
Red Hat OpenShift GitOps 1.12

Declarative cluster configuration

Configuring an OpenShift cluster with cluster configurations by using OpenShift
GitOps and creating and synchronizing applications in the default and code mode by

using the GitOps CLI.

Last Updated: 2024-05-14

Red Hat OpenShift GitOps 1.12 Declarative cluster configuration

Configuring an OpenShift cluster with cluster configurations by using OpenShift GitOps and
creating and synchronizing applications in the default and code mode by using the GitOps CLI.

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring Argo CD to recursively sync the content of a
Git directory with an application that contains custom configurations for your cluster. It also
discusses about how to create and synchronize applications in the default and code mode by using
the GitOps CLI.

. .

. .

Table of Contents

CHAPTER 1. CONFIGURING AN OPENSHIFT CLUSTER BY DEPLOYING AN APPLICATION WITH CLUSTER
CONFIGURATIONS

1.1. PREREQUISITES
1.2. USING AN ARGO CD INSTANCE TO MANAGE CLUSTER-SCOPED RESOURCES
1.3. DEFAULT PERMISSIONS OF AN ARGO CD INSTANCE
1.4. RUNNING THE ARGO CD INSTANCE AT THE CLUSTER-LEVEL
1.5. CREATING AN APPLICATION BY USING THE ARGO CD DASHBOARD
1.6. CREATING AN APPLICATION BY USING THE OC TOOL
1.7. CREATING AN APPLICATION IN THE DEFAULT MODE BY USING THE GITOPS CLI
1.8. CREATING AN APPLICATION IN CORE MODE BY USING THE GITOPS CLI
1.9. SYNCHRONIZING YOUR APPLICATION WITH YOUR GIT REPOSITORY
1.10. SYNCHRONIZING AN APPLICATION IN THE DEFAULT MODE BY USING THE GITOPS CLI
1.11. SYNCHRONIZING AN APPLICATION IN CORE MODE BY USING THE GITOPS CLI
1.12. IN-BUILT PERMISSIONS FOR CLUSTER CONFIGURATION
1.13. ADDING PERMISSIONS FOR CLUSTER CONFIGURATION
1.14. INSTALLING OLM OPERATORS USING RED HAT OPENSHIFT GITOPS

1.14.1. Installing cluster-scoped Operators
1.14.2. Installing namepace-scoped Operators

1.15. ADDITIONAL RESOURCES

CHAPTER 2. SHARDING CLUSTERS ACROSS ARGO CD APPLICATION CONTROLLER REPLICAS
2.1. ENABLING THE ROUND-ROBIN SHARDING ALGORITHM

2.1.1. Enabling the round-robin sharding algorithm in the web console
2.1.2. Enabling the round-robin sharding algorithm by using the CLI

2.2. ENABLING DYNAMIC SCALING OF SHARDS OF THE ARGO CD APPLICATION CONTROLLER
2.2.1. Enabling dynamic scaling of shards in the web console
2.2.2. Enabling dynamic scaling of shards by using the CLI
2.2.3. Additional resources

3
3
3
4
4
5
7
7
9

10
11

12
13
13
15
15
15
16

17
17
17

20
22
22
24
25

Table of Contents

1

Red Hat OpenShift GitOps 1.12 Declarative cluster configuration

2

CHAPTER 1. CONFIGURING AN OPENSHIFT CLUSTER BY
DEPLOYING AN APPLICATION WITH CLUSTER

CONFIGURATIONS
With Red Hat OpenShift GitOps, you can configure Argo CD to recursively sync the content of a Git
directory with an application that contains custom configurations for your cluster.

1.1. PREREQUISITES

You have logged in to the OpenShift Container Platform cluster as an administrator.

You have installed the Red Hat OpenShift GitOps Operator on your OpenShift Container
Platform cluster.

1.2. USING AN ARGO CD INSTANCE TO MANAGE CLUSTER-SCOPED
RESOURCES

To manage cluster-scoped resources, update the existing Subscription object for the Red Hat
OpenShift GitOps Operator and add the namespace of the Argo CD instance to the
ARGOCD_CLUSTER_CONFIG_NAMESPACES environment variable in the spec section.

Procedure

1. In the Administrator perspective of the web console, navigate to Operators → Installed
Operators → Red Hat OpenShift GitOps → Subscription.

2. Click the Actions drop-down menu then click Edit Subscription.

3. On the openshift-gitops-operator Subscription details page, under the YAML tab, edit the
Subscription YAML file by adding the namespace of the Argo CD instance to the
ARGOCD_CLUSTER_CONFIG_NAMESPACES environment variable in the spec section:

4. To verify that the Argo instance is configured with a cluster role to manage cluster-scoped
resources, perform the following steps:

a. Navigate to User Management → Roles and from the Filter drop-down menu select
Cluster-wide Roles.

b. Search for the argocd-application-controller by using the Search by name field.
The Roles page displays the created cluster role.

TIP

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-gitops-operator
 namespace: openshift-operators
...
spec:
 config:
 env:
 - name: ARGOCD_CLUSTER_CONFIG_NAMESPACES
 value: openshift-gitops, <list of namespaces of cluster-scoped Argo CD instances>
...

CHAPTER 1. CONFIGURING AN OPENSHIFT CLUSTER BY DEPLOYING AN APPLICATION WITH CLUSTER CONFIGURATIONS

3

TIP

Alternatively, in the OpenShift CLI, run the following command:

The output yes verifies that the Argo instance is configured with a cluster role to manage
cluster-scoped resources. Else, check your configurations and take necessary steps as
required.

1.3. DEFAULT PERMISSIONS OF AN ARGO CD INSTANCE

By default Argo CD instance has the following permissions:

Argo CD instance has the admin privileges to manage resources only in the namespace where it
is deployed. For instance, an Argo CD instance deployed in the foo namespace has the admin
privileges to manage resources only for that namespace.

