

Red Hat OpenShift Data Foundation 4.10

Troubleshooting OpenShift Data Foundation

Instructions on troubleshooting OpenShift Data Foundation

Last Updated: 2023-11-08

Red Hat OpenShift Data Foundation 4.10 Troubleshooting OpenShift Data Foundation

Instructions on troubleshooting OpenShift Data Foundation

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java [®] is a registered trademark of Oracle and/or its affiliates.

XFS [®] is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL [®] is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack [®] Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read this document for instructions on troubleshooting Red Hat OpenShift Data Foundation.

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE	3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION	4
CHAPTER 1. OVERVIEW	5
CHAPTER 2. DOWNLOADING LOG FILES AND DIAGNOSTIC INFORMATION USING MUST-GATHER	6
CHAPTER 3. COMMONLY REQUIRED LOGS FOR TROUBLESHOOTING	9
CHAPTER 4. OVERRIDING THE CLUSTER-WIDE DEFAULT NODE SELECTOR FOR OPENSHIFT DATA FOUNDATION POST DEPLOYMENT	12
CHAPTER 5. ENCRYPTION TOKEN IS DELETED OR EXPIRED	13
6.1. RESOLVING ALERTS AND ERRORS 6.2. RESOLVING CLUSTER HEALTH ISSUES 6.2.1. MON_DISK_LOW 6.3. RESOLVING NOOBAA BUCKET ERROR STATE 6.4. RESOLVING NOOBAA BUCKET EXCEEDING QUOTA STATE 6.5. RESOLVING NOOBAA BUCKET CAPACITY OR QUOTA STATE 6.6. RECOVERING PODS 6.7. RECOVERING FROM EBS VOLUME DETACH 6.8. ENABLING AND DISABLING DEBUG LOGS FOR ROOK-CEPH-OPERATOR CHAPTER 7. CHECKING FOR LOCAL STORAGE OPERATOR DEPLOYMENTS CHAPTER 8. REMOVING FAILED OR UNWANTED CEPH OBJECT STORAGE DEVICES 8.1. VERIFYING CEPH CLUSTER IS HEALTHY 8.2. REMOVING FAILED OR UNWANTED CEPH OSDS IN DYNAMICALLY PROVISIONED RED HAT OPENSH DATA FOUNDATION 8.3. REMOVING FAILED OR UNWANTED CEPH OSDS PROVISIONED USING LOCAL STORAGE DEVICES	27 27
8.4. TROUBLESHOOTING THE ERROR CEPHOSD:OSD.0 IS NOT OK TO DESTROY WHILE REMOVING FAILED OR UNWANTED CEPH OSDS	31
CHAPTER 9. TROUBLESHOOTING AND DELETING REMAINING RESOURCES DURING UNINSTALL	32
CHAPTER 10. TROUBLESHOOTING CEPHFS PVC CREATION IN EXTERNAL MODE	34
CHAPTER 11. RESTORING THE MONITOR PODS IN OPENSHIFT DATA FOUNDATION	37 43
CHAPTER 12. RESTORING CEPH-MONITOR QUORUM IN OPENSHIFT DATA FOUNDATION	45
CHAPTER 13. ENABLING THE RED HAT OPENSHIFT DATA FOUNDATION CONSOLE PLUGIN	50
CHAPTER 14. CHANGING RESOURCES FOR THE OPENSHIFT DATA FOUNDATION COMPONENTS 14.1. CHANGING THE CPU AND MEMORY RESOURCES ON THE ROOK-CEPH PODS 14.2. TUNING THE RESOURCES FOR THE MCG	51 51 52

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright's message.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Do let us know how we can make it better.

To give feedback, create a Bugzilla ticket:

- 1. Go to the Bugzilla website.
- 2. In the **Component** section, choose **documentation**.
- 3. Fill in the **Description** field with your suggestion for improvement. Include a link to the relevant part(s) of documentation.
- 4. Click Submit Bug.

CHAPTER 1. OVERVIEW

Troubleshooting OpenShift Data Foundation is written to help administrators understand how to troubleshoot and fix their Red Hat OpenShift Data Foundation cluster.

Most troubleshooting tasks focus on either a fix or a workaround. This document is divided into chapters based on the errors that an administrator may encounter:

- Chapter 2, Downloading log files and diagnostic information using must-gather shows you how to use the must-gather utility in OpenShift Data Foundation.
- Chapter 3, Commonly required logs for troubleshooting shows you how to obtain commonly required log files for OpenShift Data Foundation.
- Chapter 6, *Troubleshooting alerts and errors in OpenShift Data Foundation* shows you how to identify the encountered error and perform required actions.

WARNING

Red Hat does not support running Ceph commands in OpenShift Data Foundation clusters (unless indicated by Red Hat support or Red Hat documentation) as it can cause data loss if you run the wrong commands. In that case, the Red Hat support team is only able to provide commercially reasonable effort and may not be able to restore all the data in case of any data loss.

CHAPTER 2. DOWNLOADING LOG FILES AND DIAGNOSTIC INFORMATION USING MUST-GATHER

If Red Hat OpenShift Data Foundation is unable to automatically resolve a problem, use the **must-gather** tool to collect log files and diagnostic information so that you or Red Hat support can review the problem and determine a solution.

IMPORTANT

When Red Hat OpenShift Data Foundation is deployed in external mode, **must-gather** only collects logs from the OpenShift Data Foundation cluster and does not collect debug data and logs from the external Red Hat Ceph Storage cluster. To collect debug logs from the external Red Hat Ceph Storage cluster, see Red Hat Ceph Storage Troubleshooting guide and contact your Red Hat Ceph Storage Administrator.

Prerequisites

Optional: If OpenShift Data Foundation is deployed in a disconnected environment, ensure that
you mirror the individual **must-gather** image to the mirror registry available from the
disconnected environment.

\$ oc image mirror registry.redhat.io/odf4/ocs-must-gather-rhel8:v4.10 *<local-registry>*/odf4/ocs-must-gather-rhel8:v4.10 [--registry-config=*<path-to-the-registry-config>*] [--insecure=true]

<local-registry>

Is the local image mirror registry available for a disconnected OpenShift Container Platform cluster.

<path-to-the-registry-config>

Is the path to your registry credentials, by default it is ~/.docker/config.json.

--insecure

Add this flag only if the mirror registry is insecure.

For more information, see the Red Hat Knowledgebase solutions:

- How to mirror images between Redhat Openshift registries
- Failed to mirror OpenShift image repository when private registry is insecure

Procedure

 Run the must-gather command from the client connected to the OpenShift Data Foundation cluster:

<directory-name>

Is the name of the directory where you want to write the data to.

IMPORTANT

For a disconnected environment deployment, replace the image in **--image** parameter with the mirrored **must-gather** image.

\$ oc adm must-gather --image=<local-registry>/odf4/ocs-must-gather-rhel8:v4.10 --dest-dir=<directory-name>

<local-registry>

Is the local image mirror registry available for a disconnected OpenShift Container Platform cluster.

This collects the following information in the specified directory:

- All Red Hat OpenShift Data Foundation cluster related Custom Resources (CRs) with their namespaces.
- Pod logs of all the Red Hat OpenShift Data Foundation related pods.
- Output of some standard Ceph commands like Status, Cluster health, and others.

Command variations

• If one or more master nodes are not in the **Ready** state, use **--node-name** to provide a master node that is **Ready** so that the **must-gather** pod can be safely scheduled.

\$ oc adm must-gather --image=registry.redhat.io/odf4/ocs-must-gather-rhel8:v4.10 --dest-dir=_<directory-name>_ --node-name=_<node-name>_

- If you want to gather information from a specific time:
 - To specify a relative time period for logs gathered, such as within 5 seconds or 2 days, add /usr/bin/gather since=<duration>:

\$ oc adm must-gather --image=registry.redhat.io/odf4/ocs-must-gather-rhel8:v4.10 -- dest-dir=_<directory-name>_ /usr/bin/gather since=<duration>

To specify a specific time to gather logs after, add /usr/bin/gather since-time=<rfc3339-timestamp>:

 $\$ oc adm must-gather --image=registry.redhat.io/odf4/ocs-must-gather-rhel8:v4.10 -- dest-dir=_<directory-name>_ /usr/bin/gather since-time=<rfc3339-timestamp>

Replace the example values in these commands as follows:

<node-name>

If one or more master nodes are not in the **Ready** state, use this parameter to provide the name of a master node that is still in the **Ready** state. This avoids scheduling errors by ensuring that the **must-gather** pod is not scheduled on a master node that is not ready.

<directory-name>

The directory to store information collected by **must-gather**.

<duration>

Specify the period of time to collect information from as a relative duration, for example, **5h** (starting from 5 hours ago).

<rfc3339-timestamp>

Specify the period of time to collect information from as an RFC 3339 timestamp, for example, **2020-11-10T04:00:00+00:00** (starting from 4am UTC on 11 Nov 2020).

CHAPTER 3. COMMONLY REQUIRED LOGS FOR TROUBLESHOOTING

Some of the commonly used logs for troubleshooting OpenShift Data Foundation are listed, along with the commands to generate them.

