& RedHat

Red Hat OpenShift Service on AWS 4

Networking

Configuring Red Hat OpenShift Service on AWS networking

Last Updated: 2024-06-28

Red Hat OpenShift Service on AWS 4 Networking

Configuring Red Hat OpenShift Service on AWS networking

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about networking for Red Hat OpenShift Service on AWS
(ROSA) clusters.

Table of Contents

Table of Contents

CHAPTER 1. DNS OPERATOR IN RED HAT OPENSHIFT SERVICEON AWSttt iiiienneann 6
1.1. USING DNS FORWARDING 6
CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFTSERVICEONAWS iiiiiiiiinennn, 9
2.1. RED HAT OPENSHIFT SERVICE ON AWS INGRESS OPERATOR 9
2.2. THE INGRESS CONFIGURATION ASSET 9
2.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS 9
2.3.1. Ingress Controller TLS security profiles 20
2.3.1.1. Understanding TLS security profiles 20
2.3.1.2. Configuring the TLS security profile for the Ingress Controller 21
2.3.1.3. Configuring mutual TLS authentication 23
2.4.VIEW THE DEFAULT INGRESS CONTROLLER 25
2.5. VIEW INGRESS OPERATOR STATUS 25
2.6. VIEW INGRESS CONTROLLER LOGS 25
2.7.VIEW INGRESS CONTROLLER STATUS 25
2.8. CREATING A CUSTOM INGRESS CONTROLLER 26
2.9. CONFIGURING THE INGRESS CONTROLLER 27
2.9.1. Setting a custom default certificate 27
2.9.2. Removing a custom default certificate 28
2.9.3. Autoscaling an Ingress Controller 29
2.9.4. Scaling an Ingress Controller 33
2.9.5. Configuring Ingress access logging 34
2.9.6. Setting Ingress Controller thread count 37
2.9.7. Configuring an Ingress Controller to use an internal load balancer 37
2.9.8. Setting the Ingress Controller health check interval 39
2.9.9. Configuring the default Ingress Controller for your cluster to be internal 39
2.9.10. Configuring the route admission policy 40
2.9.11. Using wildcard routes 41
2.9.12. HTTP header configuration 41
2.9.12.1. Order of precedence 42
2.9.12.2. Special case headers 43
2.9.13. Setting or deleting HTTP request and response headers in an Ingress Controller 45
2.9.14. Using X-Forwarded headers 46
Example use cases 47
2.9.15. Enabling HTTP/2 Ingress connectivity 47
2.9.16. Configuring the PROXY protocol for an Ingress Controller 48
2.9.17. Specifying an alternative cluster domain using the appsDomain option 50
2.9.18. Converting HTTP header case 51
2.9.19. Using router compression 52
2.9.20. Exposing router metrics 53
2.9.21. Customizing HAProxy error code response pages 55
2.9.22. Setting the Ingress Controller maximum connections 57
2.10. RED HAT OPENSHIFT SERVICE ON AWS INGRESS OPERATOR CONFIGURATIONS 57
CHAPTER 3. AWS LOAD BALANCER OPERATOR ..ttt ittt it eieeaeaneenneenn, 59
3.1. INSTALLING AN AWS LOAD BALANCER OPERATOR 59
3.2. UNINSTALLING AN AWS LOAD BALANCER OPERATOR 64
CHAPTER 4. OPENSHIFT SDN DEFAULT CNINETWORK PROVIDERc.tiiiiiiiiiiiiinnennnnenn, 65
4.1. ENABLING MULTICAST FOR A PROJECT 65
4.1.1. About multicast 65
4.1.2. Enabling multicast between pods 65

Red Hat OpenShift Service on AWS 4 Networking

CHAPTER 5. NETWORK VERIFICATION FORROSA CLUSTERSt

5.1. UNDERSTANDING NETWORK VERIFICATION FOR ROSA CLUSTERS
5.2. SCOPE OF THE NETWORK VERIFICATION CHECKS
5.3. AUTOMATIC NETWORK VERIFICATION BYPASSING
5.4. RUNNING THE NETWORK VERIFICATION MANUALLY
Running the network verification manually using OpenShift Cluster Manager
Running the network verification manually using the CLI

CHAPTER 6. CONFIGURING A CLUSTER-WIDE PROXY ... i

6.1. PREREQUISITES FOR CONFIGURING A CLUSTER-WIDE PROXY
General requirements
Network requirements
6.2. RESPONSIBILITIES FOR ADDITIONAL TRUST BUNDLES
6.3. CONFIGURING A PROXY DURING INSTALLATION
6.3.1. Configuring a proxy during installation using OpenShift Cluster Manager
6.3.2. Configuring a proxy during installation using the CLI
6.4. CONFIGURING A PROXY AFTER INSTALLATION
6.4.1. Configuring a proxy after installation using OpenShift Cluster Manager
6.4.2. Configuring a proxy after installation using the CLI
6.5. REMOVING A CLUSTER-WIDE PROXY
6.5.1. Removing the cluster-wide proxy using CLI
6.5.2. Removing certificate authorities on a Red Hat OpenShift Service on AWS cluster

CHAPTER7.CIDRRANGE DEFINITIONS ... i e

7.1. MACHINE CIDR
7.2. SERVICE CIDR
7.3.POD CIDR

7.4.HOST PREFIX

CHAPTER 8. NETWORK SECURITY ..ot e e e e

8.1. UNDERSTANDING NETWORK POLICY APIS
8.1.1. Key differences between AdminNetworkPolicy and NetworkPolicy custom resources
8.2. ADMIN NETWORK POLICY
8.2.1. OVN-Kubernetes AdminNetworkPolicy
8.2.1.1. AdminNetworkPolicy
AdminNetworkPolicy example
8.2.1.1.1. AdminNetworkPolicy actions for rules
AdminNetworkPolicy Allow example
AdminNetworkPolicy Deny example
AdminNetworkPolicy Pass example
8.2.2. OVN-Kubernetes BaselineAdminNetworkPolicy
8.2.2.1. BaselineAdminNetworkPolicy
BaselineAdminNetworkPolicy example
BaselineAdminNetworkPolicy Deny example
8.3. NETWORK POLICY
8.3.1. About network policy
8.3.1.1. About network policy
8.3.1.1.1. Using the allow-from-router network policy
8.3.1.1.2. Using the allow-from-hostnetwork network policy
8.3.1.2. Optimizations for network policy with OpenShift SDN
8.3.1.3. Optimizations for network policy with OVN-Kubernetes network plugin
8.3.1.4. Next steps
8.3.2. Creating a network policy
8.3.2.1. Example NetworkPolicy object

68
68
68
69
69
69

72
72
72
72
74
74
74
74
75
75
76
78
78
80

82
82
82
82
83

84
84
84
85
85
86
86
87
87
88
88
89
89
89
90

91

91
92
94
94
95
95
97
97
97

Table of Contents

8.3.2.2. Creating a network policy using the CLI 98
8.3.2.3. Creating a default deny all network policy 100
8.3.2.4. Creating a network policy to allow traffic from external clients 101
8.3.2.5. Creating a network policy allowing traffic to an application from all namespaces 102
8.3.2.6. Creating a network policy allowing traffic to an application from a namespace 104
8.3.2.7. Creating a network policy using OpenShift Cluster Manager 106
8.3.3. Viewing a network policy 108
8.3.3.1. Example NetworkPolicy object 108
8.3.3.2. Viewing network policies using the CLI 109
8.3.3.3. Viewing network policies using OpenShift Cluster Manager 110
8.3.4. Editing a network policy 110
8.3.4.1. Editing a network policy 110
8.3.4.2. Example NetworkPolicy object 12
8.3.4.3. Additional resources 12
8.3.5. Deleting a network policy 13
8.3.5.1. Deleting a network policy using the CLI 13
8.3.5.2. Deleting a network policy using OpenShift Cluster Manager 13
8.3.6. Defining a default network policy for projects n4
8.3.6.1. Modifying the template for new projects 14
8.3.6.2. Adding network policies to the new project template 15
8.3.7. Configuring multitenant isolation with network policy nz
8.3.7.1. Configuring multitenant isolation by using network policy nz
8.4. INGRESS NODE FIREWALL OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS 120
8.4.1. Ingress Node Firewall Operator 120
8.4.2. Installing the Ingress Node Firewall Operator 120
8.4.2.1. Installing the Ingress Node Firewall Operator using the CLI 120
8.4.2.2. Installing the Ingress Node Firewall Operator using the web console 121
8.4.3. Deploying Ingress Node Firewall Operator 123
8.4.3.1. Ingress Node Firewall configuration object 123
Ingress Node Firewall Operator example configuration 124
8.4.3.2. Ingress Node Firewall rules object 124
Ingress object configuration 125
Ingress Node Firewall rules object example 126

Zero trust Ingress Node Firewall rules object example 127

8.4.4. Viewing Ingress Node Firewall Operator rules 128
8.4.5. Troubleshooting the Ingress Node Firewall Operator 128
CHAPTER 9. OVN-KUBERNETES NETWORK PLUGIN ... ittt ieie i eeneennnens 130
9.1. CONFIGURING AN EGRESS IP ADDRESS 130
9.1.1. Egress IP address architectural design and implementation 130
9.1.1.1. Amazon Web Services (AWS) IP address capacity limits 130
9.1.1.2. Assignment of egress IPs to pods 131
9.1.1.3. Assignment of egress IPs to nodes 131
9.1.1.4. Architectural diagram of an egress IP address configuration 131
9.1.2. EgressIP object 133
9.1.3. Labeling a node to host egress IP addresses 135
9.1.4. Next steps 135
9.1.5. Additional resources 135
CHAPTER 10. CONFIGURING ROUTES ... it itttiitttitttate et eatenaneennneeanneeaneeenneennnens 136
10.1. ROUTE CONFIGURATION 136
10.1.1. Creating an HTTP-based route 136
10.1.2. Configuring route timeouts 137

Red Hat OpenShift Service on AWS 4 Networking

10.1.3. HTTP Strict Transport Security
10.1.3.1. Enabling HTTP Strict Transport Security per-route
10.1.3.2. Disabling HTTP Strict Transport Security per-route
10.1.4. Using cookies to keep route statefulness
10.1.4.1. Annotating a route with a cookie
10.1.5. Path-based routes
10.1.6. HTTP header configuration
10.1.6.1. Order of precedence
10.1.6.2. Special case headers
10.1.7. Setting or deleting HTTP request and response headers in a route
10.1.8. Route-specific annotations
10.1.9. Creating a route using the default certificate through an Ingress object
10.1.10. Creating a route using the destination CA certificate in the Ingress annotation
10.2. SECURED ROUTES
10.2.1. Creating a re-encrypt route with a custom certificate
10.2.2. Creating an edge route with a custom certificate
10.2.3. Creating a passthrough route
10.2.4. Creating a route with externally managed certificate

138
138
139
140
140

141
142
143
144
145
147
154
156
157
157
158
159
160

Table of Contents

Red Hat OpenShift Service on AWS 4 Networking

CHAPTER 1. DNS OPERATOR IN RED HAT OPENSHIFT
SERVICE ON AWS

In Red Hat OpenShift Service on AWS, the DNS Operator deploys and manages a CoreDNS instance to
provide a name resolution service to pods inside the cluster, enables DNS-based Kubernetes Service
discovery, and resolves internal cluster.local names.

1.1. USING DNS FORWARDING

You can use DNS forwarding to override the default forwarding configuration in the /etc/resolv.conf file
in the following ways:

® Specify name servers (spec.servers) for every zone. If the forwarded zone is the ingress
domain managed by Red Hat OpenShift Service on AWS, then the upstream name server must
be authorized for the domain.

