
Red Hat OpenShift Serverless 1.31

Eventing

Using event-driven architectures with OpenShift Serverless

Last Updated: 2023-12-15

Red Hat OpenShift Serverless 1.31 Eventing

Using event-driven architectures with OpenShift Serverless

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about Eventing features such as event sources and sinks,
brokers, triggers, channels, and subscriptions.

. .

. .

. .

Table of Contents

CHAPTER 1. KNATIVE EVENTING
1.1. KNATIVE EVENTING USE CASES:

CHAPTER 2. EVENT SOURCES
2.1. EVENT SOURCES
2.2. EVENT SOURCE IN THE ADMINISTRATOR PERSPECTIVE

2.2.1. Creating an event source by using the Administrator perspective
2.3. CREATING AN API SERVER SOURCE

2.3.1. Creating an API server source by using the web console
2.3.2. Creating an API server source by using the Knative CLI

2.3.2.1. Knative CLI sink flag
2.3.3. Creating an API server source by using YAML files

2.4. CREATING A PING SOURCE
2.4.1. Creating a ping source by using the web console
2.4.2. Creating a ping source by using the Knative CLI

2.4.2.1. Knative CLI sink flag
2.4.3. Creating a ping source by using YAML

2.5. SOURCE FOR APACHE KAFKA
2.5.1. Creating an Apache Kafka event source by using the web console
2.5.2. Creating an Apache Kafka event source by using the Knative CLI

2.5.2.1. Knative CLI sink flag
2.5.3. Creating an Apache Kafka event source by using YAML
2.5.4. Configuring SASL authentication for Apache Kafka sources

2.6. CUSTOM EVENT SOURCES
2.6.1. Sink binding

2.6.1.1. Creating a sink binding by using YAML
2.6.1.2. Creating a sink binding by using the Knative CLI

2.6.1.2.1. Knative CLI sink flag
2.6.1.3. Creating a sink binding by using the web console
2.6.1.4. Sink binding reference

2.6.1.4.1. Subject parameter
2.6.1.4.2. CloudEvent overrides
2.6.1.4.3. The include label

2.6.1.5. Integrating Service Mesh with a sink binding
2.6.2. Container source

2.6.2.1. Guidelines for creating a container image
2.6.2.2. Creating and managing container sources by using the Knative CLI
2.6.2.3. Creating a container source by using the web console
2.6.2.4. Container source reference

2.6.2.4.1. CloudEvent overrides
2.6.2.5. Integrating Service Mesh with ContainerSource

2.7. CONNECTING AN EVENT SOURCE TO AN EVENT SINK BY USING THE DEVELOPER PERSPECTIVE
2.7.1. Connect an event source to an event sink by using the Developer perspective

CHAPTER 3. EVENT SINKS
3.1. EVENT SINKS

3.1.1. Knative CLI sink flag
3.2. CREATING EVENT SINKS
3.3. SINK FOR APACHE KAFKA

3.3.1. Creating an Apache Kafka sink by using YAML
3.3.2. Creating an event sink for Apache Kafka by using the OpenShift Container Platform web console

6
6

7
7
7
7
8
8
11

14
15
19
19
22
23
24
27
27
28
30
30
32
33
34
34
37
40
41

44
45
47
48
48
51
51

54
55
56
57
58
60
60

61
61
61
61

62
62
63

Table of Contents

1

. .

. .

3.3.3. Configuring security for Apache Kafka sinks

CHAPTER 4. BROKERS
4.1. BROKERS
4.2. BROKER TYPES

4.2.1. Default broker implementation for development purposes
4.2.2. Production-ready Knative broker implementation for Apache Kafka

4.3. CREATING BROKERS
4.3.1. Creating a broker by using the Knative CLI
4.3.2. Creating a broker by annotating a trigger
4.3.3. Creating a broker by labeling a namespace
4.3.4. Deleting a broker that was created by injection
4.3.5. Creating a broker by using the web console
4.3.6. Creating a broker by using the Administrator perspective
4.3.7. Next steps
4.3.8. Additional resources

4.4. CONFIGURING THE DEFAULT BROKER BACKING CHANNEL
4.5. CONFIGURING THE DEFAULT BROKER CLASS
4.6. KNATIVE BROKER IMPLEMENTATION FOR APACHE KAFKA

4.6.1. Creating an Apache Kafka broker when it is not configured as the default broker type
4.6.1.1. Creating an Apache Kafka broker by using YAML
4.6.1.2. Creating an Apache Kafka broker that uses an externally managed Kafka topic
4.6.1.3. Knative Broker implementation for Apache Kafka with isolated data plane
4.6.1.4. Creating a Knative broker for Apache Kafka that uses an isolated data plane

4.6.2. Configuring Apache Kafka broker settings
4.6.3. Security configuration for the Knative broker implementation for Apache Kafka

4.6.3.1. Configuring TLS authentication for Apache Kafka brokers
4.6.3.2. Configuring SASL authentication for Apache Kafka brokers

4.6.4. Additional resources
4.7. MANAGING BROKERS

4.7.1. Managing brokers using the CLI
4.7.1.1. Listing existing brokers by using the Knative CLI
4.7.1.2. Describing an existing broker by using the Knative CLI

4.7.2. Connect a broker to a sink using the Developer perspective

CHAPTER 5. TRIGGERS
5.1. TRIGGERS OVERVIEW

5.1.1. Configuring event delivery ordering for triggers
5.1.2. Next steps

5.2. CREATING TRIGGERS
5.2.1. Creating a trigger by using the Administrator perspective
5.2.2. Creating a trigger by using the Developer perspective
5.2.3. Creating a trigger by using the Knative CLI

5.3. LIST TRIGGERS FROM THE COMMAND LINE
5.3.1. Listing triggers by using the Knative CLI

5.4. DESCRIBE TRIGGERS FROM THE COMMAND LINE
5.4.1. Describing a trigger by using the Knative CLI

5.5. CONNECTING A TRIGGER TO A SINK
5.6. FILTERING TRIGGERS FROM THE COMMAND LINE

5.6.1. Filtering events with triggers by using the Knative CLI
5.7. UPDATING TRIGGERS FROM THE COMMAND LINE

5.7.1. Updating a trigger by using the Knative CLI
5.8. DELETING TRIGGERS FROM THE COMMAND LINE

64

67
67
67
67
67
68
68
69
70
72
72
73
74
74
74
75
77
77
77
78
79
80
81

83
83
84
85
85
85
86
86
87

88
88
88
89
89
89
90
91
91

92
92
92
93
93
94
94
94
95

Red Hat OpenShift Serverless 1.31 Eventing

2

. .

. .

. .

. .

. .

5.8.1. Deleting a trigger by using the Knative CLI

CHAPTER 6. CHANNELS
6.1. CHANNELS AND SUBSCRIPTIONS

6.1.1. Channel implementation types
6.2. CREATING CHANNELS

6.2.1. Creating a channel by using the Administrator perspective
6.2.2. Creating a channel by using the Developer perspective
6.2.3. Creating a channel by using the Knative CLI
6.2.4. Creating a default implementation channel by using YAML
6.2.5. Creating a channel for Apache Kafka by using YAML
6.2.6. Next steps

6.3. CONNECTING CHANNELS TO SINKS
6.3.1. Creating a subscription by using the Developer perspective
6.3.2. Creating a subscription by using YAML
6.3.3. Creating a subscription by using the Knative CLI
6.3.4. Creating a subscription by using the Administrator perspective
6.3.5. Next steps

6.4. DEFAULT CHANNEL IMPLEMENTATION
6.4.1. Configuring the default channel implementation

6.5. SECURITY CONFIGURATION FOR CHANNELS
6.5.1. Configuring TLS authentication for Knative channels for Apache Kafka
6.5.2. Configuring SASL authentication for Knative channels for Apache Kafka

CHAPTER 7. SUBSCRIPTIONS
7.1. CREATING SUBSCRIPTIONS

7.1.1. Creating a subscription by using the Administrator perspective
7.1.2. Creating a subscription by using the Developer perspective
7.1.3. Creating a subscription by using YAML
7.1.4. Creating a subscription by using the Knative CLI
7.1.5. Next steps

7.2. MANAGING SUBSCRIPTIONS
7.2.1. Describing subscriptions by using the Knative CLI
7.2.2. Listing subscriptions by using the Knative CLI
7.2.3. Updating subscriptions by using the Knative CLI

CHAPTER 8. EVENT DELIVERY
8.1. CONFIGURABLE EVENT DELIVERY PARAMETERS
8.2. EXAMPLES OF CONFIGURING EVENT DELIVERY PARAMETERS
8.3. CONFIGURING EVENT DELIVERY ORDERING FOR TRIGGERS

CHAPTER 9. EVENT DISCOVERY
9.1. LISTING EVENT SOURCES AND EVENT SOURCE TYPES
9.2. LISTING EVENT SOURCE TYPES FROM THE COMMAND LINE

9.2.1. Listing available event source types by using the Knative CLI
9.3. LISTING EVENT SOURCE TYPES FROM THE DEVELOPER PERSPECTIVE

9.3.1. Viewing available event source types within the Developer perspective
9.4. LISTING EVENT SOURCES FROM THE COMMAND LINE

9.4.1. Listing available event sources by using the Knative CLI

CHAPTER 10. TUNING EVENTING CONFIGURATION
10.1. OVERRIDING KNATIVE EVENTING SYSTEM DEPLOYMENT CONFIGURATIONS

10.1.1. Overriding deployment configurations
10.2. HIGH AVAILABILITY

95

96
96
97
97
97
98
98
99

100
101
101
101
102
103
105
106
106
106
107
107
108

111
111
111
111

113
114
115
116
116
116
117

118
118
118

120

122
122
122
122
122
123
123
123

125
125
125
126

Table of Contents

3

. .

. .

. .

10.2.1. Configuring high availability replicas for Knative Eventing
10.2.2. Configuring high availability replicas for the Knative broker implementation for Apache Kafka

CHAPTER 11. CONFIGURING KUBE-RBAC-PROXY FOR EVENTING
11.1. CONFIGURING KUBE-RBAC-PROXY RESOURCES FOR EVENTING

CHAPTER 12. USING CONTAINERSOURCE WITH SERVICE MESH
12.1. CONFIGURING CONTAINERSOURCE WITH SERVICE MESH

CHAPTER 13. USING A SINK BINDING WITH SERVICE MESH
13.1. CONFIGURING A SINK BINDING WITH SERVICE MESH

127
128

130
130

131
131

134
134

Red Hat OpenShift Serverless 1.31 Eventing

4

Table of Contents

5

CHAPTER 1. KNATIVE EVENTING
Knative Eventing on OpenShift Container Platform enables developers to use an event-driven
architecture with serverless applications. An event-driven architecture is based on the concept of
decoupled relationships between event producers and event consumers.

Event producers create events, and event sinks, or consumers, receive events. Knative Eventing uses
standard HTTP POST requests to send and receive events between event producers and sinks. These
events conform to the CloudEvents specifications, which enables creating, parsing, sending, and
receiving events in any programming language.

1.1. KNATIVE EVENTING USE CASES:

Knative Eventing supports the following use cases:

Publish an event without creating a consumer

You can send events to a broker as an HTTP POST, and use binding to decouple the destination
configuration from your application that produces events.

Consume an event without creating a publisher

You can use a trigger to consume events from a broker based on event attributes. The application
receives events as an HTTP POST.

To enable delivery to multiple types of sinks, Knative Eventing defines the following generic interfaces
that can be implemented by multiple Kubernetes resources:

Addressable resources

Able to receive and acknowledge an event delivered over HTTP to an address defined in the
status.address.url field of the event. The Kubernetes Service resource also satisfies the
addressable interface.

Callable resources

Able to receive an event delivered over HTTP and transform it, returning 0 or 1 new events in the
HTTP response payload. These returned events may be further processed in the same way that
events from an external event source are processed.

Red Hat OpenShift Serverless 1.31 Eventing

6

https://www.redhat.com/en/topics/integration/what-is-event-driven-architecture
https://cloudevents.io

CHAPTER 2. EVENT SOURCES

2.1. EVENT SOURCES

A Knative event source can be any Kubernetes object that generates or imports cloud events, and relays
those events to another endpoint, known as a sink. Sourcing events is critical to developing a distributed
system that reacts to events.

You can create and manage Knative event sources by using the Developer perspective in the OpenShift
Container Platform web console, the Knative (kn) CLI, or by applying YAML files.

Currently, OpenShift Serverless supports the following event source types:

API server source

Brings Kubernetes API server events into Knative. The API server source sends a new event each
time a Kubernetes resource is created, updated or deleted.

Ping source

Produces events with a fixed payload on a specified cron schedule.

Kafka event source

Connects an Apache Kafka cluster to a sink as an event source.

You can also create a custom event source.

2.2. EVENT SOURCE IN THE ADMINISTRATOR PERSPECTIVE

Sourcing events is critical to developing a distributed system that reacts to events.

2.2.1. Creating an event source by using the Administrator perspective

A Knative event source can be any Kubernetes object that generates or imports cloud events, and relays
those events to another endpoint, known as a sink.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have logged in to the web console and are in the Administrator perspective.

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Serverless → Eventing.

2. In the Create list, select Event Source. You will be directed to the Event Sources page.

3. Select the event source type that you want to create.

CHAPTER 2. EVENT SOURCES

7

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-event-sinks
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-apiserversource
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-pingsource
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-kafka-developer-source
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-custom-event-sources

2.3. CREATING AN API SERVER SOURCE

The API server source is an event source that can be used to connect an event sink, such as a Knative
service, to the Kubernetes API server. The API server source watches for Kubernetes events and
forwards them to the Knative Eventing broker.

2.3.1. Creating an API server source by using the web console

After Knative Eventing is installed on your cluster, you can create an API server source by using the web
console. Using the OpenShift Container Platform web console provides a streamlined and intuitive user
interface to create an event source.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift CLI (oc).

PROCEDURE

If you want to re-use an existing service account, you can modify your existing
ServiceAccount resource to include the required permissions instead of creating a new
resource.

1. Create a service account, role, and role binding for the event source as a YAML file:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: events-sa
 namespace: default 1

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: event-watcher
 namespace: default 2
rules:
 - apiGroups:
 - ""
 resources:
 - events
 verbs:
 - get
 - list
 - watch

Red Hat OpenShift Serverless 1.31 Eventing

8

1 2 3 4 Change this namespace to the namespace that you have selected for installing the
event source.

2. Apply the YAML file:

3. In the Developer perspective, navigate to +Add → Event Source. The Event Sources page is
displayed.

4. Optional: If you have multiple providers for your event sources, select the required provider
from the Providers list to filter the available event sources from the provider.

5. Select ApiServerSource and then click Create Event Source. The Create Event Source page
is displayed.

6. Configure the ApiServerSource settings by using the Form view or YAML view:

NOTE

You can switch between the Form view and YAML view. The data is persisted
when switching between the views.

a. Enter v1 as the APIVERSION and Event as the KIND.

b. Select the Service Account Name for the service account that you created.

c. In the Target section, select your event sink. This can be either a Resource or a URI:

i. Select Resource to use a channel, broker, or service as an event sink for the event
source.

ii. Select URI to specify a Uniform Resource Identifier (URI) where the events are routed
to.

7. Click Create.

Verification

After you have created the API server source, check that it is connected to the event sink by

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: k8s-ra-event-watcher
 namespace: default 3
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: event-watcher
subjects:
 - kind: ServiceAccount
 name: events-sa
 namespace: default 4

$ oc apply -f <filename>

CHAPTER 2. EVENT SOURCES

9

After you have created the API server source, check that it is connected to the event sink by
viewing it in the Topology view.

NOTE

If a URI sink is used, you can modify the URI by right-clicking on URI sink → Edit URI.

Deleting the API server source

1. Navigate to the Topology view.

2. Right-click the API server source and select Delete ApiServerSource.

Red Hat OpenShift Serverless 1.31 Eventing

10

2.3.2. Creating an API server source by using the Knative CLI

You can use the kn source apiserver create command to create an API server source by using the kn
CLI. Using the kn CLI to create an API server source provides a more streamlined and intuitive user
interface than modifying YAML files directly.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift CLI (oc).

You have installed the Knative (kn) CLI.

PROCEDURE

If you want to re-use an existing service account, you can modify your existing
ServiceAccount resource to include the required permissions instead of creating a new
resource.

1. Create a service account, role, and role binding for the event source as a YAML file:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: events-sa
 namespace: default 1

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: event-watcher
 namespace: default 2
rules:
 - apiGroups:
 - ""
 resources:
 - events
 verbs:
 - get
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: k8s-ra-event-watcher
 namespace: default 3
roleRef:
 apiGroup: rbac.authorization.k8s.io

CHAPTER 2. EVENT SOURCES

11

1 2 3 4 Change this namespace to the namespace that you have selected for installing the
event source.

2. Apply the YAML file:

3. Create an API server source that has an event sink. In the following example, the sink is a broker:

4. To check that the API server source is set up correctly, create a Knative service that dumps
incoming messages to its log:

5. If you used a broker as an event sink, create a trigger to filter events from the default broker to
the service:

6. Create events by launching a pod in the default namespace:

7. Check that the controller is mapped correctly by inspecting the output generated by the
following command:

Example output

 kind: Role
 name: event-watcher
subjects:
 - kind: ServiceAccount
 name: events-sa
 namespace: default 4

$ oc apply -f <filename>

$ kn source apiserver create <event_source_name> --sink broker:<broker_name> --
resource "event:v1" --service-account <service_account_name> --mode Resource

$ kn service create event-display --image quay.io/openshift-knative/showcase

$ kn trigger create <trigger_name> --sink ksvc:event-display

$ oc create deployment event-origin --image quay.io/openshift-knative/showcase

$ kn source apiserver describe <source_name>

Name: mysource
Namespace: default
Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer
Age: 3m
ServiceAccountName: events-sa
Mode: Resource
Sink:
 Name: default
 Namespace: default
 Kind: Broker (eventing.knative.dev/v1)
Resources:

Red Hat OpenShift Serverless 1.31 Eventing

12

Verification

To verify that the Kubernetes events were sent to Knative, look at the event-display logs or use web
browser to see the events.

To view the events in a web browser, open the link returned by the following command:

Figure 2.1. Example browser page

Alternatively, to see the logs in the terminal, view the event-display logs for the pods by
entering the following command:

Example output

 Kind: event (v1)
 Controller: false
Conditions:
 OK TYPE AGE REASON
 ++ Ready 3m
 ++ Deployed 3m
 ++ SinkProvided 3m
 ++ SufficientPermissions 3m
 ++ EventTypesProvided 3m

$ kn service describe event-display -o url

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.apiserver.resource.update
 datacontenttype: application/json
 ...

CHAPTER 2. EVENT SOURCES

13

Deleting the API server source

1. Delete the trigger:

2. Delete the event source:

3. Delete the service account, cluster role, and cluster binding:

2.3.2.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

Data,
 {
 "apiVersion": "v1",
 "involvedObject": {
 "apiVersion": "v1",
 "fieldPath": "spec.containers{event-origin}",
 "kind": "Pod",
 "name": "event-origin",
 "namespace": "default",

 },
 "kind": "Event",
 "message": "Started container",
 "metadata": {
 "name": "event-origin.159d7608e3a3572c",
 "namespace": "default",

 },
 "reason": "Started",
 ...
 }

$ kn trigger delete <trigger_name>

$ kn source apiserver delete <source_name>

$ oc delete -f authentication.yaml

$ kn source binding create bind-heartbeat \
 --namespace sinkbinding-example \
 --subject "Job:batch/v1:app=heartbeat-cron" \
 --sink http://event-display.svc.cluster.local \ 1
 --ce-override "sink=bound"

Red Hat OpenShift Serverless 1.31 Eventing

14

1 svc in http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

2.3.3. Creating an API server source by using YAML files

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
event sources declaratively and in a reproducible manner. To create an API server source by using
YAML, you must create a YAML file that defines an ApiServerSource object, then apply it by using the
oc apply command.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created the default broker in the same namespace as the one defined in the API
server source YAML file.

Install the OpenShift CLI (oc).

PROCEDURE

If you want to re-use an existing service account, you can modify your existing
ServiceAccount resource to include the required permissions instead of creating a new
resource.

