required components. The list of required
components depends on whether the distributed workload is run from a pipeline or notebook or
both, as shown in the following table.

Table 2.1. Components required for distributed workloads

Component Pipelines only Notebooks only Pipelines and
notebooks

codeflare Managed Managed Managed

dashboard Managed Managed Managed

datasciencepipelines Managed Removed Managed

kueue Managed Managed Managed

ray Managed Managed Managed

workbenches Removed Managed Managed

7. Click Save. After a short time, the components with a Managed state are ready.

/etc/pki/tls/certs/odh-trusted-ca-bundle.crt
/etc/ssl/certs/odh-trusted-ca-bundle.crt

/etc/pki/tls/certs/odh-ca-bundle.crt
/etc/ssl/certs/odh-ca-bundle.crt

CHAPTER 2. CONFIGURING DISTRIBUTED WORKLOADS

9

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/installing_and_uninstalling_openshift_ai_self-managed/working-with-certificates_certs
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/installing_and_uninstalling_openshift_ai_self-managed_in_a_disconnected_environment/working-with-certificates_certs

Verification

Check the status of the codeflare-operator-manager, kuberay-operator, and kueue-controller-
manager pods, as follows:

1. In the OpenShift Container Platform console, from the Project list, select redhat-ods-
applications.

2. Click Workloads → Deployments.

3. Search for the codeflare-operator-manager, kuberay-operator, and kueue-controller-
manager deployments. In each case, check the status as follows:

a. Click the deployment name to open the deployment details page.

b. Click the Pods tab.

c. Check the pod status.
When the status of the codeflare-operator-manager-<pod-id>, kuberay-operator-<pod-
id>, and kueue-controller-manager-<pod-id> pods is Running, the pods are ready to use.

d. To see more information about each pod, click the pod name to open the pod details page,
and then click the Logs tab.

2.2. CONFIGURING QUOTA MANAGEMENT FOR DISTRIBUTED
WORKLOADS

Configure quotas for distributed workloads on a cluster, so that you can share resources between
several data science projects.

Prerequisites

You have cluster administrator privileges for your OpenShift Container Platform cluster.

You have downloaded and installed the OpenShift command-line interface (CLI). See Installing
the OpenShift CLI.

You have enabled the required distributed workloads components as described in Configuring
the distributed workloads components.

You have created a data science project that contains a workbench, and the workbench is
running a default notebook image that contains the CodeFlare SDK, for example, the Standard
Data Science notebook. For information about how to create a project, see Creating a data
science project.

You have sufficient resources. In addition to the base OpenShift AI resources, you need 1.6
vCPU and 2 GiB memory to deploy the distributed workloads infrastructure.

The resources are physically available in the cluster.

NOTE

In OpenShift AI 2.10, Red Hat supports only a single cluster queue per cluster
(that is, homogenous clusters), and only empty resource flavors. For more
information about Kueue resources, see Overview of Kueue resources.

If you want to use graphics processing units (GPUs), you have enabled GPU support in

Red Hat OpenShift AI Self-Managed 2.10 Working with distributed workloads

10

https://docs.openshift.com/container-platform/4.15/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_with_distributed_workloads/configuring-distributed-workloads_distributed-workloads#configuring-the-distributed-workloads-components_distributed-workloads
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_on_data_science_projects/working-on-data-science-projects_nb-server#creating-a-data-science-project_nb-server
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_with_distributed_workloads/overview-of-distributed-workloads_distributed-workloads#overview-of-kueue-resources_distributed-workloads

If you want to use graphics processing units (GPUs), you have enabled GPU support in
OpenShift AI. See Enabling GPU support in OpenShift AI .

NOTE

In OpenShift AI 2.10, Red Hat supports only NVIDIA GPU accelerators for
distributed workloads.

