& RedHat

Red Hat OpenShift Dev Spaces 3.14

User guide

Using Red Hat OpenShift Dev Spaces 3.14

Last Updated: 2024-06-25

Red Hat OpenShift Dev Spaces 3.14 User guide

Using Red Hat OpenShift Dev Spaces 3.14

Jana Vrbkova
jvrbkova@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Information for users using Red Hat OpenShift Dev Spaces.

Table of Contents

CHAPTER 1. GETTING STARTED WITHDEV SPACES ... o i

1.1. STARTING A WORKSPACE FROM A GIT REPOSITORY URL
1.1.1. Optional parameters for the URLs for starting a new workspace
1.1.1.1. URL parameter concatenation
1.1.1.2. URL parameter for the IDE
1.1.1.3. URL parameter for the IDE image
1.1.1.4. URL parameter for starting duplicate workspaces
1.1.1.5. URL parameter for the devfile file name
1.1.1.6. URL parameter for the devfile file path
1.1.1.7. URL parameter for the workspace storage
1.1.1.8. URL parameter for additional remotes
1.1.1.9. URL parameter for a container image
1.2. STARTING A WORKSPACE FROM A RAW DEVFILE URL
1.3. BASIC ACTIONS YOU CAN PERFORM ON A WORKSPACE
1.4. AUTHENTICATING TO A GIT SERVER FROM A WORKSPACE
1.5. USING THE FUSE-OVERLAYFS STORAGE DRIVER FOR PODMAN AND BUILDAH
1.5.1. Accessing /dev/fuse
1.5.2. Enabling fuse-overlayfs with a ConfigMap

CHAPTER 2. USING DEV SPACES INTEAMWORKFLOW e

2.1.BADGE FOR FIRST-TIME CONTRIBUTORS

2.2. REVIEWING PULL AND MERGE REQUESTS

2.3. TRY IN WEB IDE GITHUB ACTION
2.3.1. Adding the action to a GitHub repository workflow
2.3.2. Providing a devfile

CHAPTER 3. CUSTOMIZING WORKSPACE COMPONENTS

CHAPTER 4. INTRODUCTION TODEVFILEINDEVSPACES

CHAPTERS.IDESINWORKSPACES ... i i i

5.1. SUPPORTED IDES
5.2. REPOSITORY-LEVEL IDE CONFIGURATION IN OPENSHIFT DEV SPACES
5.3. MICROSOFT VISUAL STUDIO CODE - OPEN SOURCE
5.3.1. Automating installation of Microsoft Visual Studio Code extensions at workspace startup
5.4. DEFINING A COMMON IDE
5.4.1. Setting up che-editor.yaml
5.4.2. Parameters for che-editor.yaml

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

6.1. MOUNTING SECRETS
6.1.1. Creating image pull Secrets
6.1.1.1. Creating an image pull Secret with oc
6.1.1.2. Creating an image pull Secret from a .dockercfg file
6.1.1.3. Creating an image pull Secret from a config.json file
6.1.2. Using a Git-provider access token
6.2. MOUNTING CONFIGMAPS
6.2.1. Mounting Git configuration
6.3. ENABLING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT
6.3.1. Maven
6.3.2. Gradle
6.3.3. npm

Table of Contents

O O 00 N N B~

............ 22

............ 23

............ 24
24
24
24
25
26
27
27

30
32
32
32
33
34
36
38
39
39

41
43

Red Hat OpenShift Dev Spaces 3.14 User guide

6.3.3.1. Disabling self-signed certificate validation

6.3.3.2. Configuring NODE_EXTRA_CA_CERTS to use a certificate
6.3.4. Python
6.3.5.Go
6.3.6. NuGet

CHAPTER 7. REQUESTING PERSISTENT STORAGE FORWORKSPACES ...t
7.1. REQUESTING PERSISTENT STORAGE IN A DEVFILE
7.2. REQUESTING PERSISTENT STORAGE IN A PVC

CHAPTER 8. INTEGRATING WITH OPENSHIF T .ottt i ittt it ei et enaneeannennneenn,
8.1. MANAGING WORKSPACES WITH OPENSHIFT APIS
8.1.1. Listing all workspaces
8.1.2. Creating workspaces
8.1.3. Stopping workspaces
8.1.4. Starting stopped workspaces
8.1.5. Removing workspaces
8.2. AUTOMATIC OPENSHIFT TOKEN INJECTION
8.3. NAVIGATING DEV SPACES FROM OPENSHIFT DEVELOPER PERSPECTIVE
8.3.1. OpenShift Developer Perspective integration with OpenShift Dev Spaces
8.3.2. Editing the code of applications running in OpenShift Container Platform using OpenShift Dev Spaces

8.3.3. Accessing OpenShift Dev Spaces from Red Hat Applications menu
8.4. NAVIGATING OPENSHIFT WEB CONSOLE FROM DEV SPACES

CHAPTER 9. TROUBLESHOOTING DEV SPACES ... ittt ittt eeeieanteeaneeraneennneenn
9.1. VIEWING DEV SPACES WORKSPACES LOGS
9.1.1. Workspace logs in CLI
9.1.2. Workspace logs in OpenShift console
9.1.3. Language servers and debug adapters logs in the editor
9.2. TROUBLESHOOTING SLOW WORKSPACES
9.2.1. Improving workspace start time
9.2.2. Improving workspace runtime performance
9.3. TROUBLESHOOTING NETWORK PROBLEMS
9.4. TROUBLESHOOTING WEBVIEW LOADING ERROR

44
44
44
45
46

49
50

53
53
53
54
57
57
58
59
60
60

61
62
62

64
64
65
65
65
65
66
67
67

Table of Contents

Red Hat OpenShift Dev Spaces 3.14 User guide

CHAPTER 1. GETTING STARTED WITH DEV SPACES

If your organization is already running a OpenShift Dev Spaces instance, you can get started as a new
user by learning how to start a new workspace, manage your workspaces, and authenticate yourself to a
Git server from a workspace:

Section 1.1, “Starting a workspace from a Git repository URL"

Section 1.1.1, "Optional parameters for the URLs for starting a new workspace”
Section 1.2, “Starting a workspace from a raw devfile URL"

Section 1.3, "Basic actions you can perform on a workspace”

Section 1.4, "Authenticating to a Git server from a workspace”

Section 1.5, “Using the fuse-overlayfs storage driver for Podman and Buildah”

1.1. STARTING A WORKSPACE FROM A GIT REPOSITORY URL

With OpenShift Dev Spaces, you can use a URL in your browser to start a new workspace that contains a
clone of a Git repository. This way, you can clone a Git repository that is hosted on GitHub, GitLab,
Bitbucket or Microsoft Azure DevOps server instances.

TIP

You can also use the Git Repository URL field on the Create Workspace page of your OpenShift Dev
Spaces dashboard to enter the URL of a Git repository to start a new workspace.

IMPORTANT

® |fyou use an SSH URL to start a new workspace, you must propagate the SSH
key. See Configuring DevWorkspaces to use SSH keys for Git operations for
more information.

e |f the SSH URL points to a private repository, you must apply an access token to

be able to fetch the devfile.yaml content. You can do this either by accepting an
SCM authentication page or following a Personal Access Token procedure.

IMPORTANT

Configure personal access token to access private repositories. See Section 6.1.2, “Using
a Git-provider access token”.

Prerequisites

Your organization has a running instance of OpenShift Dev Spaces.

You know the FQDN URL of your organization’s OpenShift Dev Spaces instance:
https://<openshift_dev_spaces_fqdns.

Optional: You have authentication to the Git server configured.

https://github.com/devfile/devworkspace-operator/blob/main/docs/additional-configuration.adoc#configuring-devworkspaces-to-use-ssh-keys-for-git-operations

CHAPTER 1. GETTING STARTED WITH DEV SPACES

® Your Git repository maintainer keeps the devfile.yaml or .devfile.yaml file in the root directory
of the Git repository. (For alternative file names and file paths, see Section 1.1.1, “Optional
parameters for the URLs for starting a new workspace”.)

TIP

You can also start a new workspace by supplying the URL of a Git repository that contains no
devfile. Doing so results in a workspace with Universal Developer Image and with Microsoft
Visual Studio Code - Open Source as the workspace IDE.

Procedure

To start a new workspace with a clone of a Git repository:

1. Optional: Visit your OpenShift Dev Spaces dashboard pages to authenticate to your
organization’s instance of OpenShift Dev Spaces.

2. Visit the URL to start a new workspace using the basic syntax:

I https://<openshift_dev_spaces fqdn>#<git_repository url>

TIP

You can extend this URL with optional parameters:

I https://<openshift_dev_spaces fqdn>#<git_repository url>?<optional parameters>0

ﬂ See Section 1.1.1, “Optional parameters for the URLs for starting a new workspace” .

TIP

You can use Git+SSH URLs to start a new workspace. See Configuring DevWorkspaces to use
SSH keys for Git operations

Example 1.1. A URL for starting a new workspace

e https://<openshift_dev_spaces_fqdns#https://github.com/che-samples/cpp-hello-
world

e https://<openshift_dev_spaces_fqdns>igit@github.com:che-samples/cpp-hello-
world.git

Example 1.2. The URL syntax for starting a new workspace with a clone of a GitHub
instance repository

e https://<openshift_dev_spaces_fqdnsihttps://<github_hosts/<user_or_orgs/<repo
sitorys starts a new workspace with a clone of the default branch.

e https://<openshift_dev_spaces_fqdnsi#https://<github_hosts/<user_or_orgs/<repo
sitorysitree/<branch_names> starts a new workspace with a clone of the specified
branch.

https://github.com/devfile/devworkspace-operator/blob/main/docs/additional-configuration.adoc#configuring-devworkspaces-to-use-ssh-keys-for-git-operations

Red Hat OpenShift Dev Spaces 3.14 User guide

e https://<openshift_dev_spaces_fqdnsi#https://<github_hosts/<user_or_orgs/<repo

sitorys/pull/ <pull_request_id> starts a new workspace with a clone of the branch of the
pull request.

e https://<openshift_dev_spaces_fqdns>igit@<github_host>:<user_or_orgs/<reposit

orys.git starts a new workspace from Git+SSH URL.

Example 1.3. The URL syntax for starting a new workspace with a clone of a GitLab
instance repository

e https://<openshift_dev_spaces_fqdnsi#https://<gitlab_hosts/<user_or_orgs/<repos

itory> starts a new workspace with a clone of the default branch.

https://<openshift_dev_spaces_fqdnsi#https://<gitlab_hosts/<user_or_orgs/<repos
itorysi-/tree/<branch_names starts a new workspace with a clone of the specified
branch.

https://<openshift_dev_spaces_fqdn>#git@<gitlab_host>:<user_or_orgs/<reposito
rys.git starts a new workspace from Git+SSH URL.

Example 1.4. The URL syntax for starting a new workspace with a clone of a BitBucket
Server repository

e https://<openshift_dev_spaces_fqdnsithttps://<bb_hosts/scm/<project-

keys/<repositorys.git starts a new workspace with a clone of the default branch.

https://<openshift_dev_spaces_fqdns#https://<bb_hosts/users/<user_slug>/repos/
<repository>/ starts a new workspace with a clone of the default branch, if a repository
was created under the user profile.

https://<openshift_dev_spaces_fqdns#https://<bb_hosts/users/<user-
slug>/repos/<repository>/browse?at=refs%2Fheads%2F <branch-name> starts a
new workspace with a clone of the specified branch.

https://<openshift_dev_spaces_fqdn>#git@<bb_host>:<user_slug>/<repositorys.g
it starts a new workspace from Git+SSH URL.

Example 1.5. The URL syntax for starting a new workspace with a clone of a Microsoft
Azure DevOps Git repository

e https://<openshift_dev_spaces_fqdnsi#https://<organization>@dev.azure.com/<org

anizations/<projects/_qit/ <repositorys starts a new workspace with a clone of the
default branch.

https://<openshift_dev_spaces_fqdns>#https://<organization>@dev.azure.com/<org
anizations/<projects/_git/ <repository>?version=GB <branch> starts a new workspace
with a clone of the specific branch.

https://<openshift_dev_spaces_fqdns#git@ssh.dev.azure.com:v3/<organizations/<
project>/<repository> starts a new workspace from Git+SSH URL.

CHAPTER 1. GETTING STARTED WITH DEV SPACES

After you enter the URL to start a new workspace in a browser tab, the workspace starting page
appears.

When the new workspace is ready, the workspace IDE loads in the browser tab.
A clone of the Git repository is present in the filesystem of the new workspace.

The workspace has a unique URL:
https://<openshift_dev_spaces_fqdns/<user_names/<unique_url>.

Additional resources

® Section 1.1.7, “Optional parameters for the URLs for starting a new workspace”
® Section 1.3, “Basic actions you can perform on a workspace”

® Section 6.1.2, “"Using a Git-provider access token”

® Section 6.2.1, “Mounting Git configuration”

® Configuring DevWorkspaces to use SSH keys for Git operations

1.1.1. Optional parameters for the URLs for starting a new workspace

When you start a new workspace, OpenShift Dev Spaces configures the workspace according to the
instructions in the devfile. When you use a URL to start a new workspace, you can append optional
parameters to the URL that further configure the workspace. You can use these parameters to specify a
workspace IDE, start duplicate workspaces, and specify a devfile file name or path.