1. Create a service account, role, and role binding for the event source as a YAML file:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: events-sa
 namespace: default 1

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: event-watcher
 namespace: default 2
rules:
 - apiGroups:
 - ""
 resources:
 - events
 verbs:
 - get
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1

CHAPTER 2. EVENT SOURCES

15

1 2 3 4 Change this namespace to the namespace that you have selected for installing the
event source.

2. Apply the YAML file:

3. Create an API server source as a YAML file:

4. Apply the ApiServerSource YAML file:

5. To check that the API server source is set up correctly, create a Knative service as a YAML file
that dumps incoming messages to its log:

kind: RoleBinding
metadata:
 name: k8s-ra-event-watcher
 namespace: default 3
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: event-watcher
subjects:
 - kind: ServiceAccount
 name: events-sa
 namespace: default 4

$ oc apply -f <filename>

apiVersion: sources.knative.dev/v1alpha1
kind: ApiServerSource
metadata:
 name: testevents
spec:
 serviceAccountName: events-sa
 mode: Resource
 resources:
 - apiVersion: v1
 kind: Event
 sink:
 ref:
 apiVersion: eventing.knative.dev/v1
 kind: Broker
 name: default

$ oc apply -f <filename>

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
 namespace: default
spec:
 template:

Red Hat OpenShift Serverless 1.31 Eventing

16

6. Apply the Service YAML file:

7. Create a Trigger object as a YAML file that filters events from the default broker to the service
created in the previous step:

8. Apply the Trigger YAML file:

9. Create events by launching a pod in the default namespace:

10. Check that the controller is mapped correctly, by entering the following command and
inspecting the output:

Example output

 spec:
 containers:
 - image: quay.io/openshift-knative/showcase

$ oc apply -f <filename>

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 name: event-display-trigger
 namespace: default
spec:
 broker: default
 subscriber:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f <filename>

$ oc create deployment event-origin --image=quay.io/openshift-knative/showcase

$ oc get apiserversource.sources.knative.dev testevents -o yaml

apiVersion: sources.knative.dev/v1alpha1
kind: ApiServerSource
metadata:
 annotations:
 creationTimestamp: "2020-04-07T17:24:54Z"
 generation: 1
 name: testevents
 namespace: default
 resourceVersion: "62868"
 selfLink:
/apis/sources.knative.dev/v1alpha1/namespaces/default/apiserversources/testevents2
 uid: 1603d863-bb06-4d1c-b371-f580b4db99fa
spec:
 mode: Resource

CHAPTER 2. EVENT SOURCES

17

Verification

To verify that the Kubernetes events were sent to Knative, you can look at the event-display logs or use
web browser to see the events.

To view the events in a web browser, open the link returned by the following command:

Figure 2.2. Example browser page

To see the logs in the terminal, view the event-display logs for the pods by entering the
following command:

Example output

 resources:
 - apiVersion: v1
 controller: false
 controllerSelector:
 apiVersion: ""
 kind: ""
 name: ""
 uid: ""
 kind: Event
 labelSelector: {}
 serviceAccountName: events-sa
 sink:
 ref:
 apiVersion: eventing.knative.dev/v1
 kind: Broker
 name: default

$ oc get ksvc event-display -o jsonpath='{.status.url}'

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

Red Hat OpenShift Serverless 1.31 Eventing

18

Deleting the API server source

1. Delete the trigger:

2. Delete the event source:

3. Delete the service account, cluster role, and cluster binding:

2.4. CREATING A PING SOURCE

A ping source is an event source that can be used to periodically send ping events with a constant
payload to an event consumer. A ping source can be used to schedule sending events, similar to a timer.

2.4.1. Creating a ping source by using the web console

After Knative Eventing is installed on your cluster, you can create a ping source by using the web console.
Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create an event source.

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.apiserver.resource.update
 datacontenttype: application/json
 ...
Data,
 {
 "apiVersion": "v1",
 "involvedObject": {
 "apiVersion": "v1",
 "fieldPath": "spec.containers{event-origin}",
 "kind": "Pod",
 "name": "event-origin",
 "namespace": "default",

 },
 "kind": "Event",
 "message": "Started container",
 "metadata": {
 "name": "event-origin.159d7608e3a3572c",
 "namespace": "default",

 },
 "reason": "Started",
 ...
 }

$ oc delete -f trigger.yaml

$ oc delete -f k8s-events.yaml

$ oc delete -f authentication.yaml

CHAPTER 2. EVENT SOURCES

19

Prerequisites

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming
messages to the logs of the service.

a. In the Developer perspective, navigate to +Add → YAML.

b. Copy the example YAML:

c. Click Create.

2. Create a ping source in the same namespace as the service created in the previous step, or any
other sink that you want to send events to.

a. In the Developer perspective, navigate to +Add → Event Source. The Event Sources page
is displayed.

b. Optional: If you have multiple providers for your event sources, select the required provider
from the Providers list to filter the available event sources from the provider.

c. Select Ping Source and then click Create Event Source. The Create Event Source page is
displayed.

NOTE

You can configure the PingSource settings by using the Form view or
YAML view and can switch between the views. The data is persisted when
switching between the views.

d. Enter a value for Schedule. In this example, the value is */2 * * * *, which creates a
PingSource that sends a message every two minutes.

e. Optional: You can enter a value for Data, which is the message payload.

f. In the Target section, select your event sink. This can be either a Resource or a URI:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/showcase

Red Hat OpenShift Serverless 1.31 Eventing

20

i. Select Resource to use a channel, broker, or service as an event sink for the event
source. In this example, the event-display service created in the previous step is used as
the target Resource.

ii. Select URI to specify a Uniform Resource Identifier (URI) where the events are routed
to.

g. Click Create.

Verification

You can verify that the ping source was created and is connected to the sink by viewing the Topology
page.

1. In the Developer perspective, navigate to Topology.

2. View the ping source and sink.

3. View the event-display service in the web browser. You should see the ping source events in the
web UI.

Deleting the ping source

1. Navigate to the Topology view.

2. Right-click the API server source and select Delete Ping Source.

CHAPTER 2. EVENT SOURCES

21

2.4.2. Creating a ping source by using the Knative CLI

You can use the kn source ping create command to create a ping source by using the Knative (kn) CLI.
Using the Knative CLI to create event sources provides a more streamlined and intuitive user interface
than modifying YAML files directly.

Prerequisites

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Optional: If you want to use the verification steps for this procedure, install the OpenShift CLI
(oc).

Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming
messages to the service logs:

2. For each set of ping events that you want to request, create a ping source in the same
namespace as the event consumer:

3. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

Example output

$ kn service create event-display \
 --image quay.io/openshift-knative/showcase

$ kn source ping create test-ping-source \
 --schedule "*/2 * * * *" \
 --data '{"message": "Hello world!"}' \
 --sink ksvc:event-display

$ kn source ping describe test-ping-source

Name: test-ping-source
Namespace: default
Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer
Age: 15s
Schedule: */2 * * * *
Data: {"message": "Hello world!"}

Sink:
 Name: event-display
 Namespace: default
 Resource: Service (serving.knative.dev/v1)

Red Hat OpenShift Serverless 1.31 Eventing

22

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the logs of
the sink pod.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The
example shown in this guide creates a ping source that sends a message every 2 minutes, so each
message should be observed in a newly created pod.

1. Watch for new pods created:

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:

Example output

Deleting the ping source

Delete the ping source:

2.4.2.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

Conditions:
 OK TYPE AGE REASON
 ++ Ready 8s
 ++ Deployed 8s
 ++ SinkProvided 15s
 ++ ValidSchedule 15s
 ++ EventTypeProvided 15s
 ++ ResourcesCorrect 15s

$ watch oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.sources.ping
 source: /apis/v1/namespaces/default/pingsources/test-ping-source
 id: 99e4f4f6-08ff-4bff-acf1-47f61ded68c9
 time: 2020-04-07T16:16:00.000601161Z
 datacontenttype: application/json
Data,
 {
 "message": "Hello world!"
 }

$ kn delete pingsources.sources.knative.dev <ping_source_name>

CHAPTER 2. EVENT SOURCES

23

1

1

2

3

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

svc in http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

2.4.3. Creating a ping source by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
event sources declaratively and in a reproducible manner. To create a serverless ping source by using
YAML, you must create a YAML file that defines a PingSource object, then apply it by using oc apply.

Example PingSource object

The schedule of the event specified using CRON expression.

The event message body expressed as a JSON encoded data string.

These are the details of the event consumer. In this example, we are using a Knative service named
event-display.

Prerequisites

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

$ kn source binding create bind-heartbeat \
 --namespace sinkbinding-example \
 --subject "Job:batch/v1:app=heartbeat-cron" \
 --sink http://event-display.svc.cluster.local \ 1
 --ce-override "sink=bound"

apiVersion: sources.knative.dev/v1
kind: PingSource
metadata:
 name: test-ping-source
spec:
 schedule: "*/2 * * * *" 1
 data: '{"message": "Hello world!"}' 2
 sink: 3
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

Red Hat OpenShift Serverless 1.31 Eventing

24

https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/#schedule

Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming
messages to the service’s logs.

a. Create a service YAML file:

b. Create the service:

2. For each set of ping events that you want to request, create a ping source in the same
namespace as the event consumer.

a. Create a YAML file for the ping source:

b. Create the ping source:

3. Check that the controller is mapped correctly by entering the following command:

Example output

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/showcase

$ oc apply -f <filename>

apiVersion: sources.knative.dev/v1
kind: PingSource
metadata:
 name: test-ping-source
spec:
 schedule: "*/2 * * * *"
 data: '{"message": "Hello world!"}'
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f <filename>

$ oc get pingsource.sources.knative.dev <ping_source_name> -oyaml

apiVersion: sources.knative.dev/v1
kind: PingSource
metadata:
 annotations:
 sources.knative.dev/creator: developer
 sources.knative.dev/lastModifier: developer

CHAPTER 2. EVENT SOURCES

25

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the sink
pod’s logs.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The
example shown in this guide creates a PingSource that sends a message every 2 minutes, so each
message should be observed in a newly created pod.

1. Watch for new pods created:

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:

Example output

Deleting the ping source

Delete the ping source:

 creationTimestamp: "2020-04-07T16:11:14Z"
 generation: 1
 name: test-ping-source
 namespace: default
 resourceVersion: "55257"
 selfLink: /apis/sources.knative.dev/v1/namespaces/default/pingsources/test-ping-source
 uid: 3d80d50b-f8c7-4c1b-99f7-3ec00e0a8164
spec:
 data: '{ value: "hello" }'
 schedule: '*/2 * * * *'
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display
 namespace: default

$ watch oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.sources.ping
 source: /apis/v1/namespaces/default/pingsources/test-ping-source
 id: 042ff529-240e-45ee-b40c-3a908129853e
 time: 2020-04-07T16:22:00.000791674Z
 datacontenttype: application/json
Data,
 {
 "message": "Hello world!"
 }

Red Hat OpenShift Serverless 1.31 Eventing

26

Example command

2.5. SOURCE FOR APACHE KAFKA

You can create an Apache Kafka source that reads events from an Apache Kafka cluster and passes
these events to a sink. You can create a Kafka source by using the OpenShift Container Platform web
console, the Knative (kn) CLI, or by creating a KafkaSource object directly as a YAML file and using the
OpenShift CLI (oc) to apply it.

NOTE

See the documentation for Installing Knative broker for Apache Kafka .

2.5.1. Creating an Apache Kafka event source by using the web console

After the Knative broker implementation for Apache Kafka is installed on your cluster, you can create an
Apache Kafka source by using the web console. Using the OpenShift Container Platform web console
provides a streamlined and intuitive user interface to create a Kafka source.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your cluster.

You have logged in to the web console.

You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to the +Add page and select Event Source.

2. In the Event Sources page, select Kafka Source in the Type section.

3. Configure the Kafka Source settings:

a. Add a comma-separated list of Bootstrap Servers.

b. Add a comma-separated list of Topics.

c. Add a Consumer Group.

d. Select the Service Account Name for the service account that you created.

e. In the Target section, select your event sink. This can be either a Resource or a URI:

i. Select Resource to use a channel, broker, or service as an event sink for the event

$ oc delete -f <filename>

$ oc delete -f ping-source.yaml

CHAPTER 2. EVENT SOURCES

27

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/installing_serverless/#serverless-install-kafka-odc_installing-knative-eventing

i. Select Resource to use a channel, broker, or service as an event sink for the event
source.

ii. Select URI to specify a Uniform Resource Identifier (URI) where the events are routed
to.

f. Enter a Name for the Kafka event source.

4. Click Create.

Verification

You can verify that the Kafka event source was created and is connected to the sink by viewing the
Topology page.

1. In the Developer perspective, navigate to Topology.

2. View the Kafka event source and sink.

2.5.2. Creating an Apache Kafka event source by using the Knative CLI

You can use the kn source kafka create command to create a Kafka source by using the Knative (kn)
CLI. Using the Knative CLI to create event sources provides a more streamlined and intuitive user
interface than modifying YAML files directly.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, Knative Serving, and the KnativeKafka
custom resource (CR) are installed on your cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

You have installed the Knative (kn) CLI.

Optional: You have installed the OpenShift CLI (oc) if you want to use the verification steps in
this procedure.

Red Hat OpenShift Serverless 1.31 Eventing

28

Procedure

1. To verify that the Kafka event source is working, create a Knative service that dumps incoming
events into the service logs:

2. Create a KafkaSource CR:

NOTE

Replace the placeholder values in this command with values for your source
name, bootstrap servers, and topics.

The --servers, --topics, and --consumergroup options specify the connection parameters to
the Kafka cluster. The --consumergroup option is optional.

3. Optional: View details about the KafkaSource CR you created:

Example output

Verification steps

1. Trigger the Kafka instance to send a message to the topic:

$ kn service create event-display \
 --image quay.io/openshift-knative/showcase

$ kn source kafka create <kafka_source_name> \
 --servers <cluster_kafka_bootstrap>.kafka.svc:9092 \
 --topics <topic_name> --consumergroup my-consumer-group \
 --sink event-display

$ kn source kafka describe <kafka_source_name>

Name: example-kafka-source
Namespace: kafka
Age: 1h
BootstrapServers: example-cluster-kafka-bootstrap.kafka.svc:9092
Topics: example-topic
ConsumerGroup: example-consumer-group

Sink:
 Name: event-display
 Namespace: default
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 1h
 ++ Deployed 1h
 ++ SinkProvided 1h

$ oc -n kafka run kafka-producer \
 -ti --image=quay.io/strimzi/kafka:latest-kafka-2.7.0 --rm=true \

CHAPTER 2. EVENT SOURCES

29

1

Enter the message in the prompt. This command assumes that:

The Kafka cluster is installed in the kafka namespace.

The KafkaSource object has been configured to use the my-topic topic.

2. Verify that the message arrived by viewing the logs:

Example output

2.5.2.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

svc in http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

2.5.3. Creating an Apache Kafka event source by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
applications declaratively and in a reproducible manner. To create a Kafka source by using YAML, you

 --restart=Never -- bin/kafka-console-producer.sh \
 --broker-list <cluster_kafka_bootstrap>:9092 --topic my-topic

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.kafka.event
 source: /apis/v1/namespaces/default/kafkasources/example-kafka-source#example-topic
 subject: partition:46#0
 id: partition:46/offset:0
 time: 2021-03-10T11:21:49.4Z
Extensions,
 traceparent: 00-161ff3815727d8755848ec01c866d1cd-7ff3916c44334678-00
Data,
 Hello!

$ kn source binding create bind-heartbeat \
 --namespace sinkbinding-example \
 --subject "Job:batch/v1:app=heartbeat-cron" \
 --sink http://event-display.svc.cluster.local \ 1
 --ce-override "sink=bound"

Red Hat OpenShift Serverless 1.31 Eventing

30

1

2

3

must create a YAML file that defines a KafkaSource object, then apply it by using the oc apply
command.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

Install the OpenShift CLI (oc).

Procedure

1. Create a KafkaSource object as a YAML file:

A consumer group is a group of consumers that use the same group ID, and consume data
from a topic.

A topic provides a destination for the storage of data. Each topic is split into one or more
partitions.

A sink specifies where events are sent to from a source.

IMPORTANT

Only the v1beta1 version of the API for KafkaSource objects on OpenShift
Serverless is supported. Do not use the v1alpha1 version of this API, as this
version is now deprecated.

Example KafkaSource object

apiVersion: sources.knative.dev/v1beta1
kind: KafkaSource
metadata:
 name: <source_name>
spec:
 consumerGroup: <group_name> 1
 bootstrapServers:
 - <list_of_bootstrap_servers>
 topics:
 - <list_of_topics> 2
 sink:
 - <list_of_sinks> 3

apiVersion: sources.knative.dev/v1beta1
kind: KafkaSource
metadata:
 name: kafka-source

CHAPTER 2. EVENT SOURCES

31

2. Apply the KafkaSource YAML file:

Verification

Verify that the Kafka event source was created by entering the following command:

Example output

2.5.4. Configuring SASL authentication for Apache Kafka sources

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use
SASL authentication on your cluster, users must provide credentials to Knative for communicating with
the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

You have cluster or dedicated administrator permissions on OpenShift Container Platform.

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have a username and password for a Kafka cluster.

You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or
SCRAM-SHA-512.

If TLS is enabled, you also need the ca.crt certificate file for the Kafka cluster.

You have installed the OpenShift (oc) CLI.

Procedure

spec:
 consumerGroup: knative-group
 bootstrapServers:
 - my-cluster-kafka-bootstrap.kafka:9092
 topics:
 - knative-demo-topic
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f <filename>

$ oc get pods

NAME READY STATUS RESTARTS AGE
kafkasource-kafka-source-5ca0248f-... 1/1 Running 0 13m

Red Hat OpenShift Serverless 1.31 Eventing

32

1

1

1. Create the certificate files as secrets in your chosen namespace:

The SASL type can be PLAIN, SCRAM-SHA-256, or SCRAM-SHA-512.

2. Create or modify your Kafka source so that it contains the following spec configuration:

The caCert spec is not required if you are using a public cloud Kafka service.

2.6. CUSTOM EVENT SOURCES

If you need to ingress events from an event producer that is not included in Knative, or from a producer
that emits events which are not in the CloudEvent format, you can do this by creating a custom event
source. You can create a custom event source by using one of the following methods:

Use a PodSpecable object as an event source, by creating a sink binding.

Use a container as an event source, by creating a container source.

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-file=ca.crt=caroot.pem \
 --from-literal=password="SecretPassword" \
 --from-literal=saslType="SCRAM-SHA-512" \ 1
 --from-literal=user="my-sasl-user"

apiVersion: sources.knative.dev/v1beta1
kind: KafkaSource
metadata:
 name: example-source
spec:
...
 net:
 sasl:
 enable: true
 user:
 secretKeyRef:
 name: <kafka_auth_secret>
 key: user
 password:
 secretKeyRef:
 name: <kafka_auth_secret>
 key: password
 type:
 secretKeyRef:
 name: <kafka_auth_secret>
 key: saslType
 tls:
 enable: true
 caCert: 1
 secretKeyRef:
 name: <kafka_auth_secret>
 key: ca.crt
...

CHAPTER 2. EVENT SOURCES

33

2.6.1. Sink binding

The SinkBinding object supports decoupling event production from delivery addressing. Sink binding is
used to connect event producers to an event consumer, or sink. An event producer is a Kubernetes
resource that embeds a PodSpec template and produces events. A sink is an addressable Kubernetes
object that can receive events.

The SinkBinding object injects environment variables into the PodTemplateSpec of the sink, which
means that the application code does not need to interact directly with the Kubernetes API to locate the
event destination. These environment variables are as follows:

K_SINK

The URL of the resolved sink.

K_CE_OVERRIDES

A JSON object that specifies overrides to the outbound event.

NOTE

The SinkBinding object currently does not support custom revision names for services.

2.6.1.1. Creating a sink binding by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
event sources declaratively and in a reproducible manner. To create a sink binding by using YAML, you
must create a YAML file that defines an SinkBinding object, then apply it by using the oc apply
command.