IMPORTANT

You must specify at least one zone. Otherwise, your cluster can lose functionality.

® Provide a list of upstream DNS servers (spec.upstreamResolvers).

® Change the default forwarding policy.

NOTE

A DNS forwarding configuration for the default domain can have both the default servers
specified in the /etc/resolv.conf file and the upstream DNS servers.

Procedure

1. Modify the DNS Operator object named default:
I $ oc edit dns.operator/default

After you issue the previous command, the Operator creates and updates the config map
named dns-default with additional server configuration blocks based on spec.servers.

IMPORTANT

When specifying values for the zones parameter, ensure that you only forward to
specific zones, such as your intranet. You must specify at least one zone.
Otherwise, your cluster can lose functionality.

If none of the servers have a zone that matches the query, then name resolution falls back to
the upstream DNS servers.

Configuring DNS forwarding

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:

0 O 00

o

CHAPTER 1. DNS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

name: default

spec:

cache:
negativeTTL: Os
positiveTTL: Os
logLevel: Normal
nodePlacement: {}
operatorLoglLevel: Normal
servers:
- name: example-server 0
zones:
- example.com g
forwardPlugin:
policy: Random e
upstreams:
-1.1.11
-2.2.2.2:5353
upstreamResolvers: 6
policy: Random G
protocolStrategy: " ﬂ
transportConfig: {} 6
upstreams:
- type: SystemResolvConf Q
- type: Network
address: 1.2.3.4 @
port: 53 m
status:
clusterDomain: cluster.local
clusterlP: x.y.z.10
conditions:

Must comply with the rfc6335 service name syntax.

Must conform to the definition of a subdomain in the rfc1123 service name syntax. The
cluster domain, cluster.local, is an invalid subdomain for the zones field.

Defines the policy to select upstream resolvers listed in the forwardPlugin. Default value is
Random. You can also use the values RoundRobin, and Sequential.

A maximum of 15 upstreams is allowed per forwardPlugin.

You can use upstreamResolvers to override the default forwarding policy and forward
DNS resolution to the specified DNS resolvers (upstream resolvers) for the default
domain. If you do not provide any upstream resolvers, the DNS name queries go to the
servers declared in /etc/resolv.conf.

Determines the order in which upstream servers listed in upstreams are selected for
querying. You can specify one of these values: Random, RoundRobin, or Sequential. The
default value is Sequential.

When omitted, the platform chooses a default, normally the protocol of the original client
request. Set to TCP to specify that the platform should use TCP for all upstream DNS
requests, even if the client request uses UDP.

Red Hat OpenShift Service on AWS 4 Networking

@ Used to configure the transport type, server name, and optional custom CA or CA bundle
to use when forwarding DNS requests to an upstream resolver.

You can specify two types of upstreams: SystemResolvConf or Network.
SystemResolvConf configures the upstream to use /etc/resolv.conf and Network
defines a Networkresolver. You can specify one or both.

be a valid IPv4 or IPv6 address.

If the specified type is Network, you can optionally provide a port. The port field must have
a value between 1 and 65535. If you do not specify a port for the upstream, the default
port is 853.

@ If the specified type is Network, you must provide an IP address. The address field must

Additional resources

® For more information on DNS forwarding, see the CoreDNS forward documentation.

https://coredns.io/plugins/forward/

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT
SERVICE ON AWS

2.1. RED HAT OPENSHIFT SERVICE ON AWS INGRESS OPERATOR

When you create your Red Hat OpenShift Service on AWS cluster, pods and services running on the
cluster are each allocated their own IP addresses. The IP addresses are accessible to other pods and
services running nearby but are not accessible to outside clients. The Ingress Operator implements the
IngressController APl and is the component responsible for enabling external access to Red Hat
OpenShift Service on AWS cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. Red Hat Site Reliability
Engineers (SRE) manage the Ingress Operator for Red Hat OpenShift Service on AWS clusters. While
you cannot alter the settings for the Ingress Operator, you may view the default Ingress Controller
configurations, status, and logs as well as the Ingress Operator status.

2.2. THE INGRESS CONFIGURATION ASSET

The installation program generates an asset with an Ingress resource in the config.openshift.io API
group, cluster-ingress-02-config.yml.

YAML Definition of the Ingress resource

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
name: cluster
spec:
domain: apps.openshiftdemos.com

The installation program stores this asset in the cluster-ingress-02-config.yml file in the manifests/
directory. This Ingress resource defines the cluster-wide configuration for Ingress. This Ingress
configuration is used as follows:

® The Ingress Operator uses the domain from the cluster Ingress configuration as the domain for
the default Ingress Controller.

® The OpenShift API Server Operator uses the domain from the cluster Ingress configuration.

This domain is also used when generating a default host for a Route resource that does not
specify an explicit host.

2.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

The ingresscontrollers.operator.openshift.io resource offers the following configuration parameters.

Parameter Description

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

Red Hat OpenShift Service on AWS 4 Networking

Parameter Description

domain domain is a DNS name serviced by the Ingress Controller and is used to
configure multiple features:

e Forthe LoadBalancerService endpoint publishing strategy,
domain is used to configure DNS records. See
endpointPublishingStrategy.

e When using a generated default certificate, the certificate is valid for
domain and its subdomains. See defaultCertificate.

® The value is published to individual Route statuses so that users know
where to target external DNS records.

The domain value must be unique among all Ingress Controllers and cannot be
updated.

If empty, the default value is ingress.config.openshift.io/cluster
.spec.domain.

replicas replicas is the desired number of Ingress Controller replicas. If not set, the
default value is 2.

10

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

Parameter Description

endpointPublishingStr endpointPublishingStrategy is used to publish the Ingress Controller
ategy endpoints to other networks, enable load balancer integrations, and provide
access to other systems.

You can configure the following endpointPublishingStrategy fields:
e loadBalancer.scope
e loadBalancer.allowedSourceRanges

If not set, the default value is based on
infrastructure.config.openshift.io/cluster .status.platform:

o Amazon Web Services (AWS): LoadBalancerService (with External
scope)

NOTE

HostNetwork has ahostNetwork field with the
following default values for the optional binding ports:
httpPort: 80, httpsPort: 443, and statsPort: 1936.
With the binding ports, you can deploy multiple

Ingress Controllers on the same node for the
HostNetwork strategy.

Example

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: internal
namespace: openshift-ingress-operator
spec:
domain: example.com
endpointPublishingStrategy:
type: HostNetwork
hostNetwork:
httpPort: 80
httpsPort: 443
statsPort: 1936

NOTE

On Red Hat OpenStack Platform (RHOSP), the
LoadBalancerService endpoint publishing strategy
is only supported if a cloud provider is configured to
create health monitors. For RHOSP 16.2, this strategy
is only possible if you use the Amphora Octavia
provider.

For more information, see the "Setting cloud provider

options" section of the RHOSP installation
documentation.

1

Red Hat OpenShift Service on AWS 4 Networking

Parameter Description

12

defaultCertificate

namespaceSelector

routeSelector

nodePlacement

The defaultCertificate value is a reference to a secret that contains the
default certificate that is served by the Ingress Controller. When Routes do not
specify their own certificate, defaultCertificate is used.

The secret must contain the following keys and data: * tls.crt: certificate file
contents * tls.key: key file contents

If not set, a wildcard certificate is automatically generated and used. The
certificate is valid for the Ingress Controller domain and subdomains, and
the generated certificate’s CA is automatically integrated with the cluster’s
trust store.

The in-use certificate, whether generated or user-specified, is automatically
integrated with Red Hat OpenShift Service on AWS built-in OAuth server.

namespaceSelector is used to filter the set of namespaces serviced by the
Ingress Controller. This is useful for implementing shards.

routeSelector is used to filter the set of Routes serviced by the Ingress
Controller. This is useful for implementing shards.

nodePlacement enables explicit control over the scheduling of the Ingress
Controller.

If not set, the defaults values are used.

NOTE

The nodePlacement parameter includes two parts,
nodeSelector and tolerations. For example:

nodePlacement:
nodeSelector:
matchLabels:
kubernetes.io/os: linux
tolerations:
- effect: NoSchedule
operator: Exists

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

Parameter Description

tisSecurityProfile tisSecurityProfile specifies settings for TLS connections for Ingress
Controllers.

If not set, the default value is based on the
apiservers.config.openshift.io/cluster resource.

When using the Old, Intermediate, and Modern profile types, the effective
profile configuration is subject to change between releases. For example, given
a specification to use the Intermediate profile deployed on release X.Y.Z, an
upgrade to release X.Y.Z+1 may cause a new profile configuration to be
applied to the Ingress Controller, resulting in a rollout.

The minimum TLS version for Ingress Controllers is 1.1, and the maximum TLS
version is 1.3.

NOTE

Ciphers and the minimum TLS version of the configured
security profile are reflected in the TLSProfile status.

IMPORTANT

The Ingress Operator converts the TLS 1.0 of anOld or
Custom profile to 1.1.

clientTLS clientTLS authenticates client access to the cluster and services; as a result,
mutual TLS authentication is enabled. If not set, then client TLS is not enabled.

clientTLS has the required subfields,
spec.clientTLS.clientCertificatePolicy and spec.clientTLS.ClientCA.

The ClientCertificatePolicy subfield accepts one of the two values:
Required or Optional. The ClientCA subfield specifies a config map that is
in the openshift-config namespace. The config map should contain a CA
certificate bundle.

The AllowedSubjectPatterns is an optional value that specifies a list of
regular expressions, which are matched against the distinguished name on a
valid client certificate to filter requests. The regular expressions must use
PCRE syntax. At least one pattern must match a client certificate's
distinguished name; otherwise, the Ingress Controller rejects the certificate and
denies the connection. If not specified, the Ingress Controller does not reject
certificates based on the distinguished name.

13

Red Hat OpenShift Service on AWS 4 Networking

Parameter Description

routeAdmission routeAdmission defines a policy for handling new route claims, such as
allowing or denying claims across namespaces.

namespaceOwnership describes how hostname claims across namespaces
should be handled. The default is Strict.

Strict: does not allow routes to claim the same hostname across
namespaces.

InterNamespaceAllowed: allows routes to claim different paths of
the same hostname across namespaces.

wildcardPolicy describes how routes with wildcard policies are handled by
the Ingress Controller.

14

WildcardsAllowed: Indicates routes with any wildcard policy are
admitted by the Ingress Controller.

WildcardsDisallowed: Indicates only routes with a wildcard policy
of None are admitted by the Ingress Controller. Updating
wildcardPolicy from WildcardsAllowed to
WildcardsDisallowed causes admitted routes with a wildcard policy
of Subdomain to stop working. These routes must be recreated to a
wildcard policy of None to be readmitted by the Ingress Controller.
WildcardsDisallowed is the default setting.

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

Parameter Description

IngressControllerLoggi logging defines parameters for what is logged where. If this field is empty,
ng operational logs are enabled but access logs are disabled.