Argo CD has the following cluster-scoped permissions because Argo CD requires cluster-wide
read privileges on resources to function appropriately:

NOTE

You can edit the cluster roles used by the argocd-server and argocd-
application-controller components where Argo CD is running such that the
write privileges are limited to only the namespaces and resources that you wish
Argo CD to manage.

1.4. RUNNING THE ARGO CD INSTANCE AT THE CLUSTER-LEVEL

The default Argo CD instance and the accompanying controllers, installed by the Red Hat OpenShift
GitOps Operator, can now run on the infrastructure nodes of the cluster by setting a simple
configuration toggle.

Procedure

oc auth can-i create oauth -n openshift-gitops --as system:serviceaccount:openshift-
gitops:openshift-gitops-argocd-application-controller

- verbs:
 - get
 - list
 - watch
 apiGroups:
 - '*'
 resources:
 - '*'
 - verbs:
 - get
 - list
 nonResourceURLs:
 - '*'

$ oc edit clusterrole argocd-server
$ oc edit clusterrole argocd-application-controller

Red Hat OpenShift GitOps 1.12 Declarative cluster configuration

4

1. Label the existing nodes:

2. Optional: If required, you can also apply taints and isolate the workloads on infrastructure nodes
and prevent other workloads from scheduling on these nodes:

3. Add the runOnInfra toggle in the GitOpsService custom resource:

4. Optional: If taints have been added to the nodes, then add tolerations to the GitOpsService
custom resource, for example:

5. Verify that the workloads in the openshift-gitops namespace are now scheduled on the
infrastructure nodes by viewing Pods → Pod details for any pod in the console UI.

NOTE

Any nodeSelectors and tolerations manually added to the default Argo CD custom
resource are overwritten by the toggle and tolerations in the GitOpsService custom
resource.

Additional resources

To learn more about taints and tolerations, see Controlling pod placement using node taints .

For more information on infrastructure machine sets, see Creating infrastructure machine sets.

1.5. CREATING AN APPLICATION BY USING THE ARGO CD
DASHBOARD

Argo CD provides a dashboard which allows you to create applications.

This sample workflow walks you through the process of configuring Argo CD to recursively sync the

$ oc label node <node-name> node-role.kubernetes.io/infra=""

$ oc adm taint nodes -l node-role.kubernetes.io/infra \
infra=reserved:NoSchedule infra=reserved:NoExecute

apiVersion: pipelines.openshift.io/v1alpha1
kind: GitopsService
metadata:
 name: cluster
spec:
 runOnInfra: true

 spec:
 runOnInfra: true
 tolerations:
 - effect: NoSchedule
 key: infra
 value: reserved
 - effect: NoExecute
 key: infra
 value: reserved

CHAPTER 1. CONFIGURING AN OPENSHIFT CLUSTER BY DEPLOYING AN APPLICATION WITH CLUSTER CONFIGURATIONS

5

https://docs.openshift.com/container-platform/latest/nodes/scheduling/nodes-scheduler-taints-tolerations.html#nodes-scheduler-taints-tolerations
https://docs.openshift.com/container-platform/latest/machine_management/creating-infrastructure-machinesets.html#creating-infrastructure-machinesets

content of the cluster directory to the cluster-configs application. The directory defines the
OpenShift Container Platform web console cluster configurations that add a link to the Red Hat

Developer Blog - Kubernetes under the menu in the web console, and defines a namespace
spring-petclinic on the cluster.

Prerequisites

You have logged in to the OpenShift Container Platform cluster as an administrator.

You have installed the Red Hat OpenShift GitOps Operator on your OpenShift Container
Platform cluster.

You have logged in to Argo CD instance.

Procedure

1. In the Argo CD dashboard, click NEW APP to add a new Argo CD application.

2. For this workflow, create a cluster-configs application with the following configurations:

Application Name

cluster-configs

Project

default

Sync Policy

Manual

Repository URL

https://github.com/redhat-developer/openshift-gitops-getting-started

Revision

HEAD

Path

cluster

Destination

https://kubernetes.default.svc

Namespace

spring-petclinic

Directory Recurse

checked

3. Click CREATE to create your application.

4. Open the Administrator perspective of the web console and expand Administration →
Namespaces.

5. Search for and select the namespace, then enter argocd.argoproj.io/managed-by=openshift-
gitops in the Label field so that the Argo CD instance in the openshift-gitops namespace can
manage your namespace.

Red Hat OpenShift GitOps 1.12 Declarative cluster configuration

6

https://github.com/redhat-developer/openshift-gitops-getting-started
https://kubernetes.default.svc

1.6. CREATING AN APPLICATION BY USING THE OC TOOL

You can create Argo CD applications in your terminal by using the oc tool.

Prerequisites

You have installed the Red Hat OpenShift GitOps Operator on your OpenShift Container
Platform cluster.

You have logged in to an Argo CD instance.

Procedure

1. Download the sample application:

2. Create the application:

3. Run the oc get command to review the created application:

4. Add a label to the namespace your application is deployed in so that the Argo CD instance in the
openshift-gitops namespace can manage it:

1.7. CREATING AN APPLICATION IN THE DEFAULT MODE BY USING
THE GITOPS CLI

You can create applications in the default mode by using the GitOps argocd CLI.

This sample workflow walks you through the process of configuring Argo CD to recursively sync the
content of the cluster directory to the cluster-configs application. The directory defines the
OpenShift Container Platform cluster configurations and the spring-petclinic namespace on the
cluster.

Prerequisites

You have installed the Red Hat OpenShift GitOps Operator on your OpenShift Container
Platform cluster.

You have installed the OpenShift CLI (oc).

You have installed the Red Hat OpenShift GitOps argocd CLI.

You have logged in to Argo CD instance.

