& RedHat

Red Hat OpenShift Serverless 1.30

Knative CLI

Overview of CLI commands for Knative Functions, Serving, and Eventing

Last Updated: 2023-09-19

Red Hat OpenShift Serverless 1.30 Knative CLI

Overview of CLI commands for Knative Functions, Serving, and Eventing

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides an overview of the CLI commands available for Knative Functions, Serving,
and Eventing. It also provides information on configuring the Knative CLI and on using plugins.

Table of Contents

Table of Contents

CHAPTER 1. KNATIVE SERVING CLICOMMANDS ..ttt teieeeteeeteennneeaneeraneennneenns 3
1.1. KN SERVICE COMMANDS 3
1.1.1. Creating serverless applications by using the Knative CLI 3
1.1.2. Updating serverless applications by using the Knative CLI 4
1.1.3. Applying service declarations 4
1.1.4. Describing serverless applications by using the Knative CLI 5

1.2. KN SERVICE COMMANDS IN OFFLINE MODE 6
1.2.1. About the Knative CLI offline mode 6
1.2.2. Creating a service using offline mode 7

1.3. KN CONTAINER COMMANDS 9
1.3.1. Knative client multi-container support 9
Example commands 10

1.4. KN DOMAIN COMMANDS 10
1.4.1. Creating a custom domain mapping by using the Knative CLI 10
1.4.2. Managing custom domain mappings by using the Knative CLI n
CHAPTER 2. CONFIGURING THE KNATIVE CLI .ottt ettt ee e i et e ennneenneenns 13
CHAPTER 3. KNATIVE CLI PLUGINS .ottt ittt et eeet et eeneenaneenaneenneenns 14
3.1. BUILDING EVENTS BY USING THE KN-EVENT PLUGIN 14
3.2. SENDING EVENTS BY USING THE KN-EVENT PLUGIN 15
CHAPTER 4. KNATIVE EVENTING CLICOMMANDS ...t iiitttiitiit it eiereieenaneennneenneenns 17
4.1. KN SOURCE COMMANDS 17
4.1.1. Listing available event source types by using the Knative CLI 17
4.1.2. Knative CLlI sink flag 17
4.1.3. Creating and managing container sources by using the Knative CLI 18
4.1.4. Creating an APl server source by using the Knative CLI 18
4.1.5. Creating a ping source by using the Knative CLI 22
4..6. Creating an Apache Kafka event source by using the Knative CLI 24
CHAPTER 5. KNATIVE FUNCTIONS CLI COMMANDS ...ttt it eieeaieeeaneennneeaneenn, 27
5.1. KN FUNCTIONS COMMANDS 27
5.1.1. Creating a function by using the Knative CLI 27
5.1.2. Running a function locally 27
5.1.3. Building a function 28
5.1.3.1. Image container types 28
5.1.3.2. Image registry types 28
5.1.3.3. Push flag 29
5.1.3.4. Help command 29

5.1.4. Deploying a function 29
5.15. Listing existing functions 30
5.1.6. Describing a function 31
5.1.7. Invoking a deployed function with a test event 31
5.1.7.1. kn func invoke optional parameters 32
5.1.7.1.1. Main parameters 32

5.1.7.1.2. Example commands 33
5.1.7.1.2.1. Specifying the file with data 33

5.1.7.1.2.2. Specifying the function project 34

5.1.7.1.2.3. Specifying where the target function is deployed 34

5.1.8. Deleting a function 34

Red Hat OpenShift Serverless 1.30 Knative CLI

CHAPTER 1. KNATIVE SERVING CLI COMMANDS

CHAPTER 1. KNATIVE SERVING CLI COMMANDS

1.1. KN SERVICE COMMANDS

You can use the following commands to create and manage Knative services.

1.1.1. Creating serverless applications by using the Knative CLI

Using the Knative (kn) CLI to create serverless applications provides a more streamlined and intuitive
user interface over modifying YAML files directly. You can use the kn service create command to
create a basic serverless application.

Prerequisites
® OpenShift Serverless Operator and Knative Serving are installed on your cluster.
® You have installed the Knative (kn) CLI.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

® Create a Knative service:
I $ kn service create <service-name> --image <image> --tag <tag-value>
Where:

o --image is the URI of the image for the application.

o --tagis an optional flag that can be used to add a tag to the initial revision that is created
with the service.

Example command

$ kn service create showcase \
--image quay.io/openshift-knative/showcase

Example output

Creating service 'showcase' in namespace 'default”:

0.271s The Route is still working to reflect the latest desired specification.
0.580s Configuration "showcase" is waiting for a Revision to become ready.
3.857s ...

3.861s Ingress has not yet been reconciled.

4.270s Ready to serve.

Service 'showcase' created with latest revision 'showcase-00001" and URL:
http://showcase-default.apps-crc.testing

Red Hat OpenShift Serverless 1.30 Knative CLI

1.1.2. Updating serverless applications by using the Knative CLI

You can use the kn service update command for interactive sessions on the command line as you build
up a service incrementally. In contrast to the kn service apply command, when using the kn service
update command you only have to specify the changes that you want to update, rather than the full
configuration for the Knative service.

Example commands
® Update a service by adding a new environment variable:

I $ kn service update <service_name> --env <key>=<value>

® Update a service by adding a new port:

I $ kn service update <service_name> --port 80

® Update a service by adding new request and limit parameters:

$ kn service update <service_name> --request cpu=500m --limit memory=1024Mi --limit
cpu=1000m

® Assign the latest tag to a revision:

I $ kn service update <service_name> --tag <revision_name>=latest

e Update a tag from testing to staging for the latest READY revision of a service:
I $ kn service update <service_name> --untag testing --tag @latest=staging

® Add the test tag to a revision that receives 10% of traffic, and send the rest of the traffic to the
latest READY revision of a service:

I $ kn service update <service_name> --tag <revision_name>=test --traffic test=10,@latest=90

1.1.3. Applying service declarations

You can declaratively configure a Knative service by using the kn service apply command. If the service
does not exist it is created, otherwise the existing service is updated with the options that have been
changed.