Procedure

1. In a terminal window, if you are not already logged in to your OpenShift cluster as a cluster
administrator, log in to the OpenShift CLI as shown in the following example:

$ oc login <openshift_cluster_url> -u <admin_username> -p <password>

2. Create an empty Kueue resource flavor, as follows:

a. Create a file called default_flavor.yaml and populate it with the following content:

Empty Kueue resource flavor

b. Apply the configuration to create the default-flavor object:

3. Create a cluster queue to manage the empty Kueue resource flavor, as follows:

a. Create a file called cluster_queue.yaml and populate it with the following content:

Example cluster queue

b. Replace the example quota values (9 CPUs, 36 GiB memory, and 5 NVIDIA GPUs) with the

apiVersion: kueue.x-k8s.io/v1beta1
kind: ResourceFlavor
metadata:
 name: default-flavor

$ oc apply -f default_flavor.yaml

apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
 name: "cluster-queue"
spec:
 namespaceSelector: {} # match all.
 resourceGroups:
 - coveredResources: ["cpu", "memory", "nvidia.com/gpu"]
 flavors:
 - name: "default-flavor"
 resources:
 - name: "cpu"
 nominalQuota: 9
 - name: "memory"
 nominalQuota: 36Gi
 - name: "nvidia.com/gpu"
 nominalQuota: 5

CHAPTER 2. CONFIGURING DISTRIBUTED WORKLOADS

11

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/managing_resources/managing-cluster-resources_cluster-mgmt#enabling-gpu-support_cluster-mgmt

b. Replace the example quota values (9 CPUs, 36 GiB memory, and 5 NVIDIA GPUs) with the
appropriate values for your cluster queue. The cluster queue will start a distributed workload
only if the total required resources are within these quota limits.
You must specify a quota for each resource that the user can request, even if the requested
value is 0, by updating the spec.resourceGroups section as follows:

Include the resource name in the coveredResources list.

Specify the resource name and nominalQuota in the flavors.resources section, even
if the nominalQuota value is 0.

c. Apply the configuration to create the cluster-queue object:

4. Create a local queue that points to your cluster queue, as follows:

a. Create a file called local_queue.yaml and populate it with the following content:

Example local queue

The kueue.x-k8s.io/default-queue: 'true' annotation defines this queue as the default
queue. Distributed workloads are submitted to this queue if no local_queue value is
specified in the ClusterConfiguration section of the data science pipeline or Jupyter
notebook or Microsoft Visual Studio Code file.

b. Update the namespace value to specify the same namespace as in the
ClusterConfiguration section that creates the Ray cluster.

c. Optional: Update the name value accordingly.

d. Apply the configuration to create the local-queue object:

The cluster queue allocates the resources to run distributed workloads in the local queue.

Verification

Check the status of the local queue in a project, as follows:

$ oc get -n <project-name> localqueues

Additional resources

$ oc apply -f cluster_queue.yaml

apiVersion: kueue.x-k8s.io/v1beta1
kind: LocalQueue
metadata:
 namespace: test
 name: local-queue-test
 annotations:
 kueue.x-k8s.io/default-queue: 'true'
spec:
 clusterQueue: cluster-queue

$ oc apply -f local_queue.yaml

Red Hat OpenShift AI Self-Managed 2.10 Working with distributed workloads

12

Kueue documentation

2.3. CONFIGURING THE CODEFLARE OPERATOR

If you want to change the default configuration of the CodeFlare Operator for distributed workloads in
OpenShift AI, you can edit the associated config map.

Prerequisites

You have logged in to OpenShift Container Platform with the cluster-admin role.

You have enabled the required distributed workloads components as described in Configuring
the distributed workloads components.

Procedure

1. In the OpenShift Container Platform console, click Workloads → ConfigMaps.

2. From the Project list, select redhat-ods-applications.

3. Search for the codeflare-operator-config config map, and click the config map name to open
the ConfigMap details page.

4. Click the YAML tab to show the config map specifications.

5. In the data:config.yaml:kuberay section, you can edit the following entries:

ingressDomain

This configuration option is null (ingressDomain: "") by default. Do not change this option
unless the Ingress Controller is not running on OpenShift. OpenShift AI uses this value to
generate the dashboard and client routes for every Ray Cluster, as shown in the following
examples:

Example dashboard and client routes

mTLSEnabled

This configuration option is enabled (mTLSEnabled: true) by default. When this option is
enabled, the Ray Cluster pods create certificates that are used for mutual Transport Layer
Security (mTLS), a form of mutual authentication, between Ray Cluster nodes. When this
option is enabled, Ray clients cannot connect to the Ray head node unless they download
the generated certificates from the ca-secret-_<cluster_name>_ secret, generate the
necessary certificates for mTLS communication, and then set the required Ray environment
variables. Users must then re-initialize the Ray clients to apply the changes. The CodeFlare
SDK provides the following functions to simplify the authentication process for Ray clients:

Example Ray client authentication code

ray-dashboard-<clustername>-<namespace>.<your.ingress.domain>
ray-client-<clustername>-<namespace>.<your.ingress.domain>

from codeflare_sdk import generate_cert

generate_cert.generate_tls_cert(cluster.config.name, cluster.config.namespace)

CHAPTER 2. CONFIGURING DISTRIBUTED WORKLOADS

13

https://kueue.sigs.k8s.io/docs/concepts/
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_with_distributed_workloads/configuring-distributed-workloads_distributed-workloads#configuring-the-distributed-workloads-components_distributed-workloads

rayDashboardOauthEnabled

This configuration option is enabled (rayDashboardOAuthEnabled: true) by default. When
this option is enabled, OpenShift AI places an OpenShift OAuth proxy in front of the Ray
Cluster head node. Users must then authenticate by using their OpenShift cluster login
credentials when accessing the Ray Dashboard through the browser. If users want to access
the Ray Dashboard in another way (for example, by using the Ray JobSubmissionClient
class), they must set an authorization header as part of their request, as shown in the
following example:

Example authorization header

6. To save your changes, click Save.

7. To apply your changes, delete the pod:

a. Click Workloads → Pods.

b. Find the codeflare-operator-manager-<pod-id> pod.

c. Click the options menu (⋮) for that pod, and then click Delete Pod. The pod restarts with
your changes applied.

Verification

Check the status of the codeflare-operator-manager pod, as follows:

1. In the OpenShift Container Platform console, click Workloads → Deployments.

2. Search for the codeflare-operator-manager deployment, and then click the deployment name
to open the deployment details page.

3. Click the Pods tab. When the status of the codeflare-operator-manager-<pod-id> pod is
Running, the pod is ready to use. To see more information about the pod, click the pod name to
open the pod details page, and then click the Logs tab.

generate_cert.export_env(cluster.config.name, cluster.config.namespace)

ray.init(cluster.cluster_uri())

{Authorization: "Bearer <your-openshift-token>"}

Red Hat OpenShift AI Self-Managed 2.10 Working with distributed workloads

14

CHAPTER 3. RUNNING DISTRIBUTED WORKLOADS
In OpenShift AI, you can run a distributed workload from a notebook or from a pipeline. You can also run
distributed workloads in a disconnected environment if you have access to all of the required software.

3.1. RUNNING DISTRIBUTED DATA SCIENCE WORKLOADS FROM
NOTEBOOKS

To run a distributed data science workload from a notebook, you must first provide the link to your Ray
cluster image.

Prerequisites

You have access to a data science cluster that is configured to run distributed workloads as
described in Configuring distributed workloads.

Your cluster administrator has created the required Kueue resources as described in
Configuring quota management for distributed workloads .

Optional: Your cluster administrator has defined a default local queue for the Ray cluster by
creating a LocalQueue resource and adding the following annotation to its configuration
details, as described in Configuring quota management for distributed workloads :

NOTE

If your cluster administrator does not define a default local queue, you must
specify a local queue in each notebook.

You have created a data science project that contains a workbench, and the workbench is
running a default notebook image that contains the CodeFlare SDK, for example, the Standard
Data Science notebook. For information about how to create a project, see Creating a data
science project.

You have Admin access for the data science project.

If you created the project, you automatically have Admin access.

If you did not create the project, your cluster administrator must give you Admin access.

You have launched your notebook server and logged in to your notebook editor. The examples
in this procedure refer to the JupyterLab integrated development environment (IDE).

Procedure

1. Download the demo notebooks provided by the CodeFlare SDK. The demo notebooks provide
guidelines for how to use the CodeFlare stack in your own notebooks.
To access the demo notebooks, clone the codeflare-sdk repository as follows:

a. In the JupyterLab interface, click Git > Clone a Repository.

b. In the "Clone a repo" dialog, enter https://github.com/project-codeflare/codeflare-sdk.git
and then click Clone. The codeflare-sdk repository is listed in the left navigation pane.