- Generating logs for a specific pod:
 - \$ oc logs <pod-name> -n <namespace>
- Generating logs for Ceph or OpenShift Data Foundation cluster:
 - \$ oc logs rook-ceph-operator-<ID> -n openshift-storage

IMPORTANT

Currently, the rook-ceph-operator logs do not provide any information about the failure and this acts as a limitation in troubleshooting issues, see Enabling and disabling debug logs for rook-ceph-operator.

- Generating logs for plugin pods like cephfs or rbd to detect any problem in the PVC mount of the app-pod:
 - \$ oc logs csi-cephfsplugin-<ID> -n openshift-storage -c csi-cephfsplugin
 - \$ oc logs csi-rbdplugin-<ID> -n openshift-storage -c csi-rbdplugin
 - To generate logs for all the containers in the CSI pod:
 - \$ oc logs csi-cephfsplugin-<ID> -n openshift-storage --all-containers
 - \$ oc logs csi-rbdplugin-<ID> -n openshift-storage --all-containers
- Generating logs for cephfs or rbd provisioner pods to detect problems if PVC is not in BOUND state:
 - \$ oc logs csi-cephfsplugin-provisioner-<ID> -n openshift-storage -c csi-cephfsplugin
 - \$ oc logs csi-rbdplugin-provisioner-<ID> -n openshift-storage -c csi-rbdplugin
 - To generate logs for all the containers in the CSI pod:
 - \$ oc logs csi-cephfsplugin-provisioner-<ID> -n openshift-storage --all-containers
 - \$ oc logs csi-rbdplugin-provisioner-<ID> -n openshift-storage --all-containers
- Generating OpenShift Data Foundation logs using cluster-info command:
 - \$ oc cluster-info dump -n openshift-storage --output-directory=<directory-name>

• When using Local Storage Operator, generating logs can be done using cluster-info command:

\$ oc cluster-info dump -n openshift-local-storage --output-directory=<directory-name>

- Check the OpenShift Data Foundation operator logs and events.
 - To check the operator logs:

oc logs <ocs-operator> -n openshift-storage

<ocs-operator>

oc get pods -n openshift-storage | grep -i "ocs-operator" | awk '{print \$1}'

• To check the operator events:

oc get events --sort-by=metadata.creationTimestamp -n openshift-storage

• Get the OpenShift Data Foundation operator version and channel.

oc get csv -n openshift-storage

Example output:

NNAME [DISPLAY	VERSION REPLAC	ES PHASE
mcg-operator.v4.10.0	NooBaa Operator	4.10.0	Succeeded
ocs-operator.v4.10.0	OpenShift Container	Storage 4.10.0	Succeeded
odf-csi-addons-operator.v4	10.0 CSI Addons	4.10.0	Succeeded
odf-operator.v4.10.0	OpenShift Data Foun	dation 4.10.0	Succeeded

oc get subs -n openshift-storage

Example output:

NAME
CHANNEL
mcg-operator-stable-4.10-redhat-operators-openshift-marketplace mcg-operator
redhat-operators stable-4.10
ocs-operator-stable-4.10-redhat-operators-openshift-marketplace ocs-operator
redhat-operators stable-4.10
odf-csi-addons-operator odf-csi-addons-operator redhat-operators
stable-4.10
odf-operator odf-operator redhat-operators stable-4.10

Confirm that the installplan is created.

oc get installplan -n openshift-storage

- Verify the image of the components post updating OpenShift Data Foundation.
 - Check the node on which the pod of the component you want to verify the image is running.

oc get pods -o wide | grep <component-name>

For Example:

oc get pods -o wide | grep rook-ceph-operator

Example output:

rook-ceph-operator-566cc677fd-bjqnb 1/1 Running 20 4h6m 10.128.2.5 rook-ceph-operator-566cc677fd-bjqnb 1/1 Running 20 4h6m 10.128.2.5 dell-r440-12.gsslab.pnq2.redhat.com <none> <none>

<none> <none>

dell-r440-12.gsslab.pnq2.redhat.com is the node-name.

• Check the image ID.

oc debug node/<node name>

<node-name>

Is the name of the node on which the pod of the component you want to verify the image is running.

chroot /host

crictl images | grep <component>

For Example:

crictl images | grep rook-ceph

Take a note of the **IMAGEID** and map it to the **Digest** ID on the Rook Ceph Operator page.

Additional resources

Using must-gather

CHAPTER 4. OVERRIDING THE CLUSTER-WIDE DEFAULT NODE SELECTOR FOR OPENSHIFT DATA FOUNDATION POST DEPLOYMENT

When a cluster-wide default node selector is used for OpenShift Data Foundation, the pods generated by CSI daemonsets are able to start only on the nodes that match the selector. To be able to use OpenShift Data Foundation from nodes which do not match the selector, override the **cluster-wide default node selector** by performing the following steps in the command line interface:

Procedure

- 1. Specify a blank node selector for the openshift-storage namespace.
 - \$ oc annotate namespace openshift-storage openshift.io/node-selector=
- 2. Delete the original pods generated by the DaemonSets.

oc delete pod -l app=csi-cephfsplugin -n openshift-storage oc delete pod -l app=csi-rbdplugin -n openshift-storage

CHAPTER 5. ENCRYPTION TOKEN IS DELETED OR EXPIRED

Use this procedure to update the token if the encryption token for your key management system gets deleted or expires.

Prerequisites

• Ensure that you have a new token with the same policy as the deleted or expired token

Procedure

- 1. Log in to OpenShift Container Platform Web Console.
- 2. Click Workloads → Secrets
- 3. To update the **ocs-kms-token** used for cluster wide encryption:
 - a. Set the Project to openshift-storage.
 - b. Click ocs-kms-token → Actions → Edit Secret.
 - c. Drag and drop or upload your encryption token file in the **Value** field. The token can either be a file or text that can be copied and pasted.
 - d. Click Save.
- 4. To update the **ceph-csi-kms-token** for a given project or namespace with encrypted persistent volumes:
 - a. Select the required **Project**.
 - b. Click ceph-csi-kms-token → Actions → Edit Secret.
 - c. Drag and drop or upload your encryption token file in the **Value** field. The token can either be a file or text that can be copied and pasted.
 - d. Click Save.

NOTE

The token can be deleted only after all the encrypted PVCs using the **ceph-csi-kms-token** have been deleted.

CHAPTER 6. TROUBLESHOOTING ALERTS AND ERRORS IN OPENSHIFT DATA FOUNDATION

6.1. RESOLVING ALERTS AND ERRORS

Red Hat OpenShift Data Foundation can detect and automatically resolve a number of common failure scenarios. However, some problems require administrator intervention.

To know the errors currently firing, check one of the following locations:

- Observe → Alerting → Firing option
- Home → Overview → Cluster tab
- Storage → Data Foundation → Storage System → storage system link in the pop up →
 Overview → Block and File tab
- Storage → Data Foundation → Storage System → storage system link in the pop up →
 Overview → Object tab

Copy the error displayed and search it in the following section to know its severity and resolution:

Name: CephMonVersionMismatch

Message: There are multiple versions of storage services running.

Description: There are {{ \$value }} different versions of Ceph Mon components running.

Severity: Warning

Resolution: Fix

Procedure: Inspect the user interface and log, and verify if an update is in progress.

- If an update in progress, this alert is temporary.
- If an update is not in progress, restart the upgrade process.

Name: CephOSDVersionMismatch

Message: There are multiple versions of storage services running.

Description: There are {{ \$value }} different versions of Ceph OSD components running.

Severity: Warning

Resolution: Fix

Procedure: Inspect the user interface and log, and verify if an update is in progress.

- If an update in progress, this alert is temporary.
- If an update is not in progress, restart the upgrade process.

Name: CephClusterCriticallyFull

Message: Storage cluster is critically full and needs immediate expansion

Description: Storage cluster utilization has crossed 85%.

Severity: Crtical

Resolution: Fix

Procedure: Remove unnecessary data or expand the cluster.

Name: CephClusterNearFull

Fixed: Storage cluster is nearing full. Expansion is required.

Description: Storage cluster utilization has crossed 75%.

Severity: Warning

Resolution: Fix

Procedure: Remove unnecessary data or expand the cluster.