The kn service apply command is especially useful for shell scripts or in a continuous integration
pipeline, where users typically want to fully specify the state of the service in a single command to
declare the target state.

When using kn service apply you must provide the full configuration for the Knative service. This is
different from the kn service update command, which only requires you to specify in the command the
options that you want to update.

Example commands

® (Create aservice:

CHAPTER 1. KNATIVE SERVING CLI COMMANDS

I $ kn service apply <service_name> --image <image>
® Add an environment variable to a service:
I $ kn service apply <service_name> --image <image> --env <key>=<value>

® Read the service declaration from a JSON or YAML file:

I $ kn service apply <service_name> -f <filename>

1.1.4. Describing serverless applications by using the Knative CLI

You can describe a Knative service by using the kn service describe command.

Example commands

® Describe a service:
I $ kn service describe --verbose <service_name>

The --verbose flag is optional but can be included to provide a more detailed description. The
difference between a regular and verbose output is shown in the following examples:

Example output without --verbose flag

Name: showcase

Namespace: default

Age: 2m

URL: http://showcase-default.apps.ocp.example.com

Revisions:
100% @latest (showcase-00001) [1] (2m)
Image: quay.io/openshift-knative/showcase (pinned to aaea76)

Conditions:
OK TYPE AGE REASON
++ Ready im
++ ConfigurationsReady 1m
++ RoutesReady im

Example output with --verbose flag

Name: showcase

Namespace: default

Annotations: serving.knative.dev/creator=system:admin
serving.knative.dev/lastModifier=system:admin

Age: 3m

URL: http://showcase-default.apps.ocp.example.com

Cluster: http://showcase.default.svc.cluster.local

Revisions:
100% @latest (showcase-00001) [1] (3m)
Image: quay.io/openshift-knative/showcase (pinned to aaea76)

Red Hat OpenShift Serverless 1.30 Knative CLI

Env: GREET=Bonjour

Conditions:
OK TYPE AGE REASON
++ Ready 3m
++ ConfigurationsReady 3m
++ RoutesReady 3m

® Describe a service in YAML format:

I $ kn service describe <service_name> -o yaml|

® Describe a service in JSON format:

I $ kn service describe <service_name> -0 json

® Print the service URL only:

I $ kn service describe <service_name> -o url

1.2. KN SERVICE COMMANDS IN OFFLINE MODE

1.2.1. About the Knative CLI offline mode

When you execute kn service commands, the changes immediately propagate to the cluster. However,
as an alternative, you can execute kn service commands in offline mode. When you create a service in
offline mode, no changes happen on the cluster, and instead the service descriptor file is created on
your local machine.

IMPORTANT

The offline mode of the Knative CLlI is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

After the descriptor file is created, you can manually modify it and track it in a version control system.
You can also propagate changes to the cluster by using the kn service create -f, kn service apply -f, or
oc apply -f commands on the descriptor files.

The offline mode has several uses:
® You can manually modify the descriptor file before using it to make changes on the cluster.
® You can locally track the descriptor file of a service in a version control system. This enables you

to reuse the descriptor file in places other than the target cluster, for example in continuous
integration (CI) pipelines, development environments, or demos.

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 1. KNATIVE SERVING CLI COMMANDS

® You can examine the created descriptor files to learn about Knative services. In particular, you
can see how the resulting service is influenced by the different arguments passed to the kn
command.

The offline mode has its advantages: it is fast, and does not require a connection to the cluster. However,
offline mode lacks server-side validation. Consequently, you cannot, for example, verify that the service
name is unique or that the specified image can be pulled.

1.2.2. Creating a service using offline mode

You can execute kn service commands in offline mode, so that no changes happen on the cluster, and
instead the service descriptor file is created on your local machine. After the descriptor file is created,
you can modify the file before propagating changes to the cluster.

IMPORTANT

The offline mode of the Knative CLlI is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

Prerequisites
® OpenShift Serverless Operator and Knative Serving are installed on your cluster.

® You have installed the Knative (kn) CLI.

Procedure

1. In offline mode, create a local Knative service descriptor file:

$ kn service create showcase \
--image quay.io/openshift-knative/showcase \
--target ./ \
--namespace test

Example output
I Service 'showcase' created in namespace 'test'.

® The --target ./ flag enables offline mode and specifies ./ as the directory for storing the new
directory tree.
If you do not specify an existing directory, but use a filename, such as --target my-
service.yaml, then no directory tree is created. Instead, only the service descriptor file my-
service.yaml is created in the current directory.

The filename can have the .yaml, .yml, or .json extension. Choosing .json creates the
service descriptor file in the JSON format.

https://access.redhat.com/support/offerings/techpreview/

Red Hat OpenShift Serverless 1.30 Knative CLI

® The --namespace test option places the new service in the test namespace.
If you do not use --namespace, and you are logged in to an OpenShift Container Platform
cluster, the descriptor file is created in the current namespace. Otherwise, the descriptor
file is created in the default namespace.

2. Examine the created directory structure:
I $ tree ./

Example output

./
L— test

L—ksvc
L— showcase.yaml

2 directories, 1 file

® The current ./ directory specified with --target contains the new test/ directory that is
named after the specified namespace.

® The test/ directory contains the ksve directory, named after the resource type.

e The ksvc directory contains the descriptor file showcase.yaml, named according to the
specified service name.

3. Examine the generated service descriptor file:

I $ cat test/ksvc/showcase.yaml
Example output

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
creationTimestamp: null
name: showcase
namespace: test
spec:
template:
metadata:
annotations:
client.knative.dev/user-image: quay.io/openshift-knative/showcase
creationTimestamp: null
spec:
containers:
- image: quay.io/openshift-knative/showcase
name: ""
resources: {}
status: {}

4. Listinformation about the new service:

I $ kn service describe showcase --target ./ --namespace test

CHAPTER 1. KNATIVE SERVING CLI COMMANDS

Example output

Name: showcase
Namespace: test
Age:

URL:

Revisions:

Conditions:
OKTYPE AGE REASON

® The --target ./ option specifies the root directory for the directory structure containing
namespace subdirectories.
Alternatively, you can directly specify a YAML or JSON filename with the --target option.
The accepted file extensions are .yaml, .yml, and .json.