® access describes how client requests are logged. If this field is
empty, access logging is disabled.

o destination describes a destination for log messages.
m type is the type of destination for logs:

e Container specifies that logs should go to a sidecar
container. The Ingress Operator configures the
container, named logs, on the Ingress Controller pod and
configures the Ingress Controller to write logs to the
container. The expectation is that the administrator
configures a custom logging solution that reads logs
from this container. Using container logs means that
logs may be dropped if the rate of logs exceeds the
container runtime capacity or the custom logging
solution capacity.

e Syslog specifies that logs are sent to a Syslog
endpoint. The administrator must specify an endpoint
that can receive Syslog messages. The expectation is
that the administrator has configured a custom Syslog
instance.

m container describes parameters for the Container logging
destination type. Currently there are no parameters for
container logging, so this field must be empty.

m syslog describes parameters for the Syslog logging
destination type:

e address is the IP address of the syslog endpoint that
receives log messages.

e portis the UDP port number of the syslog endpoint that
receives log messages.

e maxLength is the maximum length of the syslog
message. It must be between 480 and 4096 bytes. If this
field is empty, the maximum length is set to the default
value of 1024 bytes.

e facility specifies the syslog facility of log messages. If
this field is empty, the facility is local1. Otherwise, it
must specify a valid syslog facility: kern, user, mail,
daemon, auth, syslog, Ipr, news, uucp, cron, auth2,
ftp, ntp, audit, alert, cron2, local0, local1, local2,
local3.local4, local5, local6, orlocal?.

o httpLogFormat specifies the format of the log message for an
HTTP request. If this field is empty, log messages use the
implementation’s default HTTP log format. For HAProxy's default
HTTP log format, see the HAProxy documentation.

15

http://cbonte.github.io/haproxy-dconv/2.0/configuration.html#8.2.3

Red Hat OpenShift Service on AWS 4 Networking

Parameter Description

httpHeaders httpHeaders defines the policy for HTTP headers.

By setting the forwardedHeaderPolicy for the
IngressControllerHTTPHeaders, you specify when and how the Ingress
Controller sets the Forwarded, X-Forwarded-For, X-Forwarded-Host, X-
Forwarded-Port, X-Forwarded-Proto, and X-Forwarded-Proto-Version
HTTP headers.

By default, the policy is set to Append.

e Append specifies that the Ingress Controller appends the headers,
preserving any existing headers.

e Replace specifies that the Ingress Controller sets the headers,
removing any existing headers.

o IfNone specifies that the Ingress Controller sets the headers if they
are not already set.

o Never specifies that the Ingress Controller never sets the headers,
preserving any existing headers.

By setting headerNameCaseAdjustments, you can specify case
adjustments that can be applied to HTTP header names. Each adjustment is
specified as an HTTP header name with the desired capitalization. For example,
specifying X-Forwarded-For indicates that the x-forwarded-for HTTP
header should be adjusted to have the specified capitalization.

These adjustments are only applied to cleartext, edge-terminated, and re-
encrypt routes, and only when using HTTP/1.

For request headers, these adjustments are applied only for routes that have
the haproxy.router.openshift.io/h1-adjust-case=true annotation. For
response headers, these adjustments are applied to all HTTP responses. If this
field is empty, no request headers are adjusted.

actions specifies options for performing certain actions on headers. Headers
cannot be set or deleted for TLS passthrough connections. The actions field
has additional subfields spec.httpHeader.actions.response and
spec.httpHeader.actions.request:

e The response subfield specifies a list of HTTP response headers to
set or delete.

e The request subfield specifies a list of HTTP request headers to set
or delete.

16

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

Parameter Description

httpCompression httpCompression defines the policy for HTTP traffic compression.

e mimeTypes defines a list of MIME types to which compression
should be applied. For example, text/css; charset=utf-8, text/html,
text/*, image/svg+xml, application/octet-stream, X-
custom/customsub, using the format pattern,type/subtype;
[;attribute=value]. Thetypes are: application, image, message,
multipart, text, video, or a custom type prefaced by X-; e.g. To see the
full notation for MIME types and subtypes, see RFC1341

httpErrorCodePages httpErrorCodePages specifies custom HTTP error code response pages. By
default, an IngressController uses error pages built into the IngressController
image.

httpCaptureCookies httpCaptureCookies specifies HTTP cookies that you want to capture in

access logs. If the httpCaptureCookies field is empty, the access logs do not
capture the cookies.

For any cookie that you want to capture, the following parameters must be in
your IngressController configuration:

® name specifies the name of the cookie.

e maxLength specifies tha maximum length of the cookie.

e matchType specifies if the field hame of the cookie exactly matches
the capture cookie setting or is a prefix of the capture cookie setting.

The matchType field uses the Exact and Prefix parameters.

For example:

httpCaptureCookies:

- matchType: Exact
maxLength: 128
name: MYCOOKIE

17

https://datatracker.ietf.org/doc/html/rfc1341#page-7

Red Hat OpenShift Service on AWS 4 Networking

Parameter Description

httpCaptureHeaders httpCaptureHeaders specifies the HTTP headers that you want to capture
in the access logs. If the httpCaptureHeaders field is empty, the access logs
do not capture the headers.

httpCaptureHeaders contains two lists of headers to capture in the access
logs. The two lists of header fields are request and response. In both lists,
the name field must specify the header name and themaxlength field must
specify the maximum length of the header. For example:

httpCaptureHeaders:

request:

- maxLength: 256
name: Connection

- maxLength: 128
name: User-Agent

response:

- maxLength: 256
name: Content-Type

- maxLength: 256
name: Content-Length

tuningOptions tuningOptions specifies options for tuning the performance of Ingress
Controller pods.

e clientFinTimeout specifies how long a connection is held open while
waiting for the client response to the server closing the connection.
The default timeout is 18s.

o clientTimeout specifies how long a connection is held open while
waiting for a client response. The default timeout is 30s.

o headerBufferBytes specifies how much memory is reserved, in
bytes, for Ingress Controller connection sessions. This value must be
at least 16384 if HTTP/2 is enabled for the Ingress Controller. If not
set, the default value is 32768 bytes. Setting this field not
recommended because headerBufferBytes values that are too
small can break the Ingress Controller, and headerBufferBytes
values that are too large could cause the Ingress Controller to use
significantly more memory than necessary.

o headerBufferMaxRewriteBytes specifies how much memory
should be reserved, in bytes, from headerBufferBytes for HTTP
header rewriting and appending for Ingress Controller connection
sessions. The minimum value for headerBufferMaxRewriteBytes is
4096. headerBufferBytes must be greater than
headerBufferMaxRewriteBytes for incoming HTTP requests. If
not set, the default value is 8192 bytes. Setting this field not
recommended because headerBufferMaxRewriteBytes values
that are too small can break the Ingress Controller and
headerBufferMaxRewriteBytes values that are too large could
cause the Ingress Controller to use significantly more memory than
necessary.

e healthChecklinterval specifies how long the router waits between
health checks. The default is 5s.

18

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

o serverTimeout specifies how long a connection is held open while
waiting for a server response. The default timeout is 30s.

o threadCount specifies the number of threads to create per HAProxy
process. Creating more threads allows each Ingress Controller pod to
handle more connections, at the cost of more system resources being
used. HAProxy supports up to 64 threads. If this field is empty, the
Ingress Controller uses the default value of 4 threads. The default
value can change in future releases. Setting this field is not
recommended because increasing the number of HAProxy threads
allows Ingress Controller pods to use more CPU time under load, and
prevent other pods from receiving the CPU resources they need to
perform. Reducing the number of threads can cause the Ingress
Controller to perform poorly.

e tisinspectDelay specifies how long the router can hold data to find
a matching route. Setting this value too short can cause the router to
fall back to the default certificate for edge-terminated, reencrypted,
or passthrough routes, even when using a better matched certificate.
The default inspect delay is 5s.

e tunnelTimeout specifies how long a tunnel connection, including
websockets, remains open while the tunnel is idle. The default timeout
is 1h.

e maxConnections specifies the maximum number of simultaneous
connections that can be established per HAProxy process. Increasing
this value allows each ingress controller pod to handle more
connections at the cost of additional system resources. Permitted
values are 0,-1, any value within the range 2000 and 2000000, or the
field can be left empty.

o |If this field is left empty or has the value 0, the Ingress Controller
will use the default value of 50000. This value is subject to
change in future releases.

o If the field has the value of -1, then HAProxy will dynamically
compute a maximum value based on the available ulimits in the
running container. This process results in a large computed value
that will incur significant memory usage compared to the current
default value of 50000.

o |If the field has a value that is greater than the current operating
system limit, the HAProxy process will not start.

o If you choose a discrete value and the router pod is migrated to a
new node, it is possible the new node does not have an identical
ulimit configured. In such cases, the pod fails to start.

o If you have nodes with different ulimits configured, and you
choose a discrete value, it is recommended to use the value of -1
for this field so that the maximum number of connections is
calculated at runtime.

19

Red Hat OpenShift Service on AWS 4 Networking

Parameter Description

logEmptyRequests logEmptyRequests specifies connections for which no request is received
and logged. These empty requests come from load balancer health probes or
web browser speculative connections (preconnect) and logging these requests
can be undesirable. However, these requests can be caused by network errors,
in which case logging empty requests can be useful for diagnosing the errors.
These requests can be caused by port scans, and logging empty requests can
aid in detecting intrusion attempts. Allowed values for this field are Log and
Ignore. The default value isLog.

The LoggingPolicy type accepts either one of two values:

e Log: Setting this value to Log indicates that an event should be
logged.

e Ignore: Setting this value to lgnore sets the dontlognull option in
the HAproxy configuration.

HTTPEmptyRequestsP HTTPEmptyRequestsPolicy describes how HTTP connections are handled
olicy if the connection times out before a request is received. Allowed values for this
field are Respond and Ignore. The default value isRespond.

The HTTPEmptyRequestsPolicy type accepts either one of two values:

e Respond: If the field is set to Respond, the Ingress Controller sends
an HTTP 400 or 408 response, logs the connection if access logging is
enabled, and counts the connection in the appropriate metrics.

e Ignore: Setting this option tolgnore adds the http-ignore-probes
parameter in the HAproxy configuration. If the field is set to Ignore,
the Ingress Controller closes the connection without sending a
response, then logs the connection, or incrementing metrics.

These connections come from load balancer health probes or web browser
speculative connections (preconnect) and can be safely ignored. However,
these requests can be caused by network errors, so setting this field to lgnore
can impede detection and diagnosis of problems. These requests can be
caused by port scans, in which case logging empty requests can aid in detecting
intrusion attempts.

NOTE

All parameters are optional.

2.3.1. Ingress Controller TLS security profiles

TLS security profiles provide a way for servers to regulate which ciphers a connecting client can use
when connecting to the server.

2.3.1.1. Understanding TLS security profiles

You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required
by various Red Hat OpenShift Service on AWS components. The Red Hat OpenShift Service on AWS
TLS security profiles are based on Mozilla recommended configurations.

20

https://wiki.mozilla.org/Security/Server_Side_TLS

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

You can specify one of the following TLS security profiles for each component:

Table 2.1. TLS security profiles

Profile Description

Old This profile is intended for use with legacy clients or libraries. The profile
is based on the Old backward compatibility recommended configuration.

The Old profile requires a minimum TLS version of 1.0.

NOTE

e

For the Ingress Controller, the minimum TLS version is
converted from 1.0 to 1.1.

Intermediate This profile is the recommended configuration for the majority of clients.
Itis the default TLS security profile for the Ingress Controller, kubelet,
and control plane. The profile is based on the Intermediate compatibility
recommended configuration.

The Intermediate profile requires a minimum TLS version of 1.2.

Modern This profile is intended for use with modern clients that have no need for
backwards compatibility. This profile is based on the Modern
compatibility recommended configuration.

The Modern profile requires a minimum TLS version of 1.3.

Custom This profile allows you to define the TLS version and ciphers to use.

' WARNING
A Use caution when using a Custom profile,

because invalid configurations can cause
problems.

