& RedHat

Red Hat OpenStack Platform 10

Advanced Overcloud Customization

Methods for configuring advanced features using Red Hat OpenStack Platform
director

Last Updated: 2023-01-06

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

Methods for configuring advanced features using Red Hat OpenStack Platform director

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide explains how to configure certain advanced features for a Red Hat OpenStack Platform
enterprise environment using the Red Hat OpenStack Platform Director. This includes features
such as network isolation, storage configuration, SSL communication, and general configuration
methods.

Table of Contents

Table of Contents

CHAPTER LLINTRODUCTION . i i i i et ettt ei i 5
CHAPTER 2. UNDERSTANDING HEAT TEMPLATES .. . e it 6
2.1. HEAT TEMPLATES 6
2.2. ENVIRONMENT FILES 7
2.3. CORE OVERCLOUD HEAT TEMPLATES 8
2.4. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION 9
2.5. USING CUSTOMIZED CORE HEAT TEMPLATES 10
CHAPTER 3. PARAME T ERS . i e i it 14
3.1. EXAMPLE 1: CONFIGURING THE TIMEZONE 14
3.2. EXAMPLE 2: DISABLING LAYER 3 HIGH AVAILABILITY (L3HA) 15
3.3. EXAMPLE 3: CONFIGURING THE TELEMETRY DISPATCHER 15
3.4. EXAMPLE 4: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT 15
3.5.EXAMPLE 5: ENABLING AND DISABLING PARAMETERS 15
3.6. IDENTIFYING PARAMETERS TO MODIFY 16
CHAPTER 4. CONFIGURATION HOOKS .. i e e e et 18
41.FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION 18
4.2. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD ROLES 19
4.3. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES 21
4.4. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES 23
4.5. PUPPET: CUSTOMIZING HIERADATA FOR ROLES 25
4.6. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES 26
4.7. PUPPET: APPLYING CUSTOM MANIFESTS 26
CHAPTER 5. OVERCLOUD REGISTRATION ... e et 28
5.1. REGISTERING THE OVERCLOUD WITH AN ENVIRONMENT FILE 28
5.2. EXAMPLE 1: REGISTERING TO THE CUSTOMER PORTAL 29
5.3. EXAMPLE 2: REGISTERING TO A RED HAT SATELLITE 6 SERVER 30
5.4. EXAMPLE 3: REGISTERING TO A RED HAT SATELLITE 5 SERVER 30
CHAPTER 6. COMPOSABLE SERVICES AND CUSTOMROLES 32
6.1. EXAMINING CUSTOM ROLE ARCHITECTURE 33
6.2. EXAMINING COMPOSABLE SERVICE ARCHITECTURE 34
6.3. ENABLING DISABLED SERVICES 35
6.4. ADDING AND REMOVING SERVICES FROM ROLES 36
6.5. CREATING ANEW ROLE 36
6.6. CREATING A GENERIC NODE WITH NO SERVICES 38
6.7. CREATING HYPER-CONVERGED COMPUTE AND CEPH SERVICES 39
6.8. SERVICE ARCHITECTURE: MONOLITHIC CONTROLLER 41
6.9. SERVICE ARCHITECTURE: SPLIT CONTROLLER 43
6.10. SERVICE ARCHITECTURE: STANDALONE ROLES 45
6.11. COMPOSABLE SERVICE REFERENCE 55
CHAPTER 7. ISOLATING NETWORKS ..o i i 61
7.1. CREATING CUSTOM INTERFACE TEMPLATES 61
7.2. CREATING A NETWORK ENVIRONMENT FILE 66
7.3. ASSIGNING OPENSTACK SERVICES TO ISOLATED NETWORKS 68
7.4. SELECTING NETWORKS TO DEPLOY 68
CHAPTER 8. CONTROLLING NODE PLACEMENT ... i i it 74
8.1. ASSIGNING SPECIFIC NODE IDS 74

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

8.2. ASSIGNING CUSTOM HOSTNAMES 75
8.3. ASSIGNING PREDICTABLE IPS 75
8.4. ASSIGNING PREDICTABLE VIRTUAL IPS 77
CHAPTER 9. ENABLING SSL/TLSON THE OVERCLOUDiiiittiiittiiteieeitennneennnennneenn, 79
9.1. INITIALIZING THE SIGNING HOST 79
9.2. CREATING A CERTIFICATE AUTHORITY 79
9.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS 79
9.4. CREATING AN SSL/TLS KEY 80
9.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST 80
9.6. CREATING THE SSL/TLS CERTIFICATE 81
9.7. ENABLING SSL/TLS 81
9.8. INJECTING A ROOT CERTIFICATE 82
9.9. CONFIGURING DNS ENDPOINTS 83
9.10. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION 83
9.11. UPDATING SSL/TLS CERTIFICATES 84
CHAPTER 10. STORAGE CONFIGURATION L.ttt ittt ettt it et eaeeanneennnenaneenn, 85
10.1. CONFIGURING NFS STORAGE 85
10.2. CONFIGURING CEPH STORAGE 86
10.3. CONFIGURING THIRD PARTY STORAGE 86
CHAPTER 11. CONFIGURING CONTAINERIZED COMPUTENODESiitiiiiiiiiiiieieiiieennnnnns 88
11.1. INCREASING THE STACK DEPTH 88
11.2. EXAMINING THE CONTAINERIZED COMPUTE ENVIRONMENT FILE (DOCKER.YAML) 89
11.3. UPLOADING THE ATOMIC HOST IMAGE 89
11.4. USING A LOCAL REGISTRY 90
11.5. INCLUDING ENVIRONMENT FILES IN THE OVERCLOUD DEPLOYMENT 91
CHAPTER 12. MONITORING TOOLS CONFIGURATION ...ttt eii e eaeeannennneenn, 93
12.1. ARCHITECTURE 93
12.1.1. Centralized Logging 93
12.1.2. Availability Monitoring 96
12.2. INSTALL THE CLIENT-SIDE TOOLS 99
12.2.1. Set Centralized Logging Client Parameters 99
12.2.2. Set Availability Monitoring Client Parameters 100
12.2.3. Install Operational Tools on Overcloud Nodes 101
12.3. INSTALL THE SERVER-SIDE COMPONENTS 101
12.4. MONITOR THE OPENSTACK PLATFORM 101
12.5. VALIDATE THE SENSU CLIENT INSTALLATION 101
12.6. REVIEW THE STATE OF A NODE 102
12.7. REVIEW THE STATE OF AN OPENSTACK SERVICE 102
CHAPTER 13. SECURITY ENHANCEMEN TS ...ttt et eteeieeeanneeaneeenneennnens 103
13.1. MANAGING THE OVERCLOUD FIREWALL 103
13.2. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) STRINGS 104
13.3. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY 105
CHAPTER 14. OTHER CONFIGURATIONS .. ittt ittt et et e e e eeaneeenneennnens 106
14.1. CONFIGURING EXTERNAL LOAD BALANCING 106
14.2. CONFIGURING IPV6 NETWORKING 106
APPENDIX A. NETWORK ENVIRONMENT OPTIONS ... ittt iei e eieeaeeaneeeaneennnn, 107
APPENDIX B. NETWORK INTERFACE TEMPLATE EXAMPLES ittt 110

Table of Contents

B.1. CONFIGURING INTERFACES 110
B.2. CONFIGURING ROUTES AND DEFAULT ROUTES 110
B.3. USING THE NATIVE VLAN FOR FLOATING IPS m
B.4. USING THE NATIVE VLAN ON A TRUNKED INTERFACE 12
B.5. CONFIGURING JUMBO FRAMES 12
APPENDIX C. NETWORKINTERFACE PARAMETERS i n4
C.1.INTERFACE OPTIONS 14
C.2. VLAN OPTIONS 14
C.3.OVS BOND OPTIONS 15
C.4. OVS BRIDGE OPTIONS 116
C.5. LINUX BOND OPTIONS n7
C.6. LINUX BRIDGE OPTIONS 18
APPENDIX D. BONDING OPTIONS ... i i e i it it 120
D.1. NETWORK INTERFACE BONDING AND LINK AGGREGATION CONTROL PROTOCOL (LACP) 120
D.2. OPEN VSWITCH BONDING OPTIONS 120
D.3. CONSIDERATIONS FOR BALANCE-TCP MODE 121
D.4. LINUX BONDING OPTIONS 122
D.5. BONDING OPTIONS 122

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION

The Red Hat OpenStack Platform director provides a set of tools to provision and create a fully featured
OpenStack environment, also known as the Overcloud. The Director Installation and Usage Guide covers
the preparation and configuration of the Overcloud. However, a proper production-level Overcloud
might require additional configuration, including:

® Basic network configuration to integrate the Overcloud into your existing network
infrastructure.

e Network traffic isolation on separate VLANSs for certain OpenStack network traffic types.
® SSL configuration to secure communication on public endpoints

® Storage options such as NFS, iSCSI, Red Hat Ceph Storage, and multiple third-party storage
devices.

® Registration of nodes to the Red Hat Content Delivery Network or your internal Red Hat
Satellite 5 or 6 server.

® \/arious system level options.
® Various OpenStack service options.
This guide provides instructions for augmenting your Overcloud through the director. At this point, the

director has registered the nodes and configured the necessary services for Overcloud creation. Now
you can customize your Overcloud using the methods in this guide.

NOTE

The examples in this guide are optional steps for configuring the Overcloud. These steps
are only required to provide the Overcloud with additional functionality. Use only the
steps that apply to the needs of your environment.

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/director-installation-and-usage/

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

The custom configurations in this guide use Heat templates and environment files to define certain
aspects of the Overcloud. This chapter provides a basic introduction to Heat templates so that you can
understand the structure and format of these templates in the context of the Red Hat OpenStack
Platform director.

2.1. HEAT TEMPLATES

The director uses Heat Orchestration Templates (HOT) as a template format for its Overcloud
deployment plan. Templates in HOT format are mostly expressed in YAML format. The purpose of a
template is to define and create a stack, which is a collection of resources that heat creates, and the
configuration of the resources. Resources are objects in OpenStack and can include compute
resources, network configuration, security groups, scaling rules, and custom resources.

The structure of a Heat template has three main sections:

Parameters

These are settings passed to heat, which provides a way to customize a stack, and any default values
for parameters without passed values. These are defined in the parameters section of a template.

Resources

These are the specific objects to create and configure as part of a stack. OpenStack contains a set of
core resources that span across all components. These are defined in the resources section of a
template.

Output

These are values passed from heat after the stack’s creation. You can access these values either
through the heat API or client tools. These are defined in the output section of a template.

Here is an example of a basic heat template:

heat_template_version: 2013-05-23
description: > A very basic Heat template.

parameters:
key_name:
type: string
default: lars
description: Name of an existing key pair to use for the instance
flavor:
type: string
description: Instance type for the instance to be created
default: m1.small
image:
type: string
default: cirros
description: ID or name of the image to use for the instance

resources:
my_instance:
type: OS::Nova::Server
properties:
name: My Cirros Instance

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

image: { get_param: image }
flavor: { get_param: flavor }
key_name: { get_param: key_name }

output:
instance_name:
description: Get the instance's name
value: { get_attr: [my_instance, name]}

This template uses the resource type type: OS::Nova::Server to create an instance called
my_instance with a particular flavor, image, and key. The stack can return the value of instance_name,
which is called My Cirros Instance.

When Heat processes a template it creates a stack for the template and a set of child stacks for
resource templates. This creates a hierarchy of stacks that descend from the main stack you define with
your template. You can view the stack hierarchy using this following command:

I $ openstack stack list --nested

2.2. ENVIRONMENT FILES

An environment file is a special type of template that provides customization for your Heat templates.
This includes three key parts:

Resource Registry

This section defines custom resource names, linked to other heat templates. This essentially provides
a method to create custom resources that do not exist within the core resource collection. These are
defined in the resource_registry section of an environment file.

Parameters

These are common settings you apply to the top-level template’s parameters. For example, if you
have a template that deploys nested stacks, such as resource registry mappings, the parameters only
apply to the top-level template and not templates for the nested resources. Parameters are defined
in the parameters section of an environment file.

Parameter Defaults

These parameters modify the default values for parameters in all templates. For example, if you have
a Heat template that deploys nested stacks, such as resource registry mappings,the parameter
defaults apply to all templates. In other words, the top-level template and those defining all nested
resources. The parameter defaults are defined in the parameter_defaults section of an environment
file.

IMPORTANT

It is recommended to use parameter_defaults instead of parameters When creating
custom environment files for your Overcloud. This is so the parameters apply to all stack
templates for the Overcloud.

An example of a basic environment file:

resource_registry:
OS::Nova::Server::MyServer: myserver.yam|

parameter_defaults:

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

NetworkName: my_network

parameters:
MyIP: 192.168.0.1

For example, this environment file (my_env.yaml) might be included when creating a stack from a
certain Heat template (my_template.yaml). The my_env.yaml files creates a new resource type called
OS::Nova::Server::MyServer. The myserver.yaml file is a Heat template file that provides an
implementation for this resource type that overrides any built-in ones. You can include the
OS::Nova::Server::MyServer resource in your my_template.yaml file.

The MyIP applies a parameter only to the main Heat template that deploys along with this environment
file. In this example, it only applies to the parameters in my_template.yaml.

The NetworkName applies to both the main Heat template (in this example, my_template.yaml) and
the templates associated with resources included the main template, such as the
0OS::Nova::Server::MyServer resource and its myserver.yaml template in this example.

2.3. CORE OVERCLOUD HEAT TEMPLATES

The director contains a core heat template collection for the Overcloud. This collection is stored in
/usr/share/openstack-tripleo-heat-templates.

There are many heat templates and environment files in this collection. However, the main files and
directories to note in this template collection are:

overcloud.j2.yaml

This is the main template file used to create the Overcloud environment. This file uses Jinja2 syntax
to iterate over certain sections in the template to create custom roles. The Jinja2 formatting is
rendered into YAML during the overcloud deployment process.

overcloud-resource-registry-puppet.j2.yaml

This is the main environment file used to create the Overcloud environment. It provides a set of
configurations for Puppet modules stored on the Overcloud image. After the director writes the
Overcloud image to each node, Heat starts the Puppet configuration for each node using the
resources registered in this environment file. This file uses Jinja2 syntax to iterate over certain
sections in the template to create custom roles. The Jinja2 formatting is rendered into YAML during
the overcloud deployment process.

roles_data.yaml
A file that defines the roles in an overcloud and maps services to each role.
capabilities-map.yaml

A mapping of environment files for an overcloud plan. Use this file to describe and enable
environment files through the director’s web Ul. Custom environment files detected in an overcloud
plan but not listed in the capabilities-map.yaml are listed in the Other subtab of 2 Specify
Deployment Configuration > Overall Settings on the web Ul.

environments

Contains additional Heat environment files that you can use with your Overcloud creation. These
environment files enable extra functions for your resulting OpenStack environment. For example, the
directory contains an environment file for enabling Cinder NetApp backend storage (cinder-netapp-
config.yaml).

network

A set of Heat templates to help create isolated networks and ports.

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

puppet
Templates mostly driven by configuration with puppet. The aforementioned overcloud-resource-
registry-puppet.j2.yaml environment file uses the files in this directory to drive the application of
the Puppet configuration on each node.

puppet/services
A directory containing heat templates for all services in the composable service architecture.
extraconfig

Templates used to enable extra functionality. For example, the extraconfig/pre_deploy/rhel-
registration director provides the ability to register your nodes' Red Hat Enterprise Linux operating
systems to the Red Hat Content Delivery network or your own Red Hat Satellite server.

firstboot

Provides example first_boot scripts that the director uses when initially creating the nodes.

2.4. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
The deployment command (openstack overcloud deploy) uses the -e option to include an
environment file to customize your Overcloud. You can include as many environment files as necessary.

However, the order of the environment files is important as the parameters and resources defined in
subsequent environment files take precedence. For example, you might have two environment files:

environment-file-1.yaml

resource_registry:
OS::TripleO::NodeExtraConfigPost: /home/stack/templates/template-1.yaml

parameter_defaults:

RabbitFDLimit: 65536
TimeZone: 'Japan’

environment-file-2.yaml

resource_registry:
OS::TripleO::NodeExtraConfigPost: /home/stack/templates/template-2.yaml

parameter_defaults:
TimeZone: 'Hongkong'

Then deploy with both environment files included:

I $ openstack overcloud deploy --templates -e environment-file-1.yaml -e environment-file-2.yaml

In this example, both environment files contain a common resource type
(OS::TripleO::NodeExtraConfigPost) and a common parameter (TimeZone). The openstack
overcloud deploy command runs through the following process:

1. Loads the default configuration from the core Heat template collection as per the --template
option.

2. Applies the configuration from environment-file-1.yaml, which overrides any common settings
from the default configuration.

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

3. Applies the configuration from environment-file-2.yaml, which overrides any common settings
from the default configuration and environment-file-1.yaml.

This results in the following changes to the default configuration of the Overcloud:

o OS::TripleO::NodeExtraConfigPost resource is set to /home/stack/templates/template-
2.yaml as per environment-file-2.yaml.

® TimeZone parameter is set to Hongkong as per environment-file-2.yaml.

® RabbitFDLimit parameter is set to 65536 as per environment-file-1.yaml. environment-file-
2.yaml does not change this value.

This provides a method for defining custom configuration to the your Overcloud without values from
multiple environment files conflicting.

2.5. USING CUSTOMIZED CORE HEAT TEMPLATES

When creating the overcloud, the director uses a core set of Heat templates located in
/usr/share/openstack-tripleo-heat-templates. If you want to customize this core template collection,
use a Git workflow to track changes and merge updates. Use the following git processes to help manage

your custom template collection:

Initializing a Custom Template Collection

Use the following procedure to create an initial Git repository containing the Heat template collection:

1. Copy the templates' directory to the stack users directory. This example copies it to the
~/templates directory:

$ cd ~/templates
$ cp -r /usr/share/openstack-tripleo-heat-templates .

2. Change to the custom template directory and initialize a Git repository:

$ cd openstack-tripleo-heat-templates
$ git init .

3. Stage all templates for the initial commit:
I $ git add *
4. Create an initial commit:
I $ git commit -m "Initial creation of custom core heat templates”

This creates an initial master branch containing the latest core template collection. Use this branch as a
basis for your custom branch and merge new template versions to this branch.

Creating a Custom Branch and Committing Changes

Use a custom branch to store your changes to the core template collection. Use the following procedure
to create a my-customizations branch and add customizations to it:

1. Create the my-customizations branch and switch to it:

10

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

I $ git checkout -b my-customizations
2. Edit the files in the custom branch.
3. Stage the changes in git:
I $ git add [edited files]
4. Commit the changes to the custom branch:

I $ git commit -m "[Commit message for custom changes]"

This adds your changes as commits to the my-customizations branch. When the master branch
updates, you can rebase my-customizations off master, which causes git to add these commits on to
the updated template collection. This helps with tracking you customizations and replaying them on
future template updates.

Updating the Custom Template Collection:

Sometimes when updating the undercloud, the openstack-tripleo-heat-templates package might also
update. Use the following procedure to update your custom template collection:

1. Save the openstack-tripleo-heat-templates package version as an environment variable:

I $ export PACKAGE=$(rpm -qv openstack-tripleo-heat-templates)

2. Change to your template collection directory and create a new branch for the updated
templates:

$ cd ~/templates/openstack-tripleo-heat-templates
$ git checkout -b $PACKAGE

3. Remove all files in the branch and replace them with the new versions:

I $ git rm -rf *

$ cp -r /usr/share/openstack-tripleo-heat-templates/* .
4. Add all templates for the initial commit:
I $ gitadd *
5. Create a commit for the package update:

I $ git commit -m "Updates for SPACKAGE"

6. Merge the branch into master. If using a Git management system, such as GitLab, use the
management workflow. If using git locally, merge by switching to the master branch and run the
git merge command:

$ git checkout master
$ git merge SPACKAGE

1

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

The master branch now contains the latest version of the core template collection. You can now rebase
the my-customization branch from this updated collection.

Rebasing the Custom Branch

Use the following procedure to update the my-customization branch,:

1. Change to the my-customizations branch:
I $ git checkout my-customizations
2. Rebase the branch off master:
I $ git rebase master
This updates the my-customizations branch and replays the custom commits made to this branch.

If git reports any conflicts during the rebase, use this procedure:

1. Check which files contain the conflicts:
I $ git status

2. Resolve the conflicts of the template files identified.

3. Add the resolved files

$ git add [resolved files]
$ git commit
4. Continue the rebase:

I $ git rebase --continue

Deploying Custom Templates

Use the following procedure to deploy the custom template collection:

1. Make sure you have switched to the my-customization branch:

I git checkout my-customizations

2. Run the openstack overcloud deploy command with the --templates option to specify your
local template directory:

$ openstack overcloud deploy --templates /home/stack/templates/openstack-tripleo-heat-
templates [OTHER OPTIONS]

NOTE

The director uses the default template directory (/usr/share/openstack-tripleo-heat-
templates) if you specify the --templates option without a directory.

12

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

IMPORTANT

Red Hat recommends using the methods from the following sections instead of
modifying the heat template collection:

® Section 4.2, "Pre-Configuration: Customizing Specific Overcloud Roles”

® Section 4.3, “Pre-Configuration: Customizing All Overcloud Roles”

Section 4.4, "Post-Configuration: Customizing All Overcloud Roles”

Section 4.5, “Puppet: Customizing Hieradata for Roles”

Section 4.7, "Puppet: Applying Custom Manifests”

13

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

CHAPTER 3. PARAMETERS

Each Heat template in the director’s template collection contains a parameters section. This section
defines all parameters specific to a particular overcloud service. This includes the following:

e overcloud.j2.yaml - Default base parameters
e roles_data.yaml - Default parameters for composable roles
® puppet/services/*.yaml - Default parameters for specific services
You can modify the values for these parameters using the following method:
1. Create an environment file for your custom parameters.
2. Include your custom parameters in the parameter_defaults section of the environment file.
3. Include the environment file with the openstack overcloud deploy command.

The next few sections contain examples to demonstrate how to configure specific parameters for
services in the puppet/services directory.

3.1. EXAMPLE 1: CONFIGURING THE TIMEZONE

The Heat template for setting the timezone (puppet/services/time/timezone.yaml) contains a
TimeZone parameter. If you leave the TimeZone parameter blank, the overcloud sets the time to UTC
as a default. The director recognizes the standard timezone names defined in the timezone database
/usr/share/zoneinfo/. For example, if you wanted to set your time zone to Japan, you would examine
the contents of /usr/share/zoneinfo to locate a suitable entry:

$ Is /usr/share/zoneinfo/

Africa Asia Canada Cuba EST GB GMT-0 HST iso3166.tab Kwajalein MST
NZ-CHAT posix right Turkey UTC Zulu

America Atlantic CET EET EST5EDT GB-Eire GMT+0 Iceland Israel Libya
MST7MDT Pacific posixrules ROC UCT WET

Antarctica Australia Chile Egypt Etc GMT Greenwich Indian Jamaica MET Navajo
Poland PRC ROK Universal W-SU

Arctic Brazil CST6CDT Eire Europe GMTO0 Hongkong Iran Japan Mexico NZ
Portugal PST8PDT Singapore US zone.tab

The output listed above includes time zone files, and directories containing additional time zone files.
For example, Japan is an individual time zone file in this result, but Africa is a directory containing
additional time zone files:

$ Is /usr/share/zoneinfo/Africa/

Abidjan Algiers Bamako Bissau Bujumbura Ceuta Dar_es_Salaam EI_Aaiun Harare
Kampala Kinshasa Lome Lusaka Maseru Monrovia Niamey Porto-Novo Tripoli
Accra Asmara Bangui Blantyre Cairo Conakry Djibouti Freetown Johannesburg
Khartoum Lagos Luanda Malabo Mbabane Nairobi Nouakchott Sao_Tome Tunis

Addis_Ababa Asmera Banjul Brazzaville Casablanca Dakar Douala Gaborone Juba
Kigali Libreville Lubumbashi Maputo Mogadishu Ndjamena Ouagadougou Timbuktu
Windhoek

Add the entry in an environment file to set your timezone to Japan:

14

CHAPTER 3. PARAMETERS

parameter_defaults:
TimeZone: 'Japan’

3.2. EXAMPLE 2: DISABLING LAYER 3 HIGH AVAILABILITY (L3HA)

The Heat template for the OpenStack Networking (neutron) API (puppet/services/neutron-api.yaml)
contains a parameter to enable and disable Layer 3 High Availability (L3HA). The default for the
parameter is false. However, you can enable it using the following in an environment file:

parameter_defaults:
NeutronL3HA: true

3.3. EXAMPLE 3: CONFIGURING THE TELEMETRY DISPATCHER

The OpenStack Telemetry (ceilometer) service includes a component for a time series data storage
(gnocchi). The puppet/services/ceilometer-base.yaml Heat Template allows you to switch between
gnocchi and the standard database. You accomplish this with the CeilometerMeterDispatcher
parameter, which you set to either:

® gnocchi - Use the new time series database for Ceilometer dispatcher. This is the default
option.

e database - Use the standard database for the Ceilometer dispatcher.

To switch to a standard database, add the following to an environment file:

parameter_defaults:
CeilometerMeterDispatcher: database

3.4. EXAMPLE 4: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT

For certain configurations, you might need to increase the file descriptor limit for the RabbitMQ server.
The puppet/services/rabbitmq.yaml Heat template allows you to set the RabbitFDLimit parameter to
the limit you require. Add the following to an environment file.

parameter_defaults:
RabbitFDLimit: 65536

3.5. EXAMPLE 5: ENABLING AND DISABLING PARAMETERS

In some case, you might need to initially set a parameters during a deployment, then disable the
parameter for a future deployment operation, such as updates or scaling operations. For example, to
include a custom RPM during the overcloud creation, you would include the following:

parameter_defaults:
DeployArtifactURLs: ["http://www.example.com/myfile.rpm"]

If you need to disable this parameter from a future deployment, it is not enough to remove the
parameter. Instead, you set the parameter to an empty value:

15

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

parameter_defaults:
DeployArtifactURLs: []

This ensures the parameter is no longer set for subsequent deployments operations.