® Section 1.1.1.1, "URL parameter concatenation”

Section 1.1.1.2, “"URL parameter for the IDE”

® Section 1.11.3, "URL parameter for the IDE image”

® Section 1.1.1.4, “URL parameter for starting duplicate workspaces”
® Section 1.11.5, “"URL parameter for the devfile file name”

® Section 1.1.1.6, “URL parameter for the devfile file path”

® Section 1.11.7, "URL parameter for the workspace storage”

® Section 1.1.1.8, “URL parameter for additional remotes”

® Section 1.11.9, “URL parameter for a container image”

1.1.1.1. URL parameter concatenation

The URL for starting a new workspace supports concatenation of multiple optional URL parameters by
using & with the following URL syntax:

https://<openshift_dev_spaces_fqdn>#<git _repository_url>? <url_parameter_1>&<url_parameter_
2>&<url_parameter_3>

https://github.com/devfile/devworkspace-operator/blob/main/docs/additional-configuration.adoc#configuring-devworkspaces-to-use-ssh-keys-for-git-operations

Red Hat OpenShift Dev Spaces 3.14 User guide

Example 1.6. A URL for starting a new workspace with the URL of a Git repository and optional
URL parameters

The complete URL for the browser:

https://<openshift_dev_spaces_fqdns>#https://github.com/che-samples/cpp-hello-world?
new&che-editor=che-incubator/intellij-community/latest&devfilePath=tests/testdevfile.yaml

Explanation of the parts of the URL:

https://<openshift_dev_spaces_fqdn> ﬂ
#https://github.com/che-samples/cpp-hello-world g
?newé&che-editor=che-incubator/intellij-community/latest&devfilePath=tests/testdevfile.yaml 6

ﬂ OpenShift Dev Spaces URL.
9 The URL of the Git repository to be cloned into the new workspace.

9 The concatenated optional URL parameters.

1.1.1.2. URL parameter for the IDE

You can use the che-editor= URL parameter to specify a supported IDE when starting a workspace.

TIP

Use the che-editor= parameter when you cannot add or edit a /.che/che-editor.yaml file in the source-
code Git repository to be cloned for workspaces.

NOTE

The che-editor= parameter overrides the /.che/che-editor.yaml file.

e

This parameter accepts two types of values:

e che-editor=<editor_key>

I https://<openshift_dev_spaces fqdn>#<git_repository url>?che-editor=<editor_key>

Table 1.1. The URL parameter<editor_key> values for supported IDEs

IDE <editor_key> value Note
Microsoft Visual Studio Code - che-incubator/che- This is the default IDE that
Open Source code/latest loads in a new workspace when

the URL parameter or che-
editor.yaml is not used.

JetBrains IntelliJ IDEA che-incubator/che- Technology Preview. Use the
Community Edition idea/latest Dashboard to select this IDE.

https://github.com/redhat-developer/devspaces-images/tree/devspaces-3-rhel-8/devspaces-code
https://github.com/redhat-developer/devspaces-images/tree/devspaces-3-rhel-8/devspaces-idea
https://access.redhat.com/support/offerings/techpreview

CHAPTER 1. GETTING STARTED WITH DEV SPACES

o che-editor=<url_to_a file>
I https://<openshift_dev_spaces fqdn>#<git_repository url>?che-editor=<url_ to_a_file>ﬂ

ﬂ URL to a file with devfile content.

TIP
o The URL must point to the raw file content.

o To use this parameter with a che-editor.yaml file, copy the file with another name or path,
and remove the line with inline from the file.

o The che-editors.yaml file features the devfiles of all supported IDEs.

1.1.1.3. URL parameter for the IDE image

You can use the editor-image parameter to set the custom IDE image for the workspace.

IMPORTANT

e |f the Git repository contains /.che/che-editor.yaml file, the custom editor will be
overridden with the new IDE image.

e |f there is no/.che/che-editor.yaml file in the Git repository, the default editor
will be overridden with the new IDE image.

e |f you want to override the supported IDE and change the target editor image,
you can use both parameters together: che-editor and editor-image URL
parameters.

The URL parameter to override the IDE image is editor-image=:

https://<openshift_dev_spaces fqdn>#<git_repository url>?editor-
image=<container_registry/image_name:image_tag>

Example:

https://<openshift_dev_spaces_fqdns>#https:/github.com/eclipse-che/che-docs?editor-
image=quay.io/che-incubator/che-code:next

or

https://<openshift_dev_spaces_fqdns#https://github.com/eclipse-che/che-docs?che-editor=che-
incubator/che-code/latest&editor-image=quay.io/che-incubator/che-code:next
1.1.1.4. URL parameter for starting duplicate workspaces

Visiting a URL for starting a new workspace results in a new workspace according to the devfile and with
a clone of the linked Git repository.

https://devfile.io/docs/2.2.0/what-is-a-devfile
https://github.com/redhat-developer/devspaces/blob/devspaces-3-rhel-8/dependencies/che-plugin-registry/che-editors.yaml

Red Hat OpenShift Dev Spaces 3.14 User guide

In some situations, you might need to have multiple workspaces that are duplicates in terms of the
devfile and the linked Git repository. You can do this by visiting the same URL for starting a new
workspace with a URL parameter.

The URL parameter for starting a duplicate workspace is new:

I https://<openshift_dev_spaces fqdn>#<git _repository url>?new

9’ NOTE

If you currently have a workspace that you started using a URL, then visiting the URL
again without the new URL parameter results in an error message.

1.1.1.5. URL parameter for the devfile file name

When you visit a URL for starting a new workspace, OpenShift Dev Spaces searches the linked Git
repository for a devfile with the file name .devfile.yaml or devfile.yaml. The devfile in the linked Git
repository must follow this file-naming convention.

In some situations, you might need to specify a different, unconventional file name for the devfile.

The URL parameter for specifying an unconventional file name of the devfile is df=<filenames.yamil:

I https://<openshift_dev_spaces fqdn>#<git_repository url>?df=<filename>.yaml ﬂ

ﬂ <filenames.yaml is an unconventional file name of the devfile in the linked Git repository.

TIP

The df=<filenames.yaml parameter also has a long version: devfilePath=<filenames.yaml.

1.1.1.6. URL parameter for the devfile file path

When you visit a URL for starting a new workspace, OpenShift Dev Spaces searches the root directory of
the linked Git repository for a devfile with the file name .devfile.yaml or devfile.yaml. The file path of
the devfile in the linked Git repository must follow this path convention.

In some situations, you might need to specify a different, unconventional file path for the devfile in the
linked Git repository.

The URL parameter for specifying an unconventional file path of the devfile is
devfilePath=<relative_file_paths:

I https://<openshift_dev_spaces fqdn>#<git repository_ur/>?devfiIePath=<re/ative_fi/e_path>ﬂ

ﬂ <relative_file_path> is an unconventional file path of the devfile in the linked Git repository.

1.1.1.7. URL parameter for the workspace storage

10

CHAPTER 1. GETTING STARTED WITH DEV SPACES

If the URL for starting a new workspace does not contain a URL parameter specifying the storage type,
the new workspace is created in ephemeral or persistent storage, whichever is defined as the default
storage type in the CheCluster Custom Resource.

The URL parameter for specifying a storage type for a workspace is storageType=<storage_type>:
I https://<openshift_dev_spaces fqdn>#<git_repository url>?storageType=<storage type> ﬂ

Q Possible <storage_type> values:
e ephemeral
® per-user (persistent)

® per-workspace (persistent)

TIP

With the ephemeral or per-workspace storage type, you can run multiple workspaces concurrently,
which is not possible with the default per-user storage type.

Additional resources

® Chapter 7, Requesting persistent storage for workspaces

1.1.1.8. URL parameter for additional remotes

When you visit a URL for starting a new workspace, OpenShift Dev Spaces configures the origin remote
to be the Git repository that you specified with # after the FQDN URL of your organization’s OpenShift
Dev Spaces instance.

The URL parameter for cloning and configuring additional remotes for the workspace is remotes=:

https://<openshift_dev_spaces fqdn>#<git _repository url>?remotes={{<name_1>,<url_15},
{<name_2>,<url_2>},{<name_3>,<url_3>},...}

IMPORTANT

e |f you do not enter the name origin for any of the additional remotes, the remote
from <git_repository_url> will be cloned and named origin by default, and its
expected branch will be checked out automatically.

e |f you enter the name origin for one of the additional remotes, its default branch
will be checked out automatically, but the remote from <git_repository_url> will
NOT be cloned for the workspace.

1.1.1.9. URL parameter for a container image

You can use the image parameter to use a custom reference to a container image in the following
scenarios:

® The Git repository contains no devfile, and you want to start a new workspace with the custom
image.

1

Red Hat OpenShift Dev Spaces 3.14 User guide

® The Git repository contains a devfile, and you want to override the first container image listed in
the components section of the devfile.

The URL parameter for the path to the container image is image=:
I https://<openshift_dev_spaces fqdn>#<git_repository url>?image=<container_image_url>

Example

https://<openshift_dev_spaces_fqdns#https://github.com/eclipse-che/che-docs?
image=quay.io/devfile/universal-developer-image:ubi8-latest

1.2. STARTING A WORKSPACE FROM A RAW DEVFILE URL

With OpenShift Dev Spaces, you can open a devfile URL in your browser to start a new workspace.

TIP

You can use the Git Repo URL field on the Create Workspace page of your OpenShift Dev Spaces
dashboard to enter the URL of a devfile to start a new workspace.

IMPORTANT

To initiate a clone of the Git repository in the filesystem of a new workspace, the devfile
must contain project info.

See https://devfile.io/docs/2.2.0/adding-projects.

Prerequisites

® Your organization has a running instance of OpenShift Dev Spaces.

® You know the FQDN URL of your organization’s OpenShift Dev Spaces instance:
https://<openshift_dev_spaces_fqdns.

Procedure

To start a new workspace from a devfile URL:

1. Optional: Visit your OpenShift Dev Spaces dashboard pages to authenticate to your
organization’s instance of OpenShift Dev Spaces.

2. Visit the URL to start a new workspace from a public repository using the basic syntax:
I https://<openshift_dev_spaces_fqdn>#<devfile _url>

You can pass your personal access token to the URL to access a devfile from private
repositories:

I https://<openshift_dev_spaces_fqdns#https:/<token>@<host>/<path_to_devfile> €

ﬂ Your personal access token that you generated on the Git provider’s website.

12

https://devfile.io/docs/2.2.0/adding-projects

CHAPTER 1. GETTING STARTED WITH DEV SPACES

This works for GitHub, GitLab, Bitbucket, Microsoft Azure, and other providers that support
Personal Access Token.

IMPORTANT

Automated Git credential injection does not work in this case. To configure the
Git credentials, use the configure personal access token guide.

TIP

You can extend this URL with optional parameters:

I https://<openshift_dev_spaces_fqdn>#<devfile_url>?<optional parameters>0

ﬂ See Section 1.1.1, “Optional parameters for the URLs for starting a new workspace” .

Example 1.7. A URL for starting a new workspace from a public repository

https://<openshift_dev_spaces_fqdnsi#https://raw.githubusercontent.com/che-
samples/cpp-hello-world/main/devfile.yaml

Example 1.8. A URL for starting a new workspace from a private repository

https://<openshift_dev_spaces_fqdns#https://<token>@raw.githubusercontent.com/c
he-samples/cpp-hello-world/main/devfile.yaml

Verification

After you enter the URL to start a new workspace in a browser tab, the workspace starting page
appears. When the new workspace is ready, the workspace IDE loads in the browser tab.

The workspace has a unique URL:
https://<openshift_dev_spaces_fqdns/<user_names/<unique_url>.

Additional resources

Section 1.1.1, "Optional parameters for the URLs for starting a new workspace”
Section 1.3, "Basic actions you can perform on a workspace”

Section 6.1.2, “"Using a Git-provider access token”

Section 6.2.1, "“Mounting Git configuration”

Configuring DevWorkspaces to use SSH keys for Git operations

1.3. BASIC ACTIONS YOU CAN PERFORM ON A WORKSPACE

You manage your workspaces and verify their current states in the Workspaces page
(https://<openshift_dev_spaces_fqdns/dashboard/#/workspaces) of your OpenShift Dev Spaces
dashboard.

13

https://github.com/devfile/devworkspace-operator/blob/main/docs/additional-configuration.adoc#configuring-devworkspaces-to-use-ssh-keys-for-git-operations

Red Hat OpenShift Dev Spaces 3.14 User guide

After you start a new workspace, you can perform the following actions on it in the Workspaces page:

Table 1.2. Basic actions you can perform on a workspace

Action GUI steps in the Workspaces page
Reopen a running workspace Click Open.

Restart a running workspace Goto i >Restart Workspace.
Stop a running workspace Goto i >Stop Workspace.

Start a stopped workspace Click Open.

Delete a workspace Goto i >Delete Workspace.

1.4. AUTHENTICATING TO A GIT SERVER FROM A WORKSPACE

In a workspace, you can run Git commands that require user authentication like cloning a remote private
Git repository or pushing to a remote public or private Git repository.