Procedure

$ git clone git@github.com:redhat-developer/openshift-gitops-getting-started.git

$ oc create -f openshift-gitops-getting-started/argo/app.yaml

$ oc get application -n openshift-gitops

$ oc label namespace spring-petclinic argocd.argoproj.io/managed-by=openshift-gitops

CHAPTER 1. CONFIGURING AN OPENSHIFT CLUSTER BY DEPLOYING AN APPLICATION WITH CLUSTER CONFIGURATIONS

7

https://github.com/redhat-developer/openshift-gitops-getting-started

1. Get the admin account password for the Argo CD server:

2. Get the Argo CD server URL:

3. Log in to the Argo CD server by using the admin account password and enclosing it in single
quotes:

IMPORTANT

Enclosing the password in single quotes ensures that special characters, such as
$, are not misinterpreted by the shell. Always use single quotes to enclose the
literal value of the password.

Example

4. Verify that you are able to run argocd commands in the default mode by listing all applications:

If the configuration is correct, then existing applications will be listed with the following header:

Sample output

5. Create an application in the default mode:

6. Label the spring-petclinic destination namespace to be managed by the openshif-gitops Argo
CD instance:

$ ADMIN_PASSWD=$(oc get secret openshift-gitops-cluster -n openshift-gitops -o
jsonpath='{.data.admin\.password}' | base64 -d)

$ SERVER_URL=$(oc get routes openshift-gitops-server -n openshift-gitops -o
jsonpath='{.status.ingress[0].host}')

$ argocd login --username admin --password ${ADMIN_PASSWD} ${SERVER_URL}

$ argocd login --username admin --password '<password>' openshift-gitops.openshift-
gitops.apps-crc.testing

$ argocd app list

NAME CLUSTER NAMESPACE PROJECT STATUS HEALTH SYNCPOLICY
CONDITIONS REPO PATH TARGET

$ argocd app create app-cluster-configs \
 --repo https://github.com/redhat-developer/openshift-gitops-getting-started.git \
 --path cluster \
 --revision main \
 --dest-server https://kubernetes.default.svc \
 --dest-namespace spring-petclinic \
 --directory-recurse \
 --sync-policy none \
 --sync-option Prune=true \
 --sync-option CreateNamespace=true

Red Hat OpenShift GitOps 1.12 Declarative cluster configuration

8

7. List the available applications to confirm that the application is created successfully:

Even though the cluster-configs Argo CD application has the Healthy status, it is not
automatically synced due to its none sync policy, causing it to remain in the OutOfSync status.

1.8. CREATING AN APPLICATION IN CORE MODE BY USING THE
GITOPS CLI

You can create applications in core mode by using the GitOps argocd CLI.

This sample workflow walks you through the process of configuring Argo CD to recursively sync the
content of the cluster directory to the cluster-configs application. The directory defines the
OpenShift Container Platform cluster configurations and the spring-petclinic namespace on the
cluster.

Prerequisites

You have installed the Red Hat OpenShift GitOps Operator on your OpenShift Container
Platform cluster.

You have installed the OpenShift CLI (oc).

You have installed the Red Hat OpenShift GitOps argocd CLI.

Procedure

1. Log in to the OpenShift Container Platform cluster by using the oc CLI tool:

Example

2. Check whether the context is set correctly in the kubeconfig file:

3. Set the default namespace of the current context to openshift-gitops:

4. Set the following environment variable to override the Argo CD component names:

5. Verify that you are able to run argocd commands in core mode by listing all applications:

$ oc label ns spring-petclinic "argocd.argoproj.io/managed-by=openshift-gitops"

$ argocd app list

$ oc login -u <username> -p <password> <server_url>

$ oc login -u kubeadmin -p '<password>' https://api.crc.testing:6443

$ oc config current-context

$ oc config set-context --current --namespace openshift-gitops

$ export ARGOCD_REPO_SERVER_NAME=openshift-gitops-repo-server

CHAPTER 1. CONFIGURING AN OPENSHIFT CLUSTER BY DEPLOYING AN APPLICATION WITH CLUSTER CONFIGURATIONS

9

If the configuration is correct, then existing applications will be listed with the following header:

Sample output

6. Create an application in core mode:

7. Label the spring-petclinic destination namespace to be managed by the openshif-gitops Argo
CD instance:

8. List the available applications to confirm that the application is created successfully:

Even though the cluster-configs Argo CD application has the Healthy status, it is not
automatically synced due to its none sync policy, causing it to remain in the OutOfSync status.

1.9. SYNCHRONIZING YOUR APPLICATION WITH YOUR GIT
REPOSITORY

You can synchronize your application with your Git repository by modifying the synchronization policy
for Argo CD. The policy modification automatically applies the changes in your cluster configurations
from your Git repository to the cluster.

Procedure

1. In the Argo CD dashboard, notice that the cluster-configs Argo CD application has the statuses
Missing and OutOfSync. Because the application was configured with a manual sync policy,
Argo CD does not sync it automatically.

2. Click SYNC on the cluster-configs tile, review the changes, and then click SYNCHRONIZE.
Argo CD will detect any changes in the Git repository automatically. If the configurations are
changed, Argo CD will change the status of the cluster-configs to OutOfSync. You can modify
the synchronization policy for Argo CD to automatically apply changes from your Git repository
to the cluster.

3. Notice that the cluster-configs Argo CD application now has the statuses Healthy and Synced.

$ argocd app list --core

NAME CLUSTER NAMESPACE PROJECT STATUS HEALTH SYNCPOLICY
CONDITIONS REPO PATH TARGET

$ argocd app create app-cluster-configs --core \
 --repo https://github.com/redhat-developer/openshift-gitops-getting-started.git \
 --path cluster \
 --revision main \
 --dest-server https://kubernetes.default.svc \
 --dest-namespace spring-petclinic \
 --directory-recurse \
 --sync-policy none \
 --sync-option Prune=true \
 --sync-option CreateNamespace=true

$ oc label ns spring-petclinic "argocd.argoproj.io/managed-by=openshift-gitops"

$ argocd app list --core

Red Hat OpenShift GitOps 1.12 Declarative cluster configuration

10

3. Notice that the cluster-configs Argo CD application now has the statuses Healthy and Synced.
Click the cluster-configs tile to check the details of the synchronized resources and their status
on the cluster.

