
Red Hat OpenShift Pipelines 1.14

Pipelines as Code

Configuring and using Pipelines as Code

Last Updated: 2024-07-11

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

Configuring and using Pipelines as Code

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about configuring and using Pipelines as Code, a subsystem of
OpenShift Pipelines that enables defining pipeline templates as part of Git source code
repositories.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT PIPELINES AS CODE
1.1. KEY FEATURES

CHAPTER 2. INSTALLING AND CONFIGURING PIPELINES AS CODE
2.1. INSTALLING PIPELINES AS CODE ON AN OPENSHIFT CONTAINER PLATFORM
2.2. INSTALLING PIPELINES AS CODE CLI
2.3. CUSTOMIZING PIPELINES AS CODE CONFIGURATION
2.4. CONFIGURING ADDITIONAL PIPELINES AS CODE CONTROLLERS TO SUPPORT ADDITIONAL GITHUB
APPS
2.5. ADDITIONAL RESOURCES

CHAPTER 3. USING PIPELINES AS CODE WITH A GIT REPOSITORY HOSTING SERVICE PROVIDER
3.1. USING PIPELINES AS CODE WITH A GITHUB APP

3.1.1. Configuring a GitHub App using the command line interface
3.1.2. Creating a GitHub App in administrator perspective
3.1.3. Configuring a GitHub App manually and creating a secret for Pipelines as Code
3.1.4. Scoping the GitHub token to additional repositories

3.2. USING PIPELINES AS CODE WITH GITHUB WEBHOOK
3.3. USING PIPELINES AS CODE WITH GITLAB
3.4. USING PIPELINES AS CODE WITH BITBUCKET CLOUD
3.5. USING PIPELINES AS CODE WITH BITBUCKET SERVER
3.6. INTERFACING PIPELINES AS CODE WITH CUSTOM CERTIFICATES
3.7. USING PRIVATE REPOSITORIES WITH PIPELINES AS CODE

CHAPTER 4. USING THE REPOSITORY CUSTOM RESOURCE
4.1. CREATING THE REPOSITORY CUSTOM RESOURCE
4.2. SETTING CONCURRENCY LIMITS
4.3. CHANGING THE SOURCE BRANCH FOR THE PIPELINE DEFINITION
4.4. CUSTOM PARAMETER EXPANSION

CHAPTER 5. USING THE PIPELINES AS CODE RESOLVER
5.1. ABOUT THE PIPELINES AS CODE RESOLVER
5.2. USING REMOTE TASK ANNOTATIONS WITH PIPELINES AS CODE
5.3. USING REMOTE PIPELINE ANNOTATIONS WITH PIPELINES AS CODE

5.3.1. Overriding a task in a remote pipeline

CHAPTER 6. MANAGING PIPELINE RUNS
6.1. CREATING A PIPELINE RUN USING PIPELINES AS CODE
6.2. RUNNING A PIPELINE RUN USING PIPELINES AS CODE
6.3. RESTARTING OR CANCELING A PIPELINE RUN USING PIPELINES AS CODE
6.4. MONITORING PIPELINE RUN STATUS USING PIPELINES AS CODE
6.5. CLEANING UP PIPELINE RUN USING PIPELINES AS CODE
6.6. USING INCOMING WEBHOOK WITH PIPELINES AS CODE
6.7. ADDITIONAL RESOURCES

CHAPTER 7. PIPELINES AS CODE COMMAND REFERENCE
7.1. PIPELINES AS CODE COMMAND REFERENCE

7.1.1. Basic syntax
7.1.2. Global options
7.1.3. Utility commands

7.1.3.1. bootstrap
7.1.3.2. repository
7.1.3.3. generate

4
4

5
5
6
6

8
9

10
10
10
11

12
14
16

20
23
27
29
29

31
31
31
32
32

35
35
35
37
37

38
38
42
43
44
46
46
48

49
49
49
49
49
49
50
50

Table of Contents

1

7.1.3.4. resolve
7.2. CONFIGURING PIPELINES AS CODE LOGGING
7.3. SPLITTING PIPELINES AS CODE LOGS BY NAMESPACE
7.4. ADDITIONAL RESOURCES

51
51

54
54

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

2

Table of Contents

3

CHAPTER 1. ABOUT PIPELINES AS CODE
With Pipelines as Code, cluster administrators and users with the required privileges can define pipeline
templates as part of source code Git repositories. When triggered by a source code push or a pull
request for the configured Git repository, Pipelines as Code runs the pipeline and reports the status.

1.1. KEY FEATURES

Pipelines as Code supports the following features:

Pull request status and control on the platform hosting the Git repository.

GitHub Checks API to set the status of a pipeline run, including rechecks.

GitHub pull request and commit events.

Pull request actions in comments, such as /retest.

Git events filtering and a separate pipeline for each event.

Automatic task resolution in OpenShift Pipelines, including local tasks, Tekton Hub, and remote
URLs.

Retrieval of configurations using GitHub blobs and objects API.

Access Control List (ACL) over a GitHub organization or using a Prow style OWNER file.

The tkn pac CLI plugin for managing bootstrapping and Pipelines as Code repositories.

Support for GitHub App, GitHub Webhook, Bitbucket Server, and Bitbucket Cloud.

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

4

CHAPTER 2. INSTALLING AND CONFIGURING PIPELINES AS
CODE

You can install Pipelines as Code as a part of Red Hat OpenShift Pipelines installation.

2.1. INSTALLING PIPELINES AS CODE ON AN OPENSHIFT CONTAINER
PLATFORM

Pipelines as Code is installed in the openshift-pipelines namespace when you install the Red Hat
OpenShift Pipelines Operator. For more details, see Installing OpenShift Pipelines in the Additional
resources section.

To disable the default installation of Pipelines as Code with the Operator, set the value of the enable
parameter to false in the TektonConfig custom resource.

Optionally, you can run the following command:

To enable the default installation of Pipelines as Code with the Red Hat OpenShift Pipelines Operator,
set the value of the enable parameter to true in the TektonConfig custom resource:

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 platforms:
 openshift:
 pipelinesAsCode:
 enable: false
 settings:
 application-name: Pipelines as Code CI
 auto-configure-new-github-repo: "false"
 bitbucket-cloud-check-source-ip: "true"
 hub-catalog-name: tekton
 hub-url: https://api.hub.tekton.dev/v1
 remote-tasks: "true"
 secret-auto-create: "true"
...

$ oc patch tektonconfig config --type="merge" -p '{"spec": {"platforms": {"openshift":
{"pipelinesAsCode": {"enable": false}}}}}'

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 platforms:
 openshift:
 pipelinesAsCode:
 enable: true
 settings:
 application-name: Pipelines as Code CI

CHAPTER 2. INSTALLING AND CONFIGURING PIPELINES AS CODE

5

Optionally, you can run the following command:

2.2. INSTALLING PIPELINES AS CODE CLI

Cluster administrators can use the tkn pac and opc CLI tools on local machines or as containers for
testing. The tkn pac and opc CLI tools are installed automatically when you install the tkn CLI for Red
Hat OpenShift Pipelines.

You can install the tkn pac and opc version 1.14.0 binaries for the supported platforms:

Linux (x86_64, amd64)

Linux on IBM zSystems and IBM® LinuxONE (s390x)

Linux on IBM Power (ppc64le)

Linux on ARM (aarch64, arm64)

macOS

Windows

2.3. CUSTOMIZING PIPELINES AS CODE CONFIGURATION

To customize Pipelines as Code, cluster administrators can configure the following parameters in the
TektonConfig custom resource, in the platforms.openshift.pipelinesAsCode.settings spec:

Table 2.1. Customizing Pipelines as Code configuration

Parameter Description Default

application-name The name of the application. For
example, the name displayed in
the GitHub Checks labels.

"Pipelines as Code CI"

secret-auto-create Indicates whether or not a secret
should be automatically created
using the token generated in the
GitHub application. This secret
can then be used with private
repositories.

enabled

 auto-configure-new-github-repo: "false"
 bitbucket-cloud-check-source-ip: "true"
 hub-catalog-name: tekton
 hub-url: https://api.hub.tekton.dev/v1
 remote-tasks: "true"
 secret-auto-create: "true"
...

$ oc patch tektonconfig config --type="merge" -p '{"spec": {"platforms": {"openshift":
{"pipelinesAsCode": {"enable": true}}}}}'

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

6

https://mirror.openshift.com/pub/openshift-v4/clients/pipelines/1.14.0/tkn-linux-amd64.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/pipelines/1.14.0/tkn-linux-s390x.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/pipelines/1.14.0/tkn-linux-ppc64le.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/pipelines/1.14.0/tkn-linux-arm64.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/pipelines/1.14.0/tkn-macos-amd64.tar.gz
https://mirror.openshift.com/pub/openshift-v4/clients/pipelines/1.14.0/tkn-windows-amd64.zip

remote-tasks When enabled, allows remote
tasks from pipeline run
annotations.

enabled

hub-url The base URL for the Tekton Hub
API.

https://hub.tekton.dev/

hub-catalog-name The Tekton Hub catalog name. tekton

tekton-dashboard-url The URL of the Tekton Hub
dashboard. Pipelines as Code
uses this URL to generate a
PipelineRun URL on the Tekton
Hub dashboard.

NA

bitbucket-cloud-check-
source-ip

Indicates whether to secure the
service requests by querying IP
ranges for a public Bitbucket.
Changing the parameter’s default
value might result into a security
issue.

enabled

bitbucket-cloud-additional-
source-ip

Indicates whether to provide an
additional set of IP ranges or
networks, which are separated by
commas.

NA

max-keep-run-upper-limit A maximum limit for the max-
keep-run value for a pipeline run.

NA

default-max-keep-runs A default limit for the max-keep-
run value for a pipeline run. If
defined, the value is applied to all
pipeline runs that do not have a
max-keep-run annotation.

NA

auto-configure-new-github-
repo

Configures new GitHub
repositories automatically.
Pipelines as Code sets up a
namespace and creates a custom
resource for your repository. This
parameter is only supported with
GitHub applications.

disabled

Parameter Description Default

CHAPTER 2. INSTALLING AND CONFIGURING PIPELINES AS CODE

7

https://api.hub.tekton.dev/v1
https://hub.tekton.dev/

auto-configure-repo-
namespace-template

Configures a template to
automatically generate the
namespace for your new
repository, if auto-configure-
new-github-repo is enabled.

{repo_name}-pipelines

error-log-snippet Enables or disables the view of a
log snippet for the failed tasks,
with an error in a pipeline. You can
disable this parameter in the case
of data leakage from your
pipeline.

true

error-detection-from-
container-logs

Enables or disables the inspection
of container logs to detect error
message and expose them as
annotations on the pull request.
This setting applies only if you are
using the GitHub app.

true

error-detection-max-number-
of-lines

The maximum number of lines
inspected in the container logs to
search for error messages. Set to
-1 to inspect an unlimited number
of lines.

50

secret-github-app-token-
scoped

If set to true, the GitHub access
token that Pipelines as Code
generates using the GitHub app is
scoped only to the repository
from which Pipelines as Code
fetches the pipeline definition. If
set to false, you can use both the
TektonConfig custom resource
and the Repository custom
resource to scope the token to
additional repositories.

true

secret-github-app-scope-
extra-repos

Additional repositories for scoping
the generated GitHub access
token.

