& RedHat

Red Hat OpenShift Serverless 1.34

Eventing

Using event-driven architectures with OpenShift Serverless

Last Updated: 2024-10-10

Red Hat OpenShift Serverless 1.34 Eventing

Using event-driven architectures with OpenShift Serverless

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about Eventing features such as event sources and sinks,
brokers, triggers, channels, and subscriptions.

Table of Contents

CHAPTER L. KNATIVEEVENTING ... i

1.1. KNATIVE EVENTING USE CASES:

CHAPTER 2.EVENTSOURCES ... i

2.1. EVENT SOURCES
2.2. EVENT SOURCE IN THE ADMINISTRATOR PERSPECTIVE
2.2.1. Creating an event source by using the Administrator perspective
2.3. CREATING AN API SERVER SOURCE
2.3.1. Creating an APl server source by using the web console
2.3.2. Creating an APl server source by using the Knative CLI
2.3.2.1. Knative CLI sink flag
2.3.3. Creating an API server source by using YAML files
2.4. CREATING A PING SOURCE
2.4.1. Creating a ping source by using the web console
2.4.2. Creating a ping source by using the Knative CLI
2.4.2.1. Knative CLI sink flag
2.4.3. Creating a ping source by using YAML
2.5. SOURCE FOR APACHE KAFKA
2.5.1. Creating an Apache Kafka event source by using the web console
2.5.2. Creating an Apache Kafka event source by using the Knative CLI
2.5.2.1. Knative CLI sink flag
2.5.3. Creating an Apache Kafka event source by using YAML
2.5.4. Configuring SASL authentication for Apache Kafka sources
2.5.5. Configuring KEDA autoscaling for KafkaSource
2.6. CUSTOM EVENT SOURCES
2.6.1. Sink binding
2.6.1.1. Creating a sink binding by using YAML
2.6.1.2. Creating a sink binding by using the Knative CLI
2.6.1.2.1. Knative CLI sink flag
2.6.1.3. Creating a sink binding by using the web console
2.6.1.4. Sink binding reference
2.6.1.4.1. Subject parameter
2.6.1.4.2. CloudEvent overrides
2.6.1.4.3. The include label
2.6.1.5. Integrating Service Mesh with a sink binding
2.6.2. Container source
2.6.2.1. Guidelines for creating a container image

2.6.2.2. Creating and managing container sources by using the Knative CLI

2.6.2.3. Creating a container source by using the web console
2.6.2.4. Container source reference

2.6.2.4.1. CloudEvent overrides
2.6.2.5. Integrating Service Mesh with ContainerSource

Table of Contents

2.7. CONNECTING AN EVENT SOURCE TO AN EVENT SINK BY USING THE DEVELOPER PERSPECTIVE 60

2.7.1. Connect an event source to an event sink by using the Developer perspective

CHAPTER 3. EVENT SINKS .. i

3.1. EVENT SINKS
3.1.1. Knative CLI sink flag
3.2. CREATING EVENT SINKS
3.3. SINK FOR APACHE KAFKA
3.3.1. Creating an Apache Kafka sink by using YAML

........................ 62

62
62
62
63
63

Red Hat OpenShift Serverless 1.34 Eventing

3.3.2. Creating an event sink for Apache Kafka by using the OpenShift Container Platform web console 64
3.3.3. Configuring security for Apache Kafka sinks 65
CHAPTER 4. BROKE RS ..ttt ettt ettt ee ittt etteeaneenaneeaneeeaneenneeeaneesaneennneenn 68
4.1. BROKERS 68
4.2. BROKER TYPES 68
4.2.1. Default broker implementation for development purposes 68
4.2.2. Production-ready Knative broker implementation for Apache Kafka 68
4.3. CREATING BROKERS 69
4.3.1. Creating a broker by using the Knative CLI 69
4.3.2. Creating a broker by annotating a trigger 70
4.3.3. Creating a broker by labeling a namespace 71
4.3.4. Deleting a broker that was created by injection 73
4.3.5. Creating a broker by using the web console 73
4.3.6. Creating a broker by using the Administrator perspective 74
4.3.7. Next steps 75
4.3.8. Additional resources 75
4.4. CONFIGURING THE DEFAULT BROKER BACKING CHANNEL 75
4.5. CONFIGURING THE DEFAULT BROKER CLASS 76
4.6. KNATIVE BROKER IMPLEMENTATION FOR APACHE KAFKA 78
4.6.1. Creating an Apache Kafka broker when it is not configured as the default broker type 78
4.6.1.1. Creating an Apache Kafka broker by using YAML 78
4.6.1.2. Creating an Apache Kafka broker that uses an externally managed Kafka topic 79
4.6.1.3. Knative Broker implementation for Apache Kafka with isolated data plane 80
4.6.1.4. Creating a Knative broker for Apache Kafka that uses an isolated data plane 81
4.6.2. Configuring Apache Kafka broker settings 82
4.6.3. Security configuration for the Knative broker implementation for Apache Kafka 84
4.6.3.1. Configuring TLS authentication for Apache Kafka brokers 84
4.6.3.2. Configuring SASL authentication for Apache Kafka brokers 85
4.6.4. Additional resources 86
4.7. MANAGING BROKERS 87
4.7.1. Managing brokers using the CLI 87
4.7.1.1. Listing existing brokers by using the Knative CLI 87
4.7.1.2. Describing an existing broker by using the Knative CLI 87
4.7.2. Connect a broker to a sink using the Developer perspective 88
CHAPTER 5. TRIGGERS ...ttt ettt e et ettt et e aeeaneeeaneennneeaneesaneennneenn 920
5.1. TRIGGERS OVERVIEW 90
5.1.1. Configuring event delivery ordering for triggers 90
5.1.2. Next steps 91
5.2. CREATING TRIGGERS 91
5.2.1. Creating a trigger by using the Administrator perspective 91
5.2.2. Creating a trigger by using the Developer perspective 92
5.2.3. Creating a trigger by using the Knative CLI 93
5.3. LIST TRIGGERS FROM THE COMMAND LINE 93
5.3.1. Listing triggers by using the Knative CLI 94
5.4. DESCRIBE TRIGGERS FROM THE COMMAND LINE 94
5.4.1. Describing a trigger by using the Knative CLI 94
5.5. CONNECTING A TRIGGER TO A SINK 95
5.6. FILTERING TRIGGERS FROM THE COMMAND LINE 95
5.6.1. Filtering events with triggers by using the Knative CLI 96
5.7. ADVANCED TRIGGER FILTERS 96
5.7.1. Advanced trigger filters overview 96

5.7.2. Supported filter dialects
5.7.2.1. exact filter dialect
5.7.2.2. prefix filter dialect
5.7.2.3. suffix filter dialect
5.7.2.4. all filter dialect
5.7.2.5. any filter dialect
5.7.2.6. not filter dialect
5.7.2.7. cesql filter dialect
5.7.3. Conflict with the existing filter field
5.8. UPDATING TRIGGERS FROM THE COMMAND LINE
5.8.1. Updating a trigger by using the Knative CLI
5.9. DELETING TRIGGERS FROM THE COMMAND LINE
5.9.1. Deleting a trigger by using the Knative CLI

CHAPTER 6. CHANNELS ... i i i

6.1. CHANNELS AND SUBSCRIPTIONS
6.1.1. Channel implementation types
6.2. CREATING CHANNELS
6.2.1. Creating a channel by using the Administrator perspective
6.2.2. Creating a channel by using the Developer perspective
6.2.3. Creating a channel by using the Knative CLI
6.2.4. Creating a default implementation channel by using YAML
6.2.5. Creating a channel for Apache Kafka by using YAML
6.2.6. Next steps
6.3. CONNECTING CHANNELS TO SINKS
6.3.1. Creating a subscription by using the Developer perspective
6.3.2. Creating a subscription by using YAML
6.3.3. Creating a subscription by using the Knative CLI
6.3.4. Creating a subscription by using the Administrator perspective
6.3.5. Next steps
6.4. DEFAULT CHANNEL IMPLEMENTATION
6.4.1. Configuring the default channel implementation
6.5. SECURITY CONFIGURATION FOR CHANNELS
6.5.1. Configuring TLS authentication for Knative channels for Apache Kafka
6.5.2. Configuring SASL authentication for Knative channels for Apache Kafka

CHAPTER 7. SUBSCRIPTIONS ... i i

7.]. CREATING SUBSCRIPTIONS
7.1.1. Creating a subscription by using the Administrator perspective
7.1.2. Creating a subscription by using the Developer perspective
7.1.3. Creating a subscription by using YAML
7.1.4. Creating a subscription by using the Knative CLI
7.1.5. Next steps
7.2. MANAGING SUBSCRIPTIONS
7.2.1. Describing subscriptions by using the Knative CLI
7.2.2. Listing subscriptions by using the Knative CLI
7.2.3. Updating subscriptions by using the Knative CLI

CHAPTER 8. EVENT DELIVERY .. i i

8.1. CONFIGURABLE EVENT DELIVERY PARAMETERS
8.2. EXAMPLES OF CONFIGURING EVENT DELIVERY PARAMETERS
8.3. CONFIGURING EVENT DELIVERY ORDERING FOR TRIGGERS

CHAPTER 9. EVENT DISCOVERY ... i

Table of Contents

97
97
97
98
98
99
99
99
100
100
100
101
101

................... 103

103
104
104
104
105
106
106
107
108
108
108
109
110
12
13
13
13
14
14
15

................... n8

18
18
18
120
121
122
123
123
123
124

................... 125

125
125
127

Red Hat OpenShift Serverless 1.34 Eventing

9.1. LISTING EVENT SOURCES AND EVENT SOURCE TYPES 129
9.2. LISTING EVENT SOURCE TYPES FROM THE COMMAND LINE 129
9.2.1. Listing available event source types by using the Knative CLI 129

9.3. LISTING EVENT SOURCE TYPES FROM THE DEVELOPER PERSPECTIVE 129
9.3.1. Viewing available event source types within the Developer perspective 130

9.4. LISTING EVENT SOURCES FROM THE COMMAND LINE 130
9.4.1. Listing available event sources by using the Knative CLI 130
CHAPTER 10. TUNING EVENTING CONFIGURATION ... ittt ittt iei et raneennnenns 132
10.1. OVERRIDING KNATIVE EVENTING SYSTEM DEPLOYMENT CONFIGURATIONS 132
10.1.1. Overriding deployment configurations 132
10.1.2. Modifying consumer group IDs and topic names 133
10.2. HIGH AVAILABILITY 135
10.2.1. Configuring high availability replicas for Knative Eventing 135
10.2.2. Configuring high availability replicas for the Knative broker implementation for Apache Kafka 137
10.2.3. Overriding disruption budgets 138
CHAPTER 11. CONFIGURING TLS ENCRYPTION INEVENTING ...ttt iiieenneennnns 140
11.1. CREATING A SELFSIGNED CLUSTERISSUER RESOURCE FOR EVENTING 140
11.2. CREATING A CLUSTERISSUER RESOURCE FOR EVENTING 142
11.3. ENABLING TRANSPORT ENCRPTION FOR KNATIVE EVENTING 143
11.4. CONFIGURING ADDITIONAL CA TRUST BUNDLES 143
11.5. CONFIGURE CUSTOM EVENT SOURCES TO TRUST THE EVENTING CA 144
11.6. ADDING A SELFSIGNED CLUSTERISSUER RESOURCE TO CA TRUST BUNDLES 145
11.7. ENSURING SEAMLESS CA ROTATION 145
11.8. VERIFYING TRANSPORT ENCRYPTION IN EVENTING 146
CHAPTER 12. CONFIGURING KUBE-RBAC-PROXY FOREVENTINGc.iiiiiiiiiiiiinneennnnns 148
12.1. CONFIGURING KUBE-RBAC-PROXY RESOURCES FOR EVENTING 148
12.2. CONFIGURING KUBE-RBAC-PROXY RESOURCES FOR KNATIVE FOR APACHE KAFKA 148
CHAPTER 13. USING CONTAINERSOURCE WITHSERVICEMESHttt iiiiiiiiennnens 150
13.1. CONFIGURING CONTAINERSOURCE WITH SERVICE MESH 150
CHAPTER 14. USING A SINK BINDING WITHSERVICEMESHottt e naneennnnnns 153
14.1. CONFIGURING A SINK BINDING WITH SERVICE MESH 153

Table of Contents

Red Hat OpenShift Serverless 1.34 Eventing

CHAPTER 1. KNATIVE EVENTING

Knative Eventing on OpenShift Container Platform enables developers to use an event-driven
architecture with serverless applications. An event-driven architecture is based on the concept of
decoupled relationships between event producers and event consumers.

Event producers create events, and event sinks, or consumers, receive events. Knative Eventing uses
standard HTTP POST requests to send and receive events between event producers and sinks. These
events conform to the CloudEvents specifications, which enables creating, parsing, sending, and
receiving events in any programming language.

1.1. KNATIVE EVENTING USE CASES:
Knative Eventing supports the following use cases:

Publish an event without creating a consumer

You can send events to a broker as an HTTP POST, and use binding to decouple the destination
configuration from your application that produces events.

Consume an event without creating a publisher

You can use a trigger to consume events from a broker based on event attributes. The application
receives events as an HTTP POST.

To enable delivery to multiple types of sinks, Knative Eventing defines the following generic interfaces
that can be implemented by multiple Kubernetes resources:

Addressable resources

Able to receive and acknowledge an event delivered over HTTP to an address defined in the
status.address.url field of the event. The Kubernetes Service resource also satisfies the
addressable interface.

Callable resources

Able to receive an event delivered over HTTP and transform it, returning 0 or 1 new events in the
HTTP response payload. These returned events may be further processed in the same way that
events from an external event source are processed.

https://www.redhat.com/en/topics/integration/what-is-event-driven-architecture
https://cloudevents.io

CHAPTER 2. EVENT SOURCES

CHAPTER 2. EVENT SOURCES

2.1. EVENT SOURCES

A Knative event source can be any Kubernetes object that generates or imports cloud events, and relays
those events to another endpoint, known as a sink. Sourcing events is critical to developing a distributed
system that reacts to events.

You can create and manage Knative event sources by using the Developer perspective in the OpenShift
Container Platform web console, the Knative (kn) CLI, or by applying YAML files.

Currently, OpenShift Serverless supports the following event source types:

APl server source

Brings Kubernetes APl server events into Knative. The APl server source sends a new event each
time a Kubernetes resource is created, updated or deleted.

Ping source
Produces events with a fixed payload on a specified cron schedule.
Kafka event source

Connects an Apache Kafka cluster to a sink as an event source.

You can also create a custom event source.

2.2. EVENT SOURCE IN THE ADMINISTRATOR PERSPECTIVE

Sourcing events is critical to developing a distributed system that reacts to events.

2.2.1. Creating an event source by using the Administrator perspective

A Knative event source can be any Kubernetes object that generates or imports cloud events, and relays
those events to another endpoint, known as a sink.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have logged in to the web console and are in the Administrator perspective.
® You have cluster administrator permissions on OpenShift Container Platform, or you have

cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Serverless — Eventing.

2. Inthe Create list, select Event Source. You will be directed to the Event Sources page.

3. Select the event source type that you want to create.

Red Hat OpenShift Serverless 1.34 Eventing

2.3. CREATING AN API SERVER SOURCE

The APl server source is an event source that can be used to connect an event sink, such as a Knative
service, to the Kubernetes API server. The APl server source watches for Kubernetes events and
forwards them to the Knative Eventing broker.

2.3.1. Creating an API server source by using the web console

After Knative Eventing is installed on your cluster, you can create an APl server source by using the web
console. Using the OpenShift Container Platform web console provides a streamlined and intuitive user
interface to create an event source.

Prerequisites

® You have logged in to the OpenShift Container Platform web console.
® The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have installed the OpenShift CLI (oc).

PROCEDURE

If you want to re-use an existing service account, you can modify your existing
ServiceAccount resource to include the required permissions instead of creating a new
resource.

1. Create a service account, role, and role binding for the event source as a YAML file:

apiVersion: vi
kind: ServiceAccount
metadata:
name: events-sa
namespace: default ﬂ

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: event-watcher
namespace: default 9
rules:
- apiGroups:
resources:
- events
verbs:
- get
- list
- watch

CHAPTER 2. EVENT SOURCES

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: k8s-ra-event-watcher
namespace: default 6
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: event-watcher
subjects:
- kind: ServiceAccount
name: events-sa
namespace: default ﬂ

hange this namespace to the namespace that you have selected for installing the
event source.

2. Apply the YAML file:

I $ oc apply -f <filename>

3. Inthe Developer perspective, navigate to +Add — Event Source. The Event Sources page is
displayed.

4. Optional: If you have multiple providers for your event sources, select the required provider
from the Providers list to filter the available event sources from the provider.

5. Select ApiServerSource and then click Create Event Source The Create Event Sourcepage
is displayed.

6. Configure the ApiServerSource settings by using the Form view or YAML view:

NOTE

You can switch between the Form viewand YAML view. The data is persisted
when switching between the views.

a. Enter v1 as the APIVERSION and Event as the KIND.
b. Select the Service Account Namefor the service account that you created.

c. Inthe Target section, select your event sink. This can be either a Resource or a URI:

i. Select Resource to use a channel, broker, or service as an event sink for the event
source.

ii. Select URI to specify a Uniform Resource Identifier (URI) where the events are routed
to.

7. Click Create.

Verification

Red Hat OpenShift Serverless 1.34 Eventing

e After you have created the APl server source, check that it is connected to the event sink by
viewing it in the Topology view.

Display Options v Find by name /e

testevents Actions v

Details Resources

Knative Services
@& cvent-display-api

http:/event-display-apijai-testsve.clusterlocal &

' Pods

: @ @ apiserversource-testevents- £ Running View logs
] i 5095c715-36c1-4d9e-a7ab-

] 0e52al9f8nwd

event-..-vn85s 4 [testevents
S Deployment

& event-..ay-api A hello-..ft-app

@ apiserversource-testevents-5095c715-36cl-4d9e-a7ab-0e52a1911500

NOTE

If a URI sink is used, you can modify the URI by right-clicking on URI sink— Edit URI.

Deleting the APl server source

1. Navigate to the Topology view.

2. Right-click the API server source and select Delete ApiServerSource.

RedHat
OpenShift
Container Platform

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to all
<> Developer

Project: default «

Application: all applications

+Add

Display Options =

Topology

Builds
Helm
................... V
o Y
Project DO
.
2 .
'
.
.)
O : @
. Edit Application Grouping
'
.
3 Move Sink
' hellow..-wcrsg : @ s
b] EditLabels

& & helloworld-go

Edit Annotations
Edit ApiServerSource

Delete ApiServerSource

10

CHAPTER 2. EVENT SOURCES

2.3.2. Creating an APl server source by using the Knative CLI

You can use the kn source apiserver create command to create an APl server source by using the kn
CLI. Using the kn CLI to create an APl server source provides a more streamlined and intuitive user
interface than modifying YAML files directly.

Prerequisites
® The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have installed the OpenShift CLI (oc).

® You have installed the Knative (kn) CLI.

PROCEDURE

If you want to re-use an existing service account, you can modify your existing
ServiceAccount resource to include the required permissions instead of creating a new
resource.

1. Create a service account, role, and role binding for the event source as a YAML file:

apiVersion: vi
kind: ServiceAccount
metadata:
name: events-sa
namespace: default ﬂ

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: event-watcher
namespace: default 9
rules:
- apiGroups:
resources:
- events
verbs:
- get
- list
- watch

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: k8s-ra-event-watcher
namespace: default 6
roleRef:
apiGroup: rbac.authorization.k8s.io

1

Red Hat OpenShift Serverless 1.34 Eventing

12

kind: Role
name: event-watcher
subjects:
- kind: ServiceAccount
name: events-sa
namespace: default ﬂ

Mhange this namespace to the namespace that you have selected for installing the
event source.

. Apply the YAML file:

I $ oc apply -f <filename>

. Create an APl server source that has an event sink. In the following example, the sink is a broker:

$ kn source apiserver create <event_source_name> --sink broker:<broker_name> --
resource "event:v1" --service-account <service_account_name> --mode Resource

. To check that the APl server source is set up correctly, create a Knative service that dumps

incoming messages to its log:

I $ kn service create event-display --image quay.io/openshift-knative/showcase

. If you used a broker as an event sink, create a trigger to filter events from the default broker to

the service:

I $ kn trigger create <trigger_name> --sink ksvc:event-display

. Create events by launching a pod in the default namespace:

I $ oc create deployment event-origin --image quay.io/openshift-knative/showcase

. Check that the controller is mapped correctly by inspecting the output generated by the

following command:

I $ kn source apiserver describe <source_name>

Example output

Name: mysource

Namespace: default

Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer

Age: 3m

ServiceAccountName: events-sa

Mode: Resource

Sink:

Name: default

Namespace: default

Kind: Broker (eventing.knative.dev/v1)
Resources:

Kind: event (v1)
Controller: false
Conditions:
OK TYPE AGE REASON
++ Ready 3m
++ Deployed 3m
++ SinkProvided 3m

++ SufficientPermissions 3m
++ EventTypesProvided 3m

Verification

CHAPTER 2. EVENT SOURCES

To verify that the Kubernetes events were sent to Knative, look at the event-display logs or use web

browser to see the events.

® To view the eventsin a web browser, open the link returned by the following command:

I $ kn service describe event-display -o url

Figure 2.1. Example browser page

Welcome to Serverless, Cloud-Native world!

What can | do from here?
Invoke a hello endpoint: /hello.

¢ Itwill send CloudEventto K_SINK = http://localhost:31111

Collected CloudEvents (1)

id source applicationfisen @
JiechuSw Kubernetes {
"apiVersion": "vi",
"involvedObject™: {
"apiversion": "wv1",

"fieldPa

: "spec.containers{hello-node}"

e
"namespace": "default”
type time N
"kind": "Event”,
"message”: "Started container”,
"metadata": {
"name": "hello-node.159d76@8e3a35572c",
"namespace”: "default”
I
"reason": "Started"

dev knative.apiserver.resource.update less than a minute

¢ This app captures CloudEvents on POST /events endpoint. Newer are listed first.

Application

Group: com.redhat.openshift
Artifact: knative-showcase
Version: v0.7.0-4-g23d460f

Platform: Quarkus/2.13.7.Final-redhat-00e3 Java/17.0.7

Powered by:

) 0

QUARKUS

This application has been written with React & Quarkus to
showcase Knative.

® Alternatively, to see the logs in the terminal, view the event-display logs for the pods by

entering the following command:

I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container

Example output

a cloudevents.Event

Validation: valid

Context Attributes,
specversion: 1.0
type: dev.knative.apiserver.resource.update
datacontenttype: application/json

13

Red Hat OpenShift Serverless 1.34 Eventing

Data,
{

"apiVersion": "v1",
"involvedObject": {
"apiVersion": "v1",
"fieldPath": "spec.containers{event-origin}",
"kind": "Pod",
"name": "event-origin",
"namespace": "default",

}

"kind": "Event",

"message": "Started container”,

"metadata”: {

"name": "event-origin.159d7608e3a3572c",
"namespace": "default",

}

"reason": "Started",

Deleting the APl server source

1. Delete the trigger:
I $ kn trigger delete <trigger_name>
2. Delete the event source:

I $ kn source apiserver delete <source_name>

3. Delete the service account, cluster role, and cluster binding:

I $ oc delete -f authentication.yaml

2.3.2.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

$ kn source binding create bind-heartbeat \
--namespace sinkbinding-example \
--subject "Job:batch/v1:app=heartbeat-cron" \
--sink http://event-display.svc.cluster.local \ ﬂ
--ce-override "sink=bound"

14

CHAPTER 2. EVENT SOURCES

svcin http://event-display.svc.cluster.local determines that the sink is a Knative service. Other

default sink prefixes include channel, and broker.

2.3.3. Creating an API server source by using YAML files

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
event sources declaratively and in a reproducible manner. To create an APl server source by using
YAML, you must create a YAML file that defines an ApiServerSource object, then apply it by using the
oc apply command.

Prerequisites

Install the OpenShift CLI (oc).

PROCEDURE

The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created the default broker in the same namespace as the one defined in the API
server source YAML file.

If you want to re-use an existing service account, you can modify your existing
ServiceAccount resource to include the required permissions instead of creating a new

resource.

1. Create a service account, role, and role binding for the event source as a YAML file:

apiVersion: vi
kind: ServiceAccount
metadata:
name: events-sa
namespace: default ﬂ

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: event-watcher
namespace: default 9
rules:
- apiGroups:
resources:
- events
verbs:
- get
- list
- watch

apiVersion: rbac.authorization.k8s.io/v1

15

Red Hat OpenShift Serverless 1.34 Eventing

kind: RoleBinding
metadata:
name: k8s-ra-event-watcher
namespace: default 6
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: event-watcher
subjects:
- kind: ServiceAccount
name: events-sa
namespace: default ﬂ

hange this namespace to the namespace that you have selected for installing the
event source.