4. Navigate to the OpenShift Container Platform web console and click to verify that a link
to the Red Hat Developer Blog - Kubernetes is now present there.

5. Navigate to the Project page and search for the spring-petclinic namespace to verify that it
has been added to the cluster.
Your cluster configurations have been successfully synchronized to the cluster.

1.10. SYNCHRONIZING AN APPLICATION IN THE DEFAULT MODE BY
USING THE GITOPS CLI

You can synchronize applications in the default mode by using the GitOps argocd CLI.

This sample workflow walks you through the process of configuring Argo CD to recursively sync the
content of the cluster directory to the cluster-configs application. The directory defines the
OpenShift Container Platform cluster configurations and the spring-petclinic namespace on the
cluster.

Prerequisites

You have installed the Red Hat OpenShift GitOps Operator on your OpenShift Container
Platform cluster.

You have logged in to Argo CD instance.

You have installed the OpenShift CLI (oc).

You have installed the Red Hat OpenShift GitOps argocd CLI.

Procedure

1. Get the admin account password for the Argo CD server:

2. Get the Argo CD server URL:

3. Log in to the Argo CD server by using the admin account password and enclosing it in single
quotes:

IMPORTANT

Enclosing the password in single quotes ensures that special characters, such as
$, are not misinterpreted by the shell. Always use single quotes to enclose the
literal value of the password.

$ ADMIN_PASSWD=$(oc get secret openshift-gitops-cluster -n openshift-gitops -o
jsonpath='{.data.admin\.password}' | base64 -d)

$ SERVER_URL=$(oc get routes openshift-gitops-server -n openshift-gitops -o
jsonpath='{.status.ingress[0].host}')

CHAPTER 1. CONFIGURING AN OPENSHIFT CLUSTER BY DEPLOYING AN APPLICATION WITH CLUSTER CONFIGURATIONS

11

Example

4. Because the application is configured with the none sync policy, you must manually trigger the
sync operation:

5. List the application to confirm that the application has the Healthy and Synced statuses:

1.11. SYNCHRONIZING AN APPLICATION IN CORE MODE BY USING THE
GITOPS CLI

You can synchronize applications in core mode by using the GitOps argocd CLI.

This sample workflow walks you through the process of configuring Argo CD to recursively sync the
content of the cluster directory to the cluster-configs application. The directory defines the
OpenShift Container Platform cluster configurations and the spring-petclinic namespace on the
cluster.

Prerequisites

You have installed the Red Hat OpenShift GitOps Operator on your OpenShift Container
Platform cluster.

You have installed the OpenShift CLI (oc).

You have installed the Red Hat OpenShift GitOps argocd CLI.

Procedure

1. Log in to the OpenShift Container Platform cluster by using the oc CLI tool:

Example

2. Check whether the context is set correctly in the kubeconfig file:

3. Set the default namespace of the current context to openshift-gitops:

$ argocd login --username admin --password ${ADMIN_PASSWD} ${SERVER_URL}

$ argocd login --username admin --password '<password>' openshift-gitops.openshift-
gitops.apps-crc.testing

$ argocd app sync openshift-gitops/app-cluster-configs

$ argocd app list

$ oc login -u <username> -p <password> <server_url>

$ oc login -u kubeadmin -p '<password>' https://api.crc.testing:6443

$ oc config current-context

Red Hat OpenShift GitOps 1.12 Declarative cluster configuration

12

4. Set the following environment variable to override the Argo CD component names:

5. Because the application is configured with the none sync policy, you must manually trigger the
sync operation:

6. List the application to confirm that the application has the Healthy and Synced statuses:

1.12. IN-BUILT PERMISSIONS FOR CLUSTER CONFIGURATION

By default, the Argo CD instance has permissions to manage specific cluster-scoped resources such as
cluster Operators, optional OLM Operators and user management.

NOTE

Argo CD does not have cluster-admin permissions.

Permissions for the Argo CD instance:

Resources Descriptions

Resource Groups Configure the user or administrator

operators.coreos.com Optional Operators managed by OLM

user.openshift.io , rbac.authorization.k8s.io Groups, Users and their permissions

config.openshift.io Control plane Operators managed by CVO used to
configure cluster-wide build configuration, registry
configuration and scheduler policies

storage.k8s.io Storage

console.openshift.io Console customization

1.13. ADDING PERMISSIONS FOR CLUSTER CONFIGURATION

You can grant permissions for an Argo CD instance to manage cluster configuration. Create a cluster
role with additional permissions and then create a new cluster role binding to associate the cluster role
with a service account.

$ oc config set-context --current --namespace openshift-gitops

$ export ARGOCD_REPO_SERVER_NAME=openshift-gitops-repo-server

$ argocd app sync --core openshift-gitops/app-cluster-configs

$ argocd app list --core

CHAPTER 1. CONFIGURING AN OPENSHIFT CLUSTER BY DEPLOYING AN APPLICATION WITH CLUSTER CONFIGURATIONS

13

Prerequisites

You have access to an OpenShift Container Platform cluster with cluster-admin privileges and
are logged in to the web console.

You have installed the Red Hat OpenShift GitOps Operator on your OpenShift Container
Platform cluster.

Procedure

1. In the web console, select User Management → Roles → Create Role. Use the following
ClusterRole YAML template to add rules to specify the additional permissions.