Name: NooBaaBucketErrorState

Message: A NooBaa Bucket Is In Error State

Description: A NooBaa bucket {{ \$labels.bucket_name }} is in error state for more than 6m

Severity: Warning

Resolution: Workaround

Procedure: Resolving NooBaa Bucket Error State

Name: NooBaaNamespaceResourceErrorState

Message: A NooBaa Namespace Resource Is In Error State

Description: A NooBaa namespace resource {{ \$labels.namespace_resource_name }} is in error state for more than 5m

Severity: Warning

Resolution: Fix

Procedure: Resolving NooBaa Bucket Error State

Name: NooBaaNamespaceBucketErrorState

Message: A NooBaa Namespace Bucket Is In Error State

Description: A NooBaa namespace bucket {{ \$labels.bucket_name }} is in error state for more than 5m

Severity: Warning

Resolution: Fix

Procedure: Resolving NooBaa Bucket Error State

Name: NooBaaBucketExceedingQuotaState

Message: A NooBaa Bucket Is In Exceeding Quota State

Description: A NooBaa bucket {{ \$labels.bucket_name }} is exceeding its quota - {{ printf "%0.0f" \$value }}% used message: A NooBaa Bucket Is In Exceeding Quota State

Severity: Warning

Resolution: Fix

Procedure: Resolving NooBaa Bucket Exceeding Quota State

Name: NooBaaBucketLowCapacityState

Message: A NooBaa Bucket Is In Low Capacity State

Description: A NooBaa bucket {{ \$labels.bucket_name }} is using {{ printf "%0.0f" \$value }}% of its capacity

Severity: Warning

Resolution: Fix

Procedure: Resolving NooBaa Bucket Capacity or Quota State

Name: NooBaaBucketNoCapacityState

Message: A NooBaa Bucket Is In No Capacity State

Description: A NooBaa bucket {{ \$labels.bucket_name }} is using all of its capacity

Severity: Warning

Resolution: Fix

Procedure: Resolving NooBaa Bucket Capacity or Quota State

Name: NooBaaBucketReachingQuotaState

Message: A NooBaa Bucket Is In Reaching Quota State

Description: A NooBaa bucket {{ \$labels.bucket_name }} is using {{ printf "%0.0f" \$value }}% of its guests

its quota

Severity: Warning

Resolution: Fix

Procedure: Resolving NooBaa Bucket Capacity or Quota State

Name: NooBaaResourceErrorState

Message: A NooBaa Resource Is In Error State

Description: A NooBaa resource {{ \$labels.resource_name }} is in error state for more than 6m

Severity: Warning

Resolution: Workaround

Procedure: Resolving NooBaa Bucket Error State

Name: NooBaaSystemCapacityWarning100

Message: A NooBaa System Approached Its Capacity

Description: A NooBaa system approached its capacity, usage is at 100%

Severity: Warning

Resolution: Fix

Procedure: Resolving NooBaa Bucket Capacity or Quota State

Name: NooBaaSystemCapacityWarning85

Message: A NooBaa System Is Approaching Its Capacity

Description: A NooBaa system is approaching its capacity, usage is more than 85%

Severity: Warning

Resolution: Fix

Procedure: Resolving NooBaa Bucket Capacity or Quota State

Name: NooBaaSystemCapacityWarning95

Message: A NooBaa System Is Approaching Its Capacity

Description: A NooBaa system is approaching its capacity, usage is more than 95%

Severity: Warning

Resolution: Fix

Procedure: Resolving NooBaa Bucket Capacity or Quota State

Name: CephMdsMissingReplicas

Message: Insufficient replicas for storage metadata service.

Description: `Minimum required replicas for storage metadata service not available.

Might affect the working of storage cluster.`

Severity: Warning

Resolution: Contact Red Hat support

Procedure:

1. Check for alerts and operator status.

2. If the issue cannot be identified, contact Red Hat support.

Name: CephMgrlsAbsent

Message: Storage metrics collector service not available anymore.

Description: Ceph Manager has disappeared from Prometheus target discovery.

Severity: Critical

Resolution: Contact Red Hat support

Procedure:

- 1. Inspect the user interface and log, and verify if an update is in progress.
 - If an update in progress, this alert is temporary.
 - If an update is not in progress, restart the upgrade process.
- 2. Once the upgrade is complete, check for alerts and operator status.
- 3. If the issue persistents or cannot be identified, contact Red Hat support.

Name: CephNodeDown

Message: Storage node {{ \$labels.node }} went down

Description: Storage node {{ \$labels.node }} went down. Please check the node immediately.

Severity: Critical

Resolution: Contact Red Hat support

Procedure:

- 1. Check which node stopped functioning and its cause.
- 2. Take appropriate actions to recover the node. If node cannot be recovered:
 - See Replacing storage nodes for Red Hat OpenShift Data Foundation
 - Contact Red Hat support.

Name: CephClusterErrorState

Message: Storage cluster is in error state

Description: Storage cluster is in error state for more than 10m.

Severity: Critical

Resolution: Contact Red Hat support

Procedure:

- 1. Check for alerts and operator status.
- 2. If the issue cannot be identified, download log files and diagnostic information using must-gather.
- 3. Open a Support Ticket with Red Hat Support with an attachment of the output of must-gather.

Name: CephClusterWarningState

Message: Storage cluster is in degraded state

Description: Storage cluster is in warning state for more than 10m.

Severity: Warning

Resolution: Contact Red Hat support

Procedure:

- 1. Check for alerts and operator status.
- 2. If the issue cannot be identified, download log files and diagnostic information using must-gather.
- 3. Open a Support Ticket with Red Hat Support with an attachment of the output of must-gather.

Name: CephDataRecoveryTakingTooLong

Message: Data recovery is slow

Description: Data recovery has been active for too long.

Severity: Warning

Resolution: Contact Red Hat support

Name: CephOSDDiskNotResponding

Message: Disk not responding

Description: Disk device {{ \$labels.device }} not responding, on host {{ \$labels.host }}.

Severity: Critical

Resolution: Contact Red Hat support

Name: CephOSDDiskUnavailable

Message: Disk not accessible

Description: Disk device {{ \$labels.device }} not accessible on host {{ \$labels.host }}.

Severity: Critical

Resolution: Contact Red Hat support

Name: CephPGRepairTakingTooLong

Message: Self heal problems detected

Description: Self heal operations taking too long.

Severity: Warning

Resolution: Contact Red Hat support

Name: CephMonHighNumberOfLeaderChanges

Message: Storage Cluster has seen many leader changes recently.

Description: 'Ceph Monitor "{{ \$labels.job }}": instance {{ \$labels.instance }} has seen {{ \$value printf "%.2f" }} leader changes per minute recently.'

Severity: Warning

Resolution: Contact Red Hat support

Name: CephMonQuorumAtRisk

Message: Storage quorum at risk

Description: Storage cluster quorum is low.

Severity: Critical

Resolution: Contact Red Hat support

Name: ClusterObjectStoreState

Message: Cluster Object Store is in unhealthy state. Please check Ceph cluster health.

Description: Cluster Object Store is in unhealthy state for more than 15s. Please check Ceph cluster health.

Severity: Critical

Resolution: Contact Red Hat support

Procedure:

- Check the **CephObjectStore** CR instance.
- Contact Red Hat support.

Name: CephOSDFlapping

Message: Storage daemon osd.x has restarted 5 times in the last 5 minutes. Please check the pod events or Ceph status to find out the cause.

Description: Storage OSD restarts more than 5 times in 5 minutes.

Severity: Critical

Resolution: Contact Red Hat support

Name: OdfPoolMirroringImageHealth

Message: Mirroring image(s) (PV) in the pool <pool-name> are in Warning state for more than a 1m. Mirroring might not work as expected.

Description: Disaster recovery is failing for one or a few applications.

Severity: Warning

Resolution: Contact Red Hat support

Name: OdfMirrorDaemonStatus

Message: Mirror daemon is unhealthy.

Description: Disaster recovery is failing for the entire cluster. Mirror daemon is in unhealthy status for more than 1m. Mirroring on this cluster is not working as expected.

Severity: Critical

Resolution: Contact Red Hat support

6.2. RESOLVING CLUSTER HEALTH ISSUES

There is a finite set of possible health messages that a Red Hat Ceph Storage cluster can raise that show in the OpenShift Data Foundation user interface. These are defined as health checks which have unique identifiers. The identifier is a terse pseudo-human-readable string that is intended to enable tools to make sense of health checks, and present them in a way that reflects their meaning. Click the health code below for more information and troubleshooting.

Health code	Description
MON_DISK_LOW	One or more Ceph Monitors are low on disk space.

6.2.1. MON_DISK_LOW

This alert triggers if the available space on the file system storing the monitor database as a percentage, drops below **mon_data_avail_warn** (default: 15%). This may indicate that some other process or user on the system is filling up the same file system used by the monitor. It may also indicate that the monitor's database is large.

NOTE

The paths to the file system differ depending on the deployment of your mons. You can find the path to where the mon is deployed in **storagecluster.yaml**.

Example paths:

- Mon deployed over PVC path: /var/lib/ceph/mon
- Mon deployed over hostpath: /var/lib/rook/mon

In order to clear up space, view the high usage files in the file system and choose which to delete. To view the files, run:

du -a <path-in-the-mon-node> |sort -n -r |head -n10

Replace **<path-in-the-mon-node>** with the path to the file system where mons are deployed.

6.3. RESOLVING NOOBAA BUCKET ERROR STATE

Dracadura

Procedure

- 1. In the OpenShift Web Console, click **Storage** → **Data Foundation**.
- 2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.
- 3. Click the **Object** tab.
- 4. In the **Details** card, click the link under **System Name** field.
- 5. In the left pane, click **Buckets** option and search for the bucket in error state. If the bucket in error state is a namespace bucket, be sure to click the **Namespace Buckets** pane.
- 6. Click on it's **Bucket Name**. Error encountered in bucket is displayed.
- 7. Depending on the specific error of the bucket, perform one or both of the following:
 - a. For space related errors:
 - i. In the left pane, click **Resources** option.
 - ii. Click on the resource in error state.
 - iii. Scale the resource by adding more agents.
 - b. For resource health errors:
 - i. In the left pane, click **Resources** option.
 - ii. Click on the resource in error state.
 - iii. Connectivity error means the backing service is not available and needs to be restored.
 - iv. For access/permissions errors, update the connection's Access Key and Secret Key.