Parameter Description Default

2.4. CONFIGURING ADDITIONAL PIPELINES AS CODE CONTROLLERS
TO SUPPORT ADDITIONAL GITHUB APPS

By default, you can configure Pipelines as Code to interact with one GitHub app. In some cases you
might need to use more than one GitHub app, for example, if you need to use different GitHub accounts
or different GitHub instances such as GitHub Enterprise or GitHub SaaS. If you want to use more than

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

8

1

2

3

4

one GitHub app, you must configure an additional Pipelines as Code controller for every additional
GitHub app.

Procedure

1. In the TektonConfig custom resource, add the additionalPACControllers section to the
platforms.openshift.pipelinesAsCode spec, as in the following example:

Example additionalPACControllers section

The name of the controller. This name must be unique and not exceed 25 characters in
length.

This parameter is optional. Set this parameter to true to enable the additional controller or
to false to disable the additional controller. The default vaule is true.

Set this parameter to the name of a secret that you must create for the GitHub app.

This section is optional. In this section, you can set any Pipelines as Code settings for this
controller if the settings must be different from the main Pipelines as Code controller.

2. Optional: If you want to use more than two GitHub apps, create additional sections under the
pipelinesAsCode.additionalPACControllers spec to configure a Pipelines as Code controller
for every GitHub instance. Use a unique name for every controller.

Additional resources

Customizing Pipelines as Code configuration

Configuring a GitHub App manually and creating a secret for Pipelines as Code

2.5. ADDITIONAL RESOURCES

Installing OpenShift Pipelines

Installing tkn

Red Hat OpenShift Pipelines release notes

apiVersion: operator.tekton.dev/v1
kind: TektonConfig
metadata:
 name: config
spec:
 platforms:
 openshift:
 pipelinesAsCode:
 additionalPACControllers:
 pac_controller_2: 1
 enable: true 2
 secretName: pac_secret_2 3
 settings: # 4
...

CHAPTER 2. INSTALLING AND CONFIGURING PIPELINES AS CODE

9

https://access.redhat.com/documentation/en-us/red_hat_openshift_pipelines/1.14/html-single/installing_and_configuring/#installing-pipelines
https://access.redhat.com/documentation/en-us/red_hat_openshift_pipelines/1.14/html-single/pipelines_cli_tkn_reference/#installing-tkn
https://access.redhat.com/documentation/en-us/red_hat_openshift_pipelines/1.14/html-single/about_openshift_pipelines/#op-release-notes

CHAPTER 3. USING PIPELINES AS CODE WITH A GIT
REPOSITORY HOSTING SERVICE PROVIDER

After installing Pipelines as Code, cluster administrators can configure a Git repository hosting service
provider. Currently, the following services are supported:

GitHub App

GitHub Webhook

GitLab

Bitbucket Server

Bitbucket Cloud

NOTE

GitHub App is the recommended service for using with Pipelines as Code.

3.1. USING PIPELINES AS CODE WITH A GITHUB APP

GitHub Apps act as a point of integration with Red Hat OpenShift Pipelines and bring the advantage of
Git-based workflows to OpenShift Pipelines. Cluster administrators can configure a single GitHub App
for all cluster users. For GitHub Apps to work with Pipelines as Code, ensure that the webhook of the
GitHub App points to the Pipelines as Code controller route (or ingress endpoint) that listens for GitHub
events.

There are three ways to set up a GitHub app for Pipelines as Code:

Use the tkn command line utility.

Use the Administrator perspective of the web console.

Set up the app manually in GitHub and then create a secret for Pipelines as Code.

By default, Pipelines as Code can communicate with one GitHub app. If you configured additional
Pipelines as Code controllers to communicate with additional GitHub apps, configure each of the
GitHub apps separately. You must set up GitHub apps for any additional controllers manually.

3.1.1. Configuring a GitHub App using the command line interface

You can use the tkn command line utility to create a GitHub app and configure the Pipelines as Code
controller for the GitHub app.

IMPORTANT

If you created additional Pipelines as Code controllers to support additional GitHub apps,
you can use this procedure only for the main controller. To create a GitHub app for an
additional controller, use the manual procedure.

Prerequisites

You are logged on to the OpenShift Container Platform cluster as a cluster administrator.

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

10

You installed the tkn command line utility with the tkn pac plugin.

Procedure

Enter the following command:

This command assumes that your account uses a standard github.com API endpoint. If you use a
different GitHub API endpoint, for example, if you use GitHub Enterprise, use the --github-api-
url option to specify the endpoint, as in the following example:

Example command

3.1.2. Creating a GitHub App in administrator perspective

As a cluster administrator, you can configure your GitHub App with the OpenShift Container Platform
cluster to use Pipelines as Code. This configuration allows you to execute a set of tasks required for
build deployment.

IMPORTANT

If you created additional Pipelines as Code controllers to support additional GitHub apps,
you can use this procedure only for the main controller. To create a GitHub app for an
additional controller, use the manual procedure.

Prerequisites

You have installed the Red Hat OpenShift Pipelines pipelines-1.14 operator from the Operator Hub.

Procedure

1. In the administrator perspective, navigate to Pipelines using the navigation pane.

2. Click Setup GitHub App on the Pipelines page.

3. Enter your GitHub App name. For example, pipelines-ci-clustername-testui.

4. Click Setup.

5. Enter your Git password when prompted in the browser.

6. Click Create GitHub App for <username>, where <username> is your GitHub user name.

Verification

After successful creation of the GitHub App, the OpenShift Container Platform web console opens and
displays the details about the application.

$ tkn pac bootstrap github-app

$ tkn pac bootstrap github-app --github-api-url https://github.com/enterprises/example-
enterprise

CHAPTER 3. USING PIPELINES AS CODE WITH A GIT REPOSITORY HOSTING SERVICE PROVIDER

11

The details of the GitHub App are saved as a secret in the openShift-pipelines namespace.

To view details such as name, link, and secret associated with the GitHub applications, navigate to
Pipelines and click View GitHub App.

3.1.3. Configuring a GitHub App manually and creating a secret for Pipelines as Code

You can use the GitHub user interface to create a GitHub app. Then you must create a secret that
configures Pipelines as Code to connect to GitHub app.

If you created additional Pipelines as Code controllers to support additional GitHub apps, you must use
this procedure for the additional controllers.

Procedure

1. Sign in to your GitHub account.

2. In the GitHub menu, select Settings → Developer settings → GitHub Apps, then click New
GitHub App.

3. Provide the following information in the GitHub App form:

GitHub Application Name: OpenShift Pipelines

Homepage URL: OpenShift Console URL

Webhook URL: The Pipelines as Code route or ingress URL. You can find it by running the
following command:

Alternatively, to configure the GitHub app for an additional Pipelines as Code controller,
replace pipelines-as-code-controller with the name of the controller that you configured,
as in the following example:

$ echo https://$(oc get route -n openshift-pipelines pipelines-as-code-controller -o
jsonpath='{.spec.host}')

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

12

Example command

Webhook secret: An arbitrary secret. You can generate a secret by running the following
command:

4. Select the following items in the Repository permissions section:

Checks: Read & Write

Contents: Read & Write

Issues: Read & Write

Metadata: Read-only

Pull request: Read & Write

5. Select the following items in the Organization permissions section:

Members: Read-only

Plan: Read-only

6. Subscribe to the following events:

Check run

Check suite

Commit comment

Issue comment

Pull request

Push

7. Click Create GitHub App.

8. On the Details page of the newly created GitHub App, note the App ID displayed at the top.

9. In the Private keys section, click Generate Private key to automatically generate and
download a private key for the GitHub app. Securely store the private key for future reference
and usage.

10. Install the created App on a repository that you want to use with Pipelines as Code.

11. Configure Pipelines as Code to access the newly created GitHub App by entering the following
command:

$ echo https://$(oc get route -n openshift-pipelines pac_controller_2 -o
jsonpath='{.spec.host}')

$ openssl rand -hex 20

$ oc -n openshift-pipelines create secret generic pipelines-as-code-secret \ 1
 --from-literal github-private-key="$(cat <PATH_PRIVATE_KEY>)" \ 2

CHAPTER 3. USING PIPELINES AS CODE WITH A GIT REPOSITORY HOSTING SERVICE PROVIDER

13

1

2

3

4

If you created additional Pipelines as Code controllers to support additional GitHub apps
and you are configuring the app for an additional controller, replace pipelines-as-code-
secret with the name that you configured in the secretName parameter for the controller.

The path to the private key you downloaded while configuring the GitHub App.

The App ID of the GitHub App.

The webhook secret provided when you created the GitHub App.

NOTE

Pipelines as Code works automatically with GitHub Enterprise by detecting the header set
from GitHub Enterprise and using it for the GitHub Enterprise API authorization URL.

Additional resources

Configuring additional Pipelines as Code controllers to support additional GitHub apps

3.1.4. Scoping the GitHub token to additional repositories

Pipelines as Code uses the GitHub app to generate a GitHub access token. Pipelines as Code uses this
token to retrieve the pipeline payload from the repository and to enable the CI/CD processes to
interact with GitHub repositories.

By default, the access token is scoped only to the repository from which Pipelines as Code retrieves the
pipeline definition. In some cases, you might want the token to have access to additional repositories.
For example, there might be a CI repository where the .tekton/pr.yaml file and source payload are
located, but the build process defined in pr.yaml fetches tasks from a separate private CD repository.

You can extend the scope of the GitHub token in two ways:

Global configuration: You can extend the GitHub token to a list of repositories in different
namespaces. You must have administrative permissions to set this configuration.

Repository level configuration: You can extend the GitHub token to a list of repositories that
exist in the same namespace as the original repository. You do not need administrative
permissions to set this configuration.

Procedure

1. In the TektonConfig custom resource (CR), in the pipelinesAsCode.settings spec, set the
secret-github-app-token-scoped parameter to false. This setting enables scoping the GitHub
token to private and public repositories listed in the global and repository level configuration.

2. To set global configuration for scoping the GitHub token, in the TektonConfig CR, in the
pipelinesAsCode.settings spec, specify the additional repositories in the secret-github-app-
scope-extra-repos parameter, as in the following example:

 --from-literal github-application-id="<APP_ID>" \ 3
 --from-literal webhook.secret="<WEBHOOK_SECRET>" 4

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

14

3. To set repository level configuration for scoping the GitHub token, specify the additional
repositories in the github_app_token_scope_repos parameter of the Repository CR, as in the
following example:

In this example, the Repository custom resource is associated with the linda/project repository
in the test-repo namespace. The scope of the generated GitHub token is extended to the
owner/project and owner1/project1 repositories, as well as the linda/project repository. These
repositories must exist under the test-repo namespace.

NOTE

The additional repositories can be public or private, but must reside in the same
namespace as the repository with which the Repository resource is associated.

If any of the repositories do not exist in the namespace, the scoping of the
GitHub token fails with an error message:

Result

The generated GitHub token enables access to the additional repositories that you configured in the
global and repository level configuration, as well as the original repository where the Pipelines as Code
payload files are located.

If you provide both global configuration and repository level configuration, the token is scoped to all the
repositories from both configurations, as in the following example.