2. Click Create to add the cluster role.

3. To create the cluster role binding, select User Management → Role Bindings → Create
Binding.

4. Select All Projects from the Project drop-down.

5. Click Create binding.

6. Select Binding type as Cluster-wide role binding (ClusterRoleBinding).

7. Enter a unique value for the RoleBinding name.

8. Select the newly created cluster role or an existing cluster role from the drop down list.

9. Select the Subject as ServiceAccount and the provide the Subject namespace and name.

a. Subject namespace: openshift-gitops

b. Subject name: openshift-gitops-argocd-application-controller

10. Click Create. The YAML file for the ClusterRoleBinding object is as follows:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: secrets-cluster-role
rules:
- apiGroups: [""]
 resources: ["secrets"]
 verbs: ["*"]

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: cluster-role-binding
subjects:
 - kind: ServiceAccount
 name: openshift-gitops-argocd-application-controller
 namespace: openshift-gitops
roleRef:

Red Hat OpenShift GitOps 1.12 Declarative cluster configuration

14

1.14. INSTALLING OLM OPERATORS USING RED HAT OPENSHIFT
GITOPS

Red Hat OpenShift GitOps with cluster configurations manages specific cluster-scoped resources and
takes care of installing cluster Operators or any namespace-scoped OLM Operators.

Consider a case where as a cluster administrator, you have to install an OLM Operator such as Tekton.
You use the OpenShift Container Platform web console to manually install a Tekton Operator or the
OpenShift CLI to manually install a Tekton subscription and Tekton Operator group on your cluster.

Red Hat OpenShift GitOps places your Kubernetes resources in your Git repository. As a cluster
administrator, use Red Hat OpenShift GitOps to manage and automate the installation of other OLM
Operators without any manual procedures. For example, after you place the Tekton subscription in your
Git repository by using Red Hat OpenShift GitOps, the Red Hat OpenShift GitOps automatically takes
this Tekton subscription from your Git repository and installs the Tekton Operator on your cluster.

1.14.1. Installing cluster-scoped Operators

Operator Lifecycle Manager (OLM) uses a default global-operators Operator group in the openshift-
operators namespace for cluster-scoped Operators. Hence you do not have to manage the
OperatorGroup resource in your Gitops repository. However, for namespace-scoped Operators, you
must manage the OperatorGroup resource in that namespace.

To install cluster-scoped Operators, create and place the Subscription resource of the required
Operator in your Git repository.

Example: Grafana Operator subscription

1.14.2. Installing namepace-scoped Operators

To install namespace-scoped Operators, create and place the Subscription and OperatorGroup
resources of the required Operator in your Git repository.

Example: Ansible Automation Platform Resource Operator

 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: secrets-cluster-role

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: grafana
spec:
 channel: v4
 installPlanApproval: Automatic
 name: grafana-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

...
apiVersion: v1
kind: Namespace

CHAPTER 1. CONFIGURING AN OPENSHIFT CLUSTER BY DEPLOYING AN APPLICATION WITH CLUSTER CONFIGURATIONS

15

IMPORTANT

When deploying multiple Operators using Red Hat OpenShift GitOps, you must create
only a single Operator group in the corresponding namespace. If more than one Operator
group exists in a single namespace, any CSV created in that namespace transition to a
failure state with the TooManyOperatorGroups reason. After the number of Operator
groups in their corresponding namespaces reaches one, all the previous failure state
CSVs transition to pending state. You must manually approve the pending install plan to
complete the Operator installation.

1.15. ADDITIONAL RESOURCES

Installing the GitOps CLI

Basic GitOps argocd commands

metadata:
 labels:
 openshift.io/cluster-monitoring: "true"
 name: ansible-automation-platform
...
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: ansible-automation-platform-operator
 namespace: ansible-automation-platform
spec:
 targetNamespaces:
 - ansible-automation-platform
...
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ansible-automation-platform
 namespace: ansible-automation-platform
spec:
 channel: patch-me
 installPlanApproval: Automatic
 name: ansible-automation-platform-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
...

Red Hat OpenShift GitOps 1.12 Declarative cluster configuration

16

https://access.redhat.com/documentation/en-us/red_hat_openshift_gitops/1.12/html-single/installing_gitops/#installing-argocd-gitops-cli
https://access.redhat.com/documentation/en-us/red_hat_openshift_gitops/1.12/html-single/gitops_cli_argocd_reference/#argocd-gitops-cli-reference

CHAPTER 2. SHARDING CLUSTERS ACROSS ARGO CD
APPLICATION CONTROLLER REPLICAS

You can shard clusters across multiple Argo CD Application Controller replicas if the controller is
managing too many clusters and uses too much memory.

2.1. ENABLING THE ROUND-ROBIN SHARDING ALGORITHM

IMPORTANT

The round-robin sharding algorithm is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

By default, the Argo CD Application Controller uses the non-uniform legacy hash-based sharding
algorithm to assign clusters to shards. This can result in uneven cluster distribution. You can enable the
round-robin sharding algorithm to achieve more equal cluster distribution across all shards.

Using the round-robin sharding algorithm in Red Hat OpenShift GitOps provides the following benefits:

Ensure more balanced workload distribution

Prevent shards from being overloaded or underutilized

Optimize the efficiency of computing resources

Reduce the risk of bottlenecks

Improve overall performance and reliability of the Argo CD system

The introduction of alternative sharding algorithms allows for further customization based on specific
use cases. You can select the algorithm that best aligns with your deployment needs, which results in
greater flexibility and adaptability in diverse operational scenarios.

TIP

To leverage the benefits of alternative sharding algorithms in GitOps, it is crucial to enable sharding
during deployment.

2.1.1. Enabling the round-robin sharding algorithm in the web console

You can enable the round-robin sharding algorithm by using the OpenShift Container Platform web
console.

Prerequisites

You have installed the Red Hat OpenShift GitOps Operator on your OpenShift Container

CHAPTER 2. SHARDING CLUSTERS ACROSS ARGO CD APPLICATION CONTROLLER REPLICAS

17

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

You have installed the Red Hat OpenShift GitOps Operator on your OpenShift Container
Platform cluster.