Prerequisites

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. To check that sink binding is set up correctly, create a Knative event display service, or event
sink, that dumps incoming messages to its log.

a. Create a service YAML file:

Example service YAML file

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
 template:

Red Hat OpenShift Serverless 1.31 Eventing

34

1

b. Create the service:

2. Create a sink binding instance that directs events to the service.

a. Create a sink binding YAML file:

Example service YAML file

In this example, any Job with the label app: heartbeat-cron will be bound to the event
sink.

b. Create the sink binding:

3. Create a CronJob object.

a. Create a cron job YAML file:

Example cron job YAML file

 spec:
 containers:
 - image: quay.io/openshift-knative/showcase

$ oc apply -f <filename>

apiVersion: sources.knative.dev/v1alpha1
kind: SinkBinding
metadata:
 name: bind-heartbeat
spec:
 subject:
 apiVersion: batch/v1
 kind: Job 1
 selector:
 matchLabels:
 app: heartbeat-cron

 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f <filename>

apiVersion: batch/v1
kind: CronJob
metadata:
 name: heartbeat-cron
spec:
 # Run every minute
 schedule: "* * * * *"
 jobTemplate:
 metadata:

CHAPTER 2. EVENT SOURCES

35

IMPORTANT

To use sink binding, you must manually add a
bindings.knative.dev/include=true label to your Knative resources.

For example, to add this label to a CronJob resource, add the following lines
to the Job resource YAML definition:

b. Create the cron job:

4. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

Example output

 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"
 spec:
 template:
 spec:
 restartPolicy: Never
 containers:
 - name: single-heartbeat
 image: quay.io/openshift-knative/heartbeats:latest
 args:
 - --period=1
 env:
 - name: ONE_SHOT
 value: "true"
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"

$ oc apply -f <filename>

$ oc get sinkbindings.sources.knative.dev bind-heartbeat -oyaml

spec:
 sink:
 ref:
 apiVersion: serving.knative.dev/v1

Red Hat OpenShift Serverless 1.31 Eventing

36

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the
message dumper function logs.

1. Enter the command:

2. Enter the command:

Example output

2.6.1.2. Creating a sink binding by using the Knative CLI

You can use the kn source binding create command to create a sink binding by using the Knative (kn)
CLI. Using the Knative CLI to create event sources provides a more streamlined and intuitive user
interface than modifying YAML files directly.

Prerequisites

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the

 kind: Service
 name: event-display
 namespace: default
 subject:
 apiVersion: batch/v1
 kind: Job
 namespace: default
 selector:
 matchLabels:
 app: heartbeat-cron

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.eventing.samples.heartbeat
 source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
 id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
 time: 2019-10-18T15:23:20.809775386Z
 contenttype: application/json
Extensions,
 beats: true
 heart: yes
 the: 42
Data,
 {
 "id": 1,
 "label": ""
 }

CHAPTER 2. EVENT SOURCES

37

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Install the Knative (kn) CLI.

Install the OpenShift CLI (oc).

NOTE

The following procedure requires you to create YAML files.

If you change the names of the YAML files from those used in the examples, you must
ensure that you also update the corresponding CLI commands.

Procedure

1. To check that sink binding is set up correctly, create a Knative event display service, or event
sink, that dumps incoming messages to its log:

2. Create a sink binding instance that directs events to the service:

3. Create a CronJob object.

a. Create a cron job YAML file:

Example cron job YAML file

$ kn service create event-display --image quay.io/openshift-knative/showcase

$ kn source binding create bind-heartbeat --subject Job:batch/v1:app=heartbeat-cron --sink
ksvc:event-display

apiVersion: batch/v1
kind: CronJob
metadata:
 name: heartbeat-cron
spec:
 # Run every minute
 schedule: "* * * * *"
 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"
 spec:
 template:
 spec:
 restartPolicy: Never
 containers:
 - name: single-heartbeat
 image: quay.io/openshift-knative/heartbeats:latest
 args:

Red Hat OpenShift Serverless 1.31 Eventing

38

IMPORTANT

To use sink binding, you must manually add a
bindings.knative.dev/include=true label to your Knative CRs.

For example, to add this label to a CronJob CR, add the following lines to the
Job CR YAML definition:

b. Create the cron job:

4. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

Example output

 - --period=1
 env:
 - name: ONE_SHOT
 value: "true"
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"

$ oc apply -f <filename>

$ kn source binding describe bind-heartbeat

Name: bind-heartbeat
Namespace: demo-2
Annotations: sources.knative.dev/creator=minikube-user,
sources.knative.dev/lastModifier=minikub ...
Age: 2m
Subject:
 Resource: job (batch/v1)
 Selector:
 app: heartbeat-cron
Sink:
 Name: event-display
 Resource: Service (serving.knative.dev/v1)

CHAPTER 2. EVENT SOURCES

39

1

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the
message dumper function logs.

View the message dumper function logs by entering the following commands:

Example output

2.6.1.2.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

svc in http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

Conditions:
 OK TYPE AGE REASON
 ++ Ready 2m

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.eventing.samples.heartbeat
 source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
 id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
 time: 2019-10-18T15:23:20.809775386Z
 contenttype: application/json
Extensions,
 beats: true
 heart: yes
 the: 42
Data,
 {
 "id": 1,
 "label": ""
 }

$ kn source binding create bind-heartbeat \
 --namespace sinkbinding-example \
 --subject "Job:batch/v1:app=heartbeat-cron" \
 --sink http://event-display.svc.cluster.local \ 1
 --ce-override "sink=bound"

Red Hat OpenShift Serverless 1.31 Eventing

40

default sink prefixes include channel, and broker.

2.6.1.3. Creating a sink binding by using the web console

After Knative Eventing is installed on your cluster, you can create a sink binding by using the web console.
Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create an event source.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create a Knative service to use as a sink:

a. In the Developer perspective, navigate to +Add → YAML.

b. Copy the example YAML:

c. Click Create.

2. Create a CronJob resource that is used as an event source and sends an event every minute.

a. In the Developer perspective, navigate to +Add → YAML.

b. Copy the example YAML:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/showcase

apiVersion: batch/v1
kind: CronJob
metadata:
 name: heartbeat-cron
spec:
 # Run every minute
 schedule: "*/1 * * * *"
 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron

CHAPTER 2. EVENT SOURCES

41

1 Ensure that you include the bindings.knative.dev/include: true label. The default
namespace selection behavior of OpenShift Serverless uses inclusion mode.

c. Click Create.

3. Create a sink binding in the same namespace as the service created in the previous step, or any
other sink that you want to send events to.

a. In the Developer perspective, navigate to +Add → Event Source. The Event Sources page
is displayed.

b. Optional: If you have multiple providers for your event sources, select the required provider
from the Providers list to filter the available event sources from the provider.

c. Select Sink Binding and then click Create Event Source. The Create Event Source page is
displayed.

NOTE

You can configure the Sink Binding settings by using the Form view or
YAML view and can switch between the views. The data is persisted when
switching between the views.

d. In the apiVersion field enter batch/v1.

e. In the Kind field enter Job.

NOTE

The CronJob kind is not supported directly by OpenShift Serverless sink
binding, so the Kind field must target the Job objects created by the cron
job, rather than the cron job object itself.

 bindings.knative.dev/include: true 1
 spec:
 template:
 spec:
 restartPolicy: Never
 containers:
 - name: single-heartbeat
 image: quay.io/openshift-knative/heartbeats
 args:
 - --period=1
 env:
 - name: ONE_SHOT
 value: "true"
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

Red Hat OpenShift Serverless 1.31 Eventing

42

f. In the Target section, select your event sink. This can be either a Resource or a URI:

i. Select Resource to use a channel, broker, or service as an event sink for the event
source. In this example, the event-display service created in the previous step is used as
the target Resource.

ii. Select URI to specify a Uniform Resource Identifier (URI) where the events are routed
to.

g. In the Match labels section:

i. Enter app in the Name field.

ii. Enter heartbeat-cron in the Value field.

NOTE

The label selector is required when using cron jobs with sink binding,
rather than the resource name. This is because jobs created by a cron job
do not have a predictable name, and contain a randomly generated string
in their name. For example, hearthbeat-cron-1cc23f.

h. Click Create.

Verification

You can verify that the sink binding, sink, and cron job have been created and are working correctly by
viewing the Topology page and pod logs.

1. In the Developer perspective, navigate to Topology.

2. View the sink binding, sink, and heartbeats cron job.

3. Observe that successful jobs are being registered by the cron job once the sink binding is added.
This means that the sink binding is successfully reconfiguring the jobs created by the cron job.

4. Browse the event-display service to see events produced by the heartbeats cron job.

CHAPTER 2. EVENT SOURCES

43

2.6.1.4. Sink binding reference

You can use a PodSpecable object as an event source by creating a sink binding. You can configure
multiple parameters when creating a SinkBinding object.

SinkBinding objects support the following parameters:

Field Description Required or optional

apiVersion Specifies the API version, for
example
sources.knative.dev/v1.

Required

kind Identifies this resource object as a
SinkBinding object.

Required

metadata Specifies metadata that uniquely
identifies the SinkBinding
object. For example, a name.

Required

spec Specifies the configuration
information for this SinkBinding
object.

Required

spec.sink A reference to an object that
resolves to a URI to use as the
sink.

Required

Red Hat OpenShift Serverless 1.31 Eventing

44

spec.subject References the resources for
which the runtime contract is
augmented by binding
implementations.

Required

spec.ceOverrides Defines overrides to control the
output format and modifications
to the event sent to the sink.

Optional

Field Description Required or optional

2.6.1.4.1. Subject parameter

The Subject parameter references the resources for which the runtime contract is augmented by
binding implementations. You can configure multiple fields for a Subject definition.

The Subject definition supports the following fields:

Field Description Required or optional

apiVersion API version of the referent. Required

kind Kind of the referent. Required

namespace Namespace of the referent. If
omitted, this defaults to the
namespace of the object.

Optional

name Name of the referent. Do not use if you configure
selector.

selector Selector of the referents. Do not use if you configure
name.

selector.matchExpressions A list of label selector
requirements.

Only use one of either
matchExpressions or
matchLabels.

selector.matchExpressions.k
ey

The label key that the selector
applies to.

Required if using
matchExpressions.

selector.matchExpressions.o
perator

Represents a key’s relationship to
a set of values. Valid operators
are In, NotIn, Exists and
DoesNotExist.

Required if using
matchExpressions.

CHAPTER 2. EVENT SOURCES

45

selector.matchExpressions.v
alues

An array of string values. If the
operator parameter value is In
or NotIn, the values array must be
non-empty. If the operator
parameter value is Exists or
DoesNotExist, the values array
must be empty. This array is
replaced during a strategic merge
patch.

Required if using
matchExpressions.

selector.matchLabels A map of key-value pairs. Each
key-value pair in the
matchLabels map is equivalent
to an element of
matchExpressions, where the
key field is matchLabels.<key>,
the operator is In, and the
values array contains only
matchLabels.<value>.

Only use one of either
matchExpressions or
matchLabels.

Field Description Required or optional

Subject parameter examples

Given the following YAML, the Deployment object named mysubject in the default namespace is
selected:

Given the following YAML, any Job object with the label working=example in the default namespace is
selected:

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
 name: bind-heartbeat
spec:
 subject:
 apiVersion: apps/v1
 kind: Deployment
 namespace: default
 name: mysubject
 ...

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
 name: bind-heartbeat
spec:
 subject:
 apiVersion: batch/v1
 kind: Job
 namespace: default
 selector:

Red Hat OpenShift Serverless 1.31 Eventing

46

Given the following YAML, any Pod object with the label working=example or working=sample in the
default namespace is selected:

2.6.1.4.2. CloudEvent overrides

A ceOverrides definition provides overrides that control the CloudEvent’s output format and
modifications sent to the sink. You can configure multiple fields for the ceOverrides definition.

A ceOverrides definition supports the following fields:

Field Description Required or optional

extensions Specifies which attributes are
added or overridden on the
outbound event. Each
extensions key-value pair is set
independently on the event as an
attribute extension.

Optional

NOTE

Only valid CloudEvent attribute names are allowed as extensions. You cannot set the
spec defined attributes from the extensions override configuration. For example, you can
not modify the type attribute.

CloudEvent Overrides example

 matchLabels:
 working: example
 ...

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
 name: bind-heartbeat
spec:
 subject:
 apiVersion: v1
 kind: Pod
 namespace: default
 selector:
 - matchExpression:
 key: working
 operator: In
 values:
 - example
 - sample
 ...

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:

CHAPTER 2. EVENT SOURCES

47

1

2

This sets the K_CE_OVERRIDES environment variable on the subject:

Example output

2.6.1.4.3. The include label

To use a sink binding, you need to do assign the bindings.knative.dev/include: "true" label to either
the resource or the namespace that the resource is included in. If the resource definition does not
include the label, a cluster administrator can attach it to the namespace by running:

2.6.1.5. Integrating Service Mesh with a sink binding

Prerequisites

You have integrated Service Mesh with OpenShift Serverless.

Procedure

1. Create a Service in a namespace that is a member of the ServiceMeshMemberRoll.

A namespace that is a member of the ServiceMeshMemberRoll.

Injects Service Mesh sidecars into the Knative service pods.

2. Apply the Service resource.

 name: bind-heartbeat
spec:
 ...
 ceOverrides:
 extensions:
 extra: this is an extra attribute
 additional: 42

{ "extensions": { "extra": "this is an extra attribute", "additional": "42" } }

$ oc label namespace <namespace> bindings.knative.dev/include=true

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
 namespace: <namespace> 1
spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "true" 2
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 spec:
 containers:
 - image: quay.io/openshift-knative/showcase

Red Hat OpenShift Serverless 1.31 Eventing

48

1

2

3. Create a SinkBinding resource.

A namespace that is a member of the ServiceMeshMemberRoll.

In this example, any Job with the label app: heartbeat-cron is bound to the event sink.

4. Apply the SinkBinding resource.

5. Create a CronJob:

$ oc apply -f <filename>

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
 name: bind-heartbeat
 namespace: <namespace> 1
spec:
 subject:
 apiVersion: batch/v1
 kind: Job 2
 selector:
 matchLabels:
 app: heartbeat-cron

 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f <filename>

apiVersion: batch/v1
kind: CronJob
metadata:
 name: heartbeat-cron
 namespace: <namespace> 1
spec:
 # Run every minute
 schedule: "* * * * *"
 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"
 spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "true" 2
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 spec:

CHAPTER 2. EVENT SOURCES

49

1

2

A namespace that is a member of the ServiceMeshMemberRoll.

Injects Service Mesh sidecars into the CronJob pods.

6. Apply the CronJob resource.

Verification

To verify that the events were sent to the Knative event sink, look at the message dumper function logs.

1. Enter the following command:

2. Enter the following command:

Example output

 restartPolicy: Never
 containers:
 - name: single-heartbeat
 image: quay.io/openshift-knative/heartbeats:latest
 args:
 - --period=1
 env:
 - name: ONE_SHOT
 value: "true"
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

$ oc apply -f <filename>

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.eventing.samples.heartbeat
 source: https://knative.dev/eventing/test/heartbeats/#event-test/mypod
 id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
 time: 2019-10-18T15:23:20.809775386Z
 contenttype: application/json
Extensions,
 beats: true
 heart: yes
 the: 42
Data,

Red Hat OpenShift Serverless 1.31 Eventing

50

Additional resources

IntegratingService Mesh with OpenShift Serverless

2.6.2. Container source

Container sources create a container image that generates events and sends events to a sink. You can
use a container source to create a custom event source, by creating a container image and a
ContainerSource object that uses your image URI.

2.6.2.1. Guidelines for creating a container image

Two environment variables are injected by the container source controller: K_SINK and
K_CE_OVERRIDES. These variables are resolved from the sink and ceOverrides spec, respectively.
Events are sent to the sink URI specified in the K_SINK environment variable. The message must be
sent as a POST using the CloudEvent HTTP format.

Example container images

The following is an example of a heartbeats container image:

 {
 "id": 1,
 "label": ""
 }

package main

import (
 "context"
 "encoding/json"
 "flag"
 "fmt"
 "log"
 "os"
 "strconv"
 "time"

 duckv1 "knative.dev/pkg/apis/duck/v1"

 cloudevents "github.com/cloudevents/sdk-go/v2"
 "github.com/kelseyhightower/envconfig"
)

type Heartbeat struct {
 Sequence int `json:"id"`
 Label string `json:"label"`
}

var (
 eventSource string
 eventType string
 sink string
 label string
 periodStr string

CHAPTER 2. EVENT SOURCES

51

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/integrations/#serverless-ossm-setup_serverless-ossm-setup
https://cloudevents.io/

)

func init() {
 flag.StringVar(&eventSource, "eventSource", "", "the event-source (CloudEvents)")
 flag.StringVar(&eventType, "eventType", "dev.knative.eventing.samples.heartbeat", "the event-type
(CloudEvents)")
 flag.StringVar(&sink, "sink", "", "the host url to heartbeat to")
 flag.StringVar(&label, "label", "", "a special label")
 flag.StringVar(&periodStr, "period", "5", "the number of seconds between heartbeats")
}

type envConfig struct {
 // Sink URL where to send heartbeat cloud events
 Sink string `envconfig:"K_SINK"`

 // CEOverrides are the CloudEvents overrides to be applied to the outbound event.
 CEOverrides string `envconfig:"K_CE_OVERRIDES"`

 // Name of this pod.
 Name string `envconfig:"POD_NAME" required:"true"`

 // Namespace this pod exists in.
 Namespace string `envconfig:"POD_NAMESPACE" required:"true"`

 // Whether to run continuously or exit.
 OneShot bool `envconfig:"ONE_SHOT" default:"false"`
}

func main() {
 flag.Parse()

 var env envConfig
 if err := envconfig.Process("", &env); err != nil {
 log.Printf("[ERROR] Failed to process env var: %s", err)
 os.Exit(1)
 }

 if env.Sink != "" {
 sink = env.Sink
 }

 var ceOverrides *duckv1.CloudEventOverrides
 if len(env.CEOverrides) > 0 {
 overrides := duckv1.CloudEventOverrides{}
 err := json.Unmarshal([]byte(env.CEOverrides), &overrides)
 if err != nil {
 log.Printf("[ERROR] Unparseable CloudEvents overrides %s: %v", env.CEOverrides, err)
 os.Exit(1)
 }
 ceOverrides = &overrides
 }

 p, err := cloudevents.NewHTTP(cloudevents.WithTarget(sink))
 if err != nil {
 log.Fatalf("failed to create http protocol: %s", err.Error())
 }

Red Hat OpenShift Serverless 1.31 Eventing

52

 c, err := cloudevents.NewClient(p, cloudevents.WithUUIDs(), cloudevents.WithTimeNow())
 if err != nil {
 log.Fatalf("failed to create client: %s", err.Error())
 }

 var period time.Duration
 if p, err := strconv.Atoi(periodStr); err != nil {
 period = time.Duration(5) * time.Second
 } else {
 period = time.Duration(p) * time.Second
 }

 if eventSource == "" {
 eventSource = fmt.Sprintf("https://knative.dev/eventing-contrib/cmd/heartbeats/#%s/%s",
env.Namespace, env.Name)
 log.Printf("Heartbeats Source: %s", eventSource)
 }

 if len(label) > 0 && label[0] == '"' {
 label, _ = strconv.Unquote(label)
 }
 hb := &Heartbeat{
 Sequence: 0,
 Label: label,
 }
 ticker := time.NewTicker(period)
 for {
 hb.Sequence++

 event := cloudevents.NewEvent("1.0")
 event.SetType(eventType)
 event.SetSource(eventSource)
 event.SetExtension("the", 42)
 event.SetExtension("heart", "yes")
 event.SetExtension("beats", true)

 if ceOverrides != nil && ceOverrides.Extensions != nil {
 for n, v := range ceOverrides.Extensions {
 event.SetExtension(n, v)
 }
 }

 if err := event.SetData(cloudevents.ApplicationJSON, hb); err != nil {
 log.Printf("failed to set cloudevents data: %s", err.Error())
 }

 log.Printf("sending cloudevent to %s", sink)
 if res := c.Send(context.Background(), event); !cloudevents.IsACK(res) {
 log.Printf("failed to send cloudevent: %v", res)
 }

 if env.OneShot {
 return
 }

CHAPTER 2. EVENT SOURCES

53

The following is an example of a container source that references the previous heartbeats container
image:

2.6.2.2. Creating and managing container sources by using the Knative CLI

You can use the kn source container commands to create and manage container sources by using the
Knative (kn) CLI. Using the Knative CLI to create event sources provides a more streamlined and
intuitive user interface than modifying YAML files directly.