® The --namespace option specifies the namespace, which communicates to kn the
subdirectory that contains the necessary service descriptor file.
If you do not use --namespace, and you are logged in to an OpenShift Container Platform
cluster, kn searches for the service in the subdirectory that is named after the current
namespace. Otherwise, kn searches in the default/ subdirectory.

5. Use the service descriptor file to create the service on the cluster:

I $ kn service create -f test/ksvc/showcase.yaml
Example output

Creating service 'showcase' in namespace 'test':

0.058s The Route is still working to reflect the latest desired specification.
0.098s ...

0.168s Configuration "showcase" is waiting for a Revision to become ready.
23.377s ...

23.419s Ingress has not yet been reconciled.

23.534s Waiting for load balancer to be ready

23.723s Ready to serve.

Service 'showcase' created to latest revision 'showcase-00001" is available at URL:
http://showcase-test.apps.example.com

1.3. KN CONTAINER COMMANDS

You can use the following commands to create and manage multiple containers in a Knative service
spec.

1.3.1. Knative client multi-container support

You can use the kn container add command to print YAML container spec to standard output. This
command is useful for multi-container use cases because it can be used along with other standard kn
flags to create definitions.

Red Hat OpenShift Serverless 1.30 Knative CLI

The kn container add command accepts all container-related flags that are supported for use with the
kn service create command. The kn container add command can also be chained by using UNIX pipes
() to create multiple container definitions at once.

Example commands

® Add a container from an image and print it to standard output:

I $ kn container add <container_name> --image <image_uri>
Example command

I $ kn container add sidecar --image docker.io/example/sidecar
Example output

containers:

- image: docker.io/example/sidecar
name: sidecar
resources: {}

® Chain two kn container add commands together, and then pass them to a kn service create
command to create a Knative service with two containers:

$ kn container add <first_container_name> --image <image_uri> | \
kn container add <second_container_name> --image <image_uri> |\
kn service create <service_name> --image <image_uri> --extra-containers -

--extra-containers - specifies a special case where kn reads the pipe input instead of a YAML
file.

Example command

$ kn container add sidecar --image docker.io/example/sidecar:first | \
kn container add second --image docker.io/example/sidecar:second |\
kn service create my-service --image docker.io/example/my-app:latest --extra-containers -

The --extra-containers flag can also accept a path to a YAML file:
I $ kn service create <service_name> --image <image_uri> --extra-containers <filename>
Example command

$ kn service create my-service --image docker.io/example/my-app:latest --extra-containers
my-extra-containers.yaml

1.4. KN DOMAIN COMMANDS

You can use the following commands to create and manage domain mappings.

1.4.1. Creating a custom domain mapping by using the Knative CLI

10

CHAPTER 1. KNATIVE SERVING CLI COMMANDS

Prerequisites

® The OpenShift Serverless Operator and Knative Serving are installed on your cluster.
® You have created a Knative service or route, and control a custom domain that you want to map
to that CR.
NOTE
Your custom domain must point to the DNS of the OpenShift Container Platform
cluster.
® You have installed the Knative (kn) CLI.
® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.
Procedure
® Map a domain to a CRin the current namespace:
I $ kn domain create <domain_mapping_name> --ref <target_name>
Example command
I $ kn domain create example.com --ref showcase
The --ref flag specifies an Addressable target CR for domain mapping.
If a prefix is not provided when using the --ref flag, it is assumed that the target is a Knative
service in the current namespace.
® Map a domain to a Knative service in a specified namespace:
$ kn domain create <domain_mapping_name> --ref
<ksvc:service_name:service_namespace>
Example command
I $ kn domain create example.com --ref ksvc:showcase:example-namespace
® Map a domain to a Knative route:

I $ kn domain create <domain_mapping_name> --ref <kroute:route_name>
Example command

I $ kn domain create example.com --ref kroute:example-route

1.4.2. Managing custom domain mappings by using the Knative CLI

1

Red Hat OpenShift Serverless 1.30 Knative CLI

After you have created a DomainMapping custom resource (CR), you can list existing CRs, view
information about an existing CR, update CRs, or delete CRs by using the Knative (kn) CLI.

Prerequisites

® The OpenShift Serverless Operator and Knative Serving are installed on your cluster.
® You have created at least one DomainMapping CR.
® You have installed the Knative (kn) CLI tool.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

® List existing DomainMapping CRs:
I $ kn domain list -n <domain_mapping_namespace>

® View details of an existing DomainMapping CR:

I $ kn domain describe <domain_mapping_name>

® Update a DomainMapping CR to point to a new target:

I $ kn domain update --ref <target>

® Delete a DomainMapping CR:

I $ kn domain delete <domain_mapping_name>

12

CHAPTER 2. CONFIGURING THE KNATIVE CLI

CHAPTER 2. CONFIGURING THE KNATIVE CLI

You can customize your Knative (kn) CLI setup by creating a config.yaml configuration file. You can
provide this configuration by using the --config flag, otherwise the configuration is picked up from a
default location. The default configuration location conforms to the XDG Base Directory Specification,
and is different for UNIX systems and Windows systems.

For UNIX systems:

e |f the XDG_CONFIG_HOME environment variable is set, the default configuration location that
the Knative (kn) CLI looks foris $XDG_CONFIG_HOME/kn.

e |f the XDG_CONFIG_HOME environment variable is not set, the Knative (kn) CLI looks for the
configuration in the home directory of the user at SHOME/.config/kn/config.yaml.

For Windows systems, the default Knative (kn) CLI configuration location is %APPDATA%\kn.

Example configuration file

plugins:
path-lookup: true ﬂ
directory: ~/.config/kn/plugins g
eventing:
sink-mappings: e
- prefix: svc
group: core
version: v1
resource: services ﬂ

Specifies whether the Knative (kn) CLI should look for plugins in the PATH environment variable.
This is a boolean configuration option. The default value is false.

Specifies the directory where the Knative (kn) CLI looks for plugins. The default path depends on
the operating system, as described previously. This can be any directory that is visible to the user.

