& RedHat

Red Hat OpenShift GitOps 1.14

Security

Using security features to configure secure communication and protect the possibly
sensitive data in transit

Last Updated: 2024-09-19

Red Hat OpenShift GitOps 1.14 Security

Using security features to configure secure communication and protect the possibly sensitive data
in transit

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for using the Transport Layer Security (TLS) encryption with
the OpenShift GitOps. It also discusses how to configure secure communication with Redis to
protect the possibly sensitive data in transit.

Table of Contents

Table of Contents

CHAPTER 1. CONFIGURING SECURE COMMUNICATIONWITHREDIS ... oot iiiiiinanen 3
1.1. PREREQUISITES 3
1.2. CONFIGURING TLS FOR REDIS WITH AUTOTLS ENABLED 3
1.3. CONFIGURING TLS FOR REDIS WITH AUTOTLS DISABLED 5

CHAPTER 2. MANAGING SECRETS SECURELY USING SECRETS STORE CSIDRIVER WITH GITOPS 10
2.1. OVERVIEW OF MANAGING SECRETS USING SECRETS STORE CSI DRIVER WITH GITOPS 10

2.1.1. Benefits 10
2.1.2. Secrets store providers 10
2.2. PREREQUISITES 1
2.3.STORING AWS SECRETS MANAGER RESOURCES IN GITOPS REPOSITORY 12
2.4. CONFIGURING SSCSI DRIVER TO MOUNT SECRETS FROM AWS SECRETS MANAGER 15
2.5. CONFIGURING GITOPS MANAGED RESOURCES TO USE MOUNTED SECRETS 18

2.6. ADDITIONAL RESOURCES 20

Red Hat OpenShift GitOps 1.14 Security

CHAPTER 1. CONFIGURING SECURE COMMUNICATION WITH REDIS

CHAPTER 1. CONFIGURING SECURE COMMUNICATION WITH
REDIS

Using the Transport Layer Security (TLS) encryption with Red Hat OpenShift GitOps, you can secure
the communication between the Argo CD components and Redis cache and protect the possibly
sensitive data in transit.

You can secure communication with Redis by using one of the following configurations:

® Enable the autotls setting to issue an appropriate certificate for TLS encryption.

® Manually configure the TLS encryption by creating the argocd-operator-redis-tls secret with a
key and certificate pair.

Both configurations are possible with or without the High Availability (HA) enabled.

1.1. PREREQUISITES
® You have access to the cluster with cluster-admin privileges.
® You have access to the OpenShift Container Platform web console.

® Red Hat OpenShift GitOps Operator is installed on your cluster.

1.2. CONFIGURING TLS FOR REDIS WITH AUTOTLS ENABLED

You can configure TLS encryption for Redis by enabling the autotls setting on a new or already existing
Argo CD instance. The configuration automatically provisions the argocd-operator-redis-tls secret and
does not require further steps. Currently, OpenShift Container Platform is the only supported secret
provider.

NOTE

2

By default, the autotls setting is disabled.

Procedure

1. Login to the OpenShift Container Platform web console.

2. Create an Argo CD instance with autotls enabled:

a. Inthe Administrator perspective of the web console, use the left navigation panel to go to
Administration - CustomResourceDefinitions.

b. Search for argocds.argoproj.io and click ArgoCD custom resource definition (CRD).

c. On the CustomResourceDefinition details page, click the Instances tab, and then click
Create ArgoCD.

d. Edit or replace the YAML similar to the following example:

Example Argo CD CR with autotls enabled

I apiVersion: argoproj.io/vibetai

Red Hat OpenShift GitOps 1.14 Security

kind: ArgoCD
metadata:
name: argocd ﬂ
namespace: openshift-gitops 9
spec:
redis:
autotls: openshift 6
ha:
enabled: true ﬂ

The name of the Argo CD instance.
The namespace where you want to run the Argo CD instance.

The flag that enables the autotls setting and creates a TLS certificate for Redis.

0009

The flag value that enables the HA feature. If you do not want to enable HA, do not
include this line or set the flag value as false.

