
Red Hat OpenShift Serverless 1.30

Integrations

Integrating OpenShift Serverless with Service Mesh, and with the cost mangement
service

Last Updated: 2023-09-19

Red Hat OpenShift Serverless 1.30 Integrations

Integrating OpenShift Serverless with Service Mesh, and with the cost mangement service

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on how to integrate Service Mesh with OpenShift Serverless. It
also covers using the cost management service to help you understand and track costs, and shows
you how to use NVIDIA GPU resources with serverless applications.

. .

. .

. .

Table of Contents

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS
1.1. PREREQUISITES
1.2. CREATING A CERTIFICATE TO ENCRYPT INCOMING EXTERNAL TRAFFIC
1.3. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS
1.4. ENABLING KNATIVE SERVING METRICS WHEN USING SERVICE MESH WITH MTLS
1.5. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS WHEN KOURIER IS ENABLED
1.6. IMPROVING NET-ISTIO MEMORY USAGE BY USING SECRET FILTERING FOR SERVICE MESH

CHAPTER 2. INTEGRATING SERVERLESS WITH THE COST MANAGEMENT SERVICE
2.1. PREREQUISITES
2.2. USING LABELS FOR COST MANAGEMENT QUERIES
2.3. ADDITIONAL RESOURCES

CHAPTER 3. USING NVIDIA GPU RESOURCES WITH SERVERLESS APPLICATIONS
3.1. SPECIFYING GPU REQUIREMENTS FOR A SERVICE
3.2. ADDITIONAL RESOURCES FOR OPENSHIFT CONTAINER PLATFORM

3
3
3
4

12
13
15

17
17
17
17

18
18
18

Table of Contents

1

Red Hat OpenShift Serverless 1.30 Integrations

2

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT
SERVERLESS

The OpenShift Serverless Operator provides Kourier as the default ingress for Knative. However, you
can use Service Mesh with OpenShift Serverless whether Kourier is enabled or not. Integrating with
Kourier disabled allows you to configure additional networking and routing options that the Kourier
ingress does not support, such as mTLS functionality.

IMPORTANT

OpenShift Serverless only supports the use of Red Hat OpenShift Service Mesh
functionality that is explicitly documented in this guide, and does not support other
undocumented features.

1.1. PREREQUISITES

The examples in the following procedures use the domain example.com. The example
certificate for this domain is used as a certificate authority (CA) that signs the subdomain
certificate.
To complete and verify these procedures in your deployment, you need either a certificate
signed by a widely trusted public CA or a CA provided by your organization. Example commands
must be adjusted according to your domain, subdomain, and CA.

You must configure the wildcard certificate to match the domain of your OpenShift Container
Platform cluster. For example, if your OpenShift Container Platform console address is
https://console-openshift-console.apps.openshift.example.com, you must configure the
wildcard certificate so that the domain is *.apps.openshift.example.com. For more information
about configuring wildcard certificates, see the following topic about Creating a certificate to
encrypt incoming external traffic.

If you want to use any domain name, including those which are not subdomains of the default
OpenShift Container Platform cluster domain, you must set up domain mapping for those
domains. For more information, see the OpenShift Serverless documentation about Creating a
custom domain mapping.

1.2. CREATING A CERTIFICATE TO ENCRYPT INCOMING EXTERNAL
TRAFFIC

By default, the Service Mesh mTLS feature only secures traffic inside of the Service Mesh itself,
between the ingress gateway and individual pods that have sidecars. To encrypt traffic as it flows into
the OpenShift Container Platform cluster, you must generate a certificate before you enable the
OpenShift Serverless and Service Mesh integration.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

You have installed the OpenShift Serverless Operator and Knative Serving.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

3

https://console-openshift-console.apps.openshift.example.com
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.30/html-single/serving/#serverless-create-domain-mapping_create-domain-mapping

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads.

