
Red Hat OpenShift Serverless 1.30

Serving

Getting started with Knative Serving and configuring services

Last Updated: 2023-09-19





Red Hat OpenShift Serverless 1.30 Serving

Getting started with Knative Serving and configuring services



Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on getting started with Knative Serving. It shows how to
configure applications, and covers features such as autoscaling, traffic splitting, and external and
ingress routing.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. GETTING STARTED WITH KNATIVE SERVING
1.1. SERVERLESS APPLICATIONS

1.1.1. Creating serverless applications by using the Knative CLI
1.1.2. Creating serverless applications using YAML
1.1.3. Creating serverless applications using the Administrator perspective
1.1.4. Creating a service using offline mode
1.1.5. Additional resources

1.2. VERIFYING YOUR SERVERLESS APPLICATION DEPLOYMENT
1.2.1. Verifying your serverless application deployment

CHAPTER 2. AUTOSCALING
2.1. AUTOSCALING
2.2. SCALE BOUNDS

2.2.1. Minimum scale bounds
2.2.1.1. Setting the min-scale annotation by using the Knative CLI

2.2.2. Maximum scale bounds
2.2.2.1. Setting the max-scale annotation by using the Knative CLI

2.3. CONCURRENCY
2.3.1. Configuring a soft concurrency target
2.3.2. Configuring a hard concurrency limit
2.3.3. Concurrency target utilization

2.4. SCALE-TO-ZERO
2.4.1. Enabling scale-to-zero
2.4.2. Configuring the scale-to-zero grace period

CHAPTER 3. CONFIGURING SERVERLESS APPLICATIONS
3.1. OVERRIDING KNATIVE SERVING SYSTEM DEPLOYMENT CONFIGURATIONS

3.1.1. Overriding system deployment configurations
3.2. MULTI-CONTAINER SUPPORT FOR SERVING

3.2.1. Configuring a multi-container service
3.3. EMPTYDIR VOLUMES

3.3.1. Configuring the EmptyDir extension
3.4. PERSISTENT VOLUME CLAIMS FOR SERVING

3.4.1. Enabling PVC support
3.4.2. Additional resources for OpenShift Container Platform

3.5. INIT CONTAINERS
3.5.1. Enabling init containers

3.6. RESOLVING IMAGE TAGS TO DIGESTS
3.6.1. Tag-to-digest resolution

3.6.1.1. Configuring tag-to-digest resolution by using a secret
3.7. CONFIGURING TLS AUTHENTICATION

3.7.1. Enabling TLS authentication for internal traffic
3.8. RESTRICTIVE NETWORK POLICIES

3.8.1. Clusters with restrictive network policies
3.8.2. Enabling communication with Knative applications on a cluster with restrictive network policies

CHAPTER 4. TRAFFIC SPLITTING
4.1. TRAFFIC SPLITTING OVERVIEW
4.2. TRAFFIC SPEC EXAMPLES
4.3. TRAFFIC SPLITTING USING THE KNATIVE CLI

4.3.1. Creating a traffic split by using the Knative CLI
4.4. CLI FLAGS FOR TRAFFIC SPLITTING

5
5
5
6
7
8
11
11
11

14
14
14
14
15
15
15
16
16
17
18
18
18
19

21
21
21
22
22
23
23
23
23
25
25
25
26
26
26
27
27
28
28
28

31
31
31

33
33
34

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.1. Knative CLI traffic splitting flags
4.4.1.1. Multiple flags and order precedence
4.4.1.2. Custom URLs for revisions

4.4.1.2.1. Example: Assign a tag to a revision
4.4.1.2.2. Example: Remove a tag from a revision

4.5. SPLITTING TRAFFIC BETWEEN REVISIONS
4.5.1. Managing traffic between revisions by using the OpenShift Container Platform web console

4.6. REROUTING TRAFFIC USING BLUE-GREEN STRATEGY
4.6.1. Routing and managing traffic by using a blue-green deployment strategy

CHAPTER 5. EXTERNAL AND INGRESS ROUTING
5.1. ROUTING OVERVIEW

5.1.1. Additional resources for OpenShift Container Platform
5.2. CUSTOMIZING LABELS AND ANNOTATIONS

5.2.1. Customizing labels and annotations for OpenShift Container Platform routes
5.3. CONFIGURING ROUTES FOR KNATIVE SERVICES

5.3.1. Configuring OpenShift Container Platform routes for Knative services
5.4. GLOBAL HTTPS REDIRECTION

5.4.1. HTTPS redirection global settings
5.5. URL SCHEME FOR EXTERNAL ROUTES

5.5.1. Setting the URL scheme for external routes
5.6. HTTPS REDIRECTION PER SERVICE

5.6.1. Redirecting HTTPS for a service
5.7. CLUSTER LOCAL AVAILABILITY

5.7.1. Setting cluster availability to cluster local
5.7.2. Enabling TLS authentication for cluster local services

5.8. KOURIER GATEWAY SERVICE TYPE
5.8.1. Setting the Kourier Gateway service type

5.9. USING HTTP2 AND GRPC
5.9.1. Interacting with a serverless application using HTTP2 and gRPC
5.9.2. Interacting with a serverless application using HTTP2 and gRPC in OpenShift Container Platform 4.9 and
older

CHAPTER 6. CONFIGURING ACCESS TO KNATIVE SERVICES
6.1. CONFIGURING JSON WEB TOKEN AUTHENTICATION FOR KNATIVE SERVICES
6.2. USING JSON WEB TOKEN AUTHENTICATION WITH SERVICE MESH 2.X

6.2.1. Configuring JSON Web Token authentication for Service Mesh 2.x and OpenShift Serverless
6.3. USING JSON WEB TOKEN AUTHENTICATION WITH SERVICE MESH 1.X

6.3.1. Configuring JSON Web Token authentication for Service Mesh 1.x and OpenShift Serverless

CHAPTER 7. CONFIGURING KUBE-RBAC-PROXY FOR SERVING
7.1. CONFIGURING KUBE-RBAC-PROXY RESOURCES FOR SERVING

CHAPTER 8. CONFIGURING BURST AND QPS FOR NET-KOURIER
8.1. CONFIGURING BURST AND QPS VALUES FOR NET-KOURIER

CHAPTER 9. CONFIGURING CUSTOM DOMAINS FOR KNATIVE SERVICES
9.1. CONFIGURING A CUSTOM DOMAIN FOR A KNATIVE SERVICE
9.2. CUSTOM DOMAIN MAPPING

9.2.1. Creating a custom domain mapping
9.3. CUSTOM DOMAINS FOR KNATIVE SERVICES USING THE KNATIVE CLI

9.3.1. Creating a custom domain mapping by using the Knative CLI
9.4. DOMAIN MAPPING USING THE DEVELOPER PERSPECTIVE

9.4.1. Mapping a custom domain to a service by using the Developer perspective

34
34
35
35
35
35
35
37
37

40
40
40
40
40
41
41

44
44
44
44
44
45
45
45
46
47
47
48
48

49

51
51
51
51

54
54

57
57

58
58

59
59
59
59
60
60
61

62

Red Hat OpenShift Serverless 1.30 Serving

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.5. DOMAIN MAPPING USING THE ADMINISTRATOR PERSPECTIVE
9.5.1. Mapping a custom domain to a service by using the Administrator perspective

9.6. SECURING A MAPPED SERVICE USING A TLS CERTIFICATE
9.6.1. Securing a service with a custom domain by using a TLS certificate
9.6.2. Improving net-kourier memory usage by using secret filtering

CHAPTER 10. CONFIGURING HIGH AVAILABILITY FOR KNATIVE SERVICES
10.1. HIGH AVAILABILITY FOR KNATIVE SERVICES
10.2. HIGH AVAILABILITY FOR KNATIVE SERVICES

10.2.1. Configuring high availability replicas for Knative Serving

62
63
64
64
66

68
68
68
68

Table of Contents

3



Red Hat OpenShift Serverless 1.30 Serving

4



1

2

3

4

CHAPTER 1. GETTING STARTED WITH KNATIVE SERVING

1.1. SERVERLESS APPLICATIONS

Serverless applications are created and deployed as Kubernetes services, defined by a route and a
configuration, and contained in a YAML file. To deploy a serverless application using OpenShift
Serverless, you must create a Knative Service object.

Example Knative Service object YAML file

The name of the application.

The namespace the application uses.

The image of the application.

The environment variable printed out by the sample application.

You can create a serverless application by using one of the following methods:

Create a Knative service from the OpenShift Container Platform web console.
For OpenShift Container Platform, see Creating applications using the Developer perspective
for more information.

Create a Knative service by using the Knative (kn) CLI.

Create and apply a Knative Service object as a YAML file, by using the oc CLI.

1.1.1. Creating serverless applications by using the Knative CLI

Using the Knative (kn) CLI to create serverless applications provides a more streamlined and intuitive
user interface over modifying YAML files directly. You can use the kn service create command to
create a basic serverless application.

Prerequisites

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: showcase 1
  namespace: default 2
spec:
  template:
    spec:
      containers:
        - image: quay.io/openshift-knative/showcase 3
          env:
            - name: GREET 4
              value: Ciao

CHAPTER 1. GETTING STARTED WITH KNATIVE SERVING

5

https://docs.openshift.com/container-platform/latest/applications/creating_applications/odc-creating-applications-using-developer-perspective.html#odc-creating-applications-using-developer-perspective


You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a Knative service:

Where:

--image is the URI of the image for the application.

--tag is an optional flag that can be used to add a tag to the initial revision that is created
with the service.

Example command

Example output

1.1.2. Creating serverless applications using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
applications declaratively and in a reproducible manner. To create a serverless application by using
YAML, you must create a YAML file that defines a Knative Service object, then apply it by using oc 
apply.

After the service is created and the application is deployed, Knative creates an immutable revision for
this version of the application. Knative also performs network programming to create a route, ingress,
service, and load balancer for your application and automatically scales your pods up and down based on
traffic.

Prerequisites

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Install the OpenShift CLI (oc).

$ kn service create <service-name> --image <image> --tag <tag-value>

$ kn service create showcase \
    --image quay.io/openshift-knative/showcase

Creating service 'showcase' in namespace 'default':

  0.271s The Route is still working to reflect the latest desired specification.
  0.580s Configuration "showcase" is waiting for a Revision to become ready.
  3.857s ...
  3.861s Ingress has not yet been reconciled.
  4.270s Ready to serve.

Service 'showcase' created with latest revision 'showcase-00001' and URL:
http://showcase-default.apps-crc.testing

Red Hat OpenShift Serverless 1.30 Serving

6



1

2

3

Procedure

1. Create a YAML file containing the following sample code:

2. Navigate to the directory where the YAML file is contained, and deploy the application by
applying the YAML file:

If you do not want to switch to the Developer perspective in the OpenShift Container Platform web
console or use the Knative (kn) CLI or YAML files, you can create Knative components by using the
Administator perspective of the OpenShift Container Platform web console.

1.1.3. Creating serverless applications using the Administrator perspective

Serverless applications are created and deployed as Kubernetes services, defined by a route and a
configuration, and contained in a YAML file. To deploy a serverless application using OpenShift
Serverless, you must create a Knative Service object.

Example Knative Service object YAML file

The name of the application.

The namespace the application uses.

The image of the application.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: showcase
  namespace: default
spec:
  template:
    spec:
      containers:
        - image: quay.io/openshift-knative/showcase
          env:
            - name: GREET
              value: Bonjour

$ oc apply -f <filename>

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: showcase 1
  namespace: default 2
spec:
  template:
    spec:
      containers:
        - image: quay.io/openshift-knative/showcase 3
          env:
            - name: GREET 4
              value: Ciao

CHAPTER 1. GETTING STARTED WITH KNATIVE SERVING

7



4 The environment variable printed out by the sample application.

After the service is created and the application is deployed, Knative creates an immutable revision for
this version of the application. Knative also performs network programming to create a route, ingress,
service, and load balancer for your application and automatically scales your pods up and down based on
traffic.

Prerequisites

To create serverless applications using the Administrator perspective, ensure that you have completed
the following steps.

The OpenShift Serverless Operator and Knative Serving are installed.

You have logged in to the web console and are in the Administrator perspective.

Procedure

1. Navigate to the Serverless → Serving page.

2. In the Create list, select Service.

3. Manually enter YAML or JSON definitions, or by dragging and dropping a file into the editor.

4. Click Create.

1.1.4. Creating a service using offline mode

You can execute kn service commands in offline mode, so that no changes happen on the cluster, and
instead the service descriptor file is created on your local machine. After the descriptor file is created,
you can modify the file before propagating changes to the cluster.