2. Apply the YAML file:
I $ oc apply -f <filename>
3. Create an APl server source as a YAML file:

apiVersion: sources.knative.dev/vialphai
kind: ApiServerSource
metadata:
name: testevents
spec:
serviceAccountName: events-sa
mode: Resource
resources:
- apiVersion: v1
kind: Event
sink:
ref:
apiVersion: eventing.knative.dev/v1
kind: Broker
name: default

4. Apply the ApiServerSource YAML file:

I $ oc apply -f <filename>

5. To check that the APl server source is set up correctly, create a Knative service as a YAML file
that dumps incoming messages to its log:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: event-display
namespace: default
spec:
template:

16

CHAPTER 2. EVENT SOURCES

spec:
containers:
- image: quay.io/openshift-knative/showcase

Apply the Service YAML file:

I $ oc apply -f <filename>

Create a Trigger object as a YAML file that filters events from the default broker to the service
created in the previous step:

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
name: event-display-trigger
namespace: default
spec:
broker: default
subscriber:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display

Apply the Trigger YAML file:
I $ oc apply -f <filename>
Create events by launching a pod in the default namespace:

I $ oc create deployment event-origin --image=quay.io/openshift-knative/showcase

. Check that the controller is mapped correctly, by entering the following command and

inspecting the output:

I $ oc get apiserversource.sources.knative.dev testevents -o yaml
Example output

apiVersion: sources.knative.dev/vialphai
kind: ApiServerSource
metadata:
annotations:
creationTimestamp: "2020-04-07T17:24:54Z"
generation: 1
name: testevents
namespace: default
resourceVersion: "62868"
selfLink:
/apis/sources.knative.dev/vialphal/namespaces/default/apiserversources/testevents?2
uid: 1603d863-bb06-4d1c-b371-f580b4db99fa
spec:
mode: Resource

17

Red Hat OpenShift Serverless 1.34 Eventing

resources:
- apiVersion: v1
controller: false
controllerSelector:
apiVersion: ""
kind: ™"
name:
uid: "
kind: Event
labelSelector: {}
serviceAccountName: events-sa
sink:
ref:
apiVersion: eventing.knative.dev/v1
kind: Broker
name: default

Verification

To verify that the Kubernetes events were sent to Knative, you can look at the event-display logs or use
web browser to see the events.

® To view the eventsin a web browser, open the link returned by the following command:
I $ oc get ksvc event-display -o jsonpath="{.status.url}'

Figure 2.2. Example browser page

Welcome to Serverless, Cloud-Native world!

What can | do from here? Application

Invoke a hello endpoint: /hello. Group: com.redhat.openshift

Artifact: knative-showcase
¢ Itwill send CloudEventto K_SINK = http://localhost:31111
Version: v0.7.0-4-g23d460f

Platform: Quarkus/2.13.7.Final-redhat-00e3 Java/17.0.7

Collected CloudEvents (1)

" sppicationfsan @ Powered by:
JiechuSw Kubernetes {
"apiVersion®: "vi",)
"involvedObject”: { l}l n
"apiversion": "wv1",
*fieldPath": "spec.containers(hello-node}", QUARKUS
"kind": "Pod",
"name”: "hello-node”

e e . namespace”: default This application has been written with React & Quarkus to
"kind": "Event", showcase Knative.
"message”: "Started container”,
"metadata": {

"name": "hello-node.159d7608e3a35572c",

"namespace”: "default”
I

"reason": "Started"

dev knative.apiserver.resource.update less than a minute

¢ This app captures CloudEvents on POST /events endpoint. Newer are listed first.

® To see the logsin the terminal, view the event-display logs for the pods by entering the
following command:

I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container

Example output

18

CHAPTER 2. EVENT SOURCES

a cloudevents.Event
Validation: valid
Context Attributes,
specversion: 1.0
type: dev.knative.apiserver.resource.update
datacontenttype: application/json
Data,
{
"apiVersion": "v1",
"involvedObject": {
"apiVersion": "v1",
"fieldPath": "spec.containers{event-origin}",
"kind": "Pod",
"name": "event-origin",
"namespace": "default",

}

"kind": "Event",

"message": "Started container”,

"metadata”: {

"name": "event-origin.159d7608e3a3572c",
"namespace": "default",

}

"reason": "Started",

Deleting the APl server source

1. Delete the trigger:
I $ oc delete -f trigger.yaml
2. Delete the event source:
I $ oc delete -f k8s-events.yaml

3. Delete the service account, cluster role, and cluster binding:

I $ oc delete -f authentication.yaml

2.4. CREATING A PING SOURCE

A ping source is an event source that can be used to periodically send ping events with a constant
payload to an event consumer. A ping source can be used to schedule sending events, similar to a timer.

2.4.1. Creating a ping source by using the web console
After Knative Eventing is installed on your cluster, you can create a ping source by using the web console.

Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create an event source.

19

Red Hat OpenShift Serverless 1.34 Eventing

Prerequisites

® You have logged in to the OpenShift Container Platform web console.

® The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming
messages to the logs of the service.

a. Inthe Developer perspective, navigate to +Add - YAML.

b. Copy the example YAML:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:

name: event-display
spec:

template:

spec:
containers:
- image: quay.io/openshift-knative/showcase

c. Click Create.

2. Create a ping source in the same namespace as the service created in the previous step, or any
other sink that you want to send events to.

a. Inthe Developer perspective, navigate to +Add — Event Source. The Event Sources page
is displayed.

b. Optional: If you have multiple providers for your event sources, select the required provider
from the Providers list to filter the available event sources from the provider.

c. Select Ping Source and then click Create Event Source The Create Event Sourcepage is
displayed.

NOTE
You can configure the PingSource settings by using the Form view or

YAML view and can switch between the views. The data is persisted when
switching between the views.

d. Enter avalue for Schedule. In this example, the value is */2 * * * * which creates a
PingSource that sends a message every two minutes.

e. Optional: You can enter a value for Data, which is the message payload.

f. Inthe Target section, select your event sink. This can be either a Resource or a URI:

20

CHAPTER 2. EVENT SOURCES

i. Select Resource to use a channel, broker, or service as an event sink for the event
source. In this example, the event-display service created in the previous step is used as
the target Resource.

ii. Select URIto specify a Uniform Resource Identifier (URI) where the events are routed
to.

g. Click Create.

Verification

You can verify that the ping source was created and is connected to the sink by viewing the Topology
page.

1. In the Developer perspective, navigate to Topology.

2. View the ping source and sink.

& ping-source Actions =
Details Resources
£4
100%
Sink

O (E=E4U® cvent-display

http:/fevent-display knative-eventing.svc.clusterlocal @

€ ring-source event-..-qqoww
A~ event-..es-app & @D cvent-display

3. View the event-display service in the web browser. You should see the ping source events in the
web Ul

Welcome to Serverless, Cloud-Native world!

What can | do from here? Application

Invoke a hello endpoint: /hello. Group: com.redhat.openshift

Artifact: knative-showcase
it will send CloudEvent to Kk_SINK = http://localhost:31111

¥

Version: v@.7.0-4-g23d460f

Platform: Quarkus/2.13.7.Final-redhat-00003

Collected CloudEvents (1) Java/17.0.7
id source application/jsen @
bb2dca7e-8bas-402b-afce 882 fds0e2doh /apisivl { Powered by:
/namespaces "message": "Hello World!"

/default/pingsources }

/test-ping-source | *I n

type time.

' ') QUARKUS
dev.knative.sources.ping less than a minute
This application has been written with React &
» This app captures CloudEvents on POST /sevents endpoint. Newer are listed first. Quarkus to showcase Knative.

Deleting the ping source

1. Navigate to the Topology view.

2. Right-click the API server source and select Delete Ping Source

21

Red Hat OpenShift Serverless 1.34 Eventing

2.4.2. Creating a ping source by using the Knative CLI

You can use the kn source ping create command to create a ping source by using the Knative (kn) CLI.
Using the Knative CLI to create event sources provides a more streamlined and intuitive user interface
than modifying YAML files directly.

Prerequisites

® The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

® You have installed the Knative (kn) CLI.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

e Optional: If you want to use the verification steps for this procedure, install the OpenShift CLI
(oc).

Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming
messages to the service logs:

$ kn service create event-display \
--image quay.io/openshift-knative/showcase

2. For each set of ping events that you want to request, create a ping source in the same
namespace as the event consumer:

$ kn source ping create test-ping-source \
--schedule "™/2 * * * *"\
--data '{"message": "Hello world!"}' \
--sink ksvc:event-display

3. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

I $ kn source ping describe test-ping-source
Example output

Name: test-ping-source

Namespace: default

Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer

Age: 15s

Schedule: */2****

Data: {"message": "Hello world!"}
Sink:

Name: event-display
Namespace: default
Resource: Service (serving.knative.dev/v1)

22

CHAPTER 2. EVENT SOURCES

Conditions:
OK TYPE AGE REASON
++ Ready 8s
++ Deployed 8s

++ SinkProvided 15s
++ ValidSchedule 15s
++ EventTypeProvided 15s
++ ResourcesCorrect 15s

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the logs of
the sink pod.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The
example shown in this guide creates a ping source that sends a message every 2 minutes, so each
message should be observed in a newly created pod.

1. Watch for new pods created:

I $ watch oc get pods

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:

I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container
Example output

a cloudevents.Event

Validation: valid

Context Attributes,
specversion: 1.0
type: dev.knative.sources.ping
source: /apis/vl/namespaces/default/pingsources/test-ping-source
id: 99e4f4f6-08ff-4bff-acf1-47f61ded68c9
time: 2020-04-07T16:16:00.000601161Z
datacontenttype: application/json

Data,
{

"message": "Hello world!"

}

Deleting the ping source

® Delete the ping source:

I $ kn delete pingsources.sources.knative.dev <ping_source_name>

2.4.2.1. Knative CLlI sink flag
When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are

sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

23

Red Hat OpenShift Serverless 1.34 Eventing

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

$ kn source binding create bind-heartbeat \
--namespace sinkbinding-example \
--subject "Job:batch/v1:app=heartbeat-cron" \
--sink http://event-display.svc.cluster.local \ ﬂ
--ce-override "sink=bound"

svcin http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

2.4.3. Creating a ping source by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
event sources declaratively and in a reproducible manner. To create a serverless ping source by using
YAML, you must create a YAML file that defines a PingSource object, then apply it by using oc apply.

Example PingSource object

apiVersion: sources.knative.dev/v1
kind: PingSource
metadata:
name: test-ping-source
spec:
schedule: "™/2 * * * *" ﬂ
data: '{"message": "Hello world!"}' g
sink: €
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display

The schedule of the event specified using CRON expression.

The event message body expressed as a JSON encoded data string.

-

These are the details of the event consumer. In this example, we are using a Knative service named
event-display.

Prerequisites

® The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

e Install the OpenShift CLI (oc).

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

24

https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/#schedule

CHAPTER 2. EVENT SOURCES
Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming
messages to the service’s logs.

a. Create a service YAML file:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:

name: event-display
spec:

template:

spec:
containers:
- image: quay.io/openshift-knative/showcase

b. Create the service:

I $ oc apply -f <filename>

2. For each set of ping events that you want to request, create a ping source in the same
namespace as the event consumer.

a. Create a YAML file for the ping source:

apiVersion: sources.knative.dev/v1
kind: PingSource
metadata:
name: test-ping-source
spec:
schedule: "™/2 * * * *"
data: '{"message": "Hello world!"}'
sink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display

b. Create the ping source:

I $ oc apply -f <filename>

3. Check that the controller is mapped correctly by entering the following command:

I $ oc get pingsource.sources.knative.dev <ping_source_name> -oyam|
Example output

apiVersion: sources.knative.dev/v1
kind: PingSource
metadata:
annotations:
sources.knative.dev/creator: developer
sources.knative.dev/lastModifier: developer

25

Red Hat OpenShift Serverless 1.34 Eventing

creationTimestamp: "2020-04-07T16:11:14Z"
generation: 1
name: test-ping-source
namespace: default
resourceVersion: "55257"
selfLink: /apis/sources.knative.dev/vi/namespaces/default/pingsources/test-ping-source
uid: 3d80d50b-f8c7-4c1b-99f7-3ec00e0a8164
spec:
data: '{ value: "hello" }'
schedule: /2 * * **
sink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display
namespace: default

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the sink
pod's logs.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The
example shown in this guide creates a PingSource that sends a message every 2 minutes, so each
message should be observed in a newly created pod.

1. Watch for new pods created:

I $ watch oc get pods

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:
I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container
Example output

a cloudevents.Event

Validation: valid

Context Attributes,
specversion: 1.0
type: dev.knative.sources.ping
source: /apis/vl/namespaces/default/pingsources/test-ping-source
id: 042ff529-240e-45ee-b40c-3a908129853e
time: 2020-04-07T16:22:00.000791674Z
datacontenttype: application/json

Data,
{

"message": "Hello world!"

}

Deleting the ping source

® Delete the ping source:

26

CHAPTER 2. EVENT SOURCES

I $ oc delete -f <filename>
Example command

I $ oc delete -f ping-source.yaml

2.5. SOURCE FOR APACHE KAFKA

You can create an Apache Kafka source that reads events from an Apache Kafka cluster and passes
these events to a sink. You can create a Kafka source by using the OpenShift Container Platform web
console, the Knative (kn) CLI, or by creating a KafkaSource object directly as a YAML file and using the
OpenShift CLI (o) to apply it.

NOTE

See the documentation for Installing Knative broker for Apache Kafka .

2.5.1. Creating an Apache Kafka event source by using the web console

After the Knative broker implementation for Apache Kafka is installed on your cluster, you can create an
Apache Kafka source by using the web console. Using the OpenShift Container Platform web console
provides a streamlined and intuitive user interface to create a Kafka source.

Prerequisites

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your cluster.

® You have logged in to the web console.

® You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure
1. In the Developer perspective, navigate to the +Add page and select Event Source.
2. Inthe Event Sources page, select Kafka Source in the Type section.

3. Configure the Kafka Source settings:

a. Add a comma-separated list of Bootstrap Servers.
b. Add a comma-separated list of Topics.
c. Add a Consumer Group.

d. Select the Service Account Namefor the service account that you created.

o

In the Target section, select your event sink. This can be either a Resource or a URI:

27

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.34/html-single/installing_openshift_serverless/#serverless-install-kafka-odc_installing-knative-eventing

Red Hat OpenShift Serverless 1.34 Eventing

i. Select Resource to use a channel, broker, or service as an event sink for the event
source.

ii. Select URI to specify a Uniform Resource Identifier (URI) where the events are routed
to.

f. Enter a Name for the Kafka event source.
4. Click Create.

Verification

You can verify that the Kafka event source was created and is connected to the sink by viewing the
Topology page.

1. In the Developer perspective, navigate to Topology.

2. View the Kafka event source and sink.

Display Options ¥ Filter by Resource ¥ Find by name /e

€D kafka-source Actions =

Details Resources

Name

kafka-source
1010 1010 Namespace
l IOI l l lol I @ knative-eventing
Labels Edt &

app

G channel app co... ~kafka-so,
app. =kafka-so.
app kubernetes.io..=event-sourc

€@ kafka-source
Annotations
1 Annotation &
A event-..es-app Created At
@ 2 minutes ago

Owner

2.5.2. Creating an Apache Kafka event source by using the Knative CLI

You can use the kn source kafka create command to create a Kafka source by using the Knative (kn)
CLI. Using the Knative CLI to create event sources provides a more streamlined and intuitive user
interface than modifying YAML files directly.

Prerequisites

® The OpenShift Serverless Operator, Knative Eventing, Knative Serving, and the KnativeKafka
custom resource (CR) are installed on your cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

® You have installed the Knative (kn) CLI.

e Optional: You have installed the OpenShift CLI (o¢) if you want to use the verification steps in
this procedure.

28

CHAPTER 2. EVENT SOURCES

Procedure

1. To verify that the Kafka event source is working, create a Knative service that dumps incoming
events into the service logs:

$ kn service create event-display \
--image quay.io/openshift-knative/showcase

2. Create a KafkaSource CR:

$ kn source kafka create <kafka_source_name> \
--servers <cluster_kafka_bootstrap>.kafka.svc:9092 \
--topics <topic_name> --consumergroup my-consumer-group \
--sink event-display

NOTE

Replace the placeholder values in this command with values for your source
name, bootstrap servers, and topics.

The --servers, --topics, and --consumergroup options specify the connection parameters to
the Kafka cluster. The --consumergroup option is optional.

3. Optional: View details about the KafkaSource CR you created:

I $ kn source kafka describe <kafka_source _name>
Example output

Name: example-kafka-source

Namespace: kafka

Age: 1h

BootstrapServers: example-cluster-kafka-bootstrap.kafka.svc:9092
Topics: example-topic

ConsumerGroup: example-consumer-group

Sink:
Name: event-display
Namespace: default
Resource: Service (serving.knative.dev/v1)

Conditions:
OK TYPE AGE REASON
++ Ready 1h

++ Deployed 1h
++ SinkProvided 1h

Verification steps

1. Trigger the Kafka instance to send a message to the topic:

$ oc -n kafka run kafka-producer \
-ti --image=quay.io/strimzi/kafka:latest-kafka-2.7.0 --rm=true \

29

Red Hat OpenShift Serverless 1.34 Eventing

--restart=Never -- bin/kafka-console-producer.sh \
--broker-list <cluster_kafka_bootstrap>:9092 --topic my-topic

Enter the message in the prompt. This command assumes that:
® The Kafka cluster is installed in the kafka namespace.
e The KafkaSource object has been configured to use the my-topic topic.

2. Verify that the message arrived by viewing the logs:

I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container
Example output

a cloudevents.Event
Validation: valid
Context Attributes,
specversion: 1.0
type: dev.knative.kafka.event
source: /apis/vil/namespaces/default/kafkasources/example-kafka-source#example-topic
subject: partition:46#0
id: partition:46/offset:0
time: 2021-03-10T11:21:49.4Z
Extensions,
traceparent: 00-161ff3815727d8755848ec01¢c866d1cd-7ff3916¢c44334678-00
Data,
Hello!

2.5.2.1. Knative CLlI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

$ kn source binding create bind-heartbeat \
--namespace sinkbinding-example \
--subject "Job:batch/v1:app=heartbeat-cron" \
--sink http://event-display.svc.cluster.local \ ﬂ
--ce-override "sink=bound"

svcin http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

2.5.3. Creating an Apache Kafka event source by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
applications declaratively and in a reproducible manner. To create a Kafka source by using YAML, you

30

CHAPTER 2. EVENT SOURCES

must create a YAML file that defines a KafkaSource object, then apply it by using the oc apply
command.

Prerequisites

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

e Install the OpenShift CLI (oc).

Procedure

1. Create a KafkaSource object as a YAML file:

apiVersion: sources.knative.dev/vibetal
kind: KafkaSource
metadata:
name: <source_name>
spec:
consumerGroup: <group_name> ﬂ
bootstrapServers:
- <list_of bootstrap_servers>
topics:
- <list_of_topics> 9
sink:
- <list_of_sinks> €)

A consumer group is a group of consumers that use the same group ID, and consume data
from a topic.

A topic provides a destination for the storage of data. Each topic is split into one or more
partitions.

o o

A sink specifies where events are sent to from a source.

IMPORTANT

Only the vibeta1 version of the API for KafkaSource objects on OpenShift
Serverless is supported. Do not use the vialphal version of this API, as this
version is now deprecated.

Example KafkaSource object

apiVersion: sources.knative.dev/vibetal
kind: KafkaSource
metadata:

name: kafka-source

31

Red Hat OpenShift Serverless 1.34 Eventing

spec:
consumerGroup: knative-group
bootstrapServers:
- my-cluster-kafka-bootstrap.kafka:9092
topics:
- knative-demo-topic
sink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display

2. Apply the KafkaSource YAML file:

I $ oc apply -f <filename>

Verification

e Verify that the Kafka event source was created by entering the following command:
I $ oc get pods
Example output

NAME READY STATUS RESTARTS AGE
kafkasource-kafka-source-5ca0248f-... 1/1 Running 0 13m

2.5.4. Configuring SASL authentication for Apache Kafka sources

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use
SASL authentication on your cluster, users must provide credentials to Knative for communicating with
the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

® You have cluster or dedicated administrator permissions on OpenShift Container Platform.

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have a username and password for a Kafka cluster.

® You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or
SCRAM-SHA-512.

e |f TLSis enabled, you also need the ca.crt certificate file for the Kafka cluster.

® You have installed the OpenShift (oc) CLI.

Procedure

32

CHAPTER 2. EVENT SOURCES

1. Create the certificate files as secrets in your chosen namespace:

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
--from-file=ca.crt=caroot.pem \
--from-literal=password="SecretPassword" \
--from-literal=sasIType="SCRAM-SHA-512" \ 0
--from-literal=user="my-sasl-user"

ﬂ The SASL type can be PLAIN, SCRAM-SHA-256, or SCRAM-SHA-512.

2. Create or modify your Kafka source so that it contains the following spec configuration:

apiVersion: sources.knative.dev/vibetal
kind: KafkaSource
metadata:
name: example-source
spec:

net:
sasl:
enable: true
user:
secretKeyRef:
name: <kafka_auth_secret>
key: user
password:
secretKeyRef:
name: <kafka_auth_secret>
key: password
type:
secretKeyRef:
name: <kafka_auth_secret>
key: saslType
tls:
enable: true
caCert: ﬂ
secretKeyRef:
name: <kafka_auth_secret>
key: ca.crt

ﬂ The caCert spec is not required if you are using a public cloud Kafka service.

2.5.5. Configuring KEDA autoscaling for KafkaSource

You can configure Knative Eventing sources for Apache Kafka (KafkaSource) to be autoscaled using the
Custom Metrics Autoscaler Operator, which is based on the Kubernetes Event Driven Autoscaler
(KEDA).

33

Red Hat OpenShift Serverless 1.34 Eventing

IMPORTANT

Configuring KEDA autoscaling for KafkaSource is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

Prerequisites
® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your cluster.
Procedure

1. In the KnativeKafka custom resource, enable KEDA scaling:

Example YAML

apiVersion: operator.serverless.openshift.io/vialphat
kind: KnativeKafka
metadata:

name: knative-kaftka

namespace: knative-eventing
spec:

config:

kafka-features:
controller-autoscaler-keda: enabled

2. Apply the KnativeKafka YAML file:

I $ oc apply -f <filename>

2.6. CUSTOM EVENT SOURCES

If you need to ingress events from an event producer that is not included in Knative, or from a producer
that emits events which are not in the CloudEvent format, you can do this by creating a custom event
source. You can create a custom event source by using one of the following methods:

® Use a PodSpecable object as an event source, by creating a sink binding.

® Use a container as an event source, by creating a container source.

2.6.1. Sink binding

The SinkBinding object supports decoupling event production from delivery addressing. Sink binding is
used to connect event producers to an event consumer, or sink. An event producer is a Kubernetes
resource that embeds a PodSpec template and produces events. A sink is an addressable Kubernetes
object that can receive events.

34

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 2. EVENT SOURCES

The SinkBinding object injects environment variables into the PodTemplateSpec of the sink, which
means that the application code does not need to interact directly with the Kubernetes API to locate the
event destination. These environment variables are as follows:

K_SINK
The URL of the resolved sink.
K_CE_OVERRIDES
A JSON object that specifies overrides to the outbound event.

NOTE

The SinkBinding object currently does not support custom revision names for services.

2.6.1.1. Creating a sink binding by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
event sources declaratively and in a reproducible manner. To create a sink binding by using YAML, you
must create a YAML file that defines an SinkBinding object, then apply it by using the oc apply
command.

Prerequisites

® The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

e Install the OpenShift CLI (oc).

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. To check that sink binding is set up correctly, create a Knative event display service, or event
sink, that dumps incoming messages to its log.

a. Create a service YAML file:

Example service YAML file

apiVersion: serving.knative.dev/v1
kind: Service
metadata:

name: event-display
spec:

template:

spec:
containers:
- image: quay.io/openshift-knative/showcase

b. Create the service:
I $ oc apply -f <filename>

2. Create asink binding instance that directs events to the service.

35

Red Hat OpenShift Serverless 1.34 Eventing

a. Create a sink binding YAML file:

Example service YAML file

apiVersion: sources.knative.dev/vialphal
kind: SinkBinding
metadata:
name: bind-heartbeat
spec:
subject:
apiVersion: batch/v1
kind: Job @)
selector:
matchLabels:
app: heartbeat-cron

sink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display

In this example, any Job with the label app: heartbeat-cron will be bound to the event
sink.

b. Create the sink binding:
I $ oc apply -f <filename>

3. Create a Crondob object.

a. Create acron job YAML file:

Example cron job YAML file

apiVersion: batch/v1
kind: CronJob
metadata:
name: heartbeat-cron
spec:
Run every minute
schedule: " * * * *"
jobTemplate:
metadata:
labels:
app: heartbeat-cron
bindings.knative.dev/include: "true"
spec:
template:
spec:
restartPolicy: Never
containers:
- name: single-heartbeat
image: quay.io/openshift-knative/heartbeats:latest

36

CHAPTER 2. EVENT SOURCES

args:
- --period=1
env:
- name: ONE_SHOT
value: "true"
- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: POD_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace

IMPORTANT

To use sink binding, you must manually add a
bindings.knative.dev/include=true label to your Knative resources.

For example, to add this label to a CrondJob resource, add the following lines
to the Job resource YAML definition:

jobTemplate:
metadata:
labels:
app: heartbeat-cron
bindings.knative.dev/include: "true"

b. Create the cron job:
I $ oc apply -f <filename>

4. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

I $ oc get sinkbindings.sources.knative.dev bind-heartbeat -oyaml
Example output

spec:
sink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display
namespace: default
subject:
apiVersion: batch/v1
kind: Job
namespace: default
selector:
matchLabels:
app: heartbeat-cron

37

Red Hat OpenShift Serverless 1.34 Eventing

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the
message dumper function logs.

1. Enter the command:
I $ oc get pods

2. Enter the command:
I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container
Example output

a cloudevents.Event
Validation: valid
Context Attributes,
specversion: 1.0
type: dev.knative.eventing.samples.heartbeat
source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
time: 2019-10-18T15:23:20.809775386Z
contenttype: application/json
Extensions,
beats: true
heart: yes
the: 42
Data,
{
"id": 1,
"label": ™"

}

2.6.1.2. Creating a sink binding by using the Knative CLI
You can use the kn source binding create command to create a sink binding by using the Knative (kn)

CLI. Using the Knative CLI to create event sources provides a more streamlined and intuitive user
interface than modifying YAML files directly.

Prerequisites

® The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® |[nstall the Knative (kn) CLI.

e Install the OpenShift CLI (oc).