Procedure

1. Create a root certificate and private key that signs the certificates for your Knative services:

2. Create a wildcard certificate:

3. Sign the wildcard certificate:

4. Create a secret by using the wildcard certificate:

This certificate is picked up by the gateways created when you integrate OpenShift Serverless
with Service Mesh, so that the ingress gateway serves traffic with this certificate.

1.3. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

You can integrate Service Mesh with OpenShift Serverless without using Kourier as the default ingress.
To do this, do not install the Knative Serving component before completing the following procedure.
There are additional steps required when creating the KnativeServing custom resource definition
(CRD) to integrate Knative Serving with Service Mesh, which are not covered in the general Knative
Serving installation procedure. This procedure might be useful if you want to integrate Service Mesh as
the default and only ingress for your OpenShift Serverless installation.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads.

Install the Red Hat OpenShift Service Mesh Operator and create a ServiceMeshControlPlane

$ openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 \
 -subj '/O=Example Inc./CN=example.com' \
 -keyout root.key \
 -out root.crt

$ openssl req -nodes -newkey rsa:2048 \
 -subj "/CN=*.apps.openshift.example.com/O=Example Inc." \
 -keyout wildcard.key \
 -out wildcard.csr

$ openssl x509 -req -days 365 -set_serial 0 \
 -CA root.crt \
 -CAkey root.key \
 -in wildcard.csr \
 -out wildcard.crt

$ oc create -n istio-system secret tls wildcard-certs \
 --key=wildcard.key \
 --cert=wildcard.crt

Red Hat OpenShift Serverless 1.30 Integrations

4

1

Install the Red Hat OpenShift Service Mesh Operator and create a ServiceMeshControlPlane
resource in the istio-system namespace. If you want to use mTLS functionality, you must also
set the spec.security.dataPlane.mtls field for the ServiceMeshControlPlane resource to
true.

IMPORTANT

Using OpenShift Serverless with Service Mesh is only supported with Red Hat
OpenShift Service Mesh version 2.0.5 or later.

Install the OpenShift Serverless Operator.

Install the OpenShift CLI (oc).

Procedure

1. Add the namespaces that you would like to integrate with Service Mesh to the
ServiceMeshMemberRoll object as members:

A list of namespaces to be integrated with Service Mesh.

IMPORTANT

This list of namespaces must include the knative-serving and knative-eventing
namespaces.

2. Apply the ServiceMeshMemberRoll resource:

3. Create the necessary gateways so that Service Mesh can accept traffic:

Example knative-local-gateway object using HTTP

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system
spec:
 members: 1
 - knative-serving
 - knative-eventing
 - <namespace>

$ oc apply -f <filename>

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: knative-ingress-gateway
 namespace: knative-serving
spec:
 selector:

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

5

1

2

Add the name of the secret that contains the wildcard certificate.

The knative-local-gateway serves HTTP traffic. Using HTTP means that traffic coming
from outside of Service Mesh, but using an internal hostname, such as
example.default.svc.cluster.local, is not encrypted. You can set up encryption for this
path by creating another wildcard certificate and an additional gateway that uses a
different protocol spec.

Example knative-local-gateway object using HTTPS

 istio: ingressgateway
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 hosts:
 - "*"
 tls:
 mode: SIMPLE
 credentialName: <wildcard_certs> 1

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: knative-local-gateway
 namespace: knative-serving
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 8081
 name: http
 protocol: HTTP 2
 hosts:
 - "*"

apiVersion: v1
kind: Service
metadata:
 name: knative-local-gateway
 namespace: istio-system
 labels:
 experimental.istio.io/disable-gateway-port-translation: "true"
spec:
 type: ClusterIP
 selector:
 istio: ingressgateway
 ports:
 - name: http2
 port: 80
 targetPort: 8081

Red Hat OpenShift Serverless 1.30 Integrations

6

1

2

4. Apply the Gateway resources:

5. Install Knative Serving by creating the following KnativeServing custom resource definition
(CRD), which also enables the Istio integration:

Enables Istio integration.