IMPORTANT

The offline mode of the Knative CLI is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Prerequisites

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have installed the Knative (kn) CLI.

Procedure

1. In offline mode, create a local Knative service descriptor file:

$ kn service create showcase \

Red Hat OpenShift Serverless 1.30 Serving

8

https://access.redhat.com/support/offerings/techpreview/


Example output

The --target ./ flag enables offline mode and specifies ./ as the directory for storing the new
directory tree.
If you do not specify an existing directory, but use a filename, such as --target my-
service.yaml, then no directory tree is created. Instead, only the service descriptor file my-
service.yaml is created in the current directory.

The filename can have the .yaml, .yml, or .json extension. Choosing .json creates the
service descriptor file in the JSON format.

The --namespace test option places the new service in the test namespace.
If you do not use --namespace, and you are logged in to an OpenShift Container Platform
cluster, the descriptor file is created in the current namespace. Otherwise, the descriptor
file is created in the default namespace.

2. Examine the created directory structure:

Example output

The current ./ directory specified with --target contains the new test/ directory that is
named after the specified namespace.

The test/ directory contains the ksvc directory, named after the resource type.

The ksvc directory contains the descriptor file showcase.yaml, named according to the
specified service name.

3. Examine the generated service descriptor file:

Example output

    --image quay.io/openshift-knative/showcase \
    --target ./ \
    --namespace test

Service 'showcase' created in namespace 'test'.

$ tree ./

./
└── test
    └── ksvc
        └── showcase.yaml

2 directories, 1 file

$ cat test/ksvc/showcase.yaml

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  creationTimestamp: null
  name: showcase

CHAPTER 1. GETTING STARTED WITH KNATIVE SERVING

9



4. List information about the new service:

Example output

The --target ./ option specifies the root directory for the directory structure containing
namespace subdirectories.
Alternatively, you can directly specify a YAML or JSON filename with the --target option.
The accepted file extensions are .yaml, .yml, and .json.

The --namespace option specifies the namespace, which communicates to kn the
subdirectory that contains the necessary service descriptor file.
If you do not use --namespace, and you are logged in to an OpenShift Container Platform
cluster, kn searches for the service in the subdirectory that is named after the current
namespace. Otherwise, kn searches in the default/ subdirectory.

5. Use the service descriptor file to create the service on the cluster:

Example output

  namespace: test
spec:
  template:
    metadata:
      annotations:
        client.knative.dev/user-image: quay.io/openshift-knative/showcase
      creationTimestamp: null
    spec:
      containers:
      - image: quay.io/openshift-knative/showcase
        name: ""
        resources: {}
status: {}

$ kn service describe showcase --target ./ --namespace test

Name:       showcase
Namespace:  test
Age:
URL:

Revisions:

Conditions:
  OK TYPE    AGE REASON

$ kn service create -f test/ksvc/showcase.yaml

Creating service 'showcase' in namespace 'test':

  0.058s The Route is still working to reflect the latest desired specification.
  0.098s ...
  0.168s Configuration "showcase" is waiting for a Revision to become ready.
 23.377s ...
 23.419s Ingress has not yet been reconciled.

Red Hat OpenShift Serverless 1.30 Serving

10



1.1.5. Additional resources

Knative Serving CLI commands

Configuring JSON Web Token authentication for Knative services

1.2. VERIFYING YOUR SERVERLESS APPLICATION DEPLOYMENT

To verify that your serverless application has been deployed successfully, you must get the application
URL created by Knative, and then send a request to that URL and observe the output. OpenShift
Serverless supports the use of both HTTP and HTTPS URLs, however the output from oc get ksvc
always prints URLs using the http:// format.

1.2.1. Verifying your serverless application deployment

To verify that your serverless application has been deployed successfully, you must get the application
URL created by Knative, and then send a request to that URL and observe the output. OpenShift
Serverless supports the use of both HTTP and HTTPS URLs, however the output from oc get ksvc
always prints URLs using the http:// format.

Prerequisites

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have installed the oc CLI.

You have created a Knative service.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Find the application URL:

Example output

2. Make a request to your cluster and observe the output.

 23.534s Waiting for load balancer to be ready
 23.723s Ready to serve.

Service 'showcase' created to latest revision 'showcase-00001' is available at URL:
http://showcase-test.apps.example.com

$ oc get ksvc <service_name>

NAME       URL                                   LATESTCREATED    LATESTREADY      READY   
REASON
showcase   http://showcase-default.example.com   showcase-00001   showcase-00001   
True

CHAPTER 1. GETTING STARTED WITH KNATIVE SERVING

11

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.30/html-single/knative_cli/#kn-service
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.30/html-single/serving/#serverless-ossm-with-kourier-jwt


Example HTTP request (using HTTPie tool)

Example HTTPS request

Example output

3. Optional. If you don’t have the HTTPie tool installed on your system, you can likely use curl tool
instead:

Example HTTPS request

Example output

4. Optional. If you receive an error relating to a self-signed certificate in the certificate chain, you
can add the --verify=no flag to the HTTPie command to ignore the error:

Example output

IMPORTANT

$ http showcase-default.example.com

$ https showcase-default.example.com

HTTP/1.1 200 OK
Content-Type: application/json
Server: Quarkus/2.13.7.Final-redhat-00003 Java/17.0.7
X-Config: {"sink":"http://localhost:31111","greet":"Ciao","delay":0}
X-Version: v0.7.0-4-g23d460f
content-length: 49

{
    "artifact": "knative-showcase",
    "greeting": "Ciao"
}

$ curl http://showcase-default.example.com

{"artifact":"knative-showcase","greeting":"Ciao"}

$ https --verify=no showcase-default.example.com

HTTP/1.1 200 OK
Content-Type: application/json
Server: Quarkus/2.13.7.Final-redhat-00003 Java/17.0.7
X-Config: {"sink":"http://localhost:31111","greet":"Ciao","delay":0}
X-Version: v0.7.0-4-g23d460f
content-length: 49

{
    "artifact": "knative-showcase",
    "greeting": "Ciao"
}

Red Hat OpenShift Serverless 1.30 Serving

12



IMPORTANT

Self-signed certificates must not be used in a production deployment. This
method is only for testing purposes.

5. Optional. If your OpenShift Container Platform cluster is configured with a certificate that is
signed by a certificate authority (CA) but not yet globally configured for your system, you can
specify this with the curl command. The path to the certificate can be passed to the curl
command by using the --cacert flag:

Example output

$ curl https://showcase-default.example.com --cacert <file>

{"artifact":"knative-showcase","greeting":"Ciao"}

CHAPTER 1. GETTING STARTED WITH KNATIVE SERVING

13



CHAPTER 2. AUTOSCALING

2.1. AUTOSCALING

Knative Serving provides automatic scaling, or autoscaling, for applications to match incoming demand.
For example, if an application is receiving no traffic, and scale-to-zero is enabled, Knative Serving scales
the application down to zero replicas. If scale-to-zero is disabled, the application is scaled down to the
minimum number of replicas configured for applications on the cluster. Replicas can also be scaled up to
meet demand if traffic to the application increases.

Autoscaling settings for Knative services can be global settings that are configured by cluster
administrators (or dedicated administrators for Red Hat OpenShift Service on AWS and OpenShift
Dedicated), or per-revision settings that are configured for individual services.

You can modify per-revision settings for your services by using the OpenShift Container Platform web
console, by modifying the YAML file for your service, or by using the Knative (kn) CLI.

NOTE

Any limits or targets that you set for a service are measured against a single instance of
your application. For example, setting the target annotation to 50 configures the
autoscaler to scale the application so that each revision handles 50 requests at a time.

2.2. SCALE BOUNDS

Scale bounds determine the minimum and maximum numbers of replicas that can serve an application at
any given time. You can set scale bounds for an application to help prevent cold starts or control
computing costs.

2.2.1. Minimum scale bounds

The minimum number of replicas that can serve an application is determined by the min-scale
annotation. If scale to zero is not enabled, the min-scale value defaults to 1.

The min-scale value defaults to 0 replicas if the following conditions are met:

The min-scale annotation is not set

Scaling to zero is enabled

The class KPA is used

Example service spec with min-scale annotation

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: showcase
  namespace: default
spec:
  template:
    metadata:

Red Hat OpenShift Serverless 1.30 Serving

14



2.2.1.1. Setting the min-scale annotation by using the Knative CLI

Using the Knative (kn) CLI to set the min-scale annotation provides a more streamlined and intuitive
user interface over modifying YAML files directly. You can use the kn service command with the --
scale-min flag to create or modify the min-scale value for a service.

Prerequisites

Knative Serving is installed on the cluster.

You have installed the Knative (kn) CLI.

Procedure

Set the minimum number of replicas for the service by using the --scale-min flag:

Example command

2.2.2. Maximum scale bounds

The maximum number of replicas that can serve an application is determined by the max-scale
annotation. If the max-scale annotation is not set, there is no upper limit for the number of replicas
created.

Example service spec with max-scale annotation

2.2.2.1. Setting the max-scale annotation by using the Knative CLI

Using the Knative (kn) CLI to set the max-scale annotation provides a more streamlined and intuitive
user interface over modifying YAML files directly. You can use the kn service command with the --
scale-max flag to create or modify the max-scale value for a service.

      annotations:
        autoscaling.knative.dev/min-scale: "0"
...

$ kn service create <service_name> --image <image_uri> --scale-min <integer>

$ kn service create showcase --image quay.io/openshift-knative/showcase --scale-min 2

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: showcase
  namespace: default
spec:
  template:
    metadata:
      annotations:
        autoscaling.knative.dev/max-scale: "10"
...

CHAPTER 2. AUTOSCALING

15



Prerequisites

Knative Serving is installed on the cluster.

You have installed the Knative (kn) CLI.

Procedure

Set the maximum number of replicas for the service by using the --scale-max flag:

Example command

2.3. CONCURRENCY

Concurrency determines the number of simultaneous requests that can be processed by each replica of
an application at any given time. Concurrency can be configured as a soft limit or a hard limit:

A soft limit is a targeted requests limit, rather than a strictly enforced bound. For example, if
there is a sudden burst of traffic, the soft limit target can be exceeded.

A hard limit is a strictly enforced upper bound requests limit. If concurrency reaches the hard
limit, surplus requests are buffered and must wait until there is enough free capacity to execute
the requests.

IMPORTANT

Using a hard limit configuration is only recommended if there is a clear use case
for it with your application. Having a low, hard limit specified may have a negative
impact on the throughput and latency of an application, and might cause cold
starts.

Adding a soft target and a hard limit means that the autoscaler targets the soft target number of
concurrent requests, but imposes a hard limit of the hard limit value for the maximum number of
requests.

If the hard limit value is less than the soft limit value, the soft limit value is tuned down, because there is
no need to target more requests than the number that can actually be handled.

2.3.1. Configuring a soft concurrency target

A soft limit is a targeted requests limit, rather than a strictly enforced bound. For example, if there is a
sudden burst of traffic, the soft limit target can be exceeded. You can specify a soft concurrency target
for your Knative service by setting the autoscaling.knative.dev/target annotation in the spec, or by
using the kn service command with the correct flags.

Procedure

Optional: Set the autoscaling.knative.dev/target annotation for your Knative service in the
spec of the Service custom resource:

$ kn service create <service_name> --image <image_uri> --scale-max <integer>

$ kn service create showcase --image quay.io/openshift-knative/showcase --scale-max 10

Red Hat OpenShift Serverless 1.30 Serving

16



Example service spec

Optional: Use the kn service command to specify the --concurrency-target flag:

Example command to create a service with a concurrency target of 50 requests

2.3.2. Configuring a hard concurrency limit

A hard concurrency limit is a strictly enforced upper bound requests limit. If concurrency reaches the
hard limit, surplus requests are buffered and must wait until there is enough free capacity to execute the
requests. You can specify a hard concurrency limit for your Knative service by modifying the 
containerConcurrency spec, or by using the kn service command with the correct flags.

Procedure

Optional: Set the containerConcurrency spec for your Knative service in the spec of the 
Service custom resource:

Example service spec

The default value is 0, which means that there is no limit on the number of simultaneous
requests that are permitted to flow into one replica of the service at a time.