TektonConfig custom resource

metadata:
 name: config
spec:
 platforms:
 openshift:
 pipelinesAsCode:
 enable: true
 settings:
 secret-github-app-token-scoped: false
 secret-github-app-scope-extra-repos: "owner2/project2, owner3/project3"

apiVersion: "pipelinesascode.tekton.dev/v1alpha1"
kind: Repository
metadata:
 name: test
 namespace: test-repo
spec:
 url: "https://github.com/linda/project"
 settings:
 github_app_token_scope_repos:
 - "owner/project"
 - "owner1/project1"

failed to scope GitHub token as repo owner1/project1 does not exist in
namespace test-repo

CHAPTER 3. USING PIPELINES AS CODE WITH A GIT REPOSITORY HOSTING SERVICE PROVIDER

15

Repository custom resource

The GitHub token is scoped to the owner/project, owner1/project1, owner2/project2,
owner3/project3, and linda/project respositories.

3.2. USING PIPELINES AS CODE WITH GITHUB WEBHOOK

Use Pipelines as Code with GitHub Webhook on your repository if you cannot create a GitHub App.
However, using Pipelines as Code with GitHub Webhook does not give you access to the GitHub Check
Runs API. The status of the tasks is added as comments on the pull request and is unavailable under the
Checks tab.

NOTE

Pipelines as Code with GitHub Webhook does not support GitOps comments such as
/retest and /ok-to-test. To restart the continuous integration (CI), create a new commit
to the repository. For example, to create a new commit without any changes, you can use
the following command:

Prerequisites

Ensure that Pipelines as Code is installed on the cluster.

For authorization, create a personal access token on GitHub.

To generate a secure and fine-grained token, restrict its scope to a specific repository and

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 platforms:
 openshift:
 pipelinesAsCode:
 enable: true
 settings:
 secret-github-app-token-scoped: false
 secret-github-app-scope-extra-repos: "owner2/project2, owner3/project3"

apiVersion: "pipelinesascode.tekton.dev/v1alpha1"
kind: Repository
metadata:
 name: test
 namespace: test-repo
spec:
 url: "https://github.com/linda/project"
 settings:
 github_app_token_scope_repos:
 - "owner/project"
 - "owner1/project1"

$ git --amend -a --no-edit && git push --force-with-lease <origin> <branchname>

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

16

To generate a secure and fine-grained token, restrict its scope to a specific repository and
grant the following permissions:

Table 3.1. Permissions for fine-grained tokens

Name Access

Administration Read-only

Metadata Read-only

Content Read-only

Commit statuses Read and Write

Pull request Read and Write

Webhooks Read and Write

To use classic tokens, set the scope as public_repo for public repositories and repo for
private repositories. In addition, provide a short token expiration period and note the token
in an alternate location.

NOTE

If you want to configure the webhook using the tkn pac CLI, add the
admin:repo_hook scope.

Procedure

1. Configure the webhook and create a Repository custom resource (CR).

To configure a webhook and create a Repository CR automatically using the tkn pac CLI
tool, use the following command:

Sample interactive output

$ tkn pac create repo

? Enter the Git repository url (default: https://github.com/owner/repo):
? Please enter the namespace where the pipeline should run (default: repo-pipelines):
! Namespace repo-pipelines is not found
? Would you like me to create the namespace repo-pipelines? Yes
✓ Repository owner-repo has been created in repo-pipelines namespace
✓ Setting up GitHub Webhook for Repository https://github.com/owner/repo
� I have detected a controller url: https://pipelines-as-code-controller-openshift-
pipelines.apps.example.com
? Do you want me to use it? Yes
? Please enter the secret to configure the webhook for payload validation (default:
sJNwdmTifHTs): sJNwdmTifHTs
ℹ �You now need to create a GitHub personal access token, please checkout the docs at
https://docs.github.com/en/authentication/keeping-your-account-and-data-

CHAPTER 3. USING PIPELINES AS CODE WITH A GIT REPOSITORY HOSTING SERVICE PROVIDER

17

To configure a webhook and create a Repository CR manually, perform the following steps:

i. On your OpenShift cluster, extract the public URL of the Pipelines as Code controller.

ii. On your GitHub repository or organization, perform the following steps:

A. Go to Settings –> Webhooks and click Add webhook.

B. Set the Payload URL to the Pipelines as Code controller public URL.

C. Select the content type as application/json.

D. Add a webhook secret and note it in an alternate location. With openssl installed on
your local machine, generate a random secret.

E. Click Let me select individual events and select these events: Commit comments,
Issue comments, Pull request, and Pushes.

F. Click Add webhook.

iii. On your OpenShift cluster, create a Secret object with the personal access token and
webhook secret.

iv. Create a Repository CR.

Example: Repository CR

secure/creating-a-personal-access-token for the required scopes
? Please enter the GitHub access token: **
✓ Webhook has been created on repository owner/repo
� Webhook Secret owner-repo has been created in the repo-pipelines namespace.
� Repository CR owner-repo has been updated with webhook secret in the repo-pipelines
namespace
ℹ Directory .tekton has been created.
✓ We have detected your repository using the programming language Go.
✓ A basic template has been created in
/home/Go/src/github.com/owner/repo/.tekton/pipelinerun.yaml, feel free to customize it.

$ echo https://$(oc get route -n openshift-pipelines pipelines-as-code-controller -o
jsonpath='{.spec.host}')

$ openssl rand -hex 20

$ oc -n target-namespace create secret generic github-webhook-config \
 --from-literal provider.token="<GITHUB_PERSONAL_ACCESS_TOKEN>" \
 --from-literal webhook.secret="<WEBHOOK_SECRET>"

apiVersion: "pipelinesascode.tekton.dev/v1alpha1"
kind: Repository
metadata:
 name: my-repo
 namespace: target-namespace
spec:
 url: "https://github.com/owner/repo"
 git_provider:

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

18

NOTE

Pipelines as Code assumes that the OpenShift Secret object and the
Repository CR are in the same namespace.

2. Optional: For an existing Repository CR, add multiple GitHub Webhook secrets or provide a
substitute for a deleted secret.

a. Add a webhook using the tkn pac CLI tool.

Example: Additional webhook using the tkn pac CLI

Sample interactive output

b. Update the webhook.secret key in the existing OpenShift Secret object.

3. Optional: For an existing Repository CR, update the personal access token.

Update the personal access token using the tkn pac CLI tool.

Example: Updating personal access token using the tkn pac CLI

Sample interactive output

Alternatively, update the personal access token by modifying the Repository CR.

i. Find the name of the secret in the Repository CR.

 secret:
 name: "github-webhook-config"
 key: "provider.token" # Set this if you have a different key in your secret
 webhook_secret:
 name: "github-webhook-config"
 key: "webhook.secret" # Set this if you have a different key for your secret

$ tkn pac webhook add -n repo-pipelines

✓ Setting up GitHub Webhook for Repository https://github.com/owner/repo
� I have detected a controller url: https://pipelines-as-code-controller-openshift-
pipelines.apps.example.com
? Do you want me to use it? Yes
? Please enter the secret to configure the webhook for payload validation (default:
AeHdHTJVfAeH): AeHdHTJVfAeH
✓ Webhook has been created on repository owner/repo
� Secret owner-repo has been updated with webhook secert in the repo-pipelines
namespace.

$ tkn pac webhook update-token -n repo-pipelines

? Please enter your personal access token: **
� Secret owner-repo has been updated with new personal access token in the repo-
pipelines namespace.

CHAPTER 3. USING PIPELINES AS CODE WITH A GIT REPOSITORY HOSTING SERVICE PROVIDER

19

ii. Use the oc patch command to update the values of the $NEW_TOKEN in the
$target_namespace namespace.

Additional resources

GitHub Webhook documentation on GitHub

GitHub Check Runs documentation on GitHub

Creating a personal access token on GitHub

Classic tokens with pre-filled permissions

3.3. USING PIPELINES AS CODE WITH GITLAB

If your organization or project uses GitLab as the preferred platform, you can use Pipelines as Code for
your repository with a webhook on GitLab.

Prerequisites

Ensure that Pipelines as Code is installed on the cluster.

For authorization, generate a personal access token as the manager of the project or
organization on GitLab.

NOTE

If you want to configure the webhook using the tkn pac CLI, add the
admin:repo_hook scope to the token.

Using a token scoped for a specific project cannot provide API access to a
merge request (MR) sent from a forked repository. In such cases, Pipelines as
Code displays the result of a pipeline as a comment on the MR.

Procedure

1. Configure the webhook and create a Repository custom resource (CR).

To configure a webhook and create a Repository CR automatically using the tkn pac CLI

apiVersion: "pipelinesascode.tekton.dev/v1alpha1"
kind: Repository
metadata:
 name: my-repo
 namespace: target-namespace
spec:
...
 git_provider:
 secret:
 name: "github-webhook-config"
...

$ oc -n $target_namespace patch secret github-webhook-config -p "{\"data\":
{\"provider.token\": \"$(echo -n $NEW_TOKEN|base64 -w0)\"}}"

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

20

https://docs.github.com/en/developers/webhooks-and-events/webhooks/creating-webhooks
https://docs.github.com/en/rest/guides/getting-started-with-the-checks-api
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://github.com/settings/tokens/new?description=pipelines-as-code-token&scopes=repo

To configure a webhook and create a Repository CR automatically using the tkn pac CLI
tool, use the following command:

Sample interactive output

To configure a webhook and create a Repository CR manually, perform the following steps:

i. On your OpenShift cluster, extract the public URL of the Pipelines as Code controller.

ii. On your GitLab project, perform the following steps:

A. Use the left sidebar to go to Settings –> Webhooks.

B. Set the URL to the Pipelines as Code controller public URL.

C. Add a webhook secret and note it in an alternate location. With openssl installed on
your local machine, generate a random secret.

D. Click Let me select individual events and select these events: Commit comments,

$ tkn pac create repo

? Enter the Git repository url (default: https://gitlab.com/owner/repo):
? Please enter the namespace where the pipeline should run (default: repo-pipelines):
! Namespace repo-pipelines is not found
? Would you like me to create the namespace repo-pipelines? Yes
✓ Repository repositories-project has been created in repo-pipelines namespace
✓ Setting up GitLab Webhook for Repository https://gitlab.com/owner/repo
? Please enter the project ID for the repository you want to be configured,
 project ID refers to an unique ID (e.g. 34405323) shown at the top of your GitLab project
: 17103
� I have detected a controller url: https://pipelines-as-code-controller-openshift-
pipelines.apps.example.com
? Do you want me to use it? Yes
? Please enter the secret to configure the webhook for payload validation (default:
lFjHIEcaGFlF): lFjHIEcaGFlF
ℹ �You now need to create a GitLab personal access token with `api` scope
ℹ �Go to this URL to generate one https://gitlab.com/-/profile/personal_access_tokens,
see https://is.gd/rOEo9B for documentation
? Please enter the GitLab access token: **************************
? Please enter your GitLab API URL:: https://gitlab.com
✓ Webhook has been created on your repository
� Webhook Secret repositories-project has been created in the repo-pipelines
namespace.
� Repository CR repositories-project has been updated with webhook secret in the repo-
pipelines namespace
ℹ Directory .tekton has been created.
✓ A basic template has been created in
/home/Go/src/gitlab.com/repositories/project/.tekton/pipelinerun.yaml, feel free to
customize it.