"kueue.x-k8s.io/default-queue": "true"

CHAPTER 3. RUNNING DISTRIBUTED WORKLOADS

15

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_with_distributed_workloads/configuring-distributed-workloads_distributed-workloads
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_with_distributed_workloads/configuring-distributed-workloads_distributed-workloads#configuring-quota-management-for-distributed-workloads_distributed-workloads
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_with_distributed_workloads/configuring-distributed-workloads_distributed-workloads#configuring-quota-management-for-distributed-workloads_distributed-workloads
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_on_data_science_projects/working-on-data-science-projects_nb-server#creating-a-data-science-project_nb-server

2. Locate the downloaded demo notebooks as follows:

a. In the JupyterLab interface, in the left navigation pane, double-click codeflare-sdk.

b. Double-click demo-notebooks, and then double-click guided-demos.

3. Update each example demo notebook as follows:

a. If not already specified, update the import section to import the generate_cert component:

Updated import section

b. Replace the default namespace value with the name of your data science project.

c. In the TokenAuthentication section of your notebook code, provide the token and server
details to authenticate to the OpenShift cluster by using the CodeFlare SDK.

d. Replace the link to the example community image with a link to your Ray cluster image.

e. Ensure that the following Ray cluster authentication code is included after the Ray cluster
creation section.

Ray cluster authentication code

NOTE

Mutual Transport Layer Security (mTLS) is enabled by default in the
CodeFlare component in OpenShift AI. You must include the Ray cluster
authentication code to enable the Ray client that runs within a notebook to
connect to a secure Ray cluster that has mTLS enabled.

f. If you have not configured a default local queue by including the kueue.x-k8s.io/default-
queue: 'true' annotation as described in Configuring quota management for distributed
workloads, update the ClusterConfiguration section to specify the local queue for the Ray
cluster, as shown in the following example:

Example local queue assignment

g. Optional: In the ClusterConfiguration section, assign a dictionary of labels parameters to
the Ray cluster for identification and management purposes, as shown in the following
example:

Example labels assignment

from codeflare_sdk import generate_cert

generate_cert.generate_tls_cert(cluster.config.name, cluster.config.namespace)
generate_cert.export_env(cluster.config.name, cluster.config.namespace)

local_queue="your_local_queue_name"

labels = {"exampleLabel1": "exampleLabel1Value", "exampleLabel2":
"exampleLabel2Value"}

Red Hat OpenShift AI Self-Managed 2.10 Working with distributed workloads

16

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_with_distributed_workloads/configuring-distributed-workloads_distributed-workloads#configuring-quota-management-for-distributed-workloads_distributed-workloads

4. Run the notebooks.

Verification

The notebooks run to completion without errors. In the notebooks, the output from the cluster.status()
function or cluster.details() function indicates that the Ray cluster is Active.

3.2. RUNNING DISTRIBUTED DATA SCIENCE WORKLOADS FROM
DATA SCIENCE PIPELINES

To run a distributed data science workload from a data science pipeline, you must first update the
pipeline to include a link to your Ray cluster image.

Prerequisites

You have logged in to OpenShift Container Platform with the cluster-admin role.

You have access to a data science cluster that is configured to run distributed workloads as
described in Configuring distributed workloads.

Your cluster administrator has created the required Kueue resources as described in
Configuring quota management for distributed workloads .

Optional: Your cluster administrator has defined a default local queue for the Ray cluster by
creating a LocalQueue resource and adding the following annotation to the configuration
details for that LocalQueue resource, as described in Configuring quota management for
distributed workloads:

NOTE

If your cluster administrator does not define a default local queue, you must
specify a local queue in each pipeline.

You have access to S3-compatible object storage.

You have logged in to Red Hat OpenShift AI.

You have created a data science project that contains a workbench, and the workbench is
running a default notebook image that contains the CodeFlare SDK, for example, the Standard
Data Science notebook. For information about how to create a project, see Creating a data
science project.

You have Admin access for the data science project.

If you created the project, you automatically have Admin access.

If you did not create the project, your cluster administrator must give you Admin access.

Procedure

1. Create a data connection to connect the object storage to your data science project, as
described in Adding a data connection to your data science project .