Enables sidecar injection for Knative Serving data plane pods.

6. Apply the KnativeServing resource:

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: knative-local-gateway
 namespace: knative-serving
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 hosts:
 - "*"
 tls:
 mode: SIMPLE
 credentialName: <wildcard_certs>

$ oc apply -f <filename>

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 ingress:
 istio:
 enabled: true 1
 deployments: 2
 - name: activator
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"
 - name: autoscaler
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"

$ oc apply -f <filename>

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

7

1

2

7. Install Knative Eventing by creating the following KnativeEventing custom resource definition
(CRD), which also enables the Istio integration:

Enables Eventing istio controller to create a DestinationRule for each InMemoryChannel
or KafkaChannel service.

Enables sidecar injection for Knative Eventing pods.

IMPORTANT

The Knative Eventing integration with Service Mesh is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

1. Apply the KnativeEventing resource:

2. Install Knative Kafka by creating the following KnativeKafka custom resource definition (CRD),
which also enables the Istio integration:

apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 config:
 features:
 istio: enabled 1
 workloads:
 - name: pingsource-mt-adapter
 annotations:
 "sidecar.istio.io/inject": "true" 2
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"
 - name: imc-dispatcher
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"
 - name: mt-broker-ingress
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"
 - name: mt-broker-filter
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"

$ oc apply -f <filename>

Red Hat OpenShift Serverless 1.30 Integrations

8

https://access.redhat.com/support/offerings/techpreview/

1 2

3

The Apache Kafka cluster URL, for example: my-cluster-kafka-bootstrap.kafka:9092.

Enables sidecar injection for Knative Kafka pods.

IMPORTANT

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 name: knative-kafka
 namespace: knative-eventing
spec:
 channel:
 enabled: true
 bootstrapServers: <bootstrap_servers> 1
 source:
 enabled: true
 broker:
 enabled: true
 defaultConfig:
 bootstrapServers: <bootstrap_servers> 2
 numPartitions: <num_partitions>
 replicationFactor: <replication_factor>
 sink:
 enabled: true
 workloads: 3
 - name: kafka-controller
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"
 - name: kafka-broker-receiver
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"
 - name: kafka-broker-dispatcher
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"
 - name: kafka-channel-receiver
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"
 - name: kafka-channel-dispatcher
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"
 - name: kafka-source-dispatcher
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"
 - name: kafka-sink-receiver
 annotations:
 "sidecar.istio.io/inject": "true"
 "sidecar.istio.io/rewriteAppHTTPProbers": "true"

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

9

1

2

IMPORTANT

The Knative Eventing integration with Service Mesh is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

1. Apply the KnativeKafka resource:

2. Install ServiceEntry to make Red Hat OpenShift Service Mesh aware of the communication
between KnativeKafka components and an Apache Kafka cluster:

The list of Apache Kafka cluster hosts, for example: my-cluster-kafka-bootstrap.kafka.

Apache Kafka cluster listeners ports.

NOTE

$ oc apply -f <filename>

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: kafka-cluster
 namespace: knative-eventing
spec:
 hosts: 1
 - <bootstrap_servers_without_port>
 exportTo:
 - "."
 ports: 2
 - number: 9092
 name: tcp-plain
 protocol: TCP
 - number: 9093
 name: tcp-tls
 protocol: TCP
 - number: 9094
 name: tcp-sasl-tls
 protocol: TCP
 - number: 9095
 name: tcp-sasl-plain
 protocol: TCP
 - number: 9096
 name: tcp-noauth
 protocol: TCP
 location: MESH_EXTERNAL
 resolution: NONE

Red Hat OpenShift Serverless 1.30 Integrations

10

https://access.redhat.com/support/offerings/techpreview/

1

2

3

NOTE

The listed ports in spec.ports are example TCP ports and depend on how the
Apache Kafka cluster is configured.