38

CHAPTER 2. EVENT SOURCES

NOTE
The following procedure requires you to create YAML files.

If you change the names of the YAML files from those used in the examples, you must
ensure that you also update the corresponding CLI commands.

Procedure

1. To check that sink binding is set up correctly, create a Knative event display service, or event
sink, that dumps incoming messages to its log:

I $ kn service create event-display --image quay.io/openshift-knative/showcase

2. Create asink binding instance that directs events to the service:

$ kn source binding create bind-heartbeat --subject Job:batch/v1:app=heartbeat-cron --sink
ksvc:event-display

3. Create a Crondob object.

a. Create acron job YAML file:

Example cron job YAML file

apiVersion: batch/v1
kind: CronJob
metadata:
name: heartbeat-cron
spec:
Run every minute
schedule: "™ * * * *"
jobTemplate:
metadata:
labels:
app: heartbeat-cron
bindings.knative.dev/include: "true"
spec:
template:
spec:
restartPolicy: Never
containers:
- name: single-heartbeat
image: quay.io/openshift-knative/heartbeats:latest
args:
- --period=1
env:
- name: ONE_SHOT
value: "true"
- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: POD_NAMESPACE

39

Red Hat OpenShift Serverless 1.34 Eventing

valueFrom:
fieldRef:
fieldPath: metadata.namespace

IMPORTANT

To use sink binding, you must manually add a
bindings.knative.dev/include=true label to your Knative CRs.

For example, to add this label to a Crondob CR, add the following lines to the
Job CR YAML definition:

jobTemplate:
metadata:
labels:
app: heartbeat-cron
bindings.knative.dev/include: "true"

b. Create the cron job:

I $ oc apply -f <filename>

4. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

I $ kn source binding describe bind-heartbeat
Example output

Name: bind-heartbeat
Namespace: demo-2
Annotations: sources.knative.dev/creator=minikube-user,
sources.knative.dev/lastModifier=minikub ...
Age: 2m
Subject:
Resource: job (batch/v1)
Selector:
app: heartbeat-cron
Sink:
Name: event-display
Resource: Service (serving.knative.dev/v1)

Conditions:
OKTYPE AGE REASON
++ Ready 2m

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the
message dumper function logs.

® View the message dumper function logs by entering the following commands:

40

CHAPTER 2. EVENT SOURCES

I $ oc get pods
I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container
Example output

a cloudevents.Event
Validation: valid
Context Attributes,
specversion: 1.0
type: dev.knative.eventing.samples.heartbeat
source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
time: 2019-10-18T15:23:20.809775386Z
contenttype: application/json
Extensions,
beats: true
heart: yes
the: 42
Data,
{
"id": 1,
"label": ™"

}

2.6.1.2.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

$ kn source binding create bind-heartbeat \
--namespace sinkbinding-example \
--subject "Job:batch/v1:app=heartbeat-cron" \
--sink http://event-display.svc.cluster.local \ ﬂ
--ce-override "sink=bound"

svcin http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

2.6.1.3. Creating a sink binding by using the web console

After Knative Eventing is installed on your cluster, you can create a sink binding by using the web console.
Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create an event source.

Prerequisites

41

Red Hat OpenShift Serverless 1.34 Eventing

® You have logged in to the OpenShift Container Platform web console.

® The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your

OpenShift Container Platform cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure
1. Create a Knative service to use as a sink:
a. Inthe Developer perspective, navigate to +Add - YAML.

b. Copy the example YAML:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:

name: event-display
spec:

template:

spec:
containers:
- image: quay.io/openshift-knative/showcase

c. Click Create.

2. Create a Crondob resource that is used as an event source and sends an event every minute.

a. Inthe Developer perspective, navigate to +Add - YAML.

b. Copy the example YAML:

apiVersion: batch/v1
kind: CronJob
metadata:
name: heartbeat-cron
spec:
Run every minute
schedule: "™/1 ****"
jobTemplate:
metadata:
labels:
app: heartbeat-cron
bindings.knative.dev/include: true 0
spec:
template:
spec:
restartPolicy: Never
containers:

- name: single-heartbeat
image: quay.io/openshift-knative/heartbeats
args:

- --period=1
env:

42

CHAPTER 2. EVENT SOURCES

- name: ONE_SHOT
value: "true"
- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: POD_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace

Q Ensure that you include the bindings.knative.dev/include: true label. The default
namespace selection behavior of OpenShift Serverless uses inclusion mode.

c. Click Create.

3. Create asink binding in the same namespace as the service created in the previous step, or any
other sink that you want to send events to.

a. Inthe Developer perspective, navigate to +Add — Event Source. The Event Sources page
is displayed.

b. Optional: If you have multiple providers for your event sources, select the required provider
from the Providers list to filter the available event sources from the provider.

c. Select Sink Binding and then click Create Event Source The Create Event Sourcepage is
displayed.
NOTE

You can configure the Sink Binding settings by using the Form view or
YAML view and can switch between the views. The data is persisted when
switching between the views.

d. Inthe apiVersion field enter batch/v1.

e. In the Kind field enter Job.

NOTE

The Crondob kind is not supported directly by OpenShift Serverless sink
binding, so the Kind field must target the Job objects created by the cron
job, rather than the cron job object itself.

f. Inthe Target section, select your event sink. This can be either a Resource or a URI:

i. Select Resource to use a channel, broker, or service as an event sink for the event
source. In this example, the event-display service created in the previous step is used as
the target Resource.

ii. Select URI to specify a Uniform Resource Identifier (URI) where the events are routed
to.

g. Inthe Match labels section:

43

Red Hat OpenShift Serverless 1.34 Eventing

i. Enter app in the Name field.

ii. Enter heartbeat-cron in the Value field.

NOTE
The label selector is required when using cron jobs with sink binding,
rather than the resource name. This is because jobs created by a cron job

do not have a predictable name, and contain a randomly generated string
in their name. For example, hearthbeat-cron-1cc23f.

h. Click Create.

Verification

You can verify that the sink binding, sink, and cron job have been created and are working correctly by
viewing the Topology page and pod logs.

1. In the Developer perspective, navigate to Topology.

2. View the sink binding, sink, and heartbeats cron job.

S

heartbeat-cron

event-..-00001

event-..es-app

event-display

3. Observe that successful jobs are being registered by the cron job once the sink binding is added.
This means that the sink binding is successfully reconfiguring the jobs created by the cron job.

4. Browse the event-display service to see events produced by the heartbeats cron job.

44

CHAPTER 2. EVENT SOURCES

Welcome to Serverless, Cloud-Native world!

What can | do from here?

Invoke a hello endpoint: /hello.

¢ Itwill send CloudEventto Kk SINK = http://localhost:31111

Collected CloudEvents (1)

id source application/jsen @

bb2dc37e-Bbag8-482b-afce-882fd60e2ddb fapis/ivl {
/namespaces "message": "Hello World!"
/default/pingsources }
/test-ping-source

type time.

dev.knative.sources.ping less than a minute

+ This app captures CloudEvents on POST /events endpoint. Newer are listed first.

2.6.1.4. Sink binding reference

Application

Group: com.redhat.openshift
Artifact: knative-showcase
Version: v@.7.0-4-g23d460f

Platform: Quarkus/2.13.7.Final-redhat-00003
Java/17.0.7

Powered by:

®

QUARKUS

This application has been written with React &
Quarkus to showcase Knative.

You can use a PodSpecable object as an event source by creating a sink binding. You can configure

multiple parameters when creating a SinkBinding object.

SinkBinding objects support the following parameters:

Field Description
apiVersion Specifies the API version, for
example

sources.knative.dev/v1.

kind Identifies this resource object as a
SinkBinding object.
metadata Specifies metadata that uniquely

identifies the SinkBinding
object. For example, a name.

spec Specifies the configuration
information for this SinkBinding
object.

spec.sink A reference to an object that
resolves to a URI to use as the
sink.

spec.subject References the resources for
which the runtime contract is
augmented by binding
implementations.

Required or optional

Required

Required

Required

Required

Required

Required

45

Red Hat OpenShift Serverless 1.34 Eventing

Field Description Required or optional

spec.ceOverrides Defines overrides to control the Optional
output format and modifications
to the event sent to the sink.

2.6.1.4.1. Subject parameter

The Subject parameter references the resources for which the runtime contract is augmented by
binding implementations. You can configure multiple fields for a Subject definition.

The Subject definition supports the following fields:

Field Description Required or optional
apiVersion APl version of the referent. Required
kind Kind of the referent. Required
namespace Namespace of the referent. If Optional

omitted, this defaults to the
namespace of the object.

hame Name of the referent. Do not use if you configure
selector.
selector Selector of the referents. Do not use if you configure
name.
selector.matchExpressions A list of label selector Only use one of either
requirements. matchExpressions or

matchLabels.

selector.matchExpressions.k The label key that the selector Required if using
ey applies to. matchExpressions.

selector.matchExpressions.o Represents a key's relationship to Required if using
perator a set of values. Valid operators matchExpressions.
are In, NotIn, Exists and
DoesNotEXxist.

selector.matchExpressions.v An array of string values. If the Required if using
alues operator parameter value is In matchExpressions.

or Notln, the values array must be

non-empty. If the operator

parameter value is EXists or

DoesNotEXxist, the values array

must be empty. This array is

replaced during a strategic merge

patch.

46

CHAPTER 2. EVENT SOURCES

Field Description Required or optional
selector.matchLabels A map of key-value pairs. Each Only use one of either
key-value pair in the matchExpressions or

matchLabels map is equivalent matchLabels.
to an element of

matchExpressions, where the

key field is matchLabels.<key>,

the operator isIn, and the

values array contains only

matchLabels.<values.

Subject parameter examples

Given the following YAML, the Deployment object named mysubject in the default namespace is
selected:

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
name: bind-heartbeat
spec:
subject:
apiVersion: apps/v1
kind: Deployment
namespace: default
name: mysubject

Given the following YAML, any Job object with the label working=example in the default namespace is
selected:

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
name: bind-heartbeat
spec:
subject:
apiVersion: batch/v1
kind: Job
namespace: default
selector:
matchLabels:
working: example

Given the following YAML, any Pod object with the label working=example or working=sample in the
default namespace is selected:

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:

name: bind-heartbeat

47

Red Hat OpenShift Serverless 1.34 Eventing

spec:
subject:
apiVersion: v1
kind: Pod
namespace: default
selector:

- matchExpression:
key: working
operator: In
values:

- example
- sample

2.6.1.4.2. CloudEvent overrides

A ceOverrides definition provides overrides that control the CloudEvent’s output format and
modifications sent to the sink. You can configure multiple fields for the ceOverrides definition.

A ceOverrides definition supports the following fields:

Field Description Required or optional

extensions Specifies which attributes are Optional
added or overridden on the
outbound event. Each
extensions key-value pair is set
independently on the event as an
attribute extension.

NOTE

Only valid CloudEvent attribute names are allowed as extensions. You cannot set the
spec defined attributes from the extensions override configuration. For example, you can
not modify the type attribute.

CloudEvent Overrides example

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
name: bind-heartbeat
spec:

ceOverrides:
extensions:
extra: this is an extra attribute
additional: 42

This sets the K_CE_OVERRIDES environment variable on the subject:

Example output

48

CHAPTER 2. EVENT SOURCES
I { "extensions": { "extra": "this is an extra attribute", "additional": "42" } }

2.6.1.4.3. The include label

To use a sink binding, you need to do assign the bindings.knative.dev/include: "true" label to either
the resource or the namespace that the resource is included in. If the resource definition does not
include the label, a cluster administrator can attach it to the namespace by running:

I $ oc label namespace <namespace> bindings.knative.dev/include=true

2.6.1.5. Integrating Service Mesh with a sink binding

Prerequisites

® You have integrated Service Mesh with OpenShift Serverless.

Procedure

1. Create a Service in a namespace that is a member of the ServiceMeshMemberRoll.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: event-display
namespace: <namespace>
spec:
template:
metadata:
annotations:
sidecar.istio.io/inject: "true"
sidecar.istio.io/rewriteAppHTTPProbers: "true"
spec:
containers:
- image: quay.io/openshift-knative/showcase

ﬂ A namespace that is a member of the ServiceMeshMemberRoll.

9 Injects Service Mesh sidecars into the Knative service pods.

2. Apply the Service resource.
I $ oc apply -f <filename>
3. Create a SinkBinding resource.

apiVersion: sources.knative.dev/v1
kind: SinkBinding
metadata:
name: bind-heartbeat
namespace: <namespace> ﬂ
spec:
subject:

49

Red Hat OpenShift Serverless 1.34 Eventing

apiVersion: batch/v1
kind: Job @)
selector:
matchLabels:
app: heartbeat-cron

sink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display

ﬂ A namespace that is a member of the ServiceMeshMemberRoll.

9 In this example, any Job with the label app: heartbeat-cron is bound to the event sink.

4. Apply the SinkBinding resource.
I $ oc apply -f <filename>
5. Create a CrondJob:

apiVersion: batch/v1
kind: CronJob
metadata:
name: heartbeat-cron
namespace: <namespace> ﬂ
spec:
Run every minute
schedule: " * * * *"
jobTemplate:
metadata:
labels:
app: heartbeat-cron
bindings.knative.dev/include: "true"
spec:
template:
metadata:
annotations:
sidecar.istio.io/inject: "true"
sidecar.istio.io/rewriteAppHTTPProbers: "true"
spec:
restartPolicy: Never
containers:

- name: single-heartbeat
image: quay.io/openshift-knative/heartbeats:latest
args:

- --period=1
env:
- name: ONE_SHOT
value: "true"
- name: POD_NAME
valueFrom:
fieldRef:

50

CHAPTER 2. EVENT SOURCES

fieldPath: metadata.name
- name: POD_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace

ﬂ A namespace that is a member of the ServiceMeshMemberRoll.

9 Injects Service Mesh sidecars into the Crondob pods.

6. Apply the Crondob resource.

I $ oc apply -f <filename>

Verification

To verify that the events were sent to the Knative event sink, look at the message dumper function logs.

1. Enter the following command:
I $ oc get pods

2. Enter the following command:
I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container
Example output

a cloudevents.Event
Validation: valid
Context Attributes,
specversion: 1.0
type: dev.knative.eventing.samples.heartbeat
source: https://knative.dev/eventing/test/heartbeats/#event-test/mypod
id: 2b72d7bf-c38f-4298-a433-608fbcdd2596
time: 2019-10-18T15:23:20.809775386Z
contenttype: application/json
Extensions,
beats: true
heart: yes
the: 42
Data,
{
"id": 1,
"label": ™"

}

Additional resources

® |ntegratingService Mesh with OpenShift Serverless

2.6.2. Container source

51

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.34/html-single/integrations/#serverless-ossm-setup_serverless-ossm-setup

Red Hat OpenShift Serverless 1.34 Eventing

Container sources create a container image that generates events and sends events to a sink. You can
use a container source to create a custom event source, by creating a container image and a
ContainerSource object that uses your image URI.

2.6.2.1. Guidelines for creating a container image

Two environment variables are injected by the container source controller: K_SINK and
K_CE_OVERRIDES. These variables are resolved from the sink and ceOverrides spec, respectively.
Events are sent to the sink URI specified in the K_SINK environment variable. The message must be
sent as a POST using the CloudEvent HTTP format.

Example container images

The following is an example of a heartbeats container image:

package main

import (
"context”
"encoding/json"
"flag"

"fmt"

Hlogll

"os"

"strconv"

"time"

duckv1 "knative.dev/pkg/apis/duck/v1"

cloudevents "github.com/cloudevents/sdk-go/v2"
"github.com/kelseyhightower/envconfig"

)

type Heartbeat struct {
Sequence int “json:"id™
Label string “json:"label™

}

var (

eventSource string
eventType string
sink string
label string
periodStr string

)

func init() {

flag.StringVar(&eventSource, "eventSource", ", "the event-source (CloudEvents)")
flag.StringVar(&eventType, "eventType", "dev.knative.eventing.samples.heartbeat", "the event-type
(CloudEvents)")

flag.StringVar(&sink, "sink”, ", "the host url to heartbeat to")

flag.StringVar(&label, "label", ", "a special label")

flag.StringVar(&periodStr, "period", "5", "the number of seconds between heartbeats")

}

type envConfig struct {

52

https://cloudevents.io/

CHAPTER 2. EVENT SOURCES

// Sink URL where to send heartbeat cloud events
Sink string “envconfig:"K_SINK™

// CEOverrides are the CloudEvents overrides to be applied to the outbound event.
CEOQOverrides string “envconfig:"K_CE_OVERRIDES™

// Name of this pod.
Name string “envconfig:"POD_NAME" required:"true™

// Namespace this pod exists in.
Namespace string "envconfig:"POD_NAMESPACE" required:"true™

// Whether to run continuously or exit.
OneShot bool "envconfig:"ONE_SHOT" default:"false™

}

func main() {
flag.Parse()

var env envConfig

if err := envconfig.Process(", &env); err |= nil {
log.Printf("[ERROR] Failed to process env var: %s", err)
0s.Exit(1)

}

if env.Sink 1= "" {
sink = env.Sink

}

var ceOverrides *duckv1.CloudEventOverrides

if len(env.CEOverrides) > 0 {

overrides := duckv1.CloudEventOverrides{}

err := json.Unmarshal([Joyte(env.CEQOverrides), &overrides)

if err 1= nil {
log.Printf("[ERROR] Unparseable CloudEvents overrides %s: %V", env.CEQOverrides, err)
0s.Exit(1)

}

ceOverrides = &overrides

}

p, err := cloudevents.NewHTTP(cloudevents.WithTarget(sink))
if err 1= nil {
log.Fatalf("failed to create http protocol: %s", err.Error())

}

¢, err := cloudevents.NewClient(p, cloudevents.WithUUIDs(), cloudevents.WithTimeNow())
if err 1= nil {
log.Fatalf("failed to create client: %s", err.Error())

}

var period time.Duration

if p, err := strconv.Atoi(periodStr); err = nil {
period = time.Duration(5) * time.Second

} else {

period = time.Duration(p) * time.Second

}

53

Red Hat OpenShift Serverless 1.34 Eventing

if eventSource == " {

eventSource = fmt.Sprintf("https://knative.dev/eventing-contrib/cmd/heartbeats/#%s/%s",
env.Namespace, env.Name)

log.Printf("Heartbeats Source: %s", eventSource)

}

if len(label) > 0 && label[0] == " {
label, _ = strconv.Unquote(label)
}

hb := &Heartbeat{

Sequence: 0,

Label: label,

}

ticker := time.NewTicker(period)
for {

hb.Sequence++

event := cloudevents.NewEvent("1.0")
event.SetType(eventType)
event.SetSource(eventSource)
event.SetExtension("the", 42)
event.SetExtension("heart", "yes")
event.SetExtension("beats", true)

if ceOverrides != nil && ceOverrides.Extensions != nil {
for n, v := range ceOverrides.Extensions {
event.SetExtension(n, v)

}

}

if err := event.SetData(cloudevents.ApplicationdSON, hb); err = nil {
log.Printf("failed to set cloudevents data: %s", err.Error())

}

log.Printf("sending cloudevent to %s", sink)
if res := c.Send(context.Background(), event); Icloudevents.ISACK(res) {
log.Printf("failed to send cloudevent: %V", res)

}

if env.OneShot {
return

}

// Wait for next tick
<-ticker.C

}
}

The following is an example of a container source that references the previous heartbeats container
image:

apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:

name: test-heartbeats

54

CHAPTER 2. EVENT SOURCES

spec:
template:
spec:
containers:
This corresponds to a heartbeats image URI that you have built and published
- image: gcr.io/knative-releases/knative.dev/eventing/cmd/heartbeats
name: heartbeats
args:
- --period=1
env:
- name: POD_NAME
value: "example-pod"
- name: POD_NAMESPACE
value: "event-test"
sink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: showcase

2.6.2.2. Creating and managing container sources by using the Knative CLI

You can use the kn source container commands to create and manage container sources by using the
Knative (kn) CLI. Using the Knative CLI to create event sources provides a more streamlined and
intuitive user interface than modifying YAML files directly.

Create a container source

I $ kn source container create <container_source_name> --image <image_uri> --sink <sink>
Delete a container source

I $ kn source container delete <container_source_name>

Describe a container source

I $ kn source container describe <container_source_name>

List existing container sources

I $ kn source container list

List existing container sources in YAML format

I $ kn source container list -o yaml

Update a container source

This command updates the image URI for an existing container source:

I $ kn source container update <container_source_name> --image <image_uri>

55

Red Hat OpenShift Serverless 1.34 Eventing

2.6.2.3. Creating a container source by using the web console

After Knative Eventing is installed on your cluster, you can create a container source by using the web
console. Using the OpenShift Container Platform web console provides a streamlined and intuitive user
interface to create an event source.

Prerequisites

® You have logged in to the OpenShift Container Platform web console.

® The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to +Add — Event Source. The Event Sources page is
displayed.

2. Select Container Source and then click Create Event Source The Create Event Sourcepage
is displayed.

3. Configure the Container Source settings by using the Form view or YAML view:

NOTE

You can switch between the Form viewand YAML view. The data is persisted
when switching between the views.

a. Inthe Image field, enter the URI of the image that you want to run in the container created
by the container source.

b. In the Name field, enter the name of the image.
c. Optional: In the Arguments field, enter any arguments to be passed to the container.

d. Optional: In the Environment variables field, add any environment variables to set in the
container.

e. In the Target section, select your event sink. This can be either a Resource or a URI:

i. Select Resource to use a channel, broker, or service as an event sink for the event
source.

ii. Select URI to specify a Uniform Resource Identifier (URI) where the events are routed
to.

4. After you have finished configuring the container source, click Create.

2.6.2.4. Container source reference

You can use a container as an event source, by creating a ContainerSource object. You can configure
multiple parameters when creating a ContainerSource object.

56

CHAPTER 2. EVENT SOURCES

ContainerSource objects support the following fields:

Field Description Required or optional
apiVersion Specifies the API version, for Required
example

sources.knative.dev/v1.

kind Identifies this resource objectasa Required
ContainerSource object.

metadata Specifies metadata that uniquely Required
identifies the ContainerSource
object. For example, a name.

spec Specifies the configuration Required
information for this
ContainerSource object.

spec.sink A reference to an object that Required
resolves to a URI to use as the
sink.

spec.template A template spec for the Required

ContainerSource object.

spec.ceOverrides Defines overrides to control the Optional
output format and modifications
to the event sent to the sink.

Template parameter example

apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
name: test-heartbeats
spec:
template:
spec:
containers:
- image: quay.io/openshift-knative/heartbeats:latest
name: heartbeats
args:
- --period=1
env:
- name: POD_NAME
value: "mypod"
- name: POD_NAMESPACE
value: "event-test"

57

Red Hat OpenShift Serverless 1.34 Eventing

2.6.2.4.1. CloudEvent overrides

A ceOverrides definition provides overrides that control the CloudEvent's output format and
modifications sent to the sink. You can configure multiple fields for the ceOverrides definition.

A ceOverrides definition supports the following fields:

Field Description Required or optional

extensions Specifies which attributes are Optional
added or overridden on the
outbound event. Each
extensions key-value pair is set
independently on the event as an
attribute extension.

NOTE

Only valid CloudEvent attribute names are allowed as extensions. You cannot set the
spec defined attributes from the extensions override configuration. For example, you can
not modify the type attribute.

CloudEvent Overrides example

apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
name: test-heartbeats
spec:
ceOverrides:
extensions:

extra: this is an extra attribute
additional: 42

This sets the K_CE_OVERRIDES environment variable on the subject:

Example output

I { "extensions": { "extra": "this is an extra attribute", "additional": "42" } }

2.6.2.5. Integrating Service Mesh with ContainerSource

Prerequisites

® You have integrated Service Mesh with OpenShift Serverless.

Procedure

1. Create a Service in a namespace that is a member of the ServiceMeshMemberRoll.

I apiVersion: serving.knative.dev/v1

58

CHAPTER 2. EVENT SOURCES

kind: Service
metadata:
name: event-display
namespace: <namespace>
spec:
template:
metadata:
annotations:
sidecar.istio.io/inject: "true"
sidecar.istio.io/rewriteAppHTTPProbers: "true"
spec:
containers:
- image: quay.io/openshift-knative/showcase

ﬂ A namespace that is a member of the ServiceMeshMemberRoll.

9 Injects Service Mesh sidecars into the Knative service pods.

2. Apply the Service resource.
I $ oc apply -f <filename>

3. Create a ContainerSource object in a namespace that is a member of the
ServiceMeshMemberRoll and sink set to the event-display.

apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
name: test-heartbeats
namespace: <namespace> ﬂ
spec:
template:
metadata:
annotations:
sidecar.istio.io/inject: "true"
sidecar.istio.io/rewriteAppHTTPProbers: "true"
spec:
containers:
- image: quay.io/openshift-knative/heartbeats:latest
name: heartbeats
args:
- --period=1s
env:
- name: POD_NAME
value: "example-pod"
- name: POD_NAMESPACE
value: "event-test"
sink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display

ﬂ A namespace is part of the ServiceMeshMemberRoll.

59

Red Hat OpenShift Serverless 1.34 Eventing

9 Enables Service Mesh integration with a ContainerSource object.

4. Apply the ContainerSource resource.

I $ oc apply -f <filename>

Verification

To verify that the events were sent to the Knative event sink, look at the message dumper function logs.

