& RedHat

Red Hat OpenStack Platform 10

OpenStack Integration Test Suite Guide

Introduction to the OpenStack Integration Test Suite

Last Updated: 2020-02-25

Red Hat OpenStack Platform 10 OpenStack Integration Test Suite Guide

Introduction to the OpenStack Integration Test Suite

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides instructions to install, configure and manage the OpenStack Integration Test
Suite in a Red Hat OpenStack Platform environment.

Table of Contents

Table of Contents

[3 Y O AP 3
CHAPTER L. INTRODUGCTION ittt ettt ittt et ee et enaneeaneeeaneenneeeaneeeaneennneennes 4
CHAPTER 2. OPENSTACK INTEGRATION TEST SUITE TESTS . ..ttiiitttiiiiiiieie e rnneennneenns 5
2.1.SCENARIO TESTS 5
2.2. APITESTS 5
CHAPTER 3. INSTALLING THE OPENSTACK INTEGRATIONTESTSUITE iiiiiiiiiiiiiennnennn 6
3.1. USING THE DIRECTOR 6
3.2. PREPARING A MANUAL INSTALLATION 6
3.3.INSTALLING THE OPENSTACK INTEGRATION TEST SUITE PACKAGES 7
3.3.1. List of Tempest Plug-in Packages 7
CHAPTER 4. CONFIGURING THE OPENSTACK INTEGRATIONTESTSUITEttt 9
4.1. CREATING A WORKSPACE 9
4.2. VERIFYING YOUR TEMPEST CONFIGURATION 9
4.3. CHANGING THE LOGGING CONFIGURATION 10
4.4. CONFIGURING MICROVERSION TESTS 10
CHAPTER 5. USING OSTESTRTO RUN TEMPEST ..ttt eit et eieeeneenaneennneennn, n
5.1. RUNNING SMOKE TESTS 11
5.2. RUNNING SPECIFIC TESTS USING WHITELIST FILES 1
5.3. SKIPPING TESTS USING BLACKLIST FILES 12
5.4. RUNNING TESTS IN PARALLEL CONCURRENTLY, OR SERIALLY 12
CHAPTER 6. CLEANING TEMPEST RESOURCES iititiiitttiitttiieieeiereneenaneennneenneenns 13
6.1. PERFORMING A CLEAN UP 13
6.2. PERFORMING A DRY RUN 13
6.3. DELETING TEMPEST OBJECTS 13

Red Hat OpenStack Platform 10 OpenStack Integration Test Suite Guide

PREFACE

PREFACE

This guide provides instructions to install, configure and manage the OpenStack Integration Test Suite
in a Red Hat OpenStack Platform environment.

Red Hat OpenStack Platform 10 OpenStack Integration Test Suite Guide

CHAPTER 1. INTRODUCTION

As OpenStack consists of many different projects, it is important to test their interoperability within your
OpenStack cluster. The OpenStack Integration Test Suite (tempest) automates the integration testing
of your Red Hat OpenStack Platform deployment. Running tests ensures your cluster is working as
expected, and can also provide early warning of potential problems, especially after an upgrade. The
Integration Test Suite contains tests for OpenStack API validation and scenario testing, as well as unit

testing for self-validation. It performs black box testing using the OpenStack public APIs, with ostestr as
the test runner.

CHAPTER 2. OPENSTACK INTEGRATION TEST SUITE TESTS

CHAPTER 2. OPENSTACK INTEGRATION TEST SUITE TESTS

The OpenStack Integration Test Suite has many applications. It acts as a gate for commits to the
OpenStack core projects, it can stress test to generate load on a cloud deployment, and it can perform
CLI tests to check the response formatting of the command line. However, the functionality that we are
concerned with are the scenario tests and APl tests. These tests are run against your OpenStack cloud
deployment. The following sections briefly describe each of these tests and how you can implement
them.