6.4. RESOLVING NOOBAA BUCKET EXCEEDING QUOTA STATE

To resolve A NooBaa Bucket Is In Exceeding Quota Stateerror perform one of the following:

- Cleanup some of the data on the bucket.
- Increase the bucket quota by performing the following steps:
 - 1. In the OpenShift Web Console, click **Storage** → **Data Foundation**.
 - 2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.
 - 3. Click the **Object** tab.
 - 4. In the **Details** card, click the link under **System Name** field.
 - 5. In the left pane, click **Buckets** option and search for the bucket in error state.
 - 6. Click on its **Bucket Name**. Error encountered in bucket is displayed.
 - 7. Click **Bucket Policies** → **Edit Quota** and increase the quota.

6.5. RESOLVING NOOBAA BUCKET CAPACITY OR QUOTA STATE

Procedure

- 1. In the OpenShift Web Console, click **Storage** → **Data Foundation**.
- 2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.
- 3. Click the **Object** tab.
- 4. In the **Details** card, click the link under **System Name** field.
- 5. In the left pane, click the **Resources** option and search for the PV pool resource.
- 6. For the PV pool resource with low capacity status, click on its Resource Name.
- 7. Edit the pool configuration and increase the number of agents.

6.6. RECOVERING PODS

When a first node (say **NODE1**) goes to NotReady state because of some issue, the hosted pods that are using PVC with ReadWriteOnce (RWO) access mode try to move to the second node (say **NODE2**) but get stuck due to multi-attach error. In such a case, you can recover MON, OSD, and application pods by using the following steps.

Procedure

- 1. Power off NODE1 (from AWS or vSphere side) and ensure that NODE1 is completely down.
- 2. Force delete the pods on **NODE1** by using the following command:

\$ oc delete pod <pod-name> --grace-period=0 --force

6.7. RECOVERING FROM EBS VOLUME DETACH

When an OSD or MON elastic block storage (EBS) volume where the OSD disk resides is detached from the worker Amazon EC2 instance, the volume gets reattached automatically within one or two minutes. However, the OSD pod gets into a **CrashLoopBackOff** state. To recover and bring back the pod to **Running** state, you must restart the EC2 instance.

6.8. ENABLING AND DISABLING DEBUG LOGS FOR ROOK-CEPH-OPERATOR

Enable the debug logs for the rook-ceph-operator to obtain information about failures that help in troubleshooting issues.

Procedure

Enabling the debug logs

1. Edit the configmap of the rook-ceph-operator.

\$ oc edit configmap rook-ceph-operator-config

2. Add the **ROOK_LOG_LEVEL: DEBUG** parameter in the **rook-ceph-operator-config** yaml file to enable the debug logs for rook-ceph-operator.

...
data:
The logging level for the operator: INFO | DEBUG
ROOK_LOG_LEVEL: DEBUG

Now, the rook-ceph-operator logs consist of the debug information.

Disabling the debug logs

1. Edit the configmap of the rook-ceph-operator.

\$ oc edit configmap rook-ceph-operator-config

2. Add the **ROOK_LOG_LEVEL: INFO** parameter in the **rook-ceph-operator-config** yaml file to disable the debug logs for rook-ceph-operator.

...
data:
The logging level for the operator: INFO | DEBUG
ROOK_LOG_LEVEL: INFO

CHAPTER 7. CHECKING FOR LOCAL STORAGE OPERATOR DEPLOYMENTS

Red Hat OpenShift Data Foundation clusters with Local Storage Operator are deployed using local storage devices. To find out if your existing cluster with OpenShift Data Foundation was deployed using local storage devices, use the following procedure:

Prerequisites

• OpenShift Data Foundation is installed and running in the **openshift-storage** namespace.

Procedure

By checking the storage class associated with your OpenShift Data Foundation cluster's persistent volume claims (PVCs), you can tell if your cluster was deployed using local storage devices.

- 1. Check the storage class associated with OpenShift Data Foundation cluster's PVCs with the following command:
 - \$ oc get pvc -n openshift-storage
- 2. Check the output. For clusters with Local Storage Operator, the PVCs associated with **ocs-deviceset** use the storage class **localblock**. The output looks similar to the following:

NAME STATUS VOLUME CAPACITY ACCESS
MODES STORAGECLASS AGE
db-noobaa-db-0 Bound pvc-d96c747b-2ab5-47e2-b07e-1079623748d8 50Gi
RWO ocs-storagecluster-ceph-rbd 114s
ocs-deviceset-0-0-lzfrd Bound local-pv-7e70c77c 1769Gi RWO
localblock 2m10s
ocs-deviceset-1-0-7rggl Bound local-pv-b19b3d48 1769Gi RWO
localblock 2m10s
ocs-deviceset-2-0-znhk8 Bound local-pv-e9f22cdc 1769Gi RWO
localblock 2m10s

Additional Resources

- Deploying OpenShift Data Foundation using local storage devices on VMware
- Deploying OpenShift Data Foundation using local storage devices on Red Hat Virtualization
- Deploying OpenShift Data Foundation using local storage devices on bare metal
- Deploying OpenShift Data Foundation using local storage devices on IBM Power

CHAPTER 8. REMOVING FAILED OR UNWANTED CEPH OBJECT STORAGE DEVICES

The failed or unwanted Ceph OSDs (Object Storage Devices) affects the performance of the storage infrastructure. Hence, to improve the reliability and resilience of the storage cluster, you must remove the failed or unwanted Ceph OSDs.

If you have any failed or unwanted Ceph OSDs to remove:

- Verify the Ceph health status.
 For more information see: Verifying Ceph cluster is healthy.
- 2. Based on the provisioning of the OSDs, remove failed or unwanted Ceph OSDs. See:
 - Removing failed or unwanted Ceph OSDs in dynamically provisioned Red Hat OpenShift Data Foundation.
 - Removing failed or unwanted Ceph OSDs provisioned using local storage devices .

If you are using local disks, you can reuse these disks after removing the old OSDs.

8.1. VERIFYING CEPH CLUSTER IS HEALTHY

Storage health is visible on the **Block** and **File** and **Object** dashboards.

Procedure

- 1. In the OpenShift Web Console, click **Storage** → **Data Foundation**.
- 2. In the **Status** card of the **Overview** tab, click **Storage System** and then click the storage system link from the pop up that appears.
- 3. In the **Status** card of the **Block and File** tab, verify that *Storage Cluster* has a green tick.
- 4. In the **Details** card, verify that the cluster information is displayed.

8.2. REMOVING FAILED OR UNWANTED CEPH OSDS IN DYNAMICALLY PROVISIONED RED HAT OPENSHIFT DATA FOUNDATION

Follow the steps in the procedure to remove the failed or unwanted Ceph OSDs in dynamically provisioned Red Hat OpenShift Data Foundation.

IMPORTANT

Scaling down of cluster is supported only with the help of the Red Hat support team.

WARNING

- Removing an OSD when the Ceph component is not in a healthy state can result in data loss.
- Removing two or more OSDs at the same time results in data loss.

Prerequisites

- Check if Ceph is healthy. For more information see Verifying Ceph cluster is healthy.
- Ensure no alerts are firing or any rebuilding process is in progress.

Procedure

- 1. Scale down the OSD deployment.
 - # oc scale deployment rook-ceph-osd-<osd-id> --replicas=0
- 2. Get the **osd-prepare** pod for the Ceph OSD to be removed.
 - # oc get deployment rook-ceph-osd-<osd-id> -oyaml | grep ceph.rook.io/pvc
- 3. Delete the **osd-prepare** pod.
 - # oc delete -n openshift-storage pod rook-ceph-osd-prepare-<pvc-from-above-command>-<pod-suffix>
- 4. Remove the failed OSD from the cluster.
 - # failed osd id=<osd-id>
 - # oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=\$<failed_osd_id> | oc create -f -

where, **FAILED_OSD_ID** is the integer in the pod name immediately after the **rook-ceph-osd** prefix.

- 5. Verify that the OSD is removed successfully by checking the logs.
 - # oc logs -n openshift-storage ocs-osd-removal-\$<failed_osd_id>-<pod-suffix>
- 6. Optional: If you get an error as cephosd:osd.0 is NOT ok to destroy from the ocs-osd-removal-job pod in OpenShift Container Platform, see Troubleshooting the error cephosd:osd.0 is NOT ok to destroy while removing failed or unwanted Ceph OSDs.
- 7. Delete the OSD deployment.
 - # oc delete deployment rook-ceph-osd-<osd-id>

Verification step

To check if the OSD is deleted successfully, run:

oc get pod -n openshift-storage ocs-osd-removal-\$<failed_osd_id>-<pod-suffix>

This command must return the status as Completed.

8.3. REMOVING FAILED OR UNWANTED CEPH OSDS PROVISIONED USING LOCAL STORAGE DEVICES

You can remove failed or unwanted Ceph provisioned using local storage devices by following the steps in the procedure.

IMPORTANT

Scaling down of cluster is supported only with the help of the Red Hat support team.

WARNING

- Removing an OSD when the Ceph component is not in a healthy state can result in data loss.
- Removing two or more OSDs at the same time results in data loss.

Prerequisites

- Check if Ceph is healthy. For more information see Verifying Ceph cluster is healthy.
- Ensure no alerts are firing or any rebuilding process is in progress.