3.6. IDENTIFYING PARAMETERS TO MODIFY

Red Hat OpenStack Platform director provides many parameters for configuration. In some cases, you
might experience difficulty identifying a certain option to configure and the corresponding director
parameter. If there is an option you want to configure through the director, use the following workflow to
identify and map the option to a specific overcloud parameter:

1. ldentify the option you aim to configure. Make a note of the service that uses the option.

2. Check the corresponding Puppet module for this option. The Puppet modules for Red Hat
OpenStack Platform are located under /etc/puppet/modules on the director node. Each
module corresponds to a particular service. For example, the keystone module corresponds to
the OpenStack Identity (keystone).

® |f the Puppet module contains a variable that controls the chosen option, move to the next
step.

® |f the Puppet module does not contain a variable that controls the chosen option, then no
hieradata exists for this option. If possible, you can set the option manually after the
overcloud completes deployment.

3. Check the director’s core Heat template collection for the Puppet variable in the form of
hieradata. The templates in puppet/services/* usually correspond to the Puppet modules of
the same services. For example, the puppet/services/keystone.yaml template provides
hieradata to the keystone module.

e |f the Heat template sets hieradata for the Puppet variable, the template should also
disclose the director-based parameter to modify.

e |f the Heat template does not set hieradata for the Puppet variable, use the configuration
hooks to pass the hieradata using an environment file. See Section 4.5, “Puppet:

Customizing Hieradata for Roles” for more information on customizing hieradata.

Workflow Example

You might aim to change the notification format for OpenStack Identity (keystone). Using the workflow,
you would:

1. ldentify the OpenStack parameter to configure (notification_format).
2. Search the keystone Puppet module for the notification_format setting. For example:
I $ grep notification_format /etc/puppet/modules/keystone/manifests/*

In this case, the keystone module manages this option using the
keystone::notification_format variable.

3. Search the keystone service template for this variable. For example:

$ grep "keystone::notification_format" /usr/share/openstack-tripleo-heat-
templates/puppet/services/keystone.yaml

16

CHAPTER 3. PARAMETERS

The output shows the director using the KeystoneNotificationFormat parameter to set the
keystone::notification_format hieradata.

The following table shows the eventual mapping:

Director Parameter Puppet Hieradata OpenStack Identity (keystone)

option

KeystoneNotificationFormat keystone::notification_forma notification_format
t

This means setting the KeystoneNotificationFormat in an overcloud’s environment file would set the
notification_format option in the keystone.conf file during the overcloud’s configuration.

17

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

CHAPTER 4. CONFIGURATION HOOKS

The configuration hooks provide a method to inject your own configuration functions into the Overcloud
deployment process. This includes hooks for injecting custom configuration before and after the main
Overcloud services configuration and hook for modifying and including Puppet-based configuration.

4.1. FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION

The director provides a mechanism to perform configuration on all nodes upon the initial creation of the
Overcloud. The director achieves this through cloud-init, which you can call using the
OS::TripleO::NodeUserData resource type.

In this example, you will update the nameserver with a custom IP address on all nodes. You must first
create a basic heat template (/home/stack/templates/nameserver.yaml) that runs a script to append
each node’s resolv.conf with a specific nameserver. You can use the OS::TripleO::MultipartMime
resource type to send the configuration script.

heat_template_version: 2014-10-16

description: >
Extra hostname configuration

resources:
userdata:
type: OS::Heat::MultipartMime
properties:
parts:
- config: {get_resource: nameserver_config}

nameserver_config:
type: OS::Heat::SoftwareConfig
properties:
config: |
#!/bin/bash
echo "nameserver 192.168.1.1" >> /etc/resolv.conf

outputs:
OS::stack id:
value: {get_resource: userdata}

Next, create an environment file (/home/stack/templates/firstboot.yaml) that registers your heat
template as the OS::TripleO::NodeUserData resource type.

resource_registry:
OS::TripleO::NodeUserData: /home/stack/templates/nameserver.yaml

To add the first boot configuration, add the environment file to the stack along with your other
environment files when first creating the Overcloud. For example:

$ openstack overcloud deploy --templates \

-e /home/stack/templates/firstboot.yaml \

18

CHAPTER 4. CONFIGURATION HOOKS

The -e applies the environment file to the Overcloud stack.

This adds the configuration to all nodes when they are first created and boot for the first time.
Subsequent inclusions of these templates, such as updating the Overcloud stack, does not run these
scripts.

IMPORTANT

You can only register the OS::TripleO::NodeUserData to one heat template.
Subsequent usage overrides the heat template to use.

4.2. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD
ROLES

IMPORTANT

Previous versions of this document used the OS::TripleO::Tasks::*PreConfig resources
to provide pre-configuration hooks on a per role basis. The director’s Heat template
collection requires dedicated use of these hooks, which means you should not use them
for custom use. Instead, use the OS::TripleO::*ExtraConfigPre hooks outlined below.

The Overcloud uses Puppet for the core configuration of OpenStack components. The director
provides a set of hooks to provide custom configuration for specific node roles after the first boot
completes and before the core configuration begins. These hooks include:

OS::TripleO:ControllerExtraConfigPre

Additional configuration applied to Controller nodes before the core Puppet configuration.
OS::TripleO::ComputeExtraConfigPre

Additional configuration applied to Compute nodes before the core Puppet configuration.
OS::TripleO::CephStorageExtraConfigPre

Additional configuration applied to Ceph Storage nodes before the core Puppet configuration.
OS::TripleO::ObjectStorageExtraConfigPre

Additional configuration applied to Object Storage nodes before the core Puppet configuration.
OS::TripleO::BlockStorageExtraConfigPre

Additional configuration applied to Block Storage nodes before the core Puppet configuration.
OS::TripleO::[ROLE]ExtraConfigPre

Additional configuration applied to custom nodes before the core Puppet configuration. Replace
[ROLE] with the composable role name.

In this example, you first create a basic heat template (/home/stack/templates/nameserver.yaml) that
runs a script to write to a node’s resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
Extra hostname configuration

parameters:

server:
type: string

19

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

nameserver_ip:
type: string

Deployldentifier:
type: string

resources:
CustomExtraConfigPre:
type: OS::Heat::SoftwareConfig
properties:
group: script
config:
str_replace:
template: |
#!/bin/sh
echo "nameserver NAMESERVER_IP_" > /etc/resolv.conf
params:
_NAMESERVER_IP_: {get_param: nameserver_ip}

CustomExtraDeploymentPre:

type: OS::Heat::SoftwareDeployment

properties:
server: {get_param: server}
config: {get_resource: CustomExtraConfigPre}
actions: [CREATE','UPDATE]
input_values:

deploy_identifier: {get_param: Deployldentifier}

outputs:
deploy_stdout:
description: Deployment reference, used to trigger pre-deploy on changes
value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

In this example, the resources section contains the following:

CustomExtraConfigPre

This defines a software configuration. In this example, we define a Bash script and Heat replaces
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeploymentPre

This executes a software configuration, which is the software configuration from the
CustomExtraConfigPre resource. Note the following:

® The config parameter makes a reference to the CustomExtraConfigPre resource so Heat
knows what configuration to apply.

® The server parameter retrieves a map of the Overcloud nodes. This parameter is provided
by the parent template and is mandatory in templates for this hook.

® The actions parameter defines when to apply the configuration. In this case, we only apply
the configuration when the Overcloud is created. Possible actions include CREATE,
UPDATE, DELETE, SUSPEND, and RESUME.

® input_values contains a parameter called deploy_identifier, which stores the
Deployldentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update. This ensures the resource reapplies on subsequent
overcloud updates.

20

CHAPTER 4. CONFIGURATION HOO

Next, create an environment file (/home/stack/templates/pre_config.yaml) that registers your heat
template to the role-based resource type. For example, to apply only to Controller nodes, use the
ControllerExtraConfigPre hook:

resource_registry:
OS::TripleO::ControllerExtraConfigPre: /nome/stack/templates/nameserver.yaml

parameter_defaults:
nameserver_ip: 192.168.1.1

To apply the configuration, add the environment file to the stack along with your other environment files
when creating or updating the Overcloud. For example:

$ openstack overcloud deploy --templates \

-e /home/stack/templates/pre_config.yaml \

This applies the configuration to all Controller nodes before the core configuration begins on either the
initial Overcloud creation or subsequent updates.

IMPORTANT

You can only register each resource to only one Heat template per hook. Subsequent
usage overrides the Heat template to use.

4.3. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES

The Overcloud uses Puppet for the core configuration of OpenStack components. The director
provides a hook to configure all node types after the first boot completes and before the core
configuration begins:

OS:TripleO::NodeExtraConfig

Additional configuration applied to all nodes roles before the core Puppet configuration.

In this example, you first create a basic heat template (/home/stack/templates/nameserver.yaml) that
runs a script to append each node’s resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
Extra hostname configuration

parameters:
server:
type: string
nameserver_ip:
type: string
Deployldentifier:
type: string

resources:
CustomExtraConfigPre:
type: OS::Heat::SoftwareConfig

KS

21

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

properties:
group: script
config:
str_replace:
template: |
#!/bin/sh
echo "nameserver NAMESERVER_IP_" >> /etc/resolv.conf
params:
_NAMESERVER_IP_: {get_param: nameserver_ip}

CustomExtraDeploymentPre:

type: OS::Heat::SoftwareDeployment

properties:
server: {get_param: server}
config: {get_resource: CustomExtraConfigPre}
actions: [CREATE','UPDATE]
input_values:

deploy_identifier: {get_param: Deployldentifier}

outputs:
deploy_stdout:
description: Deployment reference, used to trigger pre-deploy on changes
value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

In this example, the resources section contains the following:

CustomExtraConfigPre

This defines a software configuration. In this example, we define a Bash script and Heat replaces
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeploymentPre

This executes a software configuration, which is the software configuration from the
CustomExtraConfigPre resource. Note the following:

® The config parameter makes a reference to the CustomExtraConfigPre resource so Heat
knows what configuration to apply.

® The server parameter retrieves a map of the Overcloud nodes. This parameter is provided
by the parent template and is mandatory in templates for this hook.

e The actions parameter defines when to apply the configuration. In this case, we only apply
the configuration when the Overcloud is created. Possible actions include CREATE,
UPDATE, DELETE, SUSPEND, and RESUME.

® The input_values parameter contains a sub-parameter called deploy_identifier, which
stores the Deployldentifier from the parent template. This parameter provides a timestamp
to the resource for each deployment update. This ensures the resource reapplies on
subsequent overcloud updates.

Next, create an environment file (/home/stack/templates/pre_config.yaml) that registers your heat
template as the OS::TripleO::NodeExtraConfig resource type.

resource_registry:
OS::TripleO::NodeExtraConfig: /home/stack/templates/nameserver.yaml

22

CHAPTER 4. CONFIGURATION HOOKS

parameter_defaults:
nameserver_ip: 192.168.1.1

To apply the configuration, add the environment file to the stack along with your other environment files
when creating or updating the Overcloud. For example:

$ openstack overcloud deploy --templates \

-e /home/stack/templates/pre_config.yaml \

This applies the configuration to all nodes before the core configuration begins on either the initial
Overcloud creation or subsequent updates.

IMPORTANT

You can only register the OS::TripleO::NodeExtraConfig to only one Heat template.
Subsequent usage overrides the Heat template to use.

4.4. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES

IMPORTANT

Previous versions of this document used the OS::TripleO::Tasks::*PostConfig
resources to provide post-configuration hooks on a per role basis. The director’'s Heat
template collection requires dedicated use of these hooks, which means you should not
use them for custom use. Instead, use the OS::TripleO::NodeExtraConfigPost hook
outlined below.

A situation might occur where you have completed the creation of your Overcloud but want to add
additional configuration to all roles, either on initial creation or on a subsequent update of the Overcloud.
In this case, you use the following post-configuration hook:

OS::TripleO::NodeExtraConfigPost
Additional configuration applied to all nodes roles after the core Puppet configuration.

In this example, you first create a basic heat template (/home/stack/templates/nameserver.yaml) that
runs a script to append each node’s resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
Extra hostname configuration

parameters:
servers:
type: json
nameserver_ip:
type: string
Deployldentifier:
type: string

resources.

23

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

CustomExtraConfig:
type: OS::Heat::SoftwareConfig
properties:
group: script
config:
str_replace:
template: |
#!/bin/sh
echo "nameserver NAMESERVER_IP_" >> /etc/resolv.conf
params:
_NAMESERVER_IP_: {get_param: nameserver_ip}

CustomExtraDeployments:
type: OS::Heat::SoftwareDeploymentGroup
properties:
servers: {get_param: servers}
config: {get_resource: CustomExtraConfig}
actions: [CREATE','UPDATE]
input_values:
deploy_identifier: {get_param: Deployldentifier}

In this example, the resources section contains the following:

CustomExtraConfig

This defines a software configuration. In this example, we define a Bash script and Heat replaces
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeployments

This executes a software configuration, which is the software configuration from the
CustomExtraConfig resource. Note the following:

® The config parameter makes a reference to the CustomExtraConfig resource so Heat
knows what configuration to apply.

® The servers parameter retrieves a map of the Overcloud nodes. This parameter is provided
by the parent template and is mandatory in templates for this hook.

® The actions parameter defines when to apply the configuration. In this case, we only apply
the configuration when the Overcloud is created. Possible actions include CREATE,
UPDATE, DELETE, SUSPEND, and RESUME.

® input_values contains a parameter called deploy_identifier, which stores the
Deployldentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update. This ensures the resource reapplies on subsequent
overcloud updates.

Next, create an environment file (/home/stack/templates/post_config.yaml) that registers your heat
template as the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
OS::TripleO::NodeExtraConfigPost: /home/stack/templates/nameserver.yaml

parameter_defaults:
nameserver_ip: 192.168.1.1

24

CHAPTER 4. CONFIGURATION HOOKS

To apply the configuration, add the environment file to the stack along with your other environment files
when creating or updating the Overcloud. For example:

$ openstack overcloud deploy --templates \

-e /home/stack/templates/post_config.yaml \

This applies the configuration to all nodes after the core configuration completes on either initial
Overcloud creation or subsequent updates.

IMPORTANT

You can only register the OS::TripleO::NodeExtraConfigPost to only one Heat
template. Subsequent usage overrides the Heat template to use.

4.5. PUPPET: CUSTOMIZING HIERADATA FOR ROLES

The Heat template collection contains a set of parameters to pass extra configuration to certain node
types. These parameters save the configuration as hieradata for the node’s Puppet configuration.
These parameters are:

ControllerExtraConfig

Configuration to add to all Controller nodes.
NovaComputeExtraConfig

Configuration to add to all Compute nodes.
BlockStorageExtraConfig

Configuration to add to all Block Storage nodes.
ObjectStorageExtraConfig

Configuration to add to all Object Storage nodes
CephStorageExtraConfig

Configuration to add to all Ceph Storage nodes
[ROLE]ExtraConfig

Configuration to add to a composable role. Replace [ROLE] with the composable role name.
ExtraConfig

Configuration to add to all nodes.

To add extra configuration to the post-deployment configuration process, create an environment file
that contains these parameters in the parameter_defaults section. For example, to increase the
reserved memory for Compute hosts to 1024 MB and set the VNC keymap to Japanese:

parameter_defaults:
NovaComputeExtraConfig:
nova::compute::reserved_host_memory: 1024
nova::compute::vnc_keymap: ja

Include this environment file when running openstack overcloud deploy.

25

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

IMPORTANT

You can only define each parameter once. Subsequent usage overrides previous values.

4.6. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES

You can set Puppet hieradata for individual nodes using the Heat template collection. To accomplish
this, you need to acquire the system UUID saved as part of the introspection data for a node:

$ openstack baremetal introspection data save 9dcc87ae-4c6d-4ede-81a5-9b20d7dc4al4 | jq
.extra.system.product.uuid

This outputs a system UUID. For example:

I "F5055C6C-477F-47FB-AFE5-95C6928C407F"

Use this system UUID in an environment file that defines node-specific hieradata and registers the
per_node.yaml template to a pre-configuration hook. For example:

resource_registry:

OS::TripleO::ComputeExtraConfigPre: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/pre_deploy/per_node.yaml
parameter_defaults:

NodeDatalLookup: '{"F5055C6C-477F-47FB-AFE5-95C6928C407F":
{"nova::compute::vcpu_pin_set": ["2", "3"]}}'

Include this environment file when running openstack overcloud deploy.

The per_node.yaml template generates a set of heiradata files on nodes that correspond to each
system UUID and contains the hieradata you defined. If a UUID is not defined, the resulting hieradata file
is empty. In the previous example, the per_node.yaml template runs on all Compute nodes (as per the
OS::TripleO::ComputeExtraConfigPre hook), but only the Compute node with system UUID
F5055C6C-477F-47FB-AFE5-95C6928C407F receives hieradata.

This provides a method of tailoring each node to specific requirements.

4.7. PUPPET: APPLYING CUSTOM MANIFESTS

In certain circumstances, you might need to install and configure some additional components to your
Overcloud nodes. You can achieve this with a custom Puppet manifest that applies to nodes on after the
main configuration completes. As a basic example, you might intend to install motd to each node. The
process for accomplishing is to first create a Heat template
(/home/stack/templates/custom_puppet_config.yaml) that launches Puppet configuration.

heat_template_version: 2014-10-16

description: >
Run Puppet extra configuration to set new MOTD

parameters:
servers:

type: json

resources.

26

CHAPTER 4. CONFIGURATION HOOKS

ExtraPuppetConfig:
type: OS::Heat::SoftwareConfig
properties:
config: {get_file: motd.pp}
group: puppet
options:
enable_hiera: True
enable facter: False

ExtraPuppetDeployments:
type: OS::Heat::SoftwareDeploymentGroup
properties:

config: {get_resource: ExtraPuppetConfig}
servers: {get_param: servers}

This includes the /home/stack/templates/motd.pp within the template and passes it to nodes for
configuration. The motd.pp file itself contains the Puppet classes to install and configure motd.

Next, create an environment file (/home/stack/templates/puppet_post_config.yaml) that registers
your heat template as the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
OS::TripleO::NodeExtraConfigPost: /home/stack/templates/custom_puppet_config.yaml

And finally include this environment file along with your other environment files when creating or
updating the Overcloud stack:

$ openstack overcloud deploy --templates \

-e /home/stack/templates/puppet_post_config.yaml \

This applies the configuration from motd.pp to all nodes in the Overcloud.

27

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

CHAPTER 5. OVERCLOUD REGISTRATION

The Overcloud provides a method to register nodes to either the Red Hat Content Delivery Network, a
Red Hat Satellite 5 server, or a Red Hat Satellite 6 server.

5.1. REGISTERING THE OVERCLOUD WITH AN ENVIRONMENT FILE

Copy the registration files from the Heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration
~/templates/.

Edit the ~/templates/rhel-registration/environment-rhel-registration.yaml and modify the following
values to suit your registration method and details.

rhel_reg_method

Choose the registration method. Either portal, satellite, or disable.
rhel_reg_type

The type of unit to register. Leave blank to register as a system
rhel_reg_auto_attach

Automatically attach compatible subscriptions to this system. Set to true to enable. To disable this
feature, remove this parameter from your environment file.

rhel_reg_service_level
The service level to use for auto attachment.
rhel_reg_release

Use this parameter to set a release version for auto attachment. Leave blank to use the default from
Red Hat Subscription Manager.

rhel_reg_pool_id

The subscription pool ID to use. Use this if not auto-attaching subscriptions. To locate this ID, run
sudo subscription-manager list --available --all --matches="*OpenStack*" from the undercloud
node, and use the resulting Pool ID value.

rhel_reg_sat_url

The base URL of the Satellite server to register Overcloud nodes. Use the Satellite's HTTP URL and
not the HTTPS URL for this parameter. For example, use http://satellite.example.com and not
https://satellite.example.com. The Overcloud creation process uses this URL to determine whether
the server is a Red Hat Satellite 5 or Red Hat Satellite 6 server. If a Red Hat Satellite 6 server, the
Overcloud obtains the katello-ca-consumer-latest.noarch.rpm file, registers with subscription-
manager, and installs katello-agent. If a Red Hat Satellite 5 server, the Overcloud obtains the RHN-
ORG-TRUSTED-SSL-CERT file and registers with rhnreg_ks.

rhel_reg_server_url

The hostname of the subscription service to use. The default is for Customer Portal Subscription
Management, subscription.rhn.redhat.com. If this option is not used, the system is registered with
Customer Portal Subscription Management. The subscription server URL uses the form of
https://hostname:port/prefix.

rhel_reg_base_url

Gives the hostname of the content delivery server to use to receive updates. The default is
https://cdn.redhat.com. Since Satellite 6 hosts its own content, the URL must be used for systems
registered with Satellite 6. The base URL for content uses the form of https://hostname:port/prefix.

28

http://satellite.example.com
https://satellite.example.com
https://cdn.redhat.com

CHAPTER 5. OVERCLOUD REGISTRATION

rhel_reg_org

The organization to use for registration. To locate this ID, run sudo subscription-manager orgs
from the undercloud node. Enter your Red Hat credentials when prompted, and use the resulting
Key value.

rhel_reg_environment

The environment to use within the chosen organization.
rhel_reg_repos

A comma-separated list of repositories to enable.
rhel_reg_activation_key

The activation key to use for registration.
rhel_reg_user; rhel_reg_password

The username and password for registration. If possible, use activation keys for registration.
rhel_reg_machine_name

The machine name. Leave this as blank to use the hostname of the node.
rhel_reg_force

Set to true to force your registration options. For example, when re-registering nodes.
rhel_reg_sat_repo

The repository containing Red Hat Satellite 6's management tools, such as katello-agent. Check the
correct repository name corresponds to your Red Hat Satellite version and check that the repository
is synchronized on the Satellite server. For example, rhel-7-server-satellite-tools-6.2-rpms
corresponds to Red Hat Satellite 6.2.

The deployment command (openstack overcloud deploy) uses the -e option to add environment files.
Add both ~/templates/rhel-registration/environment-rhel-registration.yaml and ~/templates/rhel-
registration/rhel-registration-resource-registry.yaml. For example:

$ openstack overcloud deploy --templates [...] -e /home/stack/templates/rhel-
registration/environment-rhel-registration.yaml -e /home/stack/templates/rhel-registration/rhel-
registration-resource-registry.yaml

IMPORTANT
Registration is set as the OS::TripleO::NodeExtraConfig Heat resource. This means you

can only use this resource for registration. See Section 4.2, "Pre-Configuration:
Customizing Specific Overcloud Roles” for more information.

5.2. EXAMPLE 1: REGISTERING TO THE CUSTOMER PORTAL

The following registers the overcloud nodes to the Red Hat Customer Portal using the my-openstack
activation key and subscribes to pool 1a85f9223e3d5e43013e3d6e8ff506fd.

parameter_defaults:

rhel_reg_auto_attach: ™

rhel_reg_activation_key: "my-openstack”

rhel_reg_org: "1234567"

rhel_reg_pool_id: "1a85f9223e3d5e43013e3d6e8ff506fd"

rhel_reg_repos: "rhel-7-server-rpms,rhel-7-server-extras-rpms,rhel-7-server-rh-common-rpms,rhel-
ha-for-rhel-7-server-rpms,rhel-7-server-openstack-10-rpms,rhel-7-server-rhceph-2-osd-rpms,rhel-7-
server-rhceph-2-mon-rpms,rhel-7-server-rhceph-2-tools-rpms”

29

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

rhel_reg_method: "portal”
rhel_reg_sat_repo: ™
rhel_reg_base url: "
rhel_reg_environment: ™"
rhel_reg_force: ™
rhel_reg_machine_name: "
rhel_reg_password: "
rhel_reg_release: "7.7"
rhel_reg_sat_url: ™
rhel_reg_server_ur
rhel_reg_service_level: ™
rhel_reg_user: ™"

rhel_reg_type: "
rhel_reg_http_proxy_host: ™
rhel_reg_http_proxy_port: ™"
rhel_reg_http_proxy_username:
rhel_reg_http_proxy_password: "

5.3. EXAMPLE 2: REGISTERING TO A RED HAT SATELLITE 6 SERVER

The following registers the overcloud nodes to a Red Hat Satellite 6 Server at sat6.example.com and
uses the my-openstack activation key to subscribe to pool 1a85f9223e3d5e43013e3d6e8ff506fd. In
this situation, the activation key also provides the repositories to enable.

parameter_defaults:
rhel_reg_activation_key: "my-openstack”
rhel_reg_org: "1"
rhel_reg_pool_id: "1a85f9223e3d5e43013e3d6e8ff506fd"
rhel_reg_method: "satellite”
rhel_reg_sat_url: "http://sat6.example.com”
rhel_reg_sat_repo: "rhel-7-server-satellite-tools-6.2-rpms”
rhel_reg_repos: "
rhel_reg_auto_attach: ™
rhel_reg_base url: "
rhel_reg_environment:
rhel_reg_force: ™
rhel_reg_machine_name: "
rhel_reg_password: "
rhel_reg_release: "7.7"
rhel_reg_server_url: ™
rhel_reg_service_level: "
rhel_reg_user: ™"
rhel_reg_type:
rhel_reg_http_proxy_host: "
rhel_reg_http_proxy_port: ™"
rhel_reg_http_proxy_username:
rhel_reg_http_proxy_password: "

5.4. EXAMPLE 3: REGISTERING TO A RED HAT SATELLITE 5 SERVER

The following registers the overcloud nodes to a Red Hat Satellite 5 Server at sat5.example.com, uses
the my-openstack activation key, and automatically attaches subscriptions. In this situation, the
activation key also provides the repositories to enable.