$ echo https://$(oc get route -n openshift-pipelines pipelines-as-code-controller -o
jsonpath='{.spec.host}')

$ openssl rand -hex 20

CHAPTER 3. USING PIPELINES AS CODE WITH A GIT REPOSITORY HOSTING SERVICE PROVIDER

21

1

D. Click Let me select individual events and select these events: Commit comments,
Issue comments, Pull request, and Pushes.

E. Click Save changes.

iii. On your OpenShift cluster, create a Secret object with the personal access token and
webhook secret.

iv. Create a Repository CR.

Example: Repository CR

If you are using a private instance of GitLab and not GitLab.com, uncomment this
field and set it to the URL of your GitLab API. The GitLab API is the same host as
the repository. For example, if the repository is
https://gitlab.example.com/owner/repo, the API URL is
https://gitlab.example.com/.

NOTE

Pipelines as Code assumes that the OpenShift Secret object and the
Repository CR are in the same namespace.

2. Optional: For an existing Repository CR, add multiple GitLab Webhook secrets or provide a
substitute for a deleted secret.

a. Add a webhook using the tkn pac CLI tool.

Example: Adding additional webhook using the tkn pac CLI

Sample interactive output

$ oc -n target-namespace create secret generic gitlab-webhook-config \
 --from-literal provider.token="<GITLAB_PERSONAL_ACCESS_TOKEN>" \
 --from-literal webhook.secret="<WEBHOOK_SECRET>"

apiVersion: "pipelinesascode.tekton.dev/v1alpha1"
kind: Repository
metadata:
 name: my-repo
 namespace: target-namespace
spec:
 url: "https://gitlab.com/owner/repo" # The repository URL
 git_provider:
 #url: "https://gitlab.example.com/" 1
 secret:
 name: "gitlab-webhook-config"
 key: "provider.token" # Set this if you have a different key in your secret
 webhook_secret:
 name: "gitlab-webhook-config"
 key: "webhook.secret" # Set this if you have a different key for your secret

$ tkn pac webhook add -n repo-pipelines

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

22

b. Update the webhook.secret key in the existing OpenShift Secret object.

3. Optional: For an existing Repository CR, update the personal access token.

Update the personal access token using the tkn pac CLI tool.

Example: Updating personal access token using the tkn pac CLI

Sample interactive output

Alternatively, update the personal access token by modifying the Repository CR.

i. Find the name of the secret in the Repository CR.

ii. Use the oc patch command to update the values of the $NEW_TOKEN in the
$target_namespace namespace.

Additional resources

GitLab Webhook documentation on GitLab

3.4. USING PIPELINES AS CODE WITH BITBUCKET CLOUD

If your organization or project uses Bitbucket Cloud as the preferred platform, you can use Pipelines as
Code for your repository with a webhook on Bitbucket Cloud.

Prerequisites

✓ Setting up GitLab Webhook for Repository https://gitlab.com/owner/repo
� I have detected a controller url: https://pipelines-as-code-controller-openshift-
pipelines.apps.example.com
? Do you want me to use it? Yes
? Please enter the secret to configure the webhook for payload validation (default:
AeHdHTJVfAeH): AeHdHTJVfAeH
✓ Webhook has been created on repository owner/repo
� Secret owner-repo has been updated with webhook secert in the repo-pipelines
namespace.

$ tkn pac webhook update-token -n repo-pipelines

? Please enter your personal access token: **
� Secret owner-repo has been updated with new personal access token in the repo-
pipelines namespace.

...
spec:
 git_provider:
 secret:
 name: "gitlab-webhook-config"
...

$ oc -n $target_namespace patch secret gitlab-webhook-config -p "{\"data\":
{\"provider.token\": \"$(echo -n $NEW_TOKEN|base64 -w0)\"}}"

CHAPTER 3. USING PIPELINES AS CODE WITH A GIT REPOSITORY HOSTING SERVICE PROVIDER

23

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html

Ensure that Pipelines as Code is installed on the cluster.

Create an app password on Bitbucket Cloud.

Check the following boxes to add appropriate permissions to the token:

Account: Email, Read

Workspace membership: Read, Write

Projects: Read, Write

Issues: Read, Write

Pull requests: Read, Write

NOTE

If you want to configure the webhook using the tkn pac CLI, add the
Webhooks: Read and Write permission to the token.

Once generated, save a copy of the password or token in an
alternate location.

Procedure

1. Configure the webhook and create a Repository CR.

To configure a webhook and create a Repository CR automatically using the tkn pac CLI
tool, use the following command:

Sample interactive output

$ tkn pac create repo

? Enter the Git repository url (default: https://bitbucket.org/workspace/repo):
? Please enter the namespace where the pipeline should run (default: repo-pipelines):
! Namespace repo-pipelines is not found
? Would you like me to create the namespace repo-pipelines? Yes
✓ Repository workspace-repo has been created in repo-pipelines namespace
✓ Setting up Bitbucket Webhook for Repository https://bitbucket.org/workspace/repo
? Please enter your bitbucket cloud username: <username>
ℹ �You now need to create a Bitbucket Cloud app password, please checkout the docs at
https://is.gd/fqMHiJ for the required permissions
? Please enter the Bitbucket Cloud app password: ************************************
� I have detected a controller url: https://pipelines-as-code-controller-openshift-
pipelines.apps.example.com
? Do you want me to use it? Yes
✓ Webhook has been created on repository workspace/repo
� Webhook Secret workspace-repo has been created in the repo-pipelines namespace.
� Repository CR workspace-repo has been updated with webhook secret in the repo-
pipelines namespace
ℹ Directory .tekton has been created.
✓ A basic template has been created in
/home/Go/src/bitbucket/repo/.tekton/pipelinerun.yaml, feel free to customize it.

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

24

1

2

To configure a webhook and create a Repository CR manually, perform the following steps:

i. On your OpenShift cluster, extract the public URL of the Pipelines as Code controller.

ii. On Bitbucket Cloud, perform the following steps:

A. Use the left navigation pane of your Bitbucket Cloud repository to go to
Repository settings –> Webhooks and click Add webhook.

B. Set a Title. For example, "Pipelines as Code".

C. Set the URL to the Pipelines as Code controller public URL.

D. Select these events: Repository: Push, Pull Request: Created, Pull Request:
Updated, and Pull Request: Comment created.

E. Click Save.

iii. On your OpenShift cluster, create a Secret object with the app password in the target
namespace.

iv. Create a Repository CR.

Example: Repository CR

You can only reference a user by the ACCOUNT_ID in an owner file.

Pipelines as Code assumes that the secret referred in the git_provider.secret
spec and the Repository CR is in the same namespace.

NOTE

$ echo https://$(oc get route -n openshift-pipelines pipelines-as-code-controller -o
jsonpath='{.spec.host}')

$ oc -n target-namespace create secret generic bitbucket-cloud-token \
 --from-literal provider.token="<BITBUCKET_APP_PASSWORD>"

apiVersion: "pipelinesascode.tekton.dev/v1alpha1"
kind: Repository
metadata:
 name: my-repo
 namespace: target-namespace
spec:
 url: "https://bitbucket.com/workspace/repo"
 branch: "main"
 git_provider:
 user: "<BITBUCKET_USERNAME>" 1
 secret:
 name: "bitbucket-cloud-token" 2
 key: "provider.token" # Set this if you have a different key in your secret

CHAPTER 3. USING PIPELINES AS CODE WITH A GIT REPOSITORY HOSTING SERVICE PROVIDER

25

NOTE

The tkn pac create and tkn pac bootstrap commands are not supported on
Bitbucket Cloud.

Bitbucket Cloud does not support webhook secrets. To secure the payload
and prevent hijacking of the CI, Pipelines as Code fetches the list of
Bitbucket Cloud IP addresses and ensures that the webhook receptions
come only from those IP addresses.

To disable the default behavior, set the bitbucket-cloud-check-source-
ip parameter to false in the TektonConfig custom resource, in the
pipelinesAsCode.settings spec.

To allow additional safe IP addresses or networks, add them as comma
separated values to the bitbucket-cloud-additional-source-ip
parameter in the TektonConfig custom resource, in the
pipelinesAsCode.settings spec.

2. Optional: For an existing Repository CR, add multiple Bitbucket Cloud Webhook secrets or
provide a substitute for a deleted secret.

a. Add a webhook using the tkn pac CLI tool.

Example: Adding additional webhook using the tkn pac CLI

Sample interactive output

NOTE

Use the [-n <namespace>] option with the tkn pac webhook add command
only when the Repository CR exists in a namespace other than the default
namespace.

b. Update the webhook.secret key in the existing OpenShift Secret object.

3. Optional: For an existing Repository CR, update the personal access token.

Update the personal access token using the tkn pac CLI tool.

Example: Updating personal access token using the tkn pac CLI

$ tkn pac webhook add -n repo-pipelines

✓ Setting up Bitbucket Webhook for Repository https://bitbucket.org/workspace/repo
? Please enter your bitbucket cloud username: <username>
� I have detected a controller url: https://pipelines-as-code-controller-openshift-
pipelines.apps.example.com
? Do you want me to use it? Yes
✓ Webhook has been created on repository workspace/repo
� Secret workspace-repo has been updated with webhook secret in the repo-pipelines
namespace.

$ tkn pac webhook update-token -n repo-pipelines

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

26

Sample interactive output

NOTE

Use the [-n <namespace>] option with the tkn pac webhook update-token
command only when the Repository CR exists in a namespace other than
the default namespace.

Alternatively, update the personal access token by modifying the Repository CR.

i. Find the name of the secret in the Repository CR.

ii. Use the oc patch command to update the values of the $password in the
$target_namespace namespace.

Additional resources

Creating app password on Bitbucket Cloud

Introducing Altassian Account ID and Nicknames

3.5. USING PIPELINES AS CODE WITH BITBUCKET SERVER

If your organization or project uses Bitbucket Server as the preferred platform, you can use Pipelines as
Code for your repository with a webhook on Bitbucket Server.

Prerequisites

Ensure that Pipelines as Code is installed on the cluster.

Generate a personal access token as the manager of the project on Bitbucket Server, and save
a copy of it in an alternate location.

NOTE

? Please enter your personal access token: **
� Secret owner-repo has been updated with new personal access token in the repo-
pipelines namespace.

...
spec:
 git_provider:
 user: "<BITBUCKET_USERNAME>"
 secret:
 name: "bitbucket-cloud-token"
 key: "provider.token"
...

$ oc -n $target_namespace patch secret bitbucket-cloud-token -p "{\"data\":
{\"provider.token\": \"$(echo -n $NEW_TOKEN|base64 -w0)\"}}"

CHAPTER 3. USING PIPELINES AS CODE WITH A GIT REPOSITORY HOSTING SERVICE PROVIDER

27

https://support.atlassian.com/bitbucket-cloud/docs/app-passwords/
https://developer.atlassian.com/cloud/bitbucket/bitbucket-api-changes-gdpr/#introducing-atlassian-account-id-and-nicknames

NOTE

The token must have the PROJECT_ADMIN and REPOSITORY_ADMIN
permissions.

The token must have access to forked repositories in pull requests.