The sink-mappings spec defines the Kubernetes addressable resource that is used when you use
the --sink flag with a Knative (kn) CLI command.

The prefix you want to use to describe your sink. sve for a service, channel, and broker are
predefined prefixes for the Knative (kn) CLI.

The API group of the Kubernetes resource.

The version of the Kubernetes resource.

S9® 6 © ® °

The plural name of the Kubernetes resource type. For example, services or brokers.

13

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

Red Hat OpenShift Serverless 1.30 Knative CLI

CHAPTER 3. KNATIVE CLI PLUGINS

The Knative (kn) CLI supports the use of plugins, which enable you to extend the functionality of your
kn installation by adding custom commands and other shared commands that are not part of the core
distribution. Knative (kn) CLI plugins are used in the same way as the main kn functionality.

Currently, Red Hat supports the kn-source-kafka plugin and the kn-event plugin.

IMPORTANT

The kn-event plugin is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

3.1. BUILDING EVENTS BY USING THE KN-EVENT PLUGIN

You can use the builder-like interface of the kn event build command to build an event. You can then
send that event at a later time or use it in another context.

Prerequisites

® You have installed the Knative (kn) CLI.

Procedure
® Build an event:

I $ kn event build --field <field-name>=<value> --type <type-name> --id <id> --output <format>

where:
o The --field flag adds data to the event as a field-value pair. You can use it multiple times.
o The --type flag enables you to specify a string that designates the type of the event.
o The --id flag specifies the ID of the event.
© You can use the json or yaml arguments with the --output flag to change the output

format of the event.

All of these flags are optional.

Building a simple event
I $ kn event build -o yaml

Resultant event in the YAML format

I data: {}

datacontenttype: application/json

14

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 3. KNATIVE CLI PLUGINS

id: 81a402a2-9¢29-4c27-b8ed-246a253c9e58
source: kn-event/v0.4.0

specversion: "1.0"

time: "2021-10-15T10:42:57.713226203Z2"
type: dev.knative.cli.plugin.event.generic

Building a sample transaction event

$ kn event build \
--field operation.type=Ilocal-wire-transfer \
--field operation.amount=2345.40 \
--field operation.from=87656231 \
--field operation.to=2344121 \
--field automated=true \
--field signature="FGzCPLvYWdEgsdpb3gXkaVp7Da0="\
--type org.example.bank.bar \
--id $(head -c 10 < /dev/urandom | base64 -w 0) \
--output json

Resultant event in the JSON format

"specversion™: "1.0",
"id": "RjtLBUHB6X+UJg==",
"source": "kn-event/v0.4.0",
"type": "org.example.bank.bar",
"datacontenttype": "application/json",
"time": "2021-10-15T10:43:23.113187943Z7",
"data": {
"automated": true,
"operation”: {
"amount": "2345.40",
"from": 87656231,
"to": 2344121,
"type": "local-wire-transfer"
2
"signature": "FGzCPLvYWdEgsdpb3gXkaVp7Da0="
}
1

3.2. SENDING EVENTS BY USING THE KN-EVENT PLUGIN

You can use the kn event send command to send an event. The events can be sent either to publicly
available addresses or to addressable resources inside a cluster, such as Kubernetes services, as well as
Knative services, brokers, and channels. The command uses the same builder-like interface as the kn
event build command.

Prerequisites

® You have installed the Knative (kn) CLI.

Procedure

® Send an event:

15

Red Hat OpenShift Serverless 1.30 Knative CLI

16

$ kn event send --field <field-name>=<value> --type <type-name> --id <id> --to-url <url> --to
<cluster-resource> --namespace <namespace>

where:

o

The --field flag adds data to the event as a field-value pair. You can use it multiple times.
The --type flag enables you to specify a string that designates the type of the event.
The --id flag specifies the ID of the event.

If you are sending the event to a publicly accessible destination, specify the URL using the --
to-url flag.

If you are sending the event to an in-cluster Kubernetes resource, specify the destination
using the --to flag.

®m Specify the Kubernetes resource using the <Kind>:<ApiVersion>:<name> format.

The --namespace flag specifies the namespace. If omitted, the namespace is taken from
the current context.

All of these flags are optional, except for the destination specification, for which you need to
use either --to-url or --to.

The following example shows sending an event to a URL:

Example command

$ kn event send \
--field player.id=6354aa60-ddb1-452e-8¢13-24893667de20 \
--field player.game=2345\
--field points=456 \
--type org.example.gaming.foo \
--to-url http://ce-api.foo.example.com/

The following example shows sending an event to an in-cluster resource:

Example command

$ kn event send \
--type org.example.kn.ping \
--id $(uuidgen) \
--field event.type=test \
--field event.data=98765 \
--to Service:serving.knative.dev/v1:event-display

CHAPTER 4. KNATIVE EVENTING CLI COMMANDES

CHAPTER 4. KNATIVE EVENTING CLI COMMANDS

4.1. KN SOURCE COMMANDS

You can use the following commands to list, create, and manage Knative event sources.

4.1.1. Listing available event source types by using the Knative CLI

You can list event source types that can be created and used on your cluster by using the kn source
list-types CLI command.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

® You have installed the Knative (kn) CLI.

Procedure

1. List the available event source types in the terminal:

I $ kn source list-types

Example output

TYPE NAME DESCRIPTION

ApiServerSource apiserversources.sources.knative.dev Watch and send Kubernetes
APl events to a sink

PingSource pingsources.sources.knative.dev Periodically send ping events to
a sink

SinkBinding sinkbindings.sources.knative.dev Binding for connecting a

PodSpecable to a sink

2. Optional: On OpenShift Container Platform, you can also list the available event source types in
YAML format:

I $ kn source list-types -0 yaml

4.1.2. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

$ kn source binding create bind-heartbeat \
--namespace sinkbinding-example \
--subject "Job:batch/v1:app=heartbeat-cron" \

17

Red Hat OpenShift Serverless 1.30 Knative CLI

--sink http://event-display.svc.cluster.local \ ﬂ
--ce-override "sink=bound"

svcin http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

4.1.3. Creating and managing container sources by using the Knative CLI

You can use the kn source container commands to create and manage container sources by using the
Knative (kn) CLI. Using the Knative CLI to create event sources provides a more streamlined and
intuitive user interface than modifying YAML files directly.

