& RedHat

Red Hat OpenShift GitOps 1.12

Access control and user management

Configuring user authentication and access controls for users and namespaces

Last Updated: 2024-05-14

Red Hat OpenShift GitOps 1.12 Access control and user management

Configuring user authentication and access controls for users and namespaces

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for changing and managing user level access and resource
requests. It also discusses how to configure role-based access control and single sign-on
authentication providers to manage multiple users, permissions, Argo CD resources, and instances
in the cluster.

Table of Contents

Table of Contents

CHAPTER 1. CONFIGURING ARGO CD RBAC ...t iiittiiitttee ettt eeaateeesaannneeeeaennnneesennnns 3
1.1. CONFIGURING USER LEVEL ACCESS 3
1.2. MODIFYING RHSSO RESOURCE REQUESTS/LIMITS 3

CHAPTER 2. CONFIGURING SSO FORARGO CDUSING DEX ...ttt iiiiiieeeeinieenannnns 5
2.1. CONFIGURATION TO ENABLE THE DEX OPENSHIFT OAUTH CONNECTOR 5

2.1.1. Mapping users to specific roles 5
2.2. DISABLING DEX BY REPLACING .SPEC.SSO 6

CHAPTER 3. CONFIGURING SSO FORARGO CD USING KEYCLOAK ...\ttt eiiiiieeeennn 7
3.1. PREREQUISITES 7
3.2. CONFIGURING A NEW CLIENT IN KEYCLOAK 7
3.3.LOGGING IN TO KEYCLOAK 8
3.4. UNINSTALLING KEYCLOAK 9

Red Hat OpenShift GitOps 1.12 Access control and user management

CHAPTER 1. CONFIGURING ARGO CD RBAC

CHAPTER 1. CONFIGURING ARGO CD RBAC

By default, if you are logged in to Argo CD using Red Hat SSO (RH SSO), you are a read-only user. You
can change and manage the user level access.

1.1. CONFIGURING USER LEVEL ACCESS

To manage and modify the user level access, configure the role-based access control (RBAC) section in
the Argo CD custom resource (CR).

Procedure
1. Edit the argocd CR:

I $ oc edit argocd [argocd-instance-name] -n [namespace]
Output

metadata

rbac:
policy: 'g, rbacsystem:cluster-admins, role:admin’
scopes: '[groups]'

2. Add the policy configuration to the rbac section and add the name and the desired role to be
applied to the user:

metadata
rbac:

policy: g, <name>, role:<admin>
scopes: '[groups]'

NOTE

Currently, RHSSO cannot read the group information of Red Hat OpenShift GitOps
users. Therefore, configure the RBAC at the user level.

1.2. MODIFYING RHSSO RESOURCE REQUESTS/LIMITS

By default, the RHSSO container is created with resource requests and limitations. You can change and
manage the resource requests.

Resource Requests Limits
CPU 500 1000m
Memory 512 Mi 1024 Mi

Red Hat OpenShift GitOps 1.12 Access control and user management

Procedure
® Modify the default resource requirements patching the Argo CD custom resource (CR):
$ oc -n openshift-gitops patch argocd openshift-gitops --type='json' -p="[{"op": "add", "path":

"/spec/sso”, "value": {"provider": "keycloak", "resources": {"requests": {"cpu": "512m", "memory":
"512Mi"}, "limits": {"cpu": "1024m", "memory": "1024Mi"}} }}]'

NOTE

RHSSO created by the Red Hat OpenShift GitOps only persists the changes that are
made by the operator. If the RHSSO restarts, any additional configuration created by the
Admin in RHSSO is deleted.

CHAPTER 2. CONFIGURING SSO FOR ARGO CD USING DEX

CHAPTER 2. CONFIGURING SSO FOR ARGO CD USING DEX

After the Red Hat OpenShift GitOps Operator is installed, Argo CD automatically creates a user with
admin permissions. To manage multiple users, cluster administrators can use Argo CD to configure
Single Sign-On (SSO).

NOTE

The spec.dex parameter in the ArgoCD CR is no longer supported from Red Hat
OpenShift GitOps v1.10.0 onwards. Consider using the .spec.sso parameter instead.

Lo~

2.1. CONFIGURATION TO ENABLE THE DEX OPENSHIFT OAUTH
CONNECTOR

Dex is installed by default for all the Argo CD instances created by the Operator. You can configure Red
Hat OpenShift GitOps to use Dex as the SSO authentication provider by setting the .spec.sso
parameter.

Dex uses the users and groups defined within OpenShift Container Platform by checking the OAuth
server provided by the platform.

Procedure

® To enable Dex, set the .spec.sso.provider parameter to dex in the YAML resource of the
Operator:

#...
spec:
SSO.
provider: dex
dex:
openShiftOAuth: true @)
#...

The openShiftOAuth property triggers the Operator to automatically configure the built-
in OpenShift Container Platform OAuth server when the value is set to true.

2.1.1. Mapping users to specific roles

Argo CD cannot map users to specific roles if they have a direct ClusterRoleBinding role. You can
manually change the role as role:admin on SSO through OpenShift.

Procedure

1. Create a group named cluster-admins.
I $ oc adm groups new cluster-admins
2. Add the user to the group.

I $ oc adm groups add-users cluster-admins USER

Red Hat OpenShift GitOps 1.12 Access control and user management

3. Apply the cluster-admin ClusterRole to the group:

I $ oc adm policy add-cluster-role-to-group cluster-admin cluster-admins

2.2. DISABLING DEX BY REPLACING .SPEC.SSO

® To disable dex, either remove the spec.sso element from the Argo CD custom resource or
specify a different SSO provider.

