
Red Hat OpenShift GitOps 1.12

Argo Rollouts

Using Argo Rollouts for progressive delivery

Last Updated: 2024-06-21

Red Hat OpenShift GitOps 1.12 Argo Rollouts

Using Argo Rollouts for progressive delivery

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for using Argo Rollouts to encapsulate all the required
definitions for a declarative rollout strategy. It also discusses how to manage and automate
progressive delivery of deployments as part of the GitOps workflow.

. .

Table of Contents

CHAPTER 1. USING ARGO ROLLOUTS FOR PROGRESSIVE DEPLOYMENT DELIVERY
1.1. PREREQUISITES
1.2. BENEFITS OF ARGO ROLLOUTS
1.3. ABOUT ROLLOUTMANAGER CUSTOM RESOURCES AND SPECIFICATION

1.3.1. Argo Rollouts controller
1.4. CREATING A ROLLOUTMANAGER CUSTOM RESOURCE
1.5. DELETING A ROLLOUTMANAGER CUSTOM RESOURCE
1.6. ADDITIONAL RESOURCES

3
3
3
4
5
5
6
7

Table of Contents

1

Red Hat OpenShift GitOps 1.12 Argo Rollouts

2

CHAPTER 1. USING ARGO ROLLOUTS FOR PROGRESSIVE
DEPLOYMENT DELIVERY

IMPORTANT

Argo Rollouts is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Progressive delivery is the process of releasing product updates in a controlled and gradual manner.
Progressive delivery reduces the risk of a release by exposing the new version of a product update only
to a subset of users initially. The process involves continuously observing and analyzing this new version
to verify whether its behavior matches the requirements and expectations set. The verifications
continue as the process gradually exposes the product update to a broader and wider audience.

OpenShift Container Platform provides some progressive delivery capability by using routes to split
traffic between different services, but this typically requires manual intervention and management.

With Argo Rollouts, you can use automation and metric analysis to support progressive deployment
delivery and drive the automated rollout or rollback of a new version of an application. Argo Rollouts
provide advanced deployment capabilities and enable integration with ingress controllers and service
meshes. You can use Argo Rollouts to manage multiple replica sets that represent different versions of
the deployed application. Depending on your deployment strategy, you can handle traffic to these
versions during an update by optimizing their existing traffic shaping abilities and gradually shifting
traffic to the new version. You can combine Argo Rollouts with a metric provider like Prometheus to do
metric-based and policy-driven rollouts and rollbacks based on the parameters set.

1.1. PREREQUISITES

You have access to the cluster with cluster-admin privileges.

You have access to the OpenShift Container Platform web console.

Red Hat OpenShift GitOps 1.9.0 or a newer version is installed on your cluster.

1.2. BENEFITS OF ARGO ROLLOUTS

Managing and coordinating advanced deployment strategies in traditional infrastructure often involves
long maintenance windows. Automation with tools like OpenShift Container Platform and Red Hat
OpenShift GitOps can reduce these windows, but setting up these strategies can still be challenging.
With Argo Rollouts, you simplify this process by allowing application teams to define their rollout strategy
declaratively. Teams no longer need to define multiple deployments and services or create automation
for traffic shaping and integration of tests. Using Argo Rollouts, you can encapsulate all the required
definitions for a declarative rollout strategy, automate and manage the process.

Using Argo Rollouts as a default workload in Red Hat OpenShift GitOps provides the following benefits:

Automated progressive delivery as part of the GitOps workflow

CHAPTER 1. USING ARGO ROLLOUTS FOR PROGRESSIVE DEPLOYMENT DELIVERY

3

https://access.redhat.com/support/offerings/techpreview/

Advanced deployment capabilities

Optimize the existing advanced deployment strategies such as blue-green or canary

Zero downtime updates for deployments

Fine-grained, weighted traffic shifting

Able to test without any new traffic hitting the production environment

Automated rollbacks and promotions

Manual judgment

Customizable metric queries and analysis of business key performance indicators (KPIs)

Integration with ingress controller and Red Hat OpenShift Service Mesh for advanced traffic
routing

Integration with metric providers for deployment strategy analysis

Usage of multiple providers

With Argo Rollouts, users can more easily adopt progressive delivery in end-user environments. This
provides structure and guidelines without requiring teams to learn about traffic managers and complex
infrastructure. With automated rollouts, the Red Hat OpenShift GitOps Operator provides security to
your end-user environments and helps manage the resources, cost, and time effectively. Existing users
who use Argo CD with security and automated deployments get feedback early in the process and avoid
problems that impact them.

