
Red Hat OpenStack Platform 13

Networking Guide

An advanced guide to Red Hat OpenStack Platform Networking

Last Updated: 2024-03-21

Red Hat OpenStack Platform 13 Networking Guide

An advanced guide to Red Hat OpenStack Platform Networking

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

A cookbook for common OpenStack Networking tasks.

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. NETWORKING OVERVIEW
1.1. HOW NETWORKING WORKS

1.1.1. VLANs
1.2. CONNECTING TWO LANS TOGETHER

1.2.1. Firewalls
1.3. RED HAT OPENSTACK NETWORK FLOW MATRIX
1.4. WORKING WITH OPENSTACK NETWORKING (NEUTRON)
1.5. WORKING WITH CIDR FORMAT

CHAPTER 2. OPENSTACK NETWORKING CONCEPTS
2.1. INSTALLING OPENSTACK NETWORKING (NEUTRON)
2.2. OPENSTACK NETWORKING DIAGRAM
2.3. SECURITY GROUPS
2.4. OPEN VSWITCH
2.5. CHANGING THE OPENFLOW INTERFACE FOR OPEN VSWITCH
2.6. MODULAR LAYER 2 (ML2) NETWORKING

2.6.1. The reasoning behind ML2
2.6.2. ML2 network types
2.6.3. ML2 mechanism drivers

2.7. ML2 TYPE AND MECHANISM DRIVER COMPATIBILITY
2.8. LIMITS OF THE ML2/OVN MECHANISM DRIVER
2.9. LIMIT FOR NON-SECURE PORTS WITH ML2/OVN
2.10. CONFIGURING THE L2 POPULATION DRIVER
2.11. OPENSTACK NETWORKING SERVICES

2.11.1. L3 agent
2.11.2. DHCP agent
2.11.3. Open vSwitch agent

2.12. PROJECT AND PROVIDER NETWORKS
2.12.1. Project networks
2.12.2. Provider networks

2.13. LAYER 2 AND LAYER 3 NETWORKING
2.13.1. Use switching where possible

CHAPTER 3. COMMON ADMINISTRATIVE NETWORKING TASKS
3.1. CREATING A NETWORK
3.2. ADDING NETWORK ROUTING
3.3. DELETING A NETWORK
3.4. PURGING ALL RESOURCES AND DELETING A PROJECT
3.5. WORKING WITH SUBNETS

3.5.1. Creating a subnet
3.6. DELETING A SUBNET
3.7. ADDING A ROUTER
3.8. DELETING A ROUTER
3.9. TUNING KEEPALIVED TO AVOID VRRP PACKET LOSS
3.10. ADDING AN INTERFACE
3.11. DELETING AN INTERFACE
3.12. CREATING FLOATING IP POOLS
3.13. ASSIGNING A SPECIFIC FLOATING IP
3.14. CREATING AN ADVANCED NETWORK
3.15. ASSIGNING A RANDOM FLOATING IP

7

8
8
8
8
9
9

10
10

11
11
11

12
12
13
14
14
14
15
15
15
16
17
18
18
18
18
18
19
19
19

20

22
22
24
24
25
25
26
27
28
28
28
29
30
30
31
32
33

Table of Contents

1

. .

. .

. .

. .

. .

3.16. CREATING MULTIPLE FLOATING IP POOLS
3.17. BRIDGING THE PHYSICAL NETWORK
3.18. SPECIFYING THE NAME THAT DNS ASSIGNS TO PORTS
3.19. ASSIGNING DHCP ATTRIBUTES TO PORTS
3.20. LOADING KERNEL MODULES

CHAPTER 4. PLANNING IP ADDRESS USAGE
4.1. VLAN PLANNING
4.2. TYPES OF NETWORK TRAFFIC
4.3. IP ADDRESS CONSUMPTION
4.4. VIRTUAL NETWORKING
4.5. EXAMPLE NETWORK PLAN