NOTE

When using one of the predefined profile types, the effective profile configuration is
subject to change between releases. For example, given a specification to use the
Intermediate profile deployed on release X.Y.Z, an upgrade to release X.Y.Z+1 might
cause a new profile configuration to be applied, resulting in a rollout.

2.3.1.2. Configuring the TLS security profile for the Ingress Controller

21

https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

Red Hat OpenShift Service on AWS 4 Networking

To configure a TLS security profile for an Ingress Controller, edit the IngressController custom
resource (CR) to specify a predefined or custom TLS security profile. If a TLS security profile is not
configured, the default value is based on the TLS security profile set for the APl server.

Sample IngressController CR that configures the Old TLS security profile

apiVersion: operator.openshift.io/v1
kind: IngressController

spec:
tisSecurityProfile:
old: {}
type: Old

The TLS security profile defines the minimum TLS version and the TLS ciphers for TLS connections for
Ingress Controllers.

You can see the ciphers and the minimum TLS version of the configured TLS security profile in the
IngressController custom resource (CR) under Status.Tls Profile and the configured TLS security
profile under Spec.Tls Security Profile. For the Custom TLS security profile, the specific ciphers and
minimum TLS version are listed under both parameters.

NOTE
The HAProxy Ingress Controller image supports TLS 1.3 and the Modern profile.

The Ingress Operator also converts the TLS 1.0 of an Old or Custom profile to 1.1.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the IngressController CR in the openshift-ingress-operator project to configure the TLS
security profile:

I $ oc edit IngressController default -n openshift-ingress-operator

2. Add the spec.tisSecurityProfile field:

Sample IngressController CR for a Custom profile

apiVersion: operator.openshift.io/v1
kind: IngressController

spec:
tisSecurityProfile:
type: Custom ﬂ
custom:

ciphers: e

- ECDHE-ECDSA-CHACHA20-POLY 1305
- ECDHE-RSA-CHACHA20-POLY 1305

22

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

- ECDHE-RSA-AES128-GCM-SHA256
- ECDHE-ECDSA-AES128-GCM-SHA256
minTLSVersion: VersionTLS11

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is
Intermediate.

Specify the appropriate field for the selected type:

o

e old:{}
e intermediate: {}
e custom:

9 For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

3. Save the file to apply the changes.

Verification

e Verify that the profile is set in the IngressController CR:

I $ oc describe IngressController default -n openshift-ingress-operator
Example output

Name: default

Namespace: openshift-ingress-operator
Labels: <none>

Annotations: <none>

API Version: operator.openshift.io/v1
Kind: IngressController

Spec:

Tls Security Profile:
Custom:

Ciphers:
ECDHE-ECDSA-CHACHA20-POLY1305
ECDHE-RSA-CHACHA20-POLY1305
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES128-GCM-SHA256

Min TLS Version: VersionTLS11

Type: Custom

2.3.1.3. Configuring mutual TLS authentication

You can configure the Ingress Controller to enable mutual TLS (mTLS) authentication by setting a
spec.clientTLS value. The clientTLS value configures the Ingress Controller to verify client certificates.
This configuration includes setting a clientCA value, which is a reference to a config map. The config

23

Red Hat OpenShift Service on AWS 4 Networking

map contains the PEM-encoded CA certificate bundle that is used to verify a client’s certificate.
Optionally, you can also configure a list of certificate subject filters.

If the clientCA value specifies an X509v3 certificate revocation list (CRL) distribution point, the Ingress
Operator downloads and manages a CRL config map based on the HTTP URI X509v3 CRL Distribution
Point specified in each provided certificate. The Ingress Controller uses this config map during
mTLS/TLS negotiation. Requests that do not provide valid certificates are rejected.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.
® You have a PEM-encoded CA certificate bundle.

e |f your CA bundle references a CRL distribution point, you must have also included the end-
entity or leaf certificate to the client CA bundle. This certificate must have included an HTTP
URI under CRL Distribution Points, as described in RFC 5280. For example:

Issuer: C=US, O=Example Inc, CN=Example Global G2 TLS RSA SHA256 2020 CA1
Subject: SOME SIGNED CERT X509v3 CRL Distribution Points:
Full Name:
URI:http://crl.example.com/example.crl

Procedure

1. In the openshift-config namespace, create a config map from your CA bundle:

$ oc create configmap \
router-ca-certs-default \
--from-file=ca-bundle.pem=client-ca.crt \ﬂ
-n openshift-config

ﬂ The config map data key must be ca-bundle.pem, and the data value must be a CA
certificate in PEM format.

2. Edit the IngressController resource in the openshift-ingress-operator project:
I $ oc edit IngressController default -n openshift-ingress-operator

3. Add the spec.clientTLS field and subfields to configure mutual TLS:

Sample IngressController CR for a clientTLS profile that specifies filtering patterns

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
clientTLS:
clientCertificatePolicy: Required
clientCA:

24

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

name: router-ca-certs-default
allowedSubjectPatterns:
- ""/CN=example.com/ST=NC/C=US/O=Security/OU=0OpenShift$"

4. Optional, get the Distinguished Name (DN) for allowedSubjectPatterns by entering the
following command.

$ openssl x509 -in custom-cert.pem -noout -subject
subject= /CN=example.com/ST=NC/C=US/O=Security/OU=0penShift

2.4.VIEW THE DEFAULT INGRESS CONTROLLER

The Ingress Operator is a core feature of Red Hat OpenShift Service on AWS and is enabled out of the
box.

Every new Red Hat OpenShift Service on AWS installation has an ingresscontroller named default. It
can be supplemented with additional Ingress Controllers. If the default ingresscontroller is deleted, the
Ingress Operator will automatically recreate it within a minute.

Procedure

® View the default Ingress Controller:

I $ oc describe --namespace=openshift-ingress-operator ingresscontroller/default
2.5. VIEW INGRESS OPERATOR STATUS
You can view and inspect the status of your Ingress Operator.

Procedure

® View your Ingress Operator status:

I $ oc describe clusteroperators/ingress

2.6. VIEW INGRESS CONTROLLER LOGS
You can view your Ingress Controller logs.
Procedure

® \iew your Ingress Controller logs:

$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator -c
<container_name>

2.7.VIEW INGRESS CONTROLLER STATUS

Your can view the status of a particular Ingress Controller.

25

Red Hat OpenShift Service on AWS 4 Networking

Procedure

® View the status of an Ingress Controller:

I $ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>

2.8. CREATING A CUSTOM INGRESS CONTROLLER

As a cluster administrator, you can create a new custom Ingress Controller. Because the default Ingress
Controller might change during Red Hat OpenShift Service on AWS updates, creating a custom Ingress
Controller can be helpful when maintaining a configuration manually that persists across cluster updates.

This example provides a minimal spec for a custom Ingress Controller. To further customize your custom
Ingress Controller, see "Configuring the Ingress Controller”.
Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Create a YAML file that defines the custom IngressController object:

Example custom-ingress-controller.yaml file

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: <custom_name> ﬂ

namespace: openshift-ingress-operator
spec:

defaultCertificate:

name: <custom-ingress-custom-certs> g

replicas: 1 e

domain: <custom_domain> ﬂ

Specify the a custom name for the IngressController object.
Specify the name of the secret with the custom wildcard certificate.

Minimum replica needs to be ONE

0009

Specify the domain to your domain name. The domain specified on the IngressController
object and the domain used for the certificate must match. For example, if the domain
value is "custom_domain.mycompany.com", then the certificate must have SAN
*.custom_domain.mycompany.com (with the *. added to the domain).

2. Create the object by running the following command:

I $ oc create -f custom-ingress-controller.yaml

26

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

2.9. CONFIGURING THE INGRESS CONTROLLER

2.9.1. Setting a custom default certificate

As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a
Secret resource and editing the IngressController custom resource (CR).

Prerequisites
® You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a
trusted certificate authority or by a private trusted certificate authority that you configuredin a
custom PKI.
® Your certificate meets the following requirements:

o The certificate is valid for the ingress domain.

o The certificate uses the subjectAltName extension to specify a wildcard domain, such as
*.apps.ocp4.example.com.

® You must have an IngressController CR. You may use the default one:

I $ oc --namespace openshift-ingress-operator get ingresscontrollers
Example output

NAME AGE
default 10m

NOTE

If you have intermediate certificates, they must be included in the tls.crt file of the secret
containing a custom default certificate. Order matters when specifying a certificate; list
your intermediate certificate(s) after any server certificate(s).

Procedure

The following assumes that the custom certificate and key pair are in the tls.crt and tls.key files in the
current working directory. Substitute the actual path names for tls.crt and tls.key. You also may
substitute another name for custom-certs-default when creating the Secret resource and referencing
it in the IngressController CR.

NOTE

This action will cause the Ingress Controller to be redeployed, using a rolling deployment
strategy.

1. Create a Secret resource containing the custom certificate in the openshift-ingress
namespace using the tls.crt and tls.key files.

$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --
key=tls.key

27

Red Hat OpenShift Service on AWS 4 Networking

2. Update the IngressController CR to reference the new certificate secret:

$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
--patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'

3. Verify the update was effective:

$ echo Q |\

openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null \

openssl x509 -noout -subject -issuer -enddate

where:

<domain>

Specifies the base domain name for your cluster.

Example output

subject=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = *.apps.example.com
issuer=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = example.com
notAfter=May 10 08:32:45 2022 GM

TIP

You can alternatively apply the following YAML to set a custom default certificate:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

defaultCertificate:

name: custom-certs-default

The certificate secret name should match the value used to update the CR.

Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s
deployment to use the custom certificate.

2.9.2. Removing a custom default certificate

As an administrator, you can remove a custom certificate that you configured an Ingress Controller to
use.

Prerequisites
® You have access to the cluster as a user with the cluster-admin role.
® You have installed the OpenShift CLI (oc).

® You previously configured a custom default certificate for the Ingress Controller.

28

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

Procedure

® Toremove the custom certificate and restore the certificate that ships with Red Hat OpenShift
Service on AWS, enter the following command:

$ oc patch -n openshift-ingress-operator ingresscontrollers/default \
--type json -p $'- op: remove\n path: /spec/defaultCertificate’

There can be a delay while the cluster reconciles the new certificate configuration.

Verification

® To confirm that the original cluster certificate is restored, enter the following command:

$echoQ]\

openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null |\

openssl x509 -noout -subject -issuer -enddate

where:

<domain>

Specifies the base domain name for your cluster.

Example output

subject=CN = *.apps.<domain>
issuer=CN = ingress-operator@1620633373
notAfter=May 10 10:44:36 2023 GMT

2.9.3. Autoscaling an Ingress Controller

Automatically scale an Ingress Controller to dynamically meet routing performance or availability
requirements such as the requirement to increase throughput. The following procedure provides an
example for scaling up the default IngressController.