User authentication to a Git server from a workspace is configured by the administrator or, in some
cases, by the individual user:

® Your administrator sets up an OAuth application on GitHub, GitLab, Bitbucket, or Microsoft
Azure Repos for your organization’s Red Hat OpenShift Dev Spaces instance.

® Asa workaround, some users create and apply their own Kubernetes Secrets for their personal
Git-provider access tokens or configure SSH keys for Git operations.

Additional resources
® Administration Guide: Configuring OAuth for Git providers
® User Guide: Using a Git-provider access token

® Configuring DevWorkspaces to use SSH keys for Git operations

1.5. USING THE FUSE-OVERLAYFS STORAGE DRIVER FOR PODMAN
AND BUILDAH

By default, newly created workspaces that do not specify a devfile will use the Universal Developer
Image (UDI). The UDI contains common development tools and dependencies commonly used by
developers.

Podman and Buildah are included in the UDI, allowing developers to build and push container images
from their workspace.

By default, Podman and Buildah in the UDI are configured to use the vfs storage driver. For more

efficient image management, use the fuse-overlayfs storage driver which supports copy-on-write in
rootless environments.

14

https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:configuring-oauth-for-git-providers
https://github.com/devfile/devworkspace-operator/blob/main/docs/additional-configuration.adoc#configuring-devworkspaces-to-use-ssh-keys-for-git-operations
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:configuring-oauth-for-git-providers
https://github.com/devfile/devworkspace-operator/blob/main/docs/additional-configuration.adoc#configuring-devworkspaces-to-use-ssh-keys-for-git-operations

CHAPTER 1. GETTING STARTED WITH DEV SPACES

You must meet the following requirements to fuse-overlayfs in a workspace:

1. For OpenShift versions older than 4.15, the administrator has enabled /dev/fuse access on the
cluster by following https://access.redhat.com/documentation/en-
us/red_hat_openshift_dev_spaces/3.14/html-
single/administration_guide/index#administration-guide:configuring-fuse.

2. The workspace has the necessary annotations for using the /dev/fuse device. See Section 1.5.1,
“Accessing /dev/fuse”.

3. The storage.conf file in the workspace container has been configured to use fuse-overlayfs.
See Section 1.5.2, “"Enabling fuse-overlayfs with a ConfigMap” .
Additional resources

® Universal Developer Image

1.5.1. Accessing /dev/fuse

You must have access to /dev/fuse to use fuse-overlayfs. This section describes how to make /dev/fuse
accessible to workspace containers.

Prerequisites

® For OpenShift versions older than 4.15, the administrator has enabled access to /dev/fuse by
following https://access.redhat.com/documentation/en-
us/red_hat_openshift_dev_spaces/3.14/html-
single/administration_guide/index#administration-guide:configuring-fuse.

® Determine a workspace to use fuse-overlayfs with.

Procedure

1. Use the pod-overrides attribute to add the required annotations defined in
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-
single/administration_guide/index#administration-guide:configuring-fuse to the workspace.
The pod-overrides attribute allows merging certain fields in the workspace pod’s spec.

For OpenShift versions older than 4.15:

$ oc patch devworkspace <DevWorkspace name>\
--patch '{"spec":{"template":{"attributes":{"pod-overrides":{"metadata":{"annotations":
{"io.kubernetes.cri-0.Devices":"/dev/fuse","io.openshift.podman-fuse":""}}}}}}}' \
--type=merge

For OpenShift version 4.15 and later:

$ oc patch devworkspace <DevWorkspace name>\

--patch '{"spec":{"template":{"attributes":{"pod-overrides":{"metadata":{"annotations":
{"io.kubernetes.cri-o0.Devices":"/dev/fuse"}}}}}}}' \

--type=merge

Verification steps

1. Start the workspace and verify that /dev/fuse is available in the workspace container.

15

https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:configuring-fuse
https://github.com/devfile/developer-images
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:configuring-fuse
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:configuring-fuse

Red Hat OpenShift Dev Spaces 3.14 User guide

I $ stat /dev/fuse

After completing this procedure, follow the steps in Section 1.5.2, “Enabling fuse-overlayfs with a
ConfigMap” to use fuse-overlayfs for Podman.
1.5.2. Enabling fuse-overlayfs with a ConfigMap

You can define the storage driver for Podman and Buildah in the ~/.config/containers/storage.conf
file. Here are the default contents of the /home/user/.config/containers/storage.conf file in the UDI
container:

storage.conf

driver = "vfs"

I [storage]

To use fuse-overlayfs, storage.conf can be set to the following:

storage.conf

[storage]
driver = "overlay"

[storage.options.overlay]
mount_program="/usr/bin/fuse-overlayfs" ﬂ

The absolute path to the fuse-overlayfs binary. The /usr/bin/fuse-overlayfs path is the default for
the UDI.

You can do this manually after starting a workspace. Another option is to build a new image based on the
UDI with changes to storage.conf and use the new image for workspaces.

Otherwise, you can update the /home/user/.config/containers/storage.conf for all workspaces in your
project by creating a ConfigMap that mounts the updated file. See Section 6.2, “"Mounting ConfigMaps”.

Prerequisites

® For OpenShift versions older than 4.15, the administrator has enabled access to /dev/fuse by
following https://access.redhat.com/documentation/en-
us/red_hat_openshift_dev_spaces/3.14/html-
single/administration_guide/index#administration-guide:configuring-fuse.

® A workspace with the required annotations are set by following Section 1.5.1, “Accessing
/dev/fuse”

NOTE

Since ConfigMaps mounted by following this guide mounts the ConfigMap’s data to all
workspaces, following this procedure will set the storage driver to fuse-overlayfs for all
workspaces. Ensure that your workspaces contain the required annotations to use fuse-
overlayfs by following Section 1.5.1, “Accessing /dev/fuse”.

16

https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:configuring-fuse

CHAPTER 1. GETTING STARTED WITH DEV SPACES

Procedure

1. Apply a ConfigMap that mounts a /home/user/.config/containers/storage.conf file in your
project.

kind: ConfigMap
apiVersion: vi
metadata:
name: fuse-overlay
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
annotations:
controller.devfile.io/mount-as: file
controller.devfile.io/mount-path: /home/user/.config/containers
data:
storage.conf: |
[storage]
driver = "overlay"

[storage.options.overlay]
mount_program="/usr/bin/fuse-overlayfs"

Verification steps

1. Start the workspace containing the required annotations and verify that the storage driver is
overlay.

I $ podman info | grep overlay

Example output:

graphDriverName: overlay
overlay.mount_program:
Executable: /usr/bin/fuse-overlayfs
Package: fuse-overlayfs-1.12-1.module+el8.9.0+20326+387084d0.x86_64
fuse-overlayfs: version 1.12
Backing Filesystem: overlayfs

17

Red Hat OpenShift Dev Spaces 3.14 User guide

CHAPTER 2. USING DEV SPACES IN TEAM WORKFLOW

Learn about the benefits of using OpenShift Dev Spaces in your organization in the following articles:
® Section 2.1, “Badge for first-time contributors”

® Section 2.2, "Reviewing pull and merge requests”

2.1. BADGE FOR FIRST-TIME CONTRIBUTORS

To enable a first-time contributor to start a workspace with a project, add a badge with a link to your
OpenShift Dev Spaces instance.

Figure 2.1. Factory badge

c Developer Workspace

Procedure

1. Substitute your OpenShift Dev Spaces URL (https://<openshift_dev_spaces_fqdn>) and
repository URL (<your_repository_url>), and add the link to your repository in the project
README.md file.

['[Contribute](https://www.eclipse.org/che/contribute.svg)]
(https://<openshift_dev_spaces_fqdn>/#https://<your_repository url>)

2. The README.md file in your Git provider web interface displays the
c Developer Workspace

factory badge. Click the badge to
open a workspace with your project in your OpenShift Dev Spaces instance.

2.2. REVIEWING PULL AND MERGE REQUESTS

Red Hat OpenShift Dev Spaces workspace contains all tools you need to review pull and merge requests
from start to finish. By clicking a OpenShift Dev Spaces link, you get access to Red Hat OpenShift Dev
Spaces-supported web IDE with a ready-to-use workspace where you can run a linter, unit tests, the

18

https://www.eclipse.org/che/contribute.svg

CHAPTER 2. USING DEV SPACES IN TEAM WORKFLOW

build and more.

Prerequisites

® You have access to the repository hosted by your Git provider.

® You have access to a OpenShift Dev Spaces instance.

Procedure

1. Open the feature branch to review in OpenShift Dev Spaces. A clone of the branch opensin a
workspace with tools for debugging and testing.

2. Check the pull or merge request changes.
3. Run your desired debugging and testing tools:
® Run alinter.
® Run unit tests.
® Run the build.
® Run the application to check for problems.

4. Navigate to Ul of your Git provider to leave comment and pull or merge your assigned request.

Verification

® (optional) Open a second workspace using the main branch of the repository to reproduce a
problem.

2.3. TRYIN WEB IDE GITHUB ACTION

The Try in Web IDE GitHub action can be added to a GitHub repository workflow to help reviewers
quickly test pull requests on Eclipse Che hosted by Red Hat. The action achieves this by listening to pull
request events and providing a factory URL by creating a comment, a status check, or both. This factory
URL creates a new workspace from the pull request branch on Eclipse Che hosted by Red Hat.

NOTE

The Che documentation repository (https://github.com/eclipse/che-docs) is a real-life
example where the Try in Web IDE GitHub action helps reviewers quickly test pull
requests. Experience the workflow by navigating to a recent pull request and opening a
factory URL.

Figure 2.2. Pull request comment created by the Try in Web IDE GitHub action. Clicking the badge
opens a new workspace for reviewers to test the pull request.

github-actions ' bot commented now @ -

Click here to review and test in web IDE: (- Eclipse Che [S SR EECEt

19

https://github.com/marketplace/actions/try-in-web-ide
https://github.com/eclipse/che-docs

Red Hat OpenShift Dev Spaces 3.14 User guide

Figure 2.3. Pull request status check created by the Try in Web IDE GitHub action. Clicking the

"Details" link opens a new workspace for reviewers to test the pull request.

° All checks have passed

2 successful checks

v web-ide [add-link (pull_request_target) Successfulin 3s

Hide all checks

Details

7 . workspaces.openshift.com — Click here to review and test in web IDE

Details

° This branch has no conflicts with the base branch

Merging can be performed automatically.

Merge pull request A You can also open this in GitHub Desktop or view command line instructions.

2.3.1. Adding the action to a GitHub repository workflow

This section describes how to integrate the Try in Web IDE GitHub action to a GitHub repository

workflow.

Prerequisites

® A GitHub repository

e Adevfile in the root of the GitHub repository.

Procedure

1. In the GitHub repository, create a .github/workflows directory if it does not exist already.

2. Create an example.yml file in the .github/workflows directory with the following content:

steps:
- name: Web IDE Pull Request Check
id: try-in-web-ide
uses: redhat-actions/try-in-web-ide@v1
with:
GitHub action inputs

required
github_token: ${{ secrets.GITHUB_TOKEN }}

optional - defaults to true

Example 2.1. example.yml
name: Try in Web IDE example
on:
pull_request_target:
types: [opened]
jobs:
add-link:
runs-on: ubuntu-20.04
add_comment: true

20

CHAPTER 2. USING DEV SPACES IN TEAM WORKFLOW

optional - defaults to true
add_status: true

This code snippet creates a workflow named Try in Web IDE example, with a job that runs the
v1 version of the redhat-actions/try-in-web-ide community action. The workflow is triggered on
the pull_request_target event, on the opened activity type.

3. Optionally configure the activity types from the on.pull_request_target.types field to
customize when workflow trigger. Activity types such as reopened and synchronize can be
useful.

Example 2.2. Triggering the workflow on bothopened and synchronize activity types

on:
pull_request_target:
types: [opened, synchronize]

4. Optionally configure the add_comment and add_status GitHub action inputs within
example.yml. These inputs are sent to the Try in Web IDE GitHub action to customize whether
comments and status checks are to be made.

2.3.2. Providing a devfile

Providing a devfile in the root directory of the repository is recommended to define the development
environment of the workspace created by the factory URL. In this way, the workspace contains
everything users need to review pull requests, such as plugins, development commands, and other
environment setup.

The Che documentation repository devfile is an example of a well-defined and effective devfile.

21

https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
https://devfile.io/
https://github.com/eclipse/che-docs/blob/main/devfile.yaml

Red Hat OpenShift Dev Spaces 3.14 User guide

CHAPTER 3. CUSTOMIZING WORKSPACE COMPONENTS

To customize workspace components:
® Choose a Git repository for your workspace .
® Use a devfile.
® Configure an IDE.

® Add OpenShift Dev Spaces specific attributes in addition to the generic devfile specification.

22

CHAPTER 4. INTRODUCTION TO DEVFILE IN DEV SPACES

CHAPTER 4. INTRODUCTION TO DEVFILE IN DEV SPACES

Devfiles are yaml text files used for development environment customization. Use them to configure a
devfile to suit your specific needs and share the customized devfile across multiple workspaces to
ensure identical user experience and build, run, and deploy behaviours across your team.

.