Procedure

1. On your OpenShift cluster, extract the public URL of the Pipelines as Code controller.

2. On Bitbucket Server, perform the following steps:

a. Use the left navigation pane of your Bitbucket Data Center repository to go to Repository
settings –> Webhooks and click Add webhook.

b. Set a Title. For example, "Pipelines as Code".

c. Set the URL to the Pipelines as Code controller public URL.

d. Add a webhook secret and save a copy of it in an alternate location. If you have openssl
installed on your local machine, generate a random secret using the following command:

e. Select the following events:

Repository: Push

Repository: Modified

Pull Request: Opened

Pull Request: Source branch updated

Pull Request: Comment added

f. Click Save.

3. On your OpenShift cluster, create a Secret object with the app password in the target
namespace.

4. Create a Repository CR.

Example: Repository CR

$ echo https://$(oc get route -n openshift-pipelines pipelines-as-code-controller -o
jsonpath='{.spec.host}')

$ openssl rand -hex 20

$ oc -n target-namespace create secret generic bitbucket-server-webhook-config \
 --from-literal provider.token="<PERSONAL_TOKEN>" \
 --from-literal webhook.secret="<WEBHOOK_SECRET>"

apiVersion: "pipelinesascode.tekton.dev/v1alpha1"
kind: Repository
metadata:

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

28

1

2

3

Ensure that you have the right Bitbucket Server API URL without the /api/v1.0 suffix.
Usually, the default install has a /rest suffix.

Specify the username of the BitBucket Server.

Pipelines as Code assumes that the secret referred in the git_provider.secret spec and
the Repository CR is in the same namespace.

NOTE

The tkn pac create and tkn pac bootstrap commands are not supported on
Bitbucket Server.

Additional resources

Creating personal tokens on Bitbucket Server

Creating webhooks on Bitbucket server

3.6. INTERFACING PIPELINES AS CODE WITH CUSTOM CERTIFICATES

To configure Pipelines as Code with a Git repository that is accessible with a privately signed or custom
certificate, you can expose the certificate to Pipelines as Code.

Procedure

If you have installed Pipelines as Code using the Red Hat OpenShift Pipelines Operator, you can
add your custom certificate to the cluster using the Proxy object. The Operator exposes the
certificate in all Red Hat OpenShift Pipelines components and workloads, including Pipelines as
Code.

Additional resources

Enabling the cluster-wide proxy

3.7. USING PRIVATE REPOSITORIES WITH PIPELINES AS CODE

Pipelines as Code supports private repositories by creating or updating a secret in the target namespace

 name: my-repo
 namespace: target-namespace
spec:
 url: "https://bitbucket.com/workspace/repo"
 git_provider:
 url: "https://bitbucket.server.api.url/rest" 1
 user: "<BITBUCKET_USERNAME>" 2
 secret: 3
 name: "bitbucket-server-webhook-config"
 key: "provider.token" # Set this if you have a different key in your secret
 webhook_secret:
 name: "bitbucket-server-webhook-config"
 key: "webhook.secret" # Set this if you have a different key for your secret

CHAPTER 3. USING PIPELINES AS CODE WITH A GIT REPOSITORY HOSTING SERVICE PROVIDER

29

https://confluence.atlassian.com/bitbucketserver/personal-access-tokens-939515499.html
https://support.atlassian.com/bitbucket-cloud/docs/manage-webhooks/#Create-webhooks
https://docs.openshift.com/container-platform/latest/networking/enable-cluster-wide-proxy.html

1

Pipelines as Code supports private repositories by creating or updating a secret in the target namespace
with the user token. The git-clone task from Tekton Hub uses the user token to clone private
repositories.

Whenever Pipelines as Code creates a new pipeline run in the target namespace, it creates or updates a
secret with the pac-gitauth-<REPOSITORY_OWNER>-<REPOSITORY_NAME>-
<RANDOM_STRING> format.

You must reference the secret with the basic-auth workspace in your pipeline run and pipeline
definitions, which is then passed on to the git-clone task.

In the pipeline, you can reference the basic-auth workspace for the git-clone task to reuse:

The git-clone task picks up the basic-auth workspace and uses it to clone the private repository.

You can modify this configuration by setting the secret-auto-create parameter to either a false or true
value, as required, in the TektonConfig custom resource, in the pipelinesAsCode.settings spec.

...
 workspace:
 - name: basic-auth
 secret:
 secretName: "{{ git_auth_secret }}"
...

...
workspaces:
 - name basic-auth
params:
 - name: repo_url
 - name: revision
...
tasks:
 workspaces:
 - name: basic-auth
 workspace: basic-auth
 ...
 tasks:
 - name: git-clone-from-catalog
 taskRef:
 name: git-clone 1
 params:
 - name: url
 value: $(params.repo_url)
 - name: revision
 value: $(params.revision)
...

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

30

1

CHAPTER 4. USING THE REPOSITORY CUSTOM RESOURCE
The Repository custom resource (CR) has the following primary functions:

Inform Pipelines as Code about processing an event from a URL.

Inform Pipelines as Code about the namespace for the pipeline runs.

Reference an API secret, username, or an API URL necessary for Git provider platforms when
using webhook methods.

Provide the last pipeline run status for a repository.

4.1. CREATING THE REPOSITORY CUSTOM RESOURCE

You can use the tkn pac CLI or other alternative methods to create a Repository custom resource (CR)
inside the target namespace. For example:

my-pipeline-ci is the target namespace.

Whenever there is an event coming from the URL such as https://github.com/<repository>/<project>,
Pipelines as Code matches it and then starts checking out the content of the <repository>/<project>
repository for pipeline run to match the content in the .tekton/ directory.

NOTE

You must create the Repository CR in the same namespace where pipelines
associated with the source code repository will be executed; it cannot target a
different namespace.

If multiple Repository CRs match the same event, Pipelines as Code processes
only the oldest one. If you need to match a specific namespace, add the
pipelinesascode.tekton.dev/target-namespace: "<mynamespace>"
annotation. Such explicit targeting prevents a malicious actor from executing a
pipeline run in a namespace to which they do not have access.

4.2. SETTING CONCURRENCY LIMITS

You can use the concurrency_limit spec in the Repository custom resource definition (CRD) to define
the maximum number of pipeline runs running simultaneously for a repository.

cat <<EOF|kubectl create -n my-pipeline-ci -f- 1

apiVersion: "pipelinesascode.tekton.dev/v1alpha1"
kind: Repository
metadata:
 name: project-repository
spec:
 url: "https://github.com/<repository>/<project>"
EOF

apiVersion: "pipelinesascode.tekton.dev/v1alpha1"
kind: Repository

CHAPTER 4. USING THE REPOSITORY CUSTOM RESOURCE

31

https://github.com/<repository>/<project>

If there are multiple pipeline runs matching an event, the pipeline runs that match the event start in an
alphabetical order.

For example, if you have three pipeline runs in the .tekton directory and you create a pull request with a
concurrency_limit of 1 in the repository configuration, then all the pipeline runs are executed in an
alphabetical order. At any given time, only one pipeline run is in the running state while the rest are
queued.

4.3. CHANGING THE SOURCE BRANCH FOR THE PIPELINE
DEFINITION

By default, when processing a push event or a pull request event, Pipelines as Code fetches the pipeline
definition from the branch that triggered the event. You can use the pipelinerun_provenance setting
in the Repository custom resource definition (CRD) to fetch the definition from the default branch
configured on the Git repository provider, such as main, master, or trunk.

NOTE

You can use this setting as a security precaution. With the default behaviour, Pipelines as
Code uses the pipeline definition in the submitted pull request. With the default-branch
setting, the pipeline definition must be merged into the default branch before it is run.
This requirement ensures maximum possible verification of any changes during merge
review.

4.4. CUSTOM PARAMETER EXPANSION

You can use Pipelines as Code to expand a custom parameter within your PipelineRun resource by
using the params field. You can specify a value for the custom parameter inside the template of the
Repository custom resource (CR). The specified value replaces the custom parameter in your pipeline
run.

You can use custom parameters in the following scenarios:

To define a URL parameter, such as a registry URL that varies based on a push or a pull request.

metadata:
 name: my-repo
 namespace: target-namespace
spec:
...
 concurrency_limit: <number>
...

apiVersion: "pipelinesascode.tekton.dev/v1alpha1"
kind: Repository
metadata:
 name: my-repo
 namespace: target-namespace
spec:
...
 settings:
 pipelinerun_provenance: "default_branch"
...

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

32

To define a parameter, such as an account UUID that an administrator can manage without
necessitating changes to the PipelineRun execution in the Git repository.

NOTE

Use the custom parameter expansion feature only when you cannot use the Tekton
PipelineRun parameters because Tekton parameters are defined in a Pipeline resource
and customized alongside it inside a Git repository. However, custom parameters are
defined and customized where the Repository CR is located. So, you cannot manage
your CI/CD pipeline from a single point.

The following example shows a custom parameter named company in the Repository CR:

The value ABC Company replaces the parameter name company in your pipeline run and in the
remotely fetched tasks.

You can also retrieve the value for a custom parameter from a Kubernetes secret, as shown in the
following example:

Pipelines as Code parses and uses custom parameters in the following manner:

If you have a value and a secretRef defined, Pipelines as Code uses the value.

If you do not have a name in the params section, Pipelines as Code does not parse the
parameter.

If you have multiple params with the same name, Pipelines as Code uses the last parameter.

You can also define a custom parameter and use its expansion only when specified conditions were
matched for a CEL filter. The following example shows a CEL filter applicable on a custom parameter
named company when a pull request event is triggered:

...
spec:
 params:
 - name: company
 value: "ABC Company"
...

...
spec:
 params:
 - name: company
 secretRef:
 name: my-secret
 key: companyname
...

...
spec:
 params:
 - name: company
 value: "ABC Company"
 filter:
 - name: event

CHAPTER 4. USING THE REPOSITORY CUSTOM RESOURCE

33

NOTE

When you have multiple parameters with the same name and different filters, Pipelines as
Code uses the first parameter that matches the filter. So, Pipelines as Code allows you to
expand parameters according to different event types. For example, you can combine a
push and a pull request event.

 value: |
 pac.event_type == "pull_request"
...

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

34

1

CHAPTER 5. USING THE PIPELINES AS CODE RESOLVER
The Pipelines as Code resolver ensures that a running pipeline run does not conflict with others.

5.1. ABOUT THE PIPELINES AS CODE RESOLVER

To split your pipeline and pipeline run, store the files in the .tekton/ directory or its subdirectories.

If Pipelines as Code observes a pipeline run with a reference to a task or a pipeline in any YAML file
located in the .tekton/ directory, Pipelines as Code automatically resolves the referenced task to
provide a single pipeline run with an embedded spec in a PipelineRun object.

If Pipelines as Code cannot resolve the referenced tasks in the Pipeline or PipelineSpec definition, the
run fails before applying any changes to the cluster. You can see the issue on your Git provider platform
and inside the events of the target namespace where the Repository CR is located.

The resolver skips resolving if it observes the following type of tasks:

A reference to a cluster task.

A task or pipeline bundle.

A custom task with an API version that does not have a tekton.dev/ prefix.

The resolver uses such tasks literally, without any transformation.

To test your pipeline run locally before sending it in a pull request, use the tkn pac resolve command.

You can also reference remote pipelines and tasks.