3. Apply the ServiceEntry resource:

IMPORTANT

Ensure that addresses are set in the ServiceEntry. If the addresses are not set, all
the traffic on the port defined in the ServiceEntry is matched regardless of the
host.

Verification

1. Create a Knative Service that has sidecar injection enabled and uses a pass-through route:

A namespace that is part of the Service Mesh member roll.

Instructs Knative Serving to generate an OpenShift Container Platform pass-through
enabled route, so that the certificates you have generated are served through the ingress
gateway directly.

Injects Service Mesh sidecars into the Knative service pods.

2. Apply the Service resource:

Verification

Access your serverless application by using a secure connection that is now trusted by the CA:

$ oc apply -f <filename>

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: <service_name>
 namespace: <namespace> 1
 annotations:
 serving.knative.openshift.io/enablePassthrough: "true" 2
spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "true" 3
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 spec:
 containers:
 - image: <image_url>

$ oc apply -f <filename>

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

11

Example command

Example output

1.4. ENABLING KNATIVE SERVING METRICS WHEN USING SERVICE
MESH WITH MTLS

If Service Mesh is enabled with mTLS, metrics for Knative Serving are disabled by default, because
Service Mesh prevents Prometheus from scraping metrics. This section shows how to enable Knative
Serving metrics when using Service Mesh and mTLS.

Prerequisites

You have installed the OpenShift Serverless Operator and Knative Serving on your cluster.

You have installed Red Hat OpenShift Service Mesh with the mTLS functionality enabled.

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads.

Procedure

1. Specify prometheus as the metrics.backend-destination in the observability spec of the
Knative Serving custom resource (CR):

This step prevents metrics from being disabled by default.

2. Apply the following network policy to allow traffic from the Prometheus namespace:

$ curl --cacert root.crt <service_url>

$ curl --cacert root.crt https://hello-default.apps.openshift.example.com

Hello Openshift!

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
 name: knative-serving
spec:
 config:
 observability:
 metrics.backend-destination: "prometheus"
...

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy

Red Hat OpenShift Serverless 1.30 Integrations

12

3. Modify and reapply the default Service Mesh control plane in the istio-system namespace, so
that it includes the following spec:

1.5. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS
WHEN KOURIER IS ENABLED

You can use Service Mesh with OpenShift Serverless even if Kourier is already enabled. This procedure
might be useful if you have already installed Knative Serving with Kourier enabled, but decide to add a
Service Mesh integration later.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads.

Install the OpenShift CLI (oc).

Install the OpenShift Serverless Operator and Knative Serving on your cluster.

Install Red Hat OpenShift Service Mesh. OpenShift Serverless with Service Mesh and Kourier is
supported for use with both Red Hat OpenShift Service Mesh versions 1.x and 2.x.

Procedure

1. Add the namespaces that you would like to integrate with Service Mesh to the
ServiceMeshMemberRoll object as members:

metadata:
 name: allow-from-openshift-monitoring-ns
 namespace: knative-serving
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 name: "openshift-monitoring"
 podSelector: {}
...

...
spec:
 proxy:
 networking:
 trafficControl:
 inbound:
 excludedPorts:
 - 8444
...

apiVersion: maistra.io/v1

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

13

1

1

A list of namespaces to be integrated with Service Mesh.

2. Apply the ServiceMeshMemberRoll resource:

3. Create a network policy that permits traffic flow from Knative system pods to Knative services:

a. For each namespace that you want to integrate with Service Mesh, create a NetworkPolicy
resource:

Add the namespace that you want to integrate with Service Mesh.

NOTE

kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system
spec:
 members:
 - <namespace> 1
...

$ oc apply -f <filename>

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-serving-system-namespace
 namespace: <namespace> 1
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 knative.openshift.io/part-of: "openshift-serverless"
 podSelector: {}
 policyTypes:
 - Ingress
...

Red Hat OpenShift Serverless 1.30 Integrations

14

NOTE

The knative.openshift.io/part-of: "openshift-serverless" label was added
in OpenShift Serverless 1.22.0. If you are using OpenShift Serverless 1.21.1 or
earlier, add the knative.openshift.io/part-of label to the knative-serving
and knative-serving-ingress namespaces.