Prerequisites

1. You have the OpenShift CLI (oc¢) installed.

2. You have access to an Red Hat OpenShift Service on AWS cluster as a user with the cluster-
adminrole.

3. You have the Custom Metrics Autoscaler Operator installed.

4. You are in the openshift-ingress-operator project namespace.

Procedure

1. Create a service account to authenticate with Thanos by running the following command:

I $ oc create serviceaccount thanos && oc describe serviceaccount thanos

Example output

29

Red Hat OpenShift Service on AWS 4 Networking

Name: thanos

Namespace: openshift-ingress-operator
Labels: <none>

Annotations: <none>

Image pull secrets: thanos-dockercfg-b419s
Mountable secrets: thanos-dockercfg-b419s
Tokens: thanos-token-c422q
Events: <none>

2. Define a TriggerAuthentication object within the openshift-ingress-operator namespace
using the service account’s token.

a. Define the variable secret that contains the secret by running the following command:

I $ secret=$(oc get secret | grep thanos-token | head -n 1 | awk '{ print $1 }')

b. Create the TriggerAuthentication object and pass the value of the secret variable to the
TOKEN parameter:

$ oc process TOKEN="$secret" -f - <<EOF | oc apply -f -
apiVersion: template.openshift.io/v1
kind: Template
parameters:
- name: TOKEN
objects:
- apiVersion: keda.sh/vialphai
kind: TriggerAuthentication
metadata:
name: keda-trigger-auth-prometheus
spec:
secretTargetRef:
- parameter: bearerToken
name: \${TOKEN}
key: token
- parameter: ca
name: \${TOKEN}
key: ca.crt
EOF

3. Create and apply a role for reading metrics from Thanos:

a. Create a new role, thanos-metrics-reader.yaml, that reads metrics from pods and nodes:

thanos-metrics-reader.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: thanos-metrics-reader
rules:
- apiGroups:
resources:
- pods
- nodes

30

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

verbs:
- get
- apiGroups:
- metrics.k8s.io
resources:
- pods
- nodes
verbs:
- get
- list
- watch
- apiGroups:
resources:
- namespaces
verbs:
- get

b. Apply the new role by running the following command:
I $ oc apply -f thanos-metrics-reader.yaml

4. Add the new role to the service account by entering the following commands:

$ oc adm policy add-role-to-user thanos-metrics-reader -z thanos --role-
namespace=openshift-ingress-operator

I $ oc adm policy -n openshift-ingress-operator add-cluster-role-to-user cluster-monitoring-view
-z thanos

NOTE

The argument add-cluster-role-to-user is only required if you use cross-
namespace queries. The following step uses a query from the kube-metrics
namespace which requires this argument.

5. Create a new ScaledObject YAML file, ingress-autoscaler.yaml, that targets the default
Ingress Controller deployment:

Example ScaledObject definition

apiVersion: keda.sh/vialpha1
kind: ScaledObject
metadata:
name: ingress-scaler
spec:
scaleTargetRef: ﬂ
apiVersion: operator.openshift.io/v1
kind: IngressController
name: default
envSourceContainerName: ingress-operator
minReplicaCount: 1
maxReplicaCount: 20 g

31

Red Hat OpenShift Service on AWS 4 Networking

cooldownPeriod: 1
pollinglnterval: 1
triggers:
- type: prometheus
metricType: AverageValue
metadata:
serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9091 6
namespace: openshift-ingress-operator ﬂ
metricName: 'kube-node-role'
threshold: "1’
query: 'sum(kube_node_role{role="worker",service="kube-state-metrics"})' 9
authModes: "bearer"
authenticationRef:
name: keda-trigger-auth-prometheus

The custom resource that you are targeting. In this case, the Ingress Controller.

Optional: The maximum number of replicas. If you omit this field, the default maximum is
set to 100 replicas.

The Thanos service endpoint in the openshift-monitoring namespace.

The Ingress Operator namespace.

00 09O

This expression evaluates to however many worker nodes are present in the deployed
cluster.

IMPORTANT

If you are using cross-namespace queries, you must target port 9091 and not port
9092 in the serverAddress field. You also must have elevated privileges to read
metrics from this port.

6. Apply the custom resource definition by running the following command:

I $ oc apply -f ingress-autoscaler.yaml

Verification

e Verify that the default Ingress Controller is scaled out to match the value returned by the kube-
state-metrics query by running the following commands:

o Use the grep command to search the Ingress Controller YAML file for replicas:

I $ oc get ingresscontroller/default -o yaml | grep replicas:
Example output
I replicas: 3

o Get the pods in the openshift-ingress project:

32

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

I $ oc get pods -n openshift-ingress
Example output

NAME READY STATUS RESTARTS AGE
router-default-7b5df44ff-I9pmm 2/2 Running 0 17h
router-default-7b5df44ff-sbsl5 2/2 Running 0 3d22h
router-default-7b5df44ff-wwsth 2/2 Running 0 66s

2.9.4. Scaling an Ingress Controller

Manually scale an Ingress Controller to meeting routing performance or availability requirements such as
the requirement to increase throughput. 0¢c commands are used to scale the IngressController
resource. The following procedure provides an example for scaling up the default IngressController.

NOTE

Scaling is not an immediate action, as it takes time to create the desired number of
replicas.

Procedure

1. View the current number of available replicas for the default IngressController:

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

Example output

| -

2. Scale the default IngressController to the desired number of replicas using the oc patch
command. The following example scales the default IngressController to 3 replicas:

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas":
3}}' --type=merge

Example output
I ingresscontroller.operator.openshift.io/default patched

3. Verify that the default IngressController scaled to the number of replicas that you specified:

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

Example output

K

33

Red Hat OpenShift Service on AWS 4 Networking

TIP

You can alternatively apply the following YAML to scale an Ingress Controller to three replicas:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:

replicas: 3 ﬂ

ﬂ If you need a different amount of replicas, change the replicas value.

2.9.5. Configuring Ingress access logging

You can configure the Ingress Controller to enable access logs. If you have clusters that do not receive
much traffic, then you can log to a sidecar. If you have high traffic clusters, to avoid exceeding the
capacity of the logging stack or to integrate with a logging infrastructure outside of Red Hat OpenShift
Service on AWS, you can forward logs to a custom syslog endpoint. You can also specify the format for
access logs.

Container logging is useful to enable access logs on low-traffic clusters when there is no existing Syslog
logging infrastructure, or for short-term use while diagnosing problems with the Ingress Controller.

Syslog is needed for high-traffic clusters where access logs could exceed the OpenShift Logging
stack’s capacity, or for environments where any logging solution needs to integrate with an existing
Syslog logging infrastructure. The Syslog use-cases can overlap.

Prerequisites

® | ogin as a user with cluster-admin privileges.

Procedure

Configure Ingress access logging to a sidecar.

® To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a sidecar container, you must specify
Container spec.logging.access.destination.type. The following example is an Ingress
Controller definition that logs to a Container destination:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Container

34

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

® When you configure the Ingress Controller to log to a sidecar, the operator creates a container
named logs inside the Ingress Controller Pod:

I $ oc -n openshift-ingress logs deployment.apps/router-default -c logs
Example output

2020-05-11T19:11:50.135710+00:00 router-default-57dfc6cd95-bpmk6 router-default-
57dfc6cd95-bpmk6 haproxy[108]: 174.19.21.82:39654 [11/May/2020:19:11:50.133] public
be_http:hello-openshift:hello-openshift/pod:hello-openshift:hello-openshift:10.128.2.12:8080
0/0/1/0/1 200 142 - - --NI 1/1/0/0/0 0/0 "GET / HTTP/1.1"

Configure Ingress access logging to a Syslog endpoint.

® To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a Syslog endpoint destination, you
must specify Syslog for spec.logging.access.destination.type. If the destination type is
Syslog, you must also specify a destination endpoint using
spec.logging.access.destination.syslog.endpoint and you can specify a facility using
spec.logging.access.destination.syslog.facility. The following example is an Ingress
Controller definition that logs to a Syslog destination:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Syslog
syslog:
address: 1.2.3.4
port: 10514

NOTE

The syslog destination port must be UDP.

Configure Ingress access logging with a specific log format.

® You can specify spec.logging.access.httpLogFormat to customize the log format. The
following example is an Ingress Controller definition that logs to a syslog endpoint with IP
address 1.2.3.4 and port 10514:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2

35

Red Hat OpenShift Service on AWS 4 Networking

logging:
access:
destination:
type: Syslog
syslog:
address: 1.2.3.4
port: 10514

httpLogFormat: '%ci:%cp [Y%t] %ft Y%b/%s %B %bq Y%eHM %HU %HV'
Disable Ingress access logging.
® To disable Ingress access logging, leave spec.logging or spec.logging.access empty:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

replicas: 2

logging:

access: null

Allow the Ingress Controller to modify the HAProxy log length when using a sidecar.

e Use spec.logging.access.destination.syslog.maxLength if you are using
spec.logging.access.destination.type: Syslog.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Syslog
syslog:
address: 1.2.3.4
maxLength: 4096
port: 10514

e Use spec.logging.access.destination.container.maxLength if you are using
spec.logging.access.destination.type: Container.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

replicas: 2

logging:

36

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

access:
destination:
type: Container
container:
maxLength: 8192

2.9.6. Setting Ingress Controller thread count

A cluster administrator can set the thread count to increase the amount of incoming connections a
cluster can handle. You can patch an existing Ingress Controller to increase the amount of threads.

Prerequisites

® The following assumes that you already created an Ingress Controller.

Procedure

e Update the Ingress Controller to increase the number of threads:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"threadCount": 8}}}'

NOTE

If you have a node that is capable of running large amounts of resources, you can
configure spec.nodePlacement.nodeSelector with labels that match the
capacity of the intended node, and configure spec.tuningOptions.threadCount
to an appropriately high value.

2.9.7. Configuring an Ingress Controller to use an internal load balancer

When creating an Ingress Controller on cloud platforms, the Ingress Controller is published by a public
cloud load balancer by default. As an administrator, you can create an Ingress Controller that uses an
internal cloud load balancer.

IMPORTANT

If you want to change the scope for an IngressController, you can change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

37

Red Hat OpenShift Service on AWS 4 Networking

Figure 2.1. Diagram of LoadBalancer

A

Client

Cloud Provider

DNS

apps.foo.openshift.example.com foo.az.lb.cloudprovider.com Load balancer

’ Ingress ’
load balancer

www.yourappl.openshift.com www.yourapp2.openshift.com

Node 1 Node 2 Node N
Pod Pod Pod
-t 10.0.128.5 10.0.128.6
Cluster

(Service yourapp1:8080, yourapp2:4200)

The preceding graphic shows the following concepts pertaining to Red Hat OpenShift Service on AWS
Ingress LoadBalancerService endpoint publishing strategy:

® You can load balance externally, using the cloud provider load balancer, or internally, using the
OpenShift Ingress Controller Load Balancer.

® You can use the single IP address of the load balancer and more familiar ports, such as 8080
and 4200 as shown on the cluster depicted in the graphic.

e Traffic from the external load balancer is directed at the pods, and managed by the load

balancer, as depicted in the instance of a down node. See the Kubernetes Services
documentation for implementation details.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Create an IngressController custom resource (CR) in a file named <hame>-ingress-
controller.yaml, such as in the following example:

38

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
namespace: openshift-ingress-operator
name: <name>
spec:
domain: <domain> g
endpointPublishingStrategy:
type: LoadBalancerService
loadBalancer:
scope: Internal 6

Q Replace <names with a name for the IngressController object.
9 Specify the domain for the application published by the controller.

9 Specify a value of Internal to use an internal load balancer.

2. Create the Ingress Controller defined in the previous step by running the following command:
I $ oc create -f <name>-ingress-controller.yaml ﬂ

Q Replace <names with the name of the IngressController object.

3. Optional: Confirm that the Ingress Controller was created by running the following command:

I $ oc --all-namespaces=true get ingresscontrollers

2.9.8. Setting the Ingress Controller health check interval
A cluster administrator can set the health check interval to define how long the router waits between

two consecutive health checks. This value is applied globally as a default for all routes. The default value
is 5 seconds.