A value greater than 0 specifies the exact number of requests that are permitted to flow into
one replica of the service at a time. This example would enable a hard concurrency limit of 50
requests.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: showcase
  namespace: default
spec:
  template:
    metadata:
      annotations:
        autoscaling.knative.dev/target: "200"

$ kn service create <service_name> --image <image_uri> --concurrency-target <integer>

$ kn service create showcase --image quay.io/openshift-knative/showcase --concurrency-
target 50

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: showcase
  namespace: default
spec:
  template:
    spec:
      containerConcurrency: 50

CHAPTER 2. AUTOSCALING

17



Optional: Use the kn service command to specify the --concurrency-limit flag:

Example command to create a service with a concurrency limit of 50 requests

2.3.3. Concurrency target utilization

This value specifies the percentage of the concurrency limit that is actually targeted by the autoscaler.
This is also known as specifying the hotness at which a replica runs, which enables the autoscaler to scale
up before the defined hard limit is reached.

For example, if the containerConcurrency value is set to 10, and the target-utilization-percentage
value is set to 70 percent, the autoscaler creates a new replica when the average number of concurrent
requests across all existing replicas reaches 7. Requests numbered 7 to 10 are still sent to the existing
replicas, but additional replicas are started in anticipation of being required after the 
containerConcurrency value is reached.

Example service configured using the target-utilization-percentage annotation

2.4. SCALE-TO-ZERO

Knative Serving provides automatic scaling, or autoscaling, for applications to match incoming demand.

2.4.1. Enabling scale-to-zero

You can use the enable-scale-to-zero spec to enable or disable scale-to-zero globally for applications
on the cluster.

Prerequisites

You have installed OpenShift Serverless Operator and Knative Serving on your cluster.

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

You are using the default Knative Pod Autoscaler. The scale to zero feature is not available if

$ kn service create <service_name> --image <image_uri> --concurrency-limit <integer>

$ kn service create showcase --image quay.io/openshift-knative/showcase --concurrency-
limit 50

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: showcase
  namespace: default
spec:
  template:
    metadata:
      annotations:
        autoscaling.knative.dev/target-utilization-percentage: "70"
...

Red Hat OpenShift Serverless 1.30 Serving

18



1

You are using the default Knative Pod Autoscaler. The scale to zero feature is not available if
you are using the Kubernetes Horizontal Pod Autoscaler.

Procedure

Modify the enable-scale-to-zero spec in the KnativeServing custom resource (CR):

Example KnativeServing CR

The enable-scale-to-zero spec can be either "true" or "false". If set to true, scale-to-zero
is enabled. If set to false, applications are scaled down to the configured minimum scale
bound. The default value is "true".

2.4.2. Configuring the scale-to-zero grace period

Knative Serving provides automatic scaling down to zero pods for applications. You can use the scale-
to-zero-grace-period spec to define an upper bound time limit that Knative waits for scale-to-zero
machinery to be in place before the last replica of an application is removed.

Prerequisites

You have installed OpenShift Serverless Operator and Knative Serving on your cluster.

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

You are using the default Knative Pod Autoscaler. The scale-to-zero feature is not available if
you are using the Kubernetes Horizontal Pod Autoscaler.

Procedure

Modify the scale-to-zero-grace-period spec in the KnativeServing custom resource (CR):

Example KnativeServing CR

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
  name: knative-serving
spec:
  config:
    autoscaler:
      enable-scale-to-zero: "false" 1

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
  name: knative-serving
spec:
  config:
    autoscaler:
      scale-to-zero-grace-period: "30s" 1

CHAPTER 2. AUTOSCALING

19



1 The grace period time in seconds. The default value is 30 seconds.

Red Hat OpenShift Serverless 1.30 Serving

20



CHAPTER 3. CONFIGURING SERVERLESS APPLICATIONS

3.1. OVERRIDING KNATIVE SERVING SYSTEM DEPLOYMENT
CONFIGURATIONS

You can override the default configurations for some specific deployments by modifying the 
deployments spec in the KnativeServing custom resources (CRs).

NOTE

You can only override probes that are defined in the deployment by default.

All Knative Serving deployments define a readiness and a liveness probe by default, with
these exceptions:

net-kourier-controller and 3scale-kourier-gateway only define a readiness
probe.

net-istio-controller and net-istio-webhook define no probes.

3.1.1. Overriding system deployment configurations

Currently, overriding default configuration settings is supported for the resources, replicas, labels, 
annotations, and nodeSelector fields, as well as for the readiness and liveness fields for probes.

In the following example, a KnativeServing CR overrides the webhook deployment so that:

The readiness probe timeout for net-kourier-controller is set to be 10 seconds.

The deployment has specified CPU and memory resource limits.

The deployment has 3 replicas.

The example-label: label label is added.

The example-annotation: annotation annotation is added.

The nodeSelector field is set to select nodes with the disktype: hdd label.

NOTE

The KnativeServing CR label and annotation settings override the deployment’s labels
and annotations for both the deployment itself and the resulting pods.

KnativeServing CR example

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
  name: ks
  namespace: knative-serving
spec:
  high-availability:

CHAPTER 3. CONFIGURING SERVERLESS APPLICATIONS

21



1 You can use the readiness and liveness probe overrides to override all fields of a probe in a
container of a deployment as specified in the Kubernetes API except for the fields related to the
probe handler: exec, grpc, httpGet, and tcpSocket.

Additional resources

Probe configuration section of the Kubernetes API documentation

3.2. MULTI-CONTAINER SUPPORT FOR SERVING

You can deploy a multi-container pod by using a single Knative service. This method is useful for
separating application responsibilities into smaller, specialized parts.

3.2.1. Configuring a multi-container service

Multi-container support is enabled by default. You can create a multi-container pod by specifiying
multiple containers in the service.

Procedure

1. Modify your service to include additional containers. Only one container can handle requests, so
specify ports for exactly one container. Here is an example configuration with two containers:

Multiple containers configuration

    replicas: 2
  deployments:
  - name: net-kourier-controller
    readinessProbes: 1
      - container: controller
        timeoutSeconds: 10
  - name: webhook
    resources:
    - container: webhook
      requests:
        cpu: 300m
        memory: 60Mi
      limits:
        cpu: 1000m
        memory: 1000Mi
    replicas: 3
    labels:
      example-label: label
    annotations:
      example-annotation: annotation
    nodeSelector:
      disktype: hdd

apiVersion: serving.knative.dev/v1
kind: Service
...
spec:
  template:

Red Hat OpenShift Serverless 1.30 Serving

22

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.25/#probe-v1-core


1

2

3

First container configuration.

Port specification for the first container.

Second container configuration.

3.3. EMPTYDIR VOLUMES

emptyDir volumes are empty volumes that are created when a pod is created, and are used to provide
temporary working disk space. emptyDir volumes are deleted when the pod they were created for is
deleted.

3.3.1. Configuring the EmptyDir extension

The kubernetes.podspec-volumes-emptydir extension controls whether emptyDir volumes can be
used with Knative Serving. To enable using emptyDir volumes, you must modify the KnativeServing
custom resource (CR) to include the following YAML:

Example KnativeServing CR

3.4. PERSISTENT VOLUME CLAIMS FOR SERVING

Some serverless applications need permanent data storage. To achieve this, you can configure
persistent volume claims (PVCs) for your Knative services.

3.4.1. Enabling PVC support

Procedure

1. To enable Knative Serving to use PVCs and write to them, modify the KnativeServing custom
resource (CR) to include the following YAML:

Enabling PVCs with write access

    spec:
      containers:
        - name: first-container 1
          image: gcr.io/knative-samples/helloworld-go
          ports:
            - containerPort: 8080 2
        - name: second-container 3
          image: gcr.io/knative-samples/helloworld-java

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
  name: knative-serving
spec:
  config:
    features:
      kubernetes.podspec-volumes-emptydir: enabled
...

CHAPTER 3. CONFIGURING SERVERLESS APPLICATIONS

23



The kubernetes.podspec-persistent-volume-claim extension controls whether persistent
volumes (PVs) can be used with Knative Serving.

The kubernetes.podspec-persistent-volume-write extension controls whether PVs are
available to Knative Serving with the write access.

2. To claim a PV, modify your service to include the PV configuration. For example, you might have
a persistent volume claim with the following configuration:

NOTE

Use the storage class that supports the access mode that you are requesting.
For example, you can use the ocs-storagecluster-cephfs class for the 
ReadWriteMany access mode.

PersistentVolumeClaim configuration

In this case, to claim a PV with write access, modify your service as follows:

Knative service PVC configuration

...
spec:
  config:
    features:
      "kubernetes.podspec-persistent-volume-claim": enabled
      "kubernetes.podspec-persistent-volume-write": enabled
...

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: example-pv-claim
  namespace: my-ns
spec:
  accessModes:
    - ReadWriteMany
  storageClassName: ocs-storagecluster-cephfs
  resources:
    requests:
      storage: 1Gi

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  namespace: my-ns
...
spec:
 template:
   spec:
     containers:
         ...
         volumeMounts: 1
           - mountPath: /data

Red Hat OpenShift Serverless 1.30 Serving

24



1

2

3

Volume mount specification.

Persistent volume claim specification.

Flag that enables read-only access.

NOTE

To successfully use persistent storage in Knative services, you need additional
configuration, such as the user permissions for the Knative container user.

3.4.2. Additional resources for OpenShift Container Platform

Understanding persistent storage

3.5. INIT CONTAINERS

Init containers are specialized containers that are run before application containers in a pod. They are
generally used to implement initialization logic for an application, which may include running setup
scripts or downloading required configurations. You can enable the use of init containers for Knative
services by modifying the KnativeServing custom resource (CR).

NOTE

Init containers may cause longer application start-up times and should be used with
caution for serverless applications, which are expected to scale up and down frequently.

3.5.1. Enabling init containers

Prerequisites

You have installed OpenShift Serverless Operator and Knative Serving on your cluster.

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

Procedure

Enable the use of init containers by adding the kubernetes.podspec-init-containers flag to
the KnativeServing CR:

Example KnativeServing CR

             name: mydata
             readOnly: false
     volumes:
       - name: mydata
         persistentVolumeClaim: 2
           claimName: example-pv-claim
           readOnly: false 3

CHAPTER 3. CONFIGURING SERVERLESS APPLICATIONS

25

https://docs.openshift.com/container-platform/latest/storage/understanding-persistent-storage.html#understanding-persistent-storage
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/


3.6. RESOLVING IMAGE TAGS TO DIGESTS

If the Knative Serving controller has access to the container registry, Knative Serving resolves image
tags to a digest when you create a revision of a service. This is known as tag-to-digest resolution, and
helps to provide consistency for deployments.

3.6.1. Tag-to-digest resolution

To give the controller access to the container registry on OpenShift Container Platform, you must
create a secret and then configure controller custom certificates. You can configure controller custom
certificates by modifying the controller-custom-certs spec in the KnativeServing custom resource
(CR). The secret must reside in the same namespace as the KnativeServing CR.

If a secret is not included in the KnativeServing CR, this setting defaults to using public key
infrastructure (PKI). When using PKI, the cluster-wide certificates are automatically injected into the
Knative Serving controller by using the config-service-sa config map. The OpenShift Serverless
Operator populates the config-service-sa config map with cluster-wide certificates and mounts the
config map as a volume to the controller.

3.6.1.1. Configuring tag-to-digest resolution by using a secret

If the controller-custom-certs spec uses the Secret type, the secret is mounted as a secret volume.
Knative components consume the secret directly, assuming that the secret has the required certificates.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

You have installed the OpenShift Serverless Operator and Knative Serving on your cluster.

Procedure

1. Create a secret:

Example command

2. Configure the controller-custom-certs spec in the KnativeServing custom resource (CR) to
use the Secret type:

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
  name: knative-serving
spec:
  config:
    features:
      kubernetes.podspec-init-containers: enabled
...

$ oc -n knative-serving create secret generic custom-secret --from-file=<secret_name>.crt=
<path_to_certificate>

Red Hat OpenShift Serverless 1.30 Serving

26



Example KnativeServing CR

3.7. CONFIGURING TLS AUTHENTICATION

You can use Transport Layer Security (TLS) to encrypt Knative traffic and for authentication.

TLS is the only supported method of traffic encryption for Knative Kafka. Red Hat recommends using
both SASL and TLS together for Knative broker for Apache Kafka resources.

NOTE

If you want to enable internal TLS with a Red Hat OpenShift Service Mesh integration,
you must enable Service Mesh with mTLS instead of the internal encryption explained in
the following procedure.

For OpenShift Container Platform and Red Hat OpenShift Service on AWS, see the
documentation for Enabling Knative Serving metrics when using Service Mesh with mTLS .

3.7.1. Enabling TLS authentication for internal traffic

OpenShift Serverless supports TLS edge termination by default, so that HTTPS traffic from end users is
encrypted. However, internal traffic behind the OpenShift route is forwarded to applications by using
plain data. By enabling TLS for internal traffic, the traffic sent between components is encrypted, which
makes this traffic more secure.