CHAPTER 5. REVIEWING OPENSTACK NETWORKING ROUTER PORTS
5.1. VIEWING CURRENT PORT STATUS

CHAPTER 6. TROUBLESHOOTING PROVIDER NETWORKS
6.1. BASIC PING TESTING
6.2. TROUBLESHOOTING VLAN NETWORKS

6.2.1. Reviewing the VLAN configuration and log files
6.3. TROUBLESHOOTING FROM WITHIN PROJECT NETWORKS

6.3.1. Performing advanced ICMP testing within the namespace

CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL NETWORK
7.1. OVERVIEW OF THE OPENSTACK NETWORKING TOPOLOGY
7.2. PLACEMENT OF OPENSTACK NETWORKING SERVICES
7.3. CONFIGURING FLAT PROVIDER NETWORKS
7.4. HOW DOES THE FLAT PROVIDER NETWORK PACKET FLOW WORK?
7.5. TROUBLESHOOTING INSTANCE-PHYSICAL NETWORK CONNECTIONS ON FLAT PROVIDER
NETWORKS
7.6. CONFIGURING VLAN PROVIDER NETWORKS
7.7. HOW DOES THE VLAN PROVIDER NETWORK PACKET FLOW WORK?
7.8. TROUBLESHOOTING INSTANCE-PHYSICAL NETWORK CONNECTIONS ON VLAN PROVIDER
NETWORKS
7.9. ENABLING MULTICAST SNOOPING FOR PROVIDER NETWORKS IN AN ML2/OVS DEPLOYMENT
7.10. ENABLING MULTICAST IN AN ML2/OVN DEPLOYMENT
7.11. ENABLING COMPUTE METADATA ACCESS
7.12. FLOATING IP ADDRESSES

CHAPTER 8. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING
8.1. PLANNING YOUR PHYSICAL NETWORK ENVIRONMENT
8.2. CONFIGURING A CISCO CATALYST SWITCH

8.2.1. About trunk ports
8.2.2. Configuring trunk ports for a Cisco Catalyst switch
8.2.3. About access ports
8.2.4. Configuring access ports for a Cisco Catalyst switch
8.2.5. About LACP port aggregation
8.2.6. Configuring LACP on the physical NIC
8.2.7. Configuring LACP for a Cisco Catalyst switch
8.2.8. About MTU settings
8.2.9. Configuring MTU settings for a Cisco Catalyst switch
8.2.10. About LLDP discovery
8.2.11. Configuring LLDP for a Cisco Catalyst switch

8.3. CONFIGURING A CISCO NEXUS SWITCH

35
35
36
39
41

43
43
43
45
45
45

47
47

49
49
51
51
52
53

55
55
55
56
58

62
64
66

70
71
73
75
75

76
76
76
76
77
78
78
79
79
79
80
81

82
82
82

Red Hat OpenStack Platform 13 Networking Guide

2

. .

. .

8.3.1. About trunk ports
8.3.2. Configuring trunk ports for a Cisco Nexus switch
8.3.3. About access ports
8.3.4. Configuring access ports for a Cisco Nexus switch
8.3.5. About LACP port aggregation
8.3.6. Configuring LACP on the physical NIC
8.3.7. Configuring LACP for a Cisco Nexus switch
8.3.8. About MTU settings
8.3.9. Configuring MTU settings for a Cisco Nexus 7000 switch
8.3.10. About LLDP discovery
8.3.11. Configuring LLDP for a Cisco Nexus 7000 switch

8.4. CONFIGURING A CUMULUS LINUX SWITCH
8.4.1. About trunk ports
8.4.2. Configuring trunk ports for a Cumulus Linux switch
8.4.3. About access ports
8.4.4. Configuring access ports for a Cumulus Linux switch
8.4.5. About LACP port aggregation
8.4.6. About MTU settings
8.4.7. Configuring MTU settings for a Cumulus Linux switch
8.4.8. About LLDP discovery
8.4.9. Configuring LLDP for a Cumulus Linux switch

8.5. CONFIGURING A EXTREME EXOS SWITCH
8.5.1. About trunk ports
8.5.2. Configuring trunk ports on an Extreme Networks EXOS switch
8.5.3. About access ports
8.5.4. Configuring access ports for an Extreme Networks EXOS switch
8.5.5. About LACP port aggregation
8.5.6. Configuring LACP on the physical NIC
8.5.7. Configuring LACP on an Extreme Networks EXOS switch
8.5.8. About MTU settings
8.5.9. Configuring MTU settings on an Extreme Networks EXOS switch
8.5.10. About LLDP discovery
8.5.11. Configuring LLDP settings on an Extreme Networks EXOS switch