Prerequisites

® The following assumes that you already created an Ingress Controller.
Procedure
® Update the Ingress Controller to change the interval between back end health checks:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"healthChecklinterval": "8s"}}}'

NOTE

To override the healthChecklnterval for a single route, use the route annotation
router.openshift.io/haproxy.health.check.interval

e

2.9.9. Configuring the default Ingress Controller for your cluster to be internal

39

Red Hat OpenShift Service on AWS 4 Networking

You can configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

IMPORTANT

If you want to change the scope for an IngressController, you can change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
namespace: openshift-ingress-operator
name: default
spec:
endpointPublishingStrategy:
type: LoadBalancerService
loadBalancer:
scope: Internal
EOF

2.9.10. Configuring the route admission policy

Administrators and application developers can run applications in multiple namespaces with the same
domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

' WARNING
A Allowing claims across namespaces should only be enabled for clusters with trust

between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

® Cluster administrator privileges.

40

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

Procedure

e Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

Sample Ingress Controller configuration

spec:
routeAdmission:
namespaceOwnership: InterNamespaceAllowed

TIP

You can alternatively apply the following YAML to configure the route admission policy:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

routeAdmission:

namespaceOwnership: InterNamespaceAllowed

2.9.11. Using wildcard routes

The HAProxy Ingress Controller has support for wildcard routes. The Ingress Operator uses
wildcardPolicy to configure the ROUTER_ALLOW_WILDCARD_ROUTES environment variable of
the Ingress Controller.

The default behavior of the Ingress Controller is to admit routes with a wildcard policy of None, which is
backwards compatible with existing IngressController resources.

Procedure
1. Configure the wildcard policy.

a. Use the following command to edit the IngressController resource:
I $ oc edit IngressController

b. Under spec, set the wildcardPolicy field to WildcardsDisallowed or WildcardsAllowed:

spec:
routeAdmission:
wildcardPolicy: WildcardsDisallowed # or WildcardsAllowed

2.9.12. HTTP header configuration

41

Red Hat OpenShift Service on AWS 4 Networking

Red Hat OpenShift Service on AWS provides different methods for working with HTTP headers. When
setting or deleting headers, you can use specific fields in the Ingress Controller or an individual route to
modify request and response headers. You can also set certain headers by using route annotations. The
various ways of configuring headers can present challenges when working together.

NOTE

You can only set or delete headers within an IngressController or Route CR, you cannot
append them. If an HTTP header is set with a value, that value must be complete and not
require appending in the future. In situations where it makes sense to append a header,
such as the X-Forwarded-For header, use the
spec.httpHeaders.forwardedHeaderPolicy field, instead of spec.httpHeaders.actions.

2.9.12.1. Order of precedence

When the same HTTP header is modified both in the Ingress Controller and in a route, HAProxy
prioritizes the actions in certain ways depending on whether it is a request or response header.

® For HTTP response headers, actions specified in the Ingress Controller are executed after the
actions specified in a route. This means that the actions specified in the Ingress Controller take
precedence.

® For HTTP request headers, actions specified in a route are executed after the actions specified
in the Ingress Controller. This means that the actions specified in the route take precedence.

For example, a cluster administrator sets the X-Frame-Options response header with the value DENY in
the Ingress Controller using the following configuration:

Example IngressController spec

apiVersion: operator.openshift.io/v1
kind: IngressController
#...
spec:
httpHeaders:
actions:
response:
- name: X-Frame-Options
action:
type: Set
set:
value: DENY

A route owner sets the same response header that the cluster administrator set in the Ingress
Controller, but with the value SAMEORIGIN using the following configuration:

Example Route spec

apiVersion: route.openshift.io/v1
kind: Route
#...
spec:
httpHeaders:
actions:
response:

42

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

- name: X-Frame-Options
action:
type: Set
set:
value: SAMEORIGIN

When both the IngressController spec and Route spec are configuring the X-Frame-Options response
header, then the value set for this header at the global level in the Ingress Controller takes precedence,
even if a specific route allows frames. For a request header, the Route spec value overrides the
IngressController spec value.

This prioritization occurs because the haproxy.config file uses the following logic, where the Ingress
Controller is considered the front end and individual routes are considered the back end. The header
value DENY applied to the front end configurations overrides the same header with the value
SAMEORIGIN that is set in the back end:

frontend public
http-response set-header X-Frame-Options 'DENY'

frontend fe_sni
http-response set-header X-Frame-Options 'DENY"

frontend fe_no_sni
http-response set-header X-Frame-Options 'DENY"

backend be_secure:openshift-monitoring:alertmanager-main
http-response set-header X-Frame-Options 'SAMEORIGIN'

Additionally, any actions defined in either the Ingress Controller or a route override values set using
route annotations.

2.9.12.2. Special case headers

The following headers are either prevented entirely from being set or deleted, or allowed under specific
circumstances:

Table 2.2. Special case header configuration options

Header name Configurable Configurable Reason for Configurable
using using Route spec disallowment using another

IngressControll method
er spec

43

Red Hat OpenShift Service on AWS 4 Networking

44

Header name

proxy

host

strict-transport-
security

Configurable Configurable
using using Route spec
IngressControll

er spec

No No

No Yes

No No

Reason for
disallowment

The proxy HTTP
request header
can be used to
exploit vulnerable
CGl applications
by injecting the
header value into
the
HTTP_PROXY
environment
variable. The
proxy HTTP
request header is
also non-standard
and prone to error
during
configuration.

When the host
HTTP request
header is set using
the
IngressControll
er CR, HAProxy
can fail when
looking up the
correct route.

The strict-
transport-
security HTTP
response header is
already handled
using route
annotations and
does not need a
separate
implementation.

Configurable
using another
method

No

No

Yes: the
haproxy.router.
openshift.io/hst
s_header route
annotation

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

Header name Configurable Configurable Reason for Configurable
using using Route spec disallowment using another
IngressControll method
er spec
cookie and set- No No The cookies that Yes:
cookie HAProxy sets are
used for session e the
tracking to map haproxy
. . .router.
client connections openshi
to particular back- ft.io/dis
end servers. able_co
Allowing these okie
headers to be set route
could interfere annotatio
with HAProxy's :
session affinity e the
and restrict haproxy
HAProxy's .router.
ownership of a openshi
cookie. ft_.lo/coo
kie_nam
eroute
annotatio

n

2.9.13. Setting or deleting HTTP request and response headers in an Ingress
Controller

You can set or delete certain HTTP request and response headers for compliance purposes or other
reasons. You can set or delete these headers either for all routes served by an Ingress Controller or for
specific routes.

For example, you might want to migrate an application running on your cluster to use mutual TLS, which
requires that your application checks for an X-Forwarded-Client-Cert request header, but the Red Hat

OpenShift Service on AWS default Ingress Controller provides an X-SSL-Client-Der request header.

The following procedure modifies the Ingress Controller to set the X-Forwarded-Client-Cert request
header, and delete the X-SSL-Client-Der request header.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have access to an Red Hat OpenShift Service on AWS cluster as a user with the cluster-
adminrole.

Procedure

1. Edit the Ingress Controller resource:

I $ oc -n openshift-ingress-operator edit ingresscontroller/default

45

Red Hat OpenShift Service on AWS 4 Networking

2. Replace the X-SSL-Client-Der HTTP request header with the X-Forwarded-Client-Cert HTTP
request header:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
httpHeaders:

actions: ﬂ
request: 9

- name: X-Forwarded-Client-Cert 6
action:
type: Set ﬂ
set:
value: "%{+Q}[ss|_c_der,base64]" 6
- name: X-SSL-Client-Der
action:
type: Delete

The list of actions you want to perform on the HTTP headers.
The type of header you want to change. In this case, a request header.

The name of the header you want to change. For a list of available headers you can set or
delete, see HTTP header configuration.

The type of action being taken on the header. This field can have the value Set or Delete.

®0 009

When setting HTTP headers, you must provide a value. The value can be a string from a list
of available directives for that header, for example DENY, or it can be a dynamic value that
will be interpreted using HAProxy's dynamic value syntax. In this case, a dynamic value is
added.

NOTE

For setting dynamic header values for HTTP responses, allowed sample fetchers
are res.hdr and ssl_c_der. For setting dynamic header values for HTTP
requests, allowed sample fetchers are req.hdr and ssl_c_der. Both request and
response dynamic values can use the lower and base64 converters.

3. Save the file to apply the changes.

2.9.14. Using X-Forwarded headers

You configure the HAProxy Ingress Controller to specify a policy for how to handle HTTP headers
including Forwarded and X-Forwarded-For. The Ingress Operator uses the HTTPHeaders field to
configure the ROUTER_SET_FORWARDED_HEADERS environment variable of the Ingress
Controller.

Procedure

46

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

1. Configure the HTTPHeaders field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

I $ oc edit IngressController
b. Under spec, set the HTTPHeaders policy field to Append, Replace, IfNone, or Never:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

httpHeaders:

forwardedHeaderPolicy: Append

Example use cases
As a cluster administrator, you can:

e Configure an external proxy that injects the X-Forwarded-For header into each request before
forwarding it to an Ingress Controller.
To configure the Ingress Controller to pass the header through unmodified, you specify the
never policy. The Ingress Controller then never sets the headers, and applications receive only
the headers that the external proxy provides.

e Configure the Ingress Controller to pass the X-Forwarded-For header that your external proxy
sets on external cluster requests through unmodified.
To configure the Ingress Controller to set the X-Forwarded-For header on internal cluster
requests, which do not go through the external proxy, specify the if-none policy. If an HTTP
request already has the header set through the external proxy, then the Ingress Controller
preserves it. If the header is absent because the request did not come through the proxy, then
the Ingress Controller adds the header.

As an application developer, you can:

e Configure an application-specific external proxy that injects the X-Forwarded-For header.
To configure an Ingress Controller to pass the header through unmodified for an application’s
Route, without affecting the policy for other Routes, add an annotation
haproxy.router.openshift.io/set-forwarded-headers: if-none or
haproxy.router.openshift.io/set-forwarded-headers: never on the Route for the application.

NOTE

You can set the haproxy.router.openshift.io/set-forwarded-headers
annotation on a per route basis, independent from the globally set value for the
Ingress Controller.

2.9.15. Enabling HTTP/2 Ingress connectivity

You can enable transparent end-to-end HTTP/2 connectivity in HAProxy. It allows application owners
to make use of HTTP/2 protocol capabilities, including single connection, header compression, binary
streams, and more.

You can enable HTTP/2 connectivity for an individual Ingress Controller or for the entire cluster.

47

Red Hat OpenShift Service on AWS 4 Networking

To enable the use of HTTP/2 for the connection from the client to HAProxy, a route must specify a
custom certificate. A route that uses the default certificate cannot use HTTP/2. This restriction is
necessary to avoid problems from connection coalescing, where the client re-uses a connection for
different routes that use the same certificate.

The connection from HAProxy to the application pod can use HTTP/2 only for re-encrypt routes and
not for edge-terminated or insecure routes. This restriction is because HAProxy uses Application-Level
Protocol Negotiation (ALPN), which is a TLS extension, to negotiate the use of HTTP/2 with the back-
end. The implication is that end-to-end HTTP/2 is possible with passthrough and re-encrypt and not
with insecure or edge-terminated routes.

IMPORTANT

For non-passthrough routes, the Ingress Controller negotiates its connection to the
application independently of the connection from the client. This means a client may
connect to the Ingress Controller and negotiate HTTP/1.1, and the Ingress Controller may
then connect to the application, negotiate HTTP/2, and forward the request from the
client HTTP/1.1 connection using the HTTP/2 connection to the application. This poses a
problem if the client subsequently tries to upgrade its connection from HTTP/1.1 to the
WebSocket protocol, because the Ingress Controller cannot forward WebSocket to
HTTP/2 and cannot upgrade its HTTP/2 connection to WebSocket. Consequently, if you
have an application that is intended to accept WebSocket connections, it must not allow
negotiating the HTTP/2 protocol or else clients will fail to upgrade to the WebSocket
protocol.