You have access to the OpenShift Container Platform web console.

You have access to the cluster with cluster-admin privileges.

Procedure

1. In the Administrator perspective of the web console, go to Operators → Installed Operators.

2. Click Red Hat OpenShift GitOps from the installed operators and go to the Argo CD tab.

3. Click the Argo CD instance where you want to enable the round-robin sharding algorithm, for
example, openshift-gitops.

4. Click the YAML tab and edit the YAML file as shown in the following example:

Example Argo CD instance with round-robin sharding algorithm enabled

Set the sharding.enabled parameter to true to enable sharding.

Set the number of replicas to the wanted value, for example, 3.

Set the sharding algorithm to round-robin.

Set the log level to debug so that you can verify to which shard each cluster is attached.

5. Click Save.
A success notification alert, openshift-gitops has been updated to version <version>,
appears.

NOTE

If you edit the default openshift-gitops instance, the Managed resource dialog
box is displayed. Click Save again to confirm the changes.

6. Verify that the sharding is enabled with round-robin as the sharding algorithm by performing
the following steps:

apiVersion: argoproj.io/v1beta1
kind: ArgoCD
metadata:
 name: openshift-gitops
 namespace: openshift-gitops
spec:
 controller:
 sharding:
 enabled: true 1
 replicas: 3 2
 env: 3
 - name: ARGOCD_CONTROLLER_SHARDING_ALGORITHM
 value: round-robin
 logLevel: debug 4

Red Hat OpenShift GitOps 1.12 Declarative cluster configuration

18

1

1 2 3

a. Go to Workloads → StatefulSets.

b. Select the namespace where you installed the Argo CD instance from the Project drop-
down list.

c. Click <instance_name>-application-controller, for example, openshift-gitops-
application-controller, and go to the Pods tab.

d. Observe the number of created application controller pods. It should correspond with the
number of set replicas.

e. Click on the controller pod you want to examine and go to the Logs tab to view the pod
logs.

Example controller pod logs snippet

Look for the "Using filter function: round-robin" message.

f. In the log Search field, search for processed by shard to verify that the cluster distribution
across shards is even, as shown in the following example.

IMPORTANT

Ensure that you set the log level to debug to observe these logs.

Example controller pod logs snippet

In this example, 3 clusters are attached consecutively to shard 0, shard 1, and shard
2.

NOTE

time="2023-12-13T09:05:34Z" level=info msg="ArgoCD Application Controller is starting"
built="2023-12-01T19:21:49Z" commit=a3vd5c3df52943a6fff6c0rg181fth3248976299
namespace=openshift-gitops version=v2.9.2+c5ea5c4
time="2023-12-13T09:05:34Z" level=info msg="Processing clusters from shard 1"
time="2023-12-13T09:05:34Z" level=info msg="Using filter function: round-robin" 1
time="2023-12-13T09:05:34Z" level=info msg="Using filter function: round-robin"
time="2023-12-13T09:05:34Z" level=info msg="appResyncPeriod=3m0s,
appHardResyncPeriod=0s"

time="2023-12-13T09:05:34Z" level=debug msg="ClustersList has 3 items"
time="2023-12-13T09:05:34Z" level=debug msg="Adding cluster with id= and name=in-
cluster to cluster's map"
time="2023-12-13T09:05:34Z" level=debug msg="Adding cluster with id=068d8b26-6rhi-
4w23-jrf6-wjjfyw833n23 and name=in-cluster2 to cluster's map"
time="2023-12-13T09:05:34Z" level=debug msg="Adding cluster with id=836d8b53-
96k4-f68r-8wq0-sh72j22kl90w and name=in-cluster3 to cluster's map"
time="2023-12-13T09:05:34Z" level=debug msg="Cluster with id= will be processed by
shard 0" 1
time="2023-12-13T09:05:34Z" level=debug msg="Cluster with id=068d8b26-6rhi-4w23-
jrf6-wjjfyw833n23 will be processed by shard 1" 2
time="2023-12-13T09:05:34Z" level=debug msg="Cluster with id=836d8b53-96k4-f68r-
8wq0-sh72j22kl90w will be processed by shard 2" 3

CHAPTER 2. SHARDING CLUSTERS ACROSS ARGO CD APPLICATION CONTROLLER REPLICAS

19

NOTE

If the number of clusters "C" is a multiple of the number of shard replicas "R",
then each shard must have the same number of assigned clusters "N", which
is equal to "C" divided by "R". The previous example shows 3 clusters and 3
replicas; therefore, each shard has 1 cluster assigned.

2.1.2. Enabling the round-robin sharding algorithm by using the CLI

You can enable the round-robin sharding algorithm by using the command-line interface.

Prerequisites

You have installed the Red Hat OpenShift GitOps Operator on your OpenShift Container
Platform cluster.

You have access to the cluster with cluster-admin privileges.

Procedure

1. Enable sharding and set the number of replicas to the wanted value by running the following
command:

Example output

2. Configure the sharding algorithm to round-robin by running the following command:

Example output

3. Verify that the number of Argo CD Application Controller pods corresponds with the number of
set replicas by running the following command:

Example output

$ oc patch argocd <argocd_instance> -n <namespace> --patch='{"spec":{"controller":
{"sharding":{"enabled":true,"replicas":<value>}}}}' --type=merge

argocd.argoproj.io/<argocd_instance> patched

$ oc patch argocd <argocd_instance> -n <namespace> --patch='{"spec":{"controller":{"env":
[{"name":"ARGOCD_CONTROLLER_SHARDING_ALGORITHM","value":"round-robin"}]}}}' --
type=merge

argocd.argoproj.io/<argocd_instance> patched

$ oc get pods -l app.kubernetes.io/name=<argocd_instance>-application-controller -n
<namespace>

NAME READY STATUS RESTARTS AGE
<argocd_instance>-application-controller-0 1/1 Running 0 11s
<argocd_instance>-application-controller-1 1/1 Running 0 32s
<argocd_instance>-application-controller-2 1/1 Running 0 22s

Red Hat OpenShift GitOps 1.12 Declarative cluster configuration

20

1

1 2 3

4. Verify that the sharding is enabled with round-robin as the sharding algorithm by running the
following command:

Example output snippet

Look for the "Using filter function: round-robin" message.