1. Enter the following command:
I $ oc get pods

2. Enter the following command:
I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container
Example output

a cloudevents.Event
Validation: valid
Context Attributes,
specversion: 1.0
type: dev.knative.eventing.samples.heartbeat
source: https://knative.dev/eventing/test/heartbeats/#event-test/mypod
id: 2b72d7bf-c38f-4298-a433-608fbcdd2596
time: 2019-10-18T15:23:20.809775386Z
contenttype: application/json
Extensions,
beats: true
heart: yes
the: 42
Data,
{
"id": 1,
"label": ™"

}

Additional resources

® |ntegratingService Mesh with OpenShift Serverless

2.7. CONNECTING AN EVENT SOURCE TO AN EVENT SINK BY USING
THE DEVELOPER PERSPECTIVE

When you create an event source by using the OpenShift Container Platform web console, you can
specify a target event sink that events are sent to from that source. The event sink can be any
addressable or callable resource that can receive incoming events from other resources.

2.7.1. Connect an event source to an event sink by using the Developer perspective

60

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.34/html-single/integrations/#serverless-ossm-setup_serverless-ossm-setup

CHAPTER 2. EVENT SOURCES

Prerequisites

® The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

® You have logged in to the web console and are in the Developer perspective.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have created an event sink, such as a Knative service, channel or broker.

Procedure

1. Create an event source of any type, by navigating to +Add = Event Source and selecting the
event source type that you want to create.

2. Inthe Target section of the Create Event Sourceform view, select your event sink. This can be
either a Resource or a URI:

a. Select Resource to use a channel, broker, or service as an event sink for the event source.
b. Select URI to specify a Uniform Resource Identifier (URI) where the events are routed to.

3. Click Create.

Verification

You can verify that the event source was created and is connected to the sink by viewing the Topology
page.

1. In the Developer perspective, navigate to Topology.

2. View the event source and click the connected event sink to see the sink details in the right
panel.

61

Red Hat OpenShift Serverless 1.34 Eventing

CHAPTER 3. EVENT SINKS

3.1. EVENT SINKS

When you create an event source, you can specify an event sink where events are sent to from the
source. An event sink is an addressable or a callable resource that can receive incoming events from
other resources. Knative services, channels, and brokers are all examples of event sinks. There is also a
specific Apache Kafka sink type available.

Addressable objects receive and acknowledge an event delivered over HTTP to an address defined in
their status.address.url field. As a special case, the core Kubernetes Service object also fulfills the
addressable interface.

Callable objects are able to receive an event delivered over HTTP and transform the event, returning 0
or 1 new events in the HTTP response. These returned events may be further processed in the same
way that events from an external event source are processed.

3.1.1. Knative CLI sink flag

When you create an event source by using the Knative (kn) CLI, you can specify a sink where events are
sent to from that resource by using the --sink flag. The sink can be any addressable or callable resource
that can receive incoming events from other resources.

The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local,
as the sink:

Example command using the sink flag

$ kn source binding create bind-heartbeat \
--namespace sinkbinding-example \
--subject "Job:batch/v1:app=heartbeat-cron" \
--sink http://event-display.svc.cluster.local \ ﬂ
--ce-override "sink=bound"

ﬂ svcin http://event-display.svc.cluster.local determines that the sink is a Knative service. Other
default sink prefixes include channel, and broker.

TIP

You can configure which CRs can be used with the --sink flag for Knative (kn) CLI commands by
Customizing kn.

3.2. CREATING EVENT SINKS

When you create an event source, you can specify an event sink where events are sent to from the
source. An event sink is an addressable or a callable resource that can receive incoming events from
other resources. Knative services, channels, and brokers are all examples of event sinks. There is also a
specific Apache Kafka sink type available.

For information about creating resources that can be used as event sinks, see the following
documentation:

62

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.34/html-single/knative_cli/#advanced-kn-config

CHAPTER 3. EVENT SINKS

® Serverless applications
® Creating brokers
® Creating channels

o Kafka sink

3.3. SINK FOR APACHE KAFKA

Apache Kafka sinks are a type of event sink that are available if a cluster administrator has enabled
Apache Kafka on your cluster. You can send events directly from an event source to a Kafka topic by
using a Kafka sink.

3.3.1. Creating an Apache Kafka sink by using YAML

You can create a Kafka sink that sends events to a Kafka topic. By default, a Kafka sink uses the binary
content mode, which is more efficient than the structured mode. To create a Kafka sink by using YAML,
you must create a YAML file that defines a KafkaSink object, then apply it by using the oc apply
command.

Prerequisites

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
(CR) are installed on your cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages
you want to import.

e Install the OpenShift CLI (oc).

Procedure

1. Create a KafkaSink object definition as a YAML file:

Kafka sink YAML

apiVersion: eventing.knative.dev/vialphai
kind: KafkaSink
metadata:
name: <sink-name>
namespace: <namespace>
spec:
topic: <topic-name>
bootstrapServers:
- <bootstrap-server>

2. To create the Kafka sink, apply the KafkaSink YAML file:

I $ oc apply -f <filename>

63

https://access.redhat.com/documentation/en-us/red_hat_openshift_serverless/1.34/html-single/serving/#serverless-applications

Red Hat OpenShift Serverless 1.34 Eventing

3. Configure an event source so that the sink is specified in its spec:

Example of a Kafka sink connected to an API server source

apiVersion: sources.knative.dev/vialpha2
kind: ApiServerSource
metadata:
name: <source-name> ﬂ
namespace: <namespace> 9
spec:
serviceAccountName: <service-account-name> 6
mode: Resource
resources:
- apiVersion: v1
kind: Event
sink:
ref:
apiVersion: eventing.knative.dev/vialphat
kind: KafkaSink
name: <sink-name> ﬂ

The name of the event source.
The namespace of the event source.

The service account for the event source.

- -

The Kafka sink name.

3.3.2. Creating an event sink for Apache Kafka by using the OpenShift Container
Platform web console

You can create a Kafka sink that sends events to a Kafka topic by using the Developer perspective in the
OpenShift Container Platform web console. By default, a Kafka sink uses the binary content mode, which
is more efficient than the structured mode.

As a developer, you can create an event sink to receive events from a particular source and send them to
a Kafka topic.

Prerequisites

® You have installed the OpenShift Serverless Operator, with Knative Serving, Knative Eventing,
and Knative broker for Apache Kafka APIs, from the OperatorHub.

® You have created a Kafka topic in your Kafka environment.

Procedure

1. In the Developer perspective, navigate to the +Add view.
2. Click Event Sinkin the Eventing catalog.

3. Search for KafkaSink in the catalog items and click it.

64

CHAPTER 3. EVENT SINKS

4. Click Create Event Sink

5. In the form view, type the URL of the bootstrap server, which is a combination of host name and

port.

Create Event Sink

Create an Event sink to recelve incoming events from a particular source. Configure using YAML and form views.

Configurevia: ® Formview O YAML view

KafkaSink
) Note: Some fields may not be represented in this form view. Please select "YAML view" for full control of object X % Provided by Red Hat
creation.

Kafka Sink is Addressable, it receives events and send them to a Kafka topic.
KafkaSink

Bootstrap servers *

https,f/my-servercom X Model does not exist, Model does not exist. Try adding bootstrap servers manually. Qo -

The address of the Kafka broker

Topic *
knative-topic

Topic name to send events

Secret

© cli-secret -
General

Application name

A unique name given to the application grouping to label your resources.

Create Cancel

6. Type the name of the topic to send event data.
7. Type the name of the event sink.

8. Click Create.

Verification

1. In the Developer perspective, navigate to the Topology view.

2. Click the created event sink to view its details in the right panel.

3.3.3. Configuring security for Apache Kafka sinks

Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between
Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption
for the Knative broker implementation for Apache Kafka.

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use

SASL authentication on your cluster, users must provide credentials to Knative for communicating with
the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resources

(CRs) are installed on your OpenShift Container Platform cluster.

e Kafka sink is enabled in the KnativeKafka CR.

65

Red Hat OpenShift Serverless 1.34 Eventing

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have a Kafka cluster CA certificate stored as a .pem file.
® You have a Kafka cluster client certificate and a key stored as .pem files.
® You have installed the OpenShift (oc) CLI.

® You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or
SCRAM-SHA-512.

Procedure

1. Create the certificate files as a secret in the same namespace as your KafkaSink object:

IMPORTANT

Certificates and keys must be in PEM format.

® Forauthentication using SASL without encryption:

$ oc create secret -n <namespace> generic <secret_name> \
--from-literal=protocol=SASL_PLAINTEXT \
--from-literal=sasl.mechanism=<sasl_mechanism> \
--from-literal=user=<username> \
--from-literal=password=<password>

® Forauthentication using SASL and encryption using TLS:

$ oc create secret -n <namespace> generic <secret_name> \
--from-literal=protocol=SASL_SSL \
--from-literal=sasl.mechanism=<sasl_mechanism> \
--from-file=ca.crt=<my_caroot.pem_file_path> \ 0
--from-literal=user=<username> \
--from-literal=password=<password>

The ca.crt can be omitted to use the system’s root CA set if you are using a public
cloud managed Kafka service.

® Forauthentication and encryption using TLS:

$ oc create secret -n <namespace> generic <secret_name> \
--from-literal=protocol=SSL \
--from-file=ca.crt=<my_caroot.pem_file_path> \ ﬂ
--from-file=user.crt=<my_cert.pem_file_path>\
--from-file=user.key=<my_key.pem_file_path>

The ca.crt can be omitted to use the system’s root CA set if you are using a public
cloud managed Kafka service.

2. Create or modify a KafkaSink object and add a reference to your secret in the auth spec:

66

CHAPTER 3. EVENT SINKS

apiVersion: eventing.knative.dev/vialpha1i
kind: KafkaSink
metadata:
name: <sink_name>
namespace: <namespace>
spec:

auth:
secret:

ref:
name: <secret_name>

3. Apply the KafkaSink object:

I $ oc apply -f <filename>

67

Red Hat OpenShift Serverless 1.34 Eventing

CHAPTER 4. BROKERS

4.1. BROKERS
Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. Events are sent from an event source to a broker as an HTTP POST request. After events have

entered the broker, they can be filtered by CloudEvent attributes using triggers, and sent as an HTTP
POST request to an event sink.

O Events

Source 1 Trigger —@—@—P
(filter applied)

2 -1 —2 —Pp Broker

e \—> Trlgger [. _’

(filter applied)

4.2. BROKER TYPES

Cluster administrators can set the default broker implementation for a cluster. When you create a
broker, the default broker implementation is used, unless you provide set configurations in the Broker
object.

4.2.1. Default broker implementation for development purposes

Knative provides a default, channel-based broker implementation. This channel-based broker can be
used for development and testing purposes, but does not provide adequate event delivery guarantees
for production environments. The default broker is backed by the InMemoryChannel channel
implementation by default.

If you want to use Apache Kafka to reduce network hops, use the Knative broker implementation for

Apache Kafka. Do not configure the channel-based broker to be backed by the KafkaChannel channel
implementation.

4.2.2. Production-ready Knative broker implementation for Apache Kafka

For production-ready Knative Eventing deployments, Red Hat recommends using the Knative broker
implementation for Apache Kafka. The broker is an Apache Kafka native implementation of the Knative
broker, which sends CloudEvents directly to the Kafka instance.

The Knative broker has a native integration with Kafka for storing and routing events. This allows better
integration with Kafka for the broker and trigger model over other broker types, and reduces network
hops. Other benefits of the Knative broker implementation include:

® At-least-once delivery guarantees

® Ordered delivery of events, based on the CloudEvents partitioning extension

68

https://github.com/cloudevents/spec/blob/v1.0/spec.md#context-attributes

CHAPTER 4. BROKERS

® Control plane high availability
® A horizontally scalable data plane

The Knative broker implementation for Apache Kafka stores incoming CloudEvents as Kafka records,
using the binary content mode. This means that all CloudEvent attributes and extensions are mapped as
headers on the Kafka record, while the data spec of the CloudEvent corresponds to the value of the
Kafka record.

4.3. CREATING BROKERS

Knative provides a default, channel-based broker implementation. This channel-based broker can be
used for development and testing purposes, but does not provide adequate event delivery guarantees
for production environments.

If a cluster administrator has configured your OpenShift Serverless deployment to use Apache Kafka as
the default broker type, creating a broker by using the default settings creates a Knative broker for
Apache Kafka.

If your OpenShift Serverless deployment is not configured to use the Knative broker for Apache Kafka

as the default broker type, the channel-based broker is created when you use the default settings in the
following procedures.

4.3.1. Creating a broker by using the Knative CLI

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. Using the Knative (kn) CLI to create brokers provides a more streamlined and intuitive user
interface over modifying YAML files directly. You can use the kn broker create command to create a
broker.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have installed the Knative (kn) CLI.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

® Create abroker:

I $ kn broker create <broker _name>

Verification

1. Use the kn command to list all existing brokers:

I $ kn broker list

Example output

69

Red Hat OpenShift Serverless 1.34 Eventing

NAME URL AGE CONDITIONS READY
REASON

default http://broker-ingress.knative-eventing.svc.cluster.local/test/default 45s 5 OK/5
True

2. Optional: If you are using the OpenShift Container Platform web console, you can navigate to
the Topology view in the Developer perspective, and observe that the broker exists:

e default Actions =

Details Resources

Event Sources
Qol o l O| O Subscribers

© default

Deployments

4.3.2. Creating a broker by annotating a trigger

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. You can create a broker by adding the eventing.knative.dev/injection: enabled annotation to a
Trigger object.

IMPORTANT

If you create a broker by using the eventing.knative.dev/injection: enabled annotation,
you cannot delete this broker without cluster administrator permissions. If you delete the
broker without having a cluster administrator remove this annotation first, the broker is
created again after deletion.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

e Install the OpenShift CLI (oc).

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create a Trigger object as a YAML file that has the eventing.knative.dev/injection: enabled
annotation:

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
annotations:
eventing.knative.dev/injection: enabled

70

CHAPTER 4. BROKERS

name: <trigger_name>
spec:
broker: default
subscriber: ﬂ
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: <service_name>

ﬂ Specify details about the event sink, or subscriber, that the trigger sends events to.

2. Apply the Trigger YAML file:

I $ oc apply -f <filename>

Verification

You can verify that the broker has been created successfully by using the oc CLI, or by observing it in
the Topology view in the web console.

1. Enter the following oc command to get the broker:

I $ oc -n <namespace> get broker default

Example output

NAME READY REASON URL AGE
default True http://broker-ingress.knative-eventing.svc.cluster.local/test/default
3m56s

2. Optional: If you are using the OpenShift Container Platform web console, you can navigate to
the Topology view in the Developer perspective, and observe that the broker exists:

e default Actions =

Details Resources

Event Sources
QOI o l O| O Subscribers

© default

Deployments

4.3.3. Creating a broker by labeling a namespace

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. You can create the default broker automatically by labelling a namespace that you own or have
write permissions for.

71

Red Hat OpenShift Serverless 1.34 Eventing

NOTE

Brokers created using this method are not removed if you remove the label. You must
manually delete them.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

e Install the OpenShift CLI (oc).

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have cluster or dedicated administrator permissions if you are using Red Hat OpenShift
Service on AWS or OpenShift Dedicated.

Procedure

® | abel a namespace with eventing.knative.dev/injection=enabled:

I $ oc label namespace <namespace> eventing.knative.dev/injection=enabled

Verification

You can verify that the broker has been created successfully by using the oc CLI, or by observing it in
the Topology view in the web console.

1. Use the oc command to get the broker:

I $ oc -n <namespace> get broker <broker_name>
Example command
I $ oc -n default get broker default

Example output

NAME READY REASON URL AGE
default True http://broker-ingress.knative-eventing.svc.cluster.local/test/default
3m56s

2. Optional: If you are using the OpenShift Container Platform web console, you can navigate to
the Topology view in the Developer perspective, and observe that the broker exists:

72

CHAPTER 4. BROKERS

e default Actions =

Details Resources

Event Sources
QOI o l O| O Subscribers

Pods

© default —

4.3.4. Deleting a broker that was created by injection

If you create a broker by injection and later want to delete it, you must delete it manually. Brokers

created by using a namespace label or trigger annotation are not deleted permanently if you remove the
label or annotation.

Prerequisites

e Install the OpenShift CLI (oc).

Procedure

1. Remove the eventing.knative.dev/injection=enabled label from the namespace:
I $ oc label namespace <namespace> eventing.knative.dev/injection-

Removing the annotation prevents Knative from recreating the broker after you delete it.

2. Delete the broker from the selected namespace:

I $ oc -n <namespace> delete broker <broker_name>

Verification

® Use the oc command to get the broker:

I $ oc -n <namespace> get broker <broker_name>
Example command

I $ oc -n default get broker default

Example output

No resources found.
Error from server (NotFound): brokers.eventing.knative.dev "default” not found

4.3.5. Creating a broker by using the web console

73

Red Hat OpenShift Serverless 1.34 Eventing

After Knative Eventing is installed on your cluster, you can create a broker by using the web console.
Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create a broker.

Prerequisites

® You have logged in to the OpenShift Container Platform web console.

® The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on the
cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to +Add — Broker. The Broker page is displayed.

2. Optional. Update the Name of the broker. If you do not update the name, the generated broker
is named default.

3. Click Create.

Verification

You can verify that the broker was created by viewing broker components in the Topology page.

1.

2. View the mt-broker-ingress, mt-broker-filter, and mt-broker-controller components.

In the Developer perspective, navigate to Topology.

Project: knative-eventing Application: All applications ~

P! Display options ~ T Name ~ N)

Filter by resource

@ View shortcu

@ mt-broker-controller

x

A Healthchecks

X

Not all Containers have health checks to ensure your application

is running correctly. Add health checks

Details Resources Observe

Managed by (@ knative-eventing

Pods

@ mt-broker-controller- £ Runnin

79c65ddff-qnbzh

@ mt-broker-controller- £ Runnin

79c65ddff-pdpSb

Services

@ mt-broker-controlle
Service port: https = Pod por

Routes

4.3.6. Creating a broker by using the Administrator perspective

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. Events are sent from an event source to a broker as an HTTP POST request. After events have
entered the broker, they can be filtered by CloudEvent attributes using triggers, and sent as an HTTP
POST request to an event sink.

74

https://github.com/cloudevents/spec/blob/v1.0/spec.md#context-attributes

CHAPTER 4. BROKERS

O Events

Trigger .
SRUE ’—’ (filter applied) _®_®_’

2 -1 —2 —Pp Broker

e \—> Trlgger 1 _’

(filter applied)

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have logged in to the web console and are in the Administrator perspective.
® You have cluster administrator permissions on OpenShift Container Platform, or you have

cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Serverless — Eventing.

2. In the Create list, select Broker. You will be directed to the Create Broker page.
3. Optional: Modify the YAML configuration for the broker.

4. Click Create.

4.3.7. Next steps

e Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink.

4.3.8. Additional resources

® Configuring the default broker class
® Triggers

® Connect a broker to a sink using the Developer perspective

4.4. CONFIGURING THE DEFAULT BROKER BACKING CHANNEL

If you are using a channel-based broker, you can set the default backing channel type for the broker to
either InMemoryChannel or KafkaChannel.

75

Red Hat OpenShift Serverless 1.34 Eventing

Prerequisites

® You have administrator permissions on OpenShift Container Platform.
® You have installed the OpenShift Serverless Operator and Knative Eventing on your cluster.
® You have installed the OpenShift (oc) CLI.

e |f you want to use Apache Kafka channels as the default backing channel type, you must also
install the KnativeKafka CR on your cluster.

Procedure

1. Modify the KnativeEventing custom resource (CR) to add configuration details for the config-
br-default-channel config map:

apiVersion: operator.knative.dev/vibetai
kind: KnativeEventing
metadata:
name: knative-eventing
namespace: knative-eventing
spec:
config:
config-br-default-channel:
channel-template-spec: |
apiVersion: messaging.knative.dev/vibetai
kind: KafkaChannel @)
spec:
numPartitions: 6 6
replicationFactor: 3 ﬂ

In spec.config, you can specify the config maps that you want to add modified
configurations for.

The default backing channel type configuration. In this example, the default channel
implementation for the cluster is KafkaChannel.

The number of partitions for the Kafka channel that backs the broker.

oo ® o

The replication factor for the Kafka channel that backs the broker.

2. Apply the updated KnativeEventing CR:

I $ oc apply -f <filename>

4.5. CONFIGURING THE DEFAULT BROKER CLASS

You can use the config-br-defaults config map to specify default broker class settings for Knative
Eventing. You can specify the default broker class for the entire cluster or for one or more namespaces.
Currently the MTChannelBasedBroker and Kafka broker types are supported.

Prerequisites

® You have administrator permissions on OpenShift Container Platform.

76

CHAPTER 4. BROKERS

You have installed the OpenShift Serverless Operator and Knative Eventing on your cluster.

If you want to use the Knative broker for Apache Kafka as the default broker implementation,
you must also install the KnativeKafka CR on your cluster.

Procedure

Modify the KnativeEventing custom resource to add configuration details for the config-br-
defaults config map:

apiVersion: operator.knative.dev/vibetai
kind: KnativeEventing
metadata:

oS0 ®© 9 0 09

name: knative-eventing
namespace: knative-eventing

spec:

defaultBrokerClass: Kafka ﬂ
config: g
config-br-defaults: 6
default-br-config: |
clusterDefault: ﬂ
brokerClass: Kafka
apiVersion: v1
kind: ConfigMap
name: kafka-broker-config 9
namespace: knative-eventing
namespaceDefaults: ﬂ
my-namespace:
brokerClass: MTChannelBasedBroker
apiVersion: v1
kind: ConfigMap
name: config-br-default-channel 6
namespace: knative-eventing Q

The default broker class for Knative Eventing.

In spec.config, you can specify the config maps that you want to add modified
configurations for.

The config-br-defaults config map specifies the default settings for any broker that does
not specify spec.config settings or a broker class.

The cluster-wide default broker class configuration. In this example, the default broker
class implementation for the cluster is Kafka.

The kafka-broker-config config map specifies default settings for the Kafka broker. See
"Configuring Knative broker for Apache Kafka settings" in the "Additional resources"
section.

The namespace where the kafka-broker-config config map exists.

The namespace-scoped default broker class configuration. In this example, the default

broker class implementation for the my-namespace namespace is
MTChannelBasedBroker. You can specify default broker class implementations for

77

Red Hat OpenShift Serverless 1.34 Eventing

multiple namespaces.
@ The config-br-default-channel config map specifies the default backing channel for the
broker. See "Configuring the default broker backing channel” in the "Additional resources"”

section.

@ The namespace where the config-br-default-channel config map exists.

IMPORTANT

Configuring a namespace-specific default overrides any cluster-wide settings.

4.6. KNATIVE BROKER IMPLEMENTATION FOR APACHE KAFKA

For production-ready Knative Eventing deployments, Red Hat recommends using the Knative broker
implementation for Apache Kafka. The broker is an Apache Kafka native implementation of the Knative
broker, which sends CloudEvents directly to the Kafka instance.

The Knative broker has a native integration with Kafka for storing and routing events. This allows better
integration with Kafka for the broker and trigger model over other broker types, and reduces network
hops. Other benefits of the Knative broker implementation include:

® At-least-once delivery guarantees

® Ordered delivery of events, based on the CloudEvents partitioning extension
® Control plane high availability

® A horizontally scalable data plane

The Knative broker implementation for Apache Kafka stores incoming CloudEvents as Kafka records,
using the binary content mode. This means that all CloudEvent attributes and extensions are mapped as
headers on the Kafka record, while the data spec of the CloudEvent corresponds to the value of the
Kafka record.

4.6.1. Creating an Apache Kafka broker when it is not configured as the default
broker type

If your OpenShift Serverless deployment is not configured to use Kafka broker as the default broker
type, you can use one of the following procedures to create a Kafka-based broker.

4.6.1.1. Creating an Apache Kafka broker by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
applications declaratively and in a reproducible manner. To create a Kafka broker by using YAML, you
must create a YAML file that defines a Broker object, then apply it by using the oc apply command.

Prerequisites

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your OpenShift Container Platform cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

78

CHAPTER 4. BROKERS

® You have installed the OpenShift CLI (oc).

Procedure

1. Create a Kafka-based broker as a YAML file:

apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
annotations:
eventing.knative.dev/broker.class: Kafka 0
name: example-kafka-broker
spec:
config:
apiVersion: v1
kind: ConfigMap
name: kafka-broker-config g
namespace: knative-eventing

ﬂ The broker class. If not specified, brokers use the default class as configured by cluster
administrators. To use the Kafka broker, this value must be Kafka.

9 The default config map for Knative brokers for Apache Kafka. This config map is created

when the Kafka broker functionality is enabled on the cluster by a cluster administrator.

2. Apply the Kafka-based broker YAML file:

I $ oc apply -f <filename>

4.6.1.2. Creating an Apache Kafka broker that uses an externally managed Kafka topic

If you want to use a Kafka broker without allowing it to create its own internal topic, you can use an
externally managed Kafka topic instead. To do this, you must create a Kafka Broker object that uses the
kafka.eventing.knative.dev/external.topic annotation.

Prerequisites

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your OpenShift Container Platform cluster.

® You have access to a Kafka instance such as Red Hat AMQ Streams, and have created a Kafka
topic.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have installed the OpenShift CLI (oc).

Procedure

1. Create a Kafka-based broker as a YAML file:

I apiVersion: eventing.knative.dev/v1

79

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/amq_streams_on_openshift_overview/kafka-concepts_str#kafka-concepts-key_str

Red Hat OpenShift Serverless 1.34 Eventing

kind: Broker
metadata:
annotations:
eventing.knative.dev/broker.class: Kafka 0

kafka.eventing.knative.dev/external.topic: <topic_name> 9

The broker class. If not specified, brokers use the default class as configured by cluster
administrators. To use the Kafka broker, this value must be Kafka.