1.3. ABOUT ROLLOUTMANAGER CUSTOM RESOURCES AND
SPECIFICATION

To use Argo Rollouts, you must install Red Hat OpenShift GitOps Operator on the cluster, and then
create and submit a RolloutManager custom resource (CR) to the Operator in the namespace of your
choice. You can scope the RolloutManager CR for single or multiple namespaces. The Operator
creates an argo-rollouts instance with the following namespace-scoped supporting resources:

Argo Rollouts controller

Argo Rollouts metrics service

Argo Rollouts service account

Argo Rollouts roles

Argo Rollouts role bindings

Argo Rollouts secret

You can specify the command arguments, environment variables, a custom image name, and so on for
the Argo Rollouts controller resource in the spec of the RolloutsManager CR. The RolloutManager CR
spec defines the desired state of Argo Rollouts.

Example: RolloutManager CR

Red Hat OpenShift GitOps 1.12 Argo Rollouts

4

1.3.1. Argo Rollouts controller

With the Argo Rollouts controller resource, you can manage the progressive application delivery in your
namespace. The Argo Rollouts controller resource monitors the cluster for events, and reacts whenever
there is a change in any resource related to Argo Rollouts. The controller reads all the rollout details and
brings the cluster to the same state as described in the rollout definition.

1.4. CREATING A ROLLOUTMANAGER CUSTOM RESOURCE

To manage progressive delivery of deployments by using Argo Rollouts in Red Hat OpenShift GitOps,
you must create and configure a RolloutManager custom resource (CR) in the namespace of your
choice. By default, any new argo-rollouts instance has permission to manage resources only in the
namespace where it is deployed, but you can use Argo Rollouts in multiple namespaces as required.

Prerequisites

Red Hat OpenShift GitOps 1.9.0 or a newer version is installed on your cluster.

Procedure

1. Log in to the OpenShift Container Platform web console as a cluster administrator.

2. In the Administrator perspective, click Operators → Installed Operators.

3. Create or select the project where you want to create and configure a RolloutManager custom
resource (CR) from the Project drop-down menu.

4. Select OpenShift GitOps Operator from the installed operators.

5. In the Details tab, under the Provided APIs section, click Create instance in the
RolloutManager pane.

6. On the Create RolloutManager page, select the YAML view and use the default YAML or edit
it according to your requirements:

Example: RolloutManager CR

7. Click Create.

apiVersion: argoproj.io/v1alpha1
kind: RolloutManager
metadata:
 name: argo-rollout
 labels:
 example: basic
spec: {}

apiVersion: argoproj.io/v1alpha1
kind: RolloutManager
metadata:
 name: argo-rollout
 labels:
 example: basic
spec: {}

CHAPTER 1. USING ARGO ROLLOUTS FOR PROGRESSIVE DEPLOYMENT DELIVERY

5

8. In the RolloutManager tab, under the RolloutManagers section, verify that the Status field of
the RolloutManager instance shows as Phase: Available.

9. In the left navigation pane, verify the creation of the namespace-scoped supporting resources:

Click Workloads → Deployments to verify that the argo-rollouts deployment is available
with the Status showing as 1 of 1 pods running.

Click Workloads → Secrets to verify that the argo-rollouts-notification-secret secret is
available.

Click Networking → Services to verify that the argo-rollouts-metrics service is available.