5. Verify that the cluster distribution across shards is even by performing the following steps:

a. Set the log level to debug by running the following command:

Example output

b. View the logs and search for processed by shard to observe to which shard each cluster is
attached by running the following command:

Example output snippet

In this example, 3 clusters are attached consecutively to shard 0, shard 1, and shard
2.

NOTE

$ oc logs <argocd_application_controller_pod> -n <namespace>

time="2023-12-13T09:05:34Z" level=info msg="ArgoCD Application Controller is starting"
built="2023-12-01T19:21:49Z" commit=a3vd5c3df52943a6fff6c0rg181fth3248976299
namespace=<namespace> version=v2.9.2+c5ea5c4
time="2023-12-13T09:05:34Z" level=info msg="Processing clusters from shard 1"
time="2023-12-13T09:05:34Z" level=info msg="Using filter function: round-robin" 1
time="2023-12-13T09:05:34Z" level=info msg="Using filter function: round-robin"
time="2023-12-13T09:05:34Z" level=info msg="appResyncPeriod=3m0s,
appHardResyncPeriod=0s"

$ oc patch argocd <argocd_instance> -n <namespace> --patch='{"spec":{"controller":
{"logLevel":"debug"}}}' --type=merge

argocd.argoproj.io/<argocd_instance> patched

$ oc logs <argocd_application_controller_pod> -n <namespace> | grep "processed by
shard"

time="2023-12-13T09:05:34Z" level=debug msg="Cluster with id= will be processed by
shard 0" 1
time="2023-12-13T09:05:34Z" level=debug msg="Cluster with id=068d8b26-6rhi-4w23-
jrf6-wjjfyw833n23 will be processed by shard 1" 2
time="2023-12-13T09:05:34Z" level=debug msg="Cluster with id=836d8b53-96k4-f68r-
8wq0-sh72j22kl90w will be processed by shard 2" 3

CHAPTER 2. SHARDING CLUSTERS ACROSS ARGO CD APPLICATION CONTROLLER REPLICAS

21

NOTE

If the number of clusters "C" is a multiple of the number of shard replicas "R",
then each shard must have the same number of assigned clusters "N", which
is equal to "C" divided by "R". The previous example shows 3 clusters and 3
replicas; therefore, each shard has 1 cluster assigned.

2.2. ENABLING DYNAMIC SCALING OF SHARDS OF THE ARGO CD
APPLICATION CONTROLLER

IMPORTANT

Dynamic scaling of shards is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

By default, the Argo CD Application Controller assigns clusters to shards indefinitely. If you are using the
round-robin sharding algorithm, this static assignment can result in uneven distribution of shards,
particularly when replicas are added or removed. You can enable dynamic scaling of shards to
automatically adjust the number of shards based on the number of clusters managed by the Argo CD
Application Controller at a given time. This ensures that shards are well-balanced and optimizes the use
of compute resources.

NOTE

After you enable dynamic scaling, you cannot manually modify the shard count. The
system automatically adjusts the number of shards based on the number of clusters
managed by the Argo CD Application Controller at a given time.

2.2.1. Enabling dynamic scaling of shards in the web console

You can enable dynamic scaling of shards by using the OpenShift Container Platform web console.

Prerequisites

You have access to the cluster with cluster-admin privileges.

You have access to the OpenShift Container Platform web console.

You have installed the Red Hat OpenShift GitOps Operator on your OpenShift Container
Platform cluster.

Procedure

1. In the Administator perspective of the OpenShift Container Platform web console, go to
Operators → Installed Operators.

2. From the the list of Installed Operators, select the Red Hat OpenShift GitOps Operator, and

Red Hat OpenShift GitOps 1.12 Declarative cluster configuration

22

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

2. From the the list of Installed Operators, select the Red Hat OpenShift GitOps Operator, and
then click the ArgoCD tab.

3. Select the Argo CD instance name for which you want to enable dynamic scaling of shards, for
example, openshift-gitops.

4. Click the YAML tab, and then edit and configure the spec.controller.sharding properties as
follows:

Example Argo CD YAML file with dynamic scaling enabled

Set dynamicScalingEnabled to true to enable dynamic scaling.

Set minShards to the minimum number of shards that you want to have. The value must
be set to 1 or greater.

Set maxShards to the maximum number of shards that you want to have. The value must
be greater than the value of minShards.

Set clustersPerShard to the number of clusters that you want to have per shard. The
value must be set to 1 or greater.

5. Click Save.
A success notification alert, openshift-gitops has been updated to version <version>,
appears.

NOTE

If you edit the default openshift-gitops instance, the Managed resource dialog
box is displayed. Click Save again to confirm the changes.

Verification

Verify that sharding is enabled by checking the number of pods in the namespace:

1. Go to Workloads → StatefulSets.

2. Select the namespace where the Argo CD instance is deployed from the Project drop-down
list, for example, openshift-gitops.

3. Click the name of the StatefulSet object that has the name of the Argo CD instance, for

apiVersion: argoproj.io/v1beta1
kind: ArgoCD
metadata:
 name: openshift-gitops
 namespace: openshift-gitops
spec:
 controller:
 sharding:
 dynamicScalingEnabled: true 1
 minShards: 1 2
 maxShards: 3 3
 clustersPerShard: 1 4

CHAPTER 2. SHARDING CLUSTERS ACROSS ARGO CD APPLICATION CONTROLLER REPLICAS

23

1

3. Click the name of the StatefulSet object that has the name of the Argo CD instance, for
example openshift-gitops-apllication-controller.