Add the label to the knative-serving namespace:

Add the label to the knative-serving-ingress namespace:

b. Apply the NetworkPolicy resource:

1.6. IMPROVING NET-ISTIO MEMORY USAGE BY USING SECRET
FILTERING FOR SERVICE MESH

By default, the informers implementation for the Kubernetes client-go library fetches all resources of a
particular type. This can lead to a substantial overhead when many resources are available, which can
cause the Knative net-istio ingress controller to fail on large clusters due to memory leaking. However, a
filtering mechanism is available for the Knative net-istio ingress controller, which enables the controller
to only fetch Knative related secrets. You can enable this mechanism by adding an annotation to the
KnativeServing custom resource (CR).

IMPORTANT

If you enable secret filtering, all of your secrets need to be labeled with
networking.internal.knative.dev/certificate-uid: "<id>". Otherwise, Knative Serving
does not detect them, which leads to failures. You must label both new and existing
secrets.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads.

Install Red Hat OpenShift Service Mesh. OpenShift Serverless with Service Mesh only is
supported for use with Red Hat OpenShift Service Mesh version 2.0.5 or later.

Install the OpenShift Serverless Operator and Knative Serving.

Install the OpenShift CLI (oc).

$ oc label namespace knative-serving knative.openshift.io/part-
of=openshift-serverless

$ oc label namespace knative-serving-ingress knative.openshift.io/part-
of=openshift-serverless

$ oc apply -f <filename>

CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS

15

https://aly.arriqaaq.com/kubernetes-informers/

1

Procedure

Add the serverless.openshift.io/enable-secret-informer-filtering annotation to the
KnativeServing CR:

Example KnativeServing CR

Adding this annotation injects an environment variable,
ENABLE_SECRET_INFORMER_FILTERING_BY_CERT_UID=true, to the net-istio
controller pod.

NOTE

This annotation is ignored if you set a different value by overriding deployments.

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
 annotations:
 serverless.openshift.io/enable-secret-informer-filtering: "true" 1
spec:
 ingress:
 istio:
 enabled: true
 deployments:
 - annotations:
 sidecar.istio.io/inject: "true"
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 name: activator
 - annotations:
 sidecar.istio.io/inject: "true"
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 name: autoscaler

Red Hat OpenShift Serverless 1.30 Integrations

16

CHAPTER 2. INTEGRATING SERVERLESS WITH THE COST
MANAGEMENT SERVICE

Cost management is an OpenShift Container Platform service that enables you to better understand
and track costs for clouds and containers. It is based on the open source Koku project.

2.1. PREREQUISITES

You have cluster administrator permissions.

You have set up cost management and added an OpenShift Container Platform source .

2.2. USING LABELS FOR COST MANAGEMENT QUERIES

Labels, also known as tags in cost management, can be applied for nodes, namespaces or pods. Each
label is a key and value pair. You can use a combination of multiple labels to generate reports. You can
access reports about costs by using the Red Hat hybrid console .

Labels are inherited from nodes to namespaces, and from namespaces to pods. However, labels are not
overridden if they already exist on a resource. For example, Knative services have a default app=
<revision_name> label:

Example Knative service default label

If you define a label for a namespace, such as app=my-domain, the cost management service does not
take into account costs coming from a Knative service with the tag app=<revision_name> when
querying the application using the app=my-domain tag. Costs for Knative services that have this tag
must be queried under the app=<revision_name> tag.

2.3. ADDITIONAL RESOURCES

Configure tagging for your sources

Use the Cost Explorer to visualize your costs

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: showcase
spec:
...
 labels:
 app: <revision_name>
...