Click User Management → Roles to verify that the argo-rollouts role and argo-rollouts-
aggregate-to-admin, argo-rollouts-aggregate-to-edit, and argo-rollouts-aggregate-to-
view cluster roles are available.

Click User Management → RoleBindings to verify that the argo-rollouts role binding is
available.

1.5. DELETING A ROLLOUTMANAGER CUSTOM RESOURCE

Uninstalling the Red Hat OpenShift GitOps Operator does not remove the resources that were created
during installation. You must manually delete the RolloutManager custom resource (CR) before you
uninstall the Red Hat OpenShift GitOps Operator.

Prerequisites

Red Hat OpenShift GitOps 1.9.0 or a newer version is installed on your cluster.

A RolloutManager CR exists in your namespace.

Procedure

1. Log in to the OpenShift Container Platform web console as a cluster administrator.

2. In the Administrator perspective, click Operators → Installed Operators.

3. Click the Project drop-down menu and select the project that contains the RolloutManager
CR.

4. Select OpenShift GitOps Operator from the installed operators.

5. Click the RolloutManager tab to find RolloutManager instances under the RolloutManagers
section.

6. Click the instance.

7. Click Actions → Delete RolloutManager from the drop-down menu, and click Delete to
confirm in the dialog box.

8. In the RolloutManager tab, under the RolloutManagers section, verify that the
RolloutManager instance is not available anymore.

9. In the left navigation pane, verify the deletion of the namespace-scoped supporting resources:

Click Workloads → Deployments to verify that the argo-rollouts deployment is deleted.

Red Hat OpenShift GitOps 1.12 Argo Rollouts

6

Click Workloads → Secrets to verify that the argo-rollouts-notification-secret secret is
deleted.

Click Networking → Services to verify that the argo-rollouts-metrics service is deleted.

Click User Management → Roles to verify that the argo-rollouts role and argo-rollouts-
aggregate-to-admin, argo-rollouts-aggregate-to-edit, and argo-rollouts-aggregate-to-
view cluster roles are deleted.

Click User Management → RoleBindings to verify that the argo-rollouts role binding is
deleted.

1.6. ADDITIONAL RESOURCES

Installing Red Hat OpenShift GitOps

Uninstalling Red Hat OpenShift GitOps

Canary deployments

Blue-green deployments

RolloutManager Custom Resource specification

Blue-green and canary deployments with Argo Rollouts

Argo Rollouts tech preview limitations

CHAPTER 1. USING ARGO ROLLOUTS FOR PROGRESSIVE DEPLOYMENT DELIVERY

7

https://access.redhat.com/documentation/en-us/red_hat_openshift_gitops/1.12/html-single/installing_gitops/#installing-openshift-gitops
https://access.redhat.com/documentation/en-us/red_hat_openshift_gitops/1.12/html-single/removing_gitops/#uninstalling-openshift-gitops
https://docs.openshift.com/container-platform/latest/applications/deployments/deployment-strategies.html#deployments-canary-deployments_deployment-strategies
https://docs.openshift.com/container-platform/latest/applications/deployments/route-based-deployment-strategies.html#deployments-blue-green_route-based-deployment-strategies
https://argo-rollouts-manager.readthedocs.io/en/latest/crd_reference/
https://www.redhat.com/architect/blue-green-canary-argo-rollouts
https://cloud.redhat.com/blog/trying-out-argo-rollouts-in-openshift-gitops-1.9/

	Table of Contents
	CHAPTER 1. USING ARGO ROLLOUTS FOR PROGRESSIVE DEPLOYMENT DELIVERY
	1.1. PREREQUISITES
	1.2. BENEFITS OF ARGO ROLLOUTS
	1.3. ABOUT ROLLOUTMANAGER CUSTOM RESOURCES AND SPECIFICATION
	1.3.1. Argo Rollouts controller

	1.4. CREATING A ROLLOUTMANAGER CUSTOM RESOURCE
	1.5. DELETING A ROLLOUTMANAGER CUSTOM RESOURCE
	1.6. ADDITIONAL RESOURCES