4. Click the Pods tab, and then verify that the number of pods is equal to or greater than the value
of minShards that you have set in the Argo CD YAML file.

2.2.2. Enabling dynamic scaling of shards by using the CLI

You can enable dynamic scaling of shards by using the OpenShift CLI (oc).

Prerequisites

You have installed the Red Hat OpenShift GitOps Operator on your OpenShift Container
Platform cluster.

You have access to the cluster with cluster-admin privileges.

Procedure

1. Log in to the cluster by using the oc tool as a user with cluster-admin privileges.

2. Enable dynamic scaling by running the following command:

Example command

The example command enables dynamic scaling for the openshift-gitops Argo CD
instance in the openshift-gitops namespace, and sets the minimum number of shards to 1,
the maximum number of shards to 3, and the number of clusters per shard to 1. The values
of minShard and clustersPerShard must be set to 1 or greater. The value of maxShard
must be equal to or greater than the value of minShard.

Example output

Verification

1. Check the spec.controller.sharding properties of the Argo CD instance:

Example command

$ oc patch argocd <argocd_instance> -n <namespace> --type=merge --patch='{"spec":
{"controller":{"sharding":{"dynamicScalingEnabled":true,"minShards":<value>,"maxShards":
<value>,"clustersPerShard":<value>}}}}'

$ oc patch argocd openshift-gitops -n openshift-gitops --type=merge --patch='{"spec":
{"controller":{"sharding":
{"dynamicScalingEnabled":true,"minShards":1,"maxShards":3,"clustersPerShard":1}}}}' 1

argocd.argoproj.io/openshift-gitops patched

$ oc get argocd <argocd_instance> -n <namespace> -o jsonpath='{.spec.controller.sharding}'

$ oc get argocd openshift-gitops -n openshift-gitops -o jsonpath='{.spec.controller.sharding}'

Red Hat OpenShift GitOps 1.12 Declarative cluster configuration

24

1

Example output when dynamic scaling of shards is enabled

2. Optional: Verify that dynamic scaling is enabled by checking the configured
spec.controller.sharding properties in the configuration YAML file of the Argo CD instance in
the OpenShift Container Platform web console.

3. Check the number of Argo CD Application Controller pods:

Example command

Example output

The number of Argo CD Application Controller pods must be equal to or greater than the
value of minShard.

2.2.3. Additional resources

Argo CD custom resource properties

Automatically scaling pods with the horizontal pod autoscaler

{"dynamicScalingEnabled":true,"minShards":1,"maxShards":3,"clustersPerShard":1}

$ oc get pods -n <namespace> -l app.kubernetes.io/name=<argocd_instance>-application-
controller

$ oc get pods -n openshift-gitops -l app.kubernetes.io/name=openshift-gitops-application-
controller

NAME READY STATUS RESTARTS AGE
openshift-gitops-application-controller-0 1/1 Running 0 2m 1

CHAPTER 2. SHARDING CLUSTERS ACROSS ARGO CD APPLICATION CONTROLLER REPLICAS

25

https://docs.openshift.com/gitops/1.11/argocd_instance/argo-cd-cr-component-properties.html#argo-cd-properties_argo-cd-cr-component-properties
https://docs.openshift.com/container-platform/4.14/nodes/pods/nodes-pods-autoscaling.html

	Table of Contents
	CHAPTER 1. CONFIGURING AN OPENSHIFT CLUSTER BY DEPLOYING AN APPLICATION WITH CLUSTER CONFIGURATIONS
	1.1. PREREQUISITES
	1.2. USING AN ARGO CD INSTANCE TO MANAGE CLUSTER-SCOPED RESOURCES
	1.3. DEFAULT PERMISSIONS OF AN ARGO CD INSTANCE
	1.4. RUNNING THE ARGO CD INSTANCE AT THE CLUSTER-LEVEL
	1.5. CREATING AN APPLICATION BY USING THE ARGO CD DASHBOARD
	1.6. CREATING AN APPLICATION BY USING THE OC TOOL
	1.7. CREATING AN APPLICATION IN THE DEFAULT MODE BY USING THE GITOPS CLI
	1.8. CREATING AN APPLICATION IN CORE MODE BY USING THE GITOPS CLI
	1.9. SYNCHRONIZING YOUR APPLICATION WITH YOUR GIT REPOSITORY
	1.10. SYNCHRONIZING AN APPLICATION IN THE DEFAULT MODE BY USING THE GITOPS CLI
	1.11. SYNCHRONIZING AN APPLICATION IN CORE MODE BY USING THE GITOPS CLI
	1.12. IN-BUILT PERMISSIONS FOR CLUSTER CONFIGURATION
	1.13. ADDING PERMISSIONS FOR CLUSTER CONFIGURATION
	1.14. INSTALLING OLM OPERATORS USING RED HAT OPENSHIFT GITOPS
	1.14.1. Installing cluster-scoped Operators
	1.14.2. Installing namepace-scoped Operators

	1.15. ADDITIONAL RESOURCES

	CHAPTER 2. SHARDING CLUSTERS ACROSS ARGO CD APPLICATION CONTROLLER REPLICAS
	2.1. ENABLING THE ROUND-ROBIN SHARDING ALGORITHM
	2.1.1. Enabling the round-robin sharding algorithm in the web console
	2.1.2. Enabling the round-robin sharding algorithm by using the CLI

	2.2. ENABLING DYNAMIC SCALING OF SHARDS OF THE ARGO CD APPLICATION CONTROLLER
	2.2.1. Enabling dynamic scaling of shards in the web console
	2.2.2. Enabling dynamic scaling of shards by using the CLI
	2.2.3. Additional resources