5.2. USING REMOTE TASK ANNOTATIONS WITH PIPELINES AS CODE

Pipelines as Code supports fetching remote tasks or pipelines by using annotations in a pipeline run. If
you reference a remote task in a pipeline run, or a pipeline in a PipelineRun or a PipelineSpec object,
the Pipelines as Code resolver automatically includes it. If there is any error while fetching the remote
tasks or parsing them, Pipelines as Code stops processing the tasks.

To include remote tasks, refer to the following examples of annotation:

Reference remote tasks in Tekton Hub

Reference a single remote task in Tekton Hub.

Pipelines as Code includes the latest version of the task from the Tekton Hub.

Reference multiple remote tasks from Tekton Hub

...
 pipelinesascode.tekton.dev/task: "git-clone" 1
...

...
 pipelinesascode.tekton.dev/task: "[git-clone, golang-test, tkn]"
...

CHAPTER 5. USING THE PIPELINES AS CODE RESOLVER

35

1

1

1

Reference multiple remote tasks from Tekton Hub using the -<NUMBER> suffix.

By default, Pipelines as Code interprets the string as the latest task to fetch from Tekton
Hub.

Reference a specific version of a remote task from Tekton Hub.

Refers to the 0.1 version of the git-clone remote task from Tekton Hub.

Remote tasks using URLs

The public URL to the remote task.

NOTE

If you use GitHub and the remote task URL uses the same host as the
Repository custom resource definition (CRD), Pipelines as Code uses the
GitHub token and fetches the URL using the GitHub API.
For example, if you have a repository URL similar to
https://github.com/<organization>/<repository> and the remote HTTP
URL references a GitHub blob similar to
https://github.com/<organization>/<repository>/blob/<mainbranch>/<p
ath>/<file>, Pipelines as Code fetches the task definition files from that
private repository with the GitHub App token.

When you work on a public GitHub repository, Pipelines as Code acts
similarly for a GitHub raw URL such as
https://raw.githubusercontent.com/<organization>/<repository>/<main
branch>/<path>/<file>.

GitHub App tokens are scoped to the owner or organization where the
repository is located. When you use the GitHub webhook method, you can
fetch any private or public repository on any organization where the
personal token is allowed.

Reference a task from a YAML file inside your repository

...
 pipelinesascode.tekton.dev/task: "git-clone"
 pipelinesascode.tekton.dev/task-1: "golang-test"
 pipelinesascode.tekton.dev/task-2: "tkn" 1
...

...
 pipelinesascode.tekton.dev/task: "[git-clone:0.1]" 1
...

...
 pipelinesascode.tekton.dev/task: "<https://remote.url/task.yaml>" 1
...

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

36

https://github.com/<organization>/<repository>
https://github.com/<organization>/<repository>/blob/<mainbranch>/<path>/<file>
https://raw.githubusercontent.com/<organization>/<repository>/<mainbranch>/<path>/<file>

1

1

Relative path to the local file containing the task definition.

5.3. USING REMOTE PIPELINE ANNOTATIONS WITH PIPELINES AS
CODE

You can share a pipeline definition across multiple repositories by using the remote pipeline annotation.

URL to the remote pipeline definition. You can also provide locations for files inside the same
repository.

NOTE

You can reference only one pipeline definition using the annotation.

5.3.1. Overriding a task in a remote pipeline

By default, if you use a remote pipeline annotation in a pipeline run, Pipelines as Code uses all the tasks
that are a part of the remote pipeline.

You can override a task in a remote pipeline by adding a task annotation to the pipeline run. The added
task must have the same name as a task in the remote pipeline.

For example, you might use the following pipeline run definition:

Example pipeline run definition referencing a remote pipeline and overriding a task

For this example, assume the remote task found at https://git.provider/raw/pipeline.yaml includes a
task named git-clone and the task that the my-git-clone-task.yaml file defines is also named git-clone.

In this case, the pipeline run executes the remote pipeline, but replaces the task named git-clone in the
pipeline with the task you defined.

...
pipelinesascode.tekton.dev/task: "<share/tasks/git-clone.yaml>" 1
...

...
 pipelinesascode.tekton.dev/pipeline: "<https://git.provider/raw/pipeline.yaml>" 1
...

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 annotations:
 pipelinesascode.tekton.dev/pipeline: "https://git.provider/raw/pipeline.yaml"
 pipelinesascode.tekton.dev/task: "./my-git-clone-task.yaml"

CHAPTER 5. USING THE PIPELINES AS CODE RESOLVER

37

CHAPTER 6. MANAGING PIPELINE RUNS
Using Pipelines as Code, you can create pipelines in your code repository and run these pipelines.

6.1. CREATING A PIPELINE RUN USING PIPELINES AS CODE

To run pipelines using Pipelines as Code, you can create pipelines definitions or templates as YAML files
in the .tekton/ directory of the repository. You can reference YAML files in other repositories using
remote URLs, but pipeline runs are only triggered by events in the repository containing the .tekton/
directory.

The Pipelines as Code resolver bundles the pipeline runs with all tasks as a single pipeline run without
external dependencies.

NOTE

For pipelines, use at least one pipeline run with a spec, or a separated Pipeline
object.

For tasks, embed task spec inside a pipeline, or define it separately as a Task
object.

Parameterizing commits and URLs

You can specify the parameters of your commit and URL by using dynamic, expandable variables with
the {{<var>}} format. Currently, you can use the following variables:

{{repo_owner}}: The repository owner.

{{repo_name}}: The repository name.

{{repo_url}}: The repository full URL.

{{revision}}: Full SHA revision of a commit.

{{sender}}: The username or account id of the sender of the commit.

{{source_branch}}: The branch name where the event originated.

{{target_branch}}: The branch name that the event targets. For push events, it’s the same as
the source_branch.

{{pull_request_number}}: The pull or merge request number, defined only for a pull_request
event type.

{{git_auth_secret}}: The secret name that is generated automatically with Git provider’s token
for checking out private repos.

Matching an event to a pipeline run

You can match different Git provider events with each pipeline by using special annotations on the
pipeline run. If there are multiple pipeline runs matching an event, Pipelines as Code runs them in parallel
and posts the results to the Git provider as soon a pipeline run finishes.

Matching a pull event to a pipeline run

You can use the following example to match the pipeline-pr-main pipeline with a pull_request event

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

38

1

1

You can use the following example to match the pipeline-pr-main pipeline with a pull_request event
that targets the main branch:

You can specify multiple branches by adding comma-separated entries. For example, "[main,
release-nightly]". In addition, you can specify the following:

Full references to branches such as "refs/heads/main"

Globs with pattern matching such as "refs/heads/*"

Tags such as "refs/tags/1.*"

Matching a push event to a pipeline run

You can use the following example to match the pipeline-push-on-main pipeline with a push event
targeting the refs/heads/main branch:

You can specifiy multiple branches by adding comma-separated entries. For example, "[main,
release-nightly]". In addition, you can specify the following:

Full references to branches such as "refs/heads/main"

Globs with pattern matching such as "refs/heads/*"

Tags such as "refs/tags/1.*"

Advanced event matching

Pipelines as Code supports using Common Expression Language (CEL) based filtering for advanced
event matching. If you have the pipelinesascode.tekton.dev/on-cel-expression annotation in your
pipeline run, Pipelines as Code uses the CEL expression and skips the on-target-branch annotation.
Compared to the simple on-target-branch annotation matching, the CEL expressions allow complex
filtering and negation.

To use CEL-based filtering with Pipelines as Code, consider the following examples of annotations:

To match a pull_request event targeting the main branch and coming from the wip branch:

...
 metadata:
 name: pipeline-pr-main
 annotations:
 pipelinesascode.tekton.dev/on-target-branch: "[main]" 1
 pipelinesascode.tekton.dev/on-event: "[pull_request]"
...

...
 metadata:
 name: pipeline-push-on-main
 annotations:
 pipelinesascode.tekton.dev/on-target-branch: "[refs/heads/main]" 1
 pipelinesascode.tekton.dev/on-event: "[push]"
...

CHAPTER 6. MANAGING PIPELINE RUNS

39

1

To run a pipeline only if a path has changed, you can use the .pathChanged suffix function with
a glob pattern:

Matches all markdown files in the docs directory.

To match all pull requests starting with the title [DOWNSTREAM]:

To run a pipeline on a pull_request event, but skip the experimental branch:

For advanced CEL-based filtering while using Pipelines as Code, you can use the following fields and
suffix functions:

event: A push or pull_request event.

target_branch: The target branch.

source_branch: The branch of origin of a pull_request event. For push events, it is same as
the target_branch.

event_title: Matches the title of the event, such as the commit title for a push event, and the
title of a pull or merge request for a pull_request event. Currently, only GitHub, Gitlab, and
Bitbucket Cloud are the supported providers.

.pathChanged: A suffix function to a string. The string can be a glob of a path to check if the
path has changed. Currently, only GitHub and Gitlab are supported as providers.

In addition, you can access the full payload as passed by the Git repository provider. Use the headers
field to access the headers of the payload, for example, headers['x-github-event']. Use the body field
to access the body of the payload, for example, body.pull_request.state.

IMPORTANT

...
 pipelinesascode.tekton.dev/on-cel-expression: |
 event == "pull_request" && target_branch == "main" && source_branch == "wip"
...

...
 pipelinesascode.tekton.dev/on-cel-expression: |
 event == "pull_request" && "docs/*.md".pathChanged() 1
...

...
 pipelinesascode.tekton.dev/on-cel-expression: |
 event == "pull_request && event_title.startsWith("[DOWNSTREAM]")
...

...
 pipelinesascode.tekton.dev/on-cel-expression: |
 event == "pull_request" && target_branch != experimental"
...

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

40

IMPORTANT

using the header and body of the payload for CEL-based filtering with Pipelines as Code
is a Technology Preview feature only. Technology Preview features are not supported
with Red Hat production service level agreements (SLAs) and might not be functionally
complete. Red Hat does not recommend using them in production. These features
provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

In the following example, the pipeline run starts only if all of the following conditions are true:

The pull request is targeting the main branch.

The author of the pull request is superuser.

The action is synchronize; this action triggers when an update occurs on a pull request.

NOTE

If you use the header or body field for event matching, you might be unable to trigger
the pipeline run using Git commands such as retest. If you use a Git command, the
payload body is the comment that contains this command and not the original payload.

If you want to trigger the pipeline run again when using the body field for event matching,
you can close and reopen the pull request or merge request, or alternatively add a new
SHA commit, for example using the following command:

Using the temporary GitHub App token for Github API operations

You can use the temporary installation token generated by Pipelines as Code from GitHub App to
access the GitHub API. The token value is stored in the temporary {{git_auth_secret}} dynamic variable
generated for private repositories in the git-provider-token key.

For example, to add a comment to a pull request, you can use the github-add-comment task from
Tekton Hub using a Pipelines as Code annotation:

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 annotations:
 pipelinesascode.tekton.dev/on-cel-expression: |
 body.pull_request.base.ref == "main" &&
 body.pull_request.user.login == "superuser" &&
 body.action == "synchronize"
...

git commit --amend --no-edit && git push --force-with-lease

...
 pipelinesascode.tekton.dev/task: "github-add-comment"
...

CHAPTER 6. MANAGING PIPELINE RUNS

41

https://access.redhat.com/support/offerings/techpreview/

1

You can then add a task to the tasks section or finally tasks in the pipeline run definition:

By using the dynamic variables, you can reuse this snippet template for any pull request from any
repository.