2.1. SCENARIO TESTS
Scenario tests simulate a typical end user action workflow to test the integration points between
services. The testing framework conducts the set up, tests the integration between services, and then it
is torn down. You should tag the tests with which services they relate to, to make it clear which client
libraries the test uses. A scenario is based on a use case, for example:

® Upload animage to the Image Service

® Deploy an instance from the image

® Attach a volume to the instance

® Create a snapshot of the instance

® Detach the volume from the instance

2.2. APITESTS

API tests validate the OpenStack API. Tests use the OpenStack Integration Test Suite implementation
of the OpenStack API. Both valid and invalid JSON can be used to make sure error responses are valid.
Tests can be run independently, and do not rely on the state left by the previous test.

Red Hat OpenStack Platform 10 OpenStack Integration Test Suite Guide

CHAPTER 3. INSTALLING THE OPENSTACK INTEGRATION
TEST SUITE

This section describes how to install the OpenStack Integration Test Suite using either the director or a
manual installation.

3.1. USING THE DIRECTOR

Edit /home/stack/undercloud.conf. By default, enable_tempest is set to false. Change this to true:

I enable_tempest = true

You are now ready to install the tempest packages and plug-ins, described in Section 3.3, “Installing the
OpenStack Integration Test Suite Packages”.

3.2. PREPARING A MANUAL INSTALLATION

To run the OpenStack Integration Test Suite, you need to first install the necessary packages and
create a configuration file that will tell the Integration Test Suite where to find the various OpenStack
services and other testing behaviour switches.

On the controller node, as a root user, create a virtual machine named tempest. This machine must run
Red Hat Enterprise Linux 7.3 or greater; it also needs to be able to reach the cloud, but it does not have
to be part of the cloud. For more information, see Creating Guests with Virt-Manager.

In addition, before installing the OpenStack Integration Test Suite, the following networks are required
within your Red Hat OpenStack Platform environment:

® An external network that can provide a floating IP address.
® A private network.

® These networks must be connected through a router.

1. Create the private network:

$ openstack network create _<network_name>_ --share

$ openstack subnet create _<subnet_name>_ --subnet-range _<address/prefix>_
$ openstack router create _<router_name>_

$ openstack router add subnet _<router_name>_ _<subnet_name>_ --network
_<network_name>_

2. Create the public network:

$ openstack network create _<network_name>_ --external \
--provider-network-type flat
$ openstack subnet create _<subnet_name>_ --subnet-range _<address/prefix>_ \
--gateway _<default_gateway>_ --no-dhcp --network _<network_name>_
$ openstack router set _<router_name>_ --external_gateway _<public_network_name>_
$ neutron router-gateway-set _<router_name>_ _<network_name>_

® Create the required keystone roles:

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/sect-Creating_guests_with_virt_manager.html

CHAPTER 3. INSTALLING THE OPENSTACK INTEGRATION TEST SUITE

$ openstack role create swiftoperator
$ openstack role create heat_stack_owner

You are now ready to install and configure the OpenStack Integration Test Suite within the tempest
virtual machine. For more information, see Section 3.3, “Installing the OpenStack Integration Test Suite
Packages”.

3.3. INSTALLING THE OPENSTACK INTEGRATION TEST SUITE
PACKAGES

1. Install the packages related to the OpenStack Integration Test Suite:
I $ sudo yum install openstack-tempest

However, this command will not install any tempest plug-ins. These are installed manually in the
following steps, depending on your OpenStack installation:

2. Install the appropriate tempest plug-in for each component you have, separated by spaces, in
the following format:

I $ sudo yum install <component1> <component2> <component3>
You can list multiple components in the same command.
Or:

I $ sudo python /usr/share/openstack-tempest-13.0.0/tools/install_test_packages.py

3. Review the list of installed plugins:
I $ tempest list-plugins

See Section 3.3.1, "List of Tempest Plug-in Packages” for a list of available tempest plug-ins for
each OpenStack component.