NOTE

If you want to enable internal TLS with a Red Hat OpenShift Service Mesh integration,
you must enable Service Mesh with mTLS instead of the internal encryption explained in
the following procedure.

IMPORTANT

Internal TLS encryption support is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
  name: knative-serving
  namespace: knative-serving
spec:
  controller-custom-certs:
    name: custom-secret
    type: Secret

CHAPTER 3. CONFIGURING SERVERLESS APPLICATIONS

27

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.30/html-single/integrations/#serverless-ossm-enabling-serving-metrics_serverless-ossm-setup
https://access.redhat.com/support/offerings/techpreview/


Prerequisites

You have installed the OpenShift Serverless Operator and Knative Serving.

You have installed the OpenShift (oc) CLI.

Procedure

1. Create or update your KnativeServing resource and make sure that it includes the internal-
encryption: "true" field in the spec:

2. Restart the activator pods in the knative-serving namespace to load the certificates:

Additional resources

Configuring TLS authentication for the Knative broker for Apache Kafka

Configuring TLS authentication for channels for Apache Kafka

Enabling Knative Serving metrics when using Service Mesh with mTLS

3.8. RESTRICTIVE NETWORK POLICIES

3.8.1. Clusters with restrictive network policies

If you are using a cluster that multiple users have access to, your cluster might use network policies to
control which pods, services, and namespaces can communicate with each other over the network. If
your cluster uses restrictive network policies, it is possible that Knative system pods are not able to
access your Knative application. For example, if your namespace has the following network policy, which
denies all requests, Knative system pods cannot access your Knative application:

Example NetworkPolicy object that denies all requests to the namespace

3.8.2. Enabling communication with Knative applications on a cluster with restrictive
network policies

...
spec:
  config:
    network:
      internal-encryption: "true"
...

$ oc delete pod -n knative-serving --selector app=activator

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: deny-by-default
  namespace: example-namespace
spec:
  podSelector:
  ingress: []

Red Hat OpenShift Serverless 1.30 Serving

28

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.30/html-single/eventing/#serverless-kafka-broker-tls-default-config_kafka-broker
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.30/html-single/eventing/#serverless-kafka-tls-channels_serverless-kafka-admin-security-channels
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.30/html-single/integrations/#serverless-ossm-enabling-serving-metrics_serverless-ossm-setup


To allow access to your applications from Knative system pods, you must add a label to each of the
Knative system namespaces, and then create a NetworkPolicy object in your application namespace
that allows access to the namespace for other namespaces that have this label.

IMPORTANT

A network policy that denies requests to non-Knative services on your cluster still
prevents access to these services. However, by allowing access from Knative system
namespaces to your Knative application, you are allowing access to your Knative
application from all namespaces in the cluster.

If you do not want to allow access to your Knative application from all namespaces on the
cluster, you might want to use JSON Web Token authentication for Knative services
instead. JSON Web Token authentication for Knative services requires Service Mesh.

Prerequisites

Install the OpenShift CLI (oc).

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

Procedure

1. Add the knative.openshift.io/system-namespace=true label to each Knative system
namespace that requires access to your application:

a. Label the knative-serving namespace:

b. Label the knative-serving-ingress namespace:

c. Label the knative-eventing namespace:

d. Label the knative-kafka namespace:

2. Create a NetworkPolicy object in your application namespace to allow access from
namespaces with the knative.openshift.io/system-namespace label:

Example NetworkPolicy object

$ oc label namespace knative-serving knative.openshift.io/system-namespace=true

$ oc label namespace knative-serving-ingress knative.openshift.io/system-
namespace=true

$ oc label namespace knative-eventing knative.openshift.io/system-namespace=true

$ oc label namespace knative-kafka knative.openshift.io/system-namespace=true

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: <network_policy_name> 1
  namespace: <namespace> 2

CHAPTER 3. CONFIGURING SERVERLESS APPLICATIONS

29



1

2

Provide a name for your network policy.

The namespace where your application exists.

spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          knative.openshift.io/system-namespace: "true"
  podSelector: {}
  policyTypes:
  - Ingress

Red Hat OpenShift Serverless 1.30 Serving

30



CHAPTER 4. TRAFFIC SPLITTING

4.1. TRAFFIC SPLITTING OVERVIEW

In a Knative application, traffic can be managed by creating a traffic split. A traffic split is configured as
part of a route, which is managed by a Knative service.

Configuring a route allows requests to be sent to different revisions of a service. This routing is
determined by the traffic spec of the Service object.

A traffic spec declaration consists of one or more revisions, each responsible for handling a portion of
the overall traffic. The percentages of traffic routed to each revision must add up to 100%, which is
ensured by a Knative validation.

The revisions specified in a traffic spec can either be a fixed, named revision, or can point to the “latest”
revision, which tracks the head of the list of all revisions for the service. The "latest" revision is a type of
floating reference that updates if a new revision is created. Each revision can have a tag attached that
creates an additional access URL for that revision.

The traffic spec can be modified by:

Editing the YAML of a Service object directly.

Using the Knative (kn) CLI --traffic flag.

Using the OpenShift Container Platform web console.

When you create a Knative service, it does not have any default traffic spec settings.

4.2. TRAFFIC SPEC EXAMPLES

The following example shows a traffic spec where 100% of traffic is routed to the latest revision of the
service. Under status, you can see the name of the latest revision that latestRevision resolves to:

CHAPTER 4. TRAFFIC SPLITTING

31



The following example shows a traffic spec where 100% of traffic is routed to the revision tagged as 
current, and the name of that revision is specified as example-service. The revision tagged as latest is
kept available, even though no traffic is routed to it:

The following example shows how the list of revisions in the traffic spec can be extended so that traffic
is split between multiple revisions. This example sends 50% of traffic to the revision tagged as current,
and 50% of traffic to the revision tagged as candidate. The revision tagged as latest is kept available,
even though no traffic is routed to it:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: example-service
  namespace: default
spec:
...
  traffic:
  - latestRevision: true
    percent: 100
status:
  ...
  traffic:
  - percent: 100
    revisionName: example-service

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: example-service
  namespace: default
spec:
...
  traffic:
  - tag: current
    revisionName: example-service
    percent: 100
  - tag: latest
    latestRevision: true
    percent: 0

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: example-service
  namespace: default
spec:
...
  traffic:
  - tag: current
    revisionName: example-service-1
    percent: 50
  - tag: candidate
    revisionName: example-service-2
    percent: 50

Red Hat OpenShift Serverless 1.30 Serving

32



4.3. TRAFFIC SPLITTING USING THE KNATIVE CLI

Using the Knative (kn) CLI to create traffic splits provides a more streamlined and intuitive user
interface over modifying YAML files directly. You can use the kn service update command to split
traffic between revisions of a service.

4.3.1. Creating a traffic split by using the Knative CLI

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have installed the Knative (kn) CLI.

You have created a Knative service.

Procedure

Specify the revision of your service and what percentage of traffic you want to route to it by
using the --traffic tag with a standard kn service update command:

Example command

Where:

<service_name> is the name of the Knative service that you are configuring traffic routing
for.

<revision> is the revision that you want to configure to receive a percentage of traffic. You
can either specify the name of the revision, or a tag that you assigned to the revision by
using the --tag flag.

<percentage> is the percentage of traffic that you want to send to the specified revision.

Optional: The --traffic flag can be specified multiple times in one command. For example, if you
have a revision tagged as @latest and a revision named stable, you can specify the percentage
of traffic that you want to split to each revision as follows:

Example command

If you have multiple revisions and do not specify the percentage of traffic that should be split to
the last revision, the --traffic flag can calculate this automatically. For example, if you have a
third revision named example, and you use the following command:

Example command

  - tag: latest
    latestRevision: true
    percent: 0

$ kn service update <service_name> --traffic <revision>=<percentage>

$ kn service update showcase --traffic @latest=20,stable=80

CHAPTER 4. TRAFFIC SPLITTING

33



The remaining 30% of traffic is split to the example revision, even though it was not specified.

4.4. CLI FLAGS FOR TRAFFIC SPLITTING

The Knative (kn) CLI supports traffic operations on the traffic block of a service as part of the kn 
service update command.

4.4.1. Knative CLI traffic splitting flags

The following table displays a summary of traffic splitting flags, value formats, and the operation the flag
performs. The Repetition column denotes whether repeating the particular value of flag is allowed in a 
kn service update command.

Flag Value(s) Operation Repetition

--traffic RevisionName=Perc
ent

Gives Percent traffic to
RevisionName

Yes

--traffic Tag=Percent Gives Percent traffic to
the revision having Tag

Yes

--traffic @latest=Percent Gives Percent traffic to
the latest ready revision

No

--tag RevisionName=Tag Gives Tag to 
RevisionName

Yes

--tag @latest=Tag Gives Tag to the latest
ready revision

No

--untag Tag Removes Tag from
revision

Yes

4.4.1.1. Multiple flags and order precedence

All traffic-related flags can be specified using a single kn service update command. kn defines the
precedence of these flags. The order of the flags specified when using the command is not taken into
account.

The precedence of the flags as they are evaluated by kn are:

1. --untag: All the referenced revisions with this flag are removed from the traffic block.

2. --tag: Revisions are tagged as specified in the traffic block.

3. --traffic: The referenced revisions are assigned a portion of the traffic split.

You can add tags to revisions and then split traffic according to the tags you have set.

$ kn service update showcase --traffic @latest=10,stable=60

Red Hat OpenShift Serverless 1.30 Serving

34



4.4.1.2. Custom URLs for revisions

Assigning a --tag flag to a service by using the kn service update command creates a custom URL for
the revision that is created when you update the service. The custom URL follows the pattern 
https://<tag>-<service_name>-<namespace>.<domain> or http://<tag>-<service_name>-
<namespace>.<domain>.

The --tag and --untag flags use the following syntax:

Require one value.

Denote a unique tag in the traffic block of the service.

Can be specified multiple times in one command.

4.4.1.2.1. Example: Assign a tag to a revision

The following example assigns the tag latest to a revision named example-revision:

4.4.1.2.2. Example: Remove a tag from a revision

You can remove a tag to remove the custom URL, by using the --untag flag.

NOTE

If a revision has its tags removed, and it is assigned 0% of the traffic, the revision is
removed from the traffic block entirely.

The following command removes all tags from the revision named example-revision:

4.5. SPLITTING TRAFFIC BETWEEN REVISIONS

After you create a serverless application, the application is displayed in the Topology view of the
Developer perspective in the OpenShift Container Platform web console. The application revision is
represented by the node, and the Knative service is indicated by a quadrilateral around the node.

Any new change in the code or the service configuration creates a new revision, which is a snapshot of
the code at a given time. For a service, you can manage the traffic between the revisions of the service
by splitting and routing it to the different revisions as required.

4.5.1. Managing traffic between revisions by using the OpenShift Container
Platform web console

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have logged in to the OpenShift Container Platform web console.

$ kn service update <service_name> --tag @latest=example-tag

$ kn service update <service_name> --untag example-tag

CHAPTER 4. TRAFFIC SPLITTING

35

https:
http:


Procedure

To split traffic between multiple revisions of an application in the Topology view:

1. Click the Knative service to see its overview in the side panel.

2. Click the Resources tab, to see a list of Revisions and Routes for the service.

Figure 4.1. Serverless application

3. Click the service, indicated by the S icon at the top of the side panel, to see an overview of the
service details.

4. Click the YAML tab and modify the service configuration in the YAML editor, and click Save.
For example, change the timeoutseconds from 300 to 301 . This change in the configuration
triggers a new revision. In the Topology view, the latest revision is displayed and the Resources
tab for the service now displays the two revisions.

5. In the Resources tab, click Set Traffic Distribution to see the traffic distribution dialog box:

a. Add the split traffic percentage portion for the two revisions in the Splits field.

b. Add tags to create custom URLs for the two revisions.

c. Click Save to see two nodes representing the two revisions in the Topology view.

Figure 4.2. Serverless application revisions

Red Hat OpenShift Serverless 1.30 Serving

36



Figure 4.2. Serverless application revisions

4.6. REROUTING TRAFFIC USING BLUE-GREEN STRATEGY

You can safely reroute traffic from a production version of an app to a new version, by using a blue-
green deployment strategy.

4.6.1. Routing and managing traffic by using a blue-green deployment strategy

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

Install the OpenShift CLI (oc).