8.6. CONFIGURING A JUNIPER EX SERIES SWITCH
8.6.1. About trunk ports
8.6.2. Configuring trunk ports for a Juniper EX Series switch
8.6.3. About access ports
8.6.4. Configuring access ports for a Juniper EX Series switch
8.6.5. About LACP port aggregation
8.6.6. Configuring LACP on the physical NIC
8.6.7. Configuring LACP for a Juniper EX Series switch
8.6.8. About MTU settings
8.6.9. Configuring MTU settings for a Juniper EX Series switch
8.6.10. About LLDP discovery
8.6.11. Configuring LLDP for a Juniper EX Series switch

CHAPTER 9. CONFIGURING MAXIMUM TRANSMISSION UNIT (MTU) SETTINGS
9.1. MTU OVERVIEW
9.2. CONFIGURING MTU SETTINGS IN DIRECTOR
9.3. REVIEWING THE RESULTING MTU CALCULATION

CHAPTER 10. CONFIGURING QUALITY OF SERVICE (QOS) POLICIES
10.1. QOS POLICY SCOPE

82
83
83
83
83
84
84
85
85
85
85
86
86
86
86
86
87
87
87
88
88
88
88
88
89
89
89
90
90
90
91
91
91
91
91

92
92
92
93
93
93
95
95
96
96

97
97
98
98

99
99

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

10.2. CREATING AND APPLYING A QOS POLICY AND RULE
10.3. DSCP MARKING FOR EGRESS TRAFFIC
10.4. RBAC FOR QOS POLICIES

CHAPTER 11. CONFIGURING BRIDGE MAPPINGS
11.1. OVERVIEW OF BRIDGE MAPPINGS
11.2. TRAFFIC FLOW
11.3. CONFIGURING BRIDGE MAPPINGS
11.4. MAINTAINING BRIDGE MAPPINGS FOR OVS

11.4.1. Cleaning up OVS patch ports manually
11.4.2. Cleaning up OVS patch ports automatically

CHAPTER 12. VLAN-AWARE INSTANCES
12.1. VLAN TRUNKS AND VLAN TRANSPARENT NETWORKS
12.2. REVIEWING THE TRUNK PLUG-IN
12.3. CREATING A TRUNK CONNECTION
12.4. ADDING SUBPORTS TO THE TRUNK
12.5. CONFIGURING AN INSTANCE TO USE A TRUNK
12.6. CONFIGURING NETWORKING SERVICE RPC TIMEOUT
12.7. UNDERSTANDING TRUNK STATES

CHAPTER 13. CONFIGURING RBAC POLICIES
13.1. OVERVIEW OF RBAC POLICIES
13.2. CREATING RBAC POLICIES
13.3. REVIEWING RBAC POLICIES
13.4. DELETING RBAC POLICIES
13.5. GRANTING RBAC POLICY ACCESS FOR EXTERNAL NETWORKS

CHAPTER 14. CONFIGURING DISTRIBUTED VIRTUAL ROUTING (DVR)
14.1. UNDERSTANDING DISTRIBUTED VIRTUAL ROUTING (DVR)

14.1.1. Overview of Layer 3 routing
14.1.2. Routing flows
14.1.3. Centralized routing

14.2. DVR OVERVIEW
14.3. DVR KNOWN ISSUES AND CAVEATS
14.4. SUPPORTED ROUTING ARCHITECTURES
14.5. DEPLOYING DVR WITH ML2 OVS
14.6. MIGRATING CENTRALIZED ROUTERS TO DISTRIBUTED ROUTING

CHAPTER 15. CONFIGURE LOAD BALANCING-AS-A-SERVICE WITH THE NETWORKING LBAASV2 API
15.1. OVERVIEW OF LBAAS
15.2. OPENSTACK NETWORKING AND LBAAS TOPOLOGY

15.2.1. Support Status of LBaaS
15.3. CONFIGURING LBAAS

CHAPTER 16. PROJECT NETWORKING WITH IPV6
16.1. IPV6 SUBNET OPTIONS
16.2. CREATE AN IPV6 SUBNET USING STATEFUL DHCPV6

CHAPTER 17. MANAGING PROJECT QUOTAS
17.1. CONFIGURING PROJECT QUOTAS
17.2. L3 QUOTA OPTIONS
17.3. FIREWALL QUOTA OPTIONS
17.4. SECURITY GROUP QUOTA OPTIONS
17.5. MANAGEMENT QUOTA OPTIONS

99
100
103

104
104
104
104
105
105
106

108
108
108
108
110
111

113
114

116
116
116
117
117
118

119
119
119
119

120
120
120
121
122
123

125
125
126
126
126

129
129
130

133
133
133
133
133
134

Red Hat OpenStack Platform 13 Networking Guide

4

. .