2. Configure a pipeline server to use the data connection, as described in Configuring a pipeline

"kueue.x-k8s.io/default-queue": "true"

CHAPTER 3. RUNNING DISTRIBUTED WORKLOADS

17

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_with_distributed_workloads/configuring-distributed-workloads_distributed-workloads
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_with_distributed_workloads/configuring-distributed-workloads_distributed-workloads#configuring-quota-management-for-distributed-workloads_distributed-workloads
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_with_distributed_workloads/configuring-distributed-workloads_distributed-workloads#configuring-quota-management-for-distributed-workloads_distributed-workloads
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_on_data_science_projects/working-on-data-science-projects_nb-server#creating-a-data-science-project_nb-server
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_on_data_science_projects/working-on-data-science-projects_nb-server#adding-a-data-connection-to-your-data-science-project_nb-server

2. Configure a pipeline server to use the data connection, as described in Configuring a pipeline
server.

3. Create the data science pipeline as follows:

a. Install the kfp Python package, which is required for all pipelines:

b. Install any other dependencies that are required for your pipeline.

c. Build your data science pipeline in Python code.
For example, create a file named compile_example.py with the following content:

$ pip install kfp

from kfp import dsl

@dsl.component(
 base_image="registry.redhat.io/ubi8/python-39:latest",
 packages_to_install=['codeflare-sdk']
)

def ray_fn():
 import ray 1
 import time 2
 from codeflare_sdk import Cluster, ClusterConfiguration, generate_cert 3

 cluster = Cluster(4
 ClusterConfiguration(
 namespace="my_project", 5
 name="raytest",
 num_workers=1,
 head_cpus="500m",
 min_memory=1,
 max_memory=1,
 num_gpus=0,
 image="quay.io/project-codeflare/ray:latest-py39-cu118", 6
 local_queue="local_queue_name", 7
)
)

 print(cluster.status())
 cluster.up() 8
 // cluster.wait_ready()
 time.sleep(180) 9
 print(cluster.status())
 print(cluster.details())

 ray_dashboard_uri = cluster.cluster_dashboard_uri()
 ray_cluster_uri = cluster.cluster_uri()

Red Hat OpenShift AI Self-Managed 2.10 Working with distributed workloads

18

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_on_data_science_projects/working-with-data-science-pipelines_ds-pipelines#configuring-a-pipeline-server_ds-pipelines

1

2

3

4

5

6

Imports Ray.

Imports the time package so that you can use the sleep function to wait during code
execution, as a workaround for RHOAIENG-7346.

Imports packages from the CodeFlare SDK to define the cluster functions.

Specifies the Ray cluster configuration: replace these example values with the values
for your Ray cluster.

Optional: Specifies the project where the Ray cluster is created. Replace the example
value with the name of your project. If you omit this line, the Ray cluster is created in
the current project.

Specifies the location of the Ray cluster image. If you are running this code in a
disconnected environment, replace the default value with the location for your
environment.

 print(ray_dashboard_uri, ray_cluster_uri)

 # Enable Ray client to connect to secure Ray cluster that has mTLS enabled
 generate_cert.generate_tls_cert(cluster.config.name, cluster.config.namespace) 10
 generate_cert.export_env(cluster.config.name, cluster.config.namespace)

 ray.init(address=ray_cluster_uri)
 print("Ray cluster is up and running: ", ray.is_initialized())

 @ray.remote
 def train_fn(): 11
 # complex training function
 return 100

 result = ray.get(train_fn.remote())
 assert 100 == result
 ray.shutdown()
 cluster.down() 12
 auth.logout()
 return result

@dsl.pipeline(13
 name="Ray Simple Example",
 description="Ray Simple Example",
)

def ray_integration():
 ray_fn()

if __name__ == '__main__': 14
 from kfp.compiler import Compiler
 Compiler().compile(ray_integration, 'compiled-example.yaml')

CHAPTER 3. RUNNING DISTRIBUTED WORKLOADS

19

https://issues.redhat.com/browse/RHOAIENG-7346

7

8

9

10

11

12

13

14

Specifies the local queue to which the Ray cluster will be submitted. If a default local
queue is configured, you can omit this line.

Creates a Ray cluster by using the specified image and configuration.

Waits until the Ray cluster is ready before proceeding. As a workaround for
RHOAIENG-7346, use time.sleep(180) instead of cluster.wait_ready().

Enables the Ray client to connect to a secure Ray cluster that has mutual Transport
Layer Security (mTLS) enabled. mTLS is enabled by default in the CodeFlare
component in OpenShift AI.

Replace the example details in this section with the details for your workload.

Removes the Ray cluster when your workload is finished.

Replace the example name and description with the values for your workload.