30

parameter_defaults:
rhel_reg_auto_attach: ™
rhel_reg_activation_key: "my-openstack”
rhel_reg_org: "1"
rhel_reg_method: "satellite”
rhel_reg_sat_url: "http://sat5.example.com”
rhel_reg_repos: "
rhel_reg_base url: "
rhel_reg_environment: ™
rhel_reg_force: ™
rhel_reg_machine_name: "
rhel_reg_password: "
rhel_reg_pool_id: ™"
rhel_reg_release: "7.7"
rhel_reg_server_url: ™
rhel_reg_service_level: ™
rhel_reg_user: ™"
rhel_reg_type: "
rhel_reg_sat_repo: ™
rhel_reg_http_proxy_host: ™
rhel_reg_http_proxy_port: ™"
rhel_reg_http_proxy_username: "
rhel_reg_http_proxy_password: "

CHAPTER 5. OVERCLOUD REGISTRATION

31

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

The Overcloud usually consists of nodes in predefined roles such as Controller nodes, Compute nodes,
and different storage node types. Each of these default roles contains a set of services defined in the
core Heat template collection on the director node. However, the architecture of the core Heat
templates provides a method to:

® Create custom roles
e Add and remove services from each role

This chapter explores the architecture of custom roles, composable services, and methods for using
them.

Guidelines and Limitations

Note the following guidelines and limitations for the composable node architecture:
® You can assign any systemd managed service to a supported standalone custom role.

® You cannot split Pacemaker-managed services. This is because the Pacemaker manages the
same set of services on each node within the Overcloud cluster. Splitting Pacemaker-managed
services can cause cluster deployment errors. These services should remain on the Controller
role.

® You cannot change to custom roles and composable services during the upgrade process from
Red Hat OpenStack Platform 9 to 10. The upgrade scripts can only accommodate the default
Overcloud roles.

® You can create additional custom roles after the initial deployment and deploy them to scale
existing services.

® You cannot modify the list of services for any role after deploying an Overcloud. Modifying the
service lists after Overcloud deployment can cause deployment errors and leave orphaned
services on nodes.

Supported Custom Role Architecture

Custom roles and composable services are new features in Red Hat OpenStack Platform 10 and only a
limited number of composable service combinations have been tested and verified at this early stage.
Red Hat supports the following architectures when using custom roles and composable services:

Architecture 1- Monolithic Controller

All controller services are contained within one Controller role. This is the default. See Section 6.8,
“Service Architecture: Monolithic Controller” for more details.

Architecture 2 - Split Controller

The controller services are split into two roles:

® Controller PCMK - Core Pacemaker-managed services such as database and load balancing
e Controller Systemd - 'systemd”-managed OpenStack Platform services

See Section 6.9, “Service Architecture: Split Controller” for more details.

Architecture 3 - Standalone roles

32

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

Use Architecture 1or Architecture 2, except split the OpenStack Platform services into custom roles.
See Section 6.10, “Service Architecture: Standalone Roles” for more details.

6.1. EXAMINING CUSTOM ROLE ARCHITECTURE

The Overcloud creation process defines its roles using a template that contains role data. The default
template is located at /usr/share/openstack-tripleo-heat-templates/roles_data.yaml and defines all
the default role types: Controller, Compute, BlockStorage, ObjectStorage, and CephStorage.

IMPORTANT

If creating a custom roles_data.yaml file, the Controller role must always be the first role
defined. This role is treated as the primary role.

Each role contains the following parameters:

name

(Mandatory) The name of the role, which is a plain text name with no spaces or special characters.
Check that the chosen name does not cause conflicts with other resources. For example, use
Networker as a name instead of Network. For recommendations on role names, see Section 6.9,
“Service Architecture: Split Controller” for examples.

CountDefault
(Optional) Defines the default number of nodes to deploy for this role.
HostnameFormatDefault

(Optional) Defines the default hostname format for the role. The default naming convention uses
the following format:

I [STACK NAME]-[ROLE NAME]-[NODE ID]

For example, the default Controller nodes are named:

overcloud-controller-0
overcloud-controller-1
overcloud-controller-2

ServicesDefault

(Optional) Defines the default list of services to include on the node. See Section 6.2, "Examining
Composable Service Architecture” for more information.

These options provide a means to create new roles and also define which services to include.

The openstack overcloud deploy command integrates the parameters from roles_data.yaml file into
the overcloud.j2.yaml Heat template. At certain points, the overcloud.j2.yaml Heat template iterates
over the list of roles from roles_data.yaml and creates parameters and resources specific to each

respective role.

For example, the resource definition for each role in the overcloud.j2.yaml Heat template appears as
the following snippet:

{{role.name}}:
type: OS::Heat::ResourceGroup

33

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

depends_on: Networks
properties:
count: {get_param: {{role.name}}Count}
removal_policies: {get_param: {{role.name}}RemovalPolicies}
resource_def:
type: OS::TripleO::{{role.name}}
properties:
CloudDomain: {get_param: CloudDomain}
ServiceNetMap: {get_attr: [ServiceNetMap, service_net_map]}
EndpointMap: {get_attr: [EndpointMap, endpoint_map]}

This snippet shows how the Jinja2-based template incorporates the {{role.name}} variable to define
the name of each role as a OS::Heat::ResourceGroup resource. This in turn uses each hame parameter
from roles_data.yaml to name each respective OS::Heat::ResourceGroup resource.

6.2. EXAMINING COMPOSABLE SERVICE ARCHITECTURE

The core Heat template collection contains a collection of composable service templates in the
puppet/services subdirectory. You can view these services with the following command:

I $ Is /usr/share/openstack-tripleo-heat-templates/puppet/services

Each service template contains a description that identifies its purpose. For example, the
keystone.yaml service template contains the following description:

description: >
OpenStack Identity (‘keystone’) service configured with Puppet

These service templates are registered as resources specific to a Red Hat OpenStack Platform
deployment. This means you can call each resource using a unique Heat resource namespace defined in
the overcloud-resource-registry-puppet.j2.yaml file. All services use the OS::TripleO::Services
namespace for their resource type. For example, the keystone.yaml service template is registered to
the OS::TripleO::Services::Keystone resource type:

grep "OS::TripleO::Services::Keystone" /usr/share/openstack-tripleo-heat-templates/overcloud-
resource-registry-puppet.j2.yaml
OS::TripleO::Services::Keystone: puppet/services/keystone.yaml

The overcloud.j2.yaml Heat template includes a section of Jinja2-based code to define a service list
for each custom role in the roles_data.yaml file:

{{role.name}}Services:
description: A list of service resources (configured in the Heat
resource_registry) which represent nested stacks
for each service that should get installed on the {{role.name}} role.
type: comma_delimited_list
default: {{role.ServicesDefault|default([])}}

For the default roles, this creates the following service list parameters: ControllerServices,
ComputeServices, BlockStorageServices, ObjectStorageServices, and CephStorageServices.

You define the default services for each custom role in the roles_data.yaml file. For example, the
default Controller role contains the following content:

34

- name: Controller
CountDefault: 1
ServicesDefault:

- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:

TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::
:TripleO::
:TripleO::
TripleO::
TripleO::

Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:

:CACerts
:CephMon
:CephExternal
:CephRgw
:CinderApi
:CinderBackup
:CinderScheduler
:CinderVolume
:Core

:Kernel
:Keystone
:GlanceApi
:GlanceRegistry

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

These services are then defined as the default list for the ControllerServices parameter.

You can also use an environment file to override the default list for the service parameters. For example,
you can define ControllerServices as a parameter_default in an environment file to override the
services list from the roles_data.yaml file.

6.3. ENABLING DISABLED SERVICES

Some services are disabled by default. These services are registered as null operations
(OS::Heat::None) in the overcloud-resource-registry-puppet.j2.yaml file. For example, the Block
Storage backup service (cinder-backup) is disabled:

I OS::TripleO::Services::CinderBackup: OS::Heat::None

To enable this service, include an environment file that links the resource to its respective Heat
templates in the puppet/services directory. Some services have predefined environment files in the
environments directory. For example, the Block Storage backup service uses the
environments/cinder-backup.yaml file, which contains the following:

resource_registry:
OS::TripleO::Services::CinderBackup: ../puppet/services/pacemaker/cinder-backup.yaml

This overrides the default null operation resource and enables the service. Include this environment file
when running the openstack overcloud deploy command.

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/cinder-backup.yaml

TIP
For another example of how to enable disabled services, see the Installation section of the OpenStack

Data Processing guide. This section contains instructions on how to enable the OpenStack Data
Processing service (sahara) on the overcloud.

35

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/openstack_data_processing/index#install
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/openstack_data_processing/index

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

6.4. ADDING AND REMOVING SERVICES FROM ROLES

The basic method of adding or removing services involves creating a copy of the default service list for a
node role and then adding or removing services. For example, you might aim to remove OpenStack
Orchestration (heat) from the Controller nodes. In this situation, create a custom copy of the default
roles_data.yaml file:

$ cp /usr/share/openstack-tripleo-heat-templates/roles_data.yaml ~/templates/roles_data-
no_heat.yaml

Edit the roles_data file and modify the service list for the Controller's ServicesDefault parameter.
Scroll to the OpenStack Orchestration services and remove them:

- OS::TripleO::Services::GlanceApi

- OS::TripleO::Services::GlanceRegistry

- OS::TripleO::Services::HeatApi # Remove this service

- OS::TripleO::Services::HeatApiCfn # Remove this service

- OS::TripleO::Services::HeatApiCloudwatch # Remove this service
- OS::TripleO::Services::HeatEngine # Remove this service

- OS::TripleO::Services::MySQL

- OS::TripleO::Services::NeutronDhcpAgent

Include this new roles_data file when running the openstack overcloud deploy command. For
example:

I $ openstack overcloud deploy --templates -r ~/templates/roles_data-no_heat.yaml

This deploys an Overcloud without OpenStack Orchestration services installed on the Controller nodes.

NOTE

You can also disable services in the roles_data file using a custom environment file.
Redirect the services to disable to the OS::Heat::None resource. For example:

resource_registry:
OS::TripleO::Services::HeatApi: OS::Heat::None
OS::TripleO::Services::HeatApiCfn: OS::Heat::None
OS::TripleO::Services::HeatApiCloudwatch: OS::Heat::None
OS::TripleO::Services::HeatEngine: OS::Heat::None

6.5. CREATING A NEW ROLE

In this example, the aim is to create a new Networker role to host OpenStack Networking (neutron)
agents only. In this situation, you create a custom roles_data files that includes the new role information.

Create a custom copy of the default roles_data.yaml file:

$ cp /usr/share/openstack-tripleo-heat-templates/roles_data.yaml ~/templates/roles_data-
network_node.yaml

Edit the new roles_data file and create a new Networker role containing base and core OpenStack
Networking services. For example:

36

- name: Networker
CountDefault: 1

HostnameFormatDefault:

ServicesDefault:

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

:TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::
:TripleO::
TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::
TripleO::
TripleO::

Services:
Services::
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

'Y%stackname%-networker-%index%'

:CACerts

FluentdClient

:Kernel
:NeutronDhcpAgent
:NeutronL3Agent
:NeutronMetadataAgent
:NeutronOvsAgent
:Ntp

:SensuClient

:Snmp

:Timezone
:TripleoPackages
:TripleoFirewall
:VipHosts

Itis also a good idea to set the CountDefault to 1 so that a default Overcloud always includes the
Networking node.

If scaling the services in an existing overcloud, keep the existing services on the Controller role. If
creating a new overcloud and you only want the OpenStack Networking agents to remain on the
standalone role, remove the OpenStack Networking agents from the Controller role definition:

- name: Controller
CountDefault: 1
ServicesDefault:

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

:TripleO::
:TripleO::
:TripleO::
TripleO::
:TripleO::
TripleO::
:TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::
:TripleO::
TripleO::
:TripleO::
:TripleO::
TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::

Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services::

:CACerts

:CephMon
:CephExternal
:CephRgw
:CinderApi
:CinderBackup
:CinderScheduler
:CinderVolume
:Core

:Kernel

:Keystone
:GlanceApi
:GlanceRegistry
‘HeatApi
:HeatApiCfn
‘HeatApiCloudwatch
:HeatEngine
:MySQL
:NeutronDhcpAgent
:NeutronL3Agent
:NeutronMetadataAgent # Remove this service
:NeutronApi
:NeutronCorePlugin
:NeutronOvsAgent

Remove this service
Remove this service

Remove this service
RabbitMQ

37

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

You might need to define a new flavor for this role so that you can tag specific nodes. For this example,
use the following commands to create a networker flavor:

$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 networker
$ openstack flavor set --property "cpu_arch"="x86_64" --property "capabilities:boot_option"="local" --
property "capabilities:profile"="networker" networker

Tag nodes into the new flavor using the following command:

$ openstack baremetal node set --property capabilities="profile:networker,boot_option:local'
58c3d07e-24f2-48a7-bbb6-6843f0e8ee13

Define the Networker node count and flavor using the following environment file snippet:

parameter_defaults:
OvercloudNetworkerFlavor: networker
NetworkerCount: 1

Include the new roles_data file and environment file when running the openstack overcloud deploy
command. For example:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-network_node.yaml -e
~/templates/node-count-flavor.yaml

When the deployment completes, this creates a three-node Overcloud consisting of one Controller
node, one Compute node, and one Networker node. To view the Overcloud’s list of nodes, run the
following command:

I $ nova list

6.6. CREATING A GENERIC NODE WITH NO SERVICES

Red Hat OpenStack Platform provides the ability to create generic Red Hat Enterprise Linux 7 nodes
without any OpenStack services configured. This is useful in situations where you need to host software
outside of the core Red Hat OpenStack Platform environment. For example, OpenStack Platform
provides integration with monitoring tools such as Kibana and Sensu (see Chapter 12, Monitoring Tools
Configuration). While Red Hat does not provide support for the monitoring tools themselves, the
director can create a generic Red Hat Enterprise Linux 7 node to host these tools.

NOTE

The generic node still uses the base overcloud-full image rather than a base Red Hat
Enterprise Linux 7 image. This means the node has some Red Hat OpenStack Platform
software installed but not enabled or configured.

Creating a generic node requires a new role without a ServicesDefault list:

I - name: Generic

Include the role in your custom roles_data file (roles_data_with_generic.yaml). Make sure to keep the
existing Controller and Compute roles.

38

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

You can also include an environment file (generic-node-params.yaml) to specify how many generic
Red Hat Enterprise Linux 7 nodes you require and the flavor when selecting nodes to provision. For
example:

parameter_defaults:
OvercloudGenericFlavor: baremetal
GenericCount: 1

Include both the roles file and the environment file when running the openstack overcloud deploy
command. For example:

$ openstack overcloud deploy --templates -r ~/templates/roles_data_with_generic.yaml -e
~/templates/generic-node-params.yaml

This deploys a three-node environment with one Controller node, one Compute node, and one generic

Red Hat Enterprise Linux 7 node.

6.7. CREATING HYPER-CONVERGED COMPUTE AND CEPH SERVICES

IMPORTANT

Hyper-Converged Compute and Ceph Services are a Technology Preview feature.
Technology Preview features are not fully supported under Red Hat Subscription Service
Level Agreements (SLAs), may not be functionally complete, and are not intended for
production use. However, these features provide early access to upcoming product
innovations, enabling customers to test functionality and provide feedback during the
development process. For more information on the support scope for features marked as
technology previews, see https://access.redhat.com/support/offerings/techpreview/.

Ceph OSD services normally run on their own Ceph Storage nodes. However, the composable services
provides a method to configure the Ceph OSD services on Compute nodes instead.

For example, the default service list for each role includes the following:

Compute nodes:

- name: Compute
CountDefault: 1
HostnameFormatDefault: 'Yostackname%-novacompute-%index%'
ServicesDefault:

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

:TripleO::
:TripleO::
:TripleO::
:TripleO::
:TripleO::
:TripleO::
TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::
TripleO::
TripleO::
:TripleO::

Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:

:CACerts

:CephClient

:CephExternal

:Timezone

:Ntp

:Snmp

:NovaCompute

:NovalLibvirt

:Kernel
:ComputeNeutronCorePlugin
:ComputeNeutronOvsAgent
:ComputeCeilometerAgent
:ComputeNeutronL3Agent
:ComputeNeutronMetadataAgent

39

https://access.redhat.com/support/offerings/techpreview/

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

:Services:
:Services:
:Services:
:Services:
:Services:
:Services::
:Services:

Ceph Storage nodes:

- name: CephStorage
ServicesDefault:

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services::
:Services:

:TripleoPackages
:TripleoFirewall
:NeutronSriovAgent
:OpenDaylightOvs
:SensuClient

FluentdClient

:VipHosts

:CACerts
:CephOSD
:Kernel

:Ntp

:Timezone
:TripleoPackages
:TripleoFirewall
:SensuClient

FluentdClient

:VipHosts

The Ceph Storage role contain services common to the Compute role, which means you can ignore
them. One service remains: OS::TripleO::Services::CephOSD.

Create a custom version of the default roles_data file:

$ cp /usr/share/openstack-tripleo-heat-templates/roles_data.yaml ~/templates/roles_data-
ceph_osd_on_compute.yaml

Edit the file to add OS::TripleO::Services::CephOSD to the Compute's service list:

- name: Compute

CountDefault: 1

HostnameFormatDefault:
ServicesDefault:

- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:

40

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::

'Yostackname%%-novacompute-%index%'

CACerts

CephClient

CephOSD

Timezone

Ntp

Snmp

NovaCompute

NovalLibvirt

Kernel
ComputeNeutronCorePlugin
ComputeNeutronOvsAgent
ComputeCeilometerAgent
ComputeNeutronL3Agent
ComputeNeutronMetadataAgent
TripleoPackages
TripleoFirewall
NeutronSriovAgent
OpenDaylightOvs

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

- OS::TripleO::Services::SensuClient
- OS::TripleO::Services::FluentdClient
- OS::TripleO::Services::VipHosts

You can also safely remove the OS::TripleO::Services::CephExternal service from the Compute
service list because the Overcloud does not integrate with an external Ceph Storage cluster.

Include this role file when running the openstack overcloud deploy command. For example:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-ceph_osd_on_compute.yaml -e
~/template/storage-environment.yaml

Note that this command also includes a custom environment file for storage (storage-
environment.yaml), which contains parameters specific to the Ceph Storage.

After the Overcloud deployment, verify the Ceph OSD installation on a Compute node. Loginto a
Compute node and run the following:

[root@overcloud-novacompute-0 ~]# ps ax | grep ceph

17437 ? Ss 0:00 /bin/bash -c ulimit -n 32768; /usr/bin/ceph-osd -i 0 --pid-file
/var/run/ceph/osd.0.pid -c /etc/ceph/ceph.conf --cluster ceph -f

17438 ? Sl 0:00 /usr/bin/ceph-osd -i 0 --pid-file /var/run/ceph/osd.0.pid -c /etc/ceph/ceph.conf --
cluster ceph -f

6.8. SERVICE ARCHITECTURE: MONOLITHIC CONTROLLER

The default architecture for composable services uses a monolithic Controller that contains the core
Red Hat OpenStack Platform Services. These default services are defined in the roles file included with
the director’s Heat template collection (/usr/share/openstack-tripleo-heat-
templates/roles_data.yaml).

IMPORTANT

Some services are disabled by default. See Section 6.3, “Enabling Disabled Services” for
information on how to enable these services.

- name: Controller
ServicesDefault:

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

:TripleO::
TripleO::
TripleO::
:TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::
:TripleO::
:TripleO::

Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:

:Apache

:AodhApi
:AodhEvaluator
:AodhListener
:AodhNotifier

:CACerts
:CeilometerAgentCentral
:CeilometerAgentNotification
:CeilometerApi
:CeilometerCollector
:CeilometerExpirer
:CephClient
:CephExternal
:CephMon

:CephRgw

41

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

- OS::TripleO::Services::CinderApi

- OS::TripleO::Services::CinderBackup

- OS::TripleO::Services::CinderScheduler

- OS::TripleO::Services::CinderVolume

- OS::TripleO::Services::FluentdClient

- OS::TripleO::Services::GlanceApi

- OS::TripleO::Services::GlanceRegistry

- OS::TripleO::Services::GnocchiApi

- OS::TripleO::Services::GnocchiMetricd

- OS::TripleO::Services::GnocchiStatsd

- OS::TripleO::Services::HAproxy

- OS::TripleO::Services::HeatApi

- OS::TripleO::Services::HeatApiCfn

- OS::TripleO::Services::HeatApiCloudwatch

- OS::TripleO::Services::HeatEngine

- OS::TripleO::Services::Horizon

- OS::TripleO::Services::lronicApi

- OS::TripleO::Services::lronicConductor

- OS::TripleO::Services::Kernel

- OS::TripleO::Services::Keepalived

- OS::TripleO::Services::Keystone

- OS::TripleO::Services::ManilaApi

- OS::TripleO::Services::ManilaBackendCephFs
- OS::TripleO::Services::ManilaBackendGeneric
- OS::TripleO::Services::ManilaBackendNetapp
- OS::TripleO::Services::ManilaScheduler

- OS::TripleO::Services::ManilaShare

- OS::TripleO::Services::Memcached

- OS::TripleO::Services::MongoDb

- OS::TripleO::Services::MySQL

- OS::TripleO::Services::NeutronApi

- OS::TripleO::Services::NeutronCorePlugin

- OS::TripleO::Services::NeutronCorePluginML20VN
- OS::TripleO::Services::NeutronCorePluginMidonet
- OS::TripleO::Services::NeutronCorePluginNuage
- OS::TripleO::Services::NeutronCorePluginOpencontrail
- OS::TripleO::Services::NeutronCorePluginPlumgrid
- OS::TripleO::Services::NeutronDhcpAgent

- OS::TripleO::Services::NeutronL3Agent

- OS::TripleO::Services::NeutronMetadataAgent
- OS::TripleO::Services::NeutronOvsAgent

- OS::TripleO::Services::NovaApi

- OS::TripleO::Services::NovaConductor

- OS::TripleO::Services::NovaConsoleauth

- OS::TripleO::Services::Novalronic

- OS::TripleO::Services::NovaScheduler

- OS::TripleO::Services::NovaVncProxy

- OS::TripleO::Services::Ntp

- OS::TripleO::Services::OpenDaylightApi

- OS::TripleO::Services::OpenDaylightOvs

- OS::TripleO::Services::Pacemaker

- OS::TripleO::Services::RabbitMQ

- OS::TripleO::Services::Redis

- OS::TripleO::Services::SaharaApi

- OS::TripleO::Services::SaharaEngine

- OS::TripleO::Services::SensuClient

42

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

TripleO::
TripleO::
TripleO::
TripleO::
:TripleO::
:TripleO::
TripleO::
:TripleO::

Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

:Sshd

:Snmp
:SwiftProxy
:SwiftRingBuilder
:Timezone
:TripleoFirewall
:TripleoPackages
:VipHosts

6.9. SERVICE ARCHITECTURE: SPLIT CONTROLLER
You can split the services on the Controller nodes into two separate roles:

® Controller PCMK - Contains only the core services that Pacemaker manages including
database and load balancing

® Controller systemd - Contains all OpenStack services

The remaining default roles (Compute, Ceph Storage, Object Storage, Block Storage) remain
unaffected.

Use the following tables as a guide to creating a split controller architecture.

IMPORTANT

Some services are disabled by default. See Section 6.3, “Enabling Disabled Services” for
information on how to enable these services.

Controller PCMK

The following services are the minimum services required for the Controller PCMK role.

- name: Controller
ServicesDefault:

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

:TripleO::
:TripleO::
:TripleO::
TripleO::
:TripleO::
TripleO::
:TripleO::
TripleO::
:TripleO::
:TripleO::
TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::

Services:
Services::
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:

:CACerts

FluentdClient

:Kernel

:Ntp

:SensuClient

:Sshd

:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages
:VipHosts

:CephClient
:CephExternal
:CinderBackup
:CinderVolume
:HAproxy

:Keepalived
:ManilaBackendGeneric
:ManilaBackendNetapp
:ManilaBackendCephFs
:ManilaShare

43

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

- OS::TripleO::Services::Memcached
- OS::TripleO::Services::MySQL

- OS::TripleO::Services::Pacemaker
- OS::TripleO::Services::RabbitMQ

- OS::TripleO::Services::Redis

Controller systemd

The following table represents the services available on the Controller systemd role:

- name: ControllerSystemd
ServicesDefault:
- OS::TripleO::Services::Apache
- OS::TripleO::Services::AodhApi
- OS::TripleO::Services::AodhEvaluator
- OS::TripleO::Services::AodhListener
- OS::TripleO::Services::AodhNotifier
- OS::TripleO::Services::CACerts
- OS::TripleO::Services::CeilometerAgentCentral
- OS::TripleO::Services::CeilometerAgentNotification
- OS::TripleO::Services::CeilometerApi
- OS::TripleO::Services::CeilometerCollector
- OS::TripleO::Services::CeilometerExpirer
- OS::TripleO::Services::CephClient
- OS::TripleO::Services::CephExternal
- OS::TripleO::Services::CephMon
- OS::TripleO::Services::CephRgw
- OS::TripleO::Services::CinderApi
- OS::TripleO::Services::CinderScheduler
- OS::TripleO::Services::FluentdClient
- OS::TripleO::Services::GlanceApi
- OS::TripleO::Services::GlanceRegistry
- OS::TripleO::Services::GnocchiApi
- OS::TripleO::Services::GnocchiMetricd
- OS::TripleO::Services::GnocchiStatsd
- OS::TripleO::Services::HeatApi
- OS::TripleO::Services::HeatApiCfn
- OS::TripleO::Services::HeatApiCloudwatch
- OS::TripleO::Services::HeatEngine
- OS::TripleO::Services::Horizon
- OS::TripleO::Services::lronicApi
- OS::TripleO::Services::lronicConductor
- OS::TripleO::Services::Kernel
- OS::TripleO::Services::Keystone
- OS::TripleO::Services::ManilaApi
- OS::TripleO::Services::ManilaScheduler
- OS::TripleO::Services::MongoDb
- OS::TripleO::Services::NeutronApi
- OS::TripleO::Services::NeutronCorePlugin
- OS::TripleO::Services::NeutronCorePluginML20VN
- OS::TripleO::Services::NeutronCorePluginMidonet
- OS::TripleO::Services::NeutronCorePluginNuage
- OS::TripleO::Services::NeutronCorePluginOpencontrail
- OS::TripleO::Services::NeutronCorePluginPlumgrid
- OS::TripleO::Services::NeutronDhcpAgent
- OS::TripleO::Services::NeutronL3Agent

44

- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:

:TripleO::
TripleO::
TripleO::
:TripleO::
:TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::
:TripleO::
TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::

Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

:NeutronMetadataAgent
:NeutronOvsAgent
:NovaApi
:NovaConductor
:NovaConsoleauth
:Novalronic
:NovaScheduler
:NovaVncProxy
:Ntp
:OpenDaylightApi
:OpenDaylightOvs
:SaharaApi
:SaharaEngine
:SensuClient
:Sshd

:Snmp

:SwiftProxy
:SwiftRingBuilder
:Timezone
:TripleoFirewall
:TripleoPackages
:VipHosts

6.10. SERVICE ARCHITECTURE: STANDALONE ROLES

The following tables list the supported custom role collection you can create and scale with the
composable service architecture in Red Hat OpenStack Platform. Group these collections together as

individual roles and use them to isolate and split services in combination with the previous architectures:

® Section 6.8, "Service Architecture: Monolithic Controller”

® Section 6.9, "Service Architecture: Split Controller”

IMPORTANT

Some services are disabled by default. See Section 6.3, “Enabling Disabled Services” for
information on how to enable these services.