Procedure

1. Forcibly, mark the OSD down by scaling the replicas on the OSD deployment to 0. You can skip this step if the OSD is already down due to failure.

oc scale deployment rook-ceph-osd-<osd-id> --replicas=0

2. Remove the failed OSD from the cluster.

failed_osd_id=<osd_id>

oc process -n openshift-storage ocs-osd-removal -p FAILED_OSD_IDS=\$<failed_osd_id> | oc create -f -

where, **FAILED_OSD_ID** is the integer in the pod name immediately after the **rook-ceph-osd** prefix.

3. Verify that the OSD is removed successfully by checking the logs.

oc logs -n openshift-storage ocs-osd-removal-\$<failed_osd_id>-<pod-suffix>

- 4. Optional: If you get an error as **cephosd:osd.0** is **NOT ok to destroy** from the **ocs-osd-removal-job** pod in OpenShift Container Platform, see Troubleshooting the error **cephosd:osd.0** is **NOT ok to destroy** while removing failed or unwanted Ceph OSDs.
- 5. Delete persistent volume claim (PVC) resources associated with the failed OSD.
 - a. Get the **PVC** associated with the failed OSD.

oc get -n openshift-storage -o yaml deployment rook-ceph-osd-<osd-id> | grep ceph.rook.io/pvc

- b. Get the **persistent volume** (PV) associated with the PVC.
 - # oc get -n openshift-storage pvc <pvc-name>
- c. Get the failed device name.
 - # oc get pv <pv-name-from-above-command> -oyaml | grep path
- d. Get the **prepare-pod** associated with the failed OSD.
 - # oc describe -n openshift-storage pvc ocs-deviceset-0-0-nvs68 | grep Mounted
- e. Delete the **osd-prepare pod** before removing the associated PVC.
 - # oc delete -n openshift-storage pod <osd-prepare-pod-from-above-command>
- f. Delete the **PVC** associated with the failed OSD.
 - # oc delete -n openshift-storage pvc <pvc-name-from-step-a>
- 6. Remove failed device entry from the **LocalVolume custom resource** (CR).
 - a. Log in to node with the failed device.
 - # oc debug node/<node_with_failed_osd>
 - b. Record the /dev/disk/by-id/<id> for the failed device name.
 - # Is -alh /mnt/local-storage/localblock/
- 7. Optional: In case, Local Storage Operator is used for provisioning OSD, login to the machine with {osd-id} and remove the device symlink.
 - # oc debug node/<node_with_failed_osd>
 - a. Get the OSD symlink for the failed device name.
 - # ls -alh /mnt/local-storage/localblock

b. Remove the symlink.

rm /mnt/local-storage/localblock/<failed-device-name>

8. Delete the PV associated to the OSD.

oc delete pv <pv-name>

Verification step

• To check if the OSD is deleted successfully, run:

#oc get pod -n openshift-storage ocs-osd-removal-\$<failed_osd_id>-<pod-suffix>

This command must return the status as Completed.

8.4. TROUBLESHOOTING THE ERROR CEPHOSD: OSD.0 IS NOT OK TO DESTROY WHILE REMOVING FAILED OR UNWANTED CEPH OSDS

If you get an error as **cephosd:osd.0** is **NOT ok to destroy** from the **ocs-osd-removal-job** pod in OpenShift Container Platform, run the OSD removal job with **FORCE_OSD_REMOVAL** option to move the OSD to a destroyed state.

oc process -n openshift-storage ocs-osd-removal -p FORCE_OSD_REMOVAL=true -p FAILED_OSD_IDS=\$<failed_osd_id> | oc create -f -

NOTE

You must use the **FORCE_OSD_REMOVAL** option only if all the PGs are in active state. If not, PGs must either complete the back filling or further investigated to ensure they are active.

CHAPTER 9. TROUBLESHOOTING AND DELETING REMAINING RESOURCES DURING UNINSTALL

Occasionally some of the custom resources managed by an operator may remain in "Terminating" status waiting on the finalizer to complete, although you have performed all the required cleanup tasks. In such an event you need to force the removal of such resources. If you do not do so, the resources remain in the "Terminating" state even after you have performed all the uninstall steps.

1. Check if the openshift-storage namespace is stuck in Terminating state upon deletion.

\$ oc get project -n <namespace>

Output:

NAME DISPLAY NAME STATUS openshift-storage Terminating

2. Check for the **NamespaceFinalizersRemaining** and **NamespaceContentRemaining** messages in the **STATUS** section of the command output and perform the next step for each of the listed resources.

\$ oc get project openshift-storage -o yaml

Example output:

status:

conditions:

 lastTransitionTime: "2020-07-26T12:32:56Z" message: All resources successfully discovered

reason: ResourcesDiscovered

status: "False"

type: NamespaceDeletionDiscoveryFailure - lastTransitionTime: "2020-07-26T12:32:56Z"

message: All legacy kube types successfully parsed

reason: ParsedGroupVersions

status: "False"

type: NamespaceDeletionGroupVersionParsingFailure

- lastTransitionTime: "2020-07-26T12:32:56Z"

message: All content successfully deleted, may be waiting on finalization

reason: ContentDeleted

status: "False"

type: NamespaceDeletionContentFailure - lastTransitionTime: "2020-07-26T12:32:56Z"

- last Hallsition Hille. 2020-07-20112.32.302

message: 'Some resources are remaining: cephobjectstoreusers.ceph.rook.io has

1 resource instances'

reason: SomeResourcesRemain

status: "True"

type: NamespaceContentRemaining

- lastTransitionTime: "2020-07-26T12:32:56Z"

message: 'Some content in the namespace has finalizers remaining:

cephobjectstoreuser.ceph.rook.io

in 1 resource instances'

reason: SomeFinalizersRemain

status: "True"

type: NamespaceFinalizersRemaining

3. Delete all the remaining resources listed in the previous step. For each of the resources to be deleted, do the following:

a. Get the object kind of the resource which needs to be removed. See the message in the above output.

Example:

message: Some content in the namespace has finalizers remaining: cephobjectstoreuser.ceph.rook.io

Here **cephobjectstoreuser.ceph.rook.io** is the object kind.

b. Get the Object name corresponding to the object kind.

\$ oc get <Object-kind> -n <project-name>

Example:

\$ oc get cephobjectstoreusers.ceph.rook.io -n openshift-storage

Example output:

NAME AGE noobaa-ceph-objectstore-user 26h

c. Patch the resources.

\$ oc patch -n cobject-name> <object-kind>/<object-name> --type=merge -p '{"metadata": {"finalizers":null}}'

Example:

\$ oc patch -n openshift-storage cephobjectstoreusers.ceph.rook.io/noobaa-cephobjectstore-user \
--type=merge -p '{"metadata": {"finalizers":null}}'

Output:

cephobjectstoreuser.ceph.rook.io/noobaa-ceph-objectstore-user patched

4. Verify that the openshift-storage project is deleted.

\$ oc get project openshift-storage

Output:

Error from server (NotFound): namespaces "openshift-storage" not found

If the issue persists, reach out to Red Hat Support.

CHAPTER 10. TROUBLESHOOTING CEPHFS PVC CREATION IN EXTERNAL MODE

If you have updated the Red Hat Ceph Storage cluster from a version lower than 4.1.1 to the latest release and is not a freshly deployed cluster, you must manually set the application type for CephFS pool on the Red Hat Ceph Storage cluster to enable CephFS PVC creation in external mode.

1. Check for CephFS pvc stuck in **Pending** status.

oc get pvc -n <namespace>

Example output:

NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
ngx-fs-pxknkcix20-pod Pending
ocs-external-storagecluster-cephfs 28h

ocs-external-storageciuster-ce

[...]

2. Check the **describe** output to see the events for respective pvc.

oc describe pvc ngx-fs-pxknkcix20-pod -n nginx-file

Example output:

Name: ngx-fs-pxknkcix20-pod

Namespace: nginx-file

StorageClass: ocs-external-storagecluster-cephfs

Status: Pending

Volume:

Labels: <none>

Annotations: volume.beta.kubernetes.io/storage-provisioner: openshift-

storage.cephfs.csi.ceph.com

Finalizers: [kubernetes.io/pvc-protection]

Capacity:
Access Modes:

VolumeMode: Filesystem

Mounted By: ngx-fs-oyoe047v2bn2ka42jfgg-pod-hqhzf

Events:

Type Reason Age From

Message

--- ---- ----

Warning ProvisioningFailed 107m (x245 over 22h) openshift-

storage.cephfs.csi.ceph.com_csi-cephfsplugin-provisioner-5f8b66cc96-hvcqp_6b7044af-c904-4795-9ce5-bf0cf63cc4a4

(combined from similar events): failed to provision volume with StorageClass "ocs-external-storagecluster-cephfs": rpc error: code = Internal desc = error (an error (exit status 1) occurred while

running rados args: [-m 192.168.13.212:6789,192.168.13.211:6789,192.168.13.213:6789 -- id csi-cephfs-provisioner --keyfile=stripped -c /etc/ceph/ceph.conf -p cephfs_metadata getomapval

csi.volumes.default csi.volume.pvc-1ac0c6e6-9428-445d-bbd6-1284d54ddb47 /tmp/omapget-186436239 --namespace=csi]) occurred, command output streams is (error getting omap value cephfs_metadata/csi.volumes.default/csi.volume.pvc-1ac0c6e6-9428-445d-bbd6-1284d54ddb47: (1) Operation not permitted)

3. Check the settings for the **<cephfs metadata pool name>** (here **cephfs_metadata**) and **<cephfs data pool name>** (here **cephfs_data**). For running the command, you will need **jq** preinstalled in the Red Hat Ceph Storage client node.

```
# ceph osd pool Is detail --format=json | jq '.[] | select(.pool_name| startswith("cephfs")) |
.pool_name, .application_metadata' "cephfs_data"
{
    "cephfs": {}
}
"cephfs_metadata"
{
    "cephfs": {}
}
```

- 4. Set the application type for CephFS pool.
 - Run the following commands on the Red Hat Ceph Storage client node :
 - # ceph osd pool application set <cephfs metadata pool name> cephfs metadata cephfs
 - # ceph osd pool application set <cephfs data pool name> cephfs data cephfs
- 5. Verify if the settings are applied.