Create a container source

Delete a container source

Describe a container source

List existing container sources

 // Wait for next tick
 <-ticker.C
 }
}

apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
 name: test-heartbeats
spec:
 template:
 spec:
 containers:
 # This corresponds to a heartbeats image URI that you have built and published
 - image: gcr.io/knative-releases/knative.dev/eventing/cmd/heartbeats
 name: heartbeats
 args:
 - --period=1
 env:
 - name: POD_NAME
 value: "example-pod"
 - name: POD_NAMESPACE
 value: "event-test"
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: showcase
...

$ kn source container create <container_source_name> --image <image_uri> --sink <sink>

$ kn source container delete <container_source_name>

$ kn source container describe <container_source_name>

Red Hat OpenShift Serverless 1.31 Eventing

54

List existing container sources in YAML format

Update a container source

This command updates the image URI for an existing container source:

2.6.2.3. Creating a container source by using the web console

After Knative Eventing is installed on your cluster, you can create a container source by using the web
console. Using the OpenShift Container Platform web console provides a streamlined and intuitive user
interface to create an event source.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to +Add → Event Source. The Event Sources page is
displayed.

2. Select Container Source and then click Create Event Source. The Create Event Source page
is displayed.

3. Configure the Container Source settings by using the Form view or YAML view:

NOTE

You can switch between the Form view and YAML view. The data is persisted
when switching between the views.

a. In the Image field, enter the URI of the image that you want to run in the container created
by the container source.

b. In the Name field, enter the name of the image.

c. Optional: In the Arguments field, enter any arguments to be passed to the container.

d. Optional: In the Environment variables field, add any environment variables to set in the
container.

e. In the Target section, select your event sink. This can be either a Resource or a URI:
i. Select Resource to use a channel, broker, or service as an event sink for the event

$ kn source container list

$ kn source container list -o yaml

$ kn source container update <container_source_name> --image <image_uri>

CHAPTER 2. EVENT SOURCES

55

i. Select Resource to use a channel, broker, or service as an event sink for the event
source.

ii. Select URI to specify a Uniform Resource Identifier (URI) where the events are routed
to.

4. After you have finished configuring the container source, click Create.

2.6.2.4. Container source reference

You can use a container as an event source, by creating a ContainerSource object. You can configure
multiple parameters when creating a ContainerSource object.

ContainerSource objects support the following fields:

Field Description Required or optional

apiVersion Specifies the API version, for
example
sources.knative.dev/v1.

Required

kind Identifies this resource object as a
ContainerSource object.

Required

metadata Specifies metadata that uniquely
identifies the ContainerSource
object. For example, a name.

Required

spec Specifies the configuration
information for this
ContainerSource object.

Required

spec.sink A reference to an object that
resolves to a URI to use as the
sink.

Required

spec.template A template spec for the
ContainerSource object.

Required

spec.ceOverrides Defines overrides to control the
output format and modifications
to the event sent to the sink.

Optional

Template parameter example

apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
 name: test-heartbeats
spec:
 template:
 spec:

Red Hat OpenShift Serverless 1.31 Eventing

56

2.6.2.4.1. CloudEvent overrides

A ceOverrides definition provides overrides that control the CloudEvent’s output format and
modifications sent to the sink. You can configure multiple fields for the ceOverrides definition.

A ceOverrides definition supports the following fields:

Field Description Required or optional

extensions Specifies which attributes are
added or overridden on the
outbound event. Each
extensions key-value pair is set
independently on the event as an
attribute extension.

Optional

NOTE

Only valid CloudEvent attribute names are allowed as extensions. You cannot set the
spec defined attributes from the extensions override configuration. For example, you can
not modify the type attribute.

CloudEvent Overrides example

This sets the K_CE_OVERRIDES environment variable on the subject:

Example output

 containers:
 - image: quay.io/openshift-knative/heartbeats:latest
 name: heartbeats
 args:
 - --period=1
 env:
 - name: POD_NAME
 value: "mypod"
 - name: POD_NAMESPACE
 value: "event-test"
 ...

apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
 name: test-heartbeats
spec:
 ...
 ceOverrides:
 extensions:
 extra: this is an extra attribute
 additional: 42

{ "extensions": { "extra": "this is an extra attribute", "additional": "42" } }

CHAPTER 2. EVENT SOURCES

57

1

2

2.6.2.5. Integrating Service Mesh with ContainerSource

Prerequisites

You have integrated Service Mesh with OpenShift Serverless.

Procedure

1. Create a Service in a namespace that is a member of the ServiceMeshMemberRoll.

A namespace that is a member of the ServiceMeshMemberRoll.

Injects Service Mesh sidecars into the Knative service pods.

2. Apply the Service resource.

3. Create a ContainerSource object in a namespace that is a member of the
ServiceMeshMemberRoll and sink set to the event-display.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
 namespace: <namespace> 1
spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "true" 2
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 spec:
 containers:
 - image: quay.io/openshift-knative/showcase

$ oc apply -f <filename>

apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
 name: test-heartbeats
 namespace: <namespace> 1
spec:
 template:
 metadata: 2
 annotations:
 sidecar.istio.io/inject: "true"
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 spec:
 containers:
 - image: quay.io/openshift-knative/heartbeats:latest
 name: heartbeats
 args:
 - --period=1s

Red Hat OpenShift Serverless 1.31 Eventing

58

1

2

A namespace is part of the ServiceMeshMemberRoll.

Enables Service Mesh integration with a ContainerSource object.

4. Apply the ContainerSource resource.

Verification

To verify that the events were sent to the Knative event sink, look at the message dumper function logs.

1. Enter the following command:

2. Enter the following command:

Example output

Additional resources

 env:
 - name: POD_NAME
 value: "example-pod"
 - name: POD_NAMESPACE
 value: "event-test"
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f <filename>

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.eventing.samples.heartbeat
 source: https://knative.dev/eventing/test/heartbeats/#event-test/mypod
 id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
 time: 2019-10-18T15:23:20.809775386Z
 contenttype: application/json
Extensions,
 beats: true
 heart: yes
 the: 42
Data,
 {
 "id": 1,
 "label": ""
 }

CHAPTER 2. EVENT SOURCES

59

IntegratingService Mesh with OpenShift Serverless

2.7. CONNECTING AN EVENT SOURCE TO AN EVENT SINK BY USING
THE DEVELOPER PERSPECTIVE

When you create an event source by using the OpenShift Container Platform web console, you can
specify a target event sink that events are sent to from that source. The event sink can be any
addressable or callable resource that can receive incoming events from other resources.

2.7.1. Connect an event source to an event sink by using the Developer perspective

Prerequisites

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have logged in to the web console and are in the Developer perspective.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created an event sink, such as a Knative service, channel or broker.

Procedure

1. Create an event source of any type, by navigating to +Add → Event Source and selecting the
event source type that you want to create.

2. In the Target section of the Create Event Source form view, select your event sink. This can be
either a Resource or a URI:

a. Select Resource to use a channel, broker, or service as an event sink for the event source.

b. Select URI to specify a Uniform Resource Identifier (URI) where the events are routed to.

3. Click Create.

Verification

You can verify that the event source was created and is connected to the sink by viewing the Topology
page.

1. In the Developer perspective, navigate to Topology.

2. View the event source and click the connected event sink to see the sink details in the right
panel.

Red Hat OpenShift Serverless 1.31 Eventing

60

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/integrations/#serverless-ossm-setup_serverless-ossm-setup

1

CHAPTER 3. EVENT SINKS

3.1. EVENT SINKS

When you create an event source, you can specify an event sink where events are sent to from the
source. An event sink is an addressable or a callable resource that can receive incoming events from
other resources. Knative services, channels, and brokers are all examples of event sinks. There is also a
specific Apache Kafka sink type available.

Addressable objects receive and acknowledge an event delivered over HTTP to an address defined in
their status.address.url field. As a special case, the core Kubernetes Service object also fulfills the
addressable interface.

Callable objects are able to receive an event delivered over HTTP and transform the event, returning 0
or 1 new events in the HTTP response. These returned events may be further processed in the same
way that events from an external event source are processed.

3.1.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

svc in http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

TIP

You can configure which CRs can be used with the --sink flag for Knative (kn) CLI commands by
Customizing kn.

3.2. CREATING EVENT SINKS

When you create an event source, you can specify an event sink where events are sent to from the
source. An event sink is an addressable or a callable resource that can receive incoming events from
other resources. Knative services, channels, and brokers are all examples of event sinks. There is also a
specific Apache Kafka sink type available.

For information about creating resources that can be used as event sinks, see the following
documentation:

$ kn source binding create bind-heartbeat \
 --namespace sinkbinding-example \
 --subject "Job:batch/v1:app=heartbeat-cron" \
 --sink http://event-display.svc.cluster.local \ 1
 --ce-override "sink=bound"

CHAPTER 3. EVENT SINKS

61

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/knative_cli/#advanced-kn-config

Serverless applications

Creating brokers

Creating channels

Kafka sink

3.3. SINK FOR APACHE KAFKA

Apache Kafka sinks are a type of event sink that are available if a cluster administrator has enabled
Apache Kafka on your cluster. You can send events directly from an event source to a Kafka topic by
using a Kafka sink.

3.3.1. Creating an Apache Kafka sink by using YAML

You can create a Kafka sink that sends events to a Kafka topic. By default, a Kafka sink uses the binary
content mode, which is more efficient than the structured mode. To create a Kafka sink by using YAML,
you must create a YAML file that defines a KafkaSink object, then apply it by using the oc apply
command.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
(CR) are installed on your cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

Install the OpenShift CLI (oc).

Procedure

1. Create a KafkaSink object definition as a YAML file:

Kafka sink YAML

2. To create the Kafka sink, apply the KafkaSink YAML file:

apiVersion: eventing.knative.dev/v1alpha1
kind: KafkaSink
metadata:
 name: <sink-name>
 namespace: <namespace>
spec:
 topic: <topic-name>
 bootstrapServers:
 - <bootstrap-server>

$ oc apply -f <filename>

Red Hat OpenShift Serverless 1.31 Eventing

62

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/serving/#serverless-applications
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-using-brokers
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-creating-channels
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-kafka-developer-sink
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-event-sinks
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#knative-event-sources

1

2

3

4

3. Configure an event source so that the sink is specified in its spec:

Example of a Kafka sink connected to an API server source

The name of the event source.

The namespace of the event source.

The service account for the event source.

The Kafka sink name.

3.3.2. Creating an event sink for Apache Kafka by using the OpenShift Container
Platform web console

You can create a Kafka sink that sends events to a Kafka topic by using the Developer perspective in the
OpenShift Container Platform web console. By default, a Kafka sink uses the binary content mode, which
is more efficient than the structured mode.

As a developer, you can create an event sink to receive events from a particular source and send them to
a Kafka topic.

Prerequisites

You have installed the OpenShift Serverless Operator, with Knative Serving, Knative Eventing,
and Knative broker for Apache Kafka APIs, from the OperatorHub.

You have created a Kafka topic in your Kafka environment.

Procedure

1. In the Developer perspective, navigate to the +Add view.

2. Click Event Sink in the Eventing catalog.

3. Search for KafkaSink in the catalog items and click it.

apiVersion: sources.knative.dev/v1alpha2
kind: ApiServerSource
metadata:
 name: <source-name> 1
 namespace: <namespace> 2
spec:
 serviceAccountName: <service-account-name> 3
 mode: Resource
 resources:
 - apiVersion: v1
 kind: Event
 sink:
 ref:
 apiVersion: eventing.knative.dev/v1alpha1
 kind: KafkaSink
 name: <sink-name> 4

CHAPTER 3. EVENT SINKS

63

4. Click Create Event Sink.

5. In the form view, type the URL of the bootstrap server, which is a combination of host name and
port.

6. Type the name of the topic to send event data.

7. Type the name of the event sink.

8. Click Create.

Verification

1. In the Developer perspective, navigate to the Topology view.

2. Click the created event sink to view its details in the right panel.

3.3.3. Configuring security for Apache Kafka sinks

Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between
Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption
for the Knative broker implementation for Apache Kafka.

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use
SASL authentication on your cluster, users must provide credentials to Knative for communicating with
the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resources
(CRs) are installed on your OpenShift Container Platform cluster.

Kafka sink is enabled in the KnativeKafka CR.

You have created a project or have access to a project with the appropriate roles and

Red Hat OpenShift Serverless 1.31 Eventing

64

1

1

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have a Kafka cluster CA certificate stored as a .pem file.

You have a Kafka cluster client certificate and a key stored as .pem files.

You have installed the OpenShift (oc) CLI.

You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or
SCRAM-SHA-512.

Procedure

1. Create the certificate files as a secret in the same namespace as your KafkaSink object:

IMPORTANT

Certificates and keys must be in PEM format.

For authentication using SASL without encryption:

For authentication using SASL and encryption using TLS:

The ca.crt can be omitted to use the system’s root CA set if you are using a public
cloud managed Kafka service.

For authentication and encryption using TLS:

The ca.crt can be omitted to use the system’s root CA set if you are using a public
cloud managed Kafka service.

2. Create or modify a KafkaSink object and add a reference to your secret in the auth spec:

$ oc create secret -n <namespace> generic <secret_name> \
 --from-literal=protocol=SASL_PLAINTEXT \
 --from-literal=sasl.mechanism=<sasl_mechanism> \
 --from-literal=user=<username> \
 --from-literal=password=<password>

$ oc create secret -n <namespace> generic <secret_name> \
 --from-literal=protocol=SASL_SSL \
 --from-literal=sasl.mechanism=<sasl_mechanism> \
 --from-file=ca.crt=<my_caroot.pem_file_path> \ 1
 --from-literal=user=<username> \
 --from-literal=password=<password>

$ oc create secret -n <namespace> generic <secret_name> \
 --from-literal=protocol=SSL \
 --from-file=ca.crt=<my_caroot.pem_file_path> \ 1
 --from-file=user.crt=<my_cert.pem_file_path> \
 --from-file=user.key=<my_key.pem_file_path>

CHAPTER 3. EVENT SINKS

65

3. Apply the KafkaSink object:

apiVersion: eventing.knative.dev/v1alpha1
kind: KafkaSink
metadata:
 name: <sink_name>
 namespace: <namespace>
spec:
...
 auth:
 secret:
 ref:
 name: <secret_name>
...

$ oc apply -f <filename>

Red Hat OpenShift Serverless 1.31 Eventing

66

CHAPTER 4. BROKERS

4.1. BROKERS

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. Events are sent from an event source to a broker as an HTTP POST request. After events have
entered the broker, they can be filtered by CloudEvent attributes using triggers, and sent as an HTTP
POST request to an event sink.

4.2. BROKER TYPES

Cluster administrators can set the default broker implementation for a cluster. When you create a
broker, the default broker implementation is used, unless you provide set configurations in the Broker
object.

4.2.1. Default broker implementation for development purposes

Knative provides a default, channel-based broker implementation. This channel-based broker can be
used for development and testing purposes, but does not provide adequate event delivery guarantees
for production environments. The default broker is backed by the InMemoryChannel channel
implementation by default.

If you want to use Apache Kafka to reduce network hops, use the Knative broker implementation for
Apache Kafka. Do not configure the channel-based broker to be backed by the KafkaChannel channel
implementation.

4.2.2. Production-ready Knative broker implementation for Apache Kafka

For production-ready Knative Eventing deployments, Red Hat recommends using the Knative broker
implementation for Apache Kafka. The broker is an Apache Kafka native implementation of the Knative
broker, which sends CloudEvents directly to the Kafka instance.

The Knative broker has a native integration with Kafka for storing and routing events. This allows better
integration with Kafka for the broker and trigger model over other broker types, and reduces network
hops. Other benefits of the Knative broker implementation include:

At-least-once delivery guarantees

Ordered delivery of events, based on the CloudEvents partitioning extension

CHAPTER 4. BROKERS

67

https://github.com/cloudevents/spec/blob/v1.0/spec.md#context-attributes

Control plane high availability

A horizontally scalable data plane

The Knative broker implementation for Apache Kafka stores incoming CloudEvents as Kafka records,
using the binary content mode. This means that all CloudEvent attributes and extensions are mapped as
headers on the Kafka record, while the data spec of the CloudEvent corresponds to the value of the
Kafka record.

4.3. CREATING BROKERS

Knative provides a default, channel-based broker implementation. This channel-based broker can be
used for development and testing purposes, but does not provide adequate event delivery guarantees
for production environments.

If a cluster administrator has configured your OpenShift Serverless deployment to use Apache Kafka as
the default broker type, creating a broker by using the default settings creates a Knative broker for
Apache Kafka.

If your OpenShift Serverless deployment is not configured to use the Knative broker for Apache Kafka
as the default broker type, the channel-based broker is created when you use the default settings in the
following procedures.

4.3.1. Creating a broker by using the Knative CLI

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. Using the Knative (kn) CLI to create brokers provides a more streamlined and intuitive user
interface over modifying YAML files directly. You can use the kn broker create command to create a
broker.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a broker:

Verification

1. Use the kn command to list all existing brokers:

Example output

$ kn broker create <broker_name>

$ kn broker list

Red Hat OpenShift Serverless 1.31 Eventing

68

2. Optional: If you are using the OpenShift Container Platform web console, you can navigate to
the Topology view in the Developer perspective, and observe that the broker exists:

4.3.2. Creating a broker by annotating a trigger

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. You can create a broker by adding the eventing.knative.dev/injection: enabled annotation to a
Trigger object.

IMPORTANT

If you create a broker by using the eventing.knative.dev/injection: enabled annotation,
you cannot delete this broker without cluster administrator permissions. If you delete the
broker without having a cluster administrator remove this annotation first, the broker is
created again after deletion.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create a Trigger object as a YAML file that has the eventing.knative.dev/injection: enabled
annotation:

NAME URL AGE CONDITIONS READY
REASON
default http://broker-ingress.knative-eventing.svc.cluster.local/test/default 45s 5 OK / 5
True

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 annotations:
 eventing.knative.dev/injection: enabled

CHAPTER 4. BROKERS

69

1 Specify details about the event sink, or subscriber, that the trigger sends events to.

2. Apply the Trigger YAML file:

Verification

You can verify that the broker has been created successfully by using the oc CLI, or by observing it in
the Topology view in the web console.

1. Enter the following oc command to get the broker:

Example output

2. Optional: If you are using the OpenShift Container Platform web console, you can navigate to
the Topology view in the Developer perspective, and observe that the broker exists:

4.3.3. Creating a broker by labeling a namespace

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. You can create the default broker automatically by labelling a namespace that you own or have
write permissions for.

NOTE

 name: <trigger_name>
spec:
 broker: default
 subscriber: 1
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: <service_name>

$ oc apply -f <filename>

$ oc -n <namespace> get broker default

NAME READY REASON URL AGE
default True http://broker-ingress.knative-eventing.svc.cluster.local/test/default
3m56s

Red Hat OpenShift Serverless 1.31 Eventing

70

NOTE

Brokers created using this method are not removed if you remove the label. You must
manually delete them.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have cluster or dedicated administrator permissions if you are using Red Hat OpenShift
Service on AWS or OpenShift Dedicated.

Procedure

Label a namespace with eventing.knative.dev/injection=enabled:

Verification

You can verify that the broker has been created successfully by using the oc CLI, or by observing it in
the Topology view in the web console.

1. Use the oc command to get the broker:

Example command

Example output

2. Optional: If you are using the OpenShift Container Platform web console, you can navigate to
the Topology view in the Developer perspective, and observe that the broker exists:

$ oc label namespace <namespace> eventing.knative.dev/injection=enabled

$ oc -n <namespace> get broker <broker_name>

$ oc -n default get broker default

NAME READY REASON URL AGE
default True http://broker-ingress.knative-eventing.svc.cluster.local/test/default
3m56s

CHAPTER 4. BROKERS

71

4.3.4. Deleting a broker that was created by injection

If you create a broker by injection and later want to delete it, you must delete it manually. Brokers
created by using a namespace label or trigger annotation are not deleted permanently if you remove the
label or annotation.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

1. Remove the eventing.knative.dev/injection=enabled label from the namespace:

Removing the annotation prevents Knative from recreating the broker after you delete it.

2. Delete the broker from the selected namespace:

Verification

Use the oc command to get the broker:

Example command

Example output

4.3.5. Creating a broker by using the web console

$ oc label namespace <namespace> eventing.knative.dev/injection-

$ oc -n <namespace> delete broker <broker_name>

$ oc -n <namespace> get broker <broker_name>

$ oc -n default get broker default

No resources found.
Error from server (NotFound): brokers.eventing.knative.dev "default" not found

Red Hat OpenShift Serverless 1.31 Eventing

72

After Knative Eventing is installed on your cluster, you can create a broker by using the web console.
Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create a broker.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to +Add → Broker. The Broker page is displayed.