Note that all roles use a set of common services, which include:

e OS:

e OS:

e OS:

e OS:

e OS:

e OS:

e OS:

e OS:

:TripleO::
:TripleO::
:TripleO::
:TripleO::
:TripleO::
:TripleO::
:TripleO::

:TripleO::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services:

CACerts

FluentdClient

Kernel

Ntp

SensuClient

Sshd

Snmp

:Timezone

45

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

® OS::TripleO::Services::TripleoFirewall

® OS::TripleO::Services::TripleoPackages

® OS::TripleO::Services::VipHosts

Once you have chosen the roles to include in your overcloud, remove the associated services (except

for the common services) from the main Controller roles. For example, if creating a standalone Keystone
role, remove the OS::TripleO::Services::Apache and OS::TripleO::Services::Keystone services from

the Controller nodes. The only exceptions are the services with limited custom role support (see

Table 6.1, “Custom Roles Support”).

Click on arole in the following table to view the services associated with it.

Table 6.1. Custom Roles Support

Role Support Status

Ceph Storage Monitor

Ceph Storage OSD

Ceph Storage RadosGW

Cinder API

Controller PCMK

Glance

Heat

Horizon

[ronic

Keystone

Manila

Networker

Neutron API

Nova

Nova Compute

46

Supported

Supported

Limited. If spliting, this service needs to be part of a
Controller systemd role.

Supported

Supported

Supported

Supported

Supported

Limited. If spliting, this service needs to be part of a
Controller systemd role.

Supported

Limited. If spliting, this service needs to be part of a
Controller systemd role.

Supported

Supported

Supported

Supported

OpenDaylight

Sahara

Swift API

Swift Storage

Telemetry

Ceph Storage Monitor

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

Role Support Status

Technical Preview

Limited. If spliting, this service needs to be part of a
Controller systemd role.

Supported

Supported

Supported

The following services configure Ceph Storage Monitor.

- name: CephMon
ServicesDefault:

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

:TripleO::
TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::
:TripleO::
TripleO::
:TripleO::
:TripleO::
:TripleO::
TripleO::

Services:
Services::
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:

Ceph Storage OSD

:CACerts

FluentdClient

:Kernel

:Ntp

:SensuClient
:Sshd

:Snmp
:Timezone
:TripleoFirewall
:TripleoPackages
:VipHosts
:CephMon

The following services configure Ceph Storage OSDs.

- name: CephStorage
ServicesDefault:

- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:

:TripleO::
TripleO::
:TripleO::
:TripleO::
:TripleO::
:TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::
:TripleO::
TripleO::

Services:
Services::
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:

Ceph Storage RadosGW

:CACerts

FluentdClient

:Kernel

:Ntp

:SensuClient
:Sshd

:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages
:VipHosts
:CephOSD

47

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

The following services configure Ceph Storage RadosGW. If separating these services, they need to be
part of a Controller systemd role.

- OS::TripleO::Services::CACerts

- OS::TripleO::Services::FluentdClient
- OS::TripleO::Services::Kernel

- OS::TripleO::Services::Ntp

- OS::TripleO::Services::SensuClient

- OS::TripleO::Services::Sshd

- OS::TripleO::Services::Snmp

- OS::TripleO::Services::Timezone

- OS::TripleO::Services::TripleoFirewall
- OS::TripleO::Services::TripleoPackages
- OS::TripleO::Services::VipHosts

- OS::TripleO::Services::CephRgw

- OS::TripleO::Services::CephClient

Cinder API

The following services configure the OpenStack Block Storage API.

- name: CinderApi
ServicesDefault:
- OS::TripleO::Services::CACerts
- OS::TripleO::Services::FluentdClient
- OS::TripleO::Services::Kernel
- OS::TripleO::Services::Ntp
- OS::TripleO::Services::SensuClient
- OS::TripleO::Services::Sshd
- OS::TripleO::Services::Snmp
- OS::TripleO::Services::Timezone
- OS::TripleO::Services::TripleoFirewall
- OS::TripleO::Services::TripleoPackages
- OS::TripleO::Services::VipHosts
- OS::TripleO::Services::CinderApi
- OS::TripleO::Services::CinderScheduler

Controller PCMK

The following services are the minimum services required for the Controller PCMK role.

- name: ControllerPcmk
ServicesDefault:
- OS::TripleO::Services::CACerts
- OS::TripleO::Services::FluentdClient
- OS::TripleO::Services::Kernel
- OS::TripleO::Services::Ntp
- OS::TripleO::Services::SensuClient
- OS::TripleO::Services::Sshd
- OS::TripleO::Services::Snmp
- OS::TripleO::Services::Timezone
- OS::TripleO::Services::TripleoFirewall
- OS::TripleO::Services::TripleoPackages
- OS::TripleO::Services::CephClient
- OS::TripleO::Services::CephExternal

48

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

Glance

The following services configure the OpenStack Image service.

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

- name: Glance
ServicesDefault:

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

Heat

The following services configure the OpenStack Orchestration service.

- name:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

Heat

:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::

:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::

ServicesDefault:

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::
:Services::

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

CinderBackup
CinderVolume
HAproxy

Keepalived
ManilaBackendGeneric
ManilaBackendNetapp
ManilaBackendCephFs
ManilaShare
Memcached

MySQL

Pacemaker

RabbitMQ

Redis

VipHosts

CACerts
FluentdClient
Kernel

Ntp
SensuClient
Sshd

Snmp
Timezone
TripleoFirewall
TripleoPackages
VipHosts
CephClient
CephExternal
GlanceApi
GlanceRegistry

CACerts
FluentdClient
Kernel

Ntp
SensuClient
Sshd

Snmp
Timezone
TripleoFirewall
TripleoPackages
VipHosts
HeatApi

49

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

- OS::TripleO::Services::HeatApiCfn

- OS::TripleO::Services::HeatApiCloudwatch

- OS::TripleO::Services::HeatEngine

Horizon

The following services configure the OpenStack Dashboard.

- name:

Horizon

ServicesDefault:

- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:

Ironic

The following services configure the OpenStack Bare Metal Provisioning service. If separating these
services, they need to be part of a Controller systemd role.

- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:
- OS:

Keystone

TripleO::
TripleO::
:TripleO::
TripleO::
TripleO::
TripleO::
TripleO::
TripleO::
TripleO::
:TripleO::
:TripleO::
:TripleO::
:TripleO::

:TripleO::
:TripleO::
TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::
TripleO::
TripleO::
TripleO::
:TripleO::
:TripleO::
TripleO::
:TripleO::

Services:
Services::
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:

Services:
Services::
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services::
Services::
Services:

:CACerts

FluentdClient

:Kernel

:Ntp
:SensuClient
:Sshd

:Snmp
:Timezone
:TripleoFirewall
:TripleoPackages
:VipHosts
:Apache
:Horizon

:CACerts

FluentdClient

:Kernel

:Ntp
:SensuClient
:Sshd

:Snmp
:Timezone
:TripleoFirewall
:TripleoPackages
:VipHosts

IronicApi

IronicConductor
:Novalronic

The following services configure the OpenStack Identity service. When performing minor updates, make
sure to update this role before updating other services.

- name: Keystone
ServicesDefault:
- OS::TripleO::Services::CACerts
- OS::TripleO::Services::FluentdClient
- OS::TripleO::Services::Kernel
- OS::TripleO::Services::Ntp
- OS::TripleO::Services::SensuClient

50

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

Manila

TripleO::
TripleO::
:TripleO::
:TripleO::
:TripleO::
TripleO::
:TripleO::
:TripleO::

Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:

:Sshd
:Snmp
:Timezone
:TripleoFirewall
:TripleoPackages
:VipHosts
:Apache
:Keystone

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

The following services configure the OpenStack Shared File Systems service. If separating these
services, they need to be part of a Controller systemdrole.

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

TripleO::
TripleO::
TripleO::
TripleO::
:TripleO::
:TripleO::
TripleO::
:TripleO::
:TripleO::
TripleO::
:TripleO::
:TripleO::
:TripleO::

Networker

Services:
Services::
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:

:CACerts
FluentdClient
:Kernel

:Ntp
:SensuClient
:Sshd

:Snmp
:-Timezone
:TripleoFirewall
:TripleoPackages
:VipHosts
:ManilaApi
:ManilaScheduler

The following services configure the OpenStack Networking agents.

- name: Networker
ServicesDefault:

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

TripleO::
TripleO::
TripleO::
TripleO::
TripleO::
:TripleO::
:TripleO::
:TripleO::
:TripleO::
:TripleO::
:TripleO::
:TripleO::
TripleO::
TripleO::
:TripleO::

Neutron API

Services:
Services::
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:
Services:

:CACerts
FluentdClient
:Kernel

:Ntp
:SensuClient
:Sshd

:Snmp
:Timezone
:TripleoFirewall
:TripleoPackages
:VipHosts
:NeutronDhcpAgent
:NeutronL3Agent
:NeutronMetadataAgent
:NeutronOvsAgent

The following services configure the OpenStack Networking API.

- name: NeutronApi
ServicesDefault:

51

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

- OS::TripleO::Services::CACerts

- OS::TripleO::Services::FluentdClient

- OS::TripleO::Services::Kernel

- OS::TripleO::Services::Ntp

- OS::TripleO::Services::SensuClient

- OS::TripleO::Services::Sshd

- OS::TripleO::Services::Snmp

- OS::TripleO::Services::Timezone

- OS::TripleO::Services::TripleoFirewall

- OS::TripleO::Services::TripleoPackages

- OS::TripleO::Services::VipHosts

- OS::TripleO::Services::NeutronApi

- OS::TripleO::Services::NeutronCorePlugin

- OS::TripleO::Services::NeutronCorePluginML20VN
- OS::TripleO::Services::NeutronCorePluginMidonet
- OS::TripleO::Services::NeutronCorePluginNuage

- OS::TripleO::Services::NeutronCorePluginOpencontrail
- OS::TripleO::Services::NeutronCorePluginPlumgrid

Nova

The following services configure the OpenStack Compute services.

- name: Nova
ServicesDefault:
- OS::TripleO::Services::CACerts
- OS::TripleO::Services::FluentdClient
- OS::TripleO::Services::Kernel
- OS::TripleO::Services::Ntp
- OS::TripleO::Services::SensuClient
- OS::TripleO::Services::Sshd
- OS::TripleO::Services::Snmp
- OS::TripleO::Services::Timezone
- OS::TripleO::Services::TripleoFirewall
- OS::TripleO::Services::TripleoPackages
- OS::TripleO::Services::VipHosts
- OS::TripleO::Services::NovaApi
- OS::TripleO::Services::NovaConductor
- OS::TripleO::Services::NovaConsoleauth
- OS::TripleO::Services::NovaScheduler
- OS::TripleO::Services::NovaVncProxy

Nova Compute

The following services configure an OpenStack Compute node.

- name: Compute
ServicesDefault:
- OS::TripleO::Services::CACerts
- OS::TripleO::Services::FluentdClient
- OS::TripleO::Services::Kernel
- OS::TripleO::Services::Ntp
- OS::TripleO::Services::SensuClient
- OS::TripleO::Services::Sshd
- OS::TripleO::Services::Snmp
- OS::TripleO::Services::Timezone

52

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

OpenDaylight

The following services configure OpenDayLight. These services are technical preview for Red Hat

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

OpenStack Platform 10.

- name: Opendaylight
ServicesDefault:

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

:Services:
:Services::
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

:TripleoFirewall
:TripleoPackages
:VipHosts
:CephClient
:CephExternal
:ComputeCeilometerAgent
:ComputeNeutronCorePlugin
:ComputeNeutronL3Agent
:ComputeNeutronMetadataAgent
:ComputeNeutronOvsAgent
:NeutronSriovAgent
:NovaCompute

:Noval.ibvirt
:OpenDaylightOvs

:CACerts
FluentdClient
:Kernel

:Ntp
:SensuClient
:Sshd

:Snmp
:Timezone
:TripleoFirewall
:TripleoPackages
:VipHosts

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

- OS::TripleO::Services::OpenDaylightApi
- OS::TripleO::Services::OpenDaylightOvs
Sahara

The following services configure the OpenStack Clustering service. If separating these services, they
need to be part of a Controller systemd role.

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

:Services:
:Services::
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

:CACerts
FluentdClient
:Kernel

:Ntp
:SensuClient
:Sshd

:Snmp
:Timezone
:TripleoFirewall
:TripleoPackages
:VipHosts
:SaharaApi
:SaharaEngine

53

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

Swift API

The following services configure the OpenStack Object Storage API.

- name: SwiftApi
ServicesDefault:
- OS::TripleO::Services::CACerts
- OS::TripleO::Services::FluentdClient
- OS::TripleO::Services::Kernel
- OS::TripleO::Services::Ntp
- OS::TripleO::Services::SensuClient
- OS::TripleO::Services::Sshd
- OS::TripleO::Services::Snmp
- OS::TripleO::Services::Timezone
- OS::TripleO::Services::TripleoFirewall
- OS::TripleO::Services::TripleoPackages
- OS::TripleO::Services::VipHosts
- OS::TripleO::Services::SwiftProxy
- OS::TripleO::Services::SwiftRingBuilder

Swift Storage

The following services configure the OpenStack Object Storage service.

- name: ObjectStorage
ServicesDefault:
- OS::TripleO::Services::CACerts
- OS::TripleO::Services::FluentdClient
- OS::TripleO::Services::Kernel
- OS::TripleO::Services::Ntp
- OS::TripleO::Services::SensuClient
- OS::TripleO::Services::Sshd
- OS::TripleO::Services::Snmp
- OS::TripleO::Services::Timezone
- OS::TripleO::Services::TripleoFirewall
- OS::TripleO::Services::TripleoPackages
- OS::TripleO::Services::VipHosts
- OS::TripleO::Services::SwiftRingBuilder
- OS::TripleO::Services::SwiftStorage

Telemetry

The following services configure the OpenStack Telemetry services.

- name: Telemetry
ServicesDefault:
- OS::TripleO::Services::CACerts
- OS::TripleO::Services::FluentdClient
- OS::TripleO::Services::Kernel
- OS::TripleO::Services::Ntp
- OS::TripleO::Services::SensuClient
- OS::TripleO::Services::Sshd
- OS::TripleO::Services::Snmp
- OS::TripleO::Services::Timezone
- OS::TripleO::Services::TripleoFirewall
- OS::TripleO::Services::TripleoPackages

54

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

:VipHosts

:Apache

:AodhApi
:AodhEvaluator
:AodhListener
:AodhNotifier
:CeilometerAgentCentral
:CeilometerAgentNotification
:CeilometerApi
:CeilometerCollector
:CeilometerExpirer
:GnocchiApi
:GnocchiMetricd
:GnocchiStatsd
:MongoDb

6.11. COMPOSABLE SERVICE REFERENCE

The following table contains a list of all available composable services in Red Hat OpenStack Platform.

IMPORTANT

Some services are disabled by default. See Section 6.3, “Enabling Disabled Services” for
information on how to enable these services.

Service Description

OS::TripleO::Services::AodhApi

OpenStack Telemetry Alarming (@aodh) API service

configured with Puppet

OS::TripleO::Services::AodhEvaluator OpenStack Telemetry Alarming (@odh) Evaluator
service configured with Puppet
OS::TripleO::Services::AodhListener OpenStack Telemetry Alarming (@odh) Listener
service configured with Puppet
OS::TripleO::Services::AodhNotifier OpenStack Telemetry Alarming (@odh) Notifier
service configured with Puppet
OS::TripleO::Services::Apache Apache service configured with Puppet. Note this is
typically included automatically with other services
which run through Apache.
OS::TripleO::Services::CACerts HAProxy service configured with Puppet
OS::TripleO::Services::CeilometerAgentCent OpenStack Telemetry (ceilometer) Central Agent
ral service configured with Puppet
OS::TripleO::Services::CeilometerAgentNotifi OpenStack Telemetry (ceilometer) Notification
cation Agent service configured with Puppet

55

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

Service Description

56

OS::TripleO::

0OsS:

0OsS:

0sS:

0OsS:

0OsS:

0OsS:

0S:

0sS:

0OsS:

0OsS:

0OsS:

gent

0OsS:

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

Plugin

0OsS:
gent

0sS:

:TripleO::

:TripleO::

dataAgent

0OsS:

:TripleO::

Agent

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

CeilometerApi

CeilometerCollector

CeilometerExpirer

CephClient

CephExternal

CephMon

CephOSD

CinderApi

CinderBackup

CinderScheduler

CinderVolume

ComputeCeilometerA

ComputeNeutronCore

ComputeNeutronL3A

ComputeNeutronMeta

ComputeNeutronOvs

OpenStack Telemetry (ceilometer) API service
configured with Puppet

OpenStack Telemetry (ceilometer) Collector
service configured with Puppet

OpenStack Telemetry (ceilometer) Expirer service
configured with Puppet

(Disabled by default) Ceph Client service

(Disabled by default) Ceph External service

(Disabled by default) Ceph Monitor service

(Disabled by default) Ceph OSD service

OpenStack Block Storage (cinder) APl service
configured with Puppet

(Disabled by default) OpenStack Block Storage
(cinder) Backup service configured with Puppet

OpenStack Block Storage (cinder) Scheduler
service configured with Puppet

OpenStack Block Storage (cinder) Volume service
(Pacemaker-managed) configured with Puppet

OpenStack Telemetry (ceilometer) Compute Agent
service configured with Puppet

OpenStack Networking (neutron) ML2 Plugin
configured with Puppet

(Disabled by default) OpenStack Networking
(neutron) L3 agent for DVR enabled Compute
nodes configured with Puppet

(Disabled by default) OpenStack Networking
(neutron) Metadata agent configured with Puppet

OpenStack Networking (neutron) OVS agent
configured with Puppet

OS::TripleO::Services::

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

:TripleO::

:TripleO:

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO:

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

Services::

:Services::

Services::

Services::

Services::

Services::

Services::

Services::

:Services::

Services::

Services::

Services::

Services::

Services::

Services::

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

Service Description

FluentdClient

GlanceApi

GlanceRegistry

GnocchiApi

GnocchiMetricd

GnocchiStatsd

HAproxy

HeatApi

HeatApiCfn

HeatApiCloudwatch

HeatEngine

Horizon

IronicApi

IronicConductor

Keepalived

Kernel

(Disabled by default) Fluentd client configured with
Puppet

OpenStack Image (glance) API service configured
with Puppet

OpenStack Image (glance) Registry service
configured with Puppet

OpenStack Telemetry Metrics (ghocchi) service
configured with Puppet

OpenStack Telemetry Metrics (ghocchi) service
configured with Puppet

OpenStack Telemetry Metrics (ghocchi) service
configured with Puppet

HAProxy service (Pacemaker-managed) configured
with Puppet

OpenStack Orchestration (heat) API service
configured with Puppet

OpenStack Orchestration (heat) CloudFormation
API service configured with Puppet

OpenStack Orchestration (heat) CloudWatch API
service configured with Puppet

OpenStack Orchestration (heat) Engine service
configured with Puppet

OpenStack Dashboard (horizon) service configured
with Puppet

(Disabled by default) OpenStack Bare Metal
Provisioning (ironic) API configured with Puppet

(Disabled by default) OpenStack Bare Metal
Provisioning (ironic) conductor configured with
Puppet

Keepalived service configured with Puppet

Load kernel modules with kmod and configure kernel
options with sysctl

57

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

Service Description

58

OS::TripleO::

OS::TripleO::

OS::TripleO::

OS::TripleO::

OS::TripleO::

OS::TripleO::

OS::TripleO::

OS::TripleO::

OS::TripleO::

OS::TripleO::

L20VN

OS::TripleO::
donet

OS::TripleO::
age

OS::TripleO::
encontrail

OS::TripleO::
umgrid

OS::TripleO::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

ManilaApi

ManilaScheduler

ManilaShare

Keystone

Memcached

MongoDb

MySQL

NeutronApi

NeutronCorePlugin

NeutronCorePluginM

NeutronCorePluginMi

NeutronCorePluginNu

NeutronCorePluginOp

NeutronCorePluginPI

NeutronDhcpAgent

(Disabled by default) OpenStack Shared File
Systems (manila) API service configured with
Puppet

(Disabled by default) OpenStack Shared File
Systems (manila) Scheduler service configured with
Puppet

(Disabled by default) OpenStack Shared File
Systems (manila) Share service configured with
Puppet

OpenStack Identity (keystone) service configured
with Puppet

Memcached service configured with Puppet

MongoDB service deployment using puppet

MySQL (Pacemaker-managed) service deployment
using puppet

OpenStack Networking (neutron) Server
configured with Puppet

OpenStack Networking (neutron) ML2 Plugin
configured with Puppet

OpenStack Networking (neutron) ML2/OVN plugin
configured with Puppet

OpenStack Networking (neutron) Midonet plugin
and services

OpenStack Networking (neutron) Nuage plugin

OpenStack Networking (neutron) Opencontrail
plugin

OpenStack Networking (neutron) Plumgrid plugin

OpenStack Networking (neutron) DHCP agent
configured with Puppet

OS::TripleO::Services::

0OsS:

nt

0OsS:

0OsS:

0OsS:

0S:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

0OsS:

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO:

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

:TripleO::

Services::

Services::

Services::

Services::

Services::

Services::

:Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

Services::

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

Service Description

NeutronL3Agent

NeutronMetadataAge

NeutronOvsAgent

NeutronServer

NeutronSriovAgent

NovaApi

NovaCompute

NovaConductor

NovaConsoleauth

Novalronic

NovalLibvirt

NovaScheduler

NovaVncProxy

Ntp

OpenDaylight

OpenDaylightOvs

OpenStack Networking (neutron) L3 agent
configured with Puppet

OpenStack Networking (neutron) Metadata agent
configured with Puppet

OpenStack Networking (neutron) OVS agent
configured with Puppet

OpenStack Networking (neutron) Server
configured with Puppet

(Disabled by default) OpenStack Neutron SR-IOV
nic agent configured with Puppet

OpenStack Compute (nova) API service configured
with Puppet

OpenStack Compute (nova) Compute service
configured with Puppet

OpenStack Compute (nova) Conductor service
configured with Puppet

OpenStack Compute (nova) Consoleauth service
configured with Puppet

(Disabled by default) OpenStack Compute (nova)
service configured with Puppet and using Ironic

Libvirt service configured with Puppet

OpenStack Compute (nova) Scheduler service
configured with Puppet

OpenStack Compute (nova) Vncproxy service
configured with Puppet

NTP service deployment using Puppet.

(Disabled by default) OpenDaylight SDN controller

(Disabled by default) OpenDaylight OVS
configuration

59

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

Service Description

OS::TripleO::Services::Pacemaker Pacemaker service configured with Puppet

OS::TripleO::Services::RabbitMQ RabbitMQ service (Pacemaker-managed)
configured with Puppet

OS::TripleO::Services::Redis OpenStack Redis service configured with Puppet

OS::TripleO::Services::SaharaApi (Disabled by default) OpenStack Clustering
(sahara) APl service configured with Puppet

OS::TripleO::Services::SaharaEngine (Disabled by default) OpenStack Clustering
(sahara) Engine service configured with Puppet

OS::TripleO::Services::SensuClient (Disabled by default) Sensu client configured with
Puppet
OS::TripleO::Services::Sshd (Disabled by default) SSH daemon configuration.

Included as a default service.

OS::TripleO::Services::Snmp SNMP client configured with Puppet, to facilitate
Ceilometer hardware monitoring in the undercloud.
This service is required to enable hardware
monitoring.

OS::TripleO::Services::SwiftProxy OpenStack Object Storage (sWift) Proxy service
configured with Puppet

OS::TripleO::Services::SwiftRingBuilder OpenStack Object Storage (swift) Ringbuilder

OS::TripleO::Services::SwiftStorage OpenStack Object Storage (swift) service
configured with Puppet

OS::TripleO::Services::Timezone Composable Timezone service
OS::TripleO::Services::TripleoFirewall Firewall settings
OS::TripleO::Services::TripleoPackages Package installation settings

60

CHAPTER 7. ISOLATING NETWORKS

CHAPTER 7. ISOLATING NETWORKS

The director provides methods to configure isolated Overcloud networks. This means the Overcloud
environment separates network traffic types into different networks, which in turn assigns network
traffic to specific network interfaces or bonds. After configuring isolated networks, the director
configures the OpenStack services to use the isolated networks. If no isolated networks are configured,
all services run on the Provisioning network.
This example uses separate networks for all services:

® Network 1- Provisioning

® Network 2 - Internal API

® Network 3 - Tenant Networks

® Network 4 - Storage

® Network 5 - Storage Management

® Network 6 - Management

® Network 7 - External and Floating IP (mapped after Overcloud creation)

In this example, each Overcloud node uses two network interfaces in a bond to serve networks in tagged
VLANSs. The following network assignments apply to this bond:

Table 7.1. Network Subnet and VLAN Assignments

Network Type Subnet VLAN
Internal API 172.16.0.0/24 201
Tenant 172.17.0.0/24 202
Storage 172.18.0.0/24 203
Storage Management 172.19.0.0/24 204
Management 172.20.0.0/24 205
External / Floating IP 10.1.1.0/24 100

7.1. CREATING CUSTOM INTERFACE TEMPLATES

The Overcloud network configuration requires a set of the network interface templates. You customize
these templates to configure the node interfaces on a per role basis. These templates are standard
Heat templates in YAML format (see Section 2.1, "Heat Templates”). The director contains a set of
example templates to get you started:

e /usr/share/openstack-tripleo-heat-templates/network/config/single-nic-vlans - Directory
containing templates for single NIC with VLANs configuration on a per role basis.