Procedure

1. Create and deploy an app as a Knative service.

2. Find the name of the first revision that was created when you deployed the service, by viewing
the output from the following command:

Example command

Example output

3. Add the following YAML to the service spec to send inbound traffic to the revision:

$ oc get ksvc <service_name> -o=jsonpath='{.status.latestCreatedRevisionName}'

$ oc get ksvc showcase -o=jsonpath='{.status.latestCreatedRevisionName}'

$ showcase-00001

...
spec:
  traffic:

CHAPTER 4. TRAFFIC SPLITTING

37

https://en.wikipedia.org/wiki/Blue-green_deployment


4. Verify that you can view your app at the URL output you get from running the following
command:

5. Deploy a second revision of your app by modifying at least one field in the template spec of the
service and redeploying it. For example, you can modify the image of the service, or an env
environment variable. You can redeploy the service by applying the service YAML file, or by
using the kn service update command if you have installed the Knative ( kn) CLI.

6. Find the name of the second, latest revision that was created when you redeployed the service,
by running the command:

At this point, both the first and second revisions of the service are deployed and running.

7. Update your existing service to create a new, test endpoint for the second revision, while still
sending all other traffic to the first revision:

Example of updated service spec with test endpoint

After you redeploy this service by reapplying the YAML resource, the second revision of the app
is now staged. No traffic is routed to the second revision at the main URL, and Knative creates a
new service named v2 for testing the newly deployed revision.

8. Get the URL of the new service for the second revision, by running the following command:

You can use this URL to validate that the new version of the app is behaving as expected before
you route any traffic to it.

9. Update your existing service again, so that 50% of traffic is sent to the first revision, and 50% is
sent to the second revision:

Example of updated service spec splitting traffic 50/50 between revisions

    - revisionName: <first_revision_name>
      percent: 100 # All traffic goes to this revision
...

$ oc get ksvc <service_name>

$ oc get ksvc <service_name> -o=jsonpath='{.status.latestCreatedRevisionName}'

...
spec:
  traffic:
    - revisionName: <first_revision_name>
      percent: 100 # All traffic is still being routed to the first revision
    - revisionName: <second_revision_name>
      percent: 0 # No traffic is routed to the second revision
      tag: v2 # A named route
...

$ oc get ksvc <service_name> --output jsonpath="{.status.traffic[*].url}"

...
spec:

Red Hat OpenShift Serverless 1.30 Serving

38



10. When you are ready to route all traffic to the new version of the app, update the service again to
send 100% of traffic to the second revision:

Example of updated service spec sending all traffic to the second revision

TIP

You can remove the first revision instead of setting it to 0% of traffic if you do not plan to roll
back the revision. Non-routeable revision objects are then garbage-collected.

11. Visit the URL of the first revision to verify that no more traffic is being sent to the old version of
the app.

  traffic:
    - revisionName: <first_revision_name>
      percent: 50
    - revisionName: <second_revision_name>
      percent: 50
      tag: v2
...

...
spec:
  traffic:
    - revisionName: <first_revision_name>
      percent: 0
    - revisionName: <second_revision_name>
      percent: 100
      tag: v2
...

CHAPTER 4. TRAFFIC SPLITTING

39



CHAPTER 5. EXTERNAL AND INGRESS ROUTING

5.1. ROUTING OVERVIEW

Knative leverages OpenShift Container Platform TLS termination to provide routing for Knative
services. When a Knative service is created, an OpenShift Container Platform route is automatically
created for the service. This route is managed by the OpenShift Serverless Operator. The OpenShift
Container Platform route exposes the Knative service through the same domain as the OpenShift
Container Platform cluster.

You can disable Operator control of OpenShift Container Platform routing so that you can configure a
Knative route to directly use your TLS certificates instead.

Knative routes can also be used alongside the OpenShift Container Platform route to provide additional
fine-grained routing capabilities, such as traffic splitting.

5.1.1. Additional resources for OpenShift Container Platform

Route-specific annotations

5.2. CUSTOMIZING LABELS AND ANNOTATIONS

OpenShift Container Platform routes support the use of custom labels and annotations, which you can
configure by modifying the metadata spec of a Knative service. Custom labels and annotations are
propagated from the service to the Knative route, then to the Knative ingress, and finally to the
OpenShift Container Platform route.

5.2.1. Customizing labels and annotations for OpenShift Container Platform routes

Prerequisites

You must have the OpenShift Serverless Operator and Knative Serving installed on your
OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Procedure

1. Create a Knative service that contains the label or annotation that you want to propagate to the
OpenShift Container Platform route:

To create a service by using YAML:

Example service created by using YAML

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: <service_name>
  labels:
    <label_name>: <label_value>

Red Hat OpenShift Serverless 1.30 Serving

40

https://docs.openshift.com/container-platform/latest/networking/routes/route-configuration.html#nw-route-specific-annotations_route-configuration


1

2

3

To create a service by using the Knative (kn) CLI, enter:

Example service created by using a kn command

2. Verify that the OpenShift Container Platform route has been created with the annotation or
label that you added by inspecting the output from the following command:

Example command for verification

Use the name of your service.

Use the namespace where your service was created.

Use your values for the label and annotation names and values.

5.3. CONFIGURING ROUTES FOR KNATIVE SERVICES

If you want to configure a Knative service to use your TLS certificate on OpenShift Container Platform,
you must disable the automatic creation of a route for the service by the OpenShift Serverless Operator
and instead manually create a route for the service.

NOTE

When you complete the following procedure, the default OpenShift Container Platform
route in the knative-serving-ingress namespace is not created. However, the Knative
route for the application is still created in this namespace.

5.3.1. Configuring OpenShift Container Platform routes for Knative services

Prerequisites

The OpenShift Serverless Operator and Knative Serving component must be installed on your
OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

  annotations:
    <annotation_name>: <annotation_value>
...

$ kn service create <service_name> \
  --image=<image> \
  --annotation <annotation_name>=<annotation_value> \
  --label <label_value>=<label_value>

$ oc get routes.route.openshift.io \
     -l serving.knative.openshift.io/ingressName=<service_name> \ 1
     -l serving.knative.openshift.io/ingressNamespace=<service_namespace> \ 2
     -n knative-serving-ingress -o yaml \
         | grep -e "<label_name>: \"<label_value>\""  -e "<annotation_name>: 
<annotation_value>" 3

CHAPTER 5. EXTERNAL AND INGRESS ROUTING

41



Procedure

1. Create a Knative service that includes the serving.knative.openshift.io/disableRoute=true
annotation:

IMPORTANT

The serving.knative.openshift.io/disableRoute=true annotation instructs
OpenShift Serverless to not automatically create a route for you. However, the
service still shows a URL and reaches a status of Ready. This URL does not work
externally until you create your own route with the same hostname as the
hostname in the URL.

a. Create a Knative Service resource:

Example resource

b. Apply the Service resource:

c. Optional. Create a Knative service by using the kn service create command:

Example kn command

2. Verify that no OpenShift Container Platform route has been created for the service:

Example command

You will see the following output:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: <service_name>
  annotations:
    serving.knative.openshift.io/disableRoute: "true"
spec:
  template:
    spec:
      containers:
      - image: <image>
...

$ oc apply -f <filename>

$ kn service create <service_name> \
  --image=gcr.io/knative-samples/helloworld-go \
  --annotation serving.knative.openshift.io/disableRoute=true

$ $ oc get routes.route.openshift.io \
  -l serving.knative.openshift.io/ingressName=$KSERVICE_NAME \
  -l serving.knative.openshift.io/ingressNamespace=$KSERVICE_NAMESPACE \
  -n knative-serving-ingress

Red Hat OpenShift Serverless 1.30 Serving

42



1

2

3

4

5

3. Create a Route resource in the knative-serving-ingress namespace:

The timeout value for the OpenShift Container Platform route. You must set the same
value as the max-revision-timeout-seconds setting (600s by default).

The name of the OpenShift Container Platform route.

The namespace for the OpenShift Container Platform route. This must be knative-
serving-ingress.

The hostname for external access. You can set this to <service_name>-
<service_namespace>.<domain>.

The certificates you want to use. Currently, only edge termination is supported.

4. Apply the Route resource:

No resources found in knative-serving-ingress namespace.

apiVersion: route.openshift.io/v1
kind: Route
metadata:
  annotations:
    haproxy.router.openshift.io/timeout: 600s 1
  name: <route_name> 2
  namespace: knative-serving-ingress 3
spec:
  host: <service_host> 4
  port:
    targetPort: http2
  to:
    kind: Service
    name: kourier
    weight: 100
  tls:
    insecureEdgeTerminationPolicy: Allow
    termination: edge 5
    key: |-
      -----BEGIN PRIVATE KEY-----
      [...]
      -----END PRIVATE KEY-----
    certificate: |-
      -----BEGIN CERTIFICATE-----
      [...]
      -----END CERTIFICATE-----
    caCertificate: |-
      -----BEGIN CERTIFICATE-----
      [...]
      -----END CERTIFICATE----
  wildcardPolicy: None

$ oc apply -f <filename>

CHAPTER 5. EXTERNAL AND INGRESS ROUTING

43



5.4. GLOBAL HTTPS REDIRECTION

HTTPS redirection provides redirection for incoming HTTP requests. These redirected HTTP requests
are encrypted. You can enable HTTPS redirection for all services on the cluster by configuring the 
httpProtocol spec for the KnativeServing custom resource (CR).

5.4.1. HTTPS redirection global settings

Example KnativeServing CR that enables HTTPS redirection

5.5. URL SCHEME FOR EXTERNAL ROUTES

The URL scheme of external routes defaults to HTTPS for enhanced security. This scheme is
determined by the default-external-scheme key in the KnativeServing custom resource (CR) spec.

5.5.1. Setting the URL scheme for external routes

Default spec

You can override the default spec to use HTTP by modifying the default-external-scheme key:

HTTP override spec

5.6. HTTPS REDIRECTION PER SERVICE

You can enable or disable HTTPS redirection for a service by configuring the 
networking.knative.dev/http-option annotation.

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
  name: knative-serving
spec:
  config:
    network:
      httpProtocol: "redirected"
...

...
spec:
  config:
    network:
      default-external-scheme: "https"
...

...
spec:
  config:
    network:
      default-external-scheme: "http"
...

Red Hat OpenShift Serverless 1.30 Serving

44



5.6.1. Redirecting HTTPS for a service

The following example shows how you can use this annotation in a Knative Service YAML object:

5.7. CLUSTER LOCAL AVAILABILITY

By default, Knative services are published to a public IP address. Being published to a public IP address
means that Knative services are public applications, and have a publicly accessible URL.

Publicly accessible URLs are accessible from outside of the cluster. However, developers may need to
build back-end services that are only be accessible from inside the cluster, known as private services .
Developers can label individual services in the cluster with the 
networking.knative.dev/visibility=cluster-local label to make them private.

IMPORTANT

For OpenShift Serverless 1.15.0 and newer versions, the serving.knative.dev/visibility
label is no longer available. You must update existing services to use the 
networking.knative.dev/visibility label instead.

5.7.1. Setting cluster availability to cluster local

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on the cluster.

You have created a Knative service.

Procedure

Set the visibility for your service by adding the networking.knative.dev/visibility=cluster-local
label:

Verification

Check that the URL for your service is now in the format http://<service_name>.
<namespace>.svc.cluster.local, by entering the following command and reviewing the output:

Example output

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: example
  namespace: default
  annotations:
    networking.knative.dev/http-protocol: "redirected"
spec:
  ...

$ oc label ksvc <service_name> networking.knative.dev/visibility=cluster-local

$ oc get ksvc

CHAPTER 5. EXTERNAL AND INGRESS ROUTING

45



5.7.2. Enabling TLS authentication for cluster local services

For cluster local services, the Kourier local gateway kourier-internal is used. If you want to use TLS
traffic against the Kourier local gateway, you must configure your own server certificates in the local
gateway.

Prerequisites

You have installed the OpenShift Serverless Operator and Knative Serving.

You have administrator permissions.

You have installed the OpenShift (oc) CLI.

Procedure

1. Deploy server certificates in the knative-serving-ingress namespace:

NOTE

Subject Alternative Name (SAN) validation is required so that these certificates
can serve the request to <app_name>.<namespace>.svc.cluster.local.