2. Optional. Update the Name of the broker. If you do not update the name, the generated broker
is named default.

3. Click Create.

Verification

You can verify that the broker was created by viewing broker components in the Topology page.

1. In the Developer perspective, navigate to Topology.

2. View the mt-broker-ingress, mt-broker-filter, and mt-broker-controller components.

4.3.6. Creating a broker by using the Administrator perspective

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. Events are sent from an event source to a broker as an HTTP POST request. After events have
entered the broker, they can be filtered by CloudEvent attributes using triggers, and sent as an HTTP
POST request to an event sink.

CHAPTER 4. BROKERS

73

https://github.com/cloudevents/spec/blob/v1.0/spec.md#context-attributes

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have logged in to the web console and are in the Administrator perspective.

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Serverless → Eventing.

2. In the Create list, select Broker. You will be directed to the Create Broker page.

3. Optional: Modify the YAML configuration for the broker.

4. Click Create.

4.3.7. Next steps

Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink.

4.3.8. Additional resources

Configuring the default broker class

Triggers

Connect a broker to a sink using the Developer perspective

4.4. CONFIGURING THE DEFAULT BROKER BACKING CHANNEL

If you are using a channel-based broker, you can set the default backing channel type for the broker to
either InMemoryChannel or KafkaChannel.

Red Hat OpenShift Serverless 1.31 Eventing

74

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-configuring-event-delivery-examples_serverless-event-delivery
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-global-config-broker-class-default
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-triggers
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-connect-sink-broker-odc_serverless-using-brokers-managing-brokers

1

2

3

4

Prerequisites

You have administrator permissions on OpenShift Container Platform.

You have installed the OpenShift Serverless Operator and Knative Eventing on your cluster.

You have installed the OpenShift (oc) CLI.

If you want to use Apache Kafka channels as the default backing channel type, you must also
install the KnativeKafka CR on your cluster.

Procedure

1. Modify the KnativeEventing custom resource (CR) to add configuration details for the config-
br-default-channel config map:

In spec.config, you can specify the config maps that you want to add modified
configurations for.

The default backing channel type configuration. In this example, the default channel
implementation for the cluster is KafkaChannel.

The number of partitions for the Kafka channel that backs the broker.

The replication factor for the Kafka channel that backs the broker.

2. Apply the updated KnativeEventing CR:

4.5. CONFIGURING THE DEFAULT BROKER CLASS

You can use the config-br-defaults config map to specify default broker class settings for Knative
Eventing. You can specify the default broker class for the entire cluster or for one or more namespaces.
Currently the MTChannelBasedBroker and Kafka broker types are supported.

Prerequisites

You have administrator permissions on OpenShift Container Platform.

apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 config: 1
 config-br-default-channel:
 channel-template-spec: |
 apiVersion: messaging.knative.dev/v1beta1
 kind: KafkaChannel 2
 spec:
 numPartitions: 6 3
 replicationFactor: 3 4

$ oc apply -f <filename>

CHAPTER 4. BROKERS

75

1

2

3

4

5

6

7

You have installed the OpenShift Serverless Operator and Knative Eventing on your cluster.

If you want to use the Knative broker for Apache Kafka as the default broker implementation,
you must also install the KnativeKafka CR on your cluster.

Procedure

Modify the KnativeEventing custom resource to add configuration details for the config-br-
defaults config map:

The default broker class for Knative Eventing.

In spec.config, you can specify the config maps that you want to add modified
configurations for.

The config-br-defaults config map specifies the default settings for any broker that does
not specify spec.config settings or a broker class.

The cluster-wide default broker class configuration. In this example, the default broker
class implementation for the cluster is Kafka.

The kafka-broker-config config map specifies default settings for the Kafka broker. See
"Configuring Knative broker for Apache Kafka settings" in the "Additional resources"
section.

The namespace where the kafka-broker-config config map exists.

The namespace-scoped default broker class configuration. In this example, the default
broker class implementation for the my-namespace namespace is
MTChannelBasedBroker. You can specify default broker class implementations for

apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 defaultBrokerClass: Kafka 1
 config: 2
 config-br-defaults: 3
 default-br-config: |
 clusterDefault: 4
 brokerClass: Kafka
 apiVersion: v1
 kind: ConfigMap
 name: kafka-broker-config 5
 namespace: knative-eventing 6
 namespaceDefaults: 7
 my-namespace:
 brokerClass: MTChannelBasedBroker
 apiVersion: v1
 kind: ConfigMap
 name: config-br-default-channel 8
 namespace: knative-eventing 9
...

Red Hat OpenShift Serverless 1.31 Eventing

76

8

9

multiple namespaces.

The config-br-default-channel config map specifies the default backing channel for the
broker. See "Configuring the default broker backing channel" in the "Additional resources"
section.

The namespace where the config-br-default-channel config map exists.

IMPORTANT

Configuring a namespace-specific default overrides any cluster-wide settings.

4.6. KNATIVE BROKER IMPLEMENTATION FOR APACHE KAFKA

For production-ready Knative Eventing deployments, Red Hat recommends using the Knative broker
implementation for Apache Kafka. The broker is an Apache Kafka native implementation of the Knative
broker, which sends CloudEvents directly to the Kafka instance.

The Knative broker has a native integration with Kafka for storing and routing events. This allows better
integration with Kafka for the broker and trigger model over other broker types, and reduces network
hops. Other benefits of the Knative broker implementation include:

At-least-once delivery guarantees

Ordered delivery of events, based on the CloudEvents partitioning extension

Control plane high availability

A horizontally scalable data plane

The Knative broker implementation for Apache Kafka stores incoming CloudEvents as Kafka records,
using the binary content mode. This means that all CloudEvent attributes and extensions are mapped as
headers on the Kafka record, while the data spec of the CloudEvent corresponds to the value of the
Kafka record.

4.6.1. Creating an Apache Kafka broker when it is not configured as the default
broker type

If your OpenShift Serverless deployment is not configured to use Kafka broker as the default broker
type, you can use one of the following procedures to create a Kafka-based broker.

4.6.1.1. Creating an Apache Kafka broker by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
applications declaratively and in a reproducible manner. To create a Kafka broker by using YAML, you
must create a YAML file that defines a Broker object, then apply it by using the oc apply command.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

CHAPTER 4. BROKERS

77

1

2

You have installed the OpenShift CLI (oc).

Procedure

1. Create a Kafka-based broker as a YAML file:

The broker class. If not specified, brokers use the default class as configured by cluster
administrators. To use the Kafka broker, this value must be Kafka.

The default config map for Knative brokers for Apache Kafka. This config map is created
when the Kafka broker functionality is enabled on the cluster by a cluster administrator.

2. Apply the Kafka-based broker YAML file:

4.6.1.2. Creating an Apache Kafka broker that uses an externally managed Kafka topic

If you want to use a Kafka broker without allowing it to create its own internal topic, you can use an
externally managed Kafka topic instead. To do this, you must create a Kafka Broker object that uses the
kafka.eventing.knative.dev/external.topic annotation.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your OpenShift Container Platform cluster.

You have access to a Kafka instance such as Red Hat AMQ Streams , and have created a Kafka
topic.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift CLI (oc).

Procedure

1. Create a Kafka-based broker as a YAML file:

apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
 annotations:
 eventing.knative.dev/broker.class: Kafka 1
 name: example-kafka-broker
spec:
 config:
 apiVersion: v1
 kind: ConfigMap
 name: kafka-broker-config 2
 namespace: knative-eventing

$ oc apply -f <filename>

apiVersion: eventing.knative.dev/v1

Red Hat OpenShift Serverless 1.31 Eventing

78

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/amq_streams_on_openshift_overview/kafka-concepts_str#kafka-concepts-key_str

1

2

The broker class. If not specified, brokers use the default class as configured by cluster
administrators. To use the Kafka broker, this value must be Kafka.

The name of the Kafka topic that you want to use.

2. Apply the Kafka-based broker YAML file:

4.6.1.3. Knative Broker implementation for Apache Kafka with isolated data plane

IMPORTANT

The Knative Broker implementation for Apache Kafka with isolated data plane is a
Technology Preview feature only. Technology Preview features are not supported with
Red Hat production service level agreements (SLAs) and might not be functionally
complete. Red Hat does not recommend using them in production. These features
provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Knative Broker implementation for Apache Kafka has 2 planes:

Control plane

Consists of controllers that talk to the Kubernetes API, watch for custom objects, and manage the
data plane.

Data plane

The collection of components that listen for incoming events, talk to Apache Kafka, and send events
to the event sinks. The Knative Broker implementation for Apache Kafka data plane is where events
flow. The implementation consists of kafka-broker-receiver and kafka-broker-dispatcher
deployments.

When you configure a Broker class of Kafka, the Knative Broker implementation for Apache Kafka uses
a shared data plane. This means that the kafka-broker-receiver and kafka-broker-dispatcher
deployments in the knative-eventing namespace are used for all Apache Kafka Brokers in the cluster.

However, when you configure a Broker class of KafkaNamespaced, the Apache Kafka broker controller
creates a new data plane for each namespace where a broker exists. This data plane is used by all
KafkaNamespaced brokers in that namespace. This provides isolation between the data planes, so that
the kafka-broker-receiver and kafka-broker-dispatcher deployments in the user namespace are only
used for the broker in that namespace.

IMPORTANT

kind: Broker
metadata:
 annotations:
 eventing.knative.dev/broker.class: Kafka 1
 kafka.eventing.knative.dev/external.topic: <topic_name> 2
...

$ oc apply -f <filename>

CHAPTER 4. BROKERS

79

https://access.redhat.com/support/offerings/techpreview/

IMPORTANT

As a consequence of having separate data planes, this security feature creates more
deployments and uses more resources. Unless you have such isolation requirements, use
a regular Broker with a class of Kafka.

4.6.1.4. Creating a Knative broker for Apache Kafka that uses an isolated data plane

IMPORTANT

The Knative Broker implementation for Apache Kafka with isolated data plane is a
Technology Preview feature only. Technology Preview features are not supported with
Red Hat production service level agreements (SLAs) and might not be functionally
complete. Red Hat does not recommend using them in production. These features
provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

To create a KafkaNamespaced broker, you must set the eventing.knative.dev/broker.class
annotation to KafkaNamespaced.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your OpenShift Container Platform cluster.

You have access to an Apache Kafka instance, such as Red Hat AMQ Streams , and have created
a Kafka topic.

You have created a project, or have access to a project, with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift CLI (oc).

Procedure

1. Create an Apache Kafka-based broker by using a YAML file:

apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
 annotations:
 eventing.knative.dev/broker.class: KafkaNamespaced 1
 name: default
 namespace: my-namespace 2
spec:
 config:
 apiVersion: v1
 kind: ConfigMap
 name: my-config 3
...

Red Hat OpenShift Serverless 1.31 Eventing

80

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/amq_streams_on_openshift_overview/kafka-concepts_str#kafka-concepts-key_str

1

2 3

To use the Apache Kafka broker with isolated data planes, the broker class value must be
KafkaNamespaced.

The referenced ConfigMap object my-config must be in the same namespace as the
Broker object, in this case my-namespace.

2. Apply the Apache Kafka-based broker YAML file:

IMPORTANT

The ConfigMap object in spec.config must be in the same namespace as the Broker
object:

After the creation of the first Broker object with the KafkaNamespaced class, the kafka-broker-
receiver and kafka-broker-dispatcher deployments are created in the namespace. Subsequently, all
brokers with the KafkaNamespaced class in the same namespace will use the same data plane. If no
brokers with the KafkaNamespaced class exist in the namespace, the data plane in the namespace is
deleted.

4.6.2. Configuring Apache Kafka broker settings

You can configure the replication factor, bootstrap servers, and the number of topic partitions for a
Kafka broker, by creating a config map and referencing this config map in the Kafka Broker object.

Prerequisites

You have cluster or dedicated administrator permissions on OpenShift Container Platform.

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
(CR) are installed on your OpenShift Container Platform cluster.

You have created a project or have access to a project that has the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift CLI (oc).

Procedure

1. Modify the kafka-broker-config config map, or create your own config map that contains the
following configuration:

$ oc apply -f <filename>

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-config
 namespace: my-namespace
data:
 ...

apiVersion: v1
kind: ConfigMap

CHAPTER 4. BROKERS

81

1

2

3

4

5

The config map name.

The namespace where the config map exists.

The number of topic partitions for the Kafka broker. This controls how quickly events can
be sent to the broker. A higher number of partitions requires greater compute resources.

The replication factor of topic messages. This prevents against data loss. A higher
replication factor requires greater compute resources and more storage.

A comma separated list of bootstrap servers. This can be inside or outside of the
OpenShift Container Platform cluster, and is a list of Kafka clusters that the broker
receives events from and sends events to.

IMPORTANT

The default.topic.replication.factor value must be less than or equal to the
number of Kafka broker instances in your cluster. For example, if you only have
one Kafka broker, the default.topic.replication.factor value should not be more
than "1".

Example Kafka broker config map

2. Apply the config map:

3. Specify the config map for the Kafka Broker object:

Example Broker object

metadata:
 name: <config_map_name> 1
 namespace: <namespace> 2
data:
 default.topic.partitions: <integer> 3
 default.topic.replication.factor: <integer> 4
 bootstrap.servers: <list_of_servers> 5

apiVersion: v1
kind: ConfigMap
metadata:
 name: kafka-broker-config
 namespace: knative-eventing
data:
 default.topic.partitions: "10"
 default.topic.replication.factor: "3"
 bootstrap.servers: "my-cluster-kafka-bootstrap.kafka:9092"

$ oc apply -f <config_map_filename>

apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:

Red Hat OpenShift Serverless 1.31 Eventing

82

1

2

3

4

5

The broker name.

The namespace where the broker exists.

The broker class annotation. In this example, the broker is a Kafka broker that uses the
class value Kafka.

The config map name.

The namespace where the config map exists.

4. Apply the broker:

4.6.3. Security configuration for the Knative broker implementation for Apache
Kafka

Kafka clusters are generally secured by using the TLS or SASL authentication methods. You can
configure a Kafka broker or channel to work against a protected Red Hat AMQ Streams cluster by using
TLS or SASL.

NOTE

Red Hat recommends that you enable both SASL and TLS together.

4.6.3.1. Configuring TLS authentication for Apache Kafka brokers

Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between
Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption
for the Knative broker implementation for Apache Kafka.

Prerequisites

You have cluster or dedicated administrator permissions on OpenShift Container Platform.

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

 name: <broker_name> 1
 namespace: <namespace> 2
 annotations:
 eventing.knative.dev/broker.class: Kafka 3
spec:
 config:
 apiVersion: v1
 kind: ConfigMap
 name: <config_map_name> 4
 namespace: <namespace> 5
...

$ oc apply -f <broker_filename>

CHAPTER 4. BROKERS

83

You have a Kafka cluster CA certificate stored as a .pem file.

You have a Kafka cluster client certificate and a key stored as .pem files.

Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as a secret in the knative-eventing namespace:

IMPORTANT

Use the key names ca.crt, user.crt, and user.key. Do not change them.

2. Edit the KnativeKafka CR and add a reference to your secret in the broker spec:

4.6.3.2. Configuring SASL authentication for Apache Kafka brokers

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use
SASL authentication on your cluster, users must provide credentials to Knative for communicating with
the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

You have cluster or dedicated administrator permissions on OpenShift Container Platform.

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have a username and password for a Kafka cluster.

You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or
SCRAM-SHA-512.

$ oc create secret -n knative-eventing generic <secret_name> \
 --from-literal=protocol=SSL \
 --from-file=ca.crt=caroot.pem \
 --from-file=user.crt=certificate.pem \
 --from-file=user.key=key.pem

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 broker:
 enabled: true
 defaultConfig:
 authSecretName: <secret_name>
...

Red Hat OpenShift Serverless 1.31 Eventing

84

If TLS is enabled, you also need the ca.crt certificate file for the Kafka cluster.

Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as a secret in the knative-eventing namespace:

Use the key names ca.crt, password, and sasl.mechanism. Do not change them.

If you want to use SASL with public CA certificates, you must use the tls.enabled=true flag,
rather than the ca.crt argument, when creating the secret. For example:

2. Edit the KnativeKafka CR and add a reference to your secret in the broker spec:

4.6.4. Additional resources

Red Hat AMQ Streams documentation

TLS and SASL on Kafka

4.7. MANAGING BROKERS

After you have created a broker, you can manage your broker by using Knative (kn) CLI commands, or by
modifying it in the OpenShift Container Platform web console.

4.7.1. Managing brokers using the CLI

The Knative (kn) CLI provides commands that can be used to describe and list existing brokers.

$ oc create secret -n knative-eventing generic <secret_name> \
 --from-literal=protocol=SASL_SSL \
 --from-literal=sasl.mechanism=<sasl_mechanism> \
 --from-file=ca.crt=caroot.pem \
 --from-literal=password="SecretPassword" \
 --from-literal=user="my-sasl-user"

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-literal=tls.enabled=true \
 --from-literal=password="SecretPassword" \
 --from-literal=saslType="SCRAM-SHA-512" \
 --from-literal=user="my-sasl-user"

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 broker:
 enabled: true
 defaultConfig:
 authSecretName: <secret_name>
...

CHAPTER 4. BROKERS

85

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/amq_streams_on_openshift_overview/kafka-concepts_str#kafka-concepts-key_str
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/using_amq_streams_on_rhel/index#assembly-kafka-encryption-and-authentication-str

4.7.1.1. Listing existing brokers by using the Knative CLI

Using the Knative (kn) CLI to list brokers provides a streamlined and intuitive user interface. You can
use the kn broker list command to list existing brokers in your cluster by using the Knative CLI.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

Procedure

List all existing brokers:

Example output

4.7.1.2. Describing an existing broker by using the Knative CLI

Using the Knative (kn) CLI to describe brokers provides a streamlined and intuitive user interface. You
can use the kn broker describe command to print information about existing brokers in your cluster by
using the Knative CLI.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

Procedure

Describe an existing broker:

Example command using default broker

Example output

$ kn broker list

NAME URL AGE CONDITIONS READY
REASON
default http://broker-ingress.knative-eventing.svc.cluster.local/test/default 45s 5 OK / 5
True

$ kn broker describe <broker_name>

$ kn broker describe default

Name: default
Namespace: default
Annotations: eventing.knative.dev/broker.class=MTChannelBasedBroker,

Red Hat OpenShift Serverless 1.31 Eventing

86

4.7.2. Connect a broker to a sink using the Developer perspective

You can connect a broker to an event sink in the OpenShift Container Platform Developer perspective
by creating a trigger.

Prerequisites

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have logged in to the web console and are in the Developer perspective.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created a sink, such as a Knative service or channel.

You have created a broker.

Procedure

1. In the Topology view, point to the broker that you have created. An arrow appears. Drag the
arrow to the sink that you want to connect to the broker. This action opens the Add Trigger
dialog box.

2. In the Add Trigger dialog box, enter a name for the trigger and click Add.

Verification

You can verify that the broker is connected to the sink by viewing the Topology page.

1. In the Developer perspective, navigate to Topology.

2. Click the line that connects the broker to the sink to see details about the trigger in the Details
panel.

eventing.knative.dev/creato ...
Age: 22s

Address:
 URL: http://broker-ingress.knative-eventing.svc.cluster.local/default/default

Conditions:
 OK TYPE AGE REASON
 ++ Ready 22s
 ++ Addressable 22s
 ++ FilterReady 22s
 ++ IngressReady 22s
 ++ TriggerChannelReady 22s

CHAPTER 4. BROKERS

87

CHAPTER 5. TRIGGERS

5.1. TRIGGERS OVERVIEW

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. Events are sent from an event source to a broker as an HTTP POST request. After events have
entered the broker, they can be filtered by CloudEvent attributes using triggers, and sent as an HTTP
POST request to an event sink.

If you are using a Knative broker for Apache Kafka, you can configure the delivery order of events from
triggers to event sinks. See Configuring event delivery ordering for triggers .