9 The name of the Kafka topic that you want to use.

2. Apply the Kafka-based broker YAML file:

I $ oc apply -f <filename>

4.6.1.3. Knative Broker implementation for Apache Kafka with isolated data plane

IMPORTANT

The Knative Broker implementation for Apache Kafka with isolated data plane is a
Technology Preview feature only. Technology Preview features are not supported with
Red Hat production service level agreements (SLAs) and might not be functionally
complete. Red Hat does not recommend using them in production. These features
provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

The Knative Broker implementation for Apache Kafka has 2 planes:

Control plane

Consists of controllers that talk to the Kubernetes API, watch for custom objects, and manage the
data plane.

Data plane

The collection of components that listen for incoming events, talk to Apache Kafka, and send events
to the event sinks. The Knative Broker implementation for Apache Kafka data plane is where events
flow. The implementation consists of kafka-broker-receiver and kafka-broker-dispatcher
deployments.

When you configure a Broker class of Kafka, the Knative Broker implementation for Apache Kafka uses
a shared data plane. This means that the kafka-broker-receiver and kafka-broker-dispatcher
deployments in the knative-eventing namespace are used for all Apache Kafka Brokers in the cluster.

However, when you configure a Broker class of KafkaNamespaced, the Apache Kafka broker controller
creates a new data plane for each namespace where a broker exists. This data plane is used by all
KafkaNamespaced brokers in that namespace. This provides isolation between the data planes, so that
the kafka-broker-receiver and kafka-broker-dispatcher deployments in the user namespace are only
used for the broker in that namespace.

80

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 4. BROKERS

IMPORTANT

As a consequence of having separate data planes, this security feature creates more
deployments and uses more resources. Unless you have such isolation requirements, use
aregular Broker with a class of Kafka.

4.6.1.4. Creating a Knative broker for Apache Kafka that uses an isolated data plane

IMPORTANT

The Knative Broker implementation for Apache Kafka with isolated data plane is a
Technology Preview feature only. Technology Preview features are not supported with
Red Hat production service level agreements (SLAs) and might not be functionally
complete. Red Hat does not recommend using them in production. These features
provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

To create a KafkaNamespaced broker, you must set the eventing.knative.dev/broker.class
annotation to KafkaNamespaced.

Prerequisites

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your OpenShift Container Platform cluster.

® You have access to an Apache Kafka instance, such as Red Hat AMQ Streams, and have created
a Kafka topic.

® You have created a project, or have access to a project, with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have installed the OpenShift CLI (oc).

Procedure

1. Create an Apache Kafka-based broker by using a YAML file:

apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
annotations:
eventing.knative.dev/broker.class: KafkaNamespaced ﬂ
name: default
namespace: my-namespace 9
spec:
config:
apiVersion: v1
kind: ConfigMap
name: my-config

81

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/amq_streams_on_openshift_overview/kafka-concepts_str#kafka-concepts-key_str

Red Hat OpenShift Serverless 1.34 Eventing

To use the Apache Kafka broker with isolated data planes, the broker class value must be
KafkaNamespaced.

The referenced ConfigMap object my-config must be in the same namespace as the
Broker object, in this case my-namespace.

2. Apply the Apache Kafka-based broker YAML file:

I $ oc apply -f <filename>

IMPORTANT

The ConfigMap object in spec.config must be in the same namespace as the Broker
object:

apiVersion: vi
kind: ConfigMap
metadata:
name: my-config
namespace: my-namespace
data:

After the creation of the first Broker object with the KafkaNamespaced class, the kafka-broker-
receiver and kafka-broker-dispatcher deployments are created in the namespace. Subsequently, all
brokers with the KafkaNamespaced class in the same namespace will use the same data plane. If no

brokers with the KafkaNamespaced class exist in the namespace, the data plane in the namespace is
deleted.

4.6.2. Configuring Apache Kafka broker settings

You can configure the replication factor, bootstrap servers, and the number of topic partitions for a
Kafka broker, by creating a config map and referencing this config map in the Kafka Broker object.

Knative Eventing supports the full set of topic config options that Kafka supports. To set these options,
you must add a key to the ConfigMap with the default.topic.config. prefix.

Prerequisites
® You have cluster or dedicated administrator permissions on OpenShift Container Platform.

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
(CR) are installed on your OpenShift Container Platform cluster.

® You have created a project or have access to a project that has the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have installed the OpenShift CLI (oc).

Procedure

1. Modify the kafka-broker-config config map, or create your own config map that contains the
following configuration:

82

CHAPTER 4. BROKERS

apiVersion: vi

kind: ConfigMap

metadata:
name: <config_map_name> ﬂ
namespace: <namespace>

data:
default.topic.partitions: <integer> 6
default.topic.replication.factor: <integer> ﬂ
bootstrap.servers: <list_of_servers>
default.topic.config.<config_option>: <value> G

The config map name.
The namespace where the config map exists.

The number of topic partitions for the Kafka broker. This controls how quickly events can
be sent to the broker. A higher number of partitions requires greater compute resources.

The replication factor of topic messages. This prevents against data loss. A higher
replication factor requires greater compute resources and more storage.

A comma separated list of bootstrap servers. This can be inside or outside of the
OpenShift Container Platform cluster, and is a list of Kafka clusters that the broker
receives events from and sends events to.

@ ® 9 009

A topic config option. For more information, see the full set of possible options and values.

IMPORTANT

The default.topic.replication.factor value must be less than or equal to the
number of Kafka broker instances in your cluster. For example, if you only have
one Kafka broker, the default.topic.replication.factor value should not be more
than ™",

Example Kafka broker config map

apiVersion: vi
kind: ConfigMap
metadata:
name: kafka-broker-config
namespace: knative-eventing
data:
default.topic.partitions: "10"
default.topic.replication.factor: "3"
bootstrap.servers: "my-cluster-kafka-bootstrap.kafka:9092"
default.topic.config.retention.ms: "3600"

2. Apply the config map:
I $ oc apply -f <config_map_filename>

3. Specify the config map for the Kafka Broker object:

83

https://kafka.apache.org/documentation/#topicconfigs

Red Hat OpenShift Serverless 1.34 Eventing

Example Broker object

apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:
name: <broker_name> ﬂ
namespace: <namespace> g
annotations:
eventing.knative.dev/broker.class: Kafka 6
spec:
config:
apiVersion: v1
kind: ConfigMap
name: <config_map_name> ﬂ
namespace: <namespace>

The broker name.
The namespace where the broker exists.

The broker class annotation. In this example, the broker is a Kafka broker that uses the
class value Kafka.

The config map name.

®0 009

The namespace where the config map exists.

4. Apply the broker:

I $ oc apply -f <broker_filename>

4.6.3. Security configuration for the Knative broker implementation for Apache
Kafka

Kafka clusters are generally secured by using the TLS or SASL authentication methods. You can

configure a Kafka broker or channel to work against a protected Red Hat AMQ Streams cluster by using
TLS or SASL.

NOTE

Red Hat recommends that you enable both SASL and TLS together.

4.6.3.1. Configuring TLS authentication for Apache Kafka brokers

Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between
Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption
for the Knative broker implementation for Apache Kafka.

Prerequisites

® You have cluster or dedicated administrator permissions on OpenShift Container Platform.

84

CHAPTER 4. BROKERS

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have a Kafka cluster CA certificate stored as a .pem file.

® You have a Kafka cluster client certificate and a key stored as .pem files.

Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as a secret in the knative-eventing namespace:

$ oc create secret -n knative-eventing generic <secret_name> \
--from-literal=protocol=SSL \
--from-file=ca.crt=caroot.pem \
--from-file=user.crt=certificate.pem \
--from-file=user.key=key.pem

IMPORTANT

Use the key names ca.crt, user.crt, and user.key. Do not change them.

2. Edit the KnativeKafka CR and add a reference to your secret in the broker spec:

apiVersion: operator.serverless.openshift.io/vialphal
kind: KnativeKafka
metadata:
namespace: knative-eventing
name: knative-kaftka
spec:
broker:
enabled: true
defaultConfig:
authSecretName: <secret_name>

4.6.3.2. Configuring SASL authentication for Apache Kafka brokers

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use
SASL authentication on your cluster, users must provide credentials to Knative for communicating with
the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

® You have cluster or dedicated administrator permissions on OpenShift Container Platform.

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

85

Red Hat OpenShift Serverless 1.34 Eventing

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have a username and password for a Kafka cluster.

® You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or
SCRAM-SHA-512.

e |f TLSis enabled, you also need the ca.crt certificate file for the Kafka cluster.

e Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as a secret in the knative-eventing namespace:

$ oc create secret -n knative-eventing generic <secret_name> \
--from-literal=protocol=SASL_SSL \
--from-literal=sasl.mechanism=<sasl_mechanism> \
--from-file=ca.crt=caroot.pem \
--from-literal=password="SecretPassword" \
--from-literal=user="my-sasl-user"

® Use the key names ca.crt, password, and sasl.mechanism. Do not change them.

e |f you want to use SASL with public CA certificates, you must use the tls.enabled=true flag,
rather than the ca.crt argument, when creating the secret. For example:

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
--from-literal=tls.enabled=true \
--from-literal=password="SecretPassword" \
--from-literal=sasIType="SCRAM-SHA-512" \
--from-literal=user="my-sasl-user"

2. Edit the KnativeKafka CR and add a reference to your secret in the broker spec:

apiVersion: operator.serverless.openshift.io/vialphal
kind: KnativeKafka
metadata:
namespace: knative-eventing
name: knative-kaftka
spec:
broker:
enabled: true
defaultConfig:
authSecretName: <secret_name>

4.6.4. Additional resources

® Red Hat AMQ Streams documentation

® TLS and SASL on Kafka

86

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/amq_streams_on_openshift_overview/kafka-concepts_str#kafka-concepts-key_str
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/using_amq_streams_on_rhel/index#assembly-kafka-encryption-and-authentication-str

CHAPTER 4. BROKERS

4.7. MANAGING BROKERS

After you have created a broker, you can manage your broker by using Knative (kn) CLI commands, or by
modifying it in the OpenShift Container Platform web console.

4.7.1. Managing brokers using the CLI

The Knative (kn) CLI provides commands that can be used to describe and list existing brokers.

4.7.1.1. Listing existing brokers by using the Knative CLI

Using the Knative (kn) CLI to list brokers provides a streamlined and intuitive user interface. You can
use the kn broker list command to list existing brokers in your cluster by using the Knative CLI.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have installed the Knative (kn) CLI.

Procedure

® List all existing brokers:

I $ kn broker list

Example output

NAME URL AGE CONDITIONS READY
REASON

default http://broker-ingress.knative-eventing.svc.cluster.local/test/default 45s 5 OK/5
True

4.7.1.2. Describing an existing broker by using the Knative CLI

Using the Knative (kn) CLI to describe brokers provides a streamlined and intuitive user interface. You
can use the kn broker describe command to print information about existing brokers in your cluster by
using the Knative CLI.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have installed the Knative (kn) CLI.

Procedure

® Describe an existing broker:

I $ kn broker describe <broker name>

87

Red Hat OpenShift Serverless 1.34 Eventing

Example command using default broker
I $ kn broker describe default
Example output

Name: default

Namespace: default

Annotations: eventing.knative.dev/broker.class=MTChannelBasedBroker,
eventing.knative.dev/creato ...

Age: 22s

Address:
URL: http:/broker-ingress.knative-eventing.svc.cluster.local/default/default

Conditions:
OK TYPE AGE REASON
++ Ready 22s
++ Addressable 22s
++ FilterReady 22s
++ IngressReady 22s

++ TriggerChannelReady 22s

4.7.2. Connect a broker to a sink using the Developer perspective

You can connect a broker to an event sink in the OpenShift Container Platform Developer perspective
by creating a trigger.

Prerequisites

® The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

® You have logged in to the web console and are in the Developer perspective.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have created a sink, such as a Knative service or channel.

® You have created a broker.

Procedure

1. In the Topology view, point to the broker that you have created. An arrow appears. Drag the
arrow to the sink that you want to connect to the broker. This action opens the Add Trigger
dialog box.

2. Inthe Add Trigger dialog box, enter a name for the trigger and click Add.

Verification

You can verify that the broker is connected to the sink by viewing the Topology page.

1. In the Developer perspective, navigate to Topology.

88

CHAPTER 4. BROKERS

2. Click the line that connects the broker to the sink to see details about the trigger in the Details
panel.

89

Red Hat OpenShift Serverless 1.34 Eventing

CHAPTER 5. TRIGGERS

5.1. TRIGGERS OVERVIEW

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. Events are sent from an event source to a broker as an HTTP POST request. After events have
entered the broker, they can be filtered by CloudEvent attributes using triggers, and sent as an HTTP
POST request to an event sink.

O Events

Trigger _®_®_> .
Source 1 ’ (filter applied) Sink

2 -1—-—2 —p Broker

e \—> Trlgger [. _’

(filter applied)

If you are using a Knative broker for Apache Kafka, you can configure the delivery order of events from
triggers to event sinks. See Configuring event delivery ordering for triggers.
5.1.1. Configuring event delivery ordering for triggers

If you are using a Kafka broker, you can configure the delivery order of events from triggers to event
sinks.

Prerequisites

® The OpenShift Serverless Operator, Knative Eventing, and Knative Kafka are installed on your
OpenShift Container Platform cluster.

e Kafka broker is enabled for use on your cluster, and you have created a Kafka broker.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have installed the OpenShift (oc) CLI.

Procedure

1. Create or modify a Trigger object and set the kafka.eventing.knative.dev/delivery.order
annotation:

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:

name: <trigger_name>

90

https://github.com/cloudevents/spec/blob/v1.0/spec.md#context-attributes

CHAPTER 5. TRIGGERS

annotations:
kafka.eventing.knative.dev/delivery.order: ordered
#...

The supported consumer delivery guarantees are:

unordered

An unordered consumer is a non-blocking consumer that delivers messages unordered, while
preserving proper offset management.

ordered

An ordered consumer is a per-partition blocking consumer that waits for a successful
response from the CloudEvent subscriber before it delivers the next message of the
partition.

The default ordering guarantee is unordered.

2. Apply the Trigger object:

I $ oc apply -f <filename>

5.1.2. Next steps

e Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink.

5.2. CREATING TRIGGERS

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink. Events are sent from an event source to a broker as an HTTP POST request. After events have
entered the broker, they can be filtered by CloudEvent attributes using triggers, and sent as an HTTP
POST request to an event sink.

O Events

Trigger .
Source 1 (filter applied) Sink

2 —1—-—2 —»p Broker

s R Trigger 1T — Sink
—p . . —

ource (filter applied)

5.2.1. Creating a trigger by using the Administrator perspective

Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create a trigger. After Knative Eventing is installed on your cluster and you have created a broker, you
can create a trigger by using the web console.

o1

https://github.com/cloudevents/spec/blob/v1.0/spec.md#context-attributes

Red Hat OpenShift Serverless 1.34 Eventing

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.
® You have logged in to the web console and are in the Administrator perspective.
® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.
® You have created a Knative broker.
® You have created a Knative service to use as a subscriber.
Procedure
1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Serverless — Eventing.
]
.
2. In the Broker tab, select the Options menu for the broker that you want to add a trigger
to.
3. Click Add Triggerin the list.
4. In the Add Trigger dialogue box, select a Subscriber for the trigger. The subscriber is the
Knative service that will receive events from the broker.
5. Click Add.

5.2.2. Creating a trigger by using the Developer perspective

Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create a trigger. After Knative Eventing is installed on your cluster and you have created a broker, you
can create a trigger by using the web console.

Prerequisites

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have logged in to the web console.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created a broker and a Knative service or other event sink to connect to the trigger.

Procedure

1. In the Developer perspective, navigate to the Topology page.

2. Hover over the broker that you want to create a trigger for, and drag the arrow. The Add

92

Trigger option is displayed.

CHAPTER 5. TRIGGERS

3. Click Add Trigger.
4. Select your sink in the Subscriber list.

5. Click Add.

Verification

® After the subscription has been created, you can view it in the Topology page, where it is
represented as a line that connects the broker to the event sink.

Deleting a trigger

1. In the Developer perspective, navigate to the Topology page.
2. Click on the trigger that you want to delete.

3. Inthe Actions context menu, select Delete Trigger.

5.2.3. Creating a trigger by using the Knative CLI

You can use the kn trigger create command to create a trigger.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have installed the Knative (kn) CLI.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

® Create atrigger:

$ kn trigger create <trigger_name> --broker <broker_name> --filter <key=value> --sink
<sink_name>

Alternatively, you can create a trigger and simultaneously create the default broker using broker
injection:

I $ kn trigger create <trigger_names> --inject-broker --filter <key=value> --sink <sink_name>

By default, triggers forward all events sent to a broker to sinks that are subscribed to that
broker. Using the -filter attribute for triggers allows you to filter events from a broker, so that
subscribers will only receive a subset of events based on your defined criteria.

5.3. LIST TRIGGERS FROM THE COMMAND LINE

Using the Knative (kn) CLI to list triggers provides a streamlined and intuitive user interface.

93

Red Hat OpenShift Serverless 1.34 Eventing

5.3.1. Listing triggers by using the Knative CLI

You can use the kn trigger list command to list existing triggers in your cluster.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have installed the Knative (kn) CLI.

Procedure

1. Print a list of available triggers:
I $ kn trigger list
Example output

NAME BROKER SINK AGE CONDITIONS READY REASON
email default ksvc:edisplay 4s 5O0OK/5 True
ping default ksvc:edisplay 32s 5OK/5 True

2. Optional: Print a list of triggers in JSON format:

I $ kn trigger list -0 json

5.4. DESCRIBE TRIGGERS FROM THE COMMAND LINE

Using the Knative (kn) CLI to describe triggers provides a streamlined and intuitive user interface.

5.4.1. Describing a trigger by using the Knative CLI

You can use the kn trigger describe command to print information about existing triggers in your
cluster by using the Knative CLI.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have installed the Knative (kn) CLI.

® You have created a trigger.

Procedure

® [Enter the command:

I $ kn trigger describe <trigger_name>

Example output

94

CHAPTER 5. TRIGGERS

Name: ping

Namespace: default

Labels: eventing.knative.dev/broker=default
Annotations: eventing.knative.dev/creator=kube:admin,
eventing.knative.dev/lastModifier=kube:admin

Age: 2m
Broker: default
Filter:

type: dev.knative.event

Sink:
Name: edisplay
Namespace: default
Resource: Service (serving.knative.dev/v1)

Conditions:
OK TYPE AGE REASON
++ Ready 2m
++ BrokerReady 2m
++ DependencyReady 2m
++ Subscribed 2m

++ SubscriberResolved 2m

5.5. CONNECTING A TRIGGER TO A SINK

You can connect a trigger to a sink, so that events from a broker are filtered before they are sent to the
sink. A sink that is connected to a trigger is configured as a subscriber in the Trigger object’s resource
spec.

Example of a Trigger object connected to an Apache Kafka sink

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:

name: <trigger_name> ﬂ
spec:

subscriber:

ref:
apiVersion: eventing.knative.dev/vialphat

kind: KafkaSink
name: <kafka_sink_name> 9

ﬂ The name of the trigger being connected to the sink.

g The name of a KafkaSink object.

5.6. FILTERING TRIGGERS FROM THE COMMAND LINE

Using the Knative (kn) CLI to filter events by using triggers provides a streamlined and intuitive user

interface. You can use the kn trigger create command, along with the appropriate flags, to filter events

by using triggers.

95

Red Hat OpenShift Serverless 1.34 Eventing

5.6.1. Filtering events with triggers by using the Knative CLI

In the following trigger example, only events with the attribute type: dev.knative.samples.helloworld
are sent to the event sink:

$ kn trigger create <trigger_name> --broker <broker_name> --filter
type=dev.knative.samples.helloworld --sink ksvc:<service_name>
You can also filter events by using multiple attributes. The following example shows how to filter events
using the type, source, and extension attributes:

$ kn trigger create <trigger_name> --broker <broker_name> --sink ksvc:<service_name> \
--filter type=dev.knative.samples.helloworld \

--filter source=dev.knative.samples/helloworldsource \

--filter myextension=my-extension-value

5.7. ADVANCED TRIGGER FILTERS

The advanced trigger filters give you advanced options for more precise event routing. You can filter
events by exact matches, prefixes, or suffixes, as well as by CloudEvent extensions. This added control
makes it easier to fine-tune how events flow ensuring that only relevant events trigger specific actions.

IMPORTANT

Advanced trigger filters feature is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

5.7.1. Advanced trigger filters overview

The advanced trigger filters feature adds a new filters field to triggers that aligns with the filters API
field defined in the CloudEvents Subscriptions API. You can specify filter expressions, where each
expression evaluates to true or false for each event.

The following example shows a trigger using the advanced filters field:

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
name: my-service-trigger
spec:
broker: default
filters:
- cesql: "source LIKE 'Y%ocommerce%' AND type IN (‘order.created’, 'order.updated’,
'order.canceled'’)"
subscriber:
ref:

96

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 5. TRIGGERS

apiVersion: serving.knative.dev/v1
kind: Service
name: my-service

The filters field contains an array of filter expressions, each evaluating to either true or false. If any
expression evaluates to false, the event is not sent to the subscriber. Each filter expression uses a
specific dialect that determines the type of filter and the set of allowed additional properties within the
expression.

5.7.2. Supported filter dialects

You can use dialects to define flexible filter expressions to target specific events.

The advanced trigger filters support the following dialects that offer different ways to match and filter
events:

e exact
e prefix
e suffix
e all

e any
® not
e cesql

Each dialect provides a different method for filtering events based on a specific criteria, enabling precise
event selection for processing.

5.7.2.1. exact filter dialect
The exact dialect filters events by comparing a string value of the CloudEvent attribute to exactly match
the specified string. The comparison is case sensitive. If the attribute is not a string, the filter converts

the attribute to its string representation before comparing it to the specified value.

Example of the exact filter dialect

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
spec:
filters:
- exact:
type: com.github.push

5.7.2.2. prefix filter dialect

97

Red Hat OpenShift Serverless 1.34 Eventing

The prefix dialect filters events by comparing a string value of the CloudEvent attribute that starts with
the specified string. This comparison is case sensitive. If the attribute is not a string, the filter converts
the attribute to its string representation before matching it against the specified value.

Example of the prefix filter dialect

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:

spec:
filters:

- prefix:
type: com.github.

5.7.2.3. suffix filter dialect

The suffix dialect filters events by comparing a string value of the CloudEvent attribute that ends with
the specified string. This comparison is case-sensitive. If the attribute is not a string, the filter converts
the attribute to its string representation before matching it to the specified value.

Example of the suffix filter dialect

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:

spec:
filters:

- suffix:
type: .created

5.7.2.4. all filter dialect

The all filter dialect needs that all nested filter expressions evaluate to true to process the event. If any
of the nested expressions return false, the event is not sent to the subscriber.

Example of the all filter dialect

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:

spec:

filters:
- all:
- exact:
type: com.github.push
- exact:
subject: https://github.com/cloudevents/spec

98

CHAPTER 5. TRIGGERS

5.7.2.5. any filter dialect

The any filter dialect requires at least one of the nested filter expressions to evaluate to true. If none of
the nested expressions return true, the event is not sent to the subscriber.

Example of the any filter dialect

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:

spec:
filters:
- any:
- exact:
type: com.github.push

- exact:
subject: https://github.com/cloudevents/spec

5.7.2.6. not filter dialect

The not filter dialect requires that the nested filter expression evaluates to false for the event to be
processed. If the nested expression evaluates to true, the event is not sent to the subscriber.

Example of the not filter dialect

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
spec:
filters:
- hot:

exact:
type: com.github.push

5.7.2.7. cesql filter dialect
CloudEvents SQL expressions (cesql) allow computing values and matching of CloudEvent attributes
against complex expressions that lean on the syntax of Structured Query Language (SQL) WHERE

clauses.

The cesql filter dialect uses CloudEvents SQL expressions to filter events. The provided CESQL
expression must evaluate to true for the event to be processed.

Example of the cesql filter dialect

apiVersion: eventing.knative.dev/v1
kind: Trigger

metadata:

spec:

99

Red Hat OpenShift Serverless 1.34 Eventing

filters:
- cesql: "source LIKE '%scommerce%' AND type IN (‘order.created’, 'order.updated’,
'order.canceled'’)"

For more information about the syntax and the features of the cesql filter dialect, see CloudEvents
SQL Expression Language.

5.7.3. Conflict with the existing filter field

You can use the filters and the existing filter field at the same time. If you enable the new new-trigger-
filters feature and an object contains both filter and filters, the filters field overrides. This setup allows
you to test the new filters field while maintaining support for existing filters. You can gradually introduce
the new field into existing trigger objects.

Example of filters field overriding the filter field:

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
name: my-service-trigger
spec:
broker: default
Existing filter field. This will be ignored when the new filters field is present.
filter:
attributes:
type: dev.knative.foo.bar
myextension: my-extension-value
New filters field. This takes precedence over the old filter field.
filters:
- cesql: "type = 'dev.knative.foo.bar' AND myextension = 'my-extension-value™
subscriber:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: my-service

5.8. UPDATING TRIGGERS FROM THE COMMAND LINE

Using the Knative (kn) CLI to update triggers provides a streamlined and intuitive user interface.

5.8.1. Updating a trigger by using the Knative CLI

You can use the kn trigger update command with certain flags to update attributes for a trigger.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have installed the Knative (kn) CLI.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

100

https://github.com/cloudevents/spec/blob/cesql/v1.0.0/cesql/spec.md

CHAPTER 5. TRIGGERS

Procedure

® Update a trigger:
I $ kn trigger update <trigger_name> --filter <key=value> --sink <sink_name> [flags]

o You can update a trigger to filter exact event attributes that match incoming events. For
example, using the type attribute:

I $ kn trigger update <trigger_name> --filter type=knative.dev.event

o You can remove a filter attribute from a trigger. For example, you can remove the filter
attribute with key type:

I $ kn trigger update <trigger_name> --filter type-
o You can use the --sink parameter to change the event sink of a trigger:

I $ kn trigger update <trigger_name> --sink ksvc:my-event-sink

5.9. DELETING TRIGGERS FROM THE COMMAND LINE

Using the Knative (kn) CLI to delete a trigger provides a streamlined and intuitive user interface.