TIP

Alternatively, you can enable the autotls setting on an already existing Argo CD instance by
running the following command:

$ oc patch argocds.argoproj.io <instance-name> --type=merge -p '{"spec"{"redis":
{"autotls":"openshift"}}}'

e. Click Create.

f. Verify that the Argo CD pods are ready and running:

I $ oc get pods -n <namespace> ﬂ

Specify a namespace where the Argo CD instance is running, for example openshift-
gitops.

Example output with HA disabled

NAME READY STATUS RESTARTS AGE
argocd-application-controller-0 1/1 Running 0 26s

argocd-redis-84b77d4f58-vp6zm 1/1 Running 0 37s
argocd-repo-server-5b959b57f4-znxjq 1/1 Running 0 37s
argocd-server-6b8787d686-wv9zh 1/1 Running 0 37s

NOTE
The HA-enabled TLS configuration requires a cluster with at least three

worker nodes. It can take a few minutes for the output to appear if you have
enabled the Argo CD instances with HA configuration.

CHAPTER 1. CONFIGURING SECURE COMMUNICATION WITH REDIS

Example output with HA enabled

NAME READY STATUS RESTARTS AGE
argocd-application-controller-0 1/1 Running 0 10m
argocd-redis-ha-haproxy-669757fdb7-5xg8h 1/1 Running 0 10m
argocd-redis-ha-server-0 2/2 Running 0 9m9s
argocd-redis-ha-server-1 2/2 Running 0 98s
argocd-redis-ha-server-2 2/2 Running 0 53s
argocd-repo-server-576499d46d-8hgbh 1/1 Running 0 10m
argocd-server-9486f88b7-dk2ks 1/1 Running 0 10m

3. Verify that the argocd-operator-redis-tls secret is created:
I $ oc get secrets argocd-operator-redis-tls -n <namespace> ﬂ

Specify a namespace where the Argo CD instance is running, for example openshift-
gitops.

Example output

NAME TYPE DATA AGE
argocd-operator-redis-tls kubernetes.io/tls 2 30s

The secret must be of the kubernetes.io/tls type and a size of 2.

1.3. CONFIGURING TLS FOR REDIS WITH AUTOTLS DISABLED

You can manually configure TLS encryption for Redis by creating the argocd-operator-redis-tls secret
with a key and certificate pair. In addition, you must annotate the secret to indicate that it belongs to the
appropriate Argo CD instance. The steps to create a certificate and secret vary for instances with High
Availability (HA) enabled.

Procedure

1. Login to the OpenShift Container Platform web console.

2. Create an Argo CD instance:

a. Inthe Administrator perspective of the web console, use the left navigation panel to go to
Administration - CustomResourceDefinitions.

b. Search for argocds.argoproj.io and click ArgoCD custom resource definition (CRD).

c. On the CustomResourceDefinition details page, click the Instances tab, and then click
Create ArgoCD.

d. Edit or replace the YAML similar to the following example:

Example ArgoCD CR with autotls disabled

apiVersion: argoproj.io/vibetai
kind: ArgoCD
metadata:

Red Hat OpenShift GitOps 1.14 Security

name: argocd ﬂ
namespace: openshift-gitops 9
spec:
ha:
enabled: true 6

ﬂ The name of the Argo CD instance.
9 The namespace where you want to run the Argo CD instance.
The flag value that enables the HA feature. If you do not want to enable HA, do not
include this line or set the flag value as false.
e. Click Create.

f. Verify that the Argo CD pods are ready and running:
I $ oc get pods -n <namespace> 0

Specify a namespace where the Argo CD instance is running, for example openshift-
gitops.

Example output with HA disabled

NAME READY STATUS RESTARTS AGE
argocd-application-controller-0 1/1 Running 0 26s

argocd-redis-84b77d4f58-vp6zm 1/1 Running 0 37s
argocd-repo-server-5b959b57f4-znxjq 1/1 Running 0 37s
argocd-server-6b8787d686-wv9zh 1/1 Running 0 37s

NOTE

The HA-enabled TLS configuration requires a cluster with at least three
worker nodes. It can take a few minutes for the output to appear if you have
enabled the Argo CD instances with HA configuration.