5.1.1. Configuring event delivery ordering for triggers

If you are using a Kafka broker, you can configure the delivery order of events from triggers to event
sinks.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and Knative Kafka are installed on your
OpenShift Container Platform cluster.

Kafka broker is enabled for use on your cluster, and you have created a Kafka broker.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift (oc) CLI.

Procedure

1. Create or modify a Trigger object and set the kafka.eventing.knative.dev/delivery.order
annotation:

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 name: <trigger_name>

Red Hat OpenShift Serverless 1.31 Eventing

88

https://github.com/cloudevents/spec/blob/v1.0/spec.md#context-attributes
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#trigger-event-delivery-config_serverless-triggers

The supported consumer delivery guarantees are:

unordered

An unordered consumer is a non-blocking consumer that delivers messages unordered, while
preserving proper offset management.

ordered

An ordered consumer is a per-partition blocking consumer that waits for a successful
response from the CloudEvent subscriber before it delivers the next message of the
partition.
The default ordering guarantee is unordered.

2. Apply the Trigger object:

5.1.2. Next steps

Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink.

5.2. CREATING TRIGGERS

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. Events are sent from an event source to a broker as an HTTP POST request. After events have
entered the broker, they can be filtered by CloudEvent attributes using triggers, and sent as an HTTP
POST request to an event sink.

5.2.1. Creating a trigger by using the Administrator perspective

Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create a trigger. After Knative Eventing is installed on your cluster and you have created a broker, you
can create a trigger by using the web console.

 annotations:
 kafka.eventing.knative.dev/delivery.order: ordered
...

$ oc apply -f <filename>

CHAPTER 5. TRIGGERS

89

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-configuring-event-delivery-examples_serverless-event-delivery
https://github.com/cloudevents/spec/blob/v1.0/spec.md#context-attributes

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have logged in to the web console and are in the Administrator perspective.

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

You have created a Knative broker.

You have created a Knative service to use as a subscriber.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Serverless → Eventing.

2. In the Broker tab, select the Options menu for the broker that you want to add a trigger
to.

3. Click Add Trigger in the list.

4. In the Add Trigger dialogue box, select a Subscriber for the trigger. The subscriber is the
Knative service that will receive events from the broker.

5. Click Add.

5.2.2. Creating a trigger by using the Developer perspective

Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create a trigger. After Knative Eventing is installed on your cluster and you have created a broker, you
can create a trigger by using the web console.

Prerequisites

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have logged in to the web console.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created a broker and a Knative service or other event sink to connect to the trigger.

Procedure

1. In the Developer perspective, navigate to the Topology page.

2. Hover over the broker that you want to create a trigger for, and drag the arrow. The Add
Trigger option is displayed.

Red Hat OpenShift Serverless 1.31 Eventing

90

3. Click Add Trigger.

4. Select your sink in the Subscriber list.

5. Click Add.

Verification

After the subscription has been created, you can view it in the Topology page, where it is
represented as a line that connects the broker to the event sink.

Deleting a trigger

1. In the Developer perspective, navigate to the Topology page.

2. Click on the trigger that you want to delete.

3. In the Actions context menu, select Delete Trigger.

5.2.3. Creating a trigger by using the Knative CLI

You can use the kn trigger create command to create a trigger.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a trigger:

Alternatively, you can create a trigger and simultaneously create the default broker using broker
injection:

By default, triggers forward all events sent to a broker to sinks that are subscribed to that
broker. Using the --filter attribute for triggers allows you to filter events from a broker, so that
subscribers will only receive a subset of events based on your defined criteria.

5.3. LIST TRIGGERS FROM THE COMMAND LINE

Using the Knative (kn) CLI to list triggers provides a streamlined and intuitive user interface.

$ kn trigger create <trigger_name> --broker <broker_name> --filter <key=value> --sink
<sink_name>

$ kn trigger create <trigger_name> --inject-broker --filter <key=value> --sink <sink_name>

CHAPTER 5. TRIGGERS

91

5.3.1. Listing triggers by using the Knative CLI

You can use the kn trigger list command to list existing triggers in your cluster.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

Procedure

1. Print a list of available triggers:

Example output

2. Optional: Print a list of triggers in JSON format:

5.4. DESCRIBE TRIGGERS FROM THE COMMAND LINE

Using the Knative (kn) CLI to describe triggers provides a streamlined and intuitive user interface.

5.4.1. Describing a trigger by using the Knative CLI

You can use the kn trigger describe command to print information about existing triggers in your
cluster by using the Knative CLI.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

You have created a trigger.

Procedure

Enter the command:

Example output

$ kn trigger list

NAME BROKER SINK AGE CONDITIONS READY REASON
email default ksvc:edisplay 4s 5 OK / 5 True
ping default ksvc:edisplay 32s 5 OK / 5 True

$ kn trigger list -o json

$ kn trigger describe <trigger_name>

Red Hat OpenShift Serverless 1.31 Eventing

92

1

2

5.5. CONNECTING A TRIGGER TO A SINK

You can connect a trigger to a sink, so that events from a broker are filtered before they are sent to the
sink. A sink that is connected to a trigger is configured as a subscriber in the Trigger object’s resource
spec.

Example of a Trigger object connected to an Apache Kafka sink

The name of the trigger being connected to the sink.

The name of a KafkaSink object.

5.6. FILTERING TRIGGERS FROM THE COMMAND LINE

Using the Knative (kn) CLI to filter events by using triggers provides a streamlined and intuitive user
interface. You can use the kn trigger create command, along with the appropriate flags, to filter events
by using triggers.

Name: ping
Namespace: default
Labels: eventing.knative.dev/broker=default
Annotations: eventing.knative.dev/creator=kube:admin,
eventing.knative.dev/lastModifier=kube:admin
Age: 2m
Broker: default
Filter:
 type: dev.knative.event

Sink:
 Name: edisplay
 Namespace: default
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 2m
 ++ BrokerReady 2m
 ++ DependencyReady 2m
 ++ Subscribed 2m
 ++ SubscriberResolved 2m

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 name: <trigger_name> 1
spec:
...
 subscriber:
 ref:
 apiVersion: eventing.knative.dev/v1alpha1
 kind: KafkaSink
 name: <kafka_sink_name> 2

CHAPTER 5. TRIGGERS

93

5.6.1. Filtering events with triggers by using the Knative CLI

In the following trigger example, only events with the attribute type: dev.knative.samples.helloworld
are sent to the event sink:

You can also filter events by using multiple attributes. The following example shows how to filter events
using the type, source, and extension attributes:

5.7. UPDATING TRIGGERS FROM THE COMMAND LINE

Using the Knative (kn) CLI to update triggers provides a streamlined and intuitive user interface.

5.7.1. Updating a trigger by using the Knative CLI

You can use the kn trigger update command with certain flags to update attributes for a trigger.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Update a trigger:

You can update a trigger to filter exact event attributes that match incoming events. For
example, using the type attribute:

You can remove a filter attribute from a trigger. For example, you can remove the filter
attribute with key type:

You can use the --sink parameter to change the event sink of a trigger:

$ kn trigger create <trigger_name> --broker <broker_name> --filter
type=dev.knative.samples.helloworld --sink ksvc:<service_name>

$ kn trigger create <trigger_name> --broker <broker_name> --sink ksvc:<service_name> \
--filter type=dev.knative.samples.helloworld \
--filter source=dev.knative.samples/helloworldsource \
--filter myextension=my-extension-value

$ kn trigger update <trigger_name> --filter <key=value> --sink <sink_name> [flags]

$ kn trigger update <trigger_name> --filter type=knative.dev.event

$ kn trigger update <trigger_name> --filter type-

$ kn trigger update <trigger_name> --sink ksvc:my-event-sink

Red Hat OpenShift Serverless 1.31 Eventing

94

5.8. DELETING TRIGGERS FROM THE COMMAND LINE

Using the Knative (kn) CLI to delete a trigger provides a streamlined and intuitive user interface.

5.8.1. Deleting a trigger by using the Knative CLI

You can use the kn trigger delete command to delete a trigger.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Delete a trigger:

Verification

1. List existing triggers:

2. Verify that the trigger no longer exists:

Example output

$ kn trigger delete <trigger_name>

$ kn trigger list

No triggers found.

CHAPTER 5. TRIGGERS

95

CHAPTER 6. CHANNELS

6.1. CHANNELS AND SUBSCRIPTIONS

Channels are custom resources that define a single event-forwarding and persistence layer. After
events have been sent to a channel from an event source or producer, these events can be sent to
multiple Knative services or other sinks by using a subscription.

You can create channels by instantiating a supported Channel object, and configure re-delivery
attempts by modifying the delivery spec in a Subscription object.

After you create a Channel object, a mutating admission webhook adds a set of spec.channelTemplate
properties for the Channel object based on the default channel implementation. For example, for an
InMemoryChannel default implementation, the Channel object looks as follows:

The channel controller then creates the backing channel instance based on the spec.channelTemplate
configuration.

NOTE

The spec.channelTemplate properties cannot be changed after creation, because they
are set by the default channel mechanism rather than by the user.

When this mechanism is used with the preceding example, two objects are created: a generic backing
channel and an InMemoryChannel channel. If you are using a different default channel implementation,
the InMemoryChannel is replaced with one that is specific to your implementation. For example, with
the Knative broker for Apache Kafka, the KafkaChannel channel is created.

The backing channel acts as a proxy that copies its subscriptions to the user-created channel object,
and sets the user-created channel object status to reflect the status of the backing channel.

apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
 name: example-channel
 namespace: default
spec:
 channelTemplate:
 apiVersion: messaging.knative.dev/v1
 kind: InMemoryChannel

Red Hat OpenShift Serverless 1.31 Eventing

96

6.1.1. Channel implementation types

InMemoryChannel and KafkaChannel channel implementations can be used with OpenShift Serverless
for development use.

The following are limitations of InMemoryChannel type channels:

No event persistence is available. If a pod goes down, events on that pod are lost.

InMemoryChannel channels do not implement event ordering, so two events that are received
in the channel at the same time can be delivered to a subscriber in any order.

If a subscriber rejects an event, there are no re-delivery attempts by default. You can configure
re-delivery attempts by modifying the delivery spec in the Subscription object.

6.2. CREATING CHANNELS

Channels are custom resources that define a single event-forwarding and persistence layer. After
events have been sent to a channel from an event source or producer, these events can be sent to
multiple Knative services or other sinks by using a subscription.

You can create channels by instantiating a supported Channel object, and configure re-delivery
attempts by modifying the delivery spec in a Subscription object.

6.2.1. Creating a channel by using the Administrator perspective

After Knative Eventing is installed on your cluster, you can create a channel by using the Administrator
perspective.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have logged in to the web console and are in the Administrator perspective.

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

Procedure

CHAPTER 6. CHANNELS

97

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Serverless → Eventing.

2. In the Create list, select Channel. You will be directed to the Channel page.

3. Select the type of Channel object that you want to create in the Type list.

NOTE

Currently only InMemoryChannel channel objects are supported by default.
Knative channels for Apache Kafka are available if you have installed the Knative
broker implementation for Apache Kafka on OpenShift Serverless.

4. Click Create.

6.2.2. Creating a channel by using the Developer perspective

Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create a channel. After Knative Eventing is installed on your cluster, you can create a channel by using
the web console.

Prerequisites

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to +Add → Channel.

2. Select the type of Channel object that you want to create in the Type list.

3. Click Create.

Verification

Confirm that the channel now exists by navigating to the Topology page.

6.2.3. Creating a channel by using the Knative CLI

Red Hat OpenShift Serverless 1.31 Eventing

98

Using the Knative (kn) CLI to create channels provides a more streamlined and intuitive user interface
than modifying YAML files directly. You can use the kn channel create command to create a channel.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a channel:

The channel type is optional, but where specified, must be given in the format
Group:Version:Kind. For example, you can create an InMemoryChannel object:

Example output

Verification

To confirm that the channel now exists, list the existing channels and inspect the output:

Example output

Deleting a channel

Delete a channel:

6.2.4. Creating a default implementation channel by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
channels declaratively and in a reproducible manner. To create a serverless channel by using YAML, you
must create a YAML file that defines a Channel object, then apply it by using the oc apply command.

$ kn channel create <channel_name> --type <channel_type>

$ kn channel create mychannel --type messaging.knative.dev:v1:InMemoryChannel

Channel 'mychannel' created in namespace 'default'.

$ kn channel list

kn channel list
NAME TYPE URL AGE READY REASON
mychannel InMemoryChannel http://mychannel-kn-channel.default.svc.cluster.local 93s
True

$ kn channel delete <channel_name>

CHAPTER 6. CHANNELS

99

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create a Channel object as a YAML file:

2. Apply the YAML file:

6.2.5. Creating a channel for Apache Kafka by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
channels declaratively and in a reproducible manner. You can create a Knative Eventing channel that is
backed by Kafka topics by creating a Kafka channel. To create a Kafka channel by using YAML, you must
create a YAML file that defines a KafkaChannel object, then apply it by using the oc apply command.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create a KafkaChannel object as a YAML file:

IMPORTANT

apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
 name: example-channel
 namespace: default

$ oc apply -f <filename>

apiVersion: messaging.knative.dev/v1beta1
kind: KafkaChannel
metadata:
 name: example-channel
 namespace: default
spec:
 numPartitions: 3
 replicationFactor: 1

Red Hat OpenShift Serverless 1.31 Eventing

100

IMPORTANT

Only the v1beta1 version of the API for KafkaChannel objects on OpenShift
Serverless is supported. Do not use the v1alpha1 version of this API, as this
version is now deprecated.

2. Apply the KafkaChannel YAML file:

6.2.6. Next steps

After you have created a channel, you can connect the channel to a sink so that the sink can
receive events.

Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink.

6.3. CONNECTING CHANNELS TO SINKS

Events that have been sent to a channel from an event source or producer can be forwarded to one or
more sinks by using subscriptions. You can create subscriptions by configuring a Subscription object,
which specifies the channel and the sink (also known as a subscriber) that consumes the events sent to
that channel.

6.3.1. Creating a subscription by using the Developer perspective

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Using the OpenShift Container Platform web console provides a streamlined and intuitive user
interface to create a subscription.

Prerequisites

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have logged in to the web console.

You have created an event sink, such as a Knative service, and a channel.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to the Topology page.

2. Create a subscription using one of the following methods:

a. Hover over the channel that you want to create a subscription for, and drag the arrow. The
Add Subscription option is displayed.

$ oc apply -f <filename>

CHAPTER 6. CHANNELS

101

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#connecting-channels-sinks
https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-configuring-event-delivery-examples_serverless-event-delivery

i. Select your sink in the Subscriber list.

ii. Click Add.

b. If the service is available in the Topology view under the same namespace or project as the
channel, click on the channel that you want to create a subscription for, and drag the arrow
directly to a service to immediately create a subscription from the channel to that service.

Verification

After the subscription has been created, you can see it represented as a line that connects the
channel to the service in the Topology view:

6.3.2. Creating a subscription by using YAML

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Creating Knative resources by using YAML files uses a declarative API, which enables you to
describe subscriptions declaratively and in a reproducible manner. To create a subscription by using
YAML, you must create a YAML file that defines a Subscription object, then apply it by using the oc
apply command.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

Red Hat OpenShift Serverless 1.31 Eventing

102

1

2

3

4

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a Subscription object:

Create a YAML file and copy the following sample code into it:

Name of the subscription.

Configuration settings for the channel that the subscription connects to.

Configuration settings for event delivery. This tells the subscription what happens to
events that cannot be delivered to the subscriber. When this is configured, events that
failed to be consumed are sent to the deadLetterSink. The event is dropped, no re-
delivery of the event is attempted, and an error is logged in the system. The
deadLetterSink value must be a Destination.

Configuration settings for the subscriber. This is the event sink that events are
delivered to from the channel.

Apply the YAML file:

6.3.3. Creating a subscription by using the Knative CLI

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Using the Knative (kn) CLI to create subscriptions provides a more streamlined and intuitive

apiVersion: messaging.knative.dev/v1beta1
kind: Subscription
metadata:
 name: my-subscription 1
 namespace: default
spec:
 channel: 2
 apiVersion: messaging.knative.dev/v1beta1
 kind: Channel
 name: example-channel
 delivery: 3
 deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: error-handler
 subscriber: 4
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f <filename>

CHAPTER 6. CHANNELS

103

https://pkg.go.dev/knative.dev/pkg/apis/duck/v1?tab=doc#Destination

1

2

3

user interface than modifying YAML files directly. You can use the kn subscription create command
with the appropriate flags to create a subscription.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a subscription to connect a sink to a channel:

--channel specifies the source for cloud events that should be processed. You must
provide the channel name. If you are not using the default InMemoryChannel channel that
is backed by the Channel custom resource, you must prefix the channel name with the
<group:version:kind> for the specified channel type. For example, this will be
messaging.knative.dev:v1beta1:KafkaChannel for an Apache Kafka backed channel.

--sink specifies the target destination to which the event should be delivered. By default,
the <sink_name> is interpreted as a Knative service of this name, in the same namespace
as the subscription. You can specify the type of the sink by using one of the following
prefixes:

ksvc
A Knative service.

channel
A channel that should be used as destination. Only default channel types can be
referenced here.

broker
An Eventing broker.

Optional: --sink-dead-letter is an optional flag that can be used to specify a sink which
events should be sent to in cases where events fail to be delivered. For more information,
see the OpenShift Serverless Event delivery documentation.

Example command

Example output

$ kn subscription create <subscription_name> \
 --channel <group:version:kind>:<channel_name> \ 1
 --sink <sink_prefix>:<sink_name> \ 2
 --sink-dead-letter <sink_prefix>:<sink_name> 3

$ kn subscription create mysubscription --channel mychannel --sink ksvc:event-display

Subscription 'mysubscription' created in namespace 'default'.

Red Hat OpenShift Serverless 1.31 Eventing

104

Verification

To confirm that the channel is connected to the event sink, or subscriber, by a subscription, list
the existing subscriptions and inspect the output:

Example output

Deleting a subscription

Delete a subscription:

6.3.4. Creating a subscription by using the Administrator perspective

After you have created a channel and an event sink, also known as a subscriber, you can create a
subscription to enable event delivery. Subscriptions are created by configuring a Subscription object,
which specifies the channel and the subscriber to deliver events to. You can also specify some
subscriber-specific options, such as how to handle failures.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have logged in to the web console and are in the Administrator perspective.

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

You have created a Knative channel.

You have created a Knative service to use as a subscriber.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Serverless → Eventing.

2. In the Channel tab, select the Options menu for the channel that you want to add a
subscription to.

3. Click Add Subscription in the list.

4. In the Add Subscription dialogue box, select a Subscriber for the subscription. The subscriber

$ kn subscription list

NAME CHANNEL SUBSCRIBER REPLY DEAD LETTER SINK
READY REASON
mysubscription Channel:mychannel ksvc:event-display True

$ kn subscription delete <subscription_name>

CHAPTER 6. CHANNELS

105

4. In the Add Subscription dialogue box, select a Subscriber for the subscription. The subscriber
is the Knative service that receives events from the channel.

5. Click Add.

6.3.5. Next steps

Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink.

6.4. DEFAULT CHANNEL IMPLEMENTATION

You can use the default-ch-webhook config map to specify the default channel implementation of
Knative Eventing. You can specify the default channel implementation for the entire cluster or for one
or more namespaces. Currently the InMemoryChannel and KafkaChannel channel types are
supported.

6.4.1. Configuring the default channel implementation

Prerequisites

You have administrator permissions on OpenShift Container Platform.

You have installed the OpenShift Serverless Operator and Knative Eventing on your cluster.

If you want to use Knative channels for Apache Kafka as the default channel implementation,
you must also install the KnativeKafka CR on your cluster.

Procedure

Modify the KnativeEventing custom resource to add configuration details for the default-ch-
webhook config map:

apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 config: 1
 default-ch-webhook: 2
 default-ch-config: |
 clusterDefault: 3
 apiVersion: messaging.knative.dev/v1
 kind: InMemoryChannel
 spec:
 delivery:
 backoffDelay: PT0.5S
 backoffPolicy: exponential
 retry: 5
 namespaceDefaults: 4
 my-namespace:
 apiVersion: messaging.knative.dev/v1beta1
 kind: KafkaChannel

Red Hat OpenShift Serverless 1.31 Eventing

106

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-configuring-event-delivery-examples_serverless-event-delivery

1

2

3

4

In spec.config, you can specify the config maps that you want to add modified
configurations for.