NOTE

On GitHub Apps, the generated installation token is available for 8 hours and scoped to
the repository from where the events originate unless configured differently on the
cluster.

Additional resources

CEL language specification

6.2. RUNNING A PIPELINE RUN USING PIPELINES AS CODE

With default configuration, Pipelines as Code runs any pipeline run in the .tekton/ directory of the
default branch of repository, when specified events such as pull request or push occurs on the
repository. For example, if a pipeline run on the default branch has the annotation
pipelinesascode.tekton.dev/on-event: "[pull_request]", it will run whenever a pull request event
occurs.

In the event of a pull request or a merge request, Pipelines as Code also runs pipelines from branches
other than the default branch, if the following conditions are met by the author of the pull request:

The author is the owner of the repository.

The author is a collaborator on the repository.

The author is a public member on the organization of the repository.

The pull request author is listed in an OWNER file located in the repository root of the main
branch as defined in the GitHub configuration for the repository. Also, the pull request author is
added to either approvers or reviewers section. For example, if an author is listed in the
approvers section, then a pull request raised by that author starts the pipeline run.

[...]
tasks:
 - name:
 taskRef:
 name: github-add-comment
 params:
 - name: REQUEST_URL
 value: "{{ repo_url }}/pull/{{ pull_request_number }}" 1
 - name: COMMENT_OR_FILE
 value: "Pipelines as Code IS GREAT!"
 - name: GITHUB_TOKEN_SECRET_NAME
 value: "{{ git_auth_secret }}"
 - name: GITHUB_TOKEN_SECRET_KEY
 value: "git-provider-token"
...

...

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

42

https://github.com/google/cel-spec/blob/master/doc/langdef.md

1

1

If the pull request author does not meet the requirements, another user who meets the requirements
can comment /ok-to-test on the pull request, and start the pipeline run.

Pipeline run execution

A pipeline run always runs in the namespace of the Repository custom resource definition (CRD)
associated with the repository that generated the event.

You can observe the execution of your pipeline runs using the tkn pac CLI tool.

To follow the execution of the last pipeline run, use the following example:

my-pipeline-ci is the namespace for the Repository CRD.

To follow the execution of any pipeline run interactively, use the following example:

my-pipeline-ci is the namespace for the Repository CRD. If you need to view a pipeline
run other than the last one, you can use the tkn pac logs command to select a
PipelineRun attached to the repository:

If you have configured Pipelines as Code with a GitHub App, Pipelines as Code posts a URL in the
Checks tab of the GitHub App. You can click the URL and follow the pipeline execution.

6.3. RESTARTING OR CANCELING A PIPELINE RUN USING PIPELINES
AS CODE

You can restart or cancel a pipeline run with no events, such as sending a new commit to your branch or
raising a pull request. To restart all pipeline runs, use the Re-run all checks feature in the GitHub App.

To restart all or specific pipeline runs, use the following comments:

The /test and /retest comment restarts all pipeline runs.

The /test <pipeline_run_name> and /retest <pipeline_run_name> comment restarts a
specific pipeline run.

To cancel all or specific pipeline runs, use the following comments:

The /cancel comment cancels all pipeline runs.

The /cancel <pipeline_run_name> comment cancels a specific pipeline run.

The results of the comments are visible under the Checks tab of the GitHub App.

Procedure

 approvers:
 - approved
...

$ tkn pac logs -n <my-pipeline-ci> -L 1

$ tkn pac logs -n <my-pipeline-ci> 1

CHAPTER 6. MANAGING PIPELINE RUNS

43

If you target a pull request and you use the GitHub App, go to the Checks tab and click Re-run
all checks.

If you target a pull or merge request, use the comments inside your pull request:

Example comment that cancels all pipeline runs

This is a comment inside a pull request.
/cancel

If you target a push request, include the comments within your commit messages.

NOTE

This feature is supported for the GitHub provider only.

a. Go to your GitHub repository.

b. Click the Commits section.

c. Click the commit where you want to restart a pipeline run.

d. Click on the line number where you want to add a comment.

Example comment that retests a specific pipeline run

This is a comment inside a commit.
/retest <pipeline_run_name>

NOTE

If you run a command on a commit that exists in multiple branches within a
push request, the branch with the latest commit is used.

This results in two situations:

If you run a command on a commit without any argument, such as /test,
the test is automatically performed on the main branch.

If you include a branch specification, such as /test branch:user-branch,
the test is performed on the commit where the comment is located with
the context of the user-branch branch.

6.4. MONITORING PIPELINE RUN STATUS USING PIPELINES AS CODE

Depending on the context and supported tools, you can monitor the status of a pipeline run in different
ways.

Status on GitHub Apps

When a pipeline run finishes, the status is added in the Check tabs with limited information on how long
each task of your pipeline took, and the output of the tkn pipelinerun describe command.

Log error snippet

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

44

When Pipelines as Code detects an error in one of the tasks of a pipeline, a small snippet consisting of
the last 3 lines in the task breakdown of the first failed task is displayed.

NOTE

Pipelines as Code avoids leaking secrets by looking into the pipeline run and replacing
secret values with hidden characters. However, Pipelines as Code cannot hide secrets
coming from workspaces and envFrom source.

Annotations for log error snippets

In the TektonConfig custom resource, in the pipelinesAsCode.settings spec, you can set the error-
detection-from-container-logs parameter to true. In this case, Pipelines as Code detects the errors
from the container logs and adds them as annotations on the pull request where the error occurred.

IMPORTANT

Adding annotations for log error snippets is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Currently, Pipelines as Code supports only the simple cases where the error looks like makefile or grep
output of the following format:

You can customize the regular expression used to detect the errors with the error-detection-simple-
regexp parameter. The regular expression uses named groups to give flexibility on how to specify the
matching. The groups needed to match are filename, line, and error. You can view the Pipelines as
Code config map for the default regular expression.

NOTE

By default, Pipelines as Code scans only the last 50 lines of the container logs. You can
increase this value in the error-detection-max-number-of-lines field or set -1 for an
unlimited number of lines. However, such configurations may increase the memory usage
of the watcher.

Status for webhook

For webhook, when the event is a pull request, the status is added as a comment on the pull or merge
request.

Failures

If a namespace is matched to a Repository custom resource definition (CRD), Pipelines as Code emits
its failure log messages in the Kubernetes events inside the namespace.

Status associated with Repository CRD

<filename>:<line>:<column>: <error message>

CHAPTER 6. MANAGING PIPELINE RUNS

45

https://access.redhat.com/support/offerings/techpreview/

1

The last 5 status messages for a pipeline run is stored inside the Repository custom resource.

Using the tkn pac describe command, you can extract the status of the runs associated with your
repository and its metadata.

Notifications

Pipelines as Code does not manage notifications. If you need to have notifications, use the finally
feature of pipelines.

Additional resources

An example task to send Slack messages on success or failure

An example of a pipeline run with finally tasks triggered on push events

Additional resources

An example of the git-clone task used for cloning private repositories

6.5. CLEANING UP PIPELINE RUN USING PIPELINES AS CODE

There can be many pipeline runs in a user namespace. By setting the max-keep-runs annotation, you
can configure Pipelines as Code to retain a limited number of pipeline runs that matches an event. For
example:

Pipelines as Code starts cleaning up right after it finishes a successful execution, retaining only the
maximum number of pipeline runs configured using the annotation.

NOTE

Pipelines as Code skips cleaning the running pipelines but cleans up the
pipeline runs with an unknown status.

Pipelines as Code skips cleaning a failed pull request.

6.6. USING INCOMING WEBHOOK WITH PIPELINES AS CODE

Using an incoming webhook URL and a shared secret, you can start a pipeline run in a repository.

To use incoming webhooks, specify the following within the spec section of the Repository custom

$ oc get repo -n <pipelines-as-code-ci>

NAME URL NAMESPACE SUCCEEDED
REASON STARTTIME COMPLETIONTIME
pipelines-as-code-ci https://github.com/openshift-pipelines/pipelines-as-code pipelines-as-code-ci
True Succeeded 59m 56m

...
 pipelinesascode.tekton.dev/max-keep-runs: "<max_number>" 1
...

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

46

https://github.com/chmouel/tekton-slack-task-status
https://github.com/openshift-pipelines/pipelines-as-code/blob/7b41cc3f769af40a84b7ead41c6f037637e95070/.tekton/push.yaml
https://github.com/openshift-pipelines/pipelines-as-code/blob/main/test/testdata/pipelinerun_git_clone_private.yaml

To use incoming webhooks, specify the following within the spec section of the Repository custom
resource definition (CRD):

The incoming webhook URL that Pipelines as Code matches.

The Git provider and the user token. Currently, Pipelines as Code supports github, gitlab, and
bitbucket-cloud.

NOTE

When using incoming webhook URLs in the context of GitHub app, you must
specify the token.

The target branches and a secret for the incoming webhook URL.

Example: Repository CRD with incoming webhook

Example: The repo-incoming-secret secret for incoming webhook

To trigger a pipeline run located in the .tekton directory of a Git repository, use the following command:

Pipelines as Code matches the incoming URL and treats it as a push event. However, Pipelines as Code
does not report status of the pipeline runs triggered by this command.

apiVersion: "pipelinesascode.tekton.dev/v1alpha1"
kind: Repository
metadata:
 name: repo
 namespace: ns
spec:
 url: "https://github.com/owner/repo"
 git_provider:
 type: github
 secret:
 name: "owner-token"
 incoming:
 - targets:
 - main
 secret:
 name: repo-incoming-secret
 type: webhook-url

apiVersion: v1
kind: Secret
metadata:
 name: repo-incoming-secret
 namespace: ns
type: Opaque
stringData:
 secret: <very-secure-shared-secret>

$ curl -X POST 'https://control.pac.url/incoming?secret=very-secure-shared-
secret&repository=repo&branch=main&pipelinerun=target_pipelinerun'

CHAPTER 6. MANAGING PIPELINE RUNS

47

To get a report or a notification, add it directly with a finally task to your pipeline. Alternatively, you can
inspect the Repository CRD with the tkn pac CLI tool.

6.7. ADDITIONAL RESOURCES

An example of the .tekton/ directory in the Pipelines as Code repository

Creating applications using the Developer perspective

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

48

https://github.com/openshift-pipelines/pipelines-as-code/tree/main/.tekton
https://docs.openshift.com/container-platform/latest/applications/creating_applications/odc-creating-applications-using-developer-perspective.html

CHAPTER 7. PIPELINES AS CODE COMMAND REFERENCE
You can use the tkn pac CLI tool to control Pipelines as Code. You can also configure Pipelines as Code
logging with the TektonConfig custom resource and use the oc command to view Pipelines as Code
logs.

7.1. PIPELINES AS CODE COMMAND REFERENCE

The tkn pac CLI tool offers the following capabilities:

Bootstrap Pipelines as Code installation and configuration.

Create a new Pipelines as Code repository.

List all Pipelines as Code repositories.

Describe a Pipelines as Code repository and the associated runs.

Generate a simple pipeline run to get started.

Resolve a pipeline run as if it was executed by Pipelines as Code.

TIP

You can use the commands corresponding to the capabilities for testing and experimentation, so that
you don’t have to make changes to the Git repository containing the application source code.