Create a container source

I $ kn source container create <container_source_name> --image <image_uri> --sink <sink>
Delete a container source

I $ kn source container delete <container_source_name>

Describe a container source

I $ kn source container describe <container_source_name>

List existing container sources

I $ kn source container list

List existing container sources in YAML format

I $ kn source container list -o yaml

Update a container source

This command updates the image URI for an existing container source:

I $ kn source container update <container_source_name> --image <image_uri>

4.1.4. Creating an APl server source by using the Knative CLI

You can use the kn source apiserver create command to create an APl server source by using the kn
CLI. Using the kn CLI to create an APl server source provides a more streamlined and intuitive user
interface than modifying YAML files directly.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

18

CHAPTER 4. KNATIVE EVENTING CLI COMMANDES

® You have installed the OpenShift CLI (oc).

® You have installed the Knative (kn) CLI.

PROCEDURE

If you want to re-use an existing service account, you can modify your existing
ServiceAccount resource to include the required permissions instead of creating a new
resource.

1. Create a service account, role, and role binding for the event source as a YAML file:

apiVersion: vi
kind: ServiceAccount
metadata:
name: events-sa
namespace: default ﬂ

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: event-watcher
namespace: default g
rules:
- apiGroups:
resources:
- events
verbs:
- get
- list
- watch

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: k8s-ra-event-watcher
namespace: default 6
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: event-watcher
subjects:
- kind: ServiceAccount
name: events-sa
namespace: default ﬂ

hange this namespace to the namespace that you have selected for installing the
event source.

2. Apply the YAML file:

19

Red Hat OpenShift Serverless 1.30 Knative CLI

I $ oc apply -f <filename>

3. Create an APl server source that has an event sink. In the following example, the sink is a broker:

resource "event:v1" --service-account <service_account_name> --mode Resource

I $ kn source apiserver create <event_source_name> --sink broker:<broker_name> --

4. To check that the APl server source is set up correctly, create a Knative service that dumps

incoming messages to its log:

I $ kn service create event-display --image quay.io/openshift-knative/showcase

5. If you used a broker as an event sink, create a trigger to filter events from the default broker to

the service:

I $ kn trigger create <trigger_name> --sink ksvc:event-display

6. Create events by launching a pod in the default namespace:

I $ oc create deployment event-origin --image quay.io/openshift-knative/showcase

7. Check that the controller is mapped correctly by inspecting the output generated by the

following command:

I $ kn source apiserver describe <source_name>

Example output

Name: mysource

Namespace: default

Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer

Age: 3m

ServiceAccountName: events-sa

Mode: Resource

Sink:

Name: default

Namespace: default

Kind: Broker (eventing.knative.dev/v1)
Resources:

Kind: event (v1)

Controller: false

Conditions:
OK TYPE AGE REASON
++ Ready 3m
++ Deployed 3m
++ SinkProvided 3m

++ SufficientPermissions 3m
++ EventTypesProvided 3m

Verification

20

CHAPTER 4. KNATIVE EVENTING CLI COMMANDES

To verify that the Kubernetes events were sent to Knative, look at the event-display logs or use web

browser to see the events.

® To view the eventsin a web browser, open the link returned by the following command:

I $ kn service describe event-display -o url

Figure 4.1. Example browser page

Welcome to Serverless, Cloud-Native world!

What can | do from here?
Invoke a hello endpoint: /hello.

¢ Itwill send CloudEventto K_SINK = http://localhost:31111

Collected CloudEvents (1)

id source applicationfisen @
JiechuSw Kubernetes {
"apiVersion": "vi",
"involvedObject™: {
"apiversion": "wv1",
"fieldPath": "spec.containers{hello-node}",
"kind": "Pod",
"name”: "hello-node”,

"namespace": "default”
type time N
"kind": "Event”,

dev knative.apiserver.resource.update less than a minute

"message”: "Started container”,
"metadata": {
"name": "hello-node.159d76@8e3a35572c",
"namespace”: "default”
I
"reason": "Started"

¢ This app captures CloudEvents on POST /events endpoint. Newer are listed first.

Application

Group: com.redhat.openshift
Artifact: knative-showcase
Version: v0.7.0-4-g23d460f

Platform: Quarkus/2.13.7.Final-redhat-00e3 Java/17.0.7

Powered by:

(#]

QUARKUS

This application has been written with React & Quarkus to
showcase Knative.

® Alternatively, to see the logs in the terminal, view the event-display logs for the pods by

entering the following command:

I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container

Example output

a cloudevents.Event

Validation: valid

Context Attributes,
specversion: 1.0
type: dev.knative.apiserver.resource.update
datacontenttype: application/json

Data,
{

"apiVersion": "v1",

"involvedObject": {
"apiVersion": "v1",
"fieldPath": "spec.containers{event-origin}",
"kind": "Pod",
"name": "event-origin",
"namespace": "default",

b

"kind": "Event",

21

Red Hat OpenShift Serverless 1.30 Knative CLI

"message": "Started container”,

"metadata”: {
"name": "event-origin.159d7608e3a3572c",
"namespace": "default",

}

"reason": "Started",

Deleting the APl server source

1. Delete the trigger:
I $ kn trigger delete <trigger_name>
2. Delete the event source:

I $ kn source apiserver delete <source_name>

3. Delete the service account, cluster role, and cluster binding:

I $ oc delete -f authentication.yaml

4.1.5. Creating a ping source by using the Knative CLI

You can use the kn source ping create command to create a ping source by using the Knative (kn) CLI.
Using the Knative CLI to create event sources provides a more streamlined and intuitive user interface

than modifying YAML files directly.

Prerequisites

® The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the

cluster.

® You have installed the Knative (kn) CLI.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

e Optional: If you want to use the verification steps for this procedure, install the OpenShift CLI

(oc).

Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming

messages to the service logs:

$ kn service create event-display \
--image quay.io/openshift-knative/showcase

2. For each set of ping events that you want to request, create a ping source in the same

namespace as the event consumer:

22

CHAPTER 4. KNATIVE EVENTING CLI COMMANDES

$ kn source ping create test-ping-source \
--schedule "™/2 * * * *"\
--data '{"message": "Hello world!"}' \
--sink ksvc:event-display

3. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

I $ kn source ping describe test-ping-source
Example output

Name: test-ping-source

Namespace: default

Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer

Age: 15s

Schedule: *2****

Data: {"message": "Hello world!"}
Sink:

Name: event-display
Namespace: default
Resource: Service (serving.knative.dev/v1)

Conditions:
OK TYPE AGE REASON
++ Ready 8s
++ Deployed 8s

++ SinkProvided 15s
++ ValidSchedule 15s
++ EventTypeProvided 15s
++ ResourcesCorrect 15s

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the logs of
the sink pod.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The
example shown in this guide creates a ping source that sends a message every 2 minutes, so each
message should be observed in a newly created pod.

1. Watch for new pods created:
I $ watch oc get pods

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:
I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container
Example output

I a cloudevents.Event

23

Red Hat OpenShift Serverless 1.30 Knative CLI

Validation: valid
Context Attributes,
specversion: 1.0
type: dev.knative.sources.ping
source: /apis/vl/namespaces/default/pingsources/test-ping-source
id: 99e4f4f6-08ff-4bff-acf1-47f61ded68c9
time: 2020-04-07T16:16:00.000601161Z
datacontenttype: application/json
Data,
{

"message": "Hello world!"

}

Deleting the ping source

® Delete the ping source:

I $ kn delete pingsources.sources.knative.dev <ping_source_name>

4.1.6. Creating an Apache Kafka event source by using the Knative CLI

You can use the kn source kafka create command to create a Kafka source by using the Knative (kn)
CLI. Using the Knative CLI to create event sources provides a more streamlined and intuitive user
interface than modifying YAML files directly.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, Knative Serving, and the KnativeKafka
custom resource (CR) are installed on your cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

You have installed the Knative (kn) CLI.

Optional: You have installed the OpenShift CLI (o¢) if you want to use the verification steps in
this procedure.

Procedure

1.

2.

24

To verify that the Kafka event source is working, create a Knative service that dumps incoming
events into the service logs:

$ kn service create event-display \
--image quay.io/openshift-knative/showcase

Create a KafkaSource CR:

$ kn source kafka create <kafka_source_name> \
--servers <cluster_kafka_bootstrap>.kafka.svc:9092 \
--topics <topic_name> --consumergroup my-consumer-group \

CHAPTER 4. KNATIVE EVENTING CLI COMMANDES

I --sink event-display

NOTE

Replace the placeholder values in this command with values for your source
name, bootstrap servers, and topics.

The --servers, --topics, and --consumergroup options specify the connection parameters to
the Kafka cluster. The --consumergroup option is optional.

3. Optional: View details about the KafkaSource CR you created:

I $ kn source kafka describe <kafka_source _name>
Example output

Name: example-kafka-source

Namespace: kafka

Age: 1h

BootstrapServers: example-cluster-kafka-bootstrap.kafka.svc:9092
Topics: example-topic

ConsumerGroup: example-consumer-group

Sink:
Name: event-display
Namespace: default
Resource: Service (serving.knative.dev/v1)

Conditions:
OK TYPE AGE REASON
++ Ready 1h

++ Deployed 1h
++ SinkProvided 1h

Verification steps

1. Trigger the Kafka instance to send a message to the topic:

$ oc -n kafka run kafka-producer \
-ti --image=quay.io/strimzi/kafka:latest-kafka-2.7.0 --rm=true \
--restart=Never -- bin/kafka-console-producer.sh \
--broker-list <cluster_kafka_bootstrap>:9092 --topic my-topic

Enter the message in the prompt. This command assumes that:
® The Kafka cluster is installed in the kafka namespace.
e The KafkaSource object has been configured to use the my-topic topic.

2. Verify that the message arrived by viewing the logs:

I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container

25

Red Hat OpenShift Serverless 1.30 Knative CLI

Example output

a cloudevents.Event
Validation: valid
Context Attributes,
specversion: 1.0
type: dev.knative.kafka.event
source: /apis/vil/namespaces/default/kafkasources/example-kafka-source#example-topic
subject: partition:46#0
id: partition:46/offset:0
time: 2021-03-10T11:21:49.4Z
Extensions,
traceparent: 00-161ff3815727d8755848ec01¢c866d1cd-7ff3916¢c44334678-00
Data,
Hello!

26

CHAPTER 5. KNATIVE FUNCTIONS CLI COMMANDS

CHAPTER 5. KNATIVE FUNCTIONS CLI COMMANDS

5.1. KN FUNCTIONS COMMANDS

5.1.1. Creating a function by using the Knative CLI

You can specify the path, runtime, template, and image registry for a function as flags on the command
line, or use the -¢ flag to start the interactive experience in the terminal.

Prerequisites

® The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

® You have installed the Knative (kn) CLI.
Procedure
® Create a function project:
I $ kn func create -r <repository> -l <runtime> -t <template> <path>

o Accepted runtime values include quarkus, node, typescript, go, python, springboot, and
rust.

o Accepted template values include http and cloudevents.

Example command

I $ kn func create -l typescript -t cloudevents examplefunc
Example output

I Created typescript function in /home/user/demo/examplefunc

o Alternatively, you can specify a repository that contains a custom template.

Example command

$ kn func create -r https://github.com/boson-project/templates/ -| node -t hello-world
examplefunc

Example output

I Created node function in /home/user/demo/examplefunc

5.1.2. Running a function locally

You can use the kn func run command to run a function locally in the current directory or in the
directory specified by the --path flag. If the function that you are running has never previously been built,
or if the project files have been modified since the last time it was built, the kn func run command

builds the function before running it by default.