5.9.1. Deleting a trigger by using the Knative CLI

You can use the kn trigger delete command to delete a trigger.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have installed the Knative (kn) CLI.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

® Delete atrigger:

I $ kn trigger delete <trigger_name>

Verification

1. List existing triggers:
I $ kn trigger list

2. Verify that the trigger no longer exists:

101

Red Hat OpenShift Serverless 1.34 Eventing

Example output

I No triggers found.

102

CHAPTER 6. CHANNELS

CHAPTER 6. CHANNELS

6.1. CHANNELS AND SUBSCRIPTIONS

Channels are custom resources that define a single event-forwarding and persistence layer. After
events have been sent to a channel from an event source or producer, these events can be sent to
multiple Knative services or other sinks by using a subscription.

Events

Source 1 | Subscription _ 1 -2 — 3 —p Sink
\— 1—3 —p
Channel
’7 2 ——p
Source 2 > Subscription —_ 1 — 2 — 3 —p Sink

You can create channels by instantiating a supported Channel object, and configure re-delivery
attempts by modifying the delivery spec in a Subscription object.

After you create a Channel object, a mutating admission webhook adds a set of spec.channelTemplate
properties for the Channel object based on the default channel implementation. For example, for an
InMemoryChannel default implementation, the Channel object looks as follows:

apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
name: example-channel
namespace: default
spec:
channelTemplate:
apiVersion: messaging.knative.dev/v1
kind: InMemoryChannel

The channel controller then creates the backing channel instance based on the spec.channelTemplate
configuration.

NOTE

The spec.channelTemplate properties cannot be changed after creation, because they
are set by the default channel mechanism rather than by the user.

When this mechanism is used with the preceding example, two objects are created: a generic backing
channel and an InMemoryChannel channel. If you are using a different default channel implementation,
the InMemoryChannel is replaced with one that is specific to your implementation. For example, with
the Knative broker for Apache Kafka, the KafkaChannel channel is created.

The backing channel acts as a proxy that copies its subscriptions to the user-created channel object,
and sets the user-created channel object status to reflect the status of the backing channel.

103

Red Hat OpenShift Serverless 1.34 Eventing

6.1.1. Channel implementation types

OpenShift Serverless supports the InMemoryChannel and KafkaChannel channels implementations.
The InMemoryChannel channel is recommended for development use only due to its limitations. You
can use the KafkaChannel channel for a production environment.

The following are limitations of InMemoryChannel type channels:
® No event persistence is available. If a pod goes down, events on that pod are lost.

® [InMemoryChannel channels do not implement event ordering, so two events that are received
in the channel at the same time can be delivered to a subscriber in any order.

e |f asubscriber rejects an event, there are no re-delivery attempts by default. You can configure
re-delivery attempts by modifying the delivery spec in the Subscription object.

6.2. CREATING CHANNELS

Channels are custom resources that define a single event-forwarding and persistence layer. After
events have been sent to a channel from an event source or producer, these events can be sent to
multiple Knative services or other sinks by using a subscription.

Events

v

Subscription 1 -2 — 3 —p Sink

Source 1 ‘

\— 17— 3 —p
Channel
T

Source 2

v

Subscription 1 -2 — 3 —p

You can create channels by instantiating a supported Channel object, and configure re-delivery
attempts by modifying the delivery spec in a Subscription object.

6.2.1. Creating a channel by using the Administrator perspective

After Knative Eventing is installed on your cluster, you can create a channel by using the Administrator
perspective.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have logged in to the web console and are in the Administrator perspective.
® You have cluster administrator permissions on OpenShift Container Platform, or you have

cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

104

CHAPTER 6. CHANNELS

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Serverless — Eventing.

2. In the Create list, select Channel. You will be directed to the Channel page.

3. Select the type of Channel object that you want to create in the Type list.

NOTE

Currently only InMemoryChannel channel objects are supported by default.
Knative channels for Apache Kafka are available if you have installed the Knative
broker implementation for Apache Kafka on OpenShift Serverless.

4. Click Create.

6.2.2. Creating a channel by using the Developer perspective

Using the OpenShift Container Platform web console provides a streamlined and intuitive user interface
to create a channel. After Knative Eventing is installed on your cluster, you can create a channel by using
the web console.

Prerequisites
® You have logged in to the OpenShift Container Platform web console.

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure
1. In the Developer perspective, navigate to +Add — Channel.
2. Select the type of Channel object that you want to create in the Type list.

3. Click Create.

Verification

e Confirm that the channel now exists by navigating to the Topology page.

in-memory-channel Actions

Details Resources

Event Sources

I®® in-mem...hannel

Subscribers

105

Red Hat OpenShift Serverless 1.34 Eventing

6.2.3. Creating a channel by using the Knative CLI

Using the Knative (kn) CLI to create channels provides a more streamlined and intuitive user interface
than modifying YAML files directly. You can use the kn channel create command to create a channel.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.
® You have installed the Knative (kn) CLI.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

® Create achannel:
I $ kn channel create <channel_name> --type <channel_type>

The channel type is optional, but where specified, must be given in the format
Group:Version:Kind. For example, you can create an InMemoryChannel object:

I $ kn channel create mychannel --type messaging.knative.dev:v1:InMemoryChannel
Example output
I Channel 'mychannel' created in namespace 'default’.

Verification

® To confirm that the channel now exists, list the existing channels and inspect the output:

I $ kn channel list
Example output

kn channel list

NAME TYPE URL AGE READY REASON
mychannel InMemoryChannel http://mychannel-kn-channel.default.svc.cluster.local 93s
True

Deleting a channel

® Delete achannel:

I $ kn channel delete <channel _name>

6.2.4. Creating a default implementation channel by using YAML

106

CHAPTER 6. CHANNELS

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
channels declaratively and in a reproducible manner. To create a serverless channel by using YAML, you
must create a YAML file that defines a Channel object, then apply it by using the oc¢ apply command.

Prerequisites
® The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

e Install the OpenShift CLI (oc).

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create a Channel object as a YAML file:

apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
name: example-channel
namespace: default

2. Apply the YAML file:

I $ oc apply -f <filename>

6.2.5. Creating a channel for Apache Kafka by using YAML

Creating Knative resources by using YAML files uses a declarative API, which enables you to describe
channels declaratively and in a reproducible manner. You can create a Knative Eventing channel that is
backed by Kafka topics by creating a Kafka channel. To create a Kafka channel by using YAML, you must
create a YAML file that defines a KafkaChannel object, then apply it by using the oc apply command.

Prerequisites

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
are installed on your OpenShift Container Platform cluster.

e Install the OpenShift CLI (oc).

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Create a KafkaChannel object as a YAML file:

apiVersion: messaging.knative.dev/vibetat
kind: KafkaChannel
metadata:

name: example-channel

namespace: default

107

Red Hat OpenShift Serverless 1.34 Eventing

spec:
numPartitions: 3
replicationFactor: 1

IMPORTANT
Only the vibeta1 version of the API for KafkaChannel objects on OpenShift

Serverless is supported. Do not use the vialphal version of this API, as this
version is now deprecated.

2. Apply the KafkaChannel YAML file:

I $ oc apply -f <filename>

6.2.6. Next steps

® After you have created a channel, you can connect the channel to a sink so that the sink can
receive events.

e Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink.

6.3. CONNECTING CHANNELS TO SINKS

Events that have been sent to a channel from an event source or producer can be forwarded to one or
more sinks by using subscriptions. You can create subscriptions by configuring a Subscription object,
which specifies the channel and the sink (also known as a subscriber) that consumes the events sent to
that channel.

6.3.1. Creating a subscription by using the Developer perspective

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Using the OpenShift Container Platform web console provides a streamlined and intuitive user
interface to create a subscription.

Prerequisites

® The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

® You have logged in to the web console.
® You have created an event sink, such as a Knative service, and a channel.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. In the Developer perspective, navigate to the Topology page.

2. Create a subscription using one of the following methods:

108

CHAPTER 6. CHANNELS

a. Hover over the channel that you want to create a subscription for, and drag the arrow. The
Add Subscription option is displayed.

1010 1010 @
IIOII IIO“ ubscription

e in-mem..hannel

i. Selectyour sinkin the Subscriber list.
ii. Click Add.

b. If the service is available in the Topology view under the same namespace or project as the
channel, click on the channel that you want to create a subscription for, and drag the arrow
directly to a service to immediately create a subscription from the channel to that service.

Verification

e After the subscription has been created, you can see it represented as a line that connects the
channel to the service in the Topology view:

Project: knative-eventing + Application: all applications @ View shortcuts

Display Options Filter by Resource ~ Find by name, /e
@ hello-Smhwd-deployment- £ Running View logs
84df8ddsbb-4fs5z
Revisions Set Traffic Distribution
hello-5mhwd 100%
(& 1010 1010
) Hoiition @ hello-5mbwd-deployment 0]
@ channel
Routes
@ hello
Smessmssssssessecss (4 httpy/hello-knative-eventing.apps.ci-n-ng87gdk-
00% + d5d6b.origin-ci-int-aws.devrhcloud com &
@ 1 Event Sources
1 @ ping-source
hello-5mhwd 1
O GEB helo Subscriptions
@ channel

I EEEESSHEE— \ @ channel-p3zpro

6.3.2. Creating a subscription by using YAML

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Creating Knative resources by using YAML files uses a declarative API, which enables you to
describe subscriptions declaratively and in a reproducible manner. To create a subscription by using
YAML, you must create a YAML file that defines a Subscription object, then apply it by using the oc
apply command.

Prerequisites

109

Red Hat OpenShift Serverless 1.34 Eventing

® The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.
® |[nstall the OpenShift CLI (oc).

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure
® Create a Subscription object:

o Create a YAML file and copy the following sample code into it:

apiVersion: messaging.knative.dev/v1
kind: Subscription
metadata:
name: my-subscription ﬂ
namespace: default
spec:
channel:
apiVersion: messaging.knative.dev/v1
kind: Channel
name: example-channel
delivery: e
deadLetterSink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: error-handler
subscriber: ﬂ
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display

Name of the subscription.
Configuration settings for the channel that the subscription connects to.

Configuration settings for event delivery. This tells the subscription what happens to
events that cannot be delivered to the subscriber. When this is configured, events that
failed to be consumed are sent to the deadLetterSink. The event is dropped, no re-
delivery of the event is attempted, and an error is logged in the system. The
deadLetterSink value must be a Destination.

909

Configuration settings for the subscriber. This is the event sink that events are
delivered to from the channel.

o Apply the YAML file:

I $ oc apply -f <filename>

6.3.3. Creating a subscription by using the Knative CLI

110

https://pkg.go.dev/knative.dev/pkg/apis/duck/v1?tab=doc#Destination

CHAPTER 6. CHANNELS

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Using the Knative (kn) CLI to create subscriptions provides a more streamlined and intuitive
user interface than modifying YAML files directly. You can use the kn subscription create command
with the appropriate flags to create a subscription.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have installed the Knative (kn) CLI.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

® Create a subscription to connect a sink to a channel:

2]

©

$ kn subscription create <subscription_name> \
--channel <group:version:kind>:<channel_name> \ ﬂ
--sink <sink_prefix>:<sink_name> \9
--sink-dead-letter <sink_prefix>:<sink_name> e

--channel specifies the source for cloud events that should be processed. You must
provide the channel name. If you are not using the default InMemoryChannel channel that
is backed by the Channel custom resource, you must prefix the channel name with the
<group:version:kind> for the specified channel type. For example, this will be
messaging.knative.dev:vibetal:KafkaChannel for an Apache Kafka backed channel.

--sink specifies the target destination to which the event should be delivered. By default,
the <sink_names is interpreted as a Knative service of this name, in the same namespace
as the subscription. You can specify the type of the sink by using one of the following
prefixes:

ksvc
A Knative service.
channel
A channel that should be used as destination. Only default channel types can be
referenced here.
broker
An Eventing broker.

Optional: --sink-dead-letter is an optional flag that can be used to specify a sink which
events should be sent to in cases where events fail to be delivered. For more information,
see the OpenShift Serverless Event delivery documentation.

Example command
I $ kn subscription create mysubscription --channel mychannel --sink ksvc:event-display
Example output

I Subscription 'mysubscription’ created in namespace 'default'.

m

Red Hat OpenShift Serverless 1.34 Eventing

Verification

® To confirm that the channel is connected to the event sink, or subscriber, by a subscription, list
the existing subscriptions and inspect the output:

I $ kn subscription list

Example output

NAME CHANNEL SUBSCRIBER REPLY DEAD LETTER SINK
READY REASON
mysubscription Channel:mychannel ksvc:event-display True

Deleting a subscription

® Delete a subscription:

I $ kn subscription delete <subscription_name>

6.3.4. Creating a subscription by using the Administrator perspective

After you have created a channel and an event sink, also known as a subscriber, you can create a
subscription to enable event delivery. Subscriptions are created by configuring a Subscription object,
which specifies the channel and the subscriber to deliver events to. You can also specify some
subscriber-specific options, such as how to handle failures.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have logged in to the web console and are in the Administrator perspective.

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

® You have created a Knative channel.

® You have created a Knative service to use as a subscriber.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Serverless — Eventing.

2. In the Channel tab, select the Options menu for the channel that you want to add a
subscription to.

3. Click Add Subscriptionin the list.

12

CHAPTER 6. CHANNELS

4. In the Add Subscription dialogue box, select a Subscriber for the subscription. The subscriber
is the Knative service that receives events from the channel.

5. Click Add.

6.3.5. Next steps

e Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink.

6.4. DEFAULT CHANNEL IMPLEMENTATION

You can use the default-ch-webhook config map to specify the default channel implementation of
Knative Eventing. You can specify the default channel implementation for the entire cluster or for one
or more namespaces. Currently the InMemoryChannel and KafkaChannel channel types are
supported.

6.4.1. Configuring the default channel implementation

Prerequisites

® You have administrator permissions on OpenShift Container Platform.
® You have installed the OpenShift Serverless Operator and Knative Eventing on your cluster.

e |f you want to use Knative channels for Apache Kafka as the default channel implementation,
you must also install the KnativeKafka CR on your cluster.

Procedure

e Modify the KnativeEventing custom resource to add configuration details for the default-ch-
webhook config map:

apiVersion: operator.knative.dev/vibetai
kind: KnativeEventing
metadata:
name: knative-eventing
namespace: knative-eventing
spec:
config:
default-ch-webhook: @)
default-ch-config: |
clusterDefault: G
apiVersion: messaging.knative.dev/v1
kind: InMemoryChannel
spec:
delivery:
backoffDelay: PT0.5S
backoffPolicy: exponential
retry: 5
namespaceDefaults: ﬂ
my-namespace:
apiVersion: messaging.knative.dev/vibetai
kind: KafkaChannel

13

Red Hat OpenShift Serverless 1.34 Eventing

spec:
numPartitions: 1
replicationFactor: 1

In spec.config, you can specify the config maps that you want to add modified
configurations for.

The default-ch-webhook config map can be used to specify the default channel
implementation for the cluster or for one or more namespaces.

The cluster-wide default channel type configuration. In this example, the default channel
implementation for the cluster is InMemoryChannel.

O ©® & o

The namespace-scoped default channel type configuration. In this example, the default
channel implementation for the my-namespace namespace is KafkaChannel.

IMPORTANT

Configuring a namespace-specific default overrides any cluster-wide settings.

6.5. SECURITY CONFIGURATION FOR CHANNELS

6.5.1. Configuring TLS authentication for Knative channels for Apache Kafka

Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between
Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption
for the Knative broker implementation for Apache Kafka.

Prerequisites

® You have cluster or dedicated administrator permissions on OpenShift Container Platform.

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have a Kafka cluster CA certificate stored as a .pem file.
® You have a Kafka cluster client certificate and a key stored as .pem files.

e Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as secrets in your chosen namespace:

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
--from-file=ca.crt=caroot.pem \
--from-file=user.crt=certificate.pem \
--from-file=user.key=key.pem

14

CHAPTER 6. CHANNELS

IMPORTANT

Use the key names ca.crt, user.crt, and user.key. Do not change them.

2. Start editing the KnativeKafka custom resource:

I $ oc edit knativekafka

3. Reference your secret and the namespace of the secret:

apiVersion: operator.serverless.openshift.io/vialphal
kind: KnativeKafka
metadata:
namespace: knative-eventing
name: knative-kaftka
spec:
channel:
authSecretName: <kafka_auth_secret>
authSecretNamespace: <kafka_auth_secret_namespace>
bootstrapServers: <bootstrap_servers>
enabled: true
source:
enabled: true

NOTE

Make sure to specify the matching port in the bootstrap server.
For example:

apiVersion: operator.serverless.openshift.io/vialphal
kind: KnativeKafka
metadata:
namespace: knative-eventing
name: knative-kafka
spec:
channel:
authSecretName: tls-user
authSecretNamespace: kafka
bootstrapServers: eventing-kafka-bootstrap.kafka.svc:9094
enabled: true
source:
enabled: true

6.5.2. Configuring SASL authentication for Knative channels for Apache Kafka

Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use
SASL authentication on your cluster, users must provide credentials to Knative for communicating with
the Kafka cluster; otherwise events cannot be produced or consumed.

Prerequisites

® You have cluster or dedicated administrator permissions on OpenShift Container Platform.

115

Red Hat OpenShift Serverless 1.34 Eventing

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka CR are installed
on your OpenShift Container Platform cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have a username and password for a Kafka cluster.

® You have chosen the SASL mechanism to use, for example, PLAIN, SCRAM-SHA-256, or
SCRAM-SHA-512.

e |[f TLSis enabled, you also need the ca.crt certificate file for the Kafka cluster.

e Install the OpenShift CLI (oc).

Procedure

1. Create the certificate files as secrets in your chosen namespace:

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
--from-file=ca.crt=caroot.pem \
--from-literal=password="SecretPassword" \
--from-literal=sas|Type="SCRAM-SHA-512" \
--from-literal=user="my-sasl-user"

® Use the key names ca.crt, password, and sasl.mechanism. Do not change them.

e |f you want to use SASL with public CA certificates, you must use the tls.enabled=true flag,
rather than the ca.crt argument, when creating the secret. For example:

$ oc create secret -n <namespace> generic <kafka_auth_secret> \
--from-literal=tls.enabled=true \
--from-literal=password="SecretPassword" \
--from-literal=sasIType="SCRAM-SHA-512" \
--from-literal=user="my-sasl-user"

2. Start editing the KnativeKafka custom resource:

I $ oc edit knativekafka

3. Reference your secret and the namespace of the secret:

apiVersion: operator.serverless.openshift.io/vialphal
kind: KnativeKafka
metadata:
namespace: knative-eventing
name: knative-kafka
spec:
channel:
authSecretName: <kafka_auth_secret>
authSecretNamespace: <kafka_auth_secret_namespace>
bootstrapServers: <bootstrap_servers>
enabled: true
source:
enabled: true

16

CHAPTER 6. CHANNELS

NOTE

Make sure to specify the matching port in the bootstrap server.

For example:

apiVersion: operator.serverless.openshift.io/vialphal
kind: KnativeKafka
metadata:
namespace: knative-eventing
name: knative-kafka
spec:
channel:
authSecretName: scram-user
authSecretNamespace: kafka
bootstrapServers: eventing-kafka-bootstrap.kafka.svc:9093
enabled: true
source:
enabled: true

17

Red Hat OpenShift Serverless 1.34 Eventing

CHAPTER 7. SUBSCRIPTIONS

7.1. CREATING SUBSCRIPTIONS

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Subscriptions are created by configuring a Subscription object, which specifies the channel
and the sink (also known as a subscriber) to deliver events to.

7.1.1. Creating a subscription by using the Administrator perspective

After you have created a channel and an event sink, also known as a subscriber, you can create a
subscription to enable event delivery. Subscriptions are created by configuring a Subscription object,
which specifies the channel and the subscriber to deliver events to. You can also specify some
subscriber-specific options, such as how to handle failures.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have logged in to the web console and are in the Administrator perspective.
® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or

OpenShift Dedicated.

® You have created a Knative channel.

You have created a Knative service to use as a subscriber.

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Serverless — Eventing.

2. Inthe Channel tab, select the Options menu for the channel that you want to add a
subscription to.

3. Click Add Subscriptionin the list.

4. In the Add Subscription dialogue box, select a Subscriber for the subscription. The subscriber
is the Knative service that receives events from the channel.

5. Click Add.

7.1.2. Creating a subscription by using the Developer perspective

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Using the OpenShift Container Platform web console provides a streamlined and intuitive user
interface to create a subscription.

Prerequisites

18

CHAPTER 7. SUBSCRIPTIONS

® The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

® You have logged in to the web console.
® You have created an event sink, such as a Knative service, and a channel.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure
1. In the Developer perspective, navigate to the Topology page.
2. Create a subscription using one of the following methods:

a. Hover over the channel that you want to create a subscription for, and drag the arrow. The
Add Subscription option is displayed.

1011 1101

G
IOlo |0|0I>> -—-—T Add Subscription

e in-mem..hannel

i. Selectyour sinkin the Subscriber list.

ii. Click Add.
b. If the service is available in the Topology view under the same namespace or project as the

channel, click on the channel that you want to create a subscription for, and drag the arrow
directly to a service to immediately create a subscription from the channel to that service.

Verification

e After the subscription has been created, you can see it represented as a line that connects the
channel to the service in the Topology view:

19

Red Hat OpenShift Serverless 1.34 Eventing

Project: knative-eventing + Application: all applications @ View shortcuts

Display Options ~ Filter by Resource + Find by name /e

@ hello-Smhwd-deployment- £ Running View logs
84df8ddSbb-4fs5z

Revisions Set Traffic Distribution

GED hello-Smhwd 100%
1010 1010
lot 1ioi @ hello-5mhwd-deployment (0]
@ channel
Routes
@ hello
------------------- (]
00% +
@ : Event Sources
' @ ping-source
hello-5mhwd 1
O GEB helo Subscriptions

@ channel

I EEEESSHEE— \ @ channel-p3zpro

7.1.3. Creating a subscription by using YAML

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Creating Knative resources by using YAML files uses a declarative API, which enables you to
describe subscriptions declaratively and in a reproducible manner. To create a subscription by using
YAML, you must create a YAML file that defines a Subscription object, then apply it by using the oc
apply command.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.
® |nstall the OpenShift CLI (oc).

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure
® Create a Subscription object:

o Create a YAML file and copy the following sample code into it:

apiVersion: messaging.knative.dev/v1
kind: Subscription
metadata:
name: my-subscription ﬂ
namespace: default
spec:
channel:
apiVersion: messaging.knative.dev/v1
kind: Channel
name: example-channel
delivery: 9
deadLetterSink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: error-handler

120

CHAPTER 7. SUBSCRIPTIONS

subscriber: ﬂ
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display

Name of the subscription.

Configuration settings for the channel that the subscription connects to.

09

Configuration settings for event delivery. This tells the subscription what happens to
events that cannot be delivered to the subscriber. When this is configured, events that
failed to be consumed are sent to the deadLetterSink. The event is dropped, no re-
delivery of the event is attempted, and an error is logged in the system. The
deadLetterSink value must be a Destination.

Q Configuration settings for the subscriber. This is the event sink that events are
delivered to from the channel.

o Apply the YAML file:

I $ oc apply -f <filename>

7.1.4. Creating a subscription by using the Knative CLI

After you have created a channel and an event sink, you can create a subscription to enable event
delivery. Using the Knative (kn) CLI to create subscriptions provides a more streamlined and intuitive
user interface than modifying YAML files directly. You can use the kn subscription create command
with the appropriate flags to create a subscription.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have installed the Knative (kn) CLI.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

® Create a subscription to connect a sink to a channel:

$ kn subscription create <subscription_name> \
--channel <group:version:kind>:<channel_name> \ ﬂ
—-sink <sink_prefix>:<sink_name> \ @)
--sink-dead-letter <sink_prefix>:<sink_name> e

ﬂ --channel specifies the source for cloud events that should be processed. You must
provide the channel name. If you are not using the default InMemoryChannel channel that
is backed by the Channel custom resource, you must prefix the channel name with the
<group:version:kinds for the specified channel type. For example, this will be

121

https://pkg.go.dev/knative.dev/pkg/apis/duck/v1?tab=doc#Destination

Red Hat OpenShift Serverless 1.34 Eventing

messaging.knative.dev:vibetal:KafkaChannel for an Apache Kafka backed channel.

9 --sink specifies the target destination to which the event should be delivered. By default,
the <sink_names is interpreted as a Knative service of this name, in the same namespace
as the subscription. You can specify the type of the sink by using one of the following
prefixes:

ksvc
A Knative service.
channel
A channel that should be used as destination. Only default channel types can be
referenced here.
broker
An Eventing broker.

g Optional: --sink-dead-letter is an optional flag that can be used to specify a sink which
events should be sent to in cases where events fail to be delivered. For more information,
see the OpenShift Serverless Event delivery documentation.

Example command
I $ kn subscription create mysubscription --channel mychannel --sink ksvc:event-display
Example output

I Subscription 'mysubscription’ created in namespace 'default'.

Verification

® To confirm that the channel is connected to the event sink, or subscriber, by a subscription, list
the existing subscriptions and inspect the output:

I $ kn subscription list

Example output

NAME CHANNEL SUBSCRIBER REPLY DEAD LETTER SINK
READY REASON
mysubscription Channel:mychannel ksvc:event-display True

Deleting a subscription

® Delete a subscription:

I $ kn subscription delete <subscription_name>
7.1.5. Next steps

e Configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink.