' WARNING
A Some images can not be used as-is for defining Cloud Development Environment

since Visual Studio Code - Open Source ("Code - OSS") can not be started in the
containers with missing openssl and libbrotli. Missing libraries should be explicitly
installed on the Dockerfile level e.g. RUN yum install compat-openssl11 libbrotli

RED HAT OPENSHIFT DEV SPACES-SPECIFIC DEVFILE FEATURES
Red Hat OpenShift Dev Spaces is expected to work with most of the popular images
defined in the components section of devfile. For production purposes, it is

recommended to use one of the Universal Base Images as a base image for defining the
Cloud Development Environment.

Devfile and Universal Developer Image

You do not need a devfile to start a workspace. If you do not include a devfile in your project repository,
Red Hat OpenShift Dev Spaces automatically loads a default devfile with a Universal Developer Image
(uDl).

Devfile Registry

{Devfile Registry contains ready-to-use community-supported devfiles for different languages and
technologies. Devfiles included in the registry should be treated as samples rather than templates.

Additional resources

® Whatis a devfile

® Benefits of devfile

® Devfile customization overview
® Devfile.io

® Customizing Cloud Development Environments

23

https://devfile.io/
https://catalog.redhat.com/software/containers/search?gs&q=ubi
https://registry.devfile.io/viewer
https://devfile.io/docs/2.2.2/what-is-a-devfile
https://devfile.io/docs/2.2.0/benefits-of-devfile
https://devfile.io/docs/2.2.2/overview
https://devfile.io/
https://che.eclipseprojects.io/2024/02/05/@mario.loriedo-cde-customization.html

Red Hat OpenShift Dev Spaces 3.14 User guide

CHAPTER 5. IDES IN WORKSPACES

5.1. SUPPORTED IDES

The default IDE in a new workspace is Microsoft Visual Studio Code - Open Source. Alternatively, you
can choose another supported IDE:

Table 5.1. Supported IDEs

IDE id Note

Microsoft Visual Studio Code - che-incubator/che- This is the default IDE that loads

Open Source code/latest in a new workspace when the URL
parameter or che-editor.yaml is
not used.

JetBrains IntelliJ IDEA che-incubator/che- Technology Preview. Use the

Community Edition idea/latest Dashboard to select this IDE.

5.2. REPOSITORY-LEVEL IDE CONFIGURATION IN OPENSHIFT DEV
SPACES

You can store IDE configuration files directly in the remote Git repository that contains your project
source code. This way, one common IDE configuration is applied to all new workspaces that feature a
clone of that repository. Such IDE configuration files might include the following:

® The /.che/che-editor.yaml file that stores a definition of the chosen IDE.

e |DE-specific configuration files that one would typically store locally for a desktop IDE. For
example, the /.vscode/extensions.json file.

5.3. MICROSOFT VISUAL STUDIO CODE - OPEN SOURCE

The OpenShift Dev Spaces build of Microsoft Visual Studio Code - Open Source is the default IDE of a
new workspace.

You can automate installation of Microsoft Visual Studio Code extensions from the Open VSX registry

at workspace startup. See Automating installation of Microsoft Visual Studio Code extensions at
workspace startup.

24

https://github.com/redhat-developer/devspaces-images/tree/devspaces-3-rhel-8/devspaces-code
https://github.com/redhat-developer/devspaces-images/tree/devspaces-3-rhel-8/devspaces-idea
https://access.redhat.com/support/offerings/techpreview
https://github.com/microsoft/vscode
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:extensions-for-microsoft-visual-studio-code-open-source

CHAPTER 5. IDES IN WORKSPACES

TIP
® Use Tasks to find and run the commands specified in devfile.yaml.

e Use Dev Spaces commands by clicking Dev Spacesin the Status Bar or finding them through
the Command Palette:

o Dev Spaces: Open Dashboard

o Dev Spaces: Open OpenShift Console

o Dev Spaces: Stop Workspace

o Dev Spaces: Restart Workspace

o Dev Spaces: Restart Workspace from Local Devfile

o Dev Spaces: Open Documentation

TIP

Configure IDE preferences on a per-workspace basis by invoking the Command Palette and selecting
Preferences: Open Workspace Settings.

NOTE
You might see your organization’s branding in this IDE if your organization customized it
through a branded build.

5.3.1. Automating installation of Microsoft Visual Studio Code extensions at

workspace startup

To have the Microsoft Visual Studio Code - Open Source IDE automatically install chosen extensions,
you can add an extensions.json file to the remote Git repository that contains your project source
code and that will be cloned into workspaces.

Prerequisites

® The public OpenVSX registry at open-vsx.org is selected and accessible over the internet. See
Selecting an Open VSX registry instance.

TIP

To install recommended extensions in a restricted environment, consider the following options
instead:

o https://access.redhat.com/documentation/en-
us/red_hat_openshift_dev_spaces/3.14/html-
single/administration_guide/index#administration-guide:configuring-the-open-vsx-
registry-url to point to your OpenVSX registry.

o Section 5.4, "“Defining a common IDE".

o Installing extensions from VSX files .

25

https://code.visualstudio.com/Docs/editor/tasks
https://code.visualstudio.com/api/ux-guidelines/status-bar
https://code.visualstudio.com/api/ux-guidelines/command-palette
https://code.visualstudio.com/api/ux-guidelines/command-palette
https://open-vsx.org
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:extensions-for-microsoft-visual-studio-code-open-source
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:configuring-the-open-vsx-registry-url
https://code.visualstudio.com/docs/editor/extension-marketplace#_install-from-a-vsix

Red Hat OpenShift Dev Spaces 3.14 User guide

Procedure
1. Get the publisher and extension names of each chosen extension:

a. Find the extension on the Open VSX registry website and copy the URL of the extension’s
listing page.

b. Extract the <publisher>and <extension>names from the copied URL:

I https://www.open-vsx.org/extension/<publisher>/<extension>

2. Create a.vscode/extensions.json file in the remote Git repository.

3. Add the <publisher> and <extension> names to the extensions.json file as follows:

{

"recommendations": [
"<publisher_A>.<extension_B>",
"<publisher_C>.<extension_D>",
"<publisher_E>.<extension_F>"

Verification

1. Start a new workspace by using the URL of the remote Git repository that contains the created
extensions.json file.

2. In the IDE of the workspace, press Ctrl+Shift+X or go to Extensions to find each of the
extensions listed in the file.

3. The extension has the label This extension is enabled globally

Additional resources
® Open VSXregistry - Extensions for Microsoft Visual Studio Code compatible editors

® Microsoft Visual Studio Code - Workspace recommended extensions

5.4. DEFINING A COMMON IDE

While the Section 1.1.1.2, “URL parameter for the IDE” enables you to start a workspace with your
personal choice of the supported IDE, you might find it more convenient to define the same IDE for all
workspaces for the same source code Git repository. To do so, use the che-editor.yaml file. This file
supports even a detailed IDE configuration.

TIP

If you intend to start most or all of your organization’s workspaces with the same IDE other than
Microsoft Visual Studio Code - Open Source, an alternative is for the administrator of your
organization’s OpenShift Dev Spaces instance to specify another supported IDE as the default IDE at
the OpenShift Dev Spaces instance level. This can be done with .spec.devEnvironments.defaultEditor
in the CheCluster Custom Resource.

26

https://www.open-vsx.org/
https://www.open-vsx.org/
https://code.visualstudio.com/docs/editor/extension-marketplace#_workspace-recommended-extensions

CHAPTER 5. IDES IN WORKSPACES

5.4.1. Setting up che-editor.yaml

By using the che-editor.yaml file, you can set a common default IDE for your team and provide new
contributors with the most suitable IDE for your project source code. You can also use the che-
editor.yaml file when you need to set a different IDE default for a particular source code Git repository
rather than the default IDE of your organization’s OpenShift Dev Spaces instance.

Procedure

® |nthe remote Git repository of your project source code, create a /.che/che-editor.yaml file
with lines that specify the relevant parameter.

Verification

1. Start a new workspace with a clone of the Git repository .

2. Verify that the specified IDE loads in the browser tab of the started workspace.

5.4.2. Parameters for che-editor.yaml

The simplest way to select an IDE in the che-editor.yaml is to specify the id of an IDE from the table of
supported IDEs:

Table 5.2. Supported IDEs

IDE id Note

Microsoft Visual Studio Code - che-incubator/che- This is the default IDE that loads

Open Source code/latest in a new workspace when the URL
parameter or che-editor.yaml is
not used.

JetBrains IntelliJ IDEA che-incubator/che- Technology Preview. Use the

Community Edition idea/latest Dashboard to select this IDE.

Example 5.1. id selects an IDE from the plugin registry

I id: che-incubator/che-idea/latest

As alternatives to providing the id parameter, the che-editor.yaml file supports a reference to the URL
of another che-editor.yaml file or an inline definition for an IDE outside of a plugin registry:

Example 5.2. reference points to a remoteche-editor.yaml file

I reference: https://<hostname_and_path to_a_remote_file>/che-editor.yaml

Example 5.3. inline specifies a complete definition for a customized IDE without a plugin
registry

27

https://github.com/redhat-developer/devspaces-images/tree/devspaces-3-rhel-8/devspaces-code
https://github.com/redhat-developer/devspaces-images/tree/devspaces-3-rhel-8/devspaces-idea
https://access.redhat.com/support/offerings/techpreview

Red Hat OpenShift Dev Spaces 3.14 User guide
mountSources: true
memoryLimit: 2048M
memoryRequest: 32Mi
endpoints:

- name: intellij
attributes:

inline:
schemaVersion: 2.1.0
metadata:
name: JetBrains IntelliJ IDEA Community IDE
components:
- name: intellij
container:
image: 'quay.io/che-incubator/che-idea:next'
volumeMounts:
- name: projector-user
cpuLimit: 1500m
type: main

path: /home/projector-user
cpuRequest: 100m

cookiesAuthEnabled: true
urlRewriteSupported: true
discoverable: false
path: /?backgroundColor=434343&wss

targetPort: 8887

exposure: public

secure: false

protocol: https

attributes: {}

- hame: projector-user
volume: {}

For more complex scenarios, the che-editor.yaml file supports the registryUrl and override
parameters:

Example 5.4. registryUrl points to a custom plugin registry rather than to the default OpenShift
Dev Spaces plugin registry

id: <editor_id> €))
registryUrl: <url_of custom_plugin_registry>

ﬂ The id of the IDE in the custom plugin registry.

Example 5.5. override of the default value of one or more defined properties of the IDE

override:
containers:
- name: che-idea
memoryLimit: 1280Mi

28

CHAPTER 5. IDES IN WORKSPACES

cpuLimit: 1510m
cpuRequest: 102m

ﬂ id:, registryUrl:, or reference:.

29

Red Hat OpenShift Dev Spaces 3.14 User guide

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN
WORKSPACES

You can use your credentials and configurations in your workspaces.

To do so, mount your credentials and configurations to the Dev Workspace containers in the OpenShift
cluster of your organization’s OpenShift Dev Spaces instance:

® Mount your credentials and sensitive configurations as Kubernetes Secrets.
® Mount your non-sensitive configurations as Kubernetes ConfigMaps.

If you need to allow the Dev Workspace Pods in the cluster to access container registries that require
authentication, create an image pull Secret for the Dev Workspace Pods.

The mounting process uses the standard Kubernetes mounting mechanism and requires applying
additional labels and annotations to your existing resources. Resources are mounted when starting a new
workspace or restarting an existing one.
You can create permanent mount points for various components:

® Maven configuration, such as the user-specific settings.xml file

® SSH key pairs

® Git-provider access tokens

® Git configuration

® AWS authorization tokens

e Configuration files

® Persistent storage

Additional resources

® Kubernetes Documentation: Secrets

® Kubernetes Documentation: ConfigMaps

6.1. MOUNTING SECRETS
To mount confidential data into your workspaces, use Kubernetes Secrets.

Using Kubernetes Secrets, you can mount usernames, passwords, SSH key pairs, authentication tokens
(for example, for AWS), and sensitive configurations.

Mount Kubernetes Secrets to the Dev Workspace containers in the OpenShift cluster of your
organization’'s OpenShift Dev Spaces instance.

Prerequisites

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

30

https://maven.apache.org/settings.html
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

® |nyour user project, you created a new Secret or determined an existing Secret to mount to all
Dev Workspace containers.

Procedure

1. Add the labels, which are required for mounting the Secret, to the Secret.

$ oc label secret <Secret_name>\
controller.devfile.io/mount-to-devworkspace=true \
controller.devfile.io/watch-secret=true

2. Optional: Use the annotations to configure how the Secret is mounted.

Table 6.1. Optional annotations

Annotation Description

controller.devfile.io/mount-path: Specifies the mount path.

Defaults to /etc/secret/<Secret_names.

controller.devfile.io/mount-as: Specifies how the resource should be mounted:
file, subpath, orenv.

Defaults to file.

mount-as: file mounts the keys and values as
files within the mount path.

mount-as: subpath mounts the keys and
values within the mount path using subpath
volume mounts.

mount-as: env mounts the keys and values as
environment variables in all Dev Workspace
containers.

Example 6.1. Mounting a Secret as a file

apiVersion: vi
kind: Secret
metadata:
name: mvn-settings-secret
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
annotations:
controller.devfile.io/mount-path: '/home/user/.m2'
data:
settings.xml: <Base64 encoded content>

When you start a workspace, the /home/user/.m2/settings.xml file will be available in the Dev
Workspace containers.