61

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

e /usr/share/openstack-tripleo-heat-templates/network/config/bond-with-vlans - Directory
containing templates for bonded NIC configuration on a per role basis.

e /usr/share/openstack-tripleo-heat-templates/network/config/multiple-nics - Directory
containing templates for multiple NIC configuration using one NIC per role.

e /usr/share/openstack-tripleo-heat-templates/network/config/single-nic-linux-bridge-vlians
- Directory containing templates for single NIC with VLANs configuration on a per role basis and
using a Linux bridge instead of an Open vSwitch bridge.

NOTE

These examples only contain templates for the default roles. To define the network
interface configuration for a custom role, use these templates as a basis.

For this example, use the default bonded NIC example configuration as a basis. Copy the version located
at /usr/share/openstack-tripleo-heat-templates/network/config/bond-with-vians.

I $ cp -r /usr/share/openstack-tripleo-heat-templates/network/config/bond-with-vians ~/templates/nic-
configs

This creates a local set of heat templates that define a bonded network interface configuration for each
role. Each template contains the standard parameters, resources, and output sections. For this
example, you would only edit the resources section. Each resources section begins with the following:

resources:
OsNetConfiglmpl:
type: OS::Heat::StructuredConfig
properties:
group: os-apply-config
config:
0s_net_config:
network_config:

This creates a request for the os-apply-config command and os-net-config subcommand to configure
the network properties for a node. The network_config section contains your custom interface
configuration arranged in a sequence based on type, which includes the following:

interface

Defines a single network interface. The configuration defines each interface using either the actual
interface name ("eth0", "eth1", "enp0s25") or a set of numbered interfaces ("nicl", "nic2", "nic3").

- type: interface
name: nic2

vlan

Defines a VLAN. Use the VLAN ID and subnet passed from the parameters section.

- type: vlan
vlan_id: {get_param: ExternalNetworkVlanID}
addresses:
- ip_netmask: {get_param: ExternallpSubnet}

62

CHAPTER 7. ISOLATING NETWORKS

ovs_bond

Defines a bond in Open vSwitch to join two or more interfaces together. This helps with redundancy
and increases bandwidth.

- type: ovs_bond
name: bond1
members:

- type: interface
name: nic2

- type: interface
name: nic3

ovs_bridge
Defines a bridge in Open vSwitch, which connects multiple interface, ovs_bond and vlan objects
together.

- type: ovs_bridge
name: {get_input: bridge_name}
members:
- type: ovs_bond
name: bond1
members:
- type: interface
name: nic2
primary: true
- type: interface
name: nic3
- type: vlan
device: bond1
vlan_id: {get_param: ExternalNetworkVlanID}
addresses:
- ip_netmask: {get_param: ExternallpSubnet}

linux_bond

Defines a Linux bond that joins two or more interfaces together. This helps with redundancy and
increases bandwidth. Make sure to include the kernel-based bonding options in the
bonding_options parameter. For more information on Linux bonding options, see 4.5.1. Bonding
Module Directives in the Red Hat Enterprise Linux 7 Networking Guide.

- type: linux_bond
name: bond1
members:
- type: interface
name: nic2
- type: interface
name: nic3
bonding_options: "mode=802.3ad"

linux_bridge
Defines a Linux bridge, which connects multiple interface, linux_bond and vlan objects together.

- type: linux_bridge
name: bridge1

63

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Using_Channel_Bonding.html#s3-modules-bonding-directives

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

addresses:
- ip_netmask:
list_join:
-
- - {get_param: ControlPlanelp}
- {get_param: ControlPlaneSubnetCidr}
members:
- type: interface
name: nici
primary: true
- type: vlan
vlan_id: {get_param: ExternalNetworkVlanID}
device: bridge1
addresses:
- ip_netmask: {get_param: ExternallpSubnet}
routes:
- ip_netmask: 0.0.0.0/0
default: true
next_hop: {get_param: ExternallnterfaceDefaultRoute}

See Appendix C, Network Interface Parameters for a full list of parameters for each of these items.

For this example, you use the default bonded interface configuration. For example, the
/home/stack/templates/nic-configs/controller.yaml template uses the following network_config:

resources:
OsNetConfigimpl:
type: OS::Heat::StructuredConfig
properties:
group: os-apply-config
config:
0s_net_config:
network_config:
- type: interface
name: nict
use_dhcp: false
addresses:
- ip_netmask:
list_join:
-
- - {get_param: ControlPlanelp}
- {get_param: ControlPlaneSubnetCidr}
routes:
- ip_netmask: 169.254.169.254/32
next_hop: {get_param: EC2Metadatalp}
- type: ovs_bridge
name: {get_input: bridge_name}
dns_servers: {get_param: DnsServers}
members:
- type: ovs_bond
name: bond1
ovs_options: {get_param: BondInterfaceOvsOptions}
members:
- type: interface
name: nic2

64

CHAPTER 7. ISOLATING NETWORKS

primary: true
- type: interface
name: nic3
- type: vlan
device: bond1
vlan_id: {get_param: ExternalNetworkVlanID}
addresses:
- ip_netmask: {get_param: ExternallpSubnet}
routes:
- default: true
next_hop: {get_param: ExternallnterfaceDefaultRoute}
- type: vlan
device: bond1
vlan_id: {get_param: InternalApiNetworkVlanID}
addresses:
- ip_netmask: {get_param: InternalApilpSubnet}
- type: vlan
device: bond1
vlan_id: {get_param: StorageNetworkVlanID}
addresses:
- ip_netmask: {get_param: StoragelpSubnet}
- type: vlan
device: bond1
vlan_id: {get_param: StorageMgmtNetworkVlanID}
addresses:
- ip_netmask: {get_param: StorageMgmtlpSubnet}
- type: vlan
device: bond1
vlan_id: {get_param: TenantNetworkVlanI|D}
addresses:
- ip_netmask: {get_param: TenantlpSubnet}
- type: vlan
device: bond1
vlan_id: {get_param: ManagementNetworkVlanID}
addresses:
- ip_netmask: {get_param: ManagementlpSubnet}

NOTE

The Management network section is commented in the network interface Heat
templates. Uncomment this section to enable the Management network.

This template defines a bridge (usually the external bridge named br-ex) and creates a bonded interface
called bond1 from two numbered interfaces: nic2 and nic3. The bridge also contains a number of
tagged VLAN devices, which use bond1 as a parent device. The template also include an interface that
connects back to the director (nic1).

For more examples of network interface templates, see Appendix B, Network Interface Template
Examples.

Note that a lot of these parameters use the get_param function. You would define these in an
environment file you create specifically for your networks.

65

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

IMPORTANT

Unused interfaces can cause unwanted default routes and network loops. For example,
your template might contain a network interface (nic4) that does not use any IP
assignments for OpenStack services but still uses DHCP and/or a default route. To avoid
network conflicts, remove any unused interfaces from ovs_bridge devices and disable
the DHCP and default route settings:

- type: interface
name: nic4
use_dhcp: false
defroute: false

7.2. CREATING A NETWORK ENVIRONMENT FILE

The network environment file is a Heat environment file that describes the Overcloud’s network
environment and points to the network interface configuration templates from the previous section. You
can define the subnets and VLANSs for your network along with IP address ranges. You can then
customize these values for the local environment.

The director contains a set of example environment files to get you started. Each environment file
corresponds to the example network interface files in /usr/share/openstack-tripleo-heat-
templates/network/config/:

e /usr/share/openstack-tripleo-heat-templates/environments/net-single-nic-with-vlans.yaml
- Example environment file for single NIC with VLANs configuration in the single-nic-vlans)
network interface directory. Environment files for disabling the External network (net-single-
nic-with-vlans-no-external.yaml) or enabling IPv6 (net-single-nic-with-vlans-v6.yaml) are
also available.

e /ust/share/openstack-tripleo-heat-templates/environments/net-bond-with-vlans.yaml -
Example environment file for bonded NIC configuration in the bond-with-vlans network
interface directory. Environment files for disabling the External network (net-bond-with-vlans-
no-external.yaml) or enabling IPv6 (net-bond-with-vlans-v6.yaml) are also available.

e /usr/share/openstack-tripleo-heat-templates/environments/net-multiple-nics.yaml -
Example environment file for a multiple NIC configuration in the multiple-nics network
interface directory. An environment file for enabling IPv6 (net-multiple-nics-v6.yaml) is also
available.

e /usr/share/openstack-tripleo-heat-templates/environments/net-single-nic-linux-bridge-
with-vlans.yaml - Example environment file for single NIC with VLANs configuration using a
Linux bridge instead of an Open vSwitch bridge, which uses the the single-nic-linux-bridge-
vlans network interface directory.

This scenario uses a modified version of the /usr/share/openstack-tripleo-heat-
templates/environments/net-bond-with-vlans.yaml file. Copy this file to the stack user’s templates
directory.

$ cp /usr/share/openstack-tripleo-heat-templates/environments/net-bond-with-vlans.yaml
/home/stack/templates/network-environment.yaml

The environment file contains the following modified sections:

I resource_registry:

66

CHAPTER 7. ISOLATING NETWORKS

OS::TripleO::BlockStorage::Net::SoftwareConfig: /home/stack/templates/nic-configs/cinder-
storage.yaml|

OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-configs/compute.yaml

OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-configs/controller.yaml

OS::TripleO::ObjectStorage::Net::SoftwareConfig: /nome/stack/templates/nic-configs/swift-
storage.yaml|

OS::TripleO::CephStorage::Net::SoftwareConfig: /home/stack/templates/nic-configs/ceph-
storage.yaml|

parameter_defaults:
InternalApiNetCidr: 172.16.0.0/24
TenantNetCidr: 172.17.0.0/24
StorageNetCidr: 172.18.0.0/24
StorageMgmtNetCidr: 172.19.0.0/24
ManagementNetCidr: 172.20.0.0/24
ExternalNetCidr: 10.1.1.0/24
InternalApiAllocationPools: [{'start’: '172.16.0.10', 'end": '172.16.0.200']
TenantAllocationPools: [{'start’: '172.17.0.10', 'end": '172.17.0.200'}]
StorageAllocationPools: [{'start: '172.18.0.10', 'end": '172.18.0.200'}]
StorageMgmtAllocationPools: [{'start’: '172.19.0.10', 'end": '172.19.0.200'}]
ManagementAllocationPools: [{'start: '172.20.0.10', 'end": '172.20.0.200'}]
Leave room for floating IPs in the External allocation pool
ExternalAllocationPools: [{'start: '10.1.1.10", 'end": '10.1.1.50']
Set to the router gateway on the external network
ExternallnterfaceDefaultRoute: 10.1.1.1
Gateway router for the provisioning network (or Undercloud IP)
ControlPlaneDefaultRoute: 192.0.2.254
The IP address of the EC2 metadata server. Generally the IP of the Undercloud
EC2Metadatalp: 192.0.2.1
Define the DNS servers (maximum 2) for the overcloud nodes
DnsServers: ["8.8.8.8","8.8.4.4"]
InternalApiNetworkVlanID: 201
StorageNetworkVlanID: 202
StorageMgmtNetworkVlanID: 203
TenantNetworkVlanID: 204
ManagementNetworkVlanID: 205
ExternalNetworkVianID: 100
NeutronExternalNetworkBridge: "™
Customize bonding options if required
BondInterfaceOvsOptions:
"bond_mode=Dbalance-slb"

The resource_registry section contains modified links to the custom network interface templates for
each node role. Also include links to network interface template for custom roles in this section using the
following format:

o OS::TripleO::[ROLE]::Net::SoftwareConfig: [FILE]
Replace [ROLE] with the role name and [FILE] with the network interface template location.

The parameter_defaults section contains a list of parameters that define the network options for each
network type. For a full reference of these options, see Appendix A, Network Environment Options .

This scenario defines options for each network. All network types use an individual VLAN and subnet

used for assigning IP addresses to hosts and virtual IPs. In the example above, the allocation pool for the
Internal API network starts at 172.16.0.10 and continues to 172.16.0.200 using VLAN 201. This results in

67

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

static and virtual IPs assigned starting at 172.16.0.10 and upwards to 172.16.0.200 while using VLAN 201in
your environment.

The External network hosts the Horizon dashboard and Public API. If using the External network for both
cloud administration and floating IPs, make sure there is room for a pool of IPs to use as floating IPs for
VM instances. In this example, you only have IPs from 10.1.1.10 to 10.1.1.50 assigned to the External
network, which leaves IP addresses from 10.1.1.51 and above free to use for Floating IP addresses.
Alternately, place the Floating IP network on a separate VLAN and configure the Overcloud after
creation to use it.

The BondinterfaceOvsOptions option provides options for our bonded interface using nic2 and nic3.
For more information on bonding options, see Appendix D, Bonding Options.

IMPORTANT

Changing the network configuration after creating the Overcloud can cause
configuration problems due to the availability of resources. For example, if a user
changes a subnet range for a network in the network isolation templates, the
reconfiguration might fail due to the subnet already being in use.

7.3. ASSIGNING OPENSTACK SERVICES TO ISOLATED NETWORKS

Each OpenStack service is assigned to a default network type in the resource registry. These services
are then bound to IP addresses within the network type’s assigned network. Although the OpenStack
services are divided among these networks, the number of actual physical networks might differ as
defined in the network environment file. You can reassign OpenStack services to different network
types by defining a new network map in your network environment file
(/home/stack/templates/network-environment.yaml). The ServiceNetMap parameter determines the
network types used for each service.

For example, you can reassign the Storage Management network services to the Storage Network by
modifying the highlighted sections:

parameter_defaults:
ServiceNetMap:
SwiftMgmtNetwork: storage # Changed from storage_mgmt
CephClusterNetwork: storage # Changed from storage_mgmt

Changing these parameters to storage places these services on the Storage network instead of the
Storage Management network. This means you only need to define a set of parameter_defaults for the
Storage network and not the Storage Management network.

The director merges your custom ServiceNetMap parameter definitions into a pre-defined list of
defaults taken from ServiceNetMapDefaults and overrides the defaults. The director then returns the
full list including customizations back to ServiceNetMap, which is used to configure network
assignments for various services.

NOTE

A full list of default services can be found in the ServiceNetMapDefaults parameter
within /usr/share/openstack-tripleo-heat-
templates/network/service_net_map.j2.yami.

7.4. SELECTING NETWORKS TO DEPLOY

68

CHAPTER 7. ISOLATING NETWORKS

The settings in the resource_registry section of the environment file for networks and ports do not
ordinarily need to be changed. The list of networks can be changed if only a subset of the networks are
desired.

NOTE

When specifying custom networks and ports, do not include the environments/network-
isolation.yaml on the deployment command line. Instead, specify all the networks and
ports in the network environment file.

In order to use isolated networks, the servers must have IP addresses on each network. You can use
neutron in the Undercloud to manage IP addresses on the isolated networks, so you will need to enable
neutron port creation for each network. You can override the resource registry in your environment file.

First, this is the complete set of the default networks and ports per role that can be deployed:

resource_registry:

This section is usually not modified, if in doubt stick to the defaults

TripleO overcloud networks

OS::TripleO::Network::External: /usr/share/openstack-tripleo-heat-templates/network/external.yaml

OS::TripleO::Network::Internal Api: /usr/share/openstack-tripleo-heat-
templates/network/internal_api.yaml|

OS::TripleO::Network::StorageMgmt: /usr/share/openstack-tripleo-heat-
templates/network/storage_mgmt.yam|

OS::TripleO::Network::Storage: /usr/share/openstack-tripleo-heat-templates/network/storage.yaml

OS::TripleO::Network::Tenant: /usr/share/openstack-tripleo-heat-templates/network/tenant.yaml

OS::TripleO::Network::Management: /usr/share/openstack-tripleo-heat-
templates/network/management.yami

Port assignments for the VIPs

OS::TripleO::Network::Ports::ExternalVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/external.yaml

OS::TripleO::Network::Ports::Internal ApiVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yam|

OS::TripleO::Network::Ports::StorageVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage.yaml

OS::TripleO::Network::Ports::StorageMgmtVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage_mgmt.yaml

OS::TripleO::Network::Ports:: TenantVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/tenant.yaml

OS::TripleO::Network::Ports::ManagementVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/management.yami

OS::TripleO::Network::Ports::RedisVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/vip.yaml

Port assignments for the controller role
OS::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/external.yaml
OS::TripleO::Controller::Ports::Internal ApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yam|
OS::TripleO::Controller::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage.yaml
OS::TripleO::Controller::Ports::StorageMgmtPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage_mgmt.yaml
OS::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-tripleo-heat-

69

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

templates/network/ports/tenant.yaml
OS::TripleO::Controller::Ports::ManagementPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/management.yami

Port assignments for the compute role

OS::TripleO::Compute::Ports::InternalApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yam|

OS::TripleO::Compute::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage.yaml

OS::TripleO::Compute::Ports::TenantPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/tenant.yaml

OS::TripleO::Compute::Ports::ManagementPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/management.yami

Port assignments for the ceph storage role

OS::TripleO::CephStorage::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage.yaml

OS::TripleO::CephStorage::Ports::StorageMgmtPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage_mgmt.yaml

OS::TripleO::CephStorage::Ports::ManagementPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/management.yami

Port assignments for the swift storage role

OS::TripleO::SwiftStorage::Ports::Internal ApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yam|

OS::TripleO::SwiftStorage::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage.yaml

OS::TripleO::SwiftStorage::Ports::StorageMgmtPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage_mgmt.yaml

OS::TripleO::SwiftStorage::Ports::ManagementPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/management.yami

Port assignments for the block storage role

OS::TripleO::BlockStorage::Ports::Internal ApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yaml

OS::TripleO::BlockStorage::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage.yaml

OS::TripleO::BlockStorage::Ports::StorageMgmtPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage_mgmt.yaml

OS::TripleO::BlockStorage::Ports::ManagementPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/management.yami

The first section of this file has the resource registry declaration for the OS::TripleO::Network::*
resources. By default these resources use the OS::Heat::None resource type, which does not create
any networks. By redirecting these resources to the YAML files for each network, you enable the
creation of these networks.

The next several sections create the IP addresses for the nodes in each role. The controller nodes have
IPs on each network. The compute and storage nodes each have IPs on a subset of the networks.

The default file only contains the port assignments for the default roles. To configure port assignments
for a custom role, use the same convention as the other resource definitions and link to the appropriate
Heat templates in the network/ports directory:

o OS::TripleO::[ROLE]::Ports::ExternalPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/external.yaml

70

CHAPTER 7. ISOLATING NETWORKS

o OS::TripleO::[ROLE]::Ports::InternalApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yaml

e OS::TripleO::[ROLE]::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage.yaml

® OS::TripleO::[ROLE]::Ports::StorageMgmtPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage_mgmt.yaml

® OS::TripleO::[ROLE]::Ports::-TenantPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/tenant.yami

o OS::TripleO::[ROLE]::Ports::ManagementPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/management.yaml

Replace [ROLE] with the name of your role.

To deploy without one of the pre-configured networks, disable the network definition and the
corresponding port definition for the role. For example, all references to storage_mgmt.yaml could be
replaced with OS::Heat::None:

resource_registry:
This section is usually not modified, if in doubt stick to the defaults
TripleO overcloud networks
OS::TripleO::Network::External: /usr/share/openstack-tripleo-heat-templates/network/external.yaml
OS::TripleO::Network::Internal Api: /usr/share/openstack-tripleo-heat-
templates/network/internal_api.yaml|
OS::TripleO::Network::StorageMgmt: OS::Heat::None
OS::TripleO::Network::Storage: /usr/share/openstack-tripleo-heat-templates/network/storage.yaml
OS::TripleO::Network::Tenant: /usr/share/openstack-tripleo-heat-templates/network/tenant.yaml

Port assignments for the VIPs

OS::TripleO::Network::Ports::ExternalVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/external.yaml

OS::TripleO::Network::Ports::Internal ApiVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yam|

OS::TripleO::Network::Ports::StorageVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage.yaml

OS::TripleO::Network::Ports::StorageMgmtVipPort: OS::Heat::None

OS::TripleO::Network::Ports:: TenantVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/tenant.yaml

OS::TripleO::Network::Ports::RedisVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/vip.yaml

Port assignments for the controller role

OS::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/external.yaml

OS::TripleO::Controller::Ports::Internal ApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yam|

OS::TripleO::Controller::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage.yami

OS::TripleO::Controller::Ports::StorageMgmtPort: OS::Heat::None

OS::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/tenant.yaml

Port assignments for the compute role

71

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

72

OS::TripleO::Compute::Ports::InternalApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yam|

OS::TripleO::Compute::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage.yaml

OS::TripleO::Compute::Ports::TenantPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/tenant.yaml

Port assignments for the ceph storage role

OS::TripleO::CephStorage::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage.yaml

OS::TripleO::CephStorage::Ports::StorageMgmtPort: OS::Heat::None

Port assignments for the swift storage role
OS::TripleO::SwiftStorage::Ports::Internal ApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yam|
OS::TripleO::SwiftStorage::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage.yaml
OS::TripleO::SwiftStorage::Ports::StorageMgmtPort: OS::Heat::None

Port assignments for the block storage role
OS::TripleO::BlockStorage::Ports::Internal ApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api.yam|
OS::TripleO::BlockStorage::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage.yaml
OS::TripleO::BlockStorage::Ports::StorageMgmtPort: OS::Heat::None

parameter_defaults:
ServiceNetMap:

ApacheNetwork: internal_api
NeutronTenantNetwork: tenant
CeilometerApiNetwork: internal_api
AodhApiNetwork: internal_api
GnocchiApiNetwork: internal_api
MongodbNetwork: internal_api
CinderApiNetwork: internal_api
CinderlscsiNetwork: storage
GlanceApiNetwork: internal_api
GlanceRegistryNetwork: internal_api
IronicApiNetwork: ctlplane
IronicNetwork: ctlplane
KeystoneAdminApiNetwork: ctlplane # allows undercloud to config endpoints
KeystonePublicApiNetwork: internal_api
ManilaApiNetwork: internal_api
NeutronApiNetwork: internal_api
HeatApiNetwork: internal_api
HeatApiCfnNetwork: internal_api
HeatApiCloudwatchNetwork: internal_api
NovaApiNetwork: internal_api
NovaColdMigrationNetwork: ctlplane
NovaMetadataNetwork: internal_api
NovaVncProxyNetwork: internal_api
NovaLibvirtNetwork: internal_api
SwiftStorageNetwork: storage # Changed from storage_mgmt
SwiftProxyNetwork: storage
SaharaApiNetwork: internal_api
HorizonNetwork: internal_api

CHAPTER 7. ISOLATING NETWORKS

MemcachedNetwork: internal_api

RabbitmgNetwork: internal_api

RedisNetwork: internal_api

MysqlNetwork: internal_api

CephClusterNetwork: storage # Changed from storage_mgmt
CephMonNetwork: storage

CephRgwNetwork: storage

PublicNetwork: external

OpendaylightApiNetwork: internal_api
CephStorageHostnameResolveNetwork: storage
ControllerHostnameResolveNetwork: internal_api
ComputeHostnameResolveNetwork: internal_api
ObjectStorageHostnameResolveNetwork: internal_api
BlockStorageHostnameResolveNetwork: internal_api

By using OS::Heat::None, no network or ports are created, so the services on the Storage Management
network would default to the Provisioning network. This can be changed in the ServiceNetMap in order
to move the Storage Management services to another network, such as the Storage network.

73

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

CHAPTER 8. CONTROLLING NODE PLACEMENT

The default behavior for the director is to randomly select nodes for each role, usually based on their
profile tag. However, the director provides the ability to define specific node placement. This is a useful
method to:

® Assign specific node IDs e.g. controller-0, controller-1, etc

® Assign custom hostnames

® Assign specific IP addresses

® Assign specific Virtual IP addresses

NOTE

Manually setting predictable IP addresses, virtual IP addresses, and ports for a network
alleviates the need for allocation pools. However, it is recommended to retain allocation
pools for each network to ease with scaling new nodes. Make sure that any statically
defined IP addresses fall outside the allocation pools. For more information on setting
allocation pools, see Section 7.2, “Creating a Network Environment File” .

8.1. ASSIGNING SPECIFIC NODE IDS

This procedure assigns node ID to specific nodes. Examples of node IDs include controller-0, controller-
1, compute-0, compute-1, and so forth.

The first step is to assign the ID as a per-node capability that the Nova scheduler matches on
deployment. For example:

I openstack baremetal node set --property capabilities="node:controller-0,boot_option:local' <id>

This assigns the capability node:controller-0 to the node. Repeat this pattern using a unique continuous
index, starting from O, for all nodes. Make sure all nodes for a given role (Controller, Compute, or each of
the storage roles) are tagged in the same way or else the Nova scheduler will not match the capabilities
correctly.

The next step is to create a Heat environment file (for example, scheduler_hints_env.yaml) that uses
scheduler hints to match the capabilities for each node. For example:

parameter_defaults:
ControllerSchedulerHints:
'capabilities:node": 'controller-%index%'

To use these scheduler hints, include the ™ scheduler_hints_env.yaml™ environment file with the
overcloud deploy command during Overcloud creation.