Example output with HA enabled

NAME READY STATUS RESTARTS AGE
argocd-application-controller-0 1/1 Running 0 10m
argocd-redis-ha-haproxy-669757fdb7-5xg8h 1/1 Running 0 10m
argocd-redis-ha-server-0 2/2 Running 0 9m9s
argocd-redis-ha-server-1 2/2 Running 0 98s
argocd-redis-ha-server-2 2/2 Running 0 53s
argocd-repo-server-576499d46d-8hgbh 1/1 Running 0 10m
argocd-server-9486f88b7-dk2ks 1/1 Running 0 10m

3. Create a self-signed certificate for the Redis server by using one of the following options
depending on your HA configuration:

® Forthe Argo CD instance with HA disabled, run the following command:

CHAPTER 1. CONFIGURING SECURE COMMUNICATION WITH REDIS

$ openssl req -new -x509 -sha256 \

-subj "/C=XX/ST=XX/O=Testing/CN=redis" \

-regexts SAN -extensions SAN \

-config <(printf "\n[SANJ\nsubjectAltName=DNS:argocd-redis.
<namespace>.svc.cluster.local\n[req]\ndistinguished_name=req") \ ﬂ

-keyout /tmp/redis.key \

-out /tmp/redis.crt \

-newkey rsa:4096 \

-nodes \

-sha256 \

-days 10

Specify a namespace where the Argo CD instance is running, for example openshift-
gitops.

Example output

Generating a RSA private key

writing new private key to '/tmp/redis.key’

® Forthe Argo CD instance with HA enabled, run the following command:

$ openssl req -new -x509 -sha256 \

-subj "/C=XX/ST=XX/O=Testing/CN=redis" \

-regexts SAN -extensions SAN \

-config <(printf "\n[SANJ\nsubjectAltName=DNS:argocd-redis-ha-haproxy.
<namespace>.svc.cluster.local\n[req]\ndistinguished_name=req") \

-keyout /tmp/redis-ha.key \

-out /tmp/redis-ha.crt \

-newkey rsa:4096 \

-nodes \

-sha256 \

-days 10

Specify a namespace where the Argo CD instance is running, for example openshift-
gitops.

Example output

Generating a RSA private key

writing new private key to '/tmp/redis-ha.key’

. Verify that the generated certificate and key are available in the /tmp directory by running the
following commands:

Red Hat OpenShift GitOps 1.14 Security

Example output with HA disabled

redis.crt
redis.key

Example output with HA enabled

redis-ha.crt
redis-ha.key

5. Create the argocd-operator-redis-tls secret by using one of the following options depending
on your HA configuration:

® Forthe Argo CD instance with HA disabled, run the following command:

I $ oc create secret tls argocd-operator-redis-tls --key=/tmp/redis.key --cert=/tmp/redis.crt

® Forthe Argo CD instance with HA enabled, run the following command:

$ oc create secret tls argocd-operator-redis-tls --key=/tmp/redis-ha.key --cert=/tmp/redis-
ha.crt
Example output

I secret/argocd-operator-redis-tls created

6. Annotate the secret to indicate that it belongs to the Argo CD CR:

$ oc annotate secret argocd-operator-redis-tls argocds.argoproj.io/name=<instance-name>

ﬂ Specify a name of the Argo CD instance, for example argocd.

Example output
I secret/argocd-operator-redis-tls annotated
7. Verify that the Argo CD pods are ready and running:

I $ oc get pods -n <namespace> ﬂ

Specify a namespace where the Argo CD instance is running, for example openshift-
gitops.

Example output with HA disabled

CHAPTER 1. CONFIGURING SECURE COMMUNICATION WITH REDIS

NAME READY STATUS RESTARTS AGE

argocd-application-controller-0 11

argocd-redis-84b77d4f58-vp6zm 11

argocd-repo-server-5b959b57f4-znxjq 1/1
argocd-server-6b8787d686-wv9zh 11

NOTE

Running 0 26s
Running 0 37s
Running 0 37s
Running 0 37s

It can take a few minutes for the output to appear if you have enabled the Argo

-

Example output with HA enabled

CD instances with HA configuration.