31

Red Hat OpenShift Dev Spaces 3.14 User guide

With Maven, you can set a custom path for the settings.xml file. For example:

I $ mvn --settings /home/user/.m2/settings.xml clean install

6.1.1. Creating image pull Secrets

To allow the Dev Workspace Pods in the OpenShift cluster of your organization’s OpenShift Dev
Spaces instance to access container registries that require authentication, create an image pull Secret.

You can create image pull Secrets by using oc or a .dockercfg file or a config.json file.
6.1.1.1. Creating an image pull Secret with oc

Prerequisites

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

Procedure

1. In your user project, create an image pull Secret with your private container registry details and
credentials:

$ oc create secret docker-registry <Secret_name>\
--docker-server=<registry_server>\
--docker-username=<username>\
--docker-password=<password> \
--docker-email=<email _address>

2. Add the following label to the image pull Secret:

$ oc label secret <Secret_name> controller.devfile.io/devworkspace_pullsecret=true
controller.devfile.io/watch-secret=true

6.1.1.2. Creating an image pull Secret from a .dockercfg file

If you already store the credentials for the private container registry in a .dockercfg file, you can use
that file to create an image pull Secret.

Prerequisites

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

® base64 command line tools are installed in the operating system you are using.

Procedure

1. Encode the .dockercfg file to Base64:

I $ cat .dockercfg | base64 | tr -d "\n'

32

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html
https://www.gnu.org/software/coreutils/base64

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

2. Create a new OpenShift Secret in your user project:

apiVersion: vi
kind: Secret
metadata:
name: <Secret_name>
labels:
controller.devfile.io/devworkspace_pullsecret: 'true’
controller.devfile.io/watch-secret: 'true’
data:
.dockercfg: <Base64 content_of_.dockercfg>
type: kubernetes.io/dockercfg

3. Apply the Secret:
$ oc apply -f - <<EOF

<Secret _prepared_in_the previous step>
EOF

6.1.1.3. Creating an image pull Secret from a config.json file

If you already store the credentials for the private container registry in a $HOME/.docker/config.json

file, you can use that file to create an image pull Secret.

Prerequisites

® An active oc session with administrative permissions to the destination OpenShift cluster. See

Getting started with the CLI.

® pase64 command line tools are installed in the operating system you are using.

Procedure

1. Encode the $HOME/.docker/config.json file to Base64.
I $ cat config.json | base64 | tr -d "\n'
2. Create a new OpenShift Secret in your user project:

apiVersion: vi
kind: Secret
metadata:
name: <Secret_name>
labels:
controller.devfile.io/devworkspace_pullsecret: 'true’
controller.devfile.io/watch-secret: 'true'
data:
.dockerconfigjson: <Base64 content _of config.json>
type: kubernetes.io/dockerconfigjson

3. Apply the Secret:

33

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html
https://www.gnu.org/software/coreutils/base64

Red Hat OpenShift Dev Spaces 3.14 User guide

$ oc apply -f - <<EOF
<Secret _prepared_in_the previous step>
EOF

6.1.2. Using a Git-provider access token

OAuth for GitHub, GitLab, Bitbucket, or Microsoft Azure Repos needs to be configured by the
administrator of your organization’s OpenShift Dev Spaces instance. If your administrator could not
configure it for OpenShift Dev Spaces users, the workaround is for you to use a personal access token.
You can configure personal access tokens on the User Preferences page of your OpenShift Dev
Spaces dashboard: https://<openshift_dev_spaces_fqdns/dashboard/#/user-preferences?
tab=personal-access-tokens, or apply it manually as a Kubernetes Secret in the namespace.

Mounting your access token as a Secret enables the OpenShift Dev Spaces Server to access the remote
repository that is cloned during workspace creation, including access to the repository’s /.che and

/.vscode folders.

Apply the Secret in your user project of the OpenShift cluster of your organization’s OpenShift Dev
Spaces instance.

After applying the Secret, you can create workspaces with clones of private Git repositories that are
hosted on GitHub, GitLab, Bitbucket Server, or Microsoft Azure Repos.

You can create and apply multiple access-token Secrets per Git provider. You must apply each of those
Secrets in your user project.

Prerequisites

® You have logged in to the cluster.

TIP
On OpenShift, you can use the oc command-line tool to log in to the cluster:

$ oc login https://<openshift_dev_spaces_fqdn> --username=<my_user>

Procedure

1. Generate your access token on your Git provider's website.

34

https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:configuring-oauth-for-git-providers

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

IMPORTANT

Personal access tokens are sensitive information and should be kept confidential.
Treat them like passwords. If you are having trouble with authentication, ensure
you are using the correct token and have the appropriate permissions for cloning
repositories:

1. Open a terminal locally on your computer

2. Use the git command to clone the repository using your personal access
token. The format of the git command vary based on the Git Provider. As an
example, GitHub personal access token verification can be done using the
following command:

I git clone https://<PAT>@github.com/username/repo.git

Replace <PAT> with your personal access token, and username/repo with the
appropriate repository path. If the token is valid and has the necessary
permissions, the cloning process should be successful. Otherwise, this is an
indicator of incorrect personal access token, insufficient permissions, or other
issues.

IMPORTANT

For GitHub Enterprise Cloud, verify that the token is authorized for use within the
organization.

2. Go to https://<openshift_dev_spaces_fqdns>/api/user/id in the web browser to get your
OpenShift Dev Spaces user ID.

3. Prepare a new OpenShift Secret.

kind: Secret
apiVersion: vi
metadata:
name: personal-access-token-<your _choice of name_for_this_token>
labels:
app.kubernetes.io/component: scm-personal-access-token
app.kubernetes.io/part-of: che.eclipse.org
annotations:
che.eclipse.org/che-userid: <devspaces_user_id>0
che.eclipse.org/scm-personal-access-token-name: <git provider_name>9
che.eclipse.org/scm-url: <git_provider_endpoint
che.eclipse.org/scm-organization: <git_ provider_organization>ﬂ
stringData:
token: <Content_of _access_token>
type: Opaque

ﬂ Your OpenShift Dev Spaces user ID.

9 The Git provider name: github or gitlab or bitbucket-server or azure-devops.

9 The Git provider URL.

35

https://docs.github.com/en/enterprise-cloud@latest/authentication/authenticating-with-saml-single-sign-on/authorizing-a-personal-access-token-for-use-with-saml-single-sign-on

Red Hat OpenShift Dev Spaces 3.14 User guide

Q This line is only applicable to azure-devops: your Git provider user organization.
4. Visit https://<openshift_dev_spaces_fqdns/api/kubernetes/namespace to get your
OpenShift Dev Spaces user namespace as hame.

5. Switch to your OpenShift Dev Spaces user namespace in the cluster.

TIP
On OpenShift:

® The oc command-line tool can return the namespace you are currently on in the cluster,
which you can use to check your current namespace:
$ oc project

® You can switch to your OpenShift Dev Spaces user namespace on a command line if
needed:

$ oc project <your_user_namespace>
6. Apply the Secret.

TIP

On OpenShift, you can use the oc command-line tool:

$ oc apply -f - <<EOF
<Secret _prepared_in_step 5>
EOF

Verification

1. Start a new workspace by using the URL of a remote Git repository that the Git provider hosts.

2. Make some changes and push to the remote Git repository from the workspace.

Additional resources

® Deploying Che with support for Git repositories with self-signed certificates

® Authorizing a personal access token for use with SAML single sign-on

6.2. MOUNTING CONFIGMAPS
To mount non-confidential configuration data into your workspaces, use Kubernetes ConfigMaps.

Using Kubernetes ConfigMaps, you can mount non-sensitive data such as configuration values for an
application.

Mount Kubernetes ConfigMaps to the Dev Workspace containers in the OpenShift cluster of your
organization's OpenShift Dev Spaces instance.

Prerequisites

36

https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:deploying-che-with-support-for-git-repositories-with-self-signed-certificates
https://docs.github.com/en/enterprise-cloud@latest/authentication/authenticating-with-saml-single-sign-on/authorizing-a-personal-access-token-for-use-with-saml-single-sign-on

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

® An active oc session with administrative permissions to the destination OpenShift cluster. See

Getting started with the CLI.

® |nyour user project, you created a new ConfigMap or determined an existing ConfigMap to

mount to all Dev Workspace containers.

Procedure

1. Add the labels, which are required for mounting the ConfigMap, to the ConfigMap.

$ oc label configmap <ConfigMap_name> \

controller.devfile.io/mount-to-devworkspace=true \
controller.devfile.io/watch-configmap=true

2. Optional: Use the annotations to configure how the ConfigMap is mounted.

Table 6.2. Optional annotations

Annotation Description

controller.devfile.io/mount-path:

controller.devfile.io/mount-as:

Specifies the mount path.

Defaults to /etc/config/<ConfigMap_names.

Specifies how the resource should be mounted:
file, subpath, orenv.

Defaults to file.

mount-as:file mounts the keys and values as
files within the mount path.

mount-as:subpath mounts the keys and
values within the mount path using subpath
volume mounts.

mount-as:env mounts the keys and values as
environment variables in all Dev Workspace
containers.

Example 6.2. Mounting a ConfigMap as environment variables

data:
<env_var_1>: <value 1>
<env_var 2>: <value 2>

kind: ConfigMap
apiVersion: vi
metadata:
name: my-settings
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
annotations:
controller.devfile.io/mount-as: env

37

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html

Red Hat OpenShift Dev Spaces 3.14 User guide

When you start a workspace, the <env_var_1> and <env_var_2> environment variables will be
available in the Dev Workspace containers.

6.2.1. Mounting Git configuration

NOTE

The user.name and user.email fields will be set automatically to the gitconfig content
from a git provider, connected to OpenShift Dev Spaces by a Git-provider access token
or a token generated via OAuth, if username and email are set on the provider’s user
profile page.

Follow the instructions below to mount a Git config file in a workspace.

Prerequisites

® You have logged in to the cluster.

Procedure

1. Prepare a new OpenShift ConfigMap.

kind: ConfigMap
apiVersion: v1i
metadata:
name: workspace-userdata-gitconfig-configmap
namespace: <user_namespace>
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /etc/
data:

gitconfig: <gitconfig content> g

ﬂ A user namespace. Visit
https://<openshift_dev_spaces_fqdns/api/kubernetes/namespace to get your
OpenShift Dev Spaces user namespace as hame.

9 The content of your gitconfig file content.

2. Apply the ConfigMap.
$ oc apply -f - <<EOF

<ConfigMap_prepared_in_step_1>
EOF

Verification

1. Start a new workspace by using the URL of a remote Git repository that the Git provider hosts.

38

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

2. Once the workspace is started, open a new terminal in the tools container and run git config --
get-regexp user.*. Your Git user name and email should appear in the output.

6.3. ENABLING ARTIFACT REPOSITORIES IN A RESTRICTED
ENVIRONMENT

By configuring technology stacks, you can work with artifacts from in-house repositories using self-
signed certificates:

® Maven
® Gradle
® npm

® Python

® Go

NuGet

6.3.1. Maven

You can enable a Maven artifact repository in Maven workspaces that run in a restricted environment.

Prerequisites

® You are not running any Maven workspace.

® You know your user namespace, which is <usernames>-devspaces where <usernames is your
OpenShift Dev Spaces username.

Procedure

1. In the <username>-devspaces namespace, apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. In the <username>-devspaces namespace, apply the ConfigMap to create the settings.xml
file:

39

Red Hat OpenShift Dev Spaces 3.14 User guide

kind: ConfigMap
apiVersion: vi
metadata:
name: settings-xml
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/.m2
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
settings.xml: |
<settings xmIns="http://maven.apache.org/SETTINGS/1.0.0"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0
https://maven.apache.org/xsd/settings-1.0.0.xsd">
<localRepository/>
<interactiveMode/>
<offline/>
<pluginGroups/>
<servers/>
<mirrors>
<mirror>
<id>redhat-ga-mirror</id>
<name>Red Hat GA</name>

<url>https://<maven_artifact_repository_route>/repository/redhat-ga/</url>

<mirrorOf>redhat-ga</mirrorOf>
</mirror>
<mirror>
<id>maven-central-mirror</id>
<name>Maven Central</name>

<url>https://<maven_artifact_repository route>/repository/maven-central/</url>

<mirrorOf>maven-central</mirrorOf>

</mirror>

<mirror>
<id>jboss-public-repository-mirror</id>
<name>JBoss Public Maven Repository</name>

<url>https://<maven_artifact_repository route>/repository/jboss-public/</url>

<mirrorOf>jboss-public-repository</mirrorOf>
</mirror>
</mirrors>
<proxies/>
<profiles/>
<activeProfiles/>
</settings>

3. Optional: When using JBoss EAP-based devfiles, apply a second settings-xml ConfigMap in
the <usernames>-devspaces namespace, and with the same content, a different name, and the

/home/jboss/.m2 mount path.