27

Red Hat OpenShift Serverless 1.30 Knative CLI

Example command to run a function in the current directory

I $ kn func run

Example command to run a function in a directory specified as a path
I $ kn func run --path=<directory_path>

You can also force a rebuild of an existing image before running the function, even if there have been no
changes to the project files, by using the --build flag:

Example run command using the build flag
I $ kn func run --build

If you set the build flag as false, this disables building of the image, and runs the function using the
previously built image:

Example run command using the build flag
I $ kn func run --build=false

You can use the help command to learn more about kn func run command options:

Build help command

I $ kn func help run

5.1.3. Building a function

Before you can run a function, you must build the function project. If you are using the kn func run
command, the function is built automatically. However, you can use the kn func build command to build
a function without running it, which can be useful for advanced users or debugging scenarios.

The kn func build command creates an OCI container image that can be run locally on your computer

or on an OpenShift Container Platform cluster. This command uses the function project name and the
image registry name to construct a fully qualified image name for your function.

5.1.3.1. Image container types

By default, kn func build creates a container image by using Red Hat Source-to-Image (S2I)
technology.

Example build command using Red Hat Source-to-Image (S2I)
I $ kn func build

5.1.3.2. Image registry types

The OpenShift Container Registry is used by default as the image registry for storing function images.

Example build command using OpenShift Container Registry

28

CHAPTER 5. KNATIVE FUNCTIONS CLI COMMANDS

I $ kn func build
Example output

Building function image
Function image has been built, image: registry.redhat.io/example/example-function:latest

You can override using OpenShift Container Registry as the default image registry by using the --
registry flag:

Example build command overriding OpenShift Container Registry to use quay.io
I $ kn func build --registry quay.io/username

Example output

Building function image
Function image has been built, image: quay.io/username/example-function:latest

5.1.3.3. Push flag

You can add the --push flag to a kn func build command to automatically push the function image
after it is successfully built:

Example build command using OpenShift Container Registry

I $ kn func build --push

5.1.3.4. Help command

You can use the help command to learn more about kn func build command options:

Build help command

I $ kn func help build

5.1.4. Deploying a function

You can deploy a function to your cluster as a Knative service by using the kn func deploy command. If
the targeted function is already deployed, it is updated with a new container image that is pushed to a
container image registry, and the Knative service is updated.

Prerequisites
® The OpenShift Serverless Operator and Knative Serving are installed on the cluster.
® You have installed the Knative (kn) CLI.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

29

Red Hat OpenShift Serverless 1.30 Knative CLI

® You must have already created and initialized the function that you want to deploy.
Procedure
® Deploy a function:

I $ kn func deploy [-n <namespace> -p <path> -i <image>]
Example output
I Function deployed at: http:/func.example.com

o If no namespace is specified, the function is deployed in the current namespace.
o The function is deployed from the current directory, unless a path is specified.

o The Knative service name is derived from the project name, and cannot be changed using
this command.

NOTE

You can create a serverless function with a Git repository URL by using Import from Git
or Create Serverless Functionin the +Add view of the Developer perspective.

5.1.5. Listing existing functions

You can list existing functions by using kn func list. If you want to list functions that have been deployed
as Knative services, you can also use kn service list.

Procedure
® List existing functions:

I $ kn func list [-n <namespace> -p <path>]
Example output

NAME NAMESPACE RUNTIME URL

READY

example-function default node http://example-function.default.apps.ci-In-g9f36hb-
d5d6b.origin-ci-int-aws.dev.rhcloud.com True

e |ist functions deployed as Knative services:
I $ kn service list -n <namespace>
Example output

NAME URL LATEST
AGE CONDITIONS READY REASON

example-function http://example-function.default.apps.ci-In-g9f36hb-d5d6b.origin-ci-int-
aws.dev.rhcloud.com example-function-gzl4c 16m 3 OK/3 True

30

CHAPTER 5. KNATIVE FUNCTIONS CLI COMMANDS

5.1.6. Describing a function

The kn func info command prints information about a deployed function, such as the function name,
image, namespace, Knative service information, route information, and event subscriptions.

Procedure

® Describe a function:

I $ kn func info [-f <format> -n <namespace> -p <path>]
Example command

I $ kn func info -p function/example-function

Example output

Function name:
example-function
Function is built in image:
docker.io/user/example-function:latest
Function is deployed as Knative Service:
example-function
Function is deployed in namespace:
default
Routes:
http://example-function.default.apps.ci-In-g9f36hb-d5d6b.origin-ci-int-aws.dev.rhcloud.com

5.1.7. Invoking a deployed function with a test event

You can use the kn func invoke CLI command to send a test request to invoke a function either locally
or on your OpenShift Container Platform cluster. You can use this command to test that a function is
working and able to receive events correctly. Invoking a function locally is useful for a quick test during
function development. Invoking a function on the cluster is useful for testing that is closer to the
production environment.

Prerequisites
® The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

® You have installed the Knative (kn) CLI.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You must have already deployed the function that you want to invoke.

Procedure

® |nvoke a function:

I $ kn func invoke

31

Red Hat OpenShift Serverless 1.30 Knative CLI

o The kn func invoke command only works when there is either a local container image
currently running, or when there is a function deployed in the cluster.

o The kn func invoke command executes on the local directory by default, and assumes that
this directory is a function project.
5.1.7.1. kn func invoke optional parameters

You can specify optional parameters for the request by using the following kn func invoke CLI
command flags.

Flags Description

-t --target Specifies the target instance of the invoked function, for example, local or
remote or https://staging.example.com/. The default targetislocal.

-f --format Specifies the format of the message, for example, cloudevent or http.
-id Specifies a unique string identifier for the request.

-n, --namespace Specifies the namespace on the cluster.

--source Specifies sender name for the request. This corresponds to the CloudEvent

source attribute.

--type Specifies the type of request, for example, boson.fn. This corresponds to the
CloudEvent type attribute.

--data Specifies content for the request. For CloudEvent requests, this is the CloudEvent
data attribute.

--file Specifies path to a local file containing data to be sent.
--content-type Specifies the MIME content type for the request.
-p,--path Specifies path to the project directory.

-c,--confirm Enables prompting to interactively confirm all options.
-v,--verbose Enables printing verbose output.

-h,--help Prints information on usage of kn func invoke.