Procedure

Enable HTTP/2 on a single Ingress Controller.

® Toenable HTTP/2 on an Ingress Controller, enter the oc annotate command:

$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name>
ingress.operator.openshift.io/default-enable-http2=true

Replace <ingresscontroller_name> with the name of the Ingress Controller to annotate.
Enable HTTP/2 on the entire cluster.

® Toenable HTTP/2 for the entire cluster, enter the oc annotate command:

I $ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-http2=true

TIP

You can alternatively apply the following YAML to add the annotation:

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
name: cluster
annotations:
ingress.operator.openshift.io/default-enable-http2: "true"

2.9.16. Configuring the PROXY protocol for an Ingress Controller

48

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

A cluster administrator can configure the PROXY protocol when an Ingress Controller uses either the
HostNetwork or NodePortService endpoint publishing strategy types. The PROXY protocol enables
the load balancer to preserve the original client addresses for connections that the Ingress Controller
receives. The original client addresses are useful for logging, filtering, and injecting HTTP headers. In the
default configuration, the connections that the Ingress Controller receives only contain the source
address that is associated with the load balancer.

This feature is not supported in cloud deployments. This restriction is because when Red Hat OpenShift
Service on AWS runs in a cloud platform, and an IngressController specifies that a service load balancer
should be used, the Ingress Operator configures the load balancer service and enables the PROXY
protocol based on the platform requirement for preserving source addresses.

IMPORTANT

You must configure both Red Hat OpenShift Service on AWS and the external load
balancer to either use the PROXY protocol or to use TCP.

' WARNING
A The PROXY protocol is unsupported for the default Ingress Controller with

installer-provisioned clusters on non-cloud platforms that use a Keepalived Ingress
VIP.

Prerequisites

® You created an Ingress Controller.

Procedure

1. Edit the Ingress Controller resource:
I $ oc -n openshift-ingress-operator edit ingresscontroller/default

2. Set the PROXY configuration:

e |f your Ingress Controller uses the hostNetwork endpoint publishing strategy type, set the
spec.endpointPublishingStrategy.hostNetwork.protocol subfield to PROXY:

Sample hostNetwork configuration to PROXY

spec:
endpointPublishingStrategy:
hostNetwork:
protocol: PROXY
type: HostNetwork

e |f your Ingress Controller uses the NodePortService endpoint publishing strategy type, set
the spec.endpointPublishingStrategy.nodePort.protocol subfield to PROXY:

Sample nodePort configuration to PROXY

49

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

Red Hat OpenShift Service on AWS 4 Networking

spec:
endpointPublishingStrategy:
nodePort:
protocol: PROXY
type: NodePortService

2.9.17. Specifying an alternative cluster domain using the appsDomain option

As a cluster administrator, you can specify an alternative to the default cluster domain for user-created
routes by configuring the appsDomain field. The appsDomain field is an optional domain for Red Hat
OpenShift Service on AWS to use instead of the default, which is specified in the domain field. If you
specify an alternative domain, it overrides the default cluster domain for the purpose of determining the
default host for a new route.

For example, you can use the DNS domain for your company as the default domain for routes and
ingresses for applications running on your cluster.

Prerequisites
® You deployed an Red Hat OpenShift Service on AWS cluster.

® You installed the oc command line interface.

Procedure

1. Configure the appsDomain field by specifying an alternative default domain for user-created
routes.

a. Edit the ingress cluster resource:
I $ oc edit ingresses.config/cluster -o yaml

b. Edit the YAML file:

Sample appsDomain configuration to test.example.com

apiVersion: config.openshift.io/v1

kind: Ingress

metadata:
name: cluster

spec:
domain: apps.example.com ﬂ
appsDomain: <test.example.com> g

ﬂ Specifies the default domain. You cannot modify the default domain after installation.
9 Optional: Domain for Red Hat OpenShift Service on AWS infrastructure to use for

application routes. Instead of the default prefix, apps, you can use an alternative prefix
like test.

2. Verify that an existing route contains the domain name specified in the appsDomain field by
exposing the route and verifying the route domain change:

50

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

NOTE

Wait for the openshift-apiserver finish rolling updates before exposing the
route.

2

a. Expose the route:

$ oc expose service hello-openshift
route.route.openshift.io/hello-openshift exposed

Example output:

$ oc get routes

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD

hello-openshift hello_openshift-<my_project>.test.example.com

hello-openshift 8080-tcp None

2.9.18. Converting HTTP header case

HAProxy lowercases HTTP header names by default, for example, changing Host: xyz.com to host:
xyz.com. If legacy applications are sensitive to the capitalization of HTTP header names, use the Ingress
Controller spec.httpHeaders.headerNameCaseAdjustments AP field for a solution to accommodate
legacy applications until they can be fixed.

IMPORTANT

Because Red Hat OpenShift Service on AWS includes HAProxy 2.8, be sure to add the
necessary configuration by using spec.httpHeaders.headerNameCaseAdjustments
before upgrading.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have access to the cluster as a user with the cluster-admin role.

Procedure

As a cluster administrator, you can convert the HTTP header case by entering the oc patch command or
by setting the HeaderNameCaseAdjustments field in the Ingress Controller YAML file.

® Specify an HTTP header to be capitalized by entering the oc patch command.

1. Enter the oc patch command to change the HTTP host header to Host:

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch="{"spec":{"httpHeaders":{"headerNameCaseAdjustments":["Host"|}}}'

2. Annotate the route of the application:
I $ oc annotate routes/my-application haproxy.router.openshift.io/h1-adjust-case=true

The Ingress Controller then adjusts the host request header as specified.

51

Red Hat OpenShift Service on AWS 4 Networking

e Specify adjustments using the HeaderNameCaseAdjustments field by configuring the Ingress
Controller YAML file.

1. The following example Ingress Controller YAML adjusts the host header to Host for HTTP/1
requests to appropriately annotated routes:

Example Ingress Controller YAML

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
httpHeaders:
headerNameCaseAdjustments:
- Host

2. The following example route enables HTTP response header name case adjustments using
the haproxy.router.openshift.io/h1-adjust-case annotation:

Example route YAML

apiVersion: route.openshift.io/v1
kind: Route
metadata:
annotations:
haproxy.router.openshift.io/h1-adjust-case: true ﬂ
name: my-application
namespace: my-application
spec:
to:
kind: Service
name: my-application

Q Set haproxy.router.openshift.io/h1-adjust-case to true.

2.9.19. Using router compression

You configure the HAProxy Ingress Controller to specify router compression globally for specific MIME
types. You can use the mimeTypes variable to define the formats of MIME types to which compression
is applied. The types are: application, image, message, multipart, text, video, or a custom type prefaced
by "X-". To see the full notation for MIME types and subtypes, see RFCI1341.

NOTE

Memory allocated for compression can affect the max connections. Additionally,
compression of large buffers can cause latency, like heavy regex or long lists of regex.

Not all MIME types benefit from compression, but HAProxy still uses resources to try to
compress if instructed to. Generally, text formats, such as html, css, and s, formats
benefit from compression, but formats that are already compressed, such as image, audio,
and video, benefit little in exchange for the time and resources spent on compression.

52

https://datatracker.ietf.org/doc/html/rfc1341#page-7

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

Procedure
1. Configure the httpCompression field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

I $ oc edit -n openshift-ingress-operator ingresscontrollers/default

b. Under spec, set the httpCompression policy field to mimeTypes and specify a list of
MIME types that should have compression applied:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
httpCompression:
mimeTypes:
- "text/html"
- "text/css; charset=utf-8"
- "application/json"

2.9.20. Exposing router metrics

You can expose the HAProxy router metrics by default in Prometheus format on the default stats port,
1936. The external metrics collection and aggregation systems such as Prometheus can access the
HAProxy router metrics. You can view the HAProxy router metrics in a browser in the HTML and comma
separated values (CSV) format.

Prerequisites

® You configured your firewall to access the default stats port, 1936.

Procedure
1. Get the router pod name by running the following command:

I $ oc get pods -n openshift-ingress

Example output

NAME READY STATUS RESTARTS AGE
router-default-76bfffb66¢c-46qwp 1/1 Running 0 11h

2. Get the router’s username and password, which the router pod stores in the
/var/lib/haproxy/conf/metrics-auth/statsUsername and /var/lib/haproxy/conf/metrics-
auth/statsPassword files:

a. Get the username by running the following command:

I $ oc rsh <router_pod_name> cat metrics-auth/statsUsername

53

Red Hat OpenShift Service on AWS 4 Networking

54

b. Get the password by running the following command:

I $ oc rsh <router_pod_name> cat metrics-auth/statsPassword

3. Get the router IP and metrics certificates by running the following command:

I $ oc describe pod <router_pod>

4. Get the raw statistics in Prometheus format by running the following command:

I $ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

5. Access the metrics securely by running the following command:

I $ curl -u user:password https://<router_|IP>:<stats_port>/metrics -k

6. Access the default stats port, 1936, by running the following command:

I $ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

Example 2.1. Example output
HELP haproxy_backend_connections_total Total number of connections.
TYPE haproxy_backend_connections_total gauge
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-

route"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route-alt"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route01"} 0

HELP haproxy_exporter_server_threshold Number of servers tracked and the current
threshold value.

TYPE haproxy_exporter_server_threshold gauge
haproxy_exporter_server_threshold{type="current"} 11
haproxy_exporter_server_threshold{type="limit"} 500

HELP haproxy_frontend_bytes_in_total Current total of incoming bytes.
TYPE haproxy_frontend_bytes_in_total gauge
haproxy_frontend_bytes_in_total{frontend="fe_no_sni"} 0
haproxy_frontend_bytes_in_total{frontend="fe_sni"} 0
haproxy_frontend_bytes_in_total{frontend="public"} 119070

HELP haproxy_server_bytes_in_total Current total of incoming bytes.
TYPE haproxy_server_bytes_in_total gauge
haproxy_server_bytes_in_total{namespace="",pod="",route=
ll} 0
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_sni",service=""}
0

haproxy_server_bytes_in_total{namespace="default",pod="docker-registry-5-
nk5fz",route="docker-registry",server="10.130.0.89:5000",service="docker-registry"} 0

,server="fe_no_sni",service="

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

route",server="10.130.0.90:8080",service="hello-svc-1"} 0

| | haproxy_server_bytes_in_total{namespace="default",pod="hello-rc-vkjgx",route="hello-

7. Launch the stats window by entering the following URL in a browser:

I http://<user>:<password>@-<router_IP>:<stats_port>

8. Optional: Get the stats in CSV format by entering the following URL in a browser:

I http://<user>:<password>@<router_ip>:1936/metrics;csv

2.9.21. Customizing HAProxy error code response pages

As a cluster administrator, you can specify a custom error code response page for either 503, 404, or
both error pages. The HAProxy router serves a 503 error page when the application pod is not running
or a 404 error page when the requested URL does not exist. For example, if you customize the 503 error
code response page, then the page is served when the application pod is not running, and the default
404 error code HTTP response page is served by the HAProxy router for an incorrect route or a non-
existing route.

Custom error code response pages are specified in a config map then patched to the Ingress Controller.
The config map keys have two available file names as follows: error-page-503.http and error-page-
404.http.

Custom HTTP error code response pages must follow the HAProxy HTTP error page configuration
guidelines. Here is an example of the default Red Hat OpenShift Service on AWS HAProxy router http
503 error code response page. You can use the default content as a template for creating your own
custom page.