Compiles the Python code and saves the output in a YAML file.

d. Compile the Python file (in this example, the compile_example.py file):

This command creates a YAML file (in this example, compiled-example.yaml), which you
can import in the next step.

4. Import your data science pipeline, as described in Importing a data science pipeline .

5. Schedule the pipeline run, as described in Scheduling a pipeline run.

6. When the pipeline run is complete, confirm that it is included in the list of triggered pipeline runs,
as described in Viewing the details of a pipeline run.

Verification

The YAML file is created and the pipeline run completes without errors.

You can view the run details, as described in Viewing the details of a pipeline run.

Additional resources

Working with data science pipelines

Ray Clusters documentation

3.3. RUNNING DISTRIBUTED DATA SCIENCE WORKLOADS IN A
DISCONNECTED ENVIRONMENT

To run a distributed data science workload in a disconnected environment, you must be able to access a
Ray cluster image, and the data sets and Python dependencies used by the workload, from the
disconnected environment.

Prerequisites

$ python compile_example.py

Red Hat OpenShift AI Self-Managed 2.10 Working with distributed workloads

20

https://issues.redhat.com/browse/RHOAIENG-7346
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_on_data_science_projects/working-with-data-science-pipelines_ds-pipelines#importing-a-data-science-pipeline_ds-pipelines
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_on_data_science_projects/working-with-data-science-pipelines_ds-pipelines#scheduling-a-pipeline-run_ds-pipelines
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_on_data_science_projects/working-with-data-science-pipelines_ds-pipelines#viewing-the-details-of-a-pipeline-run_ds-pipelines
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_on_data_science_projects/working-with-data-science-pipelines_ds-pipelines#viewing-the-details-of-a-pipeline-run_ds-pipelines
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_on_data_science_projects/working-with-data-science-pipelines_ds-pipelines
https://docs.ray.io/en/latest/cluster/getting-started.html

You have logged in to OpenShift Container Platform with the cluster-admin role.

You have access to the disconnected data science cluster.

You have installed Red Hat OpenShift AI and created a mirror image as described in Installing
and uninstalling OpenShift AI Self-Managed in a disconnected environment.

You can access the following software from the disconnected cluster:

A Ray cluster image

An image that includes the openssl package, for the creation of TLS certificates when
creating Ray clusters

The data sets and models to be used by the workload

The Python dependencies for the workload, either in a Ray image or in your own Python
Package Index (PyPI) server that is available from the disconnected cluster

You have logged in to Red Hat OpenShift AI.

You have created a data science project that contains a workbench, and the workbench is
running a default notebook image that contains the CodeFlare SDK, for example, the Standard
Data Science notebook. For information about how to create a project, see Creating a data
science project.

You have Admin access for the data science project.

If you created the project, you automatically have Admin access.

If you did not create the project, your cluster administrator must give you Admin access.

Procedure

1. Configure the disconnected data science cluster to run distributed workloads as described in
Configuring distributed workloads.

2. In the ClusterConfiguration section of the notebook or pipeline, ensure that the image value
specifies a Ray cluster image that you can access from the disconnected environment:

Notebooks use the Ray cluster image to create a Ray cluster when running the notebook.

Pipelines use the Ray cluster image to create a Ray cluster during the pipeline run.

3. In the CodeFlare Operator config map, ensure that the kuberay:certGeneratorImage value
specifies an image that contains the openssl package, and that you can access the image from
the disconnected environment. The following example shows the default value provided by
OpenShift AI:

kind: ConfigMap
apiVersion: v1
metadata:
 name: codeflare-operator-config
 namespace: redhat-ods-applications
 data:
 config.yaml: |
 kuberay:

CHAPTER 3. RUNNING DISTRIBUTED WORKLOADS

21

https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/installing_and_uninstalling_openshift_ai_self-managed_in_a_disconnected_environment
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_on_data_science_projects/working-on-data-science-projects_nb-server#creating-a-data-science-project_nb-server
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_with_distributed_workloads/configuring-distributed-workloads_distributed-workloads

4. If any of the Python packages required by the workload are not available in the Ray cluster,
configure the Ray cluster to download the Python packages from a private PyPI server.
For example, set the PIP_INDEX_URL and PIP_TRUSTED_HOST environment variables for
the Ray cluster, to specify the location of the Python dependencies, as shown in the following
example:

PIP_INDEX_URL: https://pypi-notebook.apps.mylocation.com/simple
PIP_TRUSTED_HOST: pypi-notebook.apps.mylocation.com

where

PIP_INDEX_URL specifies the base URL of your private PyPI server (the default value is
https://pypi.org).