CHAPTER 3. CONFIGURING SSO FOR ARGO CD USING KEYCLOAK

CHAPTER 3. CONFIGURING SSO FOR ARGO CD USING
KEYCLOAK

After the Red Hat OpenShift GitOps Operator is installed, Argo CD automatically creates a user with
admin permissions. To manage multiple users, cluster administrators can use Argo CD to configure
Single Sign-On (SSO).

3.1. PREREQUISITES
® RedHat SSO is installed on the cluster.

® The Red Hat OpenShift GitOps Operator is installed on your OpenShift Container Platform
cluster.

® Argo CDisinstalled on the cluster.

3.2. CONFIGURING A NEW CLIENT IN KEYCLOAK

Dex is installed by default for all the Argo CD instances created by the Operator. However, you can
delete the Dex configuration and add Keycloak instead to log in to Argo CD using your OpenShift
credentials. Keycloak acts as an identity broker between Argo CD and OpenShift.

Procedure

To configure Keycloak, follow these steps:

1. Delete the Dex configuration by removing the .spec.sso.dex parameter from the Argo CD
custom resource (CR), and save the CR:

dex:
openShiftOAuth: true
resources:
limits:
cpu:
memory:
requests:
cpu:
memory:

2. Set the value of the provider parameter to keycloak in the Argo CD CR.

3. Configure Keycloak by performing one of the following steps:

® Forasecure connection, set the value of the rootCA parameter as shown in the following
example:

apiVersion: argoproj.io/vibetai
kind: ArgoCD
metadata:
name: example-argocd
labels:
example: basic
spec:
SSO:

Red Hat OpenShift GitOps 1.12 Access control and user management

provider: keycloak
keycloak:
rootCA: "<PEM-encoded-root-certificate>"
server:
route:
enabled: true

ﬂ A custom certificate used to verify the Keycloak's TLS certificate.

The Operator reconciles changes in the .spec.sso.keycloak.rootCA parameter and
updates the oidc.config parameter with the PEM encoded root certificate in the argocd-
cm configuration map.

® Foraninsecure connection, leave the value of the rootCA parameter empty and use the
oidc.tls.insecure.skip.verify parameter as shown below:

apiVersion: argoproj.io/vibetai
kind: ArgoCD
metadata:
name: example-argocd
labels:
example: basic
spec:
extraConfig:
oidc.tls.insecure.skip.verify: "true"
SSO:
provider: keycloak
keycloak:
rootCA: "™

NOTE

The Keycloak instance takes 2-3 minutes to install and run.

3.3.LOGGING IN TO KEYCLOAK

Log in to the Keycloak console to manage identities or roles and define the permissions assigned to the
various roles.

Prerequisites

® The default configuration of Dex is removed.

® Your Argo CD CR must be configured to use the Keycloak SSO provider.

Procedure
1. Get the Keycloak route URL for login:
$ oc -n argocd get route keycloak

NAME HOST/PORT PATH SERVICES PORT

CHAPTER 3. CONFIGURING SSO FOR ARGO CD USING KEYCLOAK

TERMINATION WILDCARD
keycloak keycloak-default.apps.ci-In-******.origin-ci-int-aws.dev.**.com keycloak <all>
reencrypt None

2. Get the Keycloak pod name that stores the user name and password as environment variables:

$ oc -n argocd get pods

NAME READY STATUS RESTARTS AGE
keycloak-1-2sjcl 1/1 Running 0 45m

a. Get the Keycloak user name:
$ oc -n argocd exec keycloak-1-2sjcl -- "env" | grep SSO_ADMIN_USERNAME
SSO_ADMIN_USERNAME=Cqid541lh

b. Get the Keycloak password:
$ oc -n argocd exec keycloak-1-2sjcl -- "env" | grep SSO_ADMIN_PASSWORD

SSO_ADMIN_PASSWORD=GVXxHifH

3. On the login page, click LOG IN VIA KEYCLOAK

NOTE

You only see the option LOGIN VIA KEYCLOAK after the Keycloak instance is
ready.

4. Click Login with OpenShift.

NOTE

Login using kubeadmin is not supported.

5. Enter the OpenShift credentials to log in.

6. Optional: By default, any user logged in to Argo CD has read-only access. You can manage the
user level access by updating the argocd-rbac-cm config map:

policy.csv:
<name>, <email>, role:admin

3.4. UNINSTALLING KEYCLOAK

You can delete the Keycloak resources and their relevant configurations by removing the SSO field
from the Argo CD Custom Resource (CR) file. After you remove the SSO field, the values in the file look
similar to the following:

apiVersion: argoproj.io/vibetai
kind: ArgoCD

Red Hat OpenShift GitOps 1.12 Access control and user management

metadata:
name: example-argocd
labels:
example: basic
spec:
server:
route:
enabled: true

NOTE

A Keycloak application created by using this method is currently not persistent. Additional
configurations created in the Argo CD Keycloak realm are deleted when the server
restarts.

10

	Table of Contents
	CHAPTER 1. CONFIGURING ARGO CD RBAC
	1.1. CONFIGURING USER LEVEL ACCESS
	1.2. MODIFYING RHSSO RESOURCE REQUESTS/LIMITS

	CHAPTER 2. CONFIGURING SSO FOR ARGO CD USING DEX
	2.1. CONFIGURATION TO ENABLE THE DEX OPENSHIFT OAUTH CONNECTOR
	2.1.1. Mapping users to specific roles

	2.2. DISABLING DEX BY REPLACING .SPEC.SSO

	CHAPTER 3. CONFIGURING SSO FOR ARGO CD USING KEYCLOAK
	3.1. PREREQUISITES
	3.2. CONFIGURING A NEW CLIENT IN KEYCLOAK
	3.3. LOGGING IN TO KEYCLOAK
	3.4. UNINSTALLING KEYCLOAK