4. In the <username>-devspaces namespace, apply the ConfigMap for the TrustStore

initialization script:

Java 8

40

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

kind: ConfigMap
apiVersion: vi
metadata:
name: init-truststore
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
init-java8-truststore.sh: |
#!/usr/bin/env bash

keytool -importcert -noprompt -file /nome/user/certs/ils.cer -trustcacerts -keystore
~/.java/current/jre/lib/security/cacerts -storepass changeit

Java 1l

kind: ConfigMap
apiVersion: vi
metadata:
name: init-truststore
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
init-javali-truststore.sh: |
#!/usr/bin/env bash

keytool -importcert -noprompt -file /nome/user/certs/tls.cer -cacerts -storepass changeit

5. Start a Maven workspace.
6. Open a new terminal in the tools container.

7. Run ~/init-truststore.sh.

6.3.2. Gradle

You can enable a Gradle artifact repository in Gradle workspaces that run in a restricted environment.

Prerequisites

® You are not running any Gradle workspace.

Procedure

1. Apply the Secret for the TLS certificate:

I kind: Secret

41

Red Hat OpenShift Dev Spaces 3.14 User guide

apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap for the TrustStore initialization script:

kind: ConfigMap
apiVersion: vi
metadata:
name: init-truststore
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
init-truststore.sh: |
#!/usr/bin/env bash

keytool -importcert -noprompt -file /nome/user/certs/tls.cer -cacerts -storepass changeit

3. Apply the ConfigMap for the Gradle init script:

kind: ConfigMap
apiVersion: vi
metadata:
name: init-gradle
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /home/user/.gradle
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true'
data:
init.gradle: |
allprojects {
repositories {
mavenLocal ()
maven {
url "https://<gradle_artifact_repository route>/repository/maven-public/"
credentials {
username "admin"

42

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

password "passwd"

}
}
}
}

4. Start a Gradle workspace.
5. Open a new terminal in the tools container.

6. Run ~/init-truststore.sh.

6.3.3. npm

You can enable an npm artifact repository in npm workspaces that run in a restricted environment.

Prerequisites

® You are not running any npm workspace.

' WARNING
A Applying a ConfigMap that sets environment variables might cause a workspace

boot loop.

If you encounter this behavior, remove the ConfigMap and edit the devfile directly.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /public-certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
nexus.cer: >-
<Base64_encoded_content_of public_cert>_ ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap to set the following environment variables in the tools container:

43

Red Hat OpenShift Dev Spaces 3.14 User guide

kind: ConfigMap
apiVersion: vi
metadata:
name: disconnected-env
annotations:
controller.devfile.io/mount-as: env
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
NPM_CONFIG_REGISTRY: >-
https://<npm_artifact_repository route>/repository/npm-all/

6.3.3.1. Disabling self-signed certificate validation

Run the command below to disable SSL/TLS, bypassing the validation of your self-signed certificates.
Note that this is a potential security risk. For a better solution, configure a self-signed certificate you
trust with NODE_EXTRA_CA_CERTS.

Procedure
® Run the following command in the terminal:

I npm config set strict-ssl false

6.3.3.2. Configuring NODE_EXTRA_CA_CERTS to use a certificate

Use the command below to set NODE_EXTRA_CA_CERTS to point to where you have your SSL/TLS
certificate.

Procedure

® Run the following command in the terminal:

“export NODE_EXTRA_CA_CERTS=/public-certs/nexus.cer' @)
‘npm install’

/public-certs/nexus.cer is the path to self-signed SSL/TLS certificate of Nexus
artifactory.

6.3.4. Python

You can enable a Python artifact repository in Python workspaces that run in a restricted environment.

Prerequisites

® You are not running any Python workspace.

44

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

' WARNING
A Applying a ConfigMap that sets environment variables might cause a workspace

boot loop.

If you encounter this behavior, remove the ConfigMap and edit the devfile directly.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap to set the following environment variables in the tools container:

kind: ConfigMap
apiVersion: vi
metadata:
name: disconnected-env
annotations:
controller.devfile.io/mount-as: env
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
PIP_INDEX_URL: >-
https://<python_artifact_repository route>/repository/pypi-all/
PIP_CERT: /home/user/certs/tls.cer

6.3.5. Go

You can enable a Go artifact repository in Go workspaces that run in a restricted environment.

Prerequisites

45

Red Hat OpenShift Dev Spaces 3.14 User guide

® You are not running any Go workspace.

' WARNING
A Applying a ConfigMap that sets environment variables might cause a workspace

boot loop.

If you encounter this behavior, remove the ConfigMap and edit the devfile directly.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap to set the following environment variables in the tools container:

kind: ConfigMap
apiVersion: vi
metadata:
name: disconnected-env
annotations:
controller.devfile.io/mount-as: env
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
GOPROXY: >-
http://<athens_proxy_route>
SSL_CERT_FILE: /home/user/certs/tls.cer

6.3.6. NuGet

You can enable a NuGet artifact repository in NuGet workspaces that run in a restricted environment.

46

CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES

Prerequisites

® You are not running any NuGet workspace.

' WARNING
A Applying a ConfigMap that sets environment variables might cause a workspace

boot loop.

If you encounter this behavior, remove the ConfigMap and edit the devfile directly.

Procedure

1. Apply the Secret for the TLS certificate:

kind: Secret
apiVersion: vi
metadata:
name: tls-cer
annotations:
controller.devfile.io/mount-path: /home/user/certs
controller.devfile.io/mount-as: file
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-secret: 'true’
data:
tls.cer: >-
<Base64 _encoded content of public_cert>ﬂ

ﬂ Base64 encoding with disabled line wrapping.

2. Apply the ConfigMap to set the environment variable for the path of the TLS certificate file in
the tools container:

kind: ConfigMap
apiVersion: vi
metadata:
name: disconnected-env
annotations:
controller.devfile.io/mount-as: env
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
SSL_CERT_FILE: /home/user/certs/tls.cer

3. Apply the ConfigMap to create the nuget.config file:

kind: ConfigMap
apiVersion: vi

47

Red Hat OpenShift Dev Spaces 3.14 User guide

metadata:
name: init-nuget
annotations:
controller.devfile.io/mount-as: subpath
controller.devfile.io/mount-path: /projects
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
controller.devfile.io/watch-configmap: 'true’
data:
nuget.config: |
<?xml version="1.0" encoding="UTF-8"7?>
<configuration>
<packageSources>
<add key="nexus2" value="https://<nuget_artifact _repository route>/repository/nuget-
group/"/>
</packageSources>
<packageSourceCredentials>
<nexus2>
<add key="Username" value="admin" />
<add key="Password" value="passwd" />
</nexus2>
</packageSourceCredentials>
</configuration>

48

CHAPTER 7. REQUESTING PERSISTENT STORAGE FOR WORKSPACES

CHAPTER 7. REQUESTING PERSISTENT STORAGE FOR
WORKSPACES

OpenShift Dev Spaces workspaces and workspace data are ephemeral and are lost when the workspace
stops.

To preserve the workspace state in persistent storage while the workspace is stopped, request a
Kubernetes PersistentVolume (PV) for the Dev Workspace containers in the OpenShift cluster of your
organization’s OpenShift Dev Spaces instance.

You can request a PV by using the devfile or a Kubernetes PersistentVolumeClaim (PVC).

An example of a PV is the /projects/ directory of a workspace, which is mounted by default for non-
ephemeral workspaces.

Persistent Volumes come at a cost: attaching a persistent volume slows workspace startup.

' WARNING
A Starting another, concurrently running workspace with a ReadWriteOnce PV might

fail.

Additional resources

® Red Hat OpenShift Documentation: Understanding persistent storage

® Kubernetes Documentation: Persistent Volumes

7.1. REQUESTING PERSISTENT STORAGE IN A DEVFILE

When a workspace requires its own persistent storage, request a PersistentVolume (PV) in the devfile,
and OpenShift Dev Spaces will automatically manage the necessary PersistentVolumeClaims.

Prerequisites

® You have not started the workspace.

Procedure

1. Add a volume component in the devfile:

components:
- name: <chosen_volume _name>

volume:
size: <requested_volume_size>G

49

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://docs.openshift.com/container-platform/latest/storage/understanding-persistent-storage.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Red Hat OpenShift Dev Spaces 3.14 User guide

2. Add a volumeMount for the relevant container in the devfile:

components:
- name: ...
container:

volumeMounts:
- name: <chosen_volume_name_from_previous _step>
path: <path_where _to_mount_the PV>

When a workspace is started with the following devfile, the cache PV is provisioned to the golang
container in the ./cache container path:

schemaVersion: 2.1.0
metadata:
name: mydevfile

components:
- name: golang
container:
image: golang
memoryLimit: 512Mi
mountSources: true
command: ['sleep’, "infinity']
volumeMounts:
- name: cache
path: /.cache
- name: cache
volume:

Example 7.1. A devfile that provisions a PV for a workspace to a container
size: 2Gi

7.2. REQUESTING PERSISTENT STORAGE IN A PVC

You can opt to apply a PersistentVolumeClaim (PVC) to request a PersistentVolume (PV) for your
workspaces in the following cases:

e Not all developers of the project need the PV.
e The PV lifecycle goes beyond the lifecycle of a single workspace.

® The dataincluded in the PV are shared across workspaces.

TIP

You can apply a PVC to the Dev Workspace containers even if the workspace is ephemeral and its
devfile contains the controller.devfile.io/storage-type: ephemeral attribute.

Prerequisites

® You have not started the workspace.

50

CHAPTER 7. REQUESTING PERSISTENT STORAGE FOR WORKSPACES

® An active oc session with administrative permissions to the destination OpenShift cluster. See
Getting started with the CLI.

® APVCis created in your user project to mount to all Dev Workspace containers.

Procedure

1. Add the controller.devfile.io/mount-to-devworkspace: true label to the PVC.

$ oc label persistentvolumeclaim <PVC_name> \ controller.devfile.io/mount-to-
devworkspace=true

2. Optional: Use the annotations to configure how the PVC is mounted:

Table 7.1. Optional annotations

Annotation Description

controller.devfile.io/mount-path: The mount path for the PVC.

Defaults to /tmp/<PVC_name>.

controller.devfile.io/read-only: Set to 'true’ or'false’ to specify whether the
PVC is to be mounted as read-only.

Defaults to 'false’, resulting in the PVC
mounted as read/write.

Example 7.2. Mounting a read-only PVC

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: <pvc_name>
labels:
controller.devfile.io/mount-to-devworkspace: 'true'
annotations:
controller.devfile.io/mount-path: </example/directory> ﬂ
controller.devfile.io/read-only: 'true'
spec:
accessModes:
- ReadWriteOnce
resources:
requests:

storage: 3Gi g
storageClassName: <storage class _name> 6
volumeMode: Filesystem

The mounted PV is available at </example/directorys in the workspace.

®9

Example size value of the requested storage.

The name of the StorageClass required by the claim. Remove this line if you want to use a
default StoraaeClass

51

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html

Red Hat OpenShift Dev Spaces 3.14 User guide

52

CHAPTER 8. INTEGRATING WITH OPENSHIFT

CHAPTER 8. INTEGRATING WITH OPENSHIFT

® Section 8.2, “Automatic OpenShift token injection”
® Section 8.3, “Navigating Dev Spaces from OpenShift Developer Perspective”

® Section 8.4, "Navigating OpenShift web console from Dev Spaces”

8.1. MANAGING WORKSPACES WITH OPENSHIFT APIS

On your organization’s OpenShift cluster, OpenShift Dev Spaces workspaces are represented as
DevWorkspace custom resources of the same name. As a result, if there is a workspace named my-
workspace in the OpenShift Dev Spaces dashboard, there is a corresponding DevWorkspace custom
resource named my-workspace in the user’s project on the cluster.

Because each DevWorkspace custom resource on the cluster represents a OpenShift Dev Spaces
workspace, you can manage OpenShift Dev Spaces workspaces by using OpenShift APIs with clients
such as the command-line oc.

Each DevWorkspace custom resource contains details derived from the devfile of the Git repository

cloned for the workspace. For example, a devfile might provide devfile commands and workspace
container configurations.

8.1.1. Listing all workspaces

As a user, you can list your workspaces by using the command line.

Prerequisites

® An active oc session with permissions to get the DevWorkspace resources in your project on
the cluster. See Getting started with the CLI.

® You know the relevant OpenShift Dev Spaces user namespace on the cluster.

TIP

You can visit https://<openshift_dev_spaces_fqdns/api/kubernetes/namespace to get your
OpenShift Dev Spaces user namespace as hame.

® You are in the OpenShift Dev Spaces user namespace on the cluster.

TIP

On OpenShift, you can use the command-line oc¢ tool to display your current namespace or
switch to a namespace.

Procedure

® To list your workspaces, enter the following on a command line:

I $ oc get devworkspaces

I Example 8.1. Output

53

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/developer-cli-commands.html#oc-project

Red Hat OpenShift Dev Spaces 3.14 User guide

useri-dev spring-petclinic workspace6d99e9ffb9784491 Running https://url-to-
workspace.com

useri-dev golang-example workspacedf64e4a492cd4701 Stopped Stopped
useri-dev python-hello-world workspace69c26884bbc141f2 Failed Container tooling

NAMESPACE NAME DEVWORKSPACE ID PHASE INFO
has state CrashLoopBackOff

TIP

You can view PHASE changes live by adding the --watch flag to this command.