7.1.1. Basic syntax

7.1.2. Global options

7.1.3. Utility commands

7.1.3.1. bootstrap

Table 7.1. Bootstrapping Pipelines as Code installation and configuration

Command Description

tkn pac bootstrap Installs and configures Pipelines as Code for Git
repository hosting service providers, such as GitHub
and GitHub Enterprise.

tkn pac bootstrap --nightly Installs the nightly build of Pipelines as Code.

$ tkn pac [command or options] [arguments]

$ tkn pac --help

CHAPTER 7. PIPELINES AS CODE COMMAND REFERENCE

49

tkn pac bootstrap --route-url
<public_url_to_ingress_spec>

Overrides the OpenShift route URL.

By default, tkn pac bootstrap detects the
OpenShift route, which is automatically associated
with the Pipelines as Code controller service.

If you do not have an OpenShift Container Platform
cluster, it asks you for the public URL that points to
the ingress endpoint.

tkn pac bootstrap github-app Create a GitHub application and secrets in the
openshift-pipelines namespace.

Command Description

7.1.3.2. repository

Table 7.2. Managing Pipelines as Code repositories

Command Description

tkn pac create repository Creates a new Pipelines as Code repository and a
namespace based on the pipeline run template.

tkn pac list Lists all the Pipelines as Code repositories and
displays the last status of the associated runs.

tkn pac repo describe Describes a Pipelines as Code repository and the
associated runs.

7.1.3.3. generate

Table 7.3. Generating pipeline runs using Pipelines as Code

Command Description

tkn pac generate Generates a simple pipeline run.

When executed from the directory containing the
source code, it automatically detects current Git
information.

In addition, it uses basic language detection capability
and adds extra tasks depending on the language.

For example, if it detects a setup.py file at the
repository root, the pylint task is automatically added
to the generated pipeline run.

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

50

https://hub.tekton.dev/tekton/task/pylint

7.1.3.4. resolve

Table 7.4. Resolving and executing pipeline runs using Pipelines as Code

Command Description

tkn pac resolve Executes a pipeline run as if it is owned by the
Pipelines as Code on service.

tkn pac resolve -f .tekton/pull-request.yaml |
oc apply -f -

Displays the status of a live pipeline run that uses the
template in .tekton/pull-request.yaml.

Combined with a Kubernetes installation running on
your local machine, you can observe the pipeline run
without generating a new commit.

If you run the command from a source code
repository, it attempts to detect the current Git
information and automatically resolve parameters
such as current revision or branch.

tkn pac resolve -f .tekton/pr.yaml -p
revision=main -p repo_name=
<repository_name>

Executes a pipeline run by overriding default
parameter values derived from the Git repository.

The -f option can also accept a directory path and
apply the tkn pac resolve command on all .yaml
or .yml files in that directory. You can also use the -f
flag multiple times in the same command.

You can override the default information gathered
from the Git repository by specifying parameter
values using the -p option. For example, you can use
a Git branch as a revision and a different repository
name.

7.2. CONFIGURING PIPELINES AS CODE LOGGING

You can configure Pipelines as Code logging by editing the pac-config-logging config map in the
TektonConfig custom resource (CR).

Prerequisites

You have Pipelines as Code installed on your cluster.

Procedure

1. In the Administrator perspective of the web console, go to Administration →
CustomResourceDefinitions.

2. Use the Search by name field to search for the tektonconfigs.operator.tekton.dev custom
resource definition (CRD) and click TektonConfig to view the CRD Details page.

3. Click the Instances tab.

CHAPTER 7. PIPELINES AS CODE COMMAND REFERENCE

51

1

2

3

4. Click the config instance to view the TektonConfig CR details.

5. Click the YAML tab.

6. Edit the loglevel. fields under the .options.configMaps.pac-config-logging.data parameter
based on your requirements.

Example TektonConfig CR with the Pipelines as Code log level fields set to warn

The log level for the pipelines-as-code-watcher component.

The log level for the pipelines-as-code-webhook component.

The log level for the pipelines-as-code-controller component.

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 platforms:
 openshift:
 pipelinesAsCode:
 options:
 configMaps:
 pac-config-logging:
 data:
 loglevel.pac-watcher: warn 1
 loglevel.pipelines-as-code-webhook: warn 2
 loglevel.pipelinesascode: warn 3
 zap-logger-config: |
 {
 "level": "info",
 "development": false,
 "sampling": {
 "initial": 100,
 "thereafter": 100
 },
 "outputPaths": ["stdout"],
 "errorOutputPaths": ["stderr"],
 "encoding": "json",
 "encoderConfig": {
 "timeKey": "ts",
 "levelKey": "level",
 "nameKey": "logger",
 "callerKey": "caller",
 "messageKey": "msg",
 "stacktraceKey": "stacktrace",
 "lineEnding": "",
 "levelEncoder": "",
 "timeEncoder": "iso8601",
 "durationEncoder": "",
 "callerEncoder": ""
 }
 }

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

52

7. Optional: Create a custom logging config map for the Pipelines as Code components by
changing the .env.value for each component under the .options.deployments field. The
example below shows the configuration with the custom config map called custom-pac-
config-logging.

Example TektonConfig CR with the Pipelines as Code custom logging config map

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 platforms:
 openshift:
 pipelinesAsCode:
 enable: true
 options:
 configMaps:
 custom-pac-config-logging:
 data:
 loglevel.pac-watcher: warn
 loglevel.pipelines-as-code-webhook: warn
 loglevel.pipelinesascode: warn
 zap-logger-config: |
 {
 "level": "info",
 "development": false,
 "sampling": {
 "initial": 100,
 "thereafter": 100
 },
 "outputPaths": ["stdout"],
 "errorOutputPaths": ["stderr"],
 "encoding": "json",
 "encoderConfig": {
 "timeKey": "ts",
 "levelKey": "level",
 "nameKey": "logger",
 "callerKey": "caller",
 "messageKey": "msg",
 "stacktraceKey": "stacktrace",
 "lineEnding": "",
 "levelEncoder": "",
 "timeEncoder": "iso8601",
 "durationEncoder": "",
 "callerEncoder": ""
 }
 }
 deployments:
 pipelines-as-code-controller:
 spec:
 template:
 spec:
 containers:
 - name: pac-controller
 env:

CHAPTER 7. PIPELINES AS CODE COMMAND REFERENCE

53

1

7.3. SPLITTING PIPELINES AS CODE LOGS BY NAMESPACE

Pipelines as Code logs contain the namespace information to make it possible to filter logs or split the
logs by a particular namespace. For example, to view the Pipelines as Code logs related to the
mynamespace namespace, enter the following command:

Replace pipelines-as-code-controller-<unique-id> with the Pipelines as Code controller name.

7.4. ADDITIONAL RESOURCES

Installing OpenShift Pipelines

Installing tkn

 - name: CONFIG_LOGGING_NAME
 value: custom-pac-config-logging
 pipelines-as-code-watcher:
 spec:
 template:
 spec:
 containers:
 - name: pac-watcher
 env:
 - name: CONFIG_LOGGING_NAME
 value: custom-pac-config-logging
 pipelines-as-code-webhook:
 spec:
 template:
 spec:
 containers:
 - name: pac-webhook
 env:
 - name: CONFIG_LOGGING_NAME
 value: custom-pac-config-logging

$ oc logs pipelines-as-code-controller-<unique-id> -n openshift-pipelines | grep mynamespace 1

Red Hat OpenShift Pipelines 1.14 Pipelines as Code

54

https://access.redhat.com/documentation/en-us/red_hat_openshift_pipelines/1.14/html-single/installing_and_configuring/#installing-pipelines
https://access.redhat.com/documentation/en-us/red_hat_openshift_pipelines/1.14/html-single/pipelines_cli_tkn_reference/#installing-tkn

	Table of Contents
	CHAPTER 1. ABOUT PIPELINES AS CODE
	1.1. KEY FEATURES

	CHAPTER 2. INSTALLING AND CONFIGURING PIPELINES AS CODE
	2.1. INSTALLING PIPELINES AS CODE ON AN OPENSHIFT CONTAINER PLATFORM
	2.2. INSTALLING PIPELINES AS CODE CLI
	2.3. CUSTOMIZING PIPELINES AS CODE CONFIGURATION
	2.4. CONFIGURING ADDITIONAL PIPELINES AS CODE CONTROLLERS TO SUPPORT ADDITIONAL GITHUB APPS
	2.5. ADDITIONAL RESOURCES

	CHAPTER 3. USING PIPELINES AS CODE WITH A GIT REPOSITORY HOSTING SERVICE PROVIDER
	3.1. USING PIPELINES AS CODE WITH A GITHUB APP
	3.1.1. Configuring a GitHub App using the command line interface
	3.1.2. Creating a GitHub App in administrator perspective
	3.1.3. Configuring a GitHub App manually and creating a secret for Pipelines as Code
	3.1.4. Scoping the GitHub token to additional repositories

	3.2. USING PIPELINES AS CODE WITH GITHUB WEBHOOK
	3.3. USING PIPELINES AS CODE WITH GITLAB
	3.4. USING PIPELINES AS CODE WITH BITBUCKET CLOUD
	3.5. USING PIPELINES AS CODE WITH BITBUCKET SERVER
	3.6. INTERFACING PIPELINES AS CODE WITH CUSTOM CERTIFICATES
	3.7. USING PRIVATE REPOSITORIES WITH PIPELINES AS CODE

	CHAPTER 4. USING THE REPOSITORY CUSTOM RESOURCE
	4.1. CREATING THE REPOSITORY CUSTOM RESOURCE
	4.2. SETTING CONCURRENCY LIMITS
	4.3. CHANGING THE SOURCE BRANCH FOR THE PIPELINE DEFINITION
	4.4. CUSTOM PARAMETER EXPANSION

	CHAPTER 5. USING THE PIPELINES AS CODE RESOLVER
	5.1. ABOUT THE PIPELINES AS CODE RESOLVER
	5.2. USING REMOTE TASK ANNOTATIONS WITH PIPELINES AS CODE
	5.3. USING REMOTE PIPELINE ANNOTATIONS WITH PIPELINES AS CODE
	5.3.1. Overriding a task in a remote pipeline

	CHAPTER 6. MANAGING PIPELINE RUNS
	6.1. CREATING A PIPELINE RUN USING PIPELINES AS CODE
	6.2. RUNNING A PIPELINE RUN USING PIPELINES AS CODE
	6.3. RESTARTING OR CANCELING A PIPELINE RUN USING PIPELINES AS CODE
	6.4. MONITORING PIPELINE RUN STATUS USING PIPELINES AS CODE
	6.5. CLEANING UP PIPELINE RUN USING PIPELINES AS CODE
	6.6. USING INCOMING WEBHOOK WITH PIPELINES AS CODE
	6.7. ADDITIONAL RESOURCES

	CHAPTER 7. PIPELINES AS CODE COMMAND REFERENCE
	7.1. PIPELINES AS CODE COMMAND REFERENCE
	7.1.1. Basic syntax
	7.1.2. Global options
	7.1.3. Utility commands
	7.1.3.1. bootstrap
	7.1.3.2. repository
	7.1.3.3. generate
	7.1.3.4. resolve

	7.2. CONFIGURING PIPELINES AS CODE LOGGING
	7.3. SPLITTING PIPELINES AS CODE LOGS BY NAMESPACE
	7.4. ADDITIONAL RESOURCES