The same approach is possible for each role via these parameters:
e ControllerSchedulerHints for Controller nodes.
¢ NovaComputeSchedulerHints for Compute nodes.

e BlockStorageSchedulerHints for Block Storage nodes.

74

CHAPTER 8. CONTROLLING NODE PLACEMENT

e ObjectStorageSchedulerHints for Object Storage nodes.
e CephStorageSchedulerHints for Ceph Storage nodes.

o [ROLE]SchedulerHints for custom roles. Replace [ROLE] with the role name.

NOTE

Node placement takes priority over profile matching. To avoid scheduling failures, use
the default baremetal flavor for deployment and not the flavors designed for profile
matching (compute, control, etc). For example:

I $ openstack overcloud deploy ... --control-flavor baremetal --compute-flavor baremetal

8.2. ASSIGNING CUSTOM HOSTNAMES

In combination with the node ID configuration in Section 8.1, “Assigning Specific Node IDs”, the director
can also assign a specific custom hostname to each node. This is useful when you need to define where a
system is located (e.g. rack2-row12), match an inventory identifier, or other situations where a custom
hostname is desired.

To customize node hostnames, use the HostnameMap parameter in an environment file, such as the *
scheduler_hints_env.yaml" file from Section 8.1, “Assigning Specific Node IDs”. For example:

parameter_defaults:

ControllerSchedulerHints:
'capabilities:node': 'controller-%index%'

NovaComputeSchedulerHints:
'capabilities:node": 'compute-%index%'

HostnameMap:
overcloud-controller-0: overcloud-controller-prod-123-0
overcloud-controller-1: overcloud-controller-prod-456-0
overcloud-controller-2: overcloud-controller-prod-789-0
overcloud-compute-0: overcloud-compute-prod-abc-0

Define the HostnameMap in the parameter_defaults section, and set each mapping as the original

hostname that Heat defines using HosthameFormat parameters (e.g. overcloud-controller-0) and the
second value is the desired custom hostname for that node (e.g. overcloud-controller-prod-123-0).

Using this method in combination with the node ID placement ensures each node has a custom
hostname.

8.3. ASSIGNING PREDICTABLE IPS

For further control over the resulting environment, the director can assign Overcloud nodes with specific
IPs on each network as well. Use the environments/ips-from-pool-all.yaml environment file in the core
Heat template collection. Copy this file to the stack user’s templates directory.

I $ cp /usr/share/openstack-tripleo-heat-templates/environments/ips-from-pool-all.yaml ~/templates/.

There are two major sections in the ips-from-pool-all.yaml file.

75

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

The first is a set of resource_registry references that override the defaults. These tell the director to
use a specific IP for a given port on a node type. Modify each resource to use the absolute path of its
respective template. For example:

OS::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/external_from_pool.yaml
OS::TripleO::Controller::Ports::Internal ApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api_from_pool.yaml
OS::TripleO::Controller::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage_from_pool.yaml|
OS::TripleO::Controller::Ports::StorageMgmtPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage_mgmt_from_pool.yaml
OS::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/tenant_from_pool.yaml

The default configuration sets all networks on all node types to use pre-assigned IPs. To allow a
particular network or node type to use default IP assignment instead, simply remove the
resource_registry entries related to that node type or network from the environment file.

The second section is parameter_defaults, where the actual IP addresses are assigned. Each node type
has an associated parameter:

e ControllerlPs for Controller nodes.

e NovaComputelPs for Compute nodes.

e CephStoragelPs for Ceph Storage nodes.

e BlockStoragelPs for Block Storage nodes.

o SwiftStoragelPs for Object Storage nodes.

e [ROLE]IPs for custom roles. Replace [ROLE] with the role name.

Each parameter is a map of network names to a list of addresses. Each network type must have at least
as many addresses as there will be nodes on that network. The director assigns addresses in order. The
first node of each type receives the first address on each respective list, the second node receives the

second address on each respective lists, and so forth.

For example, if an Overcloud will contain three Ceph Storage nodes, the CephStoragelPs parameter
might look like:

CephStoragelPs:
storage:
-172.16.1.100
-172.16.1.101
-172.16.1.102
storage_mgmt:
-172.16.3.100
-172.16.3.101
-172.16.3.102

The first Ceph Storage node receives two addresses: 172.16.1.100 and 172.16.3.100. The second receives
172.16.1.101 and 172.16.3.101, and the third receives 172.16.1.102 and 172.16.3.102. The same pattern applies
to the other node types.

76

CHAPTER 8. CONTROLLING NODE PLACEMENT

Make sure the chosen IP addresses fall outside the allocation pools for each network defined in your
network environment file (see Section 7.2, “Creating a Network Environment File”). For example, make
sure the internal_api assignments fall outside of the InternalApiAllocationPools range. This avoids
conflicts with any IPs chosen automatically. Likewise, make sure the IP assignments do not conflict with
the VIP configuration, either for standard predictable VIP placement (see Section 8.4, “Assigning
Predictable Virtual IPs”) or external load balancing (see Section 14.1, “Configuring External Load
Balancing”).

IMPORTANT

If an overcloud node is deleted, do not remove its entries in the IP lists. The IP list is
based on the underlying Heat indices, which do not change even if you delete nodes. To
indicate a given entry in the list is no longer used, replace the IP value with a value such as
DELETED or UNUSED. Entries should never be removed from the IP lists, only changed
or added.

To apply this configuration during a deployment, include the ips-from-pool-all.yaml environment file
with the openstack overcloud deploy command.

IMPORTANT

If using network isolation (see Chapter 7, Isolating Networks), include the ips-from-pool-
all.yaml file after the network-isolation.yaml file.

For example:

$ openstack overcloud deploy --templates \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
-e ~/templates/ips-from-pool-all.yaml \
[OTHER OPTIONS]

8.4. ASSIGNING PREDICTABLE VIRTUAL IPS

In addition to defining predictable IP addresses for each node, the director also provides a similar ability
to define predictable Virtual IPs (VIPs) for clustered services. To accomplish this, edit the network
environment file from Section 7.2, “Creating a Network Environment File” and add the VIP parameters in
the parameter_defaults section:

parameter_defaults:

Predictable VIPs

ControlFixedIPs: [{'ip_address':'192.168.201.101'}]
InternalApiVirtualFixedIPs: [{'ip_address':'172.16.0.9"]
PublicVirtualFixedIPs: [{'ip_address':'10.1.1.9'}]
StorageVirtualFixedIPs: [{'ip_address':'"172.18.0.9}]
StorageMgmtVirtualFixedIPs: [{'ip_address':'172.19.0.9'}]
RedisVirtualFixedIPs: [{'ip_address":'"172.16.0.8'}]

Select these IPs from outside of their respective allocation pool ranges. For example, select an IP
address for InternalApiVirtualFixedIPs that is not within the InternalApiAllocationPools range.

77

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

This step is only for overclouds using the default internal load balancing configuration. If assigning VIPs
with an external load balancer, use the procedure in the dedicated External Load Balancing for the
Overcloud guide.

78

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/external-load-balancing-for-the-overcloud

CHAPTER 9. ENABLING SSL/TLS ON THE OVERCLOUD

CHAPTER 9. ENABLING SSL/TLS ON THE OVERCLOUD

By default, the overcloud uses unencrypted endpoints for its services. This means that the overcloud
configuration requires an additional environment file to enable SSL/TLS for its Public APl endpoints.
The following chapter shows how to configure your SSL/TLS certificate and include it as a part of your
overcloud creation.

NOTE

This process only enables SSL/TLS for Public APl endpoints. The Internal and Admin
APIs remain unencrypted.

This process requires network isolation to define the endpoints for the Public API. See Chapter 7,
Isolating Networks for instruction on network isolation.

O.1.INITIALIZING THE SIGNING HOST
The signing host is the host that generates new certificates and signs them with a certificate authority. If
you have never created SSL certificates on the chosen signing host, you might need to initialize the host

so that it can sign new certificates.

The /etc/pki/CA/index.txt file stores records of all signed certificates. Check if this file exists. If it does
not exist, create an empty file:

I $ sudo touch /etc/pki/CA/index.txt

The /etc/pki/CA/serial file identifies the next serial number to use for the next certificate to sign. Check
if this file exists. If it does not exist, create a new file with a new starting value:

I $ echo '1000' | sudo tee /etc/pki/CA/serial

9.2. CREATING A CERTIFICATE AUTHORITY
Normally you sign your SSL/TLS certificates with an external certificate authority. In some situations, you
might aim to use your own certificate authority. For example, you might aim to have an internal-only

certificate authority.

For example, generate a key and certificate pair to act as the certificate authority:

$ openssl genrsa -out ca.key.pem 4096
$ openssl req -key ca.key.pem -new -x509 -days 7300 -extensions v3_ca -out ca.crt.pem

The openssl req command asks for certain details about your authority. Enter these details.

This creates a certificate authority file called ca.crt.pem.

9.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS

For any external clients aiming to communicate using SSL/TLS, copy the certificate authority file to
each client that requires access your Red Hat OpenStack Platform environment. Once copied to the
client, run the following command on the client to add it to the certificate authority trust bundle:

79

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

For example, the undercloud requires a copy of the certificate authority file so that it can communicate
with the overcloud endpoints during creation.

9.4. CREATING AN SSL/TLS KEY

Run the following commands to generate the SSL/TLS key (server.key.pem), which we use at different
points to generate our undercloud or overcloud certificates:

I $ openssl genrsa -out server.key.pem 2048

9.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST

This next procedure creates a certificate signing request for the overcloud. Copy the default OpenSSL
configuration file for customization.

I $ cp /etc/pki/tls/openssl.cnf .

Edit the custom openssl.cnf file and set SSL parameters to use for the overcloud. An example of the
types of parameters to modify include:

[req]
distinguished_name = req_distinguished_name
reg_extensions = v3_req

[req_distinguished_name]

countryName = Country Name (2 letter code)
countryName_default = AU

stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Queensland

localityName = Locality Name (eg, city)
localityName_default = Brisbane

organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Red Hat

commonName = Common Name

commonName_default = 10.0.0.1

commonName_max = 64

[v3_req]

Extensions to add to a certificate request

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]
IP.1 =10.0.0.1

DNS.1 =10.0.0.1
DNS.2 = myovercloud.example.com

Set the commonName_default to one of the following:

80

CHAPTER 9. ENABLING SSL/TLS ON THE OVERCLOUD

e |fusing an IP to access over SSL/TLS, use the Virtual IP for the Public API. Set this VIP using
the PublicVirtualFixedIPs parameter in an environment file. For more information, see
Section 8.4, "Assigning Predictable Virtual IPs” . If you are not using predictable VIPs, the
director assigns the first IP address from the range defined in the External AllocationPools
parameter.

® |f using a fully qualified domain name to access over SSL/TLS, use the domain name instead.

Include the same Public API IP address as an IP entry and a DNS entry in the alt_names section. If also
using DNS, include the hostname for the server as DNS entries in the same section. For more
information about openssl.cnf, run man openssil.cnf.

Run the following command to generate certificate signing request (server.csr.pem):

I $ openssl req -config openssl.cnf -key server.key.pem -new -out server.csr.pem

Make sure to include the SSL/TLS key you created in Section 9.4, “Creating an SSL/TLS Key” for the -
key option.

Use the server.csr.pem file to create the SSL/TLS certificate in the next section.

9.6. CREATING THE SSL/TLS CERTIFICATE

The following command creates a certificate for your undercloud or overcloud:

$ sudo openssl ca -config openssl.cnf -extensions v3_req -days 3650 -in server.csr.pem -out
server.crt.pem -cert ca.crt.pem -keyfile ca.key.pem

This command uses:
e The configuration file specifying the v3 extensions. Include this as the -config option.
® The certificate signing request from Section 9.5, "Creating an SSL/TLS Certificate Signing
Request” to generate the certificate and sign it through a certificate authority. Include this as

the -in option.

® The certificate authority you created in Section 9.2, “Creating a Certificate Authority”, which
signs the certificate. Include this as the -cert option.

® The certificate authority private key you created in Section 9.2, “Creating a Certificate
Authority”. Include this as the -keyfile option.

This results in a certificate named server.crt.pem. Use this certificate in conjunction with the SSL/TLS
key from Section 9.4, “Creating an SSL/TLS Key” to enable SSL/TLS.

9.7. ENABLING SSL/TLS
Copy the enable-tls.yaml environment file from the Heat template collection:

I $ cp -r /usr/share/openstack-tripleo-heat-templates/environments/enable-tls.yaml ~/templates/.

Edit this file and make the following changes for these parameters:

SSL Certificate

81

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

Copy the contents of the certificate file (server.crt.pem) into the SSLCertificate parameter. For
example:

parameter_defaults:
SSLCertificate: |

MIIDgzCCAmugAwIBAglJAKk46qwencJaMAOGCSqGSIb3DQEBCWUAMFgxCzAJBgNV

SFW3S2r0S4X0Af/kSSD8mMIBBTFTCMBAj6rLBKLaQbIXEplzrgvp

IMPORTANT

The certificate contents require the same indentation level for all new lines.

SSLKey
Copy the contents of the private key (server.key.pem) into the SSLKey parameter. For example:

parameter_defaults:
SSLKey: |
MIIEowIBAAKCAQEAqVw8INQ9Rbel1 EALN5PJPOIVO9hkJZnGP6gbbwtYUoy1bVP7

ctIKn3rAAdyumi4JDJESAXHIKFJNOLrBmpQyES4XpZUC7yhgPaU

IMPORTANT

The private key contents require the same indentation level for all new lines.

OS:TripleO::NodeTLSData
Change the resource path for OS::TripleO::NodeTLSData: to an absolute path:

resource_registry:
OS::TripleO::NodeTLSData: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/tls/tls-cert-inject.yaml

9.8. INJECTING A ROOT CERTIFICATE

If the certificate signer is not in the default trust store on the overcloud image, you must inject the
certificate authority into the overcloud image. Copy the inject-trust-anchor.yaml environment file from
the heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-templates/environments/inject-trust-anchor.yaml
~/templates/.

Edit this file and make the following changes for these parameters:

SSLRootCertificate

82

CHAPTER 9. ENABLING SSL/TLS ON THE OVERCLOUD

Copy the contents of the root certificate authority file (ca.crt.pem) into the SSLRootCertificate
parameter. For example:

parameter_defaults:
SSLRootCertificate: |

MIIDgzCCAmugAwIBAglJAKk46qwencJaMAOGCSqGSIb3DQEBCWUAMFgxCzAJBgNV

SFW3S2r0S4X0Af/kSSD8mMIBBTFTCMBAj6rLBKLaQbIXEplzrgvp

IMPORTANT

The certificate authority contents require the same indentation level for all new lines.

OS:TripleO::NodeTLSCAData
Change the resource path for OS::TripleO::NodeTLSCAData: to an absolute path:

resource_registry:
OS::TripleO::NodeTLSCAData: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/tls/ca-inject.yaml

9.9. CONFIGURING DNS ENDPOINTS

If using a DNS hostname to access the overcloud through SSL/TLS, create a new environment file
(~/templates/cloudname.yaml) to define the hostname of the overcloud’s endpoints. Use the following
parameters:

CloudName
The DNS hostname of the overcloud endpoints.
DnsServers

A list of DNS servers to use. The configured DNS servers must contain an entry for the configured
CloudName that matches the IP address of the Public API.

An example of the contents for this file:

parameter_defaults:
CloudName: overcloud.example.com
DnsServers: ['10.0.0.254"]

9.10. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION

The deployment command (openstack overcloud deploy) uses the -e option to add environment files.
Add the environment files from this section in the following order:

® The environment file to enable SSL/TLS (enable-tls.yaml)
® The environment file to set the DNS hostname (cloudname.yaml)

® The environment file to inject the root certificate authority (inject-trust-anchor.yaml)

83

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

® The environment file to set the public endpoint mapping:

o If using a DNS name for accessing the public endpoints, use /usr/share/openstack-tripleo-
heat-templates/environments/tls-endpoints-public-dns.yaml

o If using a IP address for accessing the public endpoints, use /usr/share/openstack-tripleo-
heat-templates/environments/tls-endpoints-public-ip.yaml

For example:

$ openstack overcloud deploy --templates [...] -e /home/stack/templates/enable-tls.yaml -e
~/templates/cloudname.yaml -e ~/templates/inject-trust-anchor.yaml -e /usr/share/openstack-tripleo-
heat-templates/environments/tls-endpoints-public-dns.yaml

9.11. UPDATING SSL/TLS CERTIFICATES

If you need to update certificates in the future:

e Edit the enable-tls.yaml file and update the SSLCertificate, SSLKey, and
SSLintermediateCertificate parameters.

e |f your certificate authority has changed, edit the inject-trust-anchor.yaml file and update the
SSLRootCertificate parameter.

Once the new certificate content s in place, rerun your deployment command. For example:

$ openstack overcloud deploy --templates [...] -e /home/stack/templates/enable-tls.yaml -e
~/templates/cloudname.yaml -e ~/templates/inject-trust-anchor.yaml -e /usr/share/openstack-tripleo-
heat-templates/environments/tls-endpoints-public-dns.yaml

84

CHAPTER 10. STORAGE CONFIGURATION

CHAPTER 10. STORAGE CONFIGURATION

This chapter outlines several methods of configuring storage options for your Overcloud.

IMPORTANT

The Overcloud uses local and LVM storage for the default storage options. However,
these options are not supported for enterprise-level Overclouds. It is recommended to
use one of the storage options in this chapter.

10.1. CONFIGURING NFS STORAGE

This section describes configuring the Overcloud to use an NFS share. The installation and configuration
process is based on the modification of an existing environment file in the core Heat template
collection.

The core heat template collection contains a set of environment files in /usr/share/openstack-tripleo-
heat-templates/environments/. These environment templates help with custom configuration of some
of the supported features in a director-created Overcloud. This includes an environment file to help
configure storage. This file is located at /usr/share/openstack-tripleo-heat-
templates/environments/storage-environment.yaml. Copy this file to the stack user’s template
directory.

$ cp /usr/share/openstack-tripleo-heat-templates/environments/storage-environment.yami
~/templates/.

The environment file contains some parameters to help configure different storage options for
OpenStack’s block and image storage components, cinder and glance. In this example, you will configure
the Overcloud to use an NFS share. Modify the following parameters:

CinderEnablelscsiBackend

Enables the iSCSI backend. Set to false.
CinderEnableRbdBackend

Enables the Ceph Storage backend. Set to false.
CinderEnableNfsBackend

Enables the NFS backend. Set to true.
NovaEnableRbdBackend

Enables Ceph Storage for Nova ephemeral storage. Set to false.
GlanceBackend

Define the back end to use for Glance. Set to file to use file-based storage for images. The
Overcloud will save these files in a mounted NFS share for Glance.

CinderNfsMountOptions

The NFS mount options for the volume storage.
CinderNfsServers

The NFS share to mount for volume storage. For example, 192.168.122.1;/export/cinder.
GlanceNfsEnabled

Enables Pacemaker to manage the share for image storage. If disabled, the Overcloud stores images
in the Controller node’s file system. Set to true.

GlanceNfsShare

85

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

The NFS share to mount for image storage. For example, 192.168.122.1:/export/glance.
GlanceNfsOptions

The NFS mount options for the image storage.

The environment file’s options should look similar to the following:

parameter_defaults:
CinderEnablelscsiBackend: false
CinderEnableRbdBackend: false
CinderEnableNfsBackend: true
NovaEnableRbdBackend: false
GlanceBackend: 'file'

CinderNfsMountOptions: 'rw,sync'
CinderNfsServers: '192.0.2.230:/cinder’

GlanceNfsEnabled: true
GlanceNfsShare: '192.0.2.230:/glance’
GlanceNfsOptions: 'rw,sync,context=system_u:object_r:glance_var_lib_t:s0'

IMPORTANT
Include the context=system_u:object_r:glance_var_lib_t:s0 in the GlanceNfsOptions

parameter to allow glance access to the /var/lib directory. Without this SELinux content,
glance will fail to write to the mount point.

These parameters are integrated as part of the heat template collection. Setting them as such creates
two NFS mount points for cinder and glance to use.

Save this file for inclusion in the Overcloud creation.

10.2. CONFIGURING CEPH STORAGE
The director provides two main methods for integrating Red Hat Ceph Storage into an Overcloud.

Creating an Overcloud with its own Ceph Storage Cluster

The director has the ability to create a Ceph Storage Cluster during the creation on the Overcloud.
The director creates a set of Ceph Storage nodes that use the Ceph OSD to store the data. In
addition, the director install the Ceph Monitor service on the Overcloud’s Controller nodes. This
means if an organization creates an Overcloud with three highly available controller nodes, the Ceph
Monitor also becomes a highly available service.

Integrating a Existing Ceph Storage into an Overcloud

If you already have an existing Ceph Storage Cluster, you can integrate this during an Overcloud
deployment. This means you manage and scale the cluster outside of the Overcloud configuration.

For more information about configuring Overcloud Ceph Storage, see the dedicated Red Hat Ceph
Storage for the Overcloud guide for full instructions on both scenarios.

10.3. CONFIGURING THIRD PARTY STORAGE

The director include a couple of environment files to help configure third-party storage providers. This
includes:

86

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/red_hat_ceph_storage_for_the_overcloud/

CHAPTER 10. STORAGE CONFIGURATION

Dell EMC Storage Center

Deploys a single Dell EMC Storage Center back end for the Block Storage (cinder) service.
The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-dellsc-config.yaml.

See the Dell Storage Center Back End Guide for full configuration information.

Dell EMC PS Series

Deploys a single Dell EMC PS Series back end for the Block Storage (cinder) service.
The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-dellps-config.yaml.

See the Dell EMC PS Series Back End Guide for full configuration information.

NetApp Block Storage

Deploys a NetApp storage appliance as a back end for the Block Storage (cinder) service.
The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-netapp-config.yaml.

See the NetApp Block Storage Back End Guide for full configuration information.

87

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/dell-storage-center-back-end-guide
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/dell_emc_ps_series_back_end_guide
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/netapp-block-storage-back-end-guide

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

CHAPTER 1. CONFIGURING CONTAINERIZED COMPUTE
NODES

The director provides an option to integrate services from OpenStack’s containerization project (kolla)
into the Overcloud’s Compute nodes. This includes creating Compute nodes that use Red Hat
Enterprise Linux Atomic Host as a base operating system and individual containers to run different
OpenStack services.

IMPORTANT

Containerized Compute nodes are a Technology Preview feature. Technology Preview
features are not fully supported under Red Hat Subscription Service Level Agreements
(SLAs), may not be functionally complete, and are not intended for production use.
However, these features provide early access to upcoming product innovations, enabling
customers to test functionality and provide feedback during the development process.
For more information on the support scope for features marked as technology previews,
see https://access.redhat.com/support/offerings/techpreview/.

The director’s core Heat template collection includes environment files to aid the configuration of
containerized Compute nodes. These files include:

e docker.yaml - The main environment file for configuring containerized Compute nodes.

e docker-network.yaml - The environment file for containerized Compute nodes networking
without network isolation.

e docker-network-isolation.yaml - The environment file for containerized Compute nodes using
network isolation.

11.1. INCREASING THE STACK DEPTH

To accommodate the number of resource stacks in the containerized compute Heat templates, you
should increase the stack depth for OpenStack Orchestration (heat) on the undercloud. Use the
following steps to increase the stack depth:

1. Edit the /etc/heat/heat.conf and search for the max_nested_stack_depth parameter. Increase
this parameter’s value to 10:

I max_nested_stack_depth = 10

Save this file.

2. Restart the OpenStack Orchestration (heat) service:

I sudo systemctl restart openstack-heat-engine.service

IMPORTANT

Undercloud minor and major version updates can revert changes to the
/letc/heat/heat.conf file. If necessary, set the heat::engine::max_nested_stack_depth
hieradata to ensure the stack depth is permanent. To set undercloud hieradata, point the
hieradata_override parameter in your undercloud.conf file to a file containing the
custom hieradata.

88

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 11. CONFIGURING CONTAINERIZED COMPUTE NODES

11.2. EXAMINING THE CONTAINERIZED COMPUTE ENVIRONMENT
FILE (DOCKER.YAML)

The docker.yaml file is the main environment file for the containerized Compute node configuration. It
includes the entries in the resource_registry:

resource_registry:
OS::TripleO::ComputePostDeployment: ../docker/compute-post.yaml
OS::TripleO::NodeUserData: ../docker/firstboot/install_docker_agents.yaml

OS::TripleO::NodeUserData

Provides a Heat template that uses custom configuration on first boot. In this case, it installs the
openstack-heat-docker-agents container on the Compute nodes when they first boot. This
container provides a set of initialization scripts to configure the containerized Compute node and
Heat hooks to communicate with the director.

OS::TripleO::ComputePostDeployment

Provides a Heat template with a set of post-configuration resources for Compute nodes. This
includes a software configuration resource that provides a set of tags to Puppet:

ComputePuppetConfig:
type: OS::Heat::SoftwareConfig
properties:
group: puppet
options:
enable_hiera: True
enable_facter: False
tags:
package,file,concat,file_line,nova_config,neutron_config,neutron_agent_ovs,neutron_plugin_mi2
inputs:
- name: tripleo::packages::enable_install
type: Boolean
default: True
outputs:
- name: result
config:
get_file: ../puppet/manifests/overcloud_compute.pp

These tags define the Puppet modules to pass to the openstack-heat-docker-agents container.

The docker.yaml file includes a parameter called Novalmage that replaces the standard overcloud-
fullimage with a different image (atomic-image) when provisioning Compute nodes. See in Section 11.3,
“Uploading the Atomic Host Image” for instructions on uploading this new image.

The docker.yaml file also includes a parameter_defaults section that defines the Docker registry and
images to use for our Compute node services. You can modify this section to use a local registry instead

of the default registry.access.redhat.com. See Section 11.4, “Using a Local Registry” for instructions on
configuring a local registry.

11.3. UPLOADING THE ATOMIC HOST IMAGE

89

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

The director requires a copy of the Cloud Image for Red Hat Enterprise Linux 7 Atomic Host imported
into its image store as atomic-image. This is because the Compute node requires this image for the
base OS during the provisioning phase of the Overcloud creation.