NAME READY STATUS RESTARTS AGE
argocd-application-controller-0 1/1 Running 0 10m
argocd-redis-ha-haproxy-669757fdb7-5xg8h 1/1 Running 0 10m
argocd-redis-ha-server-0 2/2 Running 0 9m9s
argocd-redis-ha-server-1 2/2 Running 0 98s
argocd-redis-ha-server-2 2/2 Running 0 53s

argocd-repo-server-576499d46d-8hgbh
argocd-server-9486f88b7-dk2ks

11

1/1 Running 0 10m

Running 0

10m

Red Hat OpenShift GitOps 1.14 Security

CHAPTER 2. MANAGING SECRETS SECURELY USING
SECRETS STORE CSI DRIVER WITH GITOPS

This guide walks you through the process of integrating the Secrets Store Container Storage Interface
(SSCSI) driver with the GitOps Operator in OpenShift Container Platform 4.14 and later.

2.1. OVERVIEW OF MANAGING SECRETS USING SECRETS STORE CSI
DRIVER WITH GITOPS

Some applications need sensitive information, such as passwords and usernames which must be
concealed as good security practice. If sensitive information is exposed because role-based access
control (RBAC) is not configured properly on your cluster, anyone with API or etcd access can retrieve
or modify a secret.

IMPORTANT

Anyone who is authorized to create a pod in a namespace can use that RBAC to read any
secret in that namespace. With the SSCSI Driver Operator, you can use an external
secrets store to store and provide sensitive information to pods securely.

The process of integrating the OpenShift Container Platform SSCSI driver with the GitOps Operator
consists of the following procedures:

1. Storing AWS Secrets Manager resources in GitOps repository
2. Configuring SSCSI driver to mount secrets from AWS Secrets Manager

3. Configuring GitOps managed resources to use mounted secrets

2.1.1. Benefits

Integrating the SSCSI driver with the GitOps Operator provides the following benefits:
® Enhance the security and efficiency of your GitOps workflows
® Facilitate the secure attachment of secrets into deployment pods as a volume

® Ensure that sensitive information is accessed securely and efficiently

2.1.2. Secrets store providers
The following secrets store providers are available for use with the Secrets Store CSI Driver Operator:
® AWS Secrets Manager
® AWS Systems Manager Parameter Store
® Microsoft Azure Key Vault
As an example, consider that you are using AWS Secrets Manager as your secrets store provider with the

SSCSI Driver Operator. The following example shows the directory structure in GitOps repository that is
ready to use the secrets from AWS Secrets Manager:

10

CHAPTER 2. MANAGING SECRETS SECURELY USING SECRETS STORE CSI DRIVER WITH GITOPS

Example directory structure in GitOps repository

— config
| F— argocd
| | F— argo-app.yaml
| | |— secret-provider-app.yaml ﬂ
| L—sscsid @
| L— aws-provider.yam! €)
— environments

— dev @)

F— apps

| L— app-taxi

L—env

—.

F— new-e
|)

Directory that stores the aws-provider.yaml file.

nv

|

|

i

| | | credentialsrequest-dir-aws)
|

|

|

|

T

Configuration file that installs the AWS Secrets Manager provider and deploys resources for it.
Configuration file that creates an application and deploys resources for AWS Secrets Manager.
Directory that stores the deployment pod and credential requests.

Directory that stores the SecretProviderClass resources to define your secrets store provider.

Q90000

Folder that stores the credentialsrequest.yaml file. This file contains the configuration for the
credentials request to mount a secret to the deployment pod.

2.2. PREREQUISITES
® You have access to the cluster with cluster-admin privileges.
® You have access to the OpenShift Container Platform web console.
® You have extracted and prepared the ccoctl binary.
® You have installed the jg CLI tool.
® Your clusteris installed on AWS and uses AWS Security Token Service (STS).
® You have configured AWS Secrets Manager to store the required secrets.
® SSCSI Driver Operator is installed on your cluster.
® Red Hat OpenShift GitOps Operator is installed on your cluster.
® You have a GitOps repository ready to use the secrets.

® You are logged in to the Argo CD instance by using the Argo CD admin account.

1

https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-secrets-store.html#persistent-storage-csi-secrets-store-driver-install_nodes-pods-secrets-store

Red Hat OpenShift GitOps 1.14 Security

2.3. STORING AWS SECRETS MANAGER RESOURCES IN GITOPS
REPOSITORY

This guide provides instructions with examples to help you use GitOps workflows with the Secrets Store
Container Storage Interface (SSCSI) Driver Operator to mount secrets from AWS Secrets Manager to a
CSl volume in OpenShift Container Platform.