3.3.1. List of Tempest Plug-in Packages

Component Package Name

aodh python-aodh-tests

ceilometer python-ceilometer-tests

cinder python-cinder-tests

designate python-designate-tests-tempest

Red Hat OpenStack Platform 10 OpenStack Integration Test Suite Guide

Component Package Name

gnocchi python-gnocchi-tests
¢ NOTE
¢ To ensure that the Gnocchi

component installs correctly, install
python-gnocchi-tests.

heat python-heat-tests
horizon python-horizon-tests-tempest
ironic python-ironic-tests
keystone python-keystone-tests
manila python-manila-tests
mistral python-mistral-tests
neutron python-neutron-tests
neutron-fwaas python-neutron-fwaas-tests
neutron-lbaas python-neutron-Ibaas-tests
neutron-vpnaas python-neutron-vpnaas-tests
sahara python-sahara-tests-tempest
zaqar python-zaqar-tests

' NOTE

nova, swift, and glance do not have individual test plugins; their tests reside within the
tempest package.

-

CHAPTER 4. CONFIGURING THE OPENSTACK INTEGRATION TEST SUITE

CHAPTER 4. CONFIGURING THE OPENSTACK INTEGRATION
TEST SUITE

4.1. CREATING A WORKSPACE

1. Source the admin credentials:

® |n the undercloud:

I $ source stackrc

® Orinthe overcloud:

I $ source overcloudrc

2. Initialize tempest:
$cd~
$ mkdir mytempest

$ cd mytempest
$ /usr/share/openstack-tempest-13.0.0/tools/configure-tempest-directory

This creates a tempest workspace named mytempest for your user account.

3. Generate the etc/tempest.conf file:

$ python tools/config_tempest.py --deployer-input ~/tempest-deployer-input.conf --debug --
create identity.uri $OS_AUTH_URL identity.admin_password $OS_PASSWORD --network-
id _<uuid>_

® uuid is the UUID of the external network.

NOTE

For offline systems, you can specify an existing glance image by adding the --
image parameter. For example: --image cirros-0.3.4-x86_64-disk.img

4. You can view a list of existing workspaces:

I $ tempest workspace list

4.2. VERIFYING YOUR TEMPEST CONFIGURATION

1. Generate the .testr.conf in your tempest workspace:
I $ testr init

2. Verify your current tempest configuration, specifying the tempest.conf file that was just
generated:

I $ tempest verify-config -o ~/mytempest/etc/tempest.conf

Red Hat OpenStack Platform 10 OpenStack Integration Test Suite Guide

4.3. CHANGING THE LOGGING CONFIGURATION

The default location for log files is the logs directory within your tempest workspace.

® To change this directory, in ~/mytempest/etc/tempest.conf, under the [DEFAULT] section, set
log_dir to the desired directory:

[DEFAULT]
log_dir = _<directory>_

e |f you have your own logging configuration file, in ~/mytempest/etc/tempest.conf, under the
[DEFAULT] section, set log_config_append to your file:

[DEFAULT]
log_config_append = _<file>_

NOTE

If this is set, all other logging configuration in tempest.conf will be ignored, including
log_dir.

-

4.4. CONFIGURING MICROVERSION TESTS

The OpenStack Integration Test Suite provides stable interfaces to test the API microversions. This
section describes how to implement microversion tests using these interfaces. You first need to
configure options in the tempest.conf configuration file to specify the target microversions. This is to
make sure that the supported microversions match the microversions used in the OpenStack cloud. You
can run multiple microversion tests in a single Integration Test Suite operation by specifying a range of
target microversions.

For example, to limit the range of microversions for the compute service, in the [compute] section of
your configuration file, assign values to the min_microversion and max_microversion parameters:

[compute]
min_microversion = 2.14
max_microversion = latest

10

CHAPTER 5. USING OSTESTR TO RUN TEMPEST

CHAPTER 5. USING OSTESTR TO RUN TEMPEST

Ostestr is an OpenStack wrapper for the testr test runner.

1. You can view a list of the available tests:

I $ ostestr -

NOTE

Before running tests, you can use tempest cleanup --init-saved-state to
capture the current state. This will make cleanup easier. For more information see
Chapter 6, Cleaning Tempest Resources.

2. You can run specific tests using ostestr.
® Torunjust one test, use:
I ostestr --regex '(test_regex)'
® To run multiple tests:

I ostestr --regex '(test1|test2|test3)’

5.1. RUNNING SMOKE TESTS

Smoke testing is a type of preliminary testing which only covers the most important functionality. While
they are not comprehensive, running smoke tests can save time if they do identify a problem.