Download a copy of the Cloud Image from the Red Hat Enterprise Linux 7 Atomic Host product page
(https://access.redhat.com/downloads/content/271/ver=/rhel---7/7.2.2-2/x86_64/product-software)
and save it to the images subdirectory in the stack user’s home directory.

Once the image download completes, import the image into the director as the stack user.

$ glance image-create --name atomic-image --file ~/images/rhel-atomic-cloud-7.2-12.x86_64.qcow?2 -
-disk-format gcow2 --container-format bare

This imports the image alongside the other Overcloud images.

$ glance image-list

+- + +
| ID | Name |
+- + +

| 27b5bad7-f8b2-4dd8-9f69-32dfe84644cf | atomic-image |

| 08¢c116c6-8913-427b-b5b0-b55¢c18a01888 | bm-deploy-kernel |

| aec4c104-0146-437b-a10b-8ebc351067b9 | bm-deploy-ramdisk |
| 9012ce83-4¢c63-4cd7-a976-0c972be747¢cd | overcloud-full |

| 376e95df-c1c1-4f2a-b5f3-93f639eb9972 | overcloud-full-initrd |

| 0b5773eb-4c64-4086-9298-7f28606b68af | overcloud-full-vmlinuz |
+- + +

11.4. USING A LOCAL REGISTRY

The default configuration uses Red Hat's container registry for image downloads. However, as an
optional step, you can use a local registry to conserve bandwidth during the Overcloud creation process.

You can use an existing local registry or install a new one. To install a new registry, use the instructions in
"Get Started with Docker Formatted Container Images” in Getting Started with Containers.

Pull the required images into your registry:

$ sudo docker pull registry.access.redhat.com/rhosp10_tech_preview/openstack-nova-compute:latest
$ sudo docker pull registry.access.redhat.com/rhosp10_tech_preview/openstack-data:latest

$ sudo docker pull registry.access.redhat.com/rhosp10_tech_preview/openstack-nova-libvirt:latest
$ sudo docker pull registry.access.redhat.com/rhosp10_tech_preview/openstack-neutron-
openvswitch-agent:latest

$ sudo docker pull registry.access.redhat.com/rhosp10_tech_preview/openstack-openvswitch-
vswitchd:latest

$ sudo docker pull registry.access.redhat.com/rhosp10_tech_preview/openstack-openvswitch-db-
server:latest

$ sudo docker pull registry.access.redhat.com/rhosp10_tech_preview/openstack-heat-docker-
agents:latest

After pulling the images, tag them with the proper registry host:

$ sudo docker tag registry.access.redhat.com/rhosp10_tech_preview/openstack-nova-compute:latest
localhost:8787/registry.access.redhat.com/openstack-nova-compute:latest
$ sudo docker tag registry.access.redhat.com/rhosp10_tech_preview/openstack-data:latest

90

https://access.redhat.com/downloads/content/271/ver=/rhel---7/7.2.2-2/x86_64/product-software
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_containers/get_started_with_docker_formatted_container_images

CHAPTER 11. CONFIGURING CONTAINERIZED COMPUTE NODES

localhost:8787/registry.access.redhat.com/openstack-data:latest

$ sudo docker tag registry.access.redhat.com/rhosp10_tech_preview/openstack-nova-libvirt:latest
localhost:8787/registry.access.redhat.com/openstack-nova-libvirt:latest

$ sudo docker tag registry.access.redhat.com/rhosp10_tech_preview/openstack-neutron-
openvswitch-agent:latest localhost:8787/registry.access.redhat.com/openstack-neutron-openvswitch-
agent:latest

$ sudo docker tag registry.access.redhat.com/rhosp10_tech_preview/openstack-openvswitch-
vswitchd:latest localhost:8787/registry.access.redhat.com/openstack-openvswitch-vswitchd:latest
$ sudo docker tag registry.access.redhat.com/rhosp10_tech_preview/openstack-openvswitch-db-
server:latest localhost:8787/registry.access.redhat.com/openstack-openvswitch-db-server:latest

$ sudo docker tag registry.access.redhat.com/rhosp10_tech_preview/openstack-heat-docker-
agents:latest localhost:8787/registry.access.redhat.com/openstack-heat-docker-agents:latest

Push them to the registry:

$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-nova-compute:latest

$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-data:latest

$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-nova-libvirt:latest

$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-neutron-openvswitch-
agent:latest

$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-openvswitch-
vswitchd:latest

$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-openvswitch-db-
server:latest

$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-heat-docker-agents:latest

Create a copy of the main docker.yaml environment file in the templates subdirectory:

I $ cp /usr/share/openstack-tripleo-heat-templates/environments/docker.yaml ~/templates/.

Edit the file and modify the resource_registry to use absolute paths:

resource_registry:

OS::TripleO::ComputePostDeployment: /usr/share/openstack-tripleo-heat-
templates/docker/compute-post.yaml

OS::TripleO::NodeUserData: /usr/share/openstack-tripleo-heat-
templates/docker/firstboot/install_docker_agents.yaml

Set DockerNamespace in parameter_defaults to your registry URL. Also set
DockerNamespacelsRegistry to true For example:

parameter_defaults:
DockerNamespace: registry.example.com:8787/registry.access.redhat.com
DockerNamespacelsRegistry: true

Your local registry now has the required docker images and the containerized Compute configuration is
now set to use that registry.

11.5. INCLUDING ENVIRONMENT FILES IN THE OVERCLOUD
DEPLOYMENT

o1

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

When running the Overcloud creation, include the main environment file (docker.yaml) and the network
environment file (docker-network.yaml) for the containerized Compute nodes along with the
openstack overcloud deploy command. For example:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/docker.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/docker-network.yaml [OTHER OPTIONS] ...

The containerized Compute nodes also function in an Overcloud with network isolation. This also
requires the main environment file along with the network isolation file (docker-network-
isolation.yaml). Add these files before the network isolation files from Chapter 7, Isolating Networks.
For example:

openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/docker.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/docker-network-isolation.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/net-single-nic-with-vlans.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml [OTHER OPTIONS] ...

The director creates an Overcloud with containerized Compute nodes.

92

CHAPTER 12. MONITORING TOOLS CONFIGURATION

CHAPTER 12. MONITORING TOOLS CONFIGURATION

Monitoring tools are an optional suite of tools designed to help operators maintain an OpenStack
environment. The tools perform the following functions:

e Centralized logging: Allows you gather logs from all components in the OpenStack environment

in one central location. You can identify problems across all nodes and services, and optionally,
export the log data to Red Hat for assistance in diagnosing problems.

® Availability monitoring: Allows you to monitor all components in the OpenStack environment
and determine if any components are currently experiencing outages or are otherwise not
functional. You can also receive notifications when problems occur to optimize your response
time.

12.1. ARCHITECTURE
Monitoring tools use a client-server model with the client deployed onto the Red Hat OpenStack

Platform overcloud nodes. The Fluentd service provides client-side centralized logging (CL) and the
Sensu client service provides client-side availability monitoring (AM).

12.1.1. Centralized Logging

Centralized logging allows you to have one central place to view logs across your entire OpenStack
environment. These logs come from the operating system, such as syslog and audit log files,
infrastructure components such as RabbitMQ and MariaDB, and OpenStack services such as Identity,
Compute, and others.
The centralized logging toolchain consists of a number of components, including:

® | og Collection Agent (Fluentd)

® | og Relay/Transformer (Fluentd)

® Data Store (Elasticsearch)

® API/Presentation Layer (Kibana)

NOTE

The director does not deploy the server-side components for centralized logging. Red
Hat does not support server-side components including the Elasticsearch database,
Kibana, and Fluentd with plugins running as a log aggregator.

The centralized logging components and their interactions are laid out in the following diagrams:

NOTE

[tems shown in blue denote Red Hat-supported components.

93

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

Figure 12.1. Centralized logging architecture at a high level

Data store

reads data from

—>

I
X

N\

API / Presentation

views data

)

OpenStack Operator

94

sends log data to

A

Log Collection Agent

Log Collection Agent

Log Collection Agent

CHAPTER 12. MONITORING TOOLS CONFIGURATION

Figure 12.2. Single-node deployment for Red Hat OpenStack Platform

sends log data to

elasticsearch
)|

views data

OpenStack Operator

OPENSTACK_435795_0117

95

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

Figure 12.3. HA deployment for Red Hat OpenStack Platform

LOGGING NODE LOGGING NODE CONTROLLER CONTROLLER
NODE NODE
fluentd fluentd < fluentd fluentd
l clustered l
elasticsearch +—r elasticsearch
? T COMPUTE STORAGE
NODE NODE
APACHE APACHE fluentd fluentd
kibana kibana
| | COMPUTE STORAGE
NODE NODE
haproxy haproxy
fluentd fluentd
pacemaker
floating ip floating ip
views data COMPUTE
NODE
fluentd

()

OpenStack Operator

12.1.2. Availability Monitoring

Availability monitoring allows you to have one central place to monitor the high-level functionality of all

components across your entire OpenStack environment.

The availability monitoring toolchain consists of a number of components, including:

® Monitoring Agent (Sensu client)
® Monitoring Relay/Proxy (RabbitMQ)
® Monitoring Controller/Server (Sensu server)

® API/Presentation Layer (Uchiwa)

NOTE

The director does not deploy the server-side components for availability monitoring. Red
Hat does not support server-side components including Uchiwa, Sensu Server, the Sensu

API plus RabbitMQ, and a Redis instance running on a monitoring node.

The availability monitoring components and their interactions are laid out in the following diagrams:

NOTE

96

[tems shown in blue denote Red Hat-supported components.

CHAPTER 12. MONITORING TOOLS CONFIGURATION

Figure 12.4. Availability monitoring architecture at a high level

. sends/recieves checks
Monif’orinq Relay Monitoring Agent
Proxy

sends/recieves
checks

<+——

Monitoring Agent

sends el
notification
P
- 00 < Monitoring Controller
Notification / Server

stores data —

Monitoring Agent

‘_

(o

Data store

reads data from

—

1
X

N\

API / Presentation

views/interacts
with system

()

OpenStack Operator

97

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

Figure 12.5. Single-node deployment for Red Hat OpenStack Platform

MONITOR NODE CONTROLLER NODE CONTROLLER NODE

rabbitmg « sensu-agent sensu-agent

. |

sensu-server

l COMPUTE NODE STORAGE NODE
redis
— sensu-agent sensu-agent
Treads data from ’
sensu-api
T COMPUTE NODE STORAGE NODE
uchiwa
— sensu-agent sensu-agent

views data }

@ COMPUTE NODE

OpenStack Operator

== sensu-agent

98

CHAPTER 12. MONITORING TOOLS CONFIGURATION

Figure 12.6. HA deployment for Red Hat OpenStack Platform

©)

()

OpenStack Operator

views data sends check data to
MONITOR NODE MONITOR NODE CONTROLLER CONTROLLER
NODE NODE
floating ip floating ip sensu-agent sensu-agent
pacemaker
— haproxy haproxy -
¢ ¢ COMPUTE STORAGE
clustered NODE NODE
rabbitmq 4+—r rabbitmq
| | sensu-agent sensu-agent
sensu-server sensu-server
) teplication) COMPUTE STORAGE
redis +—r redis NODE NODE
sensu-agent sensu-agent
sensu-api sensu-api
—> uchiwa uchiwa 4+—
COMPUTE
NODE
sensu-agent

12.2. INSTALL THE CLIENT-SIDE TOOLS

Prior to overcloud deployment, you need to determine the configuration settings to apply to each client.
Copy the example environment files from the director’s Heat template collection and modify them to
suit your environment.

12.2.1. Set Centralized Logging Client Parameters

For Fluentd configuration settings, copy /usr/share/openstack-tripleo-heat-
templates/environments/logging-environment.yaml and modify the file to suit your environment. For
example:

Simple configuration

resource_registry:
OS::TripleO::Services::FluentdClient: ../puppet/services/logging/fluentd-client.yaml

parameter_defaults:

99

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

LoggingServers:
- host: log0.example.com
port: 24224
- host: log1.example.com
port: 24224

Example SSL configuration

(note the use of port 24284 for ssl connections)

resource_registry:
OS::TripleO::Services::FluentdClient: ../puppet/services/logging/fluentd-client.yaml

parameter_defaults:
LoggingServers:
- host: 192.0.2.11
port: 24284
LoggingUsesSSL: true
LoggingSharedKey: secret
LoggingSSL Certificate: |

® |oggingServers - The destination system that will receive Fluentd log messages.

e LoggingUsesSSL - Setting that determines whether secure_forward is used when forwarding
log messages.

® | oggingSharedKey - The shared secret used by secure_forward.

® LoggingSSLCertificate - The PEM-encoded contents of the SSL CA certificate.

12.2.2. Set Availability Monitoring Client Parameters

For the Sensu client configuration settings, copy /usr/share/openstack-tripleo-heat-
templates/environments/monitoring-environment.yaml and modify the file to suit your environment.
For example:

resource_registry:
OS::TripleO::Services::SensuClient: ../puppet/services/monitoring/sensu-client.yaml

parameter_defaults:
MonitoringRabbitHost: 10.10.10.10
MonitoringRabbitPort: 5672
MonitoringRabbitUserName: sensu
MonitoringRabbitPassword: sensu
MonitoringRabbitUseSSL: false
MonitoringRabbitVhost: "/sensu”
SensuClientCustomConfig:

api:
warning: 10
critical: 20

100

CHAPTER 12. MONITORING TOOLS CONFIGURATION

® MonitoringRabbit* - These parameters connect the Sensu client services to the RabbitMQ
instance that runs on the monitoring server.

e MonitoringRabbitUseSSL - This parameter is not currently available for availability monitoring.

e SensuClientCustomConfig - Specify additional Sensu client configuration. Defines the
OpenStack credentials to be used, including username/password, auth_url, tenant, and region.

12.2.3. Install Operational Tools on Overcloud Nodes

Include the modified YAML files with your openstack overcloud deploy command to install the Sensu
client and Fluentd tools on all overcloud nodes. For example:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml -e network-environment.yaml -e
~/templates/monitoring-environment.yaml -e ~/templates/logging-environment.yaml --control-scale 3
--compute-scale 1 --ntp-server 192.168.122.10

12.3. INSTALL THE SERVER-SIDE COMPONENTS

NOTE

Red Hat does not support the server-side components and their deployment process.

You can use the opstools-ansible playbook to install the server-side components onto Red Hat
Enterprise Linux 7. These server-side components include availability monitoring and centralized
logging services that complement the Red Hat-supported client-side components. The most tested
opstools-ansible scenario is the deployment of server-side components onto CentOS 7. Detailed
instructions can be found in the README.md: https://github.com/centos-opstools/opstools-ansible

12.4. MONITOR THE OPENSTACK PLATFORM

See the Sensu documentation for further details about the Sensu stack infrastructure:
https://sensuapp.org/docs/latest/overview/architecture.html

Red Hat supplies a set of check scripts in the osops-tools-monitoring-oschecks package. The majority
of the check scripts only check the APl connection to the OpenStack component. However, certain
scripts also perform additional OpenStack resource tests for OpenStack Compute (nova), OpenStack
Block Storage (cinder), OpenStack Image (glance), and OpenStack Networking (neutron). For example,
the OpenStack Identity (keystone) API check gives the following result when keystone is running:

I OK: Got a token, Keystone API is working.

12.5. VALIDATE THE SENSU CLIENT INSTALLATION

1. Check the status of the sensu-client on each overcloud node:

I # systemctl status sensu-client

2. Review the error log for any issues: /var/log/sensu/sensu-client.log

101

https://github.com/centos-opstools/opstools-ansible
https://sensuapp.org/docs/latest/overview/architecture.html

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

3. Verify that each overcloud node has the /etc/sensu/conf.d/rabbitmg.json file that sets the IP
address of the monitoring server.

12.6. REVIEW THE STATE OF A NODE

If you have a deployment of the Uchiwa dashboard, you can use it with the Sensu server to review the
state of your nodes:

1. Login to the Uchiwa dashboard and click the Data Center tab to confirm that the Data Center is
operational.

I http://<SERVER_IP_ADDRESS>/uchiwa

2. Check that all overcloud nodes are in a Connected state.

3. At asuitable time, reboot one of the overcloud nodes and review the rebooted node’s status in
the Uchiwa dashboard. After the reboot completes, verify that the node successfully re-
connects to the Sensu server and starts executing checks.

12.7. REVIEW THE STATE OF AN OPENSTACK SERVICE
This example tests the monitoring of the openstack-ceilometer-central service.

1. Confirm that the openstack-ceilometer-central service is running:

I systemctl status openstack-ceilometer-central.service

2. Connect to the Uchiwa dashboard and confirm that a successful ceilometer check is present
and running as defined in the ceilometer JSON file.

3. Stop the openstack-ceilometer-central service.

NOTE

This may disrupt services, so run this test at an appropriate time.

I systemctl stop openstack-ceilometer-central.service

4. Login to the Uchiwa dashboard and confirm that the failed ceilometer check has been
reported.

5. Start the openstack-ceilometer-central service:

I systemctl start openstack-ceilometer-central.service

6. Login to the Uchiwa dashboard and view the time interval between the ceilometer check
reports to confirm that the check runs in the time interval defined in the ceilometer JSON file.

102

CHAPTER 13. SECURITY ENHANCEMENTS

CHAPTER13. SECURITY ENHANCEMENTS

The following sections provide some suggestions to harden the security of your overcloud.

13.1. MANAGING THE OVERCLOUD FIREWALL

Each of the core OpenStack Platform services contains firewall rules in their respective composable
service templates. This automatically creates a default set of firewall rules for each overcloud node.

The overcloud Heat templates contain a set of parameters to help with additional firewall management:

ManageFirewall

Defines whether to automatically manage the firewall rules. Set to true to allow Puppet to
automatically configure the firewall on each node. Set to false if you want to manually manage the
firewall. The default is true.

PurgeFirewallRules

Defines whether to purge the default Linux firewall rules before configuring new ones. The default is
false.

If ManageFirewall is set to true, you can create additional firewall rules on deployment. Set the
tripleo::firewall::firewall_rules hieradata using a configuration hook (see Section 4.5, “Puppet:
Customizing Hieradata for Roles") in an environment file for your overcloud. This hieradata is a hash
containing the firewall rule names and their respective parameters as keys, all of which are optional:

port

The port associated to the rule.
dport

The destination port associated to the rule.
sport

The source port associated to the rule.
proto

The protocol associated to the rule. Defaults to tep.
action

The action policy associated to the rule. Defaults to accept.
jump

The chain to jump to. If present, it overrides action.
state

An Array of states associated to the rule. Defaults to ['NEW'].
source

The source IP address associated to the rule.
iniface

The network interface associated to the rule.
chain

The chain associated to the rule. Defaults to INPUT.
destination

The destination CIDR associated to the rule.

103

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

The following example demonstrates the syntax of the firewall rule format:

ExtraConfig:
tripleo::firewall::firewall_rules:

'300 allow custom application 1"
port: 999
proto: udp
action: accept

'301 allow custom application 2":
port: 8081
proto: tcp
action: accept

This applies two additional firewall rules to all nodes through ExtraConfig.

NOTE

Each rule name becomes the comment for the respective iptables rule. Note also each
rule name starts with a three-digit prefix to help Puppet order all defined rules in the final
iptables file. The default OpenStack Platform rules use prefixes in the 000 to 200 range.

13.2. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL
(SNMP) STRINGS

The director provides a default read-only SNMP configuration for your overcloud. It is advisable to
change the SNMP strings to mitigate the risk of unauthorized users learning about your network devices.

Set the following hieradata using the ExtraConfig hook in an environment file for your overcloud:

snmp::ro_community

IPv4 read-only SNMP community string. The default value is public.
snmp::ro_community6

IPv6 read-only SNMP community string. The default value is public.
snmp::ro_network

Network that is allowed to RO query the daemon. This value can be a string or an array. Default value
is 127.0.0.1.

snmp::ro_network6

Network that is allowed to RO query the daemon with IPv6. This value can be a string or an array.
The default value is ::1/128.

snmp::snmpd_config
Array of lines to add to the snmpd.conf file as a safety valve. The default value is []. See the SNMP
Configuration File web page for all available options.

For example:

parameter_defaults:
ExtraConfig:
snmp::ro_community: mysecurestring
snmp::ro_community6: myvesecurestring

This changes the read-only SNMP community string on all nodes.

104

http://www.net-snmp.org/docs/man/snmpd.conf.html

CHAPTER 13. SECURITY ENHANCEMENTS

13.3. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

If you enabled SSL/TLS in the overcloud (see Chapter 9, Enabling SSL/TLS on the Overcloud), you

might want to harden the SSL/TLS ciphers and rules used with the HAProxy configuration. This helps

avoid SSL/TLS vulnerabilities, such as the POODLE vulnerability.
Set the following hieradata using the ExtraConfig hook in an environment file for your overcloud:

tripleo::haproxy::ssl_cipher_suite

The cipher suite to use in HAProxy.
tripleo::haproxy::ssl_options

The SSL/TLS rules to use in HAProxy.

For example, you might aim to use the following cipher and rules:

® Cipher: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-
POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-

SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-

RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-
AES256-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-

ECDSA-AES256-SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-
AES128-SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-

CBC3-SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-

SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-

SHA:DES-CBC3-SHA:!DSS
® Rules: no-sslv3 no-tls-tickets

Create an environment file with the following content:

parameter_defaults:
ExtraConfig:
tripleo::haproxy::ssl_cipher_suite: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-
CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-

SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-

AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-

SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-

SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RSA-

AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RSA-DES-

CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-

SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:IDSS
tripleo::haproxy::ssl_options: no-sslv3 no-tls-tickets

: L NOTE
A 4 The cipher collection is one continuous line.

Include this environment file with your overcloud creation.

105

https://access.redhat.com/solutions/1291123

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

CHAPTER 14. OTHER CONFIGURATIONS

14.1. CONFIGURING EXTERNAL LOAD BALANCING

An Overcloud uses multiple Controllers together as a high availability cluster, which ensures maximum
operational performance for your OpenStack services. In addition, the cluster provides load balancing
for access to the OpenStack services, which evenly distributes traffic to the Controller nodes and
reduces server overload for each node. It is also possible to use an external load balancer to perform this
distribution. For example, an organization might use their own hardware-based load balancer to handle
traffic distribution to the Controller nodes.

For more information about configuring external load balancing, see the dedicated External Load
Balancing for the Overcloud guide for full instructions.

14.2. CONFIGURING IPV6 NETWORKING

As a default, the Overcloud uses Internet Protocol version 4 (IPv4) to configure the service endpoints.
However, the Overcloud also supports Internet Protocol version 6 (IPv6) endpoints, which is useful for
organizations that support IPv6 infrastructure. The director includes a set of environment files to help
with creating IPv6-based Overclouds.

For more information about configuring IPv6 in the Overcloud, see the dedicated IPv6 Networking for
the Overcloud guide for full instructions.

106

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/external-load-balancing-for-the-overcloud
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/ipv6-networking-for-the-overcloud

APPENDIX A. NETWORK ENVIRONMENT OPTIONS

APPENDIX A. NETWORK ENVIRONMENT OPTIONS

Table A.1. Network Environment Options

Parameter

Description

Example

InternalApiNetCidr

The network and subnet for the
Internal APl network

StorageNetCidr The network and subnet for the
Storage network

StorageMgmtNetCidr The network and subnet for the
Storage Management network

TenantNetCidr The network and subnet for the

ExternalNetCidr

InternalApiAllocationPools

Tenant network

The network and subnet for the
External network

The allocation pool for the Internal

17217.0.0/24

[{start. 172.17.0.10, end:

API network in a tuple format 172.17.0.200%]
StorageAllocationPools The allocation pool for the

Storage network in a tuple format
StorageMgmtAllocationPools The allocation pool for the

Storage Management network in

a tuple format
TenantAllocationPools The allocation pool for the Tenant

network in a tuple format
ExternalAllocationPools The allocation pool for the

External network in a tuple format
InternalApiNetworkVlanID The VLAN ID for the Internal API 200

StorageNetworkVlanID

StorageMgmtNetworkVlanID

TenantNetworkVlanID

network

The VLAN ID for the Storage
network

The VLAN ID for the Storage
Management network

The VLAN ID for the Tenant
network

107

Parameter

ExternalNetworkVlanID

ExternallnterfaceDefaultRoute

ControlPlaneDefaultRoute

ControlPlaneSubnetCidr

EC2Metadatalp

DnsServers

BondInterfaceOvsOptions

NeutronFlatNetworks

NeutronExternalNetworkBridge

NeutronBridgeMappings

NeutronPubliclnterface

NeutronNetworkType

108

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

Description

The VLAN ID for the External
network

The gateway IP address for the
External network

Gateway router for the
Provisioning network (or
Undercloud IP)

CIDR subnet mask length for
provisioning network

The IP address of the EC2
metadata server. Generally the IP
of the Undercloud.

Define the DNS servers for the
Overcloud nodes. Include a
maximum of two.

The options for bonding
interfaces

Defines the flat networks to
configure in neutron plugins.
Defaults to "datacentre” to
permit external network creation

An Open vSwitch bridge to create
on each hypervisor. Typically, this
should not need to be changed.

The logical to physical bridge
mappings to use. Defaults to
mapping the external bridge on
hosts (br-ex) to a physical name
(datacentre). You would use this
for the default floating network

Defines the interface to bridge
onto br-ex for network nodes

The tenant network type for
Neutron

Example

10.1.2.1

ControlPlaneDefaultRoute:
192.0.2.254

ControlPlaneSubnetCidr: 24

EC2Metadatalp: 192.0.2.1

DnsServers: ['8.8.8.8","8.8.4.4"]

BondInterfaceOvsOptions:"bond_
mode=balance-slb"

NeutronFlatNetworks:
"datacentre"

NeutronExternalNetworkBridge:

NeutronBridgeMappings:
"datacentre:br-ex"

NeutronPubliclnterface: "ethO"

NeutronNetworkType: "vxlan"

Parameter

NeutronTunnelTypes

NeutronTunnelldRanges

NeutronVniRanges

NeutronEnableTunnelling

NeutronNetworkVLANRanges

NeutronMechanismDrivers

APPENDIX A. NETWORK ENVIRONMENT OPTIONS

Description

The tunnel types for the neutron
tenant network. To specify
multiple values, use a comma
separated string.