122

CHAPTER 7. SUBSCRIPTIONS

7.2. MANAGING SUBSCRIPTIONS

7.2.1. Describing subscriptions by using the Knative CLI

You can use the kn subscription describe command to print information about a subscription in the
terminal by using the Knative (kn) CLI. Using the Knative CLI to describe subscriptions provides a more
streamlined and intuitive user interface than viewing YAML files directly.

Prerequisites

® You have installed the Knative (kn) CLI.

® You have created a subscription in your cluster.
Procedure
® Describe a subscription:

I $ kn subscription describe <subscription_name>
Example output

Name: my-subscription

Namespace: default

Annotations: messaging.knative.dev/creator=openshift-user,
messaging.knative.dev/lastModifier=min ...

Age: 43s
Channel: Channel:my-channel (messaging.knative.dev/v1)
Subscriber:

URI: http://edisplay.default.example.com
Reply:

Name: default

Resource: Broker (eventing.knative.dev/v1)
DeadLetterSink:

Name: my-sink

Resource: Service (serving.knative.dev/v1)

Conditions:
OK TYPE AGE REASON
++ Ready 43s

++ AddedToChannel 43s
++ ChannelReady 43s
++ ReferencesResolved 43s

7.2.2. Listing subscriptions by using the Knative CLI

You can use the kn subscription list command to list existing subscriptions on your cluster by using the
Knative (kn) CLI. Using the Knative CLI to list subscriptions provides a streamlined and intuitive user
interface.

Prerequisites

® You have installed the Knative (kn) CLI.

123

Red Hat OpenShift Serverless 1.34 Eventing

Procedure

® List subscriptions on your cluster:

I $ kn subscription list

Example output

NAME CHANNEL SUBSCRIBER REPLY DEAD LETTER SINK
READY REASON
mysubscription Channel:mychannel ksvc:event-display True

7.2.3. Updating subscriptions by using the Knative CLI

You can use the kn subscription update command as well as the appropriate flags to update a
subscription from the terminal by using the Knative (kn) CLI. Using the Knative CLI to update
subscriptions provides a more streamlined and intuitive user interface than updating YAML files directly.

Prerequisites

® You have installed the Knative (kn) CLI.

® You have created a subscription.

Procedure

® Update a subscription:

$ kn subscription update <subscription_name> \
--sink <sink_prefix>:<sink_name> \0
--sink-dead-letter <sink_prefix>:<sink_name> 9

ﬂ --sink specifies the updated target destination to which the event should be delivered.
You can specify the type of the sink by using one of the following prefixes:

ksvc
A Knative service.
channel
A channel that should be used as destination. Only default channel types can be
referenced here.
broker
An Eventing broker.

9 Optional: --sink-dead-letter is an optional flag that can be used to specify a sink which
events should be sent to in cases where events fail to be delivered. For more information,

see the OpenShift Serverless Event delivery documentation.

Example command

I $ kn subscription update mysubscription --sink ksvc:event-display

124

CHAPTER 8. EVENT DELIVERY

CHAPTER 8. EVENT DELIVERY

You can configure event delivery parameters that are applied in cases where an event fails to be
delivered to an event sink. Different channel and broker types have their own behavior patterns that are
followed for event delivery.

Configuring event delivery parameters, including a dead letter sink, ensures that any events that fail to
be delivered to an event sink are retried. Otherwise, undelivered events are dropped.

IMPORTANT

If an event is successfully delivered to a channel or broker receiver for Apache Kafka, the
receiver responds with a 202 status code, which means that the event has been safely
stored inside a Kafka topic and is not lost. If the receiver responds with any other status
code, the event is not safely stored, and steps must be taken by the user to resolve the
issue.

8.1. CONFIGURABLE EVENT DELIVERY PARAMETERS

The following parameters can be configured for event delivery:

Dead letter sink

You can configure the deadLetterSink delivery parameter so that if an event fails to be delivered, it
is stored in the specified event sink. Undelivered events that are not stored in a dead letter sink are
dropped. The dead letter sink be any addressable object that conforms to the Knative Eventing sink
contract, such as a Knative service, a Kubernetes service, or a URL.

Retries

You can set a minimum number of times that the delivery must be retried before the event is sent to
the dead letter sink, by configuring the retry delivery parameter with an integer value.

Back off delay

You can set the backoffDelay delivery parameter to specify the time delay before an event delivery
retry is attempted after a failure. The duration of the backoffDelay parameter is specified using the
ISO 8601 format. For example, PT1S specifies a 1second delay.

Back off policy

The backoffPolicy delivery parameter can be used to specify the retry back off policy. The policy
can be specified as either linear or exponential. When using the linear back off policy, the back off
delay is equal to backoffDelay * <numberOfRetries>. When using the exponential backoff policy,
the back off delay is equal to backoffDelay*2A<numberOfRetries>.

8.2. EXAMPLES OF CONFIGURING EVENT DELIVERY PARAMETERS

You can configure event delivery parameters for Broker, Trigger, Channel, and Subscription objects.
If you configure event delivery parameters for a broker or channel, these parameters are propagated to
triggers or subscriptions created for those objects. You can also set event delivery parameters for
triggers or subscriptions to override the settings for the broker or channel.

Example Broker object

apiVersion: eventing.knative.dev/v1
kind: Broker

metadata:

#...

125

https://en.wikipedia.org/wiki/ISO_8601#Durations

Red Hat OpenShift Serverless 1.34 Eventing

spec:
delivery:
deadLetterSink:
ref:
apiVersion: eventing.knative.dev/vialphai
kind: KafkaSink
name: <sink_name>
backoffDelay: <duration>
backoffPolicy: <policy_type>
retry: <integer>
#...

Example Trigger object

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
#...
spec:
broker: <broker_name>
delivery:
deadLetterSink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: <sink_name>
backoffDelay: <duration>
backoffPolicy: <policy_type>
retry: <integer>
#...

Example Channel object

apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
#...
spec:
delivery:
deadLetterSink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: <sink_name>
backoffDelay: <duration>
backoffPolicy: <policy_type>
retry: <integer>
#...

Example Subscription object

apiVersion: messaging.knative.dev/v1
kind: Subscription
metadata:

126

#...

CHAPTER 8. EVENT DELIVERY

spec:
channel:
apiVersion: messaging.knative.dev/v1
kind: Channel
name: <channel _name>
delivery:
deadLetterSink:

ref:

apiVersion: serving.knative.dev/v1
kind: Service
name: <sink_name>

backoffDelay: <duration>
backoffPolicy: <policy_type>
retry: <integer>

#...

8.3. CONFIGURING EVENT DELIVERY ORDERING FOR TRIGGERS

If you are using a Kafka broker, you can configure the delivery order of events from triggers to event

sinks.

Prerequisites

The OpenShift Serverless Operator, Knative Eventing, and Knative Kafka are installed on your
OpenShift Container Platform cluster.

Kafka broker is enabled for use on your cluster, and you have created a Kafka broker.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have installed the OpenShift (oc) CLI.

Procedure

1.

Create or modify a Trigger object and set the kafka.eventing.knative.dev/delivery.order
annotation:

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
name: <trigger_name>
annotations:
kafka.eventing.knative.dev/delivery.order: ordered
#...

The supported consumer delivery guarantees are:

unordered

An unordered consumer is a non-blocking consumer that delivers messages unordered, while
preserving proper offset management.

ordered

127

Red Hat OpenShift Serverless 1.34 Eventing

An ordered consumer is a per-partition blocking consumer that waits for a successful

response from the CloudEvent subscriber before it delivers the next message of the
partition.

The default ordering guarantee is unordered.

2. Apply the Trigger object:

I $ oc apply -f <filename>

128

CHAPTER 9. EVENT DISCOVERY

CHAPTER 9. EVENT DISCOVERY

9.1. LISTING EVENT SOURCES AND EVENT SOURCE TYPES

It is possible to view a list of all event sources or event source types that exist or are available for use on
your OpenShift Container Platform cluster. You can use the Knative (kn) CLI or the Developer
perspective in the OpenShift Container Platform web console to list available event sources or event
source types.

9.2. LISTING EVENT SOURCE TYPES FROM THE COMMAND LINE

Using the Knative (kn) CLI provides a streamlined and intuitive user interface to view available event
source types on your cluster.

9.2.1. Listing available event source types by using the Knative CLI

You can list event source types that can be created and used on your cluster by using the kn source
list-types CLI command.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

® You have installed the Knative (kn) CLI.

Procedure

1. List the available event source types in the terminal:

I $ kn source list-types

Example output

TYPE NAME DESCRIPTION

ApiServerSource apiserversources.sources.knative.dev Watch and send Kubernetes
APl events to a sink

PingSource pingsources.sources.knative.dev Periodically send ping events to
a sink

SinkBinding sinkbindings.sources.knative.dev Binding for connecting a

PodSpecable to a sink

2. Optional: On OpenShift Container Platform, you can also list the available event source typesin
YAML format:

I $ kn source list-types -0 yaml

9.3.LISTING EVENT SOURCE TYPES FROM THE DEVELOPER
PERSPECTIVE

129

Red Hat OpenShift Serverless 1.34 Eventing

Itis possible to view a list of all available event source types on your cluster. Using the OpenShift
Container Platform web console provides a streamlined and intuitive user interface to view available
event source types.

9.3.1. Viewing available event source types within the Developer perspective

Prerequisites

® You have logged in to the OpenShift Container Platform web console.

® The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

® You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Access the Developer perspective.
2. Click +Add.
3. Click Event Source.

4. View the available event source types.

9.4. LISTING EVENT SOURCES FROM THE COMMAND LINE

Using the Knative (kn) CLI provides a streamlined and intuitive user interface to view existing event
sources on your cluster.

9.4.1. Listing available event sources by using the Knative CLI

You can list existing event sources by using the kn source list command.

Prerequisites

® The OpenShift Serverless Operator and Knative Eventing are installed on the cluster.

® You have installed the Knative (kn) CLI.

Procedure

1. List the existing event sources in the terminal:

I $ kn source list
Example output

NAME TYPE RESOURCE SINK READY

al ApiServerSource apiserversources.sources.knative.dev ksvc:eshow2 True
b1 SinkBinding sinkbindings.sources.knative.dev ksvc:eshow3 False
p1 PingSource pingsources.sources.knative.dev ksvc:eshow1 True

130

CHAPTER 9. EVENT DISCOVERY

2. Optional: You can list event sources of a specific type only, by using the --type flag:

I $ kn source list --type <event_source_type>
Example command
I $ kn source list --type PingSource

Example output

NAME TYPE RESOURCE SINK READY
p1 PingSource pingsources.sources.knative.dev ksvc:eshow1 True

131

Red Hat OpenShift Serverless 1.34 Eventing

CHAPTER 10. TUNING EVENTING CONFIGURATION

10.1. OVERRIDING KNATIVE EVENTING SYSTEM DEPLOYMENT
CONFIGURATIONS

You can override the default configurations for some specific deployments by modifying the workloads
spec in the KnativeEventing custom resource (CR). Currently, overriding default configuration settings
is supported for the eventing-controller, eventing-webhook, and imc-controller fields, as well as for
the readiness and liveness fields for probes.

IMPORTANT

The replicas spec cannot override the number of replicas for deployments that use the
Horizontal Pod Autoscaler (HPA), and does not work for the eventing-webhook
deployment.

4

NOTE

You can only override probes that are defined in the deployment by default.

avaY
2
L

- w W

All Knative Serving deployments define a readiness and a liveness probe by default, with
these exceptions:

avaY
2
L

- w W

e net-kourier-controller and 3scale-kourier-gateway only define a readiness
probe.

2
"’

P
i
' - '

e net-istio-controller and net-istio-webhook define no probes.

10.1.1. Overriding deployment configurations

Currently, overriding default configuration settings is supported for the eventing-controller, eventing-
webhook, and imc-controller fields, as well as for the readiness and liveness fields for probes.

IMPORTANT

The replicas spec cannot override the number of replicas for deployments that use the
Horizontal Pod Autoscaler (HPA), and does not work for the eventing-webhook
deployment.

In the following example, a KnativeEventing CR overrides the eventing-controller deployment so that:
® The readiness probe timeout eventing-controller is set to be 10 seconds.
® The deployment has specified CPU and memory resource limits.
® The deployment has 3 replicas.
® The example-label: label [abel is added.
® The example-annotation: annotation annotation is added.

e The nodeSelector field is set to select nodes with the disktype: hdd label.

132

CHAPTER 10. TUNING EVENTING CONFIGURATION

KnativeEventing CR example

apiVersion: operator.knative.dev/vibetai
kind: KnativeEventing
metadata:
name: knative-eventing
namespace: knative-eventing
spec:
workloads:
- name: eventing-controller
readinessProbes:
- container: controller
timeoutSeconds: 10
resources:
- container: eventing-controller
requests:
cpu: 300m
memory: 100Mi
limits:
cpu: 1000m
memory: 250Mi
replicas: 3
labels:
example-label: label
annotations:
example-annotation: annotation
nodeSelector:
disktype: hdd

You can use the readiness and liveness probe overrides to override all fields of a probe in a
container of a deployment as specified in the Kubernetes APl except for the fields related to the
probe handler: exec, grpc, httpGet, and tcpSocket.

NOTE

The KnativeEventing CR label and annotation settings override the deployment’s labels
and annotations for both the deployment itself and the resulting pods.

10.1.2. Modifying consumer group IDs and topic names

You can change templates for generating consumer group IDs and topic names used by your triggers,
brokers, and channels.

Prerequisites

® You have cluster or dedicated administrator permissions on OpenShift Container Platform.

® The OpenShift Serverless Operator, Knative Eventing, and the KnativeKafka custom resource
(CR) are installed on your OpenShift Container Platform cluster.

® You have created a project or have access to a project that has the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

® You have installed the OpenShift CLI (oc).

133

Red Hat OpenShift Serverless 1.34 Eventing

Procedure

1. To change templates for generating consumer group IDs and topic names used by your triggers,
brokers, and channels, modify the KnativeKafka resource:

apiVersion: v1i
kind: KnativeKafka
metadata:
name: knative-kafka
namespace: knative-eventing
#...
spec:
config:
config-kafka-features:
triggers.consumergroup.template: <template> ﬂ
brokers.topic.template: <template>

channels.topic.template: <template>

ﬂ The template for generating the consumer group ID used by your triggers. Use a valid Go
text/template value. Defaults to {% raw %}"knative-trigger-{{ .Namespace }}-{{ .Name
}'{% endraw %}.

9 The template for generating Kafka topic names used by your brokers. Use a valid Go
text/template value. Defaults to {% raw %}"knative-broker-{{ .Namespace }}-{{ .Name
}'{% endraw %}.

9 The template for generating Kafka topic names used by your channels. Use a valid Go
text/template value. Defaults to {% raw %}"messaging-kafka.{{ .Namespace }}.{{
.Name }}"{% endraw %}.

Example template configuration

apiVersion: vi
kind: KnativeKafka
metadata:
name: knative-kafka
namespace: knative-eventing
#...
spec:
config:
config-kafka-features:
triggers.consumergroup.template: "{% raw %}"knative-trigger-{{ .Namespace }}-{{ .Name
1-{{ .annotations.my-annotation }}"{% endraw %}"
brokers.topic.template: "{% raw %}"knative-broker-{{ .Namespace }}-{{ .Name }}-{{
.annotations.my-annotation }}"{% endraw %}"
channels.topic.template: "{% raw %}"messaging-kafka.{{ .Namespace }}.{{ .Name }}-{{
.annotations.my-annotation }}"{% endraw %}"

2. Apply the KnativeKafka YAML file:

I $ oc apply -f <knative_kafka_filename>

Additional resources

134

CHAPTER 10. TUNING EVENTING CONFIGURATION

® Probe configuration section of the Kubernetes APl documentation

10.2. HIGH AVAILABILITY

High availability (HA) is a standard feature of Kubernetes APIs that helps to ensure that APIs stay
operational if a disruption occurs. In an HA deployment, if an active controller crashes or is deleted,
another controller is readily available. This controller takes over processing of the APIs that were being
serviced by the controller that is now unavailable.

HA in OpenShift Serverless is available through leader election, which is enabled by default after the
Knative Serving or Eventing control plane is installed. When using a leader election HA pattern, instances
of controllers are already scheduled and running inside the cluster before they are required. These
controller instances compete to use a shared resource, known as the leader election lock. The instance
of the controller that has access to the leader election lock resource at any given time is called the
leader.

HA in OpenShift Serverless is available through leader election, which is enabled by default after the
Knative Serving or Eventing control plane is installed. When using a leader election HA pattern, instances
of controllers are already scheduled and running inside the cluster before they are required. These
controller instances compete to use a shared resource, known as the leader election lock. The instance
of the controller that has access to the leader election lock resource at any given time is called the
leader.

10.2.1. Configuring high availability replicas for Knative Eventing

High availability (HA) is available by default for the Knative Eventing eventing-controller, eventing-
webhook, imc-controller, imc-dispatcher, and mt-broker-controller components, which are
configured to have two replicas each by default. You can change the number of replicas for these
components by modifying the spec.high-availability.replicas value in the KnativeEventing custom
resource (CR).

NOTE

For Knative Eventing, the mt-broker-filter and mt-broker-ingress deployments are not
scaled by HA. If multiple deployments are needed, scale these components manually.

Prerequisites

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

® The OpenShift Serverless Operator and Knative Eventing are installed on your cluster.

Procedure

1. In the OpenShift Container Platform web console Administrator perspective, navigate to
OperatorHub — Installed Operators.

2. Select the knative-eventing namespace.

3. Click Knative Eventingin the list of Provided APIs for the OpenShift Serverless Operator to
go to the Knative Eventing tab.

4. Click knative-eventing, then go to the YAML tab in the knative-eventing page.

135

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.25/#probe-v1-core

Red Hat OpenShift Serverless 1.34 Eventing

You are logged in as a temporary administrative user. Update the cluster OAuth

o ini) . .
TS e configuration to allow others to log in.

Project: knative-eventin -
Home ! 9

Overview Installed Operators » serverless-operatorvl16.0 » KnativeEventing details
e knative-eventing Actions =

Search

. Details YAML Resources Events
API Explorer

Events

9 >

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

Storage [Reload] [Cancel

Operators

OperatorHub

Installed Operators

Workloads

Serverless

Networking

5. Modify the number of replicas in the KnativeEventing CR:

Example YAML

apiVersion: operator.knative.dev/vibetai
kind: KnativeEventing
metadata:

name: knative-eventing

namespace: knative-eventing
spec:

high-availability:

replicas: 3

6. You can also specify the number of replicas for a specific workload.

NOTE

Workload-specific configuration overrides the global setting for Knative
Eventing.

Example YAML

apiVersion: operator.knative.dev/vibetai
kind: KnativeEventing
metadata:
name: knative-eventing
namespace: knative-eventing
spec:

136

CHAPTER 10. TUNING EVENTING CONFIGURATION

high-availability:
replicas: 3

workloads:

- name: mt-broker-filter
replicas: 3

7. Verify that the high availability limits are respected:

Example command
I $ oc get hpa -n knative-eventing

Example output

NAME REFERENCE TARGETS MINPODS MAXPODS
REPLICAS AGE

broker-filter-hpa Deployment/mt-broker-filter 1%/70% 3 12 3 112s
broker-ingress-hpa Deployment/mt-broker-ingress 1%/70% 3 12 3 112s
eventing-webhook Deployment/eventing-webhook 4%/100% 3 7 3 115s

10.2.2. Configuring high availability replicas for the Knative broker implementation
for Apache Kafka

High availability (HA) is available by default for the Knative broker implementation for Apache Kafka
components kafka-controller and kafka-webhook-eventing, which are configured to have two each
replicas by default. You can change the number of replicas for these components by modifying the
spec.high-availability.replicas value in the KnativeKafka custom resource (CR).

Prerequisites

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

® The OpenShift Serverless Operator and Knative broker for Apache Kafka are installed on your
cluster.

Procedure

1. In the OpenShift Container Platform web console Administrator perspective, navigate to
OperatorHub — Installed Operators.

2. Select the knative-eventing namespace.

3. Click Knative Kafkain the list of Provided APIs for the OpenShift Serverless Operator to go to
the Knative Kafka tab.

4. Click knative-kafka, then go to the YAML tab in the knative-kafka page.

137

Red Hat OpenShift Serverless 1.34 Eventing

- . You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to
& Administrator -

log in.
Project: knative-eventing ~
Home
Overview Installed Operators » serverless-operatorv116.0 » KnativeKafka details
Projects m knat|ve-kafka Actions =

Search
Details YAML Resources Events
API Explorer

Events

Alt|+|F1l| Accessibility help @ View shortcuts | @ View sidebar

Operators

OperatorHub

Installed Operators

Workloads

Serverless

MNetworking

Storage

Builds

5. Modify the number of replicas in the KnativeKafka CR:

Example YAML

apiVersion: operator.serverless.openshift.io/vialphat
kind: KnativeKafka
metadata:

name: knative-kafka

namespace: knative-eventing
spec:

high-availability:

replicas: 3

10.2.3. Overriding disruption budgets

A Pod Disruption Budget (PDB) is a standard feature of Kubernetes APIs that helps limit the disruption
to an application when its pods need to be rescheduled for maintenance reasons.

Procedure

e Override the default PDB for a specific resource by modifying the minAvailable configuration
value in the KnativeEventing custom resource (CR).

Example PDB with a minAvailable seting of 70%

apiVersion: operator.knative.dev/vibetai
kind: KnativeEventing

metadata:

name: knative-eventing

138

CHAPTER 10. TUNING EVENTING CONFIGURATION

namespace: knative-eventing

spec:

podDisruptionBudgets:

- name: eventing-webhook
minAvailable: 70%

NOTE
If you disable high-availability, for example, by changing the high-availability.replicas

value to 1, make sure you also update the corresponding PDB minAvailable value to 0.
Otherwise, the pod disruption budget prevents automatic cluster or Operator updates.

139

Red Hat OpenShift Serverless 1.34 Eventing

CHAPTER 1. CONFIGURING TLS ENCRYPTION IN EVENTING

With the transport encryption feature, you can transport data and events over secured and encrypted
HTTPS connections by using Transport Layer Security (TLS).

IMPORTANT

OpenShift Serverless transport encryption for Eventing is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

The transport-encryption feature flag is an enum configuration that defines how Addressables, such as
Broker, Channel, and Sink, accept events. It controls whether Addressables must accept events over
HTTP or HTTPS based on the selected setting.

The possible values for transport-encryption are as follows:

Value Description

disabled
® Addressables can accept events to HTTPS

endpoints.

® Producers can send events to HTTPS
endpoints.

permissive
® Addressables must accept events on both

HTTP and HTTPS endpoints.

® Addressables must advertise both HTTP
and HTTPS endpoints.

® Producers must send events to HTTPS
endpoints, if available.

strict
® Addressables must not accept events to

non-HTTPS endpoints.

® Addressables must only advertise HTTPS
endpoints.

11.1. CREATING A SELFSIGNED CLUSTERISSUER RESOURCE FOR
EVENTING

140

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 11. CONFIGURING TLS ENCRYPTION IN EVENTINC

Clusterlssuers are Kubernetes resources that represent certificate authorities (CAs) that can generate
signed certificates by honoring certificate signing requests. All cert-manager certificates require a
referenced issuer in a ready condition to attempt to honor the request. For more details, see Issuer.

IMPORTANT

For simplicity, this procedure uses a SelfSigned issuer as the root certificate authority.
For more details about SelfSigned issuer implications and limitations, see SelfSigned
issuers. If you are using a custom public key infrastructure (PKI), you must configure it so
its privately signed CA certificates are recognized across the cluster. For more details
about cert-manager, see certificate authorities (CAs). You can use any other issuer that
is usable for cluster-local services.

Prerequisites

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

® You have installed the OpenShift Serverless Operator.
® You have installed the cert-manager Operator for Red Hat OpenShift.

® You have installed the OpenShift (oc) CLI.

Procedure

1. Create a SelfSigned Clusterlssuer resource as follows:

apiVersion: cert-manager.io/v1
kind: Clusterlssuer
metadata:
name: knative-eventing-selfsigned-issuer
spec:
selfSigned: {}

2. Apply the Clusterlssuer resource by running the following command:

I $ oc apply -f <filename>

3. Create aroot certificate by using the SelfSigned Clusterlssuer resource as follows:

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: knative-eventing-selfsigned-ca
namespace: cert-manager
spec:
secretName: knative-eventing-ca 9
isCA: true
commonName: selfsigned-ca
privateKey:
algorithm: ECDSA
size: 256

141

https://cert-manager.io/docs/concepts/issuer/
https://cert-manager.io/docs/configuration/selfsigned/
https://cert-manager.io/docs/configuration/ca/

Red Hat OpenShift Serverless 1.34 Eventing

issuerRef:
name: knative-eventing-selfsigned-issuer
kind: Clusterlssuer
group: cert-manager.io

ﬂ Specify the cert-manager Operator for Red Hat OpenShift that is used by default.

Specify the secret where the certificate is stored. The name is later used by the
Clusterlssuer for Eventing.

4. Apply the Certificate resource by running the following:

I $ oc apply -f <filename>

11.2. CREATING A CLUSTERISSUER RESOURCE FOR EVENTING

Clusterlssuers are Kubernetes resources that represent certificate authorities (CAs) that can generate
signed certificates by honoring certificate signing requests.

Prerequisites

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

® You have installed the OpenShift Serverless Operator.
® You have installed the cert-manager Operator for Red Hat OpenShift.

® You have installed the OpenShift (oc) CLI.

Procedure

1. Create the knative-eventing-ca-issuer Clusterlssuer resource as follows:
Every Eventing component uses this issuer to issue their server’s certs.

apiVersion: cert-manager.io/v1
kind: Clusterlssuer
metadata:
name: knative-eventing-ca-issuer
spec:
ca:
secretName: knative-eventing-ca ﬂ

The secretName value in the cert-manager namespace (default for cert-manager
Operator for Red Hat OpenShift) contains the certificate that can be used by Knative
Eventing components.