To run the smoke tests:

I $ ostestr --regex '(.*smoke)’

5.2. RUNNING SPECIFIC TESTS USING WHITELIST FILES

A whitelist file contains specific tests to include.
1. Create a whitelist.txt file in your tempest workspace:
I $ touch whitelist.txt
2. Append all the tests you want to run to the whitelist.txt file:
$ cat whitelist.txt

keystone_tempest_plugin.*
networking_bgpvpn_tempest.tests*

3. Run those tests using ostestr:

I $ ostestr -w <path to whitelist tests file>

1

Red Hat OpenStack Platform 10 OpenStack Integration Test Suite Guide

5.3. SKIPPING TESTS USING BLACKLIST FILES
A blacklist file contains a list of tests to exclude.

1. Create a skip_test.txt file in your tempest workspace:
I $ touch skip_test.txt
2. Append all the tests to skip to the skip_test.txt file.

$ cat skip_test.txt
keystone_tempest_plugin.*
networking_bgpvpn_tempest.tests*

3. Run tests using ostestr:
I $ ostestr -b <path to skip test file>

4. You can run specific tests by skipping the listed tests:

I ostestr --regex '(tempest.api.object_storage) -b <path to skip test file>

5.4. RUNNING TESTS IN PARALLEL CONCURRENTLY, OR SERIALLY

® Run the tests in series:
I $ ostestr --serial
® Run the tests in parallel (this is the default):
I $ ostestr --parallel
Specify the number of workers to use when running tests in parallel:
I $ ostestr --concurrency _<workers>_
Alternatively:
I $ ostestr -c _<workers>_

By default, this is set to the number of CPUs.

12

CHAPTER 6. CLEANING TEMPEST RESOURCES

CHAPTER 6. CLEANING TEMPEST RESOURCES

After running tempest, there will be files, users and tenants created in the testing process that need to
be deleted. The ability to self-clean is one of the design principles of tempest.

6.1. PERFORMING A CLEAN UP

First you must initialize the saved state. This creates the file saved_state.json, which prevents the
cleanup from deleting objects that need to be kept. Typically you would run cleanup with --init-saved-
state prior to a tempest run. If this is not the case, saved_state.json must be edited to remove objects
you want cleanup to delete.

I $ tempest cleanup --init-saved-state

Run the cleanup:

I $ tempest cleanup

6.2. PERFORMING A DRY RUN

A dry run lists the files that would be deleted by a cleanup, but does not delete any files. The files are
listed in the dry_run.json file.

I $ tempest cleanup --dry-run

6.3. DELETING TEMPEST OBJECTS

Delete users and tenants created by tempest:

I $ tempest cleanup --delete-tempest-conf-objects

13

	Table of Contents
	PREFACE
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. OPENSTACK INTEGRATION TEST SUITE TESTS
	2.1. SCENARIO TESTS
	2.2. API TESTS

	CHAPTER 3. INSTALLING THE OPENSTACK INTEGRATION TEST SUITE
	3.1. USING THE DIRECTOR
	3.2. PREPARING A MANUAL INSTALLATION
	3.3. INSTALLING THE OPENSTACK INTEGRATION TEST SUITE PACKAGES
	3.3.1. List of Tempest Plug-in Packages

	CHAPTER 4. CONFIGURING THE OPENSTACK INTEGRATION TEST SUITE
	4.1. CREATING A WORKSPACE
	4.2. VERIFYING YOUR TEMPEST CONFIGURATION
	4.3. CHANGING THE LOGGING CONFIGURATION
	4.4. CONFIGURING MICROVERSION TESTS

	CHAPTER 5. USING OSTESTR TO RUN TEMPEST
	5.1. RUNNING SMOKE TESTS
	5.2. RUNNING SPECIFIC TESTS USING WHITELIST FILES
	5.3. SKIPPING TESTS USING BLACKLIST FILES
	5.4. RUNNING TESTS IN PARALLEL CONCURRENTLY, OR SERIALLY

	CHAPTER 6. CLEANING TEMPEST RESOURCES
	6.1. PERFORMING A CLEAN UP
	6.2. PERFORMING A DRY RUN
	6.3. DELETING TEMPEST OBJECTS