PIP_TRUSTED_HOST configures Python to mark the specified host as trusted, regardless
of whether that host has a valid SSL certificate or is using a secure channel.

5. Run the distributed data science workload, as described in Running distributed data science
workloads from notebooks or Running distributed data science workloads from data science
pipelines.

Verification

The notebook or pipeline run completes without errors:

For notebooks, the output from the cluster.status() function or cluster.details() function
indicates that the Ray cluster is Active.

For pipeline runs, you can view the run details as described in Viewing the details of a pipeline
run.

Additional resources

Installing and uninstalling Red Hat OpenShift AI in a disconnected environment

Ray Clusters documentation

 certGeneratorImage:
"registry.redhat.io/ubi9@sha256:770cf07083e1c85ae69c25181a205b7cdef63c11b794c89b3b4
87d4670b4c328"

Red Hat OpenShift AI Self-Managed 2.10 Working with distributed workloads

22

https://pypi.org
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_with_distributed_workloads/running-distributed-workloads_distributed-workloads#running-distributed-data-science-workloads-from-notebooks_distributed-workloads
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_with_distributed_workloads/running-distributed-workloads_distributed-workloads#running-distributed-data-science-workloads-from-ds-pipelines_distributed-workloads
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/working_on_data_science_projects/working-with-data-science-pipelines_ds-pipelines#viewing-the-details-of-a-pipeline-run_ds-pipelines
https://access.redhat.com/documentation/en-us/red_hat_openshift_ai_self-managed/2.10/html/installing_and_uninstalling_openshift_ai_self-managed_in_a_disconnected_environment
https://docs.ray.io/en/latest/cluster/getting-started.html

CHAPTER 4. MONITORING DISTRIBUTED WORKLOADS
In OpenShift AI, you can view project metrics for distributed workloads, and view the status of all
distributed workloads in the selected project. You can use these metrics to monitor the resources used
by distributed workloads, assess whether project resources are allocated correctly, track the progress of
distributed workloads, and identify corrective action when necessary.

NOTE

Data Science Pipelines (DSP) workloads are not managed by the distributed workloads
feature, and are not included in the distributed workloads metrics.

4.1. VIEWING PROJECT METRICS FOR DISTRIBUTED WORKLOADS

In OpenShift AI, you can view the following project metrics for distributed workloads:

CPU - The number of CPU cores that are currently being used by all distributed workloads in
the selected project.

Memory - The amount of memory in gibibytes (GiB) that is currently being used by all
distributed workloads in the selected project.

You can use these metrics to monitor the resources used by the distributed workloads, and assess
whether project resources are allocated correctly.

Prerequisites

You have installed Red Hat OpenShift AI.

On the OpenShift cluster where OpenShift AI is installed, user workload monitoring is enabled.

You have logged in to OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group
(for example, rhoai-users or rhoai-admins) in OpenShift.

Your data science project contains distributed workloads.

Procedure

1. In the OpenShift AI left navigation pane, click Distributed Workloads Metrics.

2. From the Project list, select the project that contains the distributed workloads that you want
to monitor.

3. Click the Project metrics tab.

4. Optional: From the Refresh interval list, select a value to specify how frequently the graphs on
the metrics page are refreshed to show the latest data.
You can select one of these values: 15 seconds, 30 seconds, 1 minute, 5 minutes, 15 minutes,
30 minutes, 1 hour, 2 hours, or 1 day.

5. In the Requested resources section, review the CPU and Memory graphs to identify the
resources requested by distributed workloads as follows:

CHAPTER 4. MONITORING DISTRIBUTED WORKLOADS

23

Requested by the selected project

Requested by all projects, including the selected project and projects that you cannot
access

Total shared quota for all projects, as provided by the cluster queue

For each resource type (CPU and Memory), subtract the Requested by all projects value from
the Total shared quota value to calculate how much of that resource quota has not been
requested and is available for all projects.

6. Scroll down to the Top resource-consuming distributed workloads section to review the
following graphs:

Top 5 distributed workloads that are consuming the most CPU resources

Top 5 distributed workloads that are consuming the most memory

You can also identify how much CPU or memory is used in each case.