By default, the HAProxy router serves only a 503 error page when the application is not running or when
the route is incorrect or non-existent. This default behavior is the same as the behavior on Red Hat
OpenShift Service on AWS 4.8 and earlier. If a config map for the customization of an HTTP error code
response is not provided, and you are using a custom HTTP error code response page, the router serves
a default 404 or 503 error code response page.

NOTE

If you use the Red Hat OpenShift Service on AWS default 503 error code page as a
template for your customizations, the headers in the file require an editor that can use
CRLF line endings.

Procedure

1. Create a config map named my-custom-error-code-pages in the openshift-config
namespace:

$ oc -n openshift-config create configmap my-custom-error-code-pages \

--from-file=error-page-503.http \
--from-file=error-page-404.http

55

https://www.haproxy.com/documentation/hapee/latest/configuration/config-sections/http-errors/
https://raw.githubusercontent.com/openshift/router/master/images/router/haproxy/conf/error-page-503.http

Red Hat OpenShift Service on AWS 4 Networking

IMPORTANT

If you do not specify the correct format for the custom error code response
page, a router pod outage occurs. To resolve this outage, you must delete or
correct the config map and delete the affected router pods so they can be
recreated with the correct information.

2. Patch the Ingress Controller to reference the my-custom-error-code-pages config map by

name:

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":
{"httpErrorCodePages":{"name":"my-custom-error-code-pages"}}}' --type=merge

The Ingress Operator copies the my-custom-error-code-pages config map from the
openshift-config namespace to the openshift-ingress namespace. The Operator names the
config map according to the pattern, <your_ingresscontroller_name>-errorpages, in the
openshift-ingress namespace.

. Display the copy:

I $ oc get cm default-errorpages -n openshift-ingress
Example output

NAME DATA AGE
default-errorpages 2 25s ﬂ

The example config map name is default-errorpages because the default Ingress
Controller custom resource (CR) was patched.

4. Confirm that the config map containing the custom error response page mounts on the router

volume where the config map key is the filename that has the custom HTTP error code
response:

® For503 custom HTTP custom error code response:

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-503.http

® For 404 custom HTTP custom error code response:

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-404.http

Verification

Verify your custom error code HTTP response:

1. Create a test project and application:

I $ oc new-project test-ingress
I $ oc new-app django-psql-example

56

CHAPTER 2. INGRESS OPERATOR IN RED HAT OPENSHIFT SERVICE ON AWS

2. For 503 custom http error code response:

a. Stop all the pods for the application.

b. Run the following curl command or visit the route hostname in the browser:

I $ curl -vk <route_hostname>

3. For 404 custom http error code response:

a. Visit a non-existent route or an incorrect route.

b. Run the following curl command or visit the route hostname in the browser:

I $ curl -vk <route_hostname>
4. Check if the errorfile attribute is properly in the haproxy.config file:

I $ oc -n openshift-ingress rsh <routers> cat /var/lib/haproxy/conf/haproxy.config | grep errorfile

2.9.22. Setting the Ingress Controller maximum connections
A cluster administrator can set the maximum number of simultaneous connections for OpenShift router

deployments. You can patch an existing Ingress Controller to increase the maximum number of
connections.

Prerequisites

® The following assumes that you already created an Ingress Controller

Procedure

e Update the Ingress Controller to change the maximum number of connections for HAProxy:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"maxConnections": 7500}}}'

' WARNING
A If you set the spec.tuningOptions.maxConnections value greater than

the current operating system limit, the HAProxy process will not start. See
the table in the "Ingress Controller configuration parameters” section for
more information about this parameter.

2.10. RED HAT OPENSHIFT SERVICE ON AWS INGRESS OPERATOR
CONFIGURATIONS

57

Red Hat OpenShift Service on AWS 4 Networking

The following table details the components of the Ingress Operator and if Red Hat Site Reliability
Engineers (SRE) maintains this component on Red Hat OpenShift Service on AWS clusters.

Table 2.3. Ingress Operator Responsibility Chart

58

Ingress component

Scaling Ingress Controller

Ingress Operator thread count

Ingress Controller access logging

Ingress Controller sharding

Ingress Controller route admission policy

Ingress Controller wildcard routes

Ingress Controller X-Forwarded headers

Ingress Controller route compression

Managed by

SRE

SRE

SRE

SRE

SRE

SRE

SRE

SRE

Default configuration?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

CHAPTER 3. AWS LOAD BALANCER OPERATOR

CHAPTER 3. AWS LOAD BALANCER OPERATOR

The AWS Load Balancer Operator (ALBO) is an Operator supported by Red Hat that users can
optionally install on SRE-managed Red Hat OpenShift Service on AWS (ROSA) clusters. The ALBO
manages the lifecycle of the AWS-managed AWS Load Balancer Controller (ALBC) that provisions
AWS Elastic Load Balancing v2 (ELBv2) services for applications running in ROSA clusters.

3.1. INSTALLING AN AWS LOAD BALANCER OPERATOR

You can install an AWS Load Balancer Operator (ALBO) if you meet certain requirements.

Prerequisites

® You have an existing Red Hat OpenShift Service on AWS (ROSA) cluster with bring-your-own-
VPC (BYO-VPC) configuration across multiple availability zones (AZ) installed in STS mode.

® You have access to the cluster as a user with the dedicated-admin role.

® You have access to modify the VPC and subnets of the created ROSA cluster.
® You have installed the ROSA CLI (rosa).

® You have installed the Amazon Web Services (AWS) CLI.

® You have installed the OpenShift CLI (oc).

® You are using OpenShift Container Platform (OCP) 4.13 or later.

IMPORTANT

When installing an ALBO for use with a ROSA cluster in an AWS Local Zone (LZ), you
must enable the AWS LZ for the account, and AWS Elastic Load Balancing v2 (ELBv2)
services must be available in the AWS LZ.

Procedure

1. ldentify the cluster infrastructure ID and the cluster OpenID Connect (OIDC) DNS by running
the following commands:

a. ldentify the ROSA cluster INFRA ID:

I $ rosa describe cluster --cluster=<cluster_name> | grep -i 'Infra ID'

or

I $ oc get infrastructure cluster -o json | jq -r .status.infrastructureName'
b. Identify the ROSA cluster OIDC DNS:

I $ rosa describe cluster --cluster=<cluster_name> | grep -i 'OIDC'

Save the output from the commands. You will use this information in future steps within this
procedure.

59

Red Hat OpenShift Service on AWS 4 Networking

2. Create the AWS IAM policy required for the ALBO:

a. Login to the ROSA cluster as a user with the dedicated-admin role and create a new
project using the following command:

I $ oc new-project aws-load-balancer-operator

b. Assign the following trust policy to the newly-created AWS IAM role:

$ IDP="{Cluster_OIDC_Endpoint}'
$ IDP_ARN="arn:aws:iam::{AWS_AccountNo}:oidc-provider/${IDP}" 0
$ cat <<EOF > albo-operator-trusted-policy.json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Federated": "${IDP_ARN}"
b
"Action": "sts:AssumeRoleWithWebldentity",
"Condition": {
"StringEquals™: {
"${IDP}:sub": "system:serviceaccount:aws-load-balancer-operator:aws-load-
balancer-operator-controller-manager”
}
}
}
]

}
EOF

Replace '{AWS_AccountNo}' with your AWS account number and
"{Cluster_OIDC_Endpoint}' with the OIDC DNS identified earlier in this procedure.

IMPORTANT

Do not include the https portion of the OIDC DNS URL when replacing
{Cluster_OIDC_Endpoint} with the OIDC DNS you identified earlier. Only
the alphanumeric information that follows the / within the URL is needed.

For more information on assigning trust policies to AWS IAM roles, see How to use trust
policies with IAM roles.

c. Create and verify the role by using the generated trust policy:

$ aws iam create-role --role-name albo-operator --assume-role-policy-document
file://albo-operator-trusted-policy.json

$ OPERATOR_ROLE_ARN=$(aws iam get-role --role-name albo-operator --output json |
jq -r .Role.Arn")

$ echo SOPERATOR_ROLE_ARN

For more information on creating AWS IAM roles, see Creating IAM roles.

60

https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

CHAPTER 3. AWS LOAD BALANCER OPERATOR

d. Attach the operator’s permission policy to the role:

$ curl -o albo-operator-permission-policy.json
https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/release-
1.1/hack/operator-permission-policy.json

$ aws iam put-role-policy --role-name albo-operator --policy-name perms-policy-albo-
operator --policy-document file://albo-operator-permission-policy.json

For more information on adding AWS IAM permissions to AWS IAM roles, see Adding and
removing IAM identity permissions.

e. Generate the operator's AWS credentials:

$ cat <<EOF> albo-operator-aws-credentials.cfg

[default]

sts_regional_endpoints = regional

role_arn = ${OPERATOR_ROLE_ARN}

web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
EOF

For more information about formatting credentials files, see Using manual mode with
Amazon Web Services Security Token Service.

f. Create the operator’s credentials secret with the generated AWS credentials:

$ oc -n aws-load-balancer-operator create secret generic aws-load-balancer-operator --
from-file=credentials=albo-operator-aws-credentials.cfg

3. Create the AWS IAM policy required for the AWS Load Balancer Controller (ALBC):

a. Generate a trust policy file for your identity provider. The following example uses OpenlD
Connect:

$ IDP="{Cluster_OIDC_Endpoint}'
$ IDP_ARN="arn:aws:iam::{AWS_AccountNo}:oidc-provider/${IDP}"
$ cat <<EOF > albo-controller-trusted-policy.json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal™: {
"Federated": "${IDP_ARN}"
2
"Action": "sts:AssumeRoleWithWebldentity",
"Condition": {
"StringEquals™: {
"${IDP}:sub": "system:serviceaccount:aws-load-balancer-operator:aws-load-
balancer-controller-cluster"

61

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/authentication_and_authorization/managing-cloud-provider-credentials#cco-mode-sts

Red Hat OpenShift Service on AWS 4 Networking

b. Create and verify the role by using the generated trust policy:

$ aws iam create-role --role-name albo-controller --assume-role-policy-document
file://albo-controller-trusted-policy.json

$ CONTROLLER_ROLE_ARN=$(aws iam get-role --role-name albo-controller --output
json | jg -r .Role.Arn")

$ echo $CONTROLLER_ROLE_ARN

c. Attach the controller’s permission policy to the role:

$ curl -0 albo-controller-permission-policy.json
https://raw.githubusercontent.com/kubernetes-sigs/aws-load-balancer-
controller/v2.4.7/docs/install/iam_policy.json

$ aws iam put-role-policy --role-name albo-controller --policy-name perms-policy-albo-
controller --policy-document file://albo-controller-permission-policy.json

d. Generate the controller's AWS credentials:

$ cat <<EOF > albo-controller-aws-credentials.cfg

[default]

sts_regional_endpoints = regional

role_arn = $§{CONTROLLER_ROLE_ARN}

web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
EOF

e. Create the controller’s credentials secret by using the generated AWS credentials:

$ oc -n aws-load-balancer-operator create secret generic aws-load-balancer-controller-
cluster --from-file=credentials=albo-controller-aws-credentials.cfg

4. Add the tags necessary for subnet discovery:

a. Add the following {Key: Value} tag to the VPC hosting the ROSA cluster and to all its
subnets. Replace {Cluster Infra ID} with the Infra ID specified previously:

I * kubernetes.io/cluster/${Cluster Infra ID}:owned

b. Add the following ELBv2 {Key: Value} tags to the private subnets and, optionally, to the
public subnets:

® Private subnets: kubernetes.io/role/internal