IMPORTANT

Using the SSCSI Driver Operator with AWS Secrets Manager is not supported in a hosted
control plane cluster.

Prerequisites

You have access to the cluster with cluster-admin privileges.

You have access to the OpenShift Container Platform web console.

You have extracted and prepared the ccoctl binary.

You have installed the jg CLI tool.

Your cluster is installed on AWS and uses AWS Security Token Service (STS).
You have configured AWS Secrets Manager to store the required secrets.
SSCSI Driver Operator is installed on your cluster.

Red Hat OpenShift GitOps Operator is installed on your cluster.

You have a GitOps repository ready to use the secrets.

You are logged in to the Argo CD instance by using the Argo CD admin account.

Procedure

1. Install the AWS Secrets Manager provider and add resources:

12

a. Inyour GitOps repository, create a directory and add aws-provider.yaml file in it with the
following configuration to deploy resources for the AWS Secrets Manager provider:

IMPORTANT

The AWS Secrets Manager provider for the SSCSI driver is an upstream
provider.

This configuration is modified from the configuration provided in the
upstream AWS documentation so that it works properly with OpenShift
Container Platform. Changes to this configuration might impact functionality.

Example aws-provider.yaml file

apiVersion: vi
kind: ServiceAccount
metadata:

https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-secrets-store.html#persistent-storage-csi-secrets-store-driver-install_nodes-pods-secrets-store
https://github.com/aws/secrets-store-csi-driver-provider-aws#installing-the-aws-provider

CHAPTER 2. MANAGING SECRETS SECURELY USING SECRETS STORE CSI DRIVER WITH GITOPS

name: csi-secrets-store-provider-aws
namespace: openshift-cluster-csi-drivers
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: csi-secrets-store-provider-aws-cluster-role
rules:
- apiGroups: [""]
resources: ["serviceaccounts/token"]
verbs: ["create"]
- apiGroups: [""]
resources: ["serviceaccounts"]
verbs: ["get"]
- apiGroups: [""]
resources: ["pods"]
verbs: ["get"]
- apiGroups: [""]
resources: ['nodes"]
verbs: ["get"]
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: csi-secrets-store-provider-aws-cluster-rolebinding
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: csi-secrets-store-provider-aws-cluster-role
subjects:
- kind: ServiceAccount
name: csi-secrets-store-provider-aws
namespace: openshift-cluster-csi-drivers
apiVersion: apps/v1
kind: DaemonSet
metadata:
namespace: openshift-cluster-csi-drivers
name: csi-secrets-store-provider-aws

labels:
app: csi-secrets-store-provider-aws
spec:
updateStrategy:
type: RollingUpdate
selector:

matchLabels:
app: csi-secrets-store-provider-aws
template:
metadata:
labels:
app: csi-secrets-store-provider-aws
spec:
serviceAccountName: csi-secrets-store-provider-aws
hostNetwork: false
containers:
- name: provider-aws-installer

13

Red Hat OpenShift GitOps 1.14 Security

image: public.ecr.aws/aws-secrets-manager/secrets-store-csi-driver-provider-
aws:1.0.r2-50-g5b4aca1-2023.06.09.21.19
imagePullPolicy: Always
args:
- --provider-volume=/etc/kubernetes/secrets-store-csi-providers
resources:
requests:
cpu: 50m
memory: 100Mi
limits:
cpu: 50m
memory: 100Mi
securityContext:
privileged: true
volumeMounts:
- mountPath: "/etc/kubernetes/secrets-store-csi-providers”
name: providervol
- name: mountpoint-dir
mountPath: /var/lib/kubelet/pods
mountPropagation: HostToContainer
tolerations:
- operator: Exists
volumes:
- name: providervol
hostPath:
path: "/etc/kubernetes/secrets-store-csi-providers"
- name: mountpoint-dir
hostPath:
path: /var/lib/kubelet/pods
type: DirectoryOrCreate
nodeSelector:
kubernetes.io/os: linux

b. Add a secret-provider-app.yaml file in your GitOps repository to create an application and
deploy resources for AWS Secrets Manager:

Example secret-provider-app.yaml file

apiVersion: argoproj.io/vialphat
kind: Application
metadata:
name: secret-provider-app
namespace: openshift-gitops
spec:
destination:
namespace: openshift-cluster-csi-drivers
server: https://kubernetes.default.svc
project: default
source:
path: path/to/aws-provider/resources
repoURL: https://github.com/<my-domain>/<gitops>.qgit ﬂ
syncPolicy:
automated:
prune: true
selfHeal: true

14

CHAPTER 2. MANAGING SECRETS SECURELY USING SECRETS STORE CSI DRIVER WITH GITOPS

ﬂ Update the value of the repoURL field to point to your GitOps repository.

2. Synchronize resources with the default Argo CD instance to deploy them in the cluster:

a. Add a label to the openshift-cluster-csi-drivers namespace your application is deployed in
so that the Argo CD instance in the openshift-gitops namespace can manage it:

$ oc label namespace openshift-cluster-csi-drivers argocd.argoproj.io/managed-
by=openshift-gitops

b. Apply the resources in your GitOps repository to your cluster, including the aws-
provider.yaml file you just pushed:

Example output

application.argoproj.io/argo-app created
application.argoproj.io/secret-provider-app created

In the Argo CD UI, you can observe that the csi-secrets-store-provider-aws daemonset continues to
synchronize resources. To resolve this issue, you must configure the SSCSI driver to mount secrets from
the AWS Secrets Manager.

2.4. CONFIGURING SSCSI DRIVER TO MOUNT SECRETS FROM AWS
SECRETS MANAGER

To store and manage your secrets securely, use GitOps workflows and configure the Secrets Store
Container Storage Interface (SSCSI) Driver Operator to mount secrets from AWS Secrets Manager to a
CSl volume in OpenShift Container Platform. For example, consider that you want to mount a secret to a
deployment pod under the dev namespace which is in the /environments/dev/ directory.

Prerequisites

® You have the AWS Secrets Manager resources stored in your GitOps repository.

Procedure

1. Grant privileged access to the csi-secrets-store-provider-aws service account by running the
following command:

$ oc adm policy add-scc-to-user privileged -z csi-secrets-store-provider-aws -n openshift-
cluster-csi-drivers

Example output

clusterrole.rbac.authorization.k8s.io/system:openshift:scc:privileged added: "csi-secrets-
store-provider-aws"

2. Grant permission to allow the service account to read the AWS secret object:

a. Create a credentialsrequest-dir-aws folder under a namespace-scoped directory in your
GitOps repository because the credentials request is namespace-scoped. For example,

15

Red Hat OpenShift GitOps 1.14 Security

create a credentialsrequest-dir-aws folder under the dev namespace which is in the
/environments/dev/ directory by running the following command:

I $ mkdir credentialsrequest-dir-aws

b. Create a YAML file with the following configuration for the credentials request in the
/environments/dev/credentialsrequest-dir-aws/ path to mount a secret to the
deployment pod in the dev namespace:

Example credentialsrequest.yaml file

apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
name: aws-provider-test
namespace: openshift-cloud-credential-operator
spec:
providerSpec:
apiVersion: cloudcredential.openshift.io/v1
kind: AWSProviderSpec
statementEntries:
- action:
- "secretsmanager:GetSecretValue"
- "secretsmanager:DescribeSecret"

effect: Allow
resource: "<aws_secret_arn>"
secretRef:

name: aws-creds
namespace: dev 9

serviceAccountNames:
- default

o

The namespace for the secret reference. Update the value of this namespace field
according to your project deployment setup.

ﬂ The ARN of your secret in the region where your cluster is on. The <aws_regions of
<aws_secret_arn> has to match the cluster region. If it does not match, create a
replication of your secret in the region where your cluster is on.

TIP

To find your cluster region, run the command:
I $ oc get infrastructure cluster -o jsonpath="{.status.platformStatus.aws.region}'
Example output

I us-west-2

c. Retrieve the OIDC provider by running the following command:

I $ oc get --raw=/.well-known/openid-configuration | jq -r ".issuer'

16

CHAPTER 2. MANAGING SECRETS SECURELY USING SECRETS STORE CSI DRIVER WITH GITOPS

Example output
I https://<oidc_provider_name>

Copy the OIDC provider name <oidc_provider_names from the output to use in the next
step.