. .

. .

. .

CHAPTER 18. CONFIGURING FIREWALL-AS-A-SERVICE (FWAAS)
18.1. OVERVIEW OF FIREWALL-AS-A-SERVICE (FWAAS)
18.2. ENABLING FIREWALL-AS-A-SERVICE (FWAAS)
18.3. CONFIGURING FIREWALL-AS-A-SERVICE (FWAAS)
18.4. CREATING FIREWALLS

CHAPTER 19. CONFIGURING ALLOWED ADDRESS PAIRS
19.1. OVERVIEW OF ALLOWED ADDRESS PAIRS
19.2. CREATING A PORT AND ALLOWING ONE ADDRESS PAIR
19.3. ADDING ALLOWED ADDRESS PAIRS

CHAPTER 20. CONFIGURING LAYER 3 HIGH AVAILABILITY (HA)
20.1. RHOSP NETWORKING SERVICE WITHOUT HIGH AVAILABILITY (HA)
20.2. OVERVIEW OF LAYER 3 HIGH AVAILABILITY (HA)
20.3. LAYER 3 HIGH AVAILABILITY (HA) FAILOVER CONDITIONS
20.4. PROJECT CONSIDERATIONS FOR LAYER 3 HIGH AVAILABILITY (HA)
20.5. HIGH AVAILABILITY (HA) CHANGES TO THE RHOSP NETWORKING SERVICE
20.6. ENABLING LAYER 3 HIGH AVAILABILITY (HA) ON RHOSP NETWORKING SERVICE NODES
20.7. REVIEWING HIGH AVAILABILITY (HA) RHOSP NETWORKING SERVICE NODE CONFIGURATIONS

CHAPTER 21. IDENTIFYING VIRTUAL DEVICES WITH TAGS
21.1. OVERVIEW OF VIRTUAL DEVICE TAGGING
21.2. TAGGING VIRTUAL DEVICES

135
135
135
136
137

138
138
138
139

141
141
141

142
142
142
143
144

146
146
146

Table of Contents

5

Red Hat OpenStack Platform 13 Networking Guide

6

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

7

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. NETWORKING OVERVIEW
The OpenStack Networking service (codename neutron) is the software-defined networking
component of Red Hat OpenStack Platform 13.

Network administrators can use software-defined networking (SDN) to manage network services
through abstraction of lower-level functionality. While server workloads have been migrated into virtual
environments, they are still just servers that look for a network connection to send and receive data. SDN
meets this need by moving networking equipment (such as routers and switches) into the same
virtualized space. If you are already familiar with basic networking concepts, then it is easy to consider
that these physical networking concepts have now been virtualized, just like the servers that they
connect.

1.1. HOW NETWORKING WORKS

The term networking refers to the act of moving information from one computer to another. At the most
basic level, this is performed by running a cable between two machines, each with network interface
cards (NICs) installed. In the OSI networking model, the cable represents layer 1.

Now, if you want more than two computers to get involved in the conversation, you would need to scale
out this configuration by adding a device called a switch. Enterprise switches have multiple Ethernet
ports where you can connect additional machines. A network of multiple machines is called a Local Area
Network (LAN).

Because they increase complexity, switches represent another layer of the OSI model, layer two. Each
NIC has a unique MAC address number assigned to the hardware, and this number enables machines
connected to the same switch to find each other. The switch maintains a list of which MAC addresses
are plugged into which ports, so that when one computer attempts to send data to another, the switch
knows where they are both situated, and adjusts entries in the CAM (Content Addressable Memory),
which monitors of MAC-address-to-port mappings.

1.1.1. VLANs

You can use VLANs to segment network traffic for computers running on the same switch. This means
that you can logically divide your switch by configuring the ports to be members of different networks — 
they are basically mini-LANs that you can use to separate traffic for security reasons.