CHAPTER 2. INTEGRATING SERVERLESS WITH THE COST MANAGEMENT SERVICE

17

https://access.redhat.com/documentation/en-us/cost_management_service/2022/html/getting_started_with_cost_management/assembly-introduction-cost-management#about-cost-management_getting-started
https://project-koku.github.io/
https://access.redhat.com/documentation/en-us/cost_management_service/2022/html/adding_an_openshift_container_platform_source_to_cost_management/index
https://console.redhat.com/openshift/cost-management/
https://access.redhat.com/documentation/en-us/cost_management_service/2022/html/getting_started_with_cost_management/assembly-installing-cost-management#configure-tagging-next-step_configuring
https://access.redhat.com/documentation/en-us/cost_management_service/2022/html/getting_started_with_cost_management/assembly-using-cost-management#cost-explorer-next-step_using-cost-management

CHAPTER 3. USING NVIDIA GPU RESOURCES WITH
SERVERLESS APPLICATIONS

NVIDIA supports using GPU resources on OpenShift Container Platform. See GPU Operator on
OpenShift for more information about setting up GPU resources on OpenShift Container Platform.

3.1. SPECIFYING GPU REQUIREMENTS FOR A SERVICE

After GPU resources are enabled for your OpenShift Container Platform cluster, you can specify GPU
requirements for a Knative service using the Knative (kn) CLI.

Prerequisites

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

You have installed the Knative (kn) CLI.

GPU resources are enabled for your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

NOTE

Using NVIDIA GPU resources is not supported for IBM zSystems and IBM Power on
OpenShift Container Platform or OpenShift Dedicated.

Procedure

1. Create a Knative service and set the GPU resource requirement limit to 1 by using the --limit
nvidia.com/gpu=1 flag:

A GPU resource requirement limit of 1 means that the service has 1 GPU resource dedicated.
Services do not share GPU resources. Any other services that require GPU resources must wait
until the GPU resource is no longer in use.

A limit of 1 GPU also means that applications exceeding usage of 1 GPU resource are restricted.
If a service requests more than 1 GPU resource, it is deployed on a node where the GPU
resource requirements can be met.

2. Optional. For an existing service, you can change the GPU resource requirement limit to 3 by
using the --limit nvidia.com/gpu=3 flag:

3.2. ADDITIONAL RESOURCES FOR OPENSHIFT CONTAINER
PLATFORM

Setting resource quotas for extended resources

$ kn service create hello --image <service-image> --limit nvidia.com/gpu=1

$ kn service update hello --limit nvidia.com/gpu=3

Red Hat OpenShift Serverless 1.30 Integrations

18

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/openshift/contents.html
https://docs.openshift.com/container-platform/latest/applications/quotas/quotas-setting-per-project.html#quotas-setting-per-project

CHAPTER 3. USING NVIDIA GPU RESOURCES WITH SERVERLESS APPLICATIONS

19

	Table of Contents
	CHAPTER 1. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS
	1.1. PREREQUISITES
	1.2. CREATING A CERTIFICATE TO ENCRYPT INCOMING EXTERNAL TRAFFIC
	1.3. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS
	1.4. ENABLING KNATIVE SERVING METRICS WHEN USING SERVICE MESH WITH MTLS
	1.5. INTEGRATING SERVICE MESH WITH OPENSHIFT SERVERLESS WHEN KOURIER IS ENABLED
	1.6. IMPROVING NET-ISTIO MEMORY USAGE BY USING SECRET FILTERING FOR SERVICE MESH

	CHAPTER 2. INTEGRATING SERVERLESS WITH THE COST MANAGEMENT SERVICE
	2.1. PREREQUISITES
	2.2. USING LABELS FOR COST MANAGEMENT QUERIES
	2.3. ADDITIONAL RESOURCES

	CHAPTER 3. USING NVIDIA GPU RESOURCES WITH SERVERLESS APPLICATIONS
	3.1. SPECIFYING GPU REQUIREMENTS FOR A SERVICE
	3.2. ADDITIONAL RESOURCES FOR OPENSHIFT CONTAINER PLATFORM