. Use the ccoctl tool to process the credentials request by running the following command:

$ ccoctl aws create-iam-roles \
--name my-role --region=<aws_region>\
--credentials-requests-dir=credentialsrequest-dir-aws \
--identity-provider-arn arn:aws:iam::<aws_account>:oidc-
provider/<oidc_provider_name> --output-dir=credrequests-ccoctl-output

Example output

2023/05/15 18:10:34 Role arn:aws:iam::<aws_account_id>:role/my-role-my-namespace-
aws-creds created

2023/05/15 18:10:34 Saved credentials configuration to: credrequests-ccoctl-
output/manifests/my-namespace-aws-creds-credentials.yaml

2023/05/15 18:10:35 Updated Role policy for Role my-role-my-namespace-aws-creds

Copy the <aws_role_arn> from the output to use in the next step. For example,
arn:aws:iam::<aws_account_id>:role/my-role-my-namespace-aws-creds.

. Check the role policy on AWS to confirm the <aws_regions of "Resource" in the role
policy matches the cluster region:

Example role policy

{
"Version": "2012-10-17",

"Statement": |
{
"Effect": "Allow",
"Action": [
"secretsmanager:GetSecretValue",
"secretsmanager:DescribeSecret"
1,
"Resource": "arn:aws:secretsmanager:<aws_region>:<aws_account_id>:secret:my-
secret-xxxxxx"
}
]
}

. Bind the service account with the role ARN by running the following command:

$ oc annotate -n <namespace> sa/<app_service_account> eks.amazonaws.com/role-
arn="<aws_role_arn>"

Example command

17

Red Hat OpenShift GitOps 1.14 Security

I $ oc annotate -n dev sa/default eks.amazonaws.com/role-arn="<aws_role_arn>"
Example output
I serviceaccount/default annotated

3. Create a namespace-scoped SecretProviderClass resource to define your secrets store
provider. For example, you create a SecretProviderClass resource in
/environments/dev/apps/app-taxi/services/taxi/base/config directory of your GitOps
repository.

a. Create a secret-provider-class-aws.yaml file in the same directory where the target
deployment is located in your GitOps repository:

Example secret-provider-class-aws.yaml

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:

name: my-aws-providerﬂ

namespace: dev
spec:

provider: aws 6

parameters:

objects: |
- objectName: "testSecret"
objectType: "secretsmanager”

Name of the secret provider class.

Namespace for the secret provider class. The namespace must match the namespace
of the resource which will use the secret.

Name of the secret store provider.
Specifies the provider-specific configuration parameters.

The secret name you created in AWS.

00 09O

b. Verify that after pushing this YAML file to your GitOps repository, the namespace-scoped
SecretProviderClass resource is populated in the target application page in the Argo CD
Ul.

NOTE

If the Sync Policy of your application is not set to Auto, you can manually
sync the SecretProviderClass resource by clicking Sync in the Argo CD UL

2.5. CONFIGURING GITOPS MANAGED RESOURCES TO USE
MOUNTED SECRETS

18

CHAPTER 2. MANAGING SECRETS SECURELY USING SECRETS STORE CSI DRIVER WITH GITOPS

You must configure the GitOps managed resources by adding volume mounts configuration to a
deployment and configuring the container pod to use the mounted secret.

Prerequisites

® You have the AWS Secrets Manager resources stored in your GitOps repository.

® You have the Secrets Store Container Storage Interface (SSCSI) driver configured to mount
secrets from AWS Secrets Manager.

Procedure

1. Configure the GitOps managed resources. For example, consider that you want to add volume
mounts configuration to the deployment of app-taxi application and the 100-deployment.yaml
file is in the /environments/dev/apps/app-taxi/services/taxi/base/config/ directory.

a. Add the volume mounting to the deployment YAML file and configure the container pod to
use the secret provider class resources and mounted secret:

Example YAML file

apiVersion: apps/v1
kind: Deployment
metadata:
name: taxi
namespace: dev ﬂ
spec:
replicas: 1
template:
metadata:
#...
Spec:
containers:

- image: nginxinc/nginx-unprivileged:latest
imagePullPolicy: Always
name: taxi
ports:

- containerPort: 8080

volumeMounts:

- name: secrets-store-inline
mountPath: "/mnt/secrets-store"
readOnly: true

resources: {}
serviceAccountName: default
volumes:
- name: secrets-store-inline

Csi:
driver: secrets-store.csi.k8s.io
readOnly: true
volumeAttributes:

secretProviderClass: "my-aws-provider" 6

status: {}
#...