2. Generate a root key and certificate:

3. Generate a server key that uses SAN validation:

4. Create server certificates:

5. Configure a secret for the Kourier local gateway:

a. Deploy a secret in knative-serving-ingress namespace from the certificates created by

NAME            URL                                                                         LATESTCREATED     
LATESTREADY       READY   REASON
hello           http://hello.default.svc.cluster.local                                      hello-tx2g7       hello-
tx2g7       True

$ export san="knative"

$ openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 \
    -subj '/O=Example/CN=Example' \
    -keyout ca.key \
    -out ca.crt

$ openssl req -out tls.csr -newkey rsa:2048 -nodes -keyout tls.key \
  -subj "/CN=Example/O=Example" \
  -addext "subjectAltName = DNS:$san"

$ openssl x509 -req -extfile <(printf "subjectAltName=DNS:$san") \
  -days 365 -in tls.csr \
  -CA ca.crt -CAkey ca.key -CAcreateserial -out tls.crt

Red Hat OpenShift Serverless 1.30 Serving

46



a. Deploy a secret in knative-serving-ingress namespace from the certificates created by
the previous steps:

b. Update the KnativeServing custom resource (CR) spec to use the secret that was created
by the Kourier gateway:

Example KnativeServing CR

The Kourier controller sets the certificate without restarting the service, so that you do not need to
restart the pod.

You can access the Kourier internal service with TLS through port 443 by mounting and using the ca.crt
from the client.

5.8. KOURIER GATEWAY SERVICE TYPE

The Kourier Gateway is exposed by default as the ClusterIP service type. This service type is
determined by the service-type ingress spec in the KnativeServing custom resource (CR).

Default spec

5.8.1. Setting the Kourier Gateway service type

You can override the default service type to use a load balancer service type instead by modifying the 
service-type spec:

LoadBalancer override spec

$ oc create -n knative-serving-ingress secret tls server-certs \
    --key=tls.key \
    --cert=tls.crt --dry-run=client -o yaml | oc apply -f -

...
spec:
  config:
    kourier:
      cluster-cert-secret: server-certs
...

...
spec:
  ingress:
    kourier:
      service-type: ClusterIP
...

...
spec:
  ingress:
    kourier:
      service-type: LoadBalancer
...

CHAPTER 5. EXTERNAL AND INGRESS ROUTING

47



5.9. USING HTTP2 AND GRPC

OpenShift Serverless supports only insecure or edge-terminated routes. Insecure or edge-terminated
routes do not support HTTP2 on OpenShift Container Platform. These routes also do not support gRPC
because gRPC is transported by HTTP2. If you use these protocols in your application, you must call the
application using the ingress gateway directly. To do this you must find the ingress gateway’s public
address and the application’s specific host.

5.9.1. Interacting with a serverless application using HTTP2 and gRPC

IMPORTANT

This method applies to OpenShift Container Platform 4.10 and later. For older versions,
see the following section.

Prerequisites

Install OpenShift Serverless Operator and Knative Serving on your cluster.

Install the OpenShift CLI (oc).

Create a Knative service.

Upgrade OpenShift Container Platform 4.10 or later.

Enable HTTP/2 on OpenShift Ingress controller.

Procedure

1. Add the serverless.openshift.io/default-enable-http2=true annotation to the KnativeServing
Custom Resource:

2. After the annotation is added, you can verify that the appProtocol value of the Kourier service
is h2c:

Example output

3. Now you can use the gRPC framework over the HTTP/2 protocol for external traffic, for
example:

$ oc annotate knativeserving <your_knative_CR> -n knative-serving 
serverless.openshift.io/default-enable-http2=true

$ oc get svc -n knative-serving-ingress kourier -o jsonpath="{.spec.ports[0].appProtocol}"

h2c

import "google.golang.org/grpc"

grpc.Dial(
   YOUR_URL, 1
   grpc.WithTransportCredentials(insecure.NewCredentials())), 2
)

Red Hat OpenShift Serverless 1.30 Serving

48



1

2

Your ksvc URL.

Your certificate.

Additional resources

Enabling HTTP/2 Ingress connectivity

5.9.2. Interacting with a serverless application using HTTP2 and gRPC in OpenShift
Container Platform 4.9 and older

IMPORTANT

This method needs to expose Kourier Gateway using the LoadBalancer service type. You
can configure this by adding the following YAML to your KnativeServing custom
resource definition (CRD):

Prerequisites

Install OpenShift Serverless Operator and Knative Serving on your cluster.

Install the OpenShift CLI (oc).

Create a Knative service.

Procedure

1. Find the application host. See the instructions in Verifying your serverless application
deployment.

2. Find the ingress gateway’s public address:

Example output

The public address is surfaced in the EXTERNAL-IP field, and in this case is 
a83e86291bcdd11e993af02b7a65e514-33544245.us-east-1.elb.amazonaws.com.

3. Manually set the host header of your HTTP request to the application’s host, but direct the

...
spec:
  ingress:
    kourier:
      service-type: LoadBalancer
...

$ oc -n knative-serving-ingress get svc kourier

NAME                   TYPE           CLUSTER-IP      EXTERNAL-IP                                                             
PORT(S)                                                                                                                                      
AGE
kourier   LoadBalancer   172.30.51.103   a83e86291bcdd11e993af02b7a65e514-
33544245.us-east-1.elb.amazonaws.com   80:31380/TCP,443:31390/TCP   67m

CHAPTER 5. EXTERNAL AND INGRESS ROUTING

49

https://docs.openshift.com/container-platform/latest/networking/ingress-operator.html#nw-http2-haproxy_configuring-ingress


3. Manually set the host header of your HTTP request to the application’s host, but direct the
request itself against the public address of the ingress gateway.

Example output

You can also make a direct gRPC request against the ingress gateway:

NOTE

Ensure that you append the respective port, 80 by default, to both hosts as
shown in the previous example.

$ curl -H "Host: hello-default.example.com" a83e86291bcdd11e993af02b7a65e514-
33544245.us-east-1.elb.amazonaws.com

Hello Serverless!

import "google.golang.org/grpc"

grpc.Dial(
    "a83e86291bcdd11e993af02b7a65e514-33544245.us-east-1.elb.amazonaws.com:80",
    grpc.WithAuthority("hello-default.example.com:80"),
    grpc.WithInsecure(),
)

Red Hat OpenShift Serverless 1.30 Serving

50



CHAPTER 6. CONFIGURING ACCESS TO KNATIVE SERVICES

6.1. CONFIGURING JSON WEB TOKEN AUTHENTICATION FOR
KNATIVE SERVICES

OpenShift Serverless does not currently have user-defined authorization features. To add user-defined
authorization to your deployment, you must integrate OpenShift Serverless with Red Hat OpenShift
Service Mesh, and then configure JSON Web Token (JWT) authentication and sidecar injection for
Knative services.

6.2. USING JSON WEB TOKEN AUTHENTICATION WITH SERVICE
MESH 2.X

You can use JSON Web Token (JWT) authentication with Knative services by using Service Mesh 2.x
and OpenShift Serverless. To do this, you must create authentication requests and policies in the
application namespace that is a member of the ServiceMeshMemberRoll object. You must also enable
sidecar injection for the service.

6.2.1. Configuring JSON Web Token authentication for Service Mesh 2.x and
OpenShift Serverless

IMPORTANT

Adding sidecar injection to pods in system namespaces, such as knative-serving and 
knative-serving-ingress, is not supported when Kourier is enabled.

For OpenShift Container Platform, if you require sidecar injection for pods in these
namespaces, see the OpenShift Serverless documentation on Integrating Service Mesh
with OpenShift Serverless natively.

Prerequisites

You have installed the OpenShift Serverless Operator, Knative Serving, and Red Hat OpenShift
Service Mesh on your cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Add the sidecar.istio.io/inject="true" annotation to your service:

Example service

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: <service_name>
spec:
  template:

CHAPTER 6. CONFIGURING ACCESS TO KNATIVE SERVICES

51



1

2

1

Add the sidecar.istio.io/inject="true" annotation.

You must set the annotation sidecar.istio.io/rewriteAppHTTPProbers: "true" in your
Knative service, because OpenShift Serverless versions 1.14.0 and higher use an HTTP
probe as the readiness probe for Knative services by default.

2. Apply the Service resource:

3. Create a RequestAuthentication resource in each serverless application namespace that is a
member in the ServiceMeshMemberRoll object:

4. Apply the RequestAuthentication resource:

5. Allow access to the RequestAuthenticaton resource from system pods for each serverless
application namespace that is a member in the ServiceMeshMemberRoll object, by creating
the following AuthorizationPolicy resource:

The path on your application to collect metrics by system pod.

    metadata:
      annotations:
        sidecar.istio.io/inject: "true" 1
        sidecar.istio.io/rewriteAppHTTPProbers: "true" 2
...

$ oc apply -f <filename>

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
  name: jwt-example
  namespace: <namespace>
spec:
  jwtRules:
  - issuer: testing@secure.istio.io
    jwksUri: https://raw.githubusercontent.com/istio/istio/release-
1.8/security/tools/jwt/samples/jwks.json

$ oc apply -f <filename>

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: allowlist-by-paths
  namespace: <namespace>
spec:
  action: ALLOW
  rules:
  - to:
    - operation:
        paths:
        - /metrics 1
        - /healthz 2

Red Hat OpenShift Serverless 1.30 Serving

52



2 The path on your application to probe by system pod.

6. Apply the AuthorizationPolicy resource:

7. For each serverless application namespace that is a member in the ServiceMeshMemberRoll
object, create the following AuthorizationPolicy resource:

8. Apply the AuthorizationPolicy resource:

Verification

1. If you try to use a curl request to get the Knative service URL, it is denied:

Example command

Example output

2. Verify the request with a valid JWT.

a. Get the valid JWT token:

b. Access the service by using the valid token in the curl request header:

The request is now allowed:

$ oc apply -f <filename>

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: require-jwt
  namespace: <namespace>
spec:
  action: ALLOW
  rules:
  - from:
    - source:
       requestPrincipals: ["testing@secure.istio.io/testing@secure.istio.io"]

$ oc apply -f <filename>

$ curl http://hello-example-1-default.apps.mycluster.example.com/

RBAC: access denied

$ TOKEN=$(curl https://raw.githubusercontent.com/istio/istio/release-
1.8/security/tools/jwt/samples/demo.jwt -s) && echo "$TOKEN" | cut -d '.' -f2 - | base64 --
decode -

$ curl -H "Authorization: Bearer $TOKEN"  http://hello-example-1-
default.apps.example.com

CHAPTER 6. CONFIGURING ACCESS TO KNATIVE SERVICES

53



1

Example output

6.3. USING JSON WEB TOKEN AUTHENTICATION WITH SERVICE
MESH 1.X

You can use JSON Web Token (JWT) authentication with Knative services by using Service Mesh 1.x and
OpenShift Serverless. To do this, you must create a policy in the application namespace that is a
member of the ServiceMeshMemberRoll object. You must also enable sidecar injection for the service.

6.3.1. Configuring JSON Web Token authentication for Service Mesh 1.x and
OpenShift Serverless

IMPORTANT

Adding sidecar injection to pods in system namespaces, such as knative-serving and 
knative-serving-ingress, is not supported when Kourier is enabled.

For OpenShift Container Platform, if you require sidecar injection for pods in these
namespaces, see the OpenShift Serverless documentation on Integrating Service Mesh
with OpenShift Serverless natively.

Prerequisites

You have installed the OpenShift Serverless Operator, Knative Serving, and Red Hat OpenShift
Service Mesh on your cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Add the sidecar.istio.io/inject="true" annotation to your service:

Example service

Add the sidecar.istio.io/inject="true" annotation.

You must set the annotation sidecar.istio.io/rewriteAppHTTPProbers: "true" in your

Hello OpenShift!

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: <service_name>
spec:
  template:
    metadata:
      annotations:
        sidecar.istio.io/inject: "true" 1
        sidecar.istio.io/rewriteAppHTTPProbers: "true" 2
...

Red Hat OpenShift Serverless 1.30 Serving

54



2

1

2

You must set the annotation sidecar.istio.io/rewriteAppHTTPProbers: "true" in your
Knative service, because OpenShift Serverless versions 1.14.0 and higher use an HTTP

2. Apply the Service resource:

3. Create a policy in a serverless application namespace which is a member in the 
ServiceMeshMemberRoll object, that only allows requests with valid JSON Web Tokens
(JWT):

IMPORTANT

The paths /metrics and /healthz must be included in excludedPaths because
they are accessed from system pods in the knative-serving namespace.

The path on your application to collect metrics by system pod.

The path on your application to probe by system pod.

4. Apply the Policy resource:

Verification

1. If you try to use a curl request to get the Knative service URL, it is denied:

Example output

$ oc apply -f <filename>

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
  name: default
  namespace: <namespace>
spec:
  origins:
  - jwt:
      issuer: testing@secure.istio.io
      jwksUri: "https://raw.githubusercontent.com/istio/istio/release-
1.6/security/tools/jwt/samples/jwks.json"
      triggerRules:
      - excludedPaths:
        - prefix: /metrics 1
        - prefix: /healthz 2
  principalBinding: USE_ORIGIN

$ oc apply -f <filename>

$ curl http://hello-example-default.apps.mycluster.example.com/

Origin authentication failed.