The default-ch-webhook config map can be used to specify the default channel
implementation for the cluster or for one or more namespaces.

The cluster-wide default channel type configuration. In this example, the default channel
implementation for the cluster is InMemoryChannel.

The namespace-scoped default channel type configuration. In this example, the default
channel implementation for the my-namespace namespace is KafkaChannel.

IMPORTANT

Configuring a namespace-specific default overrides any cluster-wide settings.

6.5. SECURITY CONFIGURATION FOR CHANNELS

6.5.1. Configuring TLS authentication for Knative channels for Apache Kafka

Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between
Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption
for the Knative broker implementation for Apache Kafka.

Prerequisites

You have cluster or dedicated administrator permissions on OpenShift Container Platform.

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have a Kafka cluster CA certificate stored as a .pem file.

You have a Kafka cluster client certificate and a key stored as .pem files.

Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as secrets in your chosen namespace:

IMPORTANT

 spec:
 numPartitions: 1
 replicationFactor: 1

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-file=ca.crt=caroot.pem \
 --from-file=user.crt=certificate.pem \
 --from-file=user.key=key.pem

CHAPTER 6. CHANNELS

107

IMPORTANT

Use the key names ca.crt, user.crt, and user.key. Do not change them.

2. Start editing the KnativeKafka custom resource:

3. Reference your secret and the namespace of the secret:

NOTE

Make sure to specify the matching port in the bootstrap server.

For example:

6.5.2. Configuring SASL authentication for Knative channels for Apache Kafka

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use
SASL authentication on your cluster, users must provide credentials to Knative for communicating with
the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

You have cluster or dedicated administrator permissions on OpenShift Container Platform.

$ oc edit knativekafka

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 channel:
 authSecretName: <kafka_auth_secret>
 authSecretNamespace: <kafka_auth_secret_namespace>
 bootstrapServers: <bootstrap_servers>
 enabled: true
 source:
 enabled: true

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 channel:
 authSecretName: tls-user
 authSecretNamespace: kafka
 bootstrapServers: eventing-kafka-bootstrap.kafka.svc:9094
 enabled: true
 source:
 enabled: true

Red Hat OpenShift Serverless 1.31 Eventing

108

The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have a username and password for a Kafka cluster.

You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or
SCRAM-SHA-512.

If TLS is enabled, you also need the ca.crt certificate file for the Kafka cluster.

Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as secrets in your chosen namespace:

Use the key names ca.crt, password, and sasl.mechanism. Do not change them.

If you want to use SASL with public CA certificates, you must use the tls.enabled=true flag,
rather than the ca.crt argument, when creating the secret. For example:

2. Start editing the KnativeKafka custom resource:

3. Reference your secret and the namespace of the secret:

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-file=ca.crt=caroot.pem \
 --from-literal=password="SecretPassword" \
 --from-literal=saslType="SCRAM-SHA-512" \
 --from-literal=user="my-sasl-user"

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
 --from-literal=tls.enabled=true \
 --from-literal=password="SecretPassword" \
 --from-literal=saslType="SCRAM-SHA-512" \
 --from-literal=user="my-sasl-user"

$ oc edit knativekafka

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 channel:
 authSecretName: <kafka_auth_secret>
 authSecretNamespace: <kafka_auth_secret_namespace>
 bootstrapServers: <bootstrap_servers>
 enabled: true
 source:
 enabled: true

CHAPTER 6. CHANNELS

109

NOTE

Make sure to specify the matching port in the bootstrap server.

For example:

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 namespace: knative-eventing
 name: knative-kafka
spec:
 channel:
 authSecretName: scram-user
 authSecretNamespace: kafka
 bootstrapServers: eventing-kafka-bootstrap.kafka.svc:9093
 enabled: true
 source:
 enabled: true

Red Hat OpenShift Serverless 1.31 Eventing

110

CHAPTER 7. SUBSCRIPTIONS

7.1. CREATING SUBSCRIPTIONS

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Subscriptions are created by configuring a Subscription object, which specifies the channel
and the sink (also known as a subscriber) to deliver events to.

7.1.1. Creating a subscription by using the Administrator perspective

After you have created a channel and an event sink, also known as a subscriber, you can create a
subscription to enable event delivery. Subscriptions are created by configuring a Subscription object,
which specifies the channel and the subscriber to deliver events to. You can also specify some
subscriber-specific options, such as how to handle failures.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have logged in to the web console and are in the Administrator perspective.

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

You have created a Knative channel.

You have created a Knative service to use as a subscriber.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Serverless → Eventing.

2. In the Channel tab, select the Options menu for the channel that you want to add a
subscription to.

3. Click Add Subscription in the list.

4. In the Add Subscription dialogue box, select a Subscriber for the subscription. The subscriber
is the Knative service that receives events from the channel.

5. Click Add.

7.1.2. Creating a subscription by using the Developer perspective

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Using the OpenShift Container Platform web console provides a streamlined and intuitive user
interface to create a subscription.

Prerequisites

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your

CHAPTER 7. SUBSCRIPTIONS

111

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have logged in to the web console.

You have created an event sink, such as a Knative service, and a channel.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to the Topology page.

2. Create a subscription using one of the following methods:

a. Hover over the channel that you want to create a subscription for, and drag the arrow. The
Add Subscription option is displayed.

i. Select your sink in the Subscriber list.

ii. Click Add.

b. If the service is available in the Topology view under the same namespace or project as the
channel, click on the channel that you want to create a subscription for, and drag the arrow
directly to a service to immediately create a subscription from the channel to that service.

Verification

After the subscription has been created, you can see it represented as a line that connects the
channel to the service in the Topology view:

Red Hat OpenShift Serverless 1.31 Eventing

112

7.1.3. Creating a subscription by using YAML

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Creating Knative resources by using YAML files uses a declarative API, which enables you to
describe subscriptions declaratively and in a reproducible manner. To create a subscription by using
YAML, you must create a YAML file that defines a Subscription object, then apply it by using the oc
apply command.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

Install the OpenShift CLI (oc).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a Subscription object:

Create a YAML file and copy the following sample code into it:

apiVersion: messaging.knative.dev/v1beta1
kind: Subscription
metadata:
 name: my-subscription 1
 namespace: default
spec:
 channel: 2
 apiVersion: messaging.knative.dev/v1beta1
 kind: Channel
 name: example-channel
 delivery: 3
 deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: error-handler

CHAPTER 7. SUBSCRIPTIONS

113

1

2

3

4

1

Name of the subscription.

Configuration settings for the channel that the subscription connects to.

Configuration settings for event delivery. This tells the subscription what happens to
events that cannot be delivered to the subscriber. When this is configured, events that
failed to be consumed are sent to the deadLetterSink. The event is dropped, no re-
delivery of the event is attempted, and an error is logged in the system. The
deadLetterSink value must be a Destination.

Configuration settings for the subscriber. This is the event sink that events are
delivered to from the channel.

Apply the YAML file:

7.1.4. Creating a subscription by using the Knative CLI

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Using the Knative (kn) CLI to create subscriptions provides a more streamlined and intuitive
user interface than modifying YAML files directly. You can use the kn subscription create command
with the appropriate flags to create a subscription.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the Knative (kn) CLI.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

Create a subscription to connect a sink to a channel:

--channel specifies the source for cloud events that should be processed. You must
provide the channel name. If you are not using the default InMemoryChannel channel that
is backed by the Channel custom resource, you must prefix the channel name with the
<group:version:kind> for the specified channel type. For example, this will be

 subscriber: 4
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f <filename>

$ kn subscription create <subscription_name> \
 --channel <group:version:kind>:<channel_name> \ 1
 --sink <sink_prefix>:<sink_name> \ 2
 --sink-dead-letter <sink_prefix>:<sink_name> 3

Red Hat OpenShift Serverless 1.31 Eventing

114

https://pkg.go.dev/knative.dev/pkg/apis/duck/v1?tab=doc#Destination

2

3

messaging.knative.dev:v1beta1:KafkaChannel for an Apache Kafka backed channel.

--sink specifies the target destination to which the event should be delivered. By default,
the <sink_name> is interpreted as a Knative service of this name, in the same namespace
as the subscription. You can specify the type of the sink by using one of the following
prefixes:

ksvc
A Knative service.

channel
A channel that should be used as destination. Only default channel types can be
referenced here.

broker
An Eventing broker.

Optional: --sink-dead-letter is an optional flag that can be used to specify a sink which
events should be sent to in cases where events fail to be delivered. For more information,
see the OpenShift Serverless Event delivery documentation.

Example command

Example output

Verification

To confirm that the channel is connected to the event sink, or subscriber, by a subscription, list
the existing subscriptions and inspect the output:

Example output

Deleting a subscription

Delete a subscription:

7.1.5. Next steps

Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink.

$ kn subscription create mysubscription --channel mychannel --sink ksvc:event-display

Subscription 'mysubscription' created in namespace 'default'.

$ kn subscription list

NAME CHANNEL SUBSCRIBER REPLY DEAD LETTER SINK
READY REASON
mysubscription Channel:mychannel ksvc:event-display True

$ kn subscription delete <subscription_name>

CHAPTER 7. SUBSCRIPTIONS

115

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.31/html-single/eventing/#serverless-configuring-event-delivery-examples_serverless-event-delivery

7.2. MANAGING SUBSCRIPTIONS

7.2.1. Describing subscriptions by using the Knative CLI

You can use the kn subscription describe command to print information about a subscription in the
terminal by using the Knative (kn) CLI. Using the Knative CLI to describe subscriptions provides a more
streamlined and intuitive user interface than viewing YAML files directly.

Prerequisites

You have installed the Knative (kn) CLI.

You have created a subscription in your cluster.

Procedure

Describe a subscription:

Example output

7.2.2. Listing subscriptions by using the Knative CLI

You can use the kn subscription list command to list existing subscriptions on your cluster by using the
Knative (kn) CLI. Using the Knative CLI to list subscriptions provides a streamlined and intuitive user
interface.

Prerequisites

You have installed the Knative (kn) CLI.

$ kn subscription describe <subscription_name>

Name: my-subscription
Namespace: default
Annotations: messaging.knative.dev/creator=openshift-user,
messaging.knative.dev/lastModifier=min ...
Age: 43s
Channel: Channel:my-channel (messaging.knative.dev/v1)
Subscriber:
 URI: http://edisplay.default.example.com
Reply:
 Name: default
 Resource: Broker (eventing.knative.dev/v1)
DeadLetterSink:
 Name: my-sink
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 43s
 ++ AddedToChannel 43s
 ++ ChannelReady 43s
 ++ ReferencesResolved 43s

Red Hat OpenShift Serverless 1.31 Eventing

116

1

2

Procedure

List subscriptions on your cluster:

Example output

7.2.3. Updating subscriptions by using the Knative CLI

You can use the kn subscription update command as well as the appropriate flags to update a
subscription from the terminal by using the Knative (kn) CLI. Using the Knative CLI to update
subscriptions provides a more streamlined and intuitive user interface than updating YAML files directly.

Prerequisites

You have installed the Knative (kn) CLI.

You have created a subscription.

Procedure

Update a subscription:

--sink specifies the updated target destination to which the event should be delivered.
You can specify the type of the sink by using one of the following prefixes:

ksvc
A Knative service.

channel
A channel that should be used as destination. Only default channel types can be
referenced here.

broker
An Eventing broker.

Optional: --sink-dead-letter is an optional flag that can be used to specify a sink which
events should be sent to in cases where events fail to be delivered. For more information,
see the OpenShift Serverless Event delivery documentation.

Example command

$ kn subscription list

NAME CHANNEL SUBSCRIBER REPLY DEAD LETTER SINK
READY REASON
mysubscription Channel:mychannel ksvc:event-display True

$ kn subscription update <subscription_name> \
 --sink <sink_prefix>:<sink_name> \ 1
 --sink-dead-letter <sink_prefix>:<sink_name> 2

$ kn subscription update mysubscription --sink ksvc:event-display

CHAPTER 7. SUBSCRIPTIONS

117

CHAPTER 8. EVENT DELIVERY
You can configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink. Different channel and broker types have their own behavior patterns that are
followed for event delivery.

Configuring event delivery parameters, including a dead letter sink, ensures that any events that fail to
be delivered to an event sink are retried. Otherwise, undelivered events are dropped.

IMPORTANT

If an event is successfully delivered to a channel or broker receiver for Apache Kafka, the
receiver responds with a 202 status code, which means that the event has been safely
stored inside a Kafka topic and is not lost. If the receiver responds with any other status
code, the event is not safely stored, and steps must be taken by the user to resolve the
issue.

8.1. CONFIGURABLE EVENT DELIVERY PARAMETERS

The following parameters can be configured for event delivery:

Dead letter sink

You can configure the deadLetterSink delivery parameter so that if an event fails to be delivered, it
is stored in the specified event sink. Undelivered events that are not stored in a dead letter sink are
dropped. The dead letter sink be any addressable object that conforms to the Knative Eventing sink
contract, such as a Knative service, a Kubernetes service, or a URI.

Retries

You can set a minimum number of times that the delivery must be retried before the event is sent to
the dead letter sink, by configuring the retry delivery parameter with an integer value.

Back off delay

You can set the backoffDelay delivery parameter to specify the time delay before an event delivery
retry is attempted after a failure. The duration of the backoffDelay parameter is specified using the
ISO 8601 format. For example, PT1S specifies a 1 second delay.

Back off policy

The backoffPolicy delivery parameter can be used to specify the retry back off policy. The policy
can be specified as either linear or exponential. When using the linear back off policy, the back off
delay is equal to backoffDelay * <numberOfRetries>. When using the exponential backoff policy,
the back off delay is equal to backoffDelay*2^<numberOfRetries>.

8.2. EXAMPLES OF CONFIGURING EVENT DELIVERY PARAMETERS

You can configure event delivery parameters for Broker, Trigger, Channel, and Subscription objects.
If you configure event delivery parameters for a broker or channel, these parameters are propagated to
triggers or subscriptions created for those objects. You can also set event delivery parameters for
triggers or subscriptions to override the settings for the broker or channel.

Example Broker object

apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
...

Red Hat OpenShift Serverless 1.31 Eventing

118

https://en.wikipedia.org/wiki/ISO_8601#Durations

Example Trigger object

Example Channel object

Example Subscription object

spec:
 delivery:
 deadLetterSink:
 ref:
 apiVersion: eventing.knative.dev/v1alpha1
 kind: KafkaSink
 name: <sink_name>
 backoffDelay: <duration>
 backoffPolicy: <policy_type>
 retry: <integer>
...

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
...
spec:
 broker: <broker_name>
 delivery:
 deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: <sink_name>
 backoffDelay: <duration>
 backoffPolicy: <policy_type>
 retry: <integer>
...

apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
...
spec:
 delivery:
 deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: <sink_name>
 backoffDelay: <duration>
 backoffPolicy: <policy_type>
 retry: <integer>
...

apiVersion: messaging.knative.dev/v1
kind: Subscription
metadata:

CHAPTER 8. EVENT DELIVERY

119

8.3. CONFIGURING EVENT DELIVERY ORDERING FOR TRIGGERS

If you are using a Kafka broker, you can configure the delivery order of events from triggers to event
sinks.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and Knative Kafka are installed on your
OpenShift Container Platform cluster.

Kafka broker is enabled for use on your cluster, and you have created a Kafka broker.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift (oc) CLI.

Procedure

1. Create or modify a Trigger object and set the kafka.eventing.knative.dev/delivery.order
annotation:

The supported consumer delivery guarantees are:

unordered

An unordered consumer is a non-blocking consumer that delivers messages unordered, while
preserving proper offset management.

ordered

An ordered consumer is a per-partition blocking consumer that waits for a successful

...
spec:
 channel:
 apiVersion: messaging.knative.dev/v1
 kind: Channel
 name: <channel_name>
 delivery:
 deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: <sink_name>
 backoffDelay: <duration>
 backoffPolicy: <policy_type>
 retry: <integer>
...

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 name: <trigger_name>
 annotations:
 kafka.eventing.knative.dev/delivery.order: ordered
...

Red Hat OpenShift Serverless 1.31 Eventing

120

An ordered consumer is a per-partition blocking consumer that waits for a successful
response from the CloudEvent subscriber before it delivers the next message of the
partition.
The default ordering guarantee is unordered.

2. Apply the Trigger object:

$ oc apply -f <filename>

CHAPTER 8. EVENT DELIVERY

121

CHAPTER 9. EVENT DISCOVERY

9.1. LISTING EVENT SOURCES AND EVENT SOURCE TYPES

It is possible to view a list of all event sources or event source types that exist or are available for use on
your OpenShift Container Platform cluster. You can use the Knative (kn) CLI or the Developer
perspective in the OpenShift Container Platform web console to list available event sources or event
source types.

9.2. LISTING EVENT SOURCE TYPES FROM THE COMMAND LINE

Using the Knative (kn) CLI provides a streamlined and intuitive user interface to view available event
source types on your cluster.

9.2.1. Listing available event source types by using the Knative CLI

You can list event source types that can be created and used on your cluster by using the kn source
list-types CLI command.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have installed the Knative (kn) CLI.

Procedure

1. List the available event source types in the terminal:

Example output

2. Optional: On OpenShift Container Platform, you can also list the available event source types in
YAML format:

9.3. LISTING EVENT SOURCE TYPES FROM THE DEVELOPER
PERSPECTIVE

It is possible to view a list of all available event source types on your cluster. Using the OpenShift

$ kn source list-types

TYPE NAME DESCRIPTION
ApiServerSource apiserversources.sources.knative.dev Watch and send Kubernetes
API events to a sink
PingSource pingsources.sources.knative.dev Periodically send ping events to
a sink
SinkBinding sinkbindings.sources.knative.dev Binding for connecting a
PodSpecable to a sink

$ kn source list-types -o yaml

Red Hat OpenShift Serverless 1.31 Eventing

122

It is possible to view a list of all available event source types on your cluster. Using the OpenShift
Container Platform web console provides a streamlined and intuitive user interface to view available
event source types.

9.3.1. Viewing available event source types within the Developer perspective

Prerequisites

You have logged in to the OpenShift Container Platform web console.

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Access the Developer perspective.

2. Click +Add.

3. Click Event Source.

4. View the available event source types.

9.4. LISTING EVENT SOURCES FROM THE COMMAND LINE

Using the Knative (kn) CLI provides a streamlined and intuitive user interface to view existing event
sources on your cluster.

9.4.1. Listing available event sources by using the Knative CLI

You can list existing event sources by using the kn source list command.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have installed the Knative (kn) CLI.

Procedure

1. List the existing event sources in the terminal:

Example output

$ kn source list

NAME TYPE RESOURCE SINK READY
a1 ApiServerSource apiserversources.sources.knative.dev ksvc:eshow2 True
b1 SinkBinding sinkbindings.sources.knative.dev ksvc:eshow3 False
p1 PingSource pingsources.sources.knative.dev ksvc:eshow1 True

CHAPTER 9. EVENT DISCOVERY

123

2. Optional: You can list event sources of a specific type only, by using the --type flag:

Example command

Example output

$ kn source list --type <event_source_type>

$ kn source list --type PingSource

NAME TYPE RESOURCE SINK READY
p1 PingSource pingsources.sources.knative.dev ksvc:eshow1 True

Red Hat OpenShift Serverless 1.31 Eventing

124

CHAPTER 10. TUNING EVENTING CONFIGURATION

10.1. OVERRIDING KNATIVE EVENTING SYSTEM DEPLOYMENT
CONFIGURATIONS

You can override the default configurations for some specific deployments by modifying the
deployments spec in the KnativeEventing custom resource (CR). Currently, overriding default
configuration settings is supported for the eventing-controller, eventing-webhook, and imc-
controller fields, as well as for the readiness and liveness fields for probes.

IMPORTANT

The replicas spec cannot override the number of replicas for deployments that use the
Horizontal Pod Autoscaler (HPA), and does not work for the eventing-webhook
deployment.

NOTE

You can only override probes that are defined in the deployment by default.

All Knative Serving deployments define a readiness and a liveness probe by default, with
these exceptions:

net-kourier-controller and 3scale-kourier-gateway only define a readiness
probe.

net-istio-controller and net-istio-webhook define no probes.

10.1.1. Overriding deployment configurations

Currently, overriding default configuration settings is supported for the eventing-controller, eventing-
webhook, and imc-controller fields, as well as for the readiness and liveness fields for probes.