19

Red Hat OpenShift GitOps 1.14 Security

o Namespace for the deployment. This must be the same namespace as the secret
provider class.

9 The path to mount secrets in the volume mount.

9 Name of the secret provider class.

b. Push the updated resource YAML file to your GitOps repository.

2. Inthe Argo CD U, click REFRESH on the target application page to apply the updated
deployment manifest.

3. Verify that all the resources are successfully synchronized on the target application page.

4. Verify that you can you can access the secrets from AWS Secrets manager in the pod volume
mount:

a. List the secrets in the pod mount:

I $ oc exec <deployment_name>-<hash> -n <namespace> -- Is /mnt/secrets-store/
Example command

I $ oc exec taxi-5959644f9-t847m -n dev -- Is /mnt/secrets-store/

Example output

I <secret_name>

b. View a secret in the pod mount:

$ oc exec <deployment_name>-<hash> -n <namespace> -- cat /mnt/secrets-
store/<secret_name>

Example command

I $ oc exec taxi-59596449-t847m -n dev -- cat /mnt/secrets-store/testSecret

Example output

I <secret_value>

2.6. ADDITIONAL RESOURCES
® Obtaining the ccoctl tool
® About the Cloud Credential Operator
® Determining the Cloud Credential Operator mode

® Configure your AWS cluster to use AWS STS

20

https://github.com/redhat-developer/gitops-operator/blob/bfdf81944ea60b1d62d7de7c223c3bea3e7363a6/docs/Integrate GitOps with Secrets Management.md#obtain-the-ccoctl-tool
https://docs.openshift.com/container-platform/latest/authentication/managing_cloud_provider_credentials/about-cloud-credential-operator.html
https://docs.openshift.com/container-platform/latest/authentication/managing_cloud_provider_credentials/about-cloud-credential-operator.html#cco-determine-mode_about-cloud-credential-operator
https://github.com/redhat-developer/gitops-operator/blob/bfdf81944ea60b1d62d7de7c223c3bea3e7363a6/docs/Integrate GitOps with Secrets Management.md#configure-your-aws-cluster-to-use-aws-security-token-service-sts

CHAPTER 2. MANAGING SECRETS SECURELY USING SECRETS STORE CSI DRIVER WITH GITOPS

e Configuring AWS Secrets Manager to store the required secrets
® About the Secrets Store CSI Driver Operator

® Mounting secrets from an external secrets store to a CSl volume

21

https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html
https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-secrets-store.html#persistent-storage-csi-secrets-store-driver-overview_nodes-pods-secrets-store
https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-secrets-store.html#mounting-secrets-external-secrets-store

	Table of Contents
	CHAPTER 1. CONFIGURING SECURE COMMUNICATION WITH REDIS
	1.1. PREREQUISITES
	1.2. CONFIGURING TLS FOR REDIS WITH AUTOTLS ENABLED
	1.3. CONFIGURING TLS FOR REDIS WITH AUTOTLS DISABLED

	CHAPTER 2. MANAGING SECRETS SECURELY USING SECRETS STORE CSI DRIVER WITH GITOPS
	2.1. OVERVIEW OF MANAGING SECRETS USING SECRETS STORE CSI DRIVER WITH GITOPS
	2.1.1. Benefits
	2.1.2. Secrets store providers

	2.2. PREREQUISITES
	2.3. STORING AWS SECRETS MANAGER RESOURCES IN GITOPS REPOSITORY
	2.4. CONFIGURING SSCSI DRIVER TO MOUNT SECRETS FROM AWS SECRETS MANAGER
	2.5. CONFIGURING GITOPS MANAGED RESOURCES TO USE MOUNTED SECRETS
	2.6. ADDITIONAL RESOURCES