NOTE

Users with administrative permissions on the cluster can list all workspaces from all
OpenShift Dev Spaces users by including the --all-namespaces flag.

8.1.2. Creating workspaces

If your use case does not permit use of the OpenShift Dev Spaces dashboard, you can create
workspaces with OpenShift APIs by applying custom resources to the cluster.

NOTE

Creating workspaces through the OpenShift Dev Spaces dashboard provides better user
experience and configuration benefits compared to using the command line:

® Asauser, you are automatically logged in to the cluster.

® OpenShift clients work automatically.

® OpenShift Dev Spaces and its components automatically convert the target Git
repository’s devfile into the DevWorkspace and DevWorkspaceTemplate

custom resources on the cluster.

® Access to the workspace is secured by default with the routingClass: che in the
DevWorkspace of the workspace.

® Recognition of the DevWorkspaceOperatorConfig configuration is managed by
OpenShift Dev Spaces.

® Recognition of configurations in spec.devEnvironments specified in the
CheCluster custom resource including:

o Persistent storage strategy is specified with devEnvironments.storage.
o Default IDE is specified with devEnvironments.defaultEditor.
o Default plugins are specified with devEnvironments.defaultPlugins.

o Container build configuration is specified with
devEnvironments.containerBuildConfiguration.

Prerequisites

54

CHAPTER 8. INTEGRATING WITH OPENSHIFT

® An active oc session with permissions to create DevWorkspace resources in your project on the
cluster. See Getting started with the CLI.

® You know the relevant OpenShift Dev Spaces user namespace on the cluster.

TIP

You can visit https://<openshift_dev_spaces_fqdns/api/kubernetes/namespace to get your
OpenShift Dev Spaces user namespace as hame.

® You are in the OpenShift Dev Spaces user namespace on the cluster.

TIP

On OpenShift, you can use the command-line oc¢ tool to display your current namespace or
switch to a namespace.

NOTE

OpenShift Dev Spaces administrators who intend to create workspaces for other
users must create the DevWorkspace custom resource in a user namespace
that is provisioned by OpenShift Dev Spaces or by the administrator. See
https://access.redhat.com/documentation/en-
us/red_hat_openshift_dev_spaces/3.14/html-
single/administration_guide/index#administration-guide:configuring-
namespace-provisioning.

Procedure
1. To prepare the DevWorkspace custom resource, copy the contents of the target Git
repository’s devfile.

‘ Example 8.2. Copied devfile contents withschemaVersion: 2.2.0

container:

components:
- name: tooling-container
image: quay.io/devfile/universal-developer-image:ubi8-latest

TIP

For more details, see the devfile v2 documentation.

2. Create a DevWorkspace custom resource, pasting the devfile contents from the previous step
under the spec.template field.

‘ Example 8.3. A DevWorkspace custom resource

apiVersion: workspace.devfile.io/vialpha2
metadata:
name: my-devworkspaceﬂ

kind: DevWorkspace
namespace: user1-dev

55

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/developer-cli-commands.html#oc-project
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:configuring-namespace-provisioning
https://devfile.io/docs/2.2.0/what-is-a-devfile

Red Hat OpenShift Dev Spaces 3.14 User guide

spec:
routingClass: che
started: trueg
contributions:ﬂ
- name: ide
uri: https://<openshift_dev_spaces_fqdn>/plugin-registry/v3/plugins/che-
incubator/che-code/latest/devfile.yaml
template:
projects:
- hame: my-project-name
git:
remotes:
origin: https://github.com/eclipse-che/che-docs
components:
- name: tooling-container
container:
image: quay.io/devfile/universal-developer-image:ubi8-latest

Name of the DevWorkspace custom resource. This will be the name of the new
workspace.

User namespace, which is the target project for the new workspace.

Determines whether the workspace must be started when the DevWorkspace custom
resource is created.

URL reference to the Microsoft Visual Studio Code - Open Source IDE devfile from the
plugin registry.

Details about the Git repository to clone into the workspace when it starts.

List of components such as workspace containers and volume components.

Q® 0 0 o

3. Apply the DevWorkspace custom resource to the cluster.

Verification

1. Verify that the workspace is starting by checking the PHASE status of the DevWorkspace.

I $ oc get devworkspaces -n <user_project> --watch

Example 8.4. Output

useri-dev my-devworkspace workspacedf64e4a492cd4701 Starting Waiting

NAMESPACE NAME DEVWORKSPACE ID PHASE INFO
for workspace deployment

2. When the workspace has successfully started, its PHASE status changes to Runningin the
output of the oc get devworkspaces command.

I Example 8.5. Output

56

https://github.com/eclipse-che/che-docs
https://github.com/microsoft/vscode

CHAPTER 8. INTEGRATING WITH OPENSHIFT

NAMESPACE NAME DEVWORKSPACE ID PHASE INFO
useri-dev my-devworkspace workspacedf64e4a492cd4701 Running
https://url-to-workspace.com

You can then open the workspace by using one of these options:

e Visit the URL provided in the INFO section of the output of the oc get devworkspaces
command.

® Open the workspace from the OpenShift Dev Spaces dashboard.

8.1.3. Stopping workspaces

You can stop a workspace by setting the spec.started field in the Devworkspace custom resource to
false.

Prerequisites

® An active oc session on the cluster. See Getting started with the CLI.

® You know the workspace name.

TIP

You can find the relevant workspace name in the output of $ oc get devworkspaces.
® You know the relevant OpenShift Dev Spaces user namespace on the cluster.

TIP

You can visit https://<openshift_dev_spaces_fqdns/api/kubernetes/namespace to get your
OpenShift Dev Spaces user namespace as hame.

® You are in the OpenShift Dev Spaces user namespace on the cluster.

TIP

On OpenShift, you can use the command-line oc tool to display your current namespace or
switch to a namespace.

Procedure

® Run the following command to stop a workspace:

$ oc patch devworkspace <workspace name>\
-p '{"spec"{"started":false}}' \

--type=merge -n <user_namespace> &&\

oc wait --for=jsonpath="{.status.phase}'=Stopped \
dw/<workspace _name> -n <user_namespace>

8.1.4. Starting stopped workspaces

57

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/developer-cli-commands.html#oc-project

Red Hat OpenShift Dev Spaces 3.14 User guide

You can start a stopped workspace by setting the spec.started field in the Devworkspace custom

resource to true.

Prerequisites
® An active oc session on the cluster. See Getting started with the CLI.

® You know the workspace name.

TIP

You can find the relevant workspace name in the output of $ oc get devworkspaces.

® You know the relevant OpenShift Dev Spaces user namespace on the cluster.

TIP

You can visit https://<openshift_dev_spaces_fqdns/api/kubernetes/namespace to get your

OpenShift Dev Spaces user namespace as hame.

® You are in the OpenShift Dev Spaces user namespace on the cluster.

TIP

On OpenShift, you can use the command-line oc tool to display your current namespace or

switch to a namespace.

Procedure

® Run the following command to start a stopped workspace:

$ oc patch devworkspace <workspace name>\
-p '{"spec"{"started":true}}' \

--type=merge -n <user_namespace> &&\

oc wait --for=jsonpath="{.status.phase}'=Running \
dw/<workspace _name> -n <user_namespace>

8.1.5. Removing workspaces

You can remove a workspace by simply deleting the DevWorkspace custom resource.

' WARNING
A Deleting the DevWorkspace custom resource will also delete other workspace

resources if they were created by OpenShift Dev Spaces: for example, the
referenced DevWorkspaceTemplate and per-workspace
PersistentVolumeClaims.

58

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/developer-cli-commands.html#oc-project

CHAPTER 8. INTEGRATING WITH OPENSHIFT

TIP

Remove workspaces by using the OpenShift Dev Spaces dashboard whenever possible.

Prerequisites

® An active oc session on the cluster. See Getting started with the CLI.

® You know the workspace name.

TIP

You can find the relevant workspace name in the output of $ oc get devworkspaces.
® You know the relevant OpenShift Dev Spaces user namespace on the cluster.

TIP

You can visit https://<openshift_dev_spaces_fqdns/api/kubernetes/namespace to get your
OpenShift Dev Spaces user namespace as hame.

® You are in the OpenShift Dev Spaces user namespace on the cluster.

TIP

On OpenShift, you can use the command-line oc¢ tool to display your current namespace or
switch to a namespace.

Procedure

® Run the following command to remove a workspace:

I $ oc delete devworkspace <workspace _name> -n <user_namespace>

8.2. AUTOMATIC OPENSHIFT TOKEN INJECTION

This section describes how to use the OpenShift user token that is automatically injected into
workspace containers which allows running OpenShift Dev Spaces CLI commands against OpenShift
cluster.

Procedure

1. Open the OpenShift Dev Spaces dashboard and start a workspace.

2. Once the workspace is started, open a terminal in the container that contains the OpenShift
Dev Spaces CLI.

3. Execute OpenShift Dev Spaces CLI commands which allow you to run commands against
OpenShift cluster. CLI can be used for deploying applications, inspecting and managing cluster
resources, and viewing logs. OpenShift user token will be used during the execution of the
commands.

59

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/developer-cli-commands.html#oc-project

Red Hat OpenShift Dev Spaces 3.14 User guide

Selection View Go Run Terminal Help

gotypes > implements main.go >

main

> B3 doc

> B3 hello

' WARNING
A The automatic token injection currently works only on the OpenShift infrastructure.

8.3. NAVIGATING DEV SPACES FROM OPENSHIFT DEVELOPER
PERSPECTIVE

The OpenShift Container Platform web console provides two perspectives; the Administrator
perspective and the Developer perspective.

The Developer perspective provides workflows specific to developer use cases, such as the ability to:

® Create and deploy applications on the OpenShift Container Platform by importing existing
codebases, images, and Dockerfiles.

® Visually interact with applications, components, and services associated with them within a
project and monitor their deployment and build status.

® Group components within an application and connect the components within and across
applications.

® |Integrate serverless capabilities (Technology Preview).

® Create workspaces to edit your application code using OpenShift Dev Spaces.

8.3.1. OpenShift Developer Perspective integration with OpenShift Dev Spaces

This section provides information about OpenShift Developer Perspective support for OpenShift Dev
Spaces.

When the OpenShift Dev Spaces Operator is deployed into OpenShift Container Platform 4.2 and later,
it creates a ConsoleLink Custom Resource (CR). This adds an interactive link to the Red Hat
Applications menu for accessing the OpenShift Dev Spaces installation using the OpenShift Developer
Perspective console.

60

CHAPTER 8. INTEGRATING WITH OPENSHIFT

To access the Red Hat Applications menu, click the three-by-three matrix icon on the main screen of
the OpenShift web console. The OpenShift Dev Spaces Console Link, displayed in the drop-down
menu, creates a new workspace or redirects the user to an existing one.

NOTE

OpenShift Container Platform console links are not created when OpenShift
Dev Spaces is used with HTTP resources

When installing OpenShift Dev Spaces with the From Git option, the OpenShift
Developer Perspective console link is only created if OpenShift Dev Spaces is deployed
with HTTPS. The console link will not be created if an HTTP resource is used.

8.3.2. Editing the code of applications running in OpenShift Container Platform
using OpenShift Dev Spaces

This section describes how to start editing the source code of applications running on OpenShift using
OpenShift Dev Spaces.

Prerequisites

® OpenShift Dev Spaces is deployed on the same OpenShift 4 cluster.

Procedure

1. Open the Topology view to list all projects.
2. Inthe Select an Application search field, type workspace to list all workspaces.

3. Click the workspace to edit.
The deployments are displayed as graphical circles surrounded by circular buttons. One of these
buttons is Edit Source Code.

Project: test-che-integration ~ Application: all applications =
/> Developer

+Add

Topology

4. To edit the code of an application using OpenShift Dev Spaces, click the Edit Source Code
button. This redirects to a workspace with the cloned source code of the application
component.

61

Red Hat OpenShift Dev Spaces 3.14 User guide

8.3.3. Accessing OpenShift Dev Spaces from Red Hat Applications menu

This section describes how to access OpenShift Dev Spaces workspaces from the Red Hat Applications
menu on the OpenShift Container Platform.

Prerequisites

® The OpenShift Dev Spaces Operator is available in OpenShift 4.

Procedure

1. Open the Red Hat Applications menu by using the three-by-three matrix icon in the upper right
corner of the main screen.

The drop-down menu displays the available applications.

RedHat
OpenShift Container Platform

You are logged in as a temporary administrative user. Update the cluster OAuth configuratioriRittiies
€3 Openshift Cluster Manager &

«» Developer

Che Workspace

2. Click the OpenShift Dev Spaceslink to open the Dev Spaces Dashboard.

8.4. NAVIGATING OPENSHIFT WEB CONSOLE FROM DEV SPACES

This section describes how to access OpenShift web console from OpenShift Dev Spaces.

Prerequisites

® The OpenShift Dev Spaces Operator is available in OpenShift 4.

Procedure

1. Open the OpenShift Dev Spaces dashboard and click the three-by-three matrix icon in the
upper right corner of the main screen.
The drop-down menu displays the available applications.