6. Check the CephFS PVC status again. The PVC should now be in **Bound** state.

oc get pvc -n <namespace>

Example output:

```
NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
ngx-fs-pxknkcix20-pod Bound pvc-1ac0c6e6-9428-445d-bbd6-1284d54ddb47
```

1Mi RWO ocs-external-storagecluster-cephfs 29h [...]

CHAPTER 11. RESTORING THE MONITOR PODS IN OPENSHIFT DATA FOUNDATION

Restore the monitor pods if all three of them go down, and when OpenShift Data Foundation is not able to recover the monitor pods automatically.

Procedure

- 1. Scale down the **rook-ceph-operator** and **ocs operator** deployments.
 - # oc scale deployment rook-ceph-operator --replicas=0 -n openshift-storage
 - # oc scale deployment ocs-operator --replicas=0 -n openshift-storage
- 2. Create a backup of all deployments in **openshift-storage** namespace.
 - # mkdir backup
 - # cd backup
 - # oc project openshift-storage
 - # for d in \$(oc get deployment|awk -F' ' '{print \$1}'|grep -v NAME); do echo \$d;oc get deployment \$d -o yaml > oc_get_deployment.\${d}.yaml; done
- 3. Patch the OSD deployments to remove the **livenessProbe** parameter, and run it with the command parameter as **sleep**.

```
# for i in $(oc get deployment -l app=rook-ceph-osd -oname);do oc patch ${i} -n openshift-storage --type='json' -p '[{"op":"remove",
"path":"/spec/template/spec/containers/0/livenessProbe"}]'; oc patch ${i} -n openshift-storage
-p '{"spec": {"template": {"spec": {"containers": [{"name": "osd", "command": ["sleep",
"infinity"], "args": []}]}}}'; done
```

- 4. Retrieve the **monstore** cluster map from all the OSDs.
 - a. Create the **recover_mon.sh** script.

```
#!/bin/bash
ms=/tmp/monstore

rm -rf $ms
mkdir $ms

for osd_pod in $(oc get po -l app=rook-ceph-osd -oname -n openshift-storage); do

echo "Starting with pod: $osd_pod"

podname=$(echo $osd_pod|sed 's/pod\///g')
oc exec $osd_pod -- rm -rf $ms
oc cp $ms $podname:$ms
```

```
rm -rf $ms
mkdir $ms

echo "pod in loop: $osd_pod; done deleting local dirs"

oc exec $osd_pod -- ceph-objectstore-tool --type bluestore --data-path
/var/lib/ceph/osd/ceph-$(oc get $osd_pod -ojsonpath='{
.metadata.labels.ceph_daemon_id }') --op update-mon-db --no-mon-config --mon-store-
path $ms
echo "Done with COT on pod: $osd_pod"

oc cp $podname:$ms $ms

echo "Finished pulling COT data from pod: $osd_pod"

done
```

b. Run the **recover_mon.sh** script.

```
# chmod +x recover_mon.sh
# ./recover_mon.sh
```

- 5. Patch the MON deployments, and run it with the command parameter as sleep.
 - a. Edit the MON deployments.

```
# for i in $(oc get deployment -l app=rook-ceph-mon -oname);do oc patch ${i} -n openshift-storage -p '{"spec": {"template": {"spec": {"containers": [{"name": "mon", "command": ["sleep", "infinity"], "args": []}}}}};; done
```

b. Patch the MON deployments to increase the **initialDelaySeconds**.

```
# oc get deployment rook-ceph-mon-a -o yaml | sed "s/initialDelaySeconds: 10/initialDelaySeconds: 2000/g" | oc replace -f -
```

oc get deployment rook-ceph-mon-b -o yaml | sed "s/initialDelaySeconds: 10/initialDelaySeconds: 2000/g" | oc replace -f -

oc get deployment rook-ceph-mon-c -o yaml | sed "s/initialDelaySeconds: 10/initialDelaySeconds: 2000/g" | oc replace -f -

6. Copy the previously retrieved **monstore** to the **mon-a** pod.

oc cp /tmp/monstore/ \$(oc get po -l app=rook-ceph-mon,mon=a -oname |sed 's/pod\//g'):/tmp/

7. Navigate into the MON pod and change the ownership of the retrieved **monstore**.

oc rsh \$(oc get po -l app=rook-ceph-mon,mon=a -oname)

chown -R ceph:ceph /tmp/monstore

8. Copy the keyring template file before rebuilding the **mon db**.

```
# oc rsh $(oc get po -l app=rook-ceph-mon,mon=a -oname)
```

cp /etc/ceph/keyring-store/keyring /tmp/keyring

```
# cat /tmp/keyring
[mon.]
key = AQCleqldWqm5lhAAgZQbEzoShkZV42RiQVffnA==
caps mon = "allow *"
[client.admin]
key = AQCmAKld8J05KxAArOWeRAw63gAwwZO5o75ZNQ==
auid = 0
caps mds = "allow *"
caps mgr = "allow *"
caps mon = "allow *"
caps osd = "allow *"
```

9. Identify the keyring of all other Ceph daemons (MGR, MDS, RGW, Crash, CSI and CSI provisioners) from its respective secrets.

```
# oc get secret rook-ceph-mds-ocs-storagecluster-cephfilesystem-a-keyring -ojson | jq .data.keyring | xargs echo | base64 -d

[mds.ocs-storagecluster-cephfilesystem-a]
key = AQB3r8VgAtr6OhAAVhhXpNKqRTuEVdRoxG4uRA==
caps mon = "allow profile mds"
caps osd = "allow *"
caps mds = "allow"
```

Example keyring file, /etc/ceph/ceph.client.admin.keyring:

```
[mon.]
key = AQDxTF1hNgLTNxAAi51cCojs01b4l5E6v2H8Uw==
caps mon = "allow "
[client.admin]
    key = AQDxTF1hpzguOxAA0sS8nN4udoO35OEbt3bgMQ==
    caps mds = "allow " caps mgr = "allow *" caps mon = "allow *" caps osd = "allow *"
[mds.ocs-storagecluster-cephfilesystem-a] key =
AQCKTV1horgjARAA8aF/BDh/4+eG4RCNBCl+aw== caps mds = "allow" caps mon = "allow"
profile mds" caps osd = "allow *" [mds.ocs-storagecluster-cephfilesystem-b] key =
AQCKTV1hN4gKLBAA5emIVg3ncV7AMEM1c1RmGA== caps mds = "allow" caps mon =
"allow profile mds" caps osd = "allow *" [client.rgw.ocs.storagecluster.cephobjectstore.a] key
= AQCOkdBixmpiAxAA4X7zjn6SGTI9c1MBflszYA== caps mon = "allow rw" caps osd =
"allow rwx" [mgr.a] key = AQBOTV1hGYOEORAA87471+eIZLZtptfkcHvTRg== caps mds =
"allow *" caps mon = "allow profile mgr" caps osd = "allow *" [client.crash] key =
AQBOTV1htO1aGRAAe2MPYcGdiAT+Oo4CNPSF1g== caps mgr = "allow rw" caps mon =
"allow profile crash" [client.csi-cephfs-node] key =
AQBOTV1hiAtuBBAAaPPBVgh1AqZJIDeHWdoFLw== caps mds = "allow rw" caps mgr =
"allow rw" caps mon = "allow r" caps osd = "allow rw tag cephfs *=" [client.csi-cephfs-
provisioner] key = AQBNTV1hHu6wMBAAzNXZv36aZJuE1iz7S7GfeQ== caps mgr = "allow
rw" caps mon = "allow r" caps osd = "allow rw tag cephfs metadata="
[client.csi-rbd-node]
key = AQBNTV1h+LnkIRAAWnpIN9bUAmSHOvJ0EJXHRw==
```

```
caps mgr = "allow rw"
caps mon = "profile rbd"
caps osd = "profile rbd"
[client.csi-rbd-provisioner]
key = AQBNTV1hMNcsExAAvA3gHB2qaY33LOdWCvHG/A==
caps mgr = "allow rw"
caps mon = "profile rbd"
caps osd = "profile rbd"
```


IMPORTANT

- For **client.csi** related keyring, refer to the previous keyring file output and add the default **caps** after fetching the key from its respective OpenShift Data Foundation secret.
- OSD keyring is added automatically post recovery.
- 10. Navigate into the **mon-a** pod, and verify that the **monstore** has **monmap**.
 - a. Navigate into the mon-a pod.
 - # oc rsh \$(oc get po -l app=rook-ceph-mon,mon=a -oname)
 - b. Verify that the monstore has monmap.
 - # ceph-monstore-tool /tmp/monstore get monmap -- --out /tmp/monmap
 - # monmaptool /tmp/monmap --print
- 11. Optional: If the **monmap** is missing then create a new **monmap**.