CHAPTER 6. CONFIGURING ACCESS TO KNATIVE SERVICES

55



2. Verify the request with a valid JWT.

a. Get the valid JWT token:

b. Access the service by using the valid token in the curl request header:

The request is now allowed:

Example output

$ TOKEN=$(curl https://raw.githubusercontent.com/istio/istio/release-
1.6/security/tools/jwt/samples/demo.jwt -s) && echo "$TOKEN" | cut -d '.' -f2 - | base64 --
decode -

$ curl http://hello-example-default.apps.mycluster.example.com/ -H "Authorization: 
Bearer $TOKEN"

Hello OpenShift!

Red Hat OpenShift Serverless 1.30 Serving

56



1

2

3

4

CHAPTER 7. CONFIGURING KUBE-RBAC-PROXY FOR
SERVING

The kube-rbac-proxy component provides internal authentication and authorization capabilities for
Knative Serving.

7.1. CONFIGURING KUBE-RBAC-PROXY RESOURCES FOR SERVING

You can globally override resource allocation for the kube-rbac-proxy container by using the OpenShift
Serverless Operator CR.

You can also override resource allocation for a specific deployment.

The following configuration sets Knative Serving kube-rbac-proxy minimum and maximum CPU and
memory allocation:

KnativeServing CR example

Sets minimum CPU allocation.

Sets minimum RAM allocation.

Sets maximum CPU allocation.

Sets maximum RAM allocation.

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
  name: knative-serving
  namespace: knative-serving
spec:
  config:
    deployment:
      "kube-rbac-proxy-cpu-request": "10m" 1
      "kube-rbac-proxy-memory-request": "20Mi" 2
      "kube-rbac-proxy-cpu-limit": "100m" 3
      "kube-rbac-proxy-memory-limit": "100Mi" 4

CHAPTER 7. CONFIGURING KUBE-RBAC-PROXY FOR SERVING

57



1

2

CHAPTER 8. CONFIGURING BURST AND QPS FOR NET-
KOURIER

The queries per second (QPS) and burst values determine the frequency of requests or API calls to the
API server.

8.1. CONFIGURING BURST AND QPS VALUES FOR NET-KOURIER

The queries per second (QPS) value determines the number of client requests or API calls that are sent
to the API server.

The burst value determines how many requests from the client can be stored for processing. Requests
exceeding this buffer will be dropped. This is helpful for controllers that are bursty and do not spread
their requests uniformly in time.

When the net-kourier-controller restarts, it parses all ingress resources deployed on the cluster, which
leads to a significant number of API calls. Due to this, the net-kourier-controller can take a long time to
start.

You can adjust the QPS and burst values for the net-kourier-controller in the KnativeServing CR:

KnativeServing CR example

The QPS rate of communication between controller and the API Server. The default value is 200.

The burst capacity of communication between Kubelet and the API Server. The default value is
200.

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
  name: knative-serving
  namespace: knative-serving
spec:
  workloads:
  - name: net-kourier-controller
    env:
    - container: controller
      envVars:
      - name: KUBE_API_BURST
        value: "200" 1
      - name: KUBE_API_QPS
        value: "200" 2

Red Hat OpenShift Serverless 1.30 Serving

58



CHAPTER 9. CONFIGURING CUSTOM DOMAINS FOR
KNATIVE SERVICES

9.1. CONFIGURING A CUSTOM DOMAIN FOR A KNATIVE SERVICE

Knative services are automatically assigned a default domain name based on your cluster configuration.
For example, <service_name>-<namespace>.example.com. You can customize the domain for your
Knative service by mapping a custom domain name that you own to a Knative service.

You can do this by creating a DomainMapping resource for the service. You can also create multiple 
DomainMapping resources to map multiple domains and subdomains to a single service.

9.2. CUSTOM DOMAIN MAPPING

You can customize the domain for your Knative service by mapping a custom domain name that you own
to a Knative service. To map a custom domain name to a custom resource (CR), you must create a 
DomainMapping CR that maps to an Addressable target CR, such as a Knative service or a Knative
route.

9.2.1. Creating a custom domain mapping

You can customize the domain for your Knative service by mapping a custom domain name that you own
to a Knative service. To map a custom domain name to a custom resource (CR), you must create a 
DomainMapping CR that maps to an Addressable target CR, such as a Knative service or a Knative
route.

Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created a Knative service and control a custom domain that you want to map to that
service.

NOTE

Your custom domain must point to the IP address of the OpenShift Container
Platform cluster.

Procedure

1. Create a YAML file containing the DomainMapping CR in the same namespace as the target
CR you want to map to:

apiVersion: serving.knative.dev/v1alpha1
kind: DomainMapping
metadata:
 name: <domain_name> 1
 namespace: <namespace> 2

CHAPTER 9. CONFIGURING CUSTOM DOMAINS FOR KNATIVE SERVICES

59



1

2

3

4

The custom domain name that you want to map to the target CR.

The namespace of both the DomainMapping CR and the target CR.

The name of the target CR to map to the custom domain.

The type of CR being mapped to the custom domain.

Example service domain mapping

Example route domain mapping

2. Apply the DomainMapping CR as a YAML file:

9.3. CUSTOM DOMAINS FOR KNATIVE SERVICES USING THE KNATIVE
CLI

You can customize the domain for your Knative service by mapping a custom domain name that you own
to a Knative service. You can use the Knative (kn) CLI to create a DomainMapping custom resource
(CR) that maps to an Addressable target CR, such as a Knative service or a Knative route.

9.3.1. Creating a custom domain mapping by using the Knative CLI

spec:
 ref:
   name: <target_name> 3
   kind: <target_type> 4
   apiVersion: serving.knative.dev/v1

apiVersion: serving.knative.dev/v1alpha1
kind: DomainMapping
metadata:
 name: example.com
 namespace: default
spec:
 ref:
   name: showcase
   kind: Service
   apiVersion: serving.knative.dev/v1

apiVersion: serving.knative.dev/v1alpha1
kind: DomainMapping
metadata:
 name: example.com
 namespace: default
spec:
 ref:
   name: example-route
   kind: Route
   apiVersion: serving.knative.dev/v1

$ oc apply -f <filename>

Red Hat OpenShift Serverless 1.30 Serving

60



Prerequisites

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

You have created a Knative service or route, and control a custom domain that you want to map
to that CR.

NOTE

Your custom domain must point to the DNS of the OpenShift Container Platform
cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Map a domain to a CR in the current namespace:

Example command

The --ref flag specifies an Addressable target CR for domain mapping.

If a prefix is not provided when using the --ref flag, it is assumed that the target is a Knative
service in the current namespace.

Map a domain to a Knative service in a specified namespace:

Example command

Map a domain to a Knative route:

Example command

9.4. DOMAIN MAPPING USING THE DEVELOPER PERSPECTIVE

You can customize the domain for your Knative service by mapping a custom domain name that you own

$ kn domain create <domain_mapping_name> --ref <target_name>

$ kn domain create example.com --ref showcase

$ kn domain create <domain_mapping_name> --ref 
<ksvc:service_name:service_namespace>

$ kn domain create example.com --ref ksvc:showcase:example-namespace

$ kn domain create <domain_mapping_name> --ref <kroute:route_name>

$ kn domain create example.com --ref kroute:example-route

CHAPTER 9. CONFIGURING CUSTOM DOMAINS FOR KNATIVE SERVICES

61



You can customize the domain for your Knative service by mapping a custom domain name that you own
to a Knative service. You can use the Developer perspective of the OpenShift Container Platform web
console to map a DomainMapping custom resource (CR) to a Knative service.

9.4.1. Mapping a custom domain to a service by using the Developer perspective

Prerequisites

You have logged in to the web console.

You are in the Developer perspective.

The OpenShift Serverless Operator and Knative Serving are installed on your cluster. This must
be completed by a cluster administrator.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created a Knative service and control a custom domain that you want to map to that
service.

NOTE

Your custom domain must point to the IP address of the OpenShift Container
Platform cluster.

Procedure

1. Navigate to the Topology page.

2. Right-click the service you want to map to a domain, and select the Edit option that contains the
service name. For example, if the service is named showcase, select the Edit showcase option.

3. In the Advanced options section, click Show advanced Routing options.

a. If the domain mapping CR that you want to map to the service already exists, you can select
it in the Domain mapping list.

b. If you want to create a new domain mapping CR, type the domain name into the box, and
select the Create option. For example, if you type in example.com, the Create option is
Create "example.com".

4. Click Save to save the changes to your service.

Verification

1. Navigate to the Topology page.

2. Click on the service that you have created.

3. In the Resources tab of the service information window, you can see the domain you have
mapped to the service listed under Domain mappings.

9.5. DOMAIN MAPPING USING THE ADMINISTRATOR PERSPECTIVE

If you do not want to switch to the Developer perspective in the OpenShift Container Platform web

Red Hat OpenShift Serverless 1.30 Serving

62



If you do not want to switch to the Developer perspective in the OpenShift Container Platform web
console or use the Knative (kn) CLI or YAML files, you can use the Administator perspective of the
OpenShift Container Platform web console.

9.5.1. Mapping a custom domain to a service by using the Administrator perspective

Knative services are automatically assigned a default domain name based on your cluster configuration.
For example, <service_name>-<namespace>.example.com. You can customize the domain for your
Knative service by mapping a custom domain name that you own to a Knative service.

You can do this by creating a DomainMapping resource for the service. You can also create multiple 
DomainMapping resources to map multiple domains and subdomains to a single service.

If you have cluster administrator permissions on OpenShift Container Platform (or cluster or dedicated
administrator permissions on OpenShift Dedicated or Red Hat OpenShift Service on AWS), you can
create a DomainMapping custom resource (CR) by using the Administrator perspective in the web
console.

Prerequisites

You have logged in to the web console.

You are in the Administrator perspective.

You have installed the OpenShift Serverless Operator.

You have installed Knative Serving.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads.

You have created a Knative service and control a custom domain that you want to map to that
service.

NOTE

Your custom domain must point to the IP address of the cluster.

Procedure

1. Navigate to CustomResourceDefinitions and use the search box to find the DomainMapping
custom resource definition (CRD).

2. Click the DomainMapping CRD, then navigate to the Instances tab.

3. Click Create DomainMapping.

4. Modify the YAML for the DomainMapping CR so that it includes the following information for
your instance:

apiVersion: serving.knative.dev/v1alpha1
kind: DomainMapping
metadata:
 name: <domain_name> 1
 namespace: <namespace> 2

CHAPTER 9. CONFIGURING CUSTOM DOMAINS FOR KNATIVE SERVICES

63



1

2

3

4

The custom domain name that you want to map to the target CR.

The namespace of both the DomainMapping CR and the target CR.

The name of the target CR to map to the custom domain.

The type of CR being mapped to the custom domain.

Example domain mapping to a Knative service

Verification

Access the custom domain by using a curl request. For example:

Example command

Example output

9.6. SECURING A MAPPED SERVICE USING A TLS CERTIFICATE

9.6.1. Securing a service with a custom domain by using a TLS certificate

After you have configured a custom domain for a Knative service, you can use a TLS certificate to secure
the mapped service. To do this, you must create a Kubernetes TLS secret, and then update the 
DomainMapping CR to use the TLS secret that you have created.

NOTE

spec:
 ref:
   name: <target_name> 3
   kind: <target_type> 4
   apiVersion: serving.knative.dev/v1

apiVersion: serving.knative.dev/v1alpha1
kind: DomainMapping
metadata:
 name: custom-ksvc-domain.example.com
 namespace: default
spec:
 ref:
   name: showcase
   kind: Service
   apiVersion: serving.knative.dev/v1

$ curl custom-ksvc-domain.example.com

{"artifact":"knative-showcase","greeting":"Welcome"}

Red Hat OpenShift Serverless 1.30 Serving

64



NOTE

If you use net-istio for Ingress and enable mTLS via SMCP using 
security.dataPlane.mtls: true, Service Mesh deploys DestinationRules for the *.local
host, which does not allow DomainMapping for OpenShift Serverless.

To work around this issue, enable mTLS by deploying PeerAuthentication instead of
using security.dataPlane.mtls: true.

Prerequisites

You configured a custom domain for a Knative service and have a working DomainMapping CR.

You have a TLS certificate from your Certificate Authority provider or a self-signed certificate.

You have obtained the cert and key files from your Certificate Authority provider, or a self-
signed certificate.

Install the OpenShift CLI (oc).