5.1.7.1.1. Main parameters

The following parameters define the main properties of the kn func invoke command:

Event target (-t, --target)

32

https://staging.example.com/

CHAPTER 5. KNATIVE FUNCTIONS CLI COMMANDS

I ne target Instance of the INvoked Tunction. Accepts the local value Tor a locally deployed Tunction,
the remote value for a remotely deployed function, or a URL for a function deployed to an arbitrary
endpoint. If a target is not specified, it defaults to local.

Event message format (-f, --format)

The message format for the event, such as http or cloudevent. This defaults to the format of the
template that was used when creating the function.

Event type (--type)

The type of event that is sent. You can find information about the type parameter that is set in the
documentation for each event producer. For example, the APl server source might set the type
parameter of produced events as dev.knative.apiserver.resource.update.

Event source (--source)

The unique event source that produced the event. This might be a URI for the event source, for
example https://10.96.0.1/, or the name of the event source.

Event ID (--id)
Arandom, unique ID that is created by the event producer.
Event data (--data)

Allows you to specify a data value for the event sent by the kn func invoke command. For example,
you can specify a --data value such as "Hello World" so that the event contains this data string. By
default, no data is included in the events created by kn func invoke.

NOTE

» Functions that have been deployed to a cluster can respond to events from an existing
event source that provides values for properties such as source and type. These
events often have a data value in JSON format, which captures the domain specific

» context of the event. By using the CLI flags noted in this document, developers can
simulate those events for local testing.

You can also send event data using the --file flag to provide a local file containing data for the event.
In this case, specify the content type using --content-type.

Data content type (--content-type)
If you are using the --data flag to add data for events, you can use the --content-type flag to specify

what type of data is carried by the event. In the previous example, the data is plain text, so you might
specify kn func invoke --data "Hello world!" --content-type "text/plain".

5.1.7.1.2. Example commands

This is the general invocation of the kn func invoke command:

$ kn func invoke --type <event_type> --source <event_source> --data <event_data> --content-type
<content_type> --id <event_|D> --format <format> --namespace <namespace>

For example, to send a "Hello world!" event, you can run:

$ kn func invoke --type ping --source example-ping --data "Hello world!" --content-type "text/plain" --
id example-ID --format http --namespace my-ns

5.1.7.1.2.1. Specifying the file with data

33

https://10.96.0.1/

Red Hat OpenShift Serverless 1.30 Knative CLI

To specify the file on disk that contains the event data, use the --file and --content-type flags:
I $ kn func invoke --file <path> --content-type <content-type>
For example, to send JSON data stored in the test.json file, use this command:

I $ kn func invoke --file ./test.json --content-type application/json

5.1.7.1.2.2. Specifying the function project

You can specify a path to the function project by using the --path flag:
I $ kn func invoke --path <path_to_function>

For example, to use the function project located in the ./example/example-function directory, use this
command:

I $ kn func invoke --path ./example/example-function

5.1.7.1.2.3. Specifying where the target function is deployed

By default, kn func invoke targets the local deployment of the function:

I $ kn func invoke

To use a different deployment, use the --target flag:

I $ kn func invoke --target <target>

For example, to use the function deployed on the cluster, use the --target remote flag:
I $ kn func invoke --target remote

To use the function deployed at an arbitrary URL, use the --target <URL> flag:

I $ kn func invoke --target "https://my-event-broker.example.com"

You can explicitly target the local deployment. In this case, if the function is not running locally, the
command fails:

I $ kn func invoke --target local

5.1.8. Deleting a function

You can delete a function by using the kn func delete command. This is useful when a function is no
longer required, and can help to save resources on your cluster.

Procedure

® Delete a function:

34

CHAPTER 5. KNATIVE FUNCTIONS CLI COMMANDS

I $ kn func delete [<function_name> -n <namespace> -p <path>]

o If the name or path of the function to delete is not specified, the current directory is
searched for a func.yaml file that is used to determine the function to delete.

o If the namespace is not specified, it defaults to the namespace value in the func.yaml file.

35

	Table of Contents
	CHAPTER 1. KNATIVE SERVING CLI COMMANDS
	1.1. KN SERVICE COMMANDS
	1.1.1. Creating serverless applications by using the Knative CLI
	1.1.2. Updating serverless applications by using the Knative CLI
	1.1.3. Applying service declarations
	1.1.4. Describing serverless applications by using the Knative CLI

	1.2. KN SERVICE COMMANDS IN OFFLINE MODE
	1.2.1. About the Knative CLI offline mode
	1.2.2. Creating a service using offline mode

	1.3. KN CONTAINER COMMANDS
	1.3.1. Knative client multi-container support
	Example commands

	1.4. KN DOMAIN COMMANDS
	1.4.1. Creating a custom domain mapping by using the Knative CLI
	1.4.2. Managing custom domain mappings by using the Knative CLI

	CHAPTER 2. CONFIGURING THE KNATIVE CLI
	CHAPTER 3. KNATIVE CLI PLUGINS
	3.1. BUILDING EVENTS BY USING THE KN-EVENT PLUGIN
	3.2. SENDING EVENTS BY USING THE KN-EVENT PLUGIN

	CHAPTER 4. KNATIVE EVENTING CLI COMMANDS
	4.1. KN SOURCE COMMANDS
	4.1.1. Listing available event source types by using the Knative CLI
	4.1.2. Knative CLI sink flag
	4.1.3. Creating and managing container sources by using the Knative CLI
	4.1.4. Creating an API server source by using the Knative CLI
	4.1.5. Creating a ping source by using the Knative CLI
	4.1.6. Creating an Apache Kafka event source by using the Knative CLI

	CHAPTER 5. KNATIVE FUNCTIONS CLI COMMANDS
	5.1. KN FUNCTIONS COMMANDS
	5.1.1. Creating a function by using the Knative CLI
	5.1.2. Running a function locally
	5.1.3. Building a function
	5.1.3.1. Image container types
	5.1.3.2. Image registry types
	5.1.3.3. Push flag
	5.1.3.4. Help command

	5.1.4. Deploying a function
	5.1.5. Listing existing functions
	5.1.6. Describing a function
	5.1.7. Invoking a deployed function with a test event
	5.1.7.1. kn func invoke optional parameters

	5.1.8. Deleting a function