 $\# \ monmaptool \ --create \ --add \ < mon-a-id> \ < mon-a-ip> \ --add \ < mon-b-id> \ < mon-b-ip> \ --add \ < mon-c-id> \ < mon-c-ip> \ --add \ < mon-b-id> \ < mon-b-ip> \ --add \ < mon-b-id> \ < mon-b-ip> \ --add \ <$

<mon-a-id>

Is the ID of the mon-a pod.

<mon-a-ip>

Is the IP address of the mon-a pod.

<mon-b-id>

Is the ID of the **mon-b** pod.

<mon-b-ip>

Is the IP address of the mon-b pod.

<mon-c-id>

Is the ID of the mon-c pod.

<mon-c-ip>

Is the IP address of the mon-c pod.

<fsid>

Is the file system ID.

- 12. Verify the **monmap**.
 - # monmaptool /root/monmap --print
- 13. Import the **monmap**.

IMPORTANT

Use the previously created keyring file.

ceph-monstore-tool /tmp/monstore rebuild -- --keyring /tmp/keyring --monmap /root/monmap

- # chown -R ceph:ceph /tmp/monstore
- 14. Create a backup of the old **store.db** file.
 - # mv /var/lib/ceph/mon/ceph-a/store.db /var/lib/ceph/mon/ceph-a/store.db.corrupted
 - # mv /var/lib/ceph/mon/ceph-b/store.db /var/lib/ceph/mon/ceph-b/store.db.corrupted
 - # mv /var/lib/ceph/mon/ceph-c/store.db /var/lib/ceph/mon/ceph-c/store.db.corrupted
- 15. Copy the rebuild **store.db** file to the **monstore** directory.
 - # mv /tmp/monstore/store.db /var/lib/ceph/mon/ceph-a/store.db
 - # chown -R ceph:ceph /var/lib/ceph/mon/ceph-a/store.db
- 16. After rebuilding the **monstore** directory, copy the **store.db** file from local to the rest of the MON pods.
 - # oc cp \$(oc get po -l app=rook-ceph-mon,mon=a -oname | sed 's/pod\//g'):/var/lib/ceph/mon/ceph-a/store.db /tmp/store.db
 - # oc cp /tmp/store.db (oc get po -l app=rook-ceph-mon,mon=<id>-oname | sed 's/pod<math>//g'):/var/lib/ceph/mon/ceph-<id>

<id>

Is the ID of the MON pod

- 17. Navigate into the rest of the MON pods and change the ownership of the copied **monstore**.
 - # oc rsh \$(oc get po -l app=rook-ceph-mon,mon=<id>-oname)
 - # chown -R ceph:ceph/var/lib/ceph/mon/ceph-<id>/store.db

<id>

Is the ID of the MON pod

- 18. Revert the patched changes.
 - For MON deployments:

oc replace --force -f <mon-deployment.yaml>

<mon-deployment.yaml>

Is the MON deployment yaml file

For OSD deployments:

oc replace --force -f <osd-deployment.yaml>

<osd-deployment.yaml>

Is the OSD deployment yaml file

• For MGR deployments:

oc replace --force -f <mgr-deployment.yaml>

<mgr-deployment.yaml>

Is the MGR deployment yaml file

IMPORTANT

Ensure that the MON, MGR and OSD pods are up and running.

19. Scale up the **rook-ceph-operator** and **ocs-operator** deployments.

oc -n openshift-storage scale deployment ocs-operator --replicas=1

Verification steps

1. Check the Ceph status to confirm that CephFS is running.

ceph -s

Example output:

cluster:

id: f111402f-84d1-4e06-9fdb-c27607676e55

health: HEALTH_ERR

- 1 filesystem is offline
- 1 filesystem is online with fewer MDS than max_mds
- 3 daemons have recently crashed

services:

mon: 3 daemons, quorum b,c,a (age 15m)

mgr: a(active, since 14m)

mds: ocs-storagecluster-cephfilesystem:0 osd: 3 osds: 3 up (since 15m), 3 in (since 2h)

data:

pools: 3 pools, 96 pgs objects: 500 objects, 1.1 GiB

usage: 5.5 GiB used, 295 GiB / 300 GiB avail

pgs: 96 active+clean

2. Check the Multicloud Object Gateway (MCG) status. It should be active, and the backingstore and bucketclass should be in **Ready** state.

noobaa status -n openshift-storage

IMPORTANT

If the MCG is not in the active state, and the backingstore and bucketclass not in the **Ready** state, you need to restart all the MCG related pods. For more information, see Section 11.1, "Restoring the Multicloud Object Gateway".

11.1. RESTORING THE MULTICLOUD OBJECT GATEWAY

If the Multicloud Object Gateway (MCG) is not in the active state, and the backingstore and bucketclass is not in the **Ready** state, you need to restart all the MCG related pods, and check the MCG status to confirm that the MCG is back up and running.

Procedure

1. Restart all the pods related to the MCG.

oc delete pods <noobaa-operator> -n openshift-storage

oc delete pods <noobaa-core> -n openshift-storage

oc delete pods <noobaa-endpoint> -n openshift-storage

oc delete pods <noobaa-db> -n openshift-storage

<noobaa-operator>

Is the name of the MCG operator

<noobaa-core>

Is the name of the MCG core pod

<noobaa-endpoint>

Is the name of the MCG endpoint

<noobaa-db>

Is the name of the MCG db pod

2. If the RADOS Object Gateway (RGW) is configured, restart the pod.

oc delete pods <rgw-pod> -n openshift-storage

<rgw-pod>

Is the name of the RGW pod

CHAPTER 12. RESTORING CEPH-MONITOR QUORUM IN OPENSHIFT DATA FOUNDATION

In some circumstances, the **ceph-mons** might lose quorum. If the **mons** cannot form quorum again, there is a manual procedure to get the quorum going again. The only requirement is that, at least one **mon** must be healthy. The following steps removes the unhealthy **mons** from quorum and enables you to form a quorum again with a single **mon**, then bring the quorum back to the original size.

For example, if you have three **mons** and lose quorum, you need to remove the two bad **mons** from quorum, notify the good **mon** that it is the only **mon** in quorum, and then restart the good **mon**.

Procedure

- 1. Stop the **rook-ceph-operator** so that the **mons** are not failed over when you are modifying the **monmap**.
 - # oc -n openshift-storage scale deployment rook-ceph-operator --replicas=0
- 2. Inject a new monmap.

WARNING

You must inject the **monmap** very carefully. If run incorrectly, your cluster could be permanently destroyed. The Ceph **monmap** keeps track of the **mon** quorum. The **monmap** is updated to only contain the healthy mon. In this example, the healthy mon is **rook-ceph-mon-b**, while the unhealthy **mons** are **rook-ceph-mon-a** and **rook-ceph-mon-c**.

a. Take a backup of the current **rook-ceph-mon-b** Deployment:

oc -n openshift-storage get deployment rook-ceph-mon-b -o yaml > rook-ceph-mon-b-deployment.yaml

b. Open the YAML file and copy the **command** and **arguments** from the **mon** container (see containers list in the following example). This is needed for the **monmap** changes.

[...]

containers:

- args:
- ---fsid=41a537f2-f282-428e-989f-a9e07be32e47
- --keyring=/etc/ceph/keyring-store/keyring
- --log-to-stderr=true
- --err-to-stderr=true
- --mon-cluster-log-to-stderr=true
- '--log-stderr-prefix=debug '
- --default-log-to-file=false
- --default-mon-cluster-log-to-file=false
- --mon-host=\$(ROOK_CEPH_MON_HOST)
- --mon-initial-members=\$(ROOK_CEPH_MON_INITIAL_MEMBERS)

```
- --id=b
- --setuser=ceph
- --setgroup=ceph
- --foreground
- --public-addr=10.100.13.242
- --setuser-match-path=/var/lib/ceph/mon/ceph-b/store.db
- --public-bind-addr=$(ROOK_POD_IP)
command:
- ceph-mon
[...]
```

c. Cleanup the copied **command** and **args** fields to form a pastable command as follows:

```
# ceph-mon \
  --fsid=41a537f2-f282-428e-989f-a9e07be32e47 \
  --keyring=/etc/ceph/keyring-store/keyring \
  --log-to-stderr=true \
  --err-to-stderr=true \
  --mon-cluster-log-to-stderr=true \
  --log-stderr-prefix=debug \
  --default-log-to-file=false \
  --default-mon-cluster-log-to-file=false \
  --mon-host=$ROOK_CEPH_MON_HOST \
  --mon-initial-members=$ROOK CEPH MON INITIAL MEMBERS \
  --id=b \
  --setuser=ceph \
  --setgroup=ceph \
  --foreground \
  --public-addr=10.100.13.242 \
  --setuser-match-path=/var/lib/ceph/mon/ceph-b/store.db \
  --public-bind-addr=$ROOK POD IP
```


NOTE

Make sure to remove the single quotes around the **--log-stderr-prefix** flag and the parenthesis around the variables being passed **ROOK_CEPH_MON_HOST**, **ROOK_CEPH_MON_INITIAL_MEMBERS** and **ROOK_POD_IP**).