Ranges of GRE tunnel IDs to
make available for tenant network
allocation

Ranges of VXLAN VNI IDs to
make available for tenant network
allocation

Defines whether to enable or
disable tunneling in case you aim
to use a VLAN segmented
network or flat network with
Neutron. Defaults to enabled

The neutron ML2 and Open
vSwitch VLAN mapping range to
support. Defaults to permitting
any VLAN on the datacentre
physical network.

The mechanism drivers for the
neutron tenant network. Defaults
to "openvswitch". To specify
multiple values, use a comma-
separated string

Example

NeutronTunnelTypes: gre,vxlan

NeutronTunnelldRanges "1:1000"

NeutronVniRanges: "1:1000"

NeutronNetworkVLANRanges:
"datacentre:1:1000"

NeutronMechanismDrivers:
openvswitch,IZ2population

109

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

APPENDIX B. NETWORK INTERFACE TEMPLATE EXAMPLES

This appendix provides a few example Heat templates to demonstrate network interface configuration.

B.1. CONFIGURING INTERFACES

Individual interfaces might require modification. The example below shows modifications required to use
the second NIC to connect to an infrastructure network with DHCP addresses, and to use the third and
fourth NICs for the bond:

network_config:
Add a DHCP infrastructure network to nic2
type: interface
name: nic2
use_dhcp: true
type: ovs_bridge
name: br-bond
members:
type: ovs_bond
name: bond1
ovs_options: {get_param: BondInterfaceOvsOptions}
members:
Modify bond NICs to use nic3 and nic4
type: interface
name: nic3
primary: true
type: interface
name: nic4

The network interface template uses either the actual interface name ("ethQ", "eth1", "enp0s25") or a

set of numbered interfaces ("nicl”, "nic2", "nic3"). The network interfaces of hosts within a role do not
have to be exactly the same when using numbered interfaces (nic1, nic2, etc.) instead of named
interfaces (eth0, eno2, etc.). For example, one host might have interfaces em1 and em2, while another
has eno1 and eno2, but you can refer to both hosts' NICs as nic1 and nic2.
The order of numbered interfaces corresponds to the order of named network interface types:

e ethXinterfaces, such as eth0, eth1, etc. These are usually onboard interfaces.

e enoXinterfaces, such as eno0, eno1, etc. These are usually onboard interfaces.

e enXinterfaces, sorted alpha numerically, such as enp3s0, enp3s1, ens3, etc. These are usually
add-on interfaces.

The numbered NIC scheme only takes into account the interfaces that are live, for example, if they have
a cable attached to the switch. If you have some hosts with four interfaces and some with six interfaces,
you should use nic1 to nic4 and only plug four cables on each host.

B.2. CONFIGURING ROUTES AND DEFAULT ROUTES

110

APPENDIX B. NETWORK INTERFACE TEMPLATE EXAMPLES

There are two ways a host has default routes set. If the interface is using DHCP and the DHCP server
offers a gateway address, the system uses a default route for that gateway. Otherwise, you can set a
default route on an interface with a static IP.

Although the Linux kernel supports multiple default gateways, it only uses the one with the lowest
metric. If there are multiple DHCP interfaces, this can result in an unpredictable default gateway. In this
case, it is recommended to set defroute=no for interfaces other than the one using the default route.

For example, you might want a DHCP interface (nic3) to be the default route. Use the following YAML
to disable the default route on another DHCP interface (nic2):

No default route on this DHCP interface
- type: interface
name: nic2
use_dhcp: true
defroute: false
Instead use this DHCP interface as the default route
- type: interface
name: nic3
use_dhcp: true

NOTE

The defroute parameter only applies to routes obtained through DHCP.

To set a static route on an interface with a static IP, specify a route to the subnet. For example, you can
set a route to the 10.1.2.0/24 subnet through the gateway at 172.17.0.1 on the Internal API network:

- type: vlan
device: bond1
vlan_id: {get_param: InternalApiNetworkVlanID}
addresses:
- ip_netmask: {get_param: InternalApilpSubnet}
routes:
- ip_netmask: 10.1.2.0/24
next_hop: 172.17.0.1

B.3. USING THE NATIVE VLAN FOR FLOATING IPS

Neutron uses a default empty string for its external bridge mapping. This maps the physical interface to
the br-int instead of using br-ex directly. This model allows multiple Floating IP networks using either
VLANSs or multiple physical connections.

Use the NeutronExternalNetworkBridge parameter in the parameter_defaults section of your
network isolation environment file:

parameter_defaults:
Set to "br-ex" when using floating IPs on the native VLAN
NeutronExternalNetworkBridge: "™

Using only one Floating IP network on the native VLAN of a bridge means you can optionally set the
neutron external bridge. This results in the packets only having to traverse one bridge instead of two,
which might result in slightly lower CPU usage when passing traffic over the Floating IP network.

m

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

B.4. USING THE NATIVE VLAN ON A TRUNKED INTERFACE

If a trunked interface or bond has a network on the native VLAN, the IP addresses are assigned directly
to the bridge and there will be no VLAN interface.

For example, if the External network is on the native VLAN, a bonded configuration looks like this:

network_config:
- type: ovs_bridge
name: {get_input: bridge_name}
dns_servers: {get_param: DnsServers}
addresses:
- ip_netmask: {get_param: ExternallpSubnet}
routes:
- ip_netmask: 0.0.0.0/0
next_hop: {get_param: ExternallnterfaceDefaultRoute}
members:
- type: ovs_bond
name: bond1
ovs_options: {get_param: BondInterfaceOvsOptions}
members:
- type: interface
name: nic3
primary: true
- type: interface
name: nic4

NOTE

When moving the address (and possibly route) statements onto the bridge, remove the
corresponding VLAN interface from the bridge. Make the changes to all applicable roles.
The External network is only on the controllers, so only the controller template requires a
change. The Storage network on the other hand is attached to all roles, so if the Storage
network is on the default VLAN, all roles require modifications.

B.5. CONFIGURING JUMBO FRAMES

The Maximum Transmission Unit (MTU) setting determines the maximum amount of data transmitted
with a single Ethernet frame. Using a larger value results in less overhead since each frame adds data in
the form of a header. The default value is 1500 and using a higher value requires the configuration of the
switch port to support jumbo frames. Most switches support an MTU of at least 9000, but many are
configured for 1500 by default.

The MTU of a VLAN cannot exceed the MTU of the physical interface. Make sure to include the MTU
value on the bond and/or interface.

The Storage, Storage Management, Internal API, and Tenant networking all benefit from jumbo frames.

In testing, Tenant networking throughput was over 300% greater when using jumbo frames in
conjunction with VXLAN tunnels.

12

APPENDIX B. NETWORK INTERFACE TEMPLATE EXAMPLES

NOTE

It is recommended that the Provisioning interface, External interface, and any floating IP
interfaces be left at the default MTU of 1500. Connectivity problems are likely to occur
otherwise. This is because routers typically cannot forward jumbo frames across Layer 3

boundaries.

- type: ovs_bond
name: bond1
mtu: 9000
ovs_options: {get_param: BondInterfaceOvsOptions}
members:

- type: interface
name: nic3
mtu: 9000
primary: true

- type: interface
name: nic4
mtu: 9000

The external interface should stay at default
- type: vlan
device: bond1
vlan_id: {get_param: ExternalNetworkVlanID}
addresses:
- ip_netmask: {get_param: ExternallpSubnet}
routes:
- ip_netmask: 0.0.0.0/0
next_hop: {get_param: ExternallnterfaceDefaultRoute}

MTU 9000 for Internal API, Storage, and Storage Management
- type: vlan

device: bond1

mtu: 9000

vlan_id: {get_param: InternalApiNetworkVlanID}

addresses:

- ip_netmask: {get_param: InternalApilpSubnet}

13

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

APPENDIX C. NETWORKINTERFACE PARAMETERS

The following tables define the Heat template parameters for network interface types.

C.1. INTERFACE OPTIONS

Option

name

use_dhcp

use_dhcpv6

addresses

routes

primary

defroute

persist_mapping

dhclient_args

dns_servers

C.2. VLAN OPTIONS

Option

vian_id

14

Default

False

False

1500

False

True

False

None

None

Default

Description

Name of the Interface

Use DHCP to get an IP address

Use DHCP to get a v6 IP address

A sequence of IP addresses
assigned to the interface

A sequence of routes assigned to
the interface

The maximum transmission unit
(MTU) of the connection

Defines the interface as the
primary interface

Use this interface as the default
route

Write the device alias
configuration instead of the
system names

Arguments to pass to the DHCP
client

List of DNS servers to use for the
interface

Description

The VLAN ID

device

use_dhcp False

use_dhcpv6 False

addresses

routes

mtu 1500

primary False

defroute True

persist_mapping False

dhclient_args None

dns_servers None
C.3. OVS BOND OPTIONS

Option Default

name

use_dhcp False

use_dhcpv6 False

addresses

APPENDIX C. NETWORK INTERFACE PARAMETERS

The VLAN's parent device to
attach the VLAN. For example,
use this parameter to attach the
VLAN to a bonded interface
device.

Use DHCP to get an IP address

Use DHCP to get a v6 IP address

A sequence of IP addresses
assigned to the VLAN

A sequence of routes assigned to
the VLAN

The maximum transmission unit
(MTU) of the connection

Defines the VLAN as the primary
interface

Use this interface as the default
route

Write the device alias
configuration instead of the
system names

Arguments to pass to the DHCP
client

List of DNS servers to use for the
VLAN

Description

Name of the bond

Use DHCP to get an IP address

Use DHCP to get a v6 IP address

A sequence of IP addresses
assigned to the bond

115

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

routes

mtu 1500

primary False

members

ovs_options

ovs_extra

defroute True

persist_mapping False

dhclient_args None

dns_servers None
C.4. OVS BRIDGE OPTIONS

Option Default

name

use_dhcp False

use_dhcpv6 False

addresses

routes

16

A sequence of routes assigned to
the bond

The maximum transmission unit
(MTU) of the connection

Defines the interface as the
primary interface

A sequence of interface objects
to use in the bond

A set of options to pass to OVS
when creating the bond

A set of options to to set as the
OVS_EXTRA parameter in the
bond's network configuration file

Use this interface as the default
route

Write the device alias
configuration instead of the
system names

Arguments to pass to the DHCP
client

List of DNS servers to use for the
bond

Description

Name of the bridge

Use DHCP to get an IP address

Use DHCP to get a v6 IP address

A sequence of IP addresses
assigned to the bridge

A sequence of routes assigned to
the bridge

members

ovs_options

ovs_extra

defroute

persist_mapping

dhclient_args

dns_servers

1500

True

False

None

None

C.5.LINUX BOND OPTIONS

Option

name

use_dhcp

use_dhcpv6

addresses

routes

Default

False

False

1500

APPENDIX C. NETWORK INTERFACE PARAMETERS

The maximum transmission unit
(MTU) of the connection

A sequence of interface, VLAN,
and bond objects to use in the
bridge

A set of options to pass to OVS
when creating the bridge

A set of options to to set as the
OVS_EXTRA parameter in the
bridge’s network configuration
file

Use this interface as the default
route

Write the device alias
configuration instead of the
system names

Arguments to pass to the DHCP
client

List of DNS servers to use for the
bridge

Description

Name of the bond

Use DHCP to get an IP address

Use DHCP to get a v6 IP address

A sequence of IP addresses
assigned to the bond

A sequence of routes assigned to
the bond

The maximum transmission unit
(MTU) of the connection

17

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

primary False Defines the interface as the
primary interface

members A sequence of interface objects
to use in the bond

bonding_options A set of options when creating
the bond. For more information
on Linux bonding options, see
4.5.1. Bonding Module Directives
in the Red Hat Enterprise Linux 7
Networking Guide.

defroute True Use this interface as the default
route
persist_mapping False Write the device alias

configuration instead of the
system names

dhclient_args None Arguments to pass to the DHCP
client

dns_servers None List of DNS servers to use for the
bond

C.6. LINUX BRIDGE OPTIONS

Option Default Description

name Name of the bridge

use_dhcp False Use DHCP to get an IP address
use_dhcpv6 False Use DHCP to get a v6 IP address
addresses A sequence of IP addresses

assigned to the bridge

routes A sequence of routes assigned to
the bridge
mtu 1500 The maximum transmission unit

(MTU) of the connection

18

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Using_Channel_Bonding.html#s3-modules-bonding-directives

APPENDIX C. NETWORK INTERFACE PARAMETERS

members A sequence of interface, VLAN,
and bond objects to use in the
bridge

defroute True Use this interface as the default
route

persist_mapping False Write the device alias

configuration instead of the
system names

dhclient_args None Arguments to pass to the DHCP
client

dns_servers None List of DNS servers to use for the
bridge

19

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

APPENDIX D. BONDING OPTIONS

You can bundle multiple physical NICs together to form a single logical channel known as a bond. Bonds
can be configured to provide redundancy for high availability systems or increased throughput.

D.1. NETWORK INTERFACE BONDING AND LINK AGGREGATION
CONTROL PROTOCOL (LACP)

Red Hat OpenStack Platform supports Linux bonds, Open vSwitch (OVS) kernel bonds, and OVS-
DPDK bonds.

The bonds can be used with the optional Link Aggregation Control Protocol (LACP). LACP is a
negotiation protocol that creates a dynamic bond for load balancing and fault tolerance.

On any network that interacts directly with virtual machine instances, Red Hat recommends the use of
OVS kernel bonds (bond type ovs_bond) or OVS-DPDK bonds (bond type ovs_dpdk_bond) with LACP.
However, do not combine OVS kernel bonds and OVS-DPDK bonds on the same node.

On control and storage networks, Red Hat recommends the use of Linux bonds with VLAN and LACP,
because OVS bonds carry the potential for control plane disruption that can occur when OVS or the
neutron agent is restarted for updates, hot fixes, and other events. The Linux bond/LACP/VLAN
configuration provides NIC management without the OVS disruption potential. Here is an example
configuration of a Linux bond with one VLAN.

params:
$network_config:
network_config:

- type: linux_bond

name: bond_api
bonding_options: "mode=active-backup"
use_dhcp: false
dns_servers:

get_param: DnsServers
members:
- type: interface

name: nic3

primary: true
- type: interface

name: nic4

- type: vlan
vlan_id:
get_param: InternalApiNetworkVlanID
device: bond_api
addresses:
- ip_netmask:
get_param: InternalApilpSubnet

D.2. OPEN VSWITCH BONDING OPTIONS

The Overcloud provides networking through Open vSwitch (OVS). The following table describes
support for OVS kernel and OVS-DPDK for bonded interfaces. The OVS/OVS-DPDK balance-tcp
mode is available as a technology preview only.

120

NOTE

APPENDIX D. BONDING OPTIONS

The bonding options described in the following table require OVS 2.9 or later.

OVS Bond mode

active-backup

balance-slb

balance-tcp (tech
preview only)

Application

High availability (active-
passive)

Increased throughput
(active-active)

Not recommended
(active-active)

Notes

Compatible LACP
options

active, passive, or off

) active, passive, or off
Performance is

affected by
extra parsing
per packet.

Thereis a
potential for
vhost-user lock
contention.

) . active or passive
Recirculation

needed for L4
hashing has a
performance
impact.

As with
balance-slb,
performance is
affected by
extra parsing
per packet and
thereis a
potential for
vhost-user lock
contention.

LACP must be
enabled.

You can configure a bonded interface in the network environment file using the
BondInterfaceOvsOptions parameter as shown in this example:

parameter_defaults:

BondInterfaceOvsOptions: "bond_mode=balance-slb"

D.3. CONSIDERATIONS FOR BALANCE-TCP MODE

If you decide to use balance-tcp mode despite its tech preview status and the known performance

issues, you must manually delete the following lines from each network interface configuration (NIC) file

before deployment:

I constraints:

Red Hat OpenStack Platform 10 Advanced Overcloud Customization

- allowed_pattern: "A((?!balance.tcp).)*$"
description: |
The balance-tcp bond mode is known to cause packet loss and
should not be used in BondInterfaceOvsOptions.

After you delete the constraint from each NIC file, you can set the bond mode option in the bond
interface parameter:

BondInterfaceOvsOptions:
"bond_mode=balance-tcp"

D.4. LINUX BONDING OPTIONS

You can use LACP with Linux bonding in your network interface templates. For example:

- type: linux_bond
name: bond1
members:
- type: interface
name: nic2
- type: interface
name: nic3
bonding_options: "mode=802.3ad lacp_rate=[fast|slow] updelay=1000 miimon=100"

® mode - enables LACP.
® Jacp_rate - defines whether LACP packets are sent every 1second, or every 30 seconds.

e updelay - defines the minimum amount of time that an interface must be active before it is
used for traffic (this helps mitigate port flapping outages).

® miimon - the interval in milliseconds that is used for monitoring the port state using the driver’s
MIIMON functionality.

For more information on Linux bonding options, see 4.5.1. Bonding Module Directives in the Red Hat
Enterprise Linux 7 Networking Guide.

D.5. BONDING OPTIONS

The following table provides some explanation of these options and some alternatives depending on
your hardware.

Table D.1. Bonding Options

122

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Using_Channel_Bonding.html#s3-modules-bonding-directives

bond_mode=balance-sib

bond_mode=active-backup

lacp=[active|passive|off]

other-config:lacp-fallback-ab=true

other_config:lacp-time=[fast|slow]

other_config:bond-detect-mode=
[miimon|carrier]

other_config:bond-miimon-interval=100

bond_updelay=1000

other_config:bond-rebalance-interval=10000

APPENDIX D. BONDING OPTIONS

Balances flows based on source MAC address and
output VLAN, with periodic rebalancing as traffic
patterns change. Bonding with balance-slb allows a
limited form of load balancing without the remote
switch’s knowledge or cooperation. SLB assigns each
source MAC and VLAN pair to a link and transmits all
packets from that MAC and VLAN through that link.
This mode uses a simple hashing algorithm based on
source MAC address and VLAN number, with
periodic rebalancing as traffic patterns change. This
mode is similar to mode 2 bonds used by the Linux
bonding driver.

This mode offers active/standby failover where the
standby NIC resumes network operations when the
active connection fails. Only one MAC address is
presented to the physical switch. This mode does not
require any special switch support or configuration,
and works when the links are connected to separate
switches. This mode does not provide load balancing.

Controls the Link Aggregation Control Protocol
(LACP) behavior. Only certain switches support
LACP. If your switch does not support LACP, use
bond_mode=balance-slb or
bond_mode=active-backup.

Sets the LACP behavior to switch to
bond_mode=active-backup as a fallback.

Set the LACP heartbeat to 1second (fast) or 30
seconds (slow). The default is slow.

Set the link detection to use miimon heartbeats
(miimon) or monitor carrier (carrier). The default is
carrier.

If using miimon, set the heartbeat interval in
milliseconds.

Number of milliseconds a link must be up to be
activated to prevent flapping.

Milliseconds between rebalancing flows between
bond members. Set to zero to disable.

123

	Table of Contents
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. UNDERSTANDING HEAT TEMPLATES
	2.1. HEAT TEMPLATES
	2.2. ENVIRONMENT FILES
	2.3. CORE OVERCLOUD HEAT TEMPLATES
	2.4. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
	2.5. USING CUSTOMIZED CORE HEAT TEMPLATES

	CHAPTER 3. PARAMETERS
	3.1. EXAMPLE 1: CONFIGURING THE TIMEZONE
	3.2. EXAMPLE 2: DISABLING LAYER 3 HIGH AVAILABILITY (L3HA)
	3.3. EXAMPLE 3: CONFIGURING THE TELEMETRY DISPATCHER
	3.4. EXAMPLE 4: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT
	3.5. EXAMPLE 5: ENABLING AND DISABLING PARAMETERS
	3.6. IDENTIFYING PARAMETERS TO MODIFY

	CHAPTER 4. CONFIGURATION HOOKS
	4.1. FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION
	4.2. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD ROLES
	4.3. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
	4.4. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
	4.5. PUPPET: CUSTOMIZING HIERADATA FOR ROLES
	4.6. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES
	4.7. PUPPET: APPLYING CUSTOM MANIFESTS

	CHAPTER 5. OVERCLOUD REGISTRATION
	5.1. REGISTERING THE OVERCLOUD WITH AN ENVIRONMENT FILE
	5.2. EXAMPLE 1: REGISTERING TO THE CUSTOMER PORTAL
	5.3. EXAMPLE 2: REGISTERING TO A RED HAT SATELLITE 6 SERVER
	5.4. EXAMPLE 3: REGISTERING TO A RED HAT SATELLITE 5 SERVER

	CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES
	6.1. EXAMINING CUSTOM ROLE ARCHITECTURE
	6.2. EXAMINING COMPOSABLE SERVICE ARCHITECTURE
	6.3. ENABLING DISABLED SERVICES
	6.4. ADDING AND REMOVING SERVICES FROM ROLES
	6.5. CREATING A NEW ROLE
	6.6. CREATING A GENERIC NODE WITH NO SERVICES
	6.7. CREATING HYPER-CONVERGED COMPUTE AND CEPH SERVICES
	6.8. SERVICE ARCHITECTURE: MONOLITHIC CONTROLLER
	6.9. SERVICE ARCHITECTURE: SPLIT CONTROLLER
	6.10. SERVICE ARCHITECTURE: STANDALONE ROLES
	6.11. COMPOSABLE SERVICE REFERENCE

	CHAPTER 7. ISOLATING NETWORKS
	7.1. CREATING CUSTOM INTERFACE TEMPLATES
	7.2. CREATING A NETWORK ENVIRONMENT FILE
	7.3. ASSIGNING OPENSTACK SERVICES TO ISOLATED NETWORKS
	7.4. SELECTING NETWORKS TO DEPLOY

	CHAPTER 8. CONTROLLING NODE PLACEMENT
	8.1. ASSIGNING SPECIFIC NODE IDS
	8.2. ASSIGNING CUSTOM HOSTNAMES
	8.3. ASSIGNING PREDICTABLE IPS
	8.4. ASSIGNING PREDICTABLE VIRTUAL IPS

	CHAPTER 9. ENABLING SSL/TLS ON THE OVERCLOUD
	9.1. INITIALIZING THE SIGNING HOST
	9.2. CREATING A CERTIFICATE AUTHORITY
	9.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
	9.4. CREATING AN SSL/TLS KEY
	9.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
	9.6. CREATING THE SSL/TLS CERTIFICATE
	9.7. ENABLING SSL/TLS
	9.8. INJECTING A ROOT CERTIFICATE
	9.9. CONFIGURING DNS ENDPOINTS
	9.10. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION
	9.11. UPDATING SSL/TLS CERTIFICATES

	CHAPTER 10. STORAGE CONFIGURATION
	10.1. CONFIGURING NFS STORAGE
	10.2. CONFIGURING CEPH STORAGE
	10.3. CONFIGURING THIRD PARTY STORAGE

	CHAPTER 11. CONFIGURING CONTAINERIZED COMPUTE NODES
	11.1. INCREASING THE STACK DEPTH
	11.2. EXAMINING THE CONTAINERIZED COMPUTE ENVIRONMENT FILE (DOCKER.YAML)
	11.3. UPLOADING THE ATOMIC HOST IMAGE
	11.4. USING A LOCAL REGISTRY
	11.5. INCLUDING ENVIRONMENT FILES IN THE OVERCLOUD DEPLOYMENT

	CHAPTER 12. MONITORING TOOLS CONFIGURATION
	12.1. ARCHITECTURE
	12.1.1. Centralized Logging
	12.1.2. Availability Monitoring

	12.2. INSTALL THE CLIENT-SIDE TOOLS
	12.2.1. Set Centralized Logging Client Parameters
	12.2.2. Set Availability Monitoring Client Parameters
	12.2.3. Install Operational Tools on Overcloud Nodes

	12.3. INSTALL THE SERVER-SIDE COMPONENTS
	12.4. MONITOR THE OPENSTACK PLATFORM
	12.5. VALIDATE THE SENSU CLIENT INSTALLATION
	12.6. REVIEW THE STATE OF A NODE
	12.7. REVIEW THE STATE OF AN OPENSTACK SERVICE

	CHAPTER 13. SECURITY ENHANCEMENTS
	13.1. MANAGING THE OVERCLOUD FIREWALL
	13.2. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) STRINGS
	13.3. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

	CHAPTER 14. OTHER CONFIGURATIONS
	14.1. CONFIGURING EXTERNAL LOAD BALANCING
	14.2. CONFIGURING IPV6 NETWORKING

	APPENDIX A. NETWORK ENVIRONMENT OPTIONS
	APPENDIX B. NETWORK INTERFACE TEMPLATE EXAMPLES
	B.1. CONFIGURING INTERFACES
	B.2. CONFIGURING ROUTES AND DEFAULT ROUTES
	B.3. USING THE NATIVE VLAN FOR FLOATING IPS
	B.4. USING THE NATIVE VLAN ON A TRUNKED INTERFACE
	B.5. CONFIGURING JUMBO FRAMES

	APPENDIX C. NETWORK INTERFACE PARAMETERS
	C.1. INTERFACE OPTIONS
	C.2. VLAN OPTIONS
	C.3. OVS BOND OPTIONS
	C.4. OVS BRIDGE OPTIONS
	C.5. LINUX BOND OPTIONS
	C.6. LINUX BRIDGE OPTIONS

	APPENDIX D. BONDING OPTIONS
	D.1. NETWORK INTERFACE BONDING AND LINK AGGREGATION CONTROL PROTOCOL (LACP)
	D.2. OPEN VSWITCH BONDING OPTIONS
	D.3. CONSIDERATIONS FOR BALANCE-TCP MODE
	D.4. LINUX BONDING OPTIONS
	D.5. BONDING OPTIONS