IMPORTANT

The replicas spec cannot override the number of replicas for deployments that use the
Horizontal Pod Autoscaler (HPA), and does not work for the eventing-webhook
deployment.

In the following example, a KnativeEventing CR overrides the eventing-controller deployment so that:

The readiness probe timeout eventing-controller is set to be 10 seconds.

The deployment has specified CPU and memory resource limits.

The deployment has 3 replicas.

The example-label: label label is added.

The example-annotation: annotation annotation is added.

The nodeSelector field is set to select nodes with the disktype: hdd label.

CHAPTER 10. TUNING EVENTING CONFIGURATION

125

1

KnativeEventing CR example

You can use the readiness and liveness probe overrides to override all fields of a probe in a
container of a deployment as specified in the Kubernetes API except for the fields related to the
probe handler: exec, grpc, httpGet, and tcpSocket.

NOTE

The KnativeEventing CR label and annotation settings override the deployment’s labels
and annotations for both the deployment itself and the resulting pods.

Additional resources

Probe configuration section of the Kubernetes API documentation

10.2. HIGH AVAILABILITY

High availability (HA) is a standard feature of Kubernetes APIs that helps to ensure that APIs stay
operational if a disruption occurs. In an HA deployment, if an active controller crashes or is deleted,
another controller is readily available. This controller takes over processing of the APIs that were being
serviced by the controller that is now unavailable.

HA in OpenShift Serverless is available through leader election, which is enabled by default after the
Knative Serving or Eventing control plane is installed. When using a leader election HA pattern, instances
of controllers are already scheduled and running inside the cluster before they are required. These

apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 deployments:
 - name: eventing-controller
 readinessProbes: 1
 - container: controller
 timeoutSeconds: 10
 resources:
 - container: eventing-controller
 requests:
 cpu: 300m
 memory: 100Mi
 limits:
 cpu: 1000m
 memory: 250Mi
 replicas: 3
 labels:
 example-label: label
 annotations:
 example-annotation: annotation
 nodeSelector:
 disktype: hdd

Red Hat OpenShift Serverless 1.31 Eventing

126

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.25/#probe-v1-core

controller instances compete to use a shared resource, known as the leader election lock. The instance
of the controller that has access to the leader election lock resource at any given time is called the
leader.

HA in OpenShift Serverless is available through leader election, which is enabled by default after the
Knative Serving or Eventing control plane is installed. When using a leader election HA pattern, instances
of controllers are already scheduled and running inside the cluster before they are required. These
controller instances compete to use a shared resource, known as the leader election lock. The instance
of the controller that has access to the leader election lock resource at any given time is called the
leader.

10.2.1. Configuring high availability replicas for Knative Eventing

High availability (HA) is available by default for the Knative Eventing eventing-controller, eventing-
webhook, imc-controller, imc-dispatcher, and mt-broker-controller components, which are
configured to have two replicas each by default. You can change the number of replicas for these
components by modifying the spec.high-availability.replicas value in the KnativeEventing custom
resource (CR).

NOTE

For Knative Eventing, the mt-broker-filter and mt-broker-ingress deployments are not
scaled by HA. If multiple deployments are needed, scale these components manually.

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

The OpenShift Serverless Operator and Knative Eventing are installed on your cluster.

Procedure

1. In the OpenShift Container Platform web console Administrator perspective, navigate to
OperatorHub → Installed Operators.

2. Select the knative-eventing namespace.

3. Click Knative Eventing in the list of Provided APIs for the OpenShift Serverless Operator to
go to the Knative Eventing tab.

4. Click knative-eventing, then go to the YAML tab in the knative-eventing page.

CHAPTER 10. TUNING EVENTING CONFIGURATION

127

5. Modify the number of replicas in the KnativeEventing CR:

Example YAML

10.2.2. Configuring high availability replicas for the Knative broker implementation
for Apache Kafka

High availability (HA) is available by default for the Knative broker implementation for Apache Kafka
components kafka-controller and kafka-webhook-eventing, which are configured to have two each
replicas by default. You can change the number of replicas for these components by modifying the
spec.high-availability.replicas value in the KnativeKafka custom resource (CR).

Prerequisites

You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

The OpenShift Serverless Operator and Knative broker for Apache Kafka are installed on your

apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 high-availability:
 replicas: 3

Red Hat OpenShift Serverless 1.31 Eventing

128

The OpenShift Serverless Operator and Knative broker for Apache Kafka are installed on your
cluster.

Procedure

1. In the OpenShift Container Platform web console Administrator perspective, navigate to
OperatorHub → Installed Operators.

2. Select the knative-eventing namespace.

3. Click Knative Kafka in the list of Provided APIs for the OpenShift Serverless Operator to go to
the Knative Kafka tab.

4. Click knative-kafka, then go to the YAML tab in the knative-kafka page.

5. Modify the number of replicas in the KnativeKafka CR:

Example YAML

apiVersion: operator.serverless.openshift.io/v1alpha1
kind: KnativeKafka
metadata:
 name: knative-kafka
 namespace: knative-eventing
spec:
 high-availability:
 replicas: 3

CHAPTER 10. TUNING EVENTING CONFIGURATION

129

1

2

3

4

CHAPTER 11. CONFIGURING KUBE-RBAC-PROXY FOR
EVENTING

The kube-rbac-proxy component provides internal authentication and authorization capabilities for
Knative Eventing.

11.1. CONFIGURING KUBE-RBAC-PROXY RESOURCES FOR EVENTING

You can globally override resource allocation for the kube-rbac-proxy container by using the OpenShift
Serverless Operator CR.

You can also override resource allocation for a specific deployment.

The following configuration sets Knative Eventing kube-rbac-proxy minimum and maximum CPU and
memory allocation:

KnativeEventing CR example

Sets minimum CPU allocation.

Sets minimum RAM allocation.

Sets maximum CPU allocation.

Sets maximum RAM allocation.

apiVersion: operator.knative.dev/v1beta1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing
spec:
 config:
 deployment:
 "kube-rbac-proxy-cpu-request": "10m" 1
 "kube-rbac-proxy-memory-request": "20Mi" 2
 "kube-rbac-proxy-cpu-limit": "100m" 3
 "kube-rbac-proxy-memory-limit": "100Mi" 4

Red Hat OpenShift Serverless 1.31 Eventing

130

1

2

CHAPTER 12. USING CONTAINERSOURCE WITH SERVICE
MESH

You can use container source with Service Mesh.

12.1. CONFIGURING CONTAINERSOURCE WITH SERVICE MESH

This procedure describes how to configure container source with Service Mesh.

Prerequisites

You have set up integration of Service Mesh and Serverless.

Procedure

1. Create a Service in a namespace that is member of the ServiceMeshMemberRoll:

Example event-display-service.yaml configuration file

A namespace that is a member of the ServiceMeshMemberRoll.

This annotation injects Service Mesh sidecars into the Knative service pods.

2. Apply the Service resource:

3. Create a ContainerSource object in a namespace that is member of the
ServiceMeshMemberRoll and sink set to the event-display:

Example test-heartbeats-containersource.yaml configuration file

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
 namespace: <namespace> 1
spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "true" 2
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

$ oc apply -f event-display-service.yaml

apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
 name: test-heartbeats
 namespace: <namespace> 1

CHAPTER 12. USING CONTAINERSOURCE WITH SERVICE MESH

131

1

2

A namespace that is part of the ServiceMeshMemberRoll.

These annotations enable Service Mesh integration with the ContainerSource object.

4. Apply the ContainerSource resource:

5. Optional: Verify that the events were sent to the Knative event sink by looking at the message
dumper function logs:

Example command

Example output

spec:
 template:
 metadata: 2
 annotations:
 sidecar.istio.io/inject": "true"
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 spec:
 containers:
 # This corresponds to a heartbeats image URI that you have built and published
 - image: quay.io/openshift-knative/heartbeats
 name: heartbeats
 args:
 - --period=1s
 env:
 - name: POD_NAME
 value: "example-pod"
 - name: POD_NAMESPACE
 value: "event-test"
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display-service

$ oc apply -f test-heartbeats-containersource.yaml

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.eventing.samples.heartbeat
 source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
 id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
 time: 2019-10-18T15:23:20.809775386Z
 contenttype: application/json
Extensions,
 beats: true
 heart: yes
 the: 42

Red Hat OpenShift Serverless 1.31 Eventing

132

Data,
 {
 "id": 1,
 "label": ""
 }

CHAPTER 12. USING CONTAINERSOURCE WITH SERVICE MESH

133

1

2

CHAPTER 13. USING A SINK BINDING WITH SERVICE MESH
You can use a sink binding with Service Mesh.

13.1. CONFIGURING A SINK BINDING WITH SERVICE MESH

This procedure describes how to configure a sink binding with Service Mesh.

Prerequisites

You have set up integration of Service Mesh and Serverless.

Procedure

1. Create a Service object in a namespace that is member of the ServiceMeshMemberRoll:

Example event-display-service.yaml configuration file

A namespace that is a member of the ServiceMeshMemberRoll.

This annotation injects Service Mesh sidecars into the Knative service pods.

2. Apply the Service object:

3. Create a SinkBinding object:

Example heartbeat-sinkbinding.yaml configuration file

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
 namespace: <namespace> 1
spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "true" 2
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

$ oc apply -f event-display-service.yaml

apiVersion: sources.knative.dev/v1alpha1
kind: SinkBinding
metadata:
 name: bind-heartbeat
 namespace: <namespace> 1
spec:
 subject:

Red Hat OpenShift Serverless 1.31 Eventing

134

1

2

A namespace that is part of the ServiceMeshMemberRoll.

Bind any Job with the label app: heartbeat-cron to the event sink.

4. Apply the SinkBinding object:

5. Create a CronJob object:

Example heartbeat-cronjob.yaml configuration file

 apiVersion: batch/v1
 kind: Job 2
 selector:
 matchLabels:
 app: heartbeat-cron

 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f heartbeat-sinkbinding.yaml

apiVersion: batch/v1
kind: CronJob
metadata:
 name: heartbeat-cron
 namespace: <namespace> 1
spec:
 # Run every minute
 schedule: "* * * * *"
 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"
 spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "true" 2
 sidecar.istio.io/rewriteAppHTTPProbers: "true"
 spec:
 restartPolicy: Never
 containers:
 - name: single-heartbeat
 image: quay.io/openshift-knative/heartbeats:latest
 args:
 - --period=1
 env:
 - name: ONE_SHOT
 value: "true"
 - name: POD_NAME

CHAPTER 13. USING A SINK BINDING WITH SERVICE MESH

135

1

2

A namespace that is part of the ServiceMeshMemberRoll.

Inject Service Mesh sidecars into the CronJob pods.

6. Apply the CronJob object:

7. Optional: Verify that the events were sent to the Knative event sink by looking at the message
dumper function logs:

Example command

Example output

 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

$ oc apply -f heartbeat-cronjob.yaml

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.eventing.samples.heartbeat
 source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
 id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
 time: 2019-10-18T15:23:20.809775386Z
 contenttype: application/json
Extensions,
 beats: true
 heart: yes
 the: 42
Data,
 {
 "id": 1,
 "label": ""
 }

Red Hat OpenShift Serverless 1.31 Eventing

136

	Table of Contents
	CHAPTER 1. KNATIVE EVENTING
	1.1. KNATIVE EVENTING USE CASES:

	CHAPTER 2. EVENT SOURCES
	2.1. EVENT SOURCES
	2.2. EVENT SOURCE IN THE ADMINISTRATOR PERSPECTIVE
	2.2.1. Creating an event source by using the Administrator perspective

	2.3. CREATING AN API SERVER SOURCE
	2.3.1. Creating an API server source by using the web console
	2.3.2. Creating an API server source by using the Knative CLI
	2.3.2.1. Knative CLI sink flag

	2.3.3. Creating an API server source by using YAML files

	2.4. CREATING A PING SOURCE
	2.4.1. Creating a ping source by using the web console
	2.4.2. Creating a ping source by using the Knative CLI
	2.4.2.1. Knative CLI sink flag

	2.4.3. Creating a ping source by using YAML

	2.5. SOURCE FOR APACHE KAFKA
	2.5.1. Creating an Apache Kafka event source by using the web console
	2.5.2. Creating an Apache Kafka event source by using the Knative CLI
	2.5.2.1. Knative CLI sink flag

	2.5.3. Creating an Apache Kafka event source by using YAML
	2.5.4. Configuring SASL authentication for Apache Kafka sources

	2.6. CUSTOM EVENT SOURCES
	2.6.1. Sink binding
	2.6.1.1. Creating a sink binding by using YAML
	2.6.1.2. Creating a sink binding by using the Knative CLI
	2.6.1.3. Creating a sink binding by using the web console
	2.6.1.4. Sink binding reference
	2.6.1.5. Integrating Service Mesh with a sink binding

	2.6.2. Container source
	2.6.2.1. Guidelines for creating a container image
	2.6.2.2. Creating and managing container sources by using the Knative CLI
	2.6.2.3. Creating a container source by using the web console
	2.6.2.4. Container source reference
	2.6.2.5. Integrating Service Mesh with ContainerSource

	2.7. CONNECTING AN EVENT SOURCE TO AN EVENT SINK BY USING THE DEVELOPER PERSPECTIVE
	2.7.1. Connect an event source to an event sink by using the Developer perspective

	CHAPTER 3. EVENT SINKS
	3.1. EVENT SINKS
	3.1.1. Knative CLI sink flag

	3.2. CREATING EVENT SINKS
	3.3. SINK FOR APACHE KAFKA
	3.3.1. Creating an Apache Kafka sink by using YAML
	3.3.2. Creating an event sink for Apache Kafka by using the OpenShift Container Platform web console
	3.3.3. Configuring security for Apache Kafka sinks

	CHAPTER 4. BROKERS
	4.1. BROKERS
	4.2. BROKER TYPES
	4.2.1. Default broker implementation for development purposes
	4.2.2. Production-ready Knative broker implementation for Apache Kafka

	4.3. CREATING BROKERS
	4.3.1. Creating a broker by using the Knative CLI
	4.3.2. Creating a broker by annotating a trigger
	4.3.3. Creating a broker by labeling a namespace
	4.3.4. Deleting a broker that was created by injection
	4.3.5. Creating a broker by using the web console
	4.3.6. Creating a broker by using the Administrator perspective
	4.3.7. Next steps
	4.3.8. Additional resources

	4.4. CONFIGURING THE DEFAULT BROKER BACKING CHANNEL
	4.5. CONFIGURING THE DEFAULT BROKER CLASS
	4.6. KNATIVE BROKER IMPLEMENTATION FOR APACHE KAFKA
	4.6.1. Creating an Apache Kafka broker when it is not configured as the default broker type
	4.6.1.1. Creating an Apache Kafka broker by using YAML
	4.6.1.2. Creating an Apache Kafka broker that uses an externally managed Kafka topic
	4.6.1.3. Knative Broker implementation for Apache Kafka with isolated data plane
	4.6.1.4. Creating a Knative broker for Apache Kafka that uses an isolated data plane

	4.6.2. Configuring Apache Kafka broker settings
	4.6.3. Security configuration for the Knative broker implementation for Apache Kafka
	4.6.3.1. Configuring TLS authentication for Apache Kafka brokers
	4.6.3.2. Configuring SASL authentication for Apache Kafka brokers

	4.6.4. Additional resources

	4.7. MANAGING BROKERS
	4.7.1. Managing brokers using the CLI
	4.7.1.1. Listing existing brokers by using the Knative CLI
	4.7.1.2. Describing an existing broker by using the Knative CLI

	4.7.2. Connect a broker to a sink using the Developer perspective

	CHAPTER 5. TRIGGERS
	5.1. TRIGGERS OVERVIEW
	5.1.1. Configuring event delivery ordering for triggers
	5.1.2. Next steps

	5.2. CREATING TRIGGERS
	5.2.1. Creating a trigger by using the Administrator perspective
	5.2.2. Creating a trigger by using the Developer perspective
	5.2.3. Creating a trigger by using the Knative CLI

	5.3. LIST TRIGGERS FROM THE COMMAND LINE
	5.3.1. Listing triggers by using the Knative CLI

	5.4. DESCRIBE TRIGGERS FROM THE COMMAND LINE
	5.4.1. Describing a trigger by using the Knative CLI

	5.5. CONNECTING A TRIGGER TO A SINK
	5.6. FILTERING TRIGGERS FROM THE COMMAND LINE
	5.6.1. Filtering events with triggers by using the Knative CLI

	5.7. UPDATING TRIGGERS FROM THE COMMAND LINE
	5.7.1. Updating a trigger by using the Knative CLI

	5.8. DELETING TRIGGERS FROM THE COMMAND LINE
	5.8.1. Deleting a trigger by using the Knative CLI

	CHAPTER 6. CHANNELS
	6.1. CHANNELS AND SUBSCRIPTIONS
	6.1.1. Channel implementation types

	6.2. CREATING CHANNELS
	6.2.1. Creating a channel by using the Administrator perspective
	6.2.2. Creating a channel by using the Developer perspective
	6.2.3. Creating a channel by using the Knative CLI
	6.2.4. Creating a default implementation channel by using YAML
	6.2.5. Creating a channel for Apache Kafka by using YAML
	6.2.6. Next steps

	6.3. CONNECTING CHANNELS TO SINKS
	6.3.1. Creating a subscription by using the Developer perspective
	6.3.2. Creating a subscription by using YAML
	6.3.3. Creating a subscription by using the Knative CLI
	6.3.4. Creating a subscription by using the Administrator perspective
	6.3.5. Next steps

	6.4. DEFAULT CHANNEL IMPLEMENTATION
	6.4.1. Configuring the default channel implementation

	6.5. SECURITY CONFIGURATION FOR CHANNELS
	6.5.1. Configuring TLS authentication for Knative channels for Apache Kafka
	6.5.2. Configuring SASL authentication for Knative channels for Apache Kafka

	CHAPTER 7. SUBSCRIPTIONS
	7.1. CREATING SUBSCRIPTIONS
	7.1.1. Creating a subscription by using the Administrator perspective
	7.1.2. Creating a subscription by using the Developer perspective
	7.1.3. Creating a subscription by using YAML
	7.1.4. Creating a subscription by using the Knative CLI
	7.1.5. Next steps

	7.2. MANAGING SUBSCRIPTIONS
	7.2.1. Describing subscriptions by using the Knative CLI
	7.2.2. Listing subscriptions by using the Knative CLI
	7.2.3. Updating subscriptions by using the Knative CLI

	CHAPTER 8. EVENT DELIVERY
	8.1. CONFIGURABLE EVENT DELIVERY PARAMETERS
	8.2. EXAMPLES OF CONFIGURING EVENT DELIVERY PARAMETERS
	8.3. CONFIGURING EVENT DELIVERY ORDERING FOR TRIGGERS

	CHAPTER 9. EVENT DISCOVERY
	9.1. LISTING EVENT SOURCES AND EVENT SOURCE TYPES
	9.2. LISTING EVENT SOURCE TYPES FROM THE COMMAND LINE
	9.2.1. Listing available event source types by using the Knative CLI

	9.3. LISTING EVENT SOURCE TYPES FROM THE DEVELOPER PERSPECTIVE
	9.3.1. Viewing available event source types within the Developer perspective

	9.4. LISTING EVENT SOURCES FROM THE COMMAND LINE
	9.4.1. Listing available event sources by using the Knative CLI

	CHAPTER 10. TUNING EVENTING CONFIGURATION
	10.1. OVERRIDING KNATIVE EVENTING SYSTEM DEPLOYMENT CONFIGURATIONS
	10.1.1. Overriding deployment configurations

	10.2. HIGH AVAILABILITY
	10.2.1. Configuring high availability replicas for Knative Eventing
	10.2.2. Configuring high availability replicas for the Knative broker implementation for Apache Kafka

	CHAPTER 11. CONFIGURING KUBE-RBAC-PROXY FOR EVENTING
	11.1. CONFIGURING KUBE-RBAC-PROXY RESOURCES FOR EVENTING

	CHAPTER 12. USING CONTAINERSOURCE WITH SERVICE MESH
	12.1. CONFIGURING CONTAINERSOURCE WITH SERVICE MESH

	CHAPTER 13. USING A SINK BINDING WITH SERVICE MESH
	13.1. CONFIGURING A SINK BINDING WITH SERVICE MESH