Procedure

1. Create a Kubernetes TLS secret:

2. Add the networking.internal.knative.dev/certificate-uid: <id>` label to the Kubernetes TLS
secret:

If you are using a third-party secret provider such as cert-manager, you can configure your
secret manager to label the Kubernetes TLS secret automatically. Cert-manager users can use
the secret template offered to automatically generate secrets with the correct label. In this case,
secret filtering is done based on the key only, but this value can carry useful information such as
the certificate ID that the secret contains.

NOTE

The cert-manager Operator for Red Hat OpenShift is a Technology Preview
feature. For more information, see the Installing the cert-manager Operator
for Red Hat OpenShift documentation.

3. Update the DomainMapping CR to use the TLS secret that you have created:

$ oc create secret tls <tls_secret_name> --cert=<path_to_certificate_file> --key=
<path_to_key_file>

$ oc label secret <tls_secret_name> networking.internal.knative.dev/certificate-uid="<id>"

apiVersion: serving.knative.dev/v1alpha1
kind: DomainMapping
metadata:
  name: <domain_name>
  namespace: <namespace>
spec:
  ref:
    name: <service_name>

CHAPTER 9. CONFIGURING CUSTOM DOMAINS FOR KNATIVE SERVICES

65



Verification

1. Verify that the DomainMapping CR status is True, and that the URL column of the output
shows the mapped domain with the scheme https:

Example output

2. Optional: If the service is exposed publicly, verify that it is available by running the following
command:

If the certificate is self-signed, skip verification by adding the -k flag to the curl command.

9.6.2. Improving net-kourier memory usage by using secret filtering

By default, the informers implementation for the Kubernetes client-go library fetches all resources of a
particular type. This can lead to a substantial overhead when many resources are available, which can
cause the Knative net-kourier ingress controller to fail on large clusters due to memory leaking.
However, a filtering mechanism is available for the Knative net-kourier ingress controller, which enables
the controller to only fetch Knative related secrets. You can enable this mechanism by setting an
environment variable to the KnativeServing custom resource (CR).

IMPORTANT

If you enable secret filtering, all of your secrets need to be labeled with 
networking.internal.knative.dev/certificate-uid: "<id>". Otherwise, Knative Serving
does not detect them, which leads to failures. You must label both new and existing
secrets.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

A project that you created or that you have roles and permissions for to create applications and
other workloads.

Install the OpenShift Serverless Operator and Knative Serving.

Install the OpenShift CLI (oc).

    kind: Service
    apiVersion: serving.knative.dev/v1
# TLS block specifies the secret to be used
  tls:
    secretName: <tls_secret_name>

$ oc get domainmapping <domain_name>

NAME                      URL                               READY   REASON
example.com               https://example.com               True

$ curl https://<domain_name>

Red Hat OpenShift Serverless 1.30 Serving

66

https://aly.arriqaaq.com/kubernetes-informers/


Procedure

Set the ENABLE_SECRET_INFORMER_FILTERING_BY_CERT_UID variable to true for net-
kourier-controller in the KnativeServing CR:

Example KnativeServing CR

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 deployments:
   - env:
     - container: controller
       envVars:
       - name: ENABLE_SECRET_INFORMER_FILTERING_BY_CERT_UID
         value: 'true'
     name: net-kourier-controller

CHAPTER 9. CONFIGURING CUSTOM DOMAINS FOR KNATIVE SERVICES

67



CHAPTER 10. CONFIGURING HIGH AVAILABILITY FOR
KNATIVE SERVICES

10.1. HIGH AVAILABILITY FOR KNATIVE SERVICES

High availability (HA) is a standard feature of Kubernetes APIs that helps to ensure that APIs stay
operational if a disruption occurs. In an HA deployment, if an active controller crashes or is deleted,
another controller is readily available. This controller takes over processing of the APIs that were being
serviced by the controller that is now unavailable.

HA in OpenShift Serverless is available through leader election, which is enabled by default after the
Knative Serving or Eventing control plane is installed. When using a leader election HA pattern, instances
of controllers are already scheduled and running inside the cluster before they are required. These
controller instances compete to use a shared resource, known as the leader election lock. The instance
of the controller that has access to the leader election lock resource at any given time is called the
leader.

10.2. HIGH AVAILABILITY FOR KNATIVE SERVICES

High availability (HA) is available by default for the Knative Serving activator, autoscaler, autoscaler-
hpa, controller, webhook, kourier-control, and kourier-gateway components, which are configured to
have two replicas each by default. You can change the number of replicas for these components by
modifying the spec.high-availability.replicas value in the KnativeServing custom resource (CR).

10.2.1. Configuring high availability replicas for Knative Serving

To specify three minimum replicas for the eligible deployment resources, set the value of the field 
spec.high-availability.replicas in the custom resource to 3.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

The OpenShift Serverless Operator and Knative Serving are installed on your cluster.

Procedure

1. In the OpenShift Container Platform web console Administrator perspective, navigate to
OperatorHub → Installed Operators.

2. Select the knative-serving namespace.

3. Click Knative Serving in the list of Provided APIs for the OpenShift Serverless Operator to go
to the Knative Serving tab.

4. Click knative-serving, then go to the YAML tab in the knative-serving page.

Red Hat OpenShift Serverless 1.30 Serving

68



5. Modify the number of replicas in the KnativeServing CR:

Example YAML

apiVersion: operator.knative.dev/v1beta1
kind: KnativeServing
metadata:
  name: knative-serving
  namespace: knative-serving
spec:
  high-availability:
    replicas: 3

CHAPTER 10. CONFIGURING HIGH AVAILABILITY FOR KNATIVE SERVICES

69


	Table of Contents
	CHAPTER 1. GETTING STARTED WITH KNATIVE SERVING
	1.1. SERVERLESS APPLICATIONS
	1.1.1. Creating serverless applications by using the Knative CLI
	1.1.2. Creating serverless applications using YAML
	1.1.3. Creating serverless applications using the Administrator perspective
	1.1.4. Creating a service using offline mode
	1.1.5. Additional resources

	1.2. VERIFYING YOUR SERVERLESS APPLICATION DEPLOYMENT
	1.2.1. Verifying your serverless application deployment


	CHAPTER 2. AUTOSCALING
	2.1. AUTOSCALING
	2.2. SCALE BOUNDS
	2.2.1. Minimum scale bounds
	2.2.1.1. Setting the min-scale annotation by using the Knative CLI

	2.2.2. Maximum scale bounds
	2.2.2.1. Setting the max-scale annotation by using the Knative CLI


	2.3. CONCURRENCY
	2.3.1. Configuring a soft concurrency target
	2.3.2. Configuring a hard concurrency limit
	2.3.3. Concurrency target utilization

	2.4. SCALE-TO-ZERO
	2.4.1. Enabling scale-to-zero
	2.4.2. Configuring the scale-to-zero grace period


	CHAPTER 3. CONFIGURING SERVERLESS APPLICATIONS
	3.1. OVERRIDING KNATIVE SERVING SYSTEM DEPLOYMENT CONFIGURATIONS
	3.1.1. Overriding system deployment configurations

	3.2. MULTI-CONTAINER SUPPORT FOR SERVING
	3.2.1. Configuring a multi-container service

	3.3. EMPTYDIR VOLUMES
	3.3.1. Configuring the EmptyDir extension

	3.4. PERSISTENT VOLUME CLAIMS FOR SERVING
	3.4.1. Enabling PVC support
	3.4.2. Additional resources for OpenShift Container Platform

	3.5. INIT CONTAINERS
	3.5.1. Enabling init containers

	3.6. RESOLVING IMAGE TAGS TO DIGESTS
	3.6.1. Tag-to-digest resolution
	3.6.1.1. Configuring tag-to-digest resolution by using a secret


	3.7. CONFIGURING TLS AUTHENTICATION
	3.7.1. Enabling TLS authentication for internal traffic

	3.8. RESTRICTIVE NETWORK POLICIES
	3.8.1. Clusters with restrictive network policies
	3.8.2. Enabling communication with Knative applications on a cluster with restrictive network policies


	CHAPTER 4. TRAFFIC SPLITTING
	4.1. TRAFFIC SPLITTING OVERVIEW
	4.2. TRAFFIC SPEC EXAMPLES
	4.3. TRAFFIC SPLITTING USING THE KNATIVE CLI
	4.3.1. Creating a traffic split by using the Knative CLI

	4.4. CLI FLAGS FOR TRAFFIC SPLITTING
	4.4.1. Knative CLI traffic splitting flags
	4.4.1.1. Multiple flags and order precedence
	4.4.1.2. Custom URLs for revisions


	4.5. SPLITTING TRAFFIC BETWEEN REVISIONS
	4.5.1. Managing traffic between revisions by using the OpenShift Container Platform web console

	4.6. REROUTING TRAFFIC USING BLUE-GREEN STRATEGY
	4.6.1. Routing and managing traffic by using a blue-green deployment strategy


	CHAPTER 5. EXTERNAL AND INGRESS ROUTING
	5.1. ROUTING OVERVIEW
	5.1.1. Additional resources for OpenShift Container Platform

	5.2. CUSTOMIZING LABELS AND ANNOTATIONS
	5.2.1. Customizing labels and annotations for OpenShift Container Platform routes

	5.3. CONFIGURING ROUTES FOR KNATIVE SERVICES
	5.3.1. Configuring OpenShift Container Platform routes for Knative services

	5.4. GLOBAL HTTPS REDIRECTION
	5.4.1. HTTPS redirection global settings

	5.5. URL SCHEME FOR EXTERNAL ROUTES
	5.5.1. Setting the URL scheme for external routes

	5.6. HTTPS REDIRECTION PER SERVICE
	5.6.1. Redirecting HTTPS for a service

	5.7. CLUSTER LOCAL AVAILABILITY
	5.7.1. Setting cluster availability to cluster local
	5.7.2. Enabling TLS authentication for cluster local services

	5.8. KOURIER GATEWAY SERVICE TYPE
	5.8.1. Setting the Kourier Gateway service type

	5.9. USING HTTP2 AND GRPC
	5.9.1. Interacting with a serverless application using HTTP2 and gRPC
	5.9.2. Interacting with a serverless application using HTTP2 and gRPC in OpenShift Container Platform 4.9 and older


	CHAPTER 6. CONFIGURING ACCESS TO KNATIVE SERVICES
	6.1. CONFIGURING JSON WEB TOKEN AUTHENTICATION FOR KNATIVE SERVICES
	6.2. USING JSON WEB TOKEN AUTHENTICATION WITH SERVICE MESH 2.X
	6.2.1. Configuring JSON Web Token authentication for Service Mesh 2.x and OpenShift Serverless

	6.3. USING JSON WEB TOKEN AUTHENTICATION WITH SERVICE MESH 1.X
	6.3.1. Configuring JSON Web Token authentication for Service Mesh 1.x and OpenShift Serverless


	CHAPTER 7. CONFIGURING KUBE-RBAC-PROXY FOR SERVING
	7.1. CONFIGURING KUBE-RBAC-PROXY RESOURCES FOR SERVING

	CHAPTER 8. CONFIGURING BURST AND QPS FOR NET-KOURIER
	8.1. CONFIGURING BURST AND QPS VALUES FOR NET-KOURIER

	CHAPTER 9. CONFIGURING CUSTOM DOMAINS FOR KNATIVE SERVICES
	9.1. CONFIGURING A CUSTOM DOMAIN FOR A KNATIVE SERVICE
	9.2. CUSTOM DOMAIN MAPPING
	9.2.1. Creating a custom domain mapping

	9.3. CUSTOM DOMAINS FOR KNATIVE SERVICES USING THE KNATIVE CLI
	9.3.1. Creating a custom domain mapping by using the Knative CLI

	9.4. DOMAIN MAPPING USING THE DEVELOPER PERSPECTIVE
	9.4.1. Mapping a custom domain to a service by using the Developer perspective

	9.5. DOMAIN MAPPING USING THE ADMINISTRATOR PERSPECTIVE
	9.5.1. Mapping a custom domain to a service by using the Administrator perspective

	9.6. SECURING A MAPPED SERVICE USING A TLS CERTIFICATE
	9.6.1. Securing a service with a custom domain by using a TLS certificate
	9.6.2. Improving net-kourier memory usage by using secret filtering


	CHAPTER 10. CONFIGURING HIGH AVAILABILITY FOR KNATIVE SERVICES
	10.1. HIGH AVAILABILITY FOR KNATIVE SERVICES
	10.2. HIGH AVAILABILITY FOR KNATIVE SERVICES
	10.2.1. Configuring high availability replicas for Knative Serving