7. Scroll down to view the Distributed workload resource metrics table, which lists all of the
distributed workloads in the selected project, and indicates the current resource usage and the
status of each distributed workload.
In each table entry, progress bars indicate how much of the requested CPU and memory is
currently being used by this distributed workload. To see numeric values for the actual usage
and requested usage for CPU (measured in cores) and memory (measured in GiB), hover the
cursor over each progress bar. Compare the actual usage with the requested usage to assess
the distributed workload configuration. If necessary, reconfigure the distributed workload to
reduce or increase the requested resources.

Verification

On the Project metrics tab, the graphs and table provide resource-usage data for the distributed
workloads in the selected project.

4.2. VIEWING THE STATUS OF DISTRIBUTED WORKLOADS

In OpenShift AI, you can view the status of all distributed workloads in the selected project. You can
track the progress of the distributed workloads, and identify corrective action when necessary.

Prerequisites

You have installed Red Hat OpenShift AI.

On the OpenShift cluster where OpenShift AI is installed, user workload monitoring is enabled.

You have logged in to OpenShift AI.

If you are using specialized OpenShift AI groups, you are part of the user group or admin group
(for example, rhoai-users or rhoai-admins) in OpenShift.

Your data science project contains distributed workloads.

Procedure

1. In the OpenShift AI left navigation pane, click Distributed Workloads Metrics.

2. From the Project list, select the project that contains the distributed workloads that you want

Red Hat OpenShift AI Self-Managed 2.10 Working with distributed workloads

24

2. From the Project list, select the project that contains the distributed workloads that you want
to monitor.

3. Click the Distributed workload status tab.

4. Optional: From the Refresh interval list, select a value to specify how frequently the graphs on
the metrics page are refreshed to show the latest data.
You can select one of these values: 15 seconds, 30 seconds, 1 minute, 5 minutes, 15 minutes,
30 minutes, 1 hour, 2 hours, or 1 day.

5. In the Status overview section, review a summary of the status of all distributed workloads in
the selected project.
The status can be Pending, Inadmissible, Admitted, Running, Evicted, Succeeded, or Failed.

6. Scroll down to view the Distributed workloads table, which lists all of the distributed workloads
in the selected project. The table provides the priority, status, creation date, and latest message
for each distributed workload.
The latest message provides more information about the current status of the distributed
workload. Review the latest message to identify any corrective action needed. For example, a
distributed workload might be Inadmissible because the requested resources exceed the
available resources. In such cases, you can either reconfigure the distributed workload to reduce
the requested resources, or reconfigure the cluster queue for the project to increase the
resource quota.

Verification

On the Distributed workload status tab, the graph provides a summarized view of the status of all
distributed workloads in the selected project, and the table provides more details about the status of
each distributed workload.

CHAPTER 4. MONITORING DISTRIBUTED WORKLOADS

25

	Table of Contents
	PREFACE
	CHAPTER 1. OVERVIEW OF DISTRIBUTED WORKLOADS
	1.1. OVERVIEW OF KUEUE RESOURCES
	1.1.1. Resource flavour
	1.1.2. Cluster queue
	1.1.3. Local queue

	CHAPTER 2. CONFIGURING DISTRIBUTED WORKLOADS
	2.1. CONFIGURING THE DISTRIBUTED WORKLOADS COMPONENTS
	2.2. CONFIGURING QUOTA MANAGEMENT FOR DISTRIBUTED WORKLOADS
	2.3. CONFIGURING THE CODEFLARE OPERATOR

	CHAPTER 3. RUNNING DISTRIBUTED WORKLOADS
	3.1. RUNNING DISTRIBUTED DATA SCIENCE WORKLOADS FROM NOTEBOOKS
	3.2. RUNNING DISTRIBUTED DATA SCIENCE WORKLOADS FROM DATA SCIENCE PIPELINES
	3.3. RUNNING DISTRIBUTED DATA SCIENCE WORKLOADS IN A DISCONNECTED ENVIRONMENT

	CHAPTER 4. MONITORING DISTRIBUTED WORKLOADS
	4.1. VIEWING PROJECT METRICS FOR DISTRIBUTED WORKLOADS
	4.2. VIEWING THE STATUS OF DISTRIBUTED WORKLOADS