NOTE

The Clusterlssuer name must be knative-eventing-ca-issuer.

142

CHAPTER 11. CONFIGURING TLS ENCRYPTION IN EVENTINC

2. Apply the Clusterlssuer resource by running the following command:

I $ oc apply -f <filename>

11.3. ENABLING TRANSPORT ENCRPTION FOR KNATIVE EVENTING

You can enable transport encryption in KnativeEventing by setting the transport-encryption feature
to strict.

Prerequisites

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

® You have installed the OpenShift Serverless Operator.
® You have installed the cert-manager Operator for Red Hat OpenShift.

® You have installed the OpenShift (oc) CLI.

Procedure

1. Enable the transport-encryption in KnativeEventing as follows:

apiVersion: operator.knative.dev/vibetai
kind: KnativeEventing
metadata:
name: knative-eventing
namespace: knative-eventing
spec:

Other spec fields omitted ...
#...

config:
features:
transport-encryption: strict

2. Apply the KnativeEventing resource by running the following command:

I $ oc apply -f <filename>

11.4. CONFIGURING ADDITIONAL CA TRUST BUNDLES

By default, Eventing clients trust the OpenShift CA bundle configured for custom PKI. For more details,
see Configuring a custom PKI.

NOTE

When a new connection is established, Eventing clients automatically include these CA
bundles in their trusted list.

143

https://docs.openshift.com/container-platform/latest/networking/configuring-a-custom-pki.html

Red Hat OpenShift Serverless 1.34 Eventing

Prerequisites

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

® You have installed the OpenShift Serverless Operator.

® You have installed the cert-manager Operator for Red Hat OpenShift.

Procedure

® Create a CA bundle for Eventing as follows:

kind: ConfigMap
metadata:

name: <my_org_eventing_bundle> ﬂ

namespace: knative-eventing

labels:

networking.knative.dev/trust-bundle: "true"

data: 9

ca.crt: ...

cal.crt: ...

tls.crt: ...

ﬂ Use a unique name to avoid conflicts with existing or future Eventing config maps.

9 All keys with valid PEM-encoded CA bundles are trusted by Eventing clients.

11.5. CONFIGURE CUSTOM EVENT SOURCES TO TRUST THE
EVENTING CA

To create a custom event source, use a SinkBinding. The SinkBinding can inject the configured CA trust
bundles as a projected volume into each container by using the knative-custom-certs directory.

In specific cases, you might inject company-specific CA trust bundles into base container images and
automatically configure runtimes, such as OpenJDK or Node.js, and so on. to trust those CA bundles. In
such cases, you might not need to configure your clients.

By using the my_org_eventing_bundle config map from the previous example, with the ca.crt, cal.crt,
and tls.crt data keys, the knative-custom-certs directory has the following layout:

/knative-custom-certs/ca.crt
/knative-custom-certs/cai.crt
/knative-custom-certs/tls.crt

You can use these files to add CA trust bundles to HTTP clients that send events to Eventing.

NOTE

Depending on the runtime, programming language, or library you use, different methods
exist for configuring custom CA cert files, such as using command-line flags, environment
variables, or reading the content of the files.

144

CHAPTER 11. CONFIGURING TLS ENCRYPTION IN EVENTINC

11.6. ADDING A SELFSIGNED CLUSTERISSUER RESOURCE TO CA
TRUST BUNDLES

If you are using a SelfSigned Clusterlssuer resource, you can add the CA to the Eventing CA trust
bundles.

Prerequisites

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

® You have installed the OpenShift Serverless Operator.

® You have installed the cert-manager Operator for Red Hat OpenShift.

® You have installed the OpenShift (oc) CLI.

Procedure

1. Export the CA from the knative-eventing-ca secret in the cert-manager Operator for Red Hat
OpenShift namespace (default is cert-manager certificate) by running the following command:

I $ oc get secret -n cert-manager knative-eventing-ca -o=jsonpath='{.data.ca\.crt}' | base64 -d
> ca.crt

2. Create a CA trust bundle in the knative-eventing namespace by running the following
command:
I $ oc create configmap -n knative-eventing my-org-selfsigned-ca-bundle --from-file=ca.crt
3. Label the ConfigMap by running the following command:

$ oc label configmap -n knative-eventing my-org-selfsigned-ca-bundle
networking.knative.dev/trust-bundle=true

11.7. ENSURING SEAMLESS CA ROTATION

Ensuring seamless CA rotation is essential to avoid service downtime or to handle emergencies.

Prerequisites

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

® You have installed the OpenShift Serverless Operator.

® You have installed the cert-manager Operator for Red Hat OpenShift.

® You have installed the OpenShift (oc) CLI.

Procedure

145

Red Hat OpenShift Serverless 1.34 Eventing

1. Create a CA certificate.

2. Add the public key of the new CA certificate to the CA trust bundles.
Ensure that you also keep the public key of the existing CA.

3. Ensure all clients use the latest CA trust bundles.
Knative Eventing components automatically reload the updated CA trust bundles. For custom
workloads that consume trust bundles, reload or restart them as needed.

4. Update the knative-eventing-ca-issuer Clusterlssuer to reference the secret containing the
CA certificate that you created in step 1.

5. Force cert-manager to renew certificates in the knative-eventing namespace.
For more information about cert-manager, see Reissuance triggered by user actions.

6. Assoon as the CA rotation is fully completed, remove the public key of the old CA from the
trust bundle config map.

11.8. VERIFYING TRANSPORT ENCRYPTION IN EVENTING

To confirm that transport encryption is correctly configured, you can create and test an
InMemoryChannel resource. Follow the steps to ensure that it uses HTTPS as expected.

Prerequisites

® You have cluster administrator permissions on OpenShift Container Platform, or you have
cluster or dedicated administrator permissions on Red Hat OpenShift Service on AWS or
OpenShift Dedicated.

® You have installed the OpenShift Serverless Operator.
® You have installed the cert-manager Operator for Red Hat OpenShift.

® You have installed the OpenShift (oc) CLI.
Procedure
1. Create an InMemoryChannel resource as follows:

apiVersion: messaging.knative.dev/v1
kind: InMemoryChannel
metadata:

name: transport-encryption-test

2. Apply the InMemoryChannel resource by running the following command:

I $ oc apply -f <filename>

3. View the InMemoryChannel address by running the following command:

I $ oc get inmemorychannels.messaging.knative.dev transport-encryption-test

Example output

146

https://cert-manager.io/docs/usage/certificate/#reissuance-triggered-by-user-actions

CHAPTER 11. CONFIGURING TLS ENCRYPTION IN EVENTINC

NAME URL AGE

READY REASON
transport-encryption-test https://imc-dispatcher.knative-
eventing.svc.cluster.local/default/transport-encryption-test 17s True

147

Red Hat OpenShift Serverless 1.34 Eventing

CHAPTER 12. CONFIGURING KUBE-RBAC-PROXY FOR
EVENTING

The kube-rbac-proxy component provides internal authentication and authorization capabilities for
Knative Eventing.

12.1. CONFIGURING KUBE-RBAC-PROXY RESOURCES FOR EVENTING

You can globally override resource allocation for the kube-rbac-proxy container by using the OpenShift
Serverless Operator CR.

¢ NOTE
You can also override resource allocation for a specific deployment.

The following configuration sets Knative Eventing kube-rbac-proxy minimum and maximum CPU and
memory allocation:

KnativeEventing CR example

apiVersion: operator.knative.dev/vibetai
kind: KnativeEventing
metadata:
name: knative-eventing
namespace: knative-eventing
spec:
config:
deployment:
"kube-rbac-proxy-cpu-request": "10m"
"kKube-rbac-proxy-memory-request": "20Mi" 9
"kube-rbac-proxy-cpu-limit": "100m"
"kube-rbac-proxy-memory-limit": "100Mi" ﬂ

Sets minimum CPU allocation.
Sets minimum RAM allocation.

Sets maximum CPU allocation.

- -

Sets maximum RAM allocation.

12.2. CONFIGURING KUBE-RBAC-PROXY RESOURCES FOR KNATIVE
FOR APACHE KAFKA

You can globally override resource allocation for the kube-rbac-proxy container by using the OpenShift
Serverless Operator CR.

NOTE
You can also override resource allocation for a specific deployment.

148

CHAPTER 12. CONFIGURING KUBE-RBAC-PROXY FOR EVENTINC

The following configuration sets Knative Kafka kube-rbac-proxy minimum and maximum CPU and
memory allocation:

KnativeKafka CR example

apiVersion: operator.serverless.openshift.io/vialphal
kind: KnativeKafka
metadata:
name: knative-kafka
namespace: knative-kafka
spec:
config:
deployment:
"kube-rbac-proxy-cpu-request": "10m"
"kube-rbac-proxy-memory-request": "20Mi" g
"kube-rbac-proxy-cpu-limit": "100m"
"kube-rbac-proxy-memory-limit": "100Mi" ﬂ

Sets minimum CPU allocation.
Sets minimum RAM allocation.
Sets maximum CPU allocation.

Sets maximum RAM allocation.

0009

149

Red Hat OpenShift Serverless 1.34 Eventing

CHAPTER 13. USING CONTAINERSOURCE WITH SERVICE
MESH

You can use container source with Service Mesh.

13.1. CONFIGURING CONTAINERSOURCE WITH SERVICE MESH

This procedure describes how to configure container source with Service Mesh.

Prerequisites

® You have set up integration of Service Mesh and Serverless.

Procedure
1. Create a Service in a namespace that is member of the ServiceMeshMemberRoll:

Example event-display-service.yaml configuration file

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: event-display
namespace: <namespace>
spec:
template:
metadata:
annotations:
sidecar.istio.io/inject: "true"
sidecar.istio.io/rewriteAppHTTPProbers: "true"
spec:
containers:
- image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

ﬂ A namespace that is a member of the ServiceMeshMemberRoll.

9 This annotation injects Service Mesh sidecars into the Knative service pods.

2. Apply the Service resource:
I $ oc apply -f event-display-service.yaml

3. Create a ContainerSource object in a namespace that is member of the
ServiceMeshMemberRoll and sink set to the event-display:

Example test-heartbeats-containersource.yaml configuration file

apiVersion: sources.knative.dev/v1
kind: ContainerSource
metadata:
name: test-heartbeats
namespace: <namespace> ﬂ

150

CHAPTER 13. USING CONTAINERSOURCE WITH SERVICE MESH

spec:
template:
metadata:
annotations:
sidecar.istio.io/inject": "true"
sidecar.istio.io/rewriteAppHTTPProbers: "true"
spec:
containers:
This corresponds to a heartbeats image URI that you have built and published
- image: quay.io/openshift-knative/heartbeats
name: heartbeats
args:
- --period=1s
env:
- name: POD_NAME
value: "example-pod"
- name: POD_NAMESPACE
value: "event-test"
sink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display-service

ﬂ A namespace that is part of the ServiceMeshMemberRoll.

9 These annotations enable Service Mesh integration with the ContainerSource object.

4. Apply the ContainerSource resource:

I $ oc apply -f test-heartbeats-containersource.yaml

5. Optional: Verify that the events were sent to the Knative event sink by looking at the message
dumper function logs:

Example command
I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container
Example output

a cloudevents.Event

Validation: valid

Context Attributes,
specversion: 1.0
type: dev.knative.eventing.samples.heartbeat
source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
id: 2b72d7bf-c38f-4298-a433-608fbcdd2596
time: 2019-10-18T15:23:20.809775386Z
contenttype: application/json

Extensions,
beats: true
heart: yes
the: 42

151

Red Hat OpenShift Serverless 1.34 Eventing

Data,
{
"id": 1,
"labelll: "nn

}

152

CHAPTER 14. USING A SINK BINDING WITH SERVICE MESH

CHAPTER 14. USING A SINK BINDING WITH SERVICE MESH

You can use a sink binding with Service Mesh.

14.1. CONFIGURING A SINK BINDING WITH SERVICE MESH

This procedure describes how to configure a sink binding with Service Mesh.

Prerequisites

® You have set up integration of Service Mesh and Serverless.

Procedure
1. Create a Service object in a namespace that is member of the ServiceMeshMemberRoll:

Example event-display-service.yaml configuration file

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: event-display
namespace: <namespace>
spec:
template:
metadata:
annotations:
sidecar.istio.io/inject: "true"
sidecar.istio.io/rewriteAppHTTPProbers: "true"
spec:
containers:
- image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

ﬂ A namespace that is a member of the ServiceMeshMemberRoll.

9 This annotation injects Service Mesh sidecars into the Knative service pods.

2. Apply the Service object:
I $ oc apply -f event-display-service.yaml
3. Create a SinkBinding object:

Example heartbeat-sinkbinding.yaml configuration file

apiVersion: sources.knative.dev/vialphal
kind: SinkBinding
metadata:
name: bind-heartbeat
namespace: <namespace> ﬂ
spec:
subject:

153

Red Hat OpenShift Serverless 1.34 Eventing

apiVersion: batch/v1
kind: Job @)
selector:
matchLabels:
app: heartbeat-cron

sink:
ref:
apiVersion: serving.knative.dev/v1
kind: Service
name: event-display

ﬂ A namespace that is part of the ServiceMeshMemberRoll.

9 Bind any Job with the label app: heartbeat-cron to the event sink.

4. Apply the SinkBinding object:
I $ oc apply -f heartbeat-sinkbinding.yaml

5. Create a Crondob object:

Example heartbeat-cronjob.yaml configuration file

apiVersion: batch/v1
kind: CronJob
metadata:
name: heartbeat-cron
namespace: <namespace> ﬂ
spec:
Run every minute
schedule: " * * * *"
jobTemplate:
metadata:
labels:
app: heartbeat-cron
bindings.knative.dev/include: "true"
spec:
template:
metadata:
annotations:
sidecar.istio.io/inject: "true"
sidecar.istio.io/rewrite AppHTTPProbers: "true"
spec:
restartPolicy: Never
containers:
- name: single-heartbeat
image: quay.io/openshift-knative/heartbeats:latest
args:
- --period=1
env:
- name: ONE_SHOT
value: "true"
- name: POD_NAME

154

CHAPTER 14. USING A SINK BINDING WITH SERVICE MESH

valueFrom:
fieldRef:
fieldPath: metadata.name
- name: POD_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace

ﬂ A namespace that is part of the ServiceMeshMemberRoll.

9 Inject Service Mesh sidecars into the Crondob pods.

6. Apply the Crondob object:

I $ oc apply -f heartbeat-cronjob.yaml

7. Optional: Verify that the events were sent to the Knative event sink by looking at the message
dumper function logs:

Example command
I $ oc logs $(oc get pod -0 name | grep event-display) -c user-container
Example output

a cloudevents.Event
Validation: valid
Context Attributes,
specversion: 1.0
type: dev.knative.eventing.samples.heartbeat
source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
id: 2b72d7bf-c38f-4298-a433-608fbcdd2596
time: 2019-10-18T15:23:20.809775386Z
contenttype: application/json
Extensions,
beats: true
heart: yes
the: 42
Data,
{
"id": 1,
"label": ™"

}

155

	Table of Contents
	CHAPTER 1. KNATIVE EVENTING
	1.1. KNATIVE EVENTING USE CASES:

	CHAPTER 2. EVENT SOURCES
	2.1. EVENT SOURCES
	2.2. EVENT SOURCE IN THE ADMINISTRATOR PERSPECTIVE
	2.2.1. Creating an event source by using the Administrator perspective

	2.3. CREATING AN API SERVER SOURCE
	2.3.1. Creating an API server source by using the web console
	2.3.2. Creating an API server source by using the Knative CLI
	2.3.2.1. Knative CLI sink flag

	2.3.3. Creating an API server source by using YAML files

	2.4. CREATING A PING SOURCE
	2.4.1. Creating a ping source by using the web console
	2.4.2. Creating a ping source by using the Knative CLI
	2.4.2.1. Knative CLI sink flag

	2.4.3. Creating a ping source by using YAML

	2.5. SOURCE FOR APACHE KAFKA
	2.5.1. Creating an Apache Kafka event source by using the web console
	2.5.2. Creating an Apache Kafka event source by using the Knative CLI
	2.5.2.1. Knative CLI sink flag

	2.5.3. Creating an Apache Kafka event source by using YAML
	2.5.4. Configuring SASL authentication for Apache Kafka sources
	2.5.5. Configuring KEDA autoscaling for KafkaSource

	2.6. CUSTOM EVENT SOURCES
	2.6.1. Sink binding
	2.6.1.1. Creating a sink binding by using YAML
	2.6.1.2. Creating a sink binding by using the Knative CLI
	2.6.1.3. Creating a sink binding by using the web console
	2.6.1.4. Sink binding reference
	2.6.1.5. Integrating Service Mesh with a sink binding

	2.6.2. Container source
	2.6.2.1. Guidelines for creating a container image
	2.6.2.2. Creating and managing container sources by using the Knative CLI
	2.6.2.3. Creating a container source by using the web console
	2.6.2.4. Container source reference
	2.6.2.5. Integrating Service Mesh with ContainerSource

	2.7. CONNECTING AN EVENT SOURCE TO AN EVENT SINK BY USING THE DEVELOPER PERSPECTIVE
	2.7.1. Connect an event source to an event sink by using the Developer perspective

	CHAPTER 3. EVENT SINKS
	3.1. EVENT SINKS
	3.1.1. Knative CLI sink flag

	3.2. CREATING EVENT SINKS
	3.3. SINK FOR APACHE KAFKA
	3.3.1. Creating an Apache Kafka sink by using YAML
	3.3.2. Creating an event sink for Apache Kafka by using the OpenShift Container Platform web console
	3.3.3. Configuring security for Apache Kafka sinks

	CHAPTER 4. BROKERS
	4.1. BROKERS
	4.2. BROKER TYPES
	4.2.1. Default broker implementation for development purposes
	4.2.2. Production-ready Knative broker implementation for Apache Kafka

	4.3. CREATING BROKERS
	4.3.1. Creating a broker by using the Knative CLI
	4.3.2. Creating a broker by annotating a trigger
	4.3.3. Creating a broker by labeling a namespace
	4.3.4. Deleting a broker that was created by injection
	4.3.5. Creating a broker by using the web console
	4.3.6. Creating a broker by using the Administrator perspective
	4.3.7. Next steps
	4.3.8. Additional resources

	4.4. CONFIGURING THE DEFAULT BROKER BACKING CHANNEL
	4.5. CONFIGURING THE DEFAULT BROKER CLASS
	4.6. KNATIVE BROKER IMPLEMENTATION FOR APACHE KAFKA
	4.6.1. Creating an Apache Kafka broker when it is not configured as the default broker type
	4.6.1.1. Creating an Apache Kafka broker by using YAML
	4.6.1.2. Creating an Apache Kafka broker that uses an externally managed Kafka topic
	4.6.1.3. Knative Broker implementation for Apache Kafka with isolated data plane
	4.6.1.4. Creating a Knative broker for Apache Kafka that uses an isolated data plane

	4.6.2. Configuring Apache Kafka broker settings
	4.6.3. Security configuration for the Knative broker implementation for Apache Kafka
	4.6.3.1. Configuring TLS authentication for Apache Kafka brokers
	4.6.3.2. Configuring SASL authentication for Apache Kafka brokers

	4.6.4. Additional resources

	4.7. MANAGING BROKERS
	4.7.1. Managing brokers using the CLI
	4.7.1.1. Listing existing brokers by using the Knative CLI
	4.7.1.2. Describing an existing broker by using the Knative CLI

	4.7.2. Connect a broker to a sink using the Developer perspective

	CHAPTER 5. TRIGGERS
	5.1. TRIGGERS OVERVIEW
	5.1.1. Configuring event delivery ordering for triggers
	5.1.2. Next steps

	5.2. CREATING TRIGGERS
	5.2.1. Creating a trigger by using the Administrator perspective
	5.2.2. Creating a trigger by using the Developer perspective
	5.2.3. Creating a trigger by using the Knative CLI

	5.3. LIST TRIGGERS FROM THE COMMAND LINE
	5.3.1. Listing triggers by using the Knative CLI

	5.4. DESCRIBE TRIGGERS FROM THE COMMAND LINE
	5.4.1. Describing a trigger by using the Knative CLI

	5.5. CONNECTING A TRIGGER TO A SINK
	5.6. FILTERING TRIGGERS FROM THE COMMAND LINE
	5.6.1. Filtering events with triggers by using the Knative CLI

	5.7. ADVANCED TRIGGER FILTERS
	5.7.1. Advanced trigger filters overview
	5.7.2. Supported filter dialects
	5.7.2.1. exact filter dialect
	5.7.2.2. prefix filter dialect
	5.7.2.3. suffix filter dialect
	5.7.2.4. all filter dialect
	5.7.2.5. any filter dialect
	5.7.2.6. not filter dialect
	5.7.2.7. cesql filter dialect

	5.7.3. Conflict with the existing filter field

	5.8. UPDATING TRIGGERS FROM THE COMMAND LINE
	5.8.1. Updating a trigger by using the Knative CLI

	5.9. DELETING TRIGGERS FROM THE COMMAND LINE
	5.9.1. Deleting a trigger by using the Knative CLI

	CHAPTER 6. CHANNELS
	6.1. CHANNELS AND SUBSCRIPTIONS
	6.1.1. Channel implementation types

	6.2. CREATING CHANNELS
	6.2.1. Creating a channel by using the Administrator perspective
	6.2.2. Creating a channel by using the Developer perspective
	6.2.3. Creating a channel by using the Knative CLI
	6.2.4. Creating a default implementation channel by using YAML
	6.2.5. Creating a channel for Apache Kafka by using YAML
	6.2.6. Next steps

	6.3. CONNECTING CHANNELS TO SINKS
	6.3.1. Creating a subscription by using the Developer perspective
	6.3.2. Creating a subscription by using YAML
	6.3.3. Creating a subscription by using the Knative CLI
	6.3.4. Creating a subscription by using the Administrator perspective
	6.3.5. Next steps

	6.4. DEFAULT CHANNEL IMPLEMENTATION
	6.4.1. Configuring the default channel implementation

	6.5. SECURITY CONFIGURATION FOR CHANNELS
	6.5.1. Configuring TLS authentication for Knative channels for Apache Kafka
	6.5.2. Configuring SASL authentication for Knative channels for Apache Kafka

	CHAPTER 7. SUBSCRIPTIONS
	7.1. CREATING SUBSCRIPTIONS
	7.1.1. Creating a subscription by using the Administrator perspective
	7.1.2. Creating a subscription by using the Developer perspective
	7.1.3. Creating a subscription by using YAML
	7.1.4. Creating a subscription by using the Knative CLI
	7.1.5. Next steps

	7.2. MANAGING SUBSCRIPTIONS
	7.2.1. Describing subscriptions by using the Knative CLI
	7.2.2. Listing subscriptions by using the Knative CLI
	7.2.3. Updating subscriptions by using the Knative CLI

	CHAPTER 8. EVENT DELIVERY
	8.1. CONFIGURABLE EVENT DELIVERY PARAMETERS
	8.2. EXAMPLES OF CONFIGURING EVENT DELIVERY PARAMETERS
	8.3. CONFIGURING EVENT DELIVERY ORDERING FOR TRIGGERS

	CHAPTER 9. EVENT DISCOVERY
	9.1. LISTING EVENT SOURCES AND EVENT SOURCE TYPES
	9.2. LISTING EVENT SOURCE TYPES FROM THE COMMAND LINE
	9.2.1. Listing available event source types by using the Knative CLI

	9.3. LISTING EVENT SOURCE TYPES FROM THE DEVELOPER PERSPECTIVE
	9.3.1. Viewing available event source types within the Developer perspective

	9.4. LISTING EVENT SOURCES FROM THE COMMAND LINE
	9.4.1. Listing available event sources by using the Knative CLI

	CHAPTER 10. TUNING EVENTING CONFIGURATION
	10.1. OVERRIDING KNATIVE EVENTING SYSTEM DEPLOYMENT CONFIGURATIONS
	10.1.1. Overriding deployment configurations
	10.1.2. Modifying consumer group IDs and topic names

	10.2. HIGH AVAILABILITY
	10.2.1. Configuring high availability replicas for Knative Eventing
	10.2.2. Configuring high availability replicas for the Knative broker implementation for Apache Kafka
	10.2.3. Overriding disruption budgets

	CHAPTER 11. CONFIGURING TLS ENCRYPTION IN EVENTING
	11.1. CREATING A SELFSIGNED CLUSTERISSUER RESOURCE FOR EVENTING
	11.2. CREATING A CLUSTERISSUER RESOURCE FOR EVENTING
	11.3. ENABLING TRANSPORT ENCRPTION FOR KNATIVE EVENTING
	11.4. CONFIGURING ADDITIONAL CA TRUST BUNDLES
	11.5. CONFIGURE CUSTOM EVENT SOURCES TO TRUST THE EVENTING CA
	11.6. ADDING A SELFSIGNED CLUSTERISSUER RESOURCE TO CA TRUST BUNDLES
	11.7. ENSURING SEAMLESS CA ROTATION
	11.8. VERIFYING TRANSPORT ENCRYPTION IN EVENTING

	CHAPTER 12. CONFIGURING KUBE-RBAC-PROXY FOR EVENTING
	12.1. CONFIGURING KUBE-RBAC-PROXY RESOURCES FOR EVENTING
	12.2. CONFIGURING KUBE-RBAC-PROXY RESOURCES FOR KNATIVE FOR APACHE KAFKA

	CHAPTER 13. USING CONTAINERSOURCE WITH SERVICE MESH
	13.1. CONFIGURING CONTAINERSOURCE WITH SERVICE MESH

	CHAPTER 14. USING A SINK BINDING WITH SERVICE MESH
	14.1. CONFIGURING A SINK BINDING WITH SERVICE MESH