d. Patch the **rook-ceph-mon-b** Deployment to stop the working of this **mon** without deleting the **mon** pod.

```
# oc -n openshift-storage patch deployment rook-ceph-mon-b --type='json' -p '[{"op":"remove", "path":"/spec/template/spec/containers/0/livenessProbe"}]'

# oc -n openshift-storage patch deployment rook-ceph-mon-b -p '{"spec": {"template": {"spec": {"containers": [{"name": "mon", "command": ["sleep", "infinity"], "args": []}}}}'
```

- e. Perform the following steps on the **mon-b** pod:
 - i. Connect to the pod of a healthy **mon** and run the following commands:

oc -n openshift-storage exec -it <mon-pod> bash

ii. Set the variable.

monmap_path=/tmp/monmap

iii. Extract the **monmap** to a file, by pasting the ceph **mon** command from the good **mon** deployment and adding the **--extract-monmap=\${monmap_path}** flag.

```
# ceph-mon \
    --fsid=41a537f2-f282-428e-989f-a9e07be32e47 \
    --keyring=/etc/ceph/keyring-store/keyring \
    --log-to-stderr=true \
    --err-to-stderr=true \
    --mon-cluster-log-to-stderr=true \
    --log-stderr-prefix=debug \
    --default-log-to-file=false \
    --default-mon-cluster-log-to-file=false \
    --mon-host=$ROOK CEPH MON HOST \
    --mon-initial-members=$ROOK_CEPH_MON_INITIAL_MEMBERS \
    --id=b \
    --setuser=ceph \
    --setgroup=ceph \
    --foreground \
    --public-addr=10.100.13.242 \
    --setuser-match-path=/var/lib/ceph/mon/ceph-b/store.db \
    --public-bind-addr=$ROOK POD IP \
    --extract-monmap=${monmap_path}
```

- iv. Review the contents of the monmap.
 - # monmaptool --print /tmp/monmap
- v. Remove the bad **mons** from the **monmap**.

```
# monmaptool ${monmap_path} --rm <bad_mon>
```

In this example we remove **mon0** and **mon2**:

```
# monmaptool ${monmap_path} --rm a
# monmaptool ${monmap_path} --rm c
```

vi. Inject the modified **monmap** into the good **mon**, by pasting the ceph **mon** command and adding the **--inject-monmap=\${monmap_path}** flag as follows:

- --id=b \
- --setuser=ceph \
- --setgroup=ceph \
- --foreground \
- --public-addr=10.100.13.242 \
- --setuser-match-path=/var/lib/ceph/mon/ceph-b/store.db \
- --public-bind-addr=\$ROOK_POD_IP \
- --inject-monmap=\${monmap_path}
- vii. Exit the shell to continue.
- 3. Edit the Rook configmaps.
 - a. Edit the **configmap** that the operator uses to track the **mons**.
 - # oc -n openshift-storage edit configmap rook-ceph-mon-endpoints
 - b. Verify that in the data element you see three **mons** such as the following (or more depending on your **moncount**):
 - data: a=10.100.35.200:6789;b=10.100.13.242:6789;c=10.100.35.12:6789
 - c. Delete the bad **mons** from the list to end up with a single good **mon**. For example:
 - data: b=10.100.13.242:6789
 - d. Save the file and exit.
 - e. Now, you need to adapt a **Secret** which is used for the **mons** and other components.
 - i. Set a value for the variable **good_mon_id**.For example:
 - # good_mon_id=b
 - ii. You can use the **oc patch** command to patch the **rook-ceph-config** secret and update the two key/value pairs **mon_host** and **mon_initial_members**.

```
# mon_host=$(oc -n openshift-storage get svc rook-ceph-mon-b -o
jsonpath='{.spec.clusterIP}')
```

```
# oc -n openshift-storage patch secret rook-ceph-config -p '{"stringData": \"mon_host": "[v2:\"\${mon_host}\":3300,v1:\"\${mon_host}\":6789]\", \"mon_initial_members\": \"\"\${good_mon_id}\"\"}\'
```


NOTE

If you are using **hostNetwork: true**, you need to replace the **mon_host** var with the node IP the **mon** is pinned to (**nodeSelector**). This is because there is no **rook-ceph-mon-*** service created in that "mode".

4. Restart the **mon**.

You need to restart the good **mon** pod with the original **ceph-mon** command to pick up the changes.

a. Use the oc replace command on the backup of the mon deployment YAML file:

oc replace --force -f rook-ceph-mon-b-deployment.yaml

NOTE

Option --force deletes the deployment and creates a new one.

- b. Verify the status of the cluster.
 The status should show one **mon** in quorum. If the status looks good, your cluster should be healthy again.
- 5. Delete the two mon deployments that are no longer expected to be in quorum. For example:

```
# oc delete deploy <rook-ceph-mon-1>
# oc delete deploy <rook-ceph-mon-2>
```

In this example the deployments to be deleted are rook-ceph-mon-a and rook-ceph-mon-c.

- 6. Restart the operator.
 - a. Start the rook operator again to resume monitoring the health of the cluster.

NOTE

It is safe to ignore the errors that a number of resources already exist.

oc -n openshift-storage scale deployment rook-ceph-operator --replicas=1

The operator automatically adds more **mons** to increase the quorum size again depending on the **mon** count.

CHAPTER 13. ENABLING THE RED HAT OPENSHIFT DATA FOUNDATION CONSOLE PLUGIN

Enable the console plugin option if it was not automatically enabled after you installed the OpenShift Data Foundation Operator. The console plugin provides a custom interface that is included in the Web Console. You can enable the console plugin option either from the graphical user interface (GUI) or command-line interface.

Prerequisites

- You have administrative access to the OpenShift Web Console.
- OpenShift Data Foundation Operator is installed and running in the **openshift-storage** namespace.

Procedure

From user interface

- In the OpenShift Web Console, click Operators → Installed Operators to view all the installed operators.
- 2. Ensure that the **Project** selected is **openshift-storage**.
- 3. Click on the **OpenShift Data Foundation** operator.
- 4. Enable the console plugin option.
 - a. In the **Details** tab, click the **pencil** icon under **Console plugin**.
 - b. Select Enable, and click Save.

From command-line interface

• Execute the following command to enable the console plugin option:

\$ oc patch console.operator cluster -n openshift-storage --type json -p '[{"op": "add", "path": "/spec/plugins", "value": ["odf-console"]}]'

Verification steps

- After the console plugin option is enabled, a pop-up with a message, **Web console update is available** appears on the GUI. Click **Refresh web console** from this pop-up for the console changes to reflect.
 - In the Web Console, navigate to **Storage** and verify if **Data Foundation** is available.

CHAPTER 14. CHANGING RESOURCES FOR THE OPENSHIFT DATA FOUNDATION COMPONENTS

When you install OpenShift Data Foundation, it comes with pre-defined resources that the OpenShift Data Foundation pods can consume. In some situations with higher I/O load, it might be required to increase these limits.

- To change the CPU and memory resources on the rook-ceph pods, see Section 14.1, "Changing the CPU and memory resources on the rook-ceph pods".
- To tune the resources for the Multicloud Object Gateway (MCG), see Section 14.2, "Tuning the resources for the MCG".

14.1. CHANGING THE CPU AND MEMORY RESOURCES ON THE ROOK-CEPH PODS

When you install OpenShift Data Foundation, it comes with pre-defined CPU and memory resources for the rook-ceph pods. You can manually increase these values according to the requirements.

You can change the CPU and memory resources on the following pods:

- mgr
- mds
- rgw

The following example illustrates how to change the CPU and memory resources on the rook-ceph pods. In this example, the existing MDS pod values of **cpu** and **memory** are increased from **1** and **4Gi** to **2** and **8Gi** respectively.

1. Edit the storage cluster:

oc edit storagecluster -n openshift-storage <storagecluster_name>

<storagecluster_name>

Specify the name of the storage cluster.

Example 14.1. Example

oc edit storagecluster -n openshift-storage ocs-storagecluster

2. Add the following lines to the storage cluster Custom Resource (CR):

```
spec:
resources:
mds:
limits:
cpu: 2
memory: 8Gi
```

requests: cpu: 2 memory: 8Gi

- 3. Save the changes and exit the editor.
- 4. Alternatively, run the **oc patch** command to change the CPU and memory value of the **mds** pod:

```
# oc patch -n openshift-storage storagecluster <storagecluster_name>
    --type merge \
    --patch '{"spec": {"resources": {"mds": {"limits": {"cpu": "2","memory": "8Gi"},"requests":
    {"cpu": "2","memory": "8Gi"}}}}'
```

<storagecluster_name>

Specify the name of the storage cluster.

Example 14.2. Example

```
# oc patch -n openshift-storage storagecluster ocs-storagecluster \
--type merge \
--patch '{"spec": {"resources": {"mds": {"limits": {"cpu": "2","memory": "8Gi"},"requests": {"cpu": "2","memory": "8Gi"}}}}'
```

14.2. TUNING THE RESOURCES FOR THE MCG

The default configuration for the Multicloud Object Gateway (MCG) is optimized for low resource consumption and not performance. For more information on how to tune the resources for the MCG, see the Red Hat Knowledgebase solution Performance tuning guide for Multicloud Object Gateway (NooBaa).