62

CHAPTER 8. INTEGRATING WITH OPENSHIFT

Applications

Workspaces » & OpenShiftconsole @

A workspace is where your projects live and run. Create workspaces from stacks that define projects, runtimes, and commands. Learn more [

a Search Q Delete © Add Workspace
Name 1 Last Modified Project(s)

O apache-camel-springboot Jan 26,514 pm fuse-rest-http-booster Open 3}

O bash Mar 09, 3:28 p.m. bash Open

m] cpp Mar 14,1122 am cpp-hello-world Open 3

@] cpp-spux Mar 10, 1:05 p.m. cpp-hello-world Open 3}

2. Click the OpenShift console link to open the OpenShift web console.

63

Red Hat OpenShift Dev Spaces 3.14 User guide

CHAPTER 9. TROUBLESHOOTING DEV SPACES

This section provides troubleshooting procedures for the most frequent issues a user can come in
conflict with.

Additional resources
® Section 9.1, "Viewing Dev Spaces workspaces logs”
® Section 9.2, “Troubleshooting slow workspaces”
® Section 9.3, “Troubleshooting network problems”

® Section 9.4, “Troubleshooting webview loading error”

9.1. VIEWING DEV SPACES WORKSPACES LOGS

You can view OpenShift Dev Spaces logs to better understand and debug background processes should
a problem occur.

An IDE extension misbehaves or needs debugging
The logs list the plugins that have been loaded by the editor.
The container runs out of memory

The logs contain an OOMKilled error message. Processes running in the container attempted to
request more memory than is configured to be available to the container.

A process runs out of memory

The logs contain an error message such as OutOfMemoryException. A process inside the container
ran out of memory without the container noticing.

Additional resources

® Section 9.1.1, “Workspace logs in CLI”
® Section 9.1.2, “Workspace logs in OpenShift console”

® Section 9.1.3, “Language servers and debug adapters logs in the editor”

9.1.1. Workspace logs in CLI

You can use the OpenShift CLI to observe the OpenShift Dev Spaces workspace logs.

Prerequisites

® The OpenShift Dev Spaces workspace <workspace_name> is running.

® Your OpenShift CLI session has access to the OpenShift project <namespace_name> containing
this workspace.

Procedure

® Get the logs from the pod running the <workspace_name> workspace in the <namespace_name>
project:

64

CHAPTER 9. TROUBLESHOOTING DEV SPACES

$ oc logs --follow --namespace='<workspace _namespace>'\
--selector="controller.devfile.io/devworkspace_name=<workspace name>'

9.1.2. Workspace logs in OpenShift console

You can use the OpenShift console to observe the OpenShift Dev Spaces workspace logs.

Procedure

1. In the OpenShift Dev Spaces dashboard, go to Workspaces.

2. Click on a workspace name to display the workspace overview page. This page displays the
OpenShift project name <project_name>.

3. Click on the upper right Applications menu, and click the OpenShift console link.

4. Run the next steps in the OpenShift console, in the Administrator perspective.

5. Click Workloads > Pods to see a list of all the active workspaces.

6. In the Project drop-down menu, select the <project_name> project to narrow the search.

7. Click on the name of the running pod that runs the workspace. The Details tab contains the list
of all containers with additional information.

8. Go to the Logs tab.

9.1.3. Language servers and debug adapters logs in the editor

In the Microsoft Visual Studio Code - Open Source editor running in your workspace, you can configure
the installed language server and debug adapter extensions to view their logs.

Procedure

1. Configure the extension: click File > Preferences > Settings, expand the Extensions section,
search for your extension, and set the trace.server or similar configuration to verbose, if such
configuration exists. Refer to the extension documentation for further configuration.

2. View your language server logs by clicking View = Output, and selecting your language server
in the drop-down list for the Output view.

Additional resources

® Open VSXregistry

9.2. TROUBLESHOOTING SLOW WORKSPACES

Sometimes, workspaces can take a long time to start. Tuning can reduce this start time. Depending on
the options, administrators or users can do the tuning.

This section includes several tuning options for starting workspaces faster or improving workspace
runtime performance.

9.2.1. Improving workspace start time

65

https://open-vsx.org/

Red Hat OpenShift Dev Spaces 3.14 User guide

Caching images with Image Puller

Role: Administrator

When starting a workspace, OpenShift pulls the images from the registry. A workspace can include
many containers meaning that OpenShift pulls Pod’'s images (one per container). Depending on the
size of the image and the bandwidth, it can take a long time.

Image Puller is a tool that can cache images on each of OpenShift nodes. As such, pre-pulling
images can improve start times. See https://access.redhat.com/documentation/en-
us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-
guide:caching-images-for-faster-workspace-start.

Choosing better storage type

Role: Administrator and user
Every workspace has a shared volume attached. This volume stores the project files, so that when

restarting a workspace, changes are still available. Depending on the storage, attach time can take
up to a few minutes, and I/O can be slow.

Installing offline

Role: Administrator

Components of OpenShift Dev Spaces are OCl images. Set up Red Hat OpenShift Dev Spaces in
offline mode to reduce any extra download at runtime because everything needs to be available
from the beginning. See https://access.redhat.com/documentation/en-
us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-
guide:installing-che-in-a-restricted-environment.

Reducing the number of public endpoints

Role: Administrator

For each endpoint, OpenShift is creating OpenShift Route objects. Depending on the underlying
configuration, this creation can be slow.

To avoid this problem, reduce the exposure. For example, to automatically detect a new port listening
inside containers and redirect traffic for the processes using a local IP address (127.0.0.1), Microsoft
Visual Code - Open Source has three optional routes.

By reducing the number of endpoints and checking endpoints of all plugins, workspace start can be
faster.

9.2.2. Improving workspace runtime performance

Providing enough CPU resources

66

Plugins consume CPU resources. For example, when a plugin provides IntelliSense features, adding
more CPU resources can improve performance.

Ensure the CPU settings in the devfile definition, devfile.yaml, are correct:

components:
- name: tools
container:
image: quay.io/devfile/universal-developer-image:ubi8-latest
cpuLimit: 4000m
cpuRequest: 1000m 9

https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:caching-images-for-faster-workspace-start
https://access.redhat.com/documentation/en-us/red_hat_openshift_dev_spaces/3.14/html-single/administration_guide/index#administration-guide:installing-che-in-a-restricted-environment

CHAPTER 9. TROUBLESHOOTING DEV SPACES

ﬂ Specifies the CPU limit

9 Specifies the CPU request

Providing enough memory

Plug-ins consume CPU and memory resources. For example, when a plugin provides IntelliSense
features, collecting data can consume all the memory allocated to the container.

Providing more memory to the container can increase performance. Ensure that memory settings in
the devfile definition devfile.yaml file are correct.

components:
- name: tools
container:
image: quay.io/devfile/universal-developer-image:ubi8-latest
memoryLimit: 6G
memoryRequest: 512Mi 9

ﬂ Specifies the memory limit

9 Specifies the memory request

9.3. TROUBLESHOOTING NETWORK PROBLEMS

This section describes how to prevent or resolve issues related to network policies. OpenShift Dev
Spaces requires the availability of the WebSocket Secure (WSS) connections. Secure WebSocket
connections improve confidentiality and also reliability because they reduce the risk of interference by
bad proxies.

Prerequisites

® The WebSocket Secure (WSS) connections on port 443 must be available on the network.
Firewall and proxy may need additional configuration.

Procedure

1. Verify the browser supports the WebSocket protocol. See: Searching a websocket test.
2. Verify firewalls settings: WebSocket Secure (WSS) connections on port 443 must be available.

3. Verify proxy servers settings: The proxy transmits and intercepts WebSocket Secure (WSS)
connections on port 443.

9.4. TROUBLESHOOTING WEBVIEW LOADING ERROR

If you use Microsoft Visual Studio Code - Open Source in a private browsing window, you might
encounter the following error message: Error loading webview: Error: Could not register service
workers.

This is a known issue affecting following browsers:

® Google Chrome in Incognito mode

67

https://www.google.com/search?q=websocket+test

Red Hat OpenShift Dev Spaces 3.14 User guide

® Mozilla Firefox in Private Browsing mode

Table 9.1. Dealing with the webview error in a private browsing window

Browser

Workarounds

Google Chrome

Go to Settings = Privacy and security -» Cookies and other site data— Allow all cookies.
Mozilla Firefox

Webviews are not supported in Private Browsing mode. Seethis reported bug for details.

68

https://bugzilla.mozilla.org/show_bug.cgi?id=1320796

	Table of Contents
	CHAPTER 1. GETTING STARTED WITH DEV SPACES
	1.1. STARTING A WORKSPACE FROM A GIT REPOSITORY URL
	1.1.1. Optional parameters for the URLs for starting a new workspace
	1.1.1.1. URL parameter concatenation
	1.1.1.2. URL parameter for the IDE
	1.1.1.3. URL parameter for the IDE image
	1.1.1.4. URL parameter for starting duplicate workspaces
	1.1.1.5. URL parameter for the devfile file name
	1.1.1.6. URL parameter for the devfile file path
	1.1.1.7. URL parameter for the workspace storage
	1.1.1.8. URL parameter for additional remotes
	1.1.1.9. URL parameter for a container image

	1.2. STARTING A WORKSPACE FROM A RAW DEVFILE URL
	1.3. BASIC ACTIONS YOU CAN PERFORM ON A WORKSPACE
	1.4. AUTHENTICATING TO A GIT SERVER FROM A WORKSPACE
	1.5. USING THE FUSE-OVERLAYFS STORAGE DRIVER FOR PODMAN AND BUILDAH
	1.5.1. Accessing /dev/fuse
	1.5.2. Enabling fuse-overlayfs with a ConfigMap

	CHAPTER 2. USING DEV SPACES IN TEAM WORKFLOW
	2.1. BADGE FOR FIRST-TIME CONTRIBUTORS
	2.2. REVIEWING PULL AND MERGE REQUESTS
	2.3. TRY IN WEB IDE GITHUB ACTION
	2.3.1. Adding the action to a GitHub repository workflow
	2.3.2. Providing a devfile

	CHAPTER 3. CUSTOMIZING WORKSPACE COMPONENTS
	CHAPTER 4. INTRODUCTION TO DEVFILE IN DEV SPACES
	CHAPTER 5. IDES IN WORKSPACES
	5.1. SUPPORTED IDES
	5.2. REPOSITORY-LEVEL IDE CONFIGURATION IN OPENSHIFT DEV SPACES
	5.3. MICROSOFT VISUAL STUDIO CODE - OPEN SOURCE
	5.3.1. Automating installation of Microsoft Visual Studio Code extensions at workspace startup

	5.4. DEFINING A COMMON IDE
	5.4.1. Setting up che-editor.yaml
	5.4.2. Parameters for che-editor.yaml

	CHAPTER 6. USING CREDENTIALS AND CONFIGURATIONS IN WORKSPACES
	6.1. MOUNTING SECRETS
	6.1.1. Creating image pull Secrets
	6.1.1.1. Creating an image pull Secret with oc
	6.1.1.2. Creating an image pull Secret from a .dockercfg file
	6.1.1.3. Creating an image pull Secret from a config.json file

	6.1.2. Using a Git-provider access token

	6.2. MOUNTING CONFIGMAPS
	6.2.1. Mounting Git configuration

	6.3. ENABLING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT
	6.3.1. Maven
	6.3.2. Gradle
	6.3.3. npm
	6.3.3.1. Disabling self-signed certificate validation
	6.3.3.2. Configuring NODE_EXTRA_CA_CERTS to use a certificate

	6.3.4. Python
	6.3.5. Go
	6.3.6. NuGet

	CHAPTER 7. REQUESTING PERSISTENT STORAGE FOR WORKSPACES
	7.1. REQUESTING PERSISTENT STORAGE IN A DEVFILE
	7.2. REQUESTING PERSISTENT STORAGE IN A PVC

	CHAPTER 8. INTEGRATING WITH OPENSHIFT
	8.1. MANAGING WORKSPACES WITH OPENSHIFT APIS
	8.1.1. Listing all workspaces
	8.1.2. Creating workspaces
	8.1.3. Stopping workspaces
	8.1.4. Starting stopped workspaces
	8.1.5. Removing workspaces

	8.2. AUTOMATIC OPENSHIFT TOKEN INJECTION
	8.3. NAVIGATING DEV SPACES FROM OPENSHIFT DEVELOPER PERSPECTIVE
	8.3.1. OpenShift Developer Perspective integration with OpenShift Dev Spaces
	8.3.2. Editing the code of applications running in OpenShift Container Platform using OpenShift Dev Spaces
	8.3.3. Accessing OpenShift Dev Spaces from Red Hat Applications menu

	8.4. NAVIGATING OPENSHIFT WEB CONSOLE FROM DEV SPACES

	CHAPTER 9. TROUBLESHOOTING DEV SPACES
	9.1. VIEWING DEV SPACES WORKSPACES LOGS
	9.1.1. Workspace logs in CLI
	9.1.2. Workspace logs in OpenShift console
	9.1.3. Language servers and debug adapters logs in the editor

	9.2. TROUBLESHOOTING SLOW WORKSPACES
	9.2.1. Improving workspace start time
	9.2.2. Improving workspace runtime performance

	9.3. TROUBLESHOOTING NETWORK PROBLEMS
	9.4. TROUBLESHOOTING WEBVIEW LOADING ERROR