For example, if your switch has 24 ports in total, you can assign ports 1-6 to VLAN200, and ports 7-18 to
VLAN201. As a result, computers connected to VLAN200 are completely separate from those on
VLAN201; they cannot communicate directly, and if they wanted to, the traffic must pass through a
router as if they were two separate physical switches. Firewalls can also be useful for governing which
VLANs can communicate with each other.

1.2. CONNECTING TWO LANS TOGETHER

If you have two LANs running on two separate switches, and you want them to share information with
each other. You have two options for configuring this communication:

Use 802.1Q VLAN tagging to configure a single VLAN that spans across both physical
switches:
You must connect one end of a network cable to a port on one switch, connect the other end to
a port on the other switch, and then configure these ports as 802.1Q tagged ports (sometimes
known as trunk ports). These two switches act as one big logical switch, and the connected
computers can find each other.

Red Hat OpenStack Platform 13 Networking Guide

8

The downside to this option is scalability. You can only daisy-chain a limited number of switches
until overhead becomes an issue.

Obtain a router and use cables to connect it to each switch:
The router is aware of the networks configured on both switches. Each end of the cable plugged
into the switch receives an IP address, known as the default gateway for that network. A default
gateway defines the destination where traffic is sent when it is clear that the destination
machine is not on the same LAN as the source machine. By establishing a default gateway, each
computer can send traffic to other computers without knowing specific information about the
destination. Each computer sends traffic to the default gateway, and the router determines
which destination computer receives the traffic. Routing works on layer 3 of the OSI model, and
is where the familiar concepts like IP addresses and subnets operate.

1.2.1. Firewalls

Firewalls can filter traffic across multiple OSI layers, including layer 7 (for inspecting actual content).
Firewalls are often situated in the same network segments as routers, where they govern the traffic
moving between all the networks. Firewalls refer to a predefined set of rules that prescribe which traffic
can enter a network. These rules can become very granular, for example:

"Servers on VLAN200 may only communicate with computers on VLAN201, and only on a Thursday
afternoon, and only if they are sending encrypted web traffic (HTTPS) in one direction".

To help enforce these rules, some firewalls also perform Deep Packet Inspection (DPI) at layers 5-7,
whereby they examine the contents of packets to ensure that the packets are legitimate. Hackers can
exfiltrate data by having the traffic masquerade as something it is not. DPI is one of the means that you
can use to mitigate that threat.

1.3. RED HAT OPENSTACK NETWORK FLOW MATRIX

The network flow matrix is a comma separated values (CSV) file that describes flows to and from
OpenStack services.

NOTE: The network flow matrix describes common traffic flows. It does not describe every possible flow.
Some flows that are not described in this matrix might be critical to operation. For instance, if you block
all traffic and then selectively open only the flows described here, you might unintentionally block a
necessary flow. That could cause issues that are difficult to troubleshoot.

The matrix describes flows in the following columns.

Service

The OpenStack service.

Protocol

Transmission protocol.

Dest. Port

Destination port.

Source Object

Source of data.

Dest. Object

Destination of data.

Source/Dest Pairs

Valid source and destination pairs.

CHAPTER 1. NETWORKING OVERVIEW

9

Dest. Network

Destination network.

ServiceNetMap Parent

Determines the network type used for each service.

Traffic Description

Notes about the traffic flow.

Download the network flow matrix file from the following location:

Red Hat OpenStack Network Flows .

1.4. WORKING WITH OPENSTACK NETWORKING (NEUTRON)

These same networking concepts apply in OpenStack, where they are known as Software-defined
networking (SDN). The OpenStack Networking (neutron) component provides the API for virtual
networking capabilities, and includes switches, routers, and firewalls. The virtual network infrastructure
allows your instances to communicate with each other and also externally using the physical network.
The Open vSwitch bridge allocates virtual ports to instances, and can span across the network
infrastructure to the physical network for incoming and outgoing traffic.

1.5. WORKING WITH CIDR FORMAT

IP addresses are generally first allocated in blocks of subnets. For example, the IP address range
192.168.100.0 - 192.168.100.255 with a subnet mask of 255.555.255.0 allows for 254 IP addresses (the
first and last addresses are reserved).

These subnets can be represented in a number of ways:

Common usage:
Subnet addresses are traditionally displayed using the network address accompanied by the
subnet mask:

Network Address: 192.168.100.0

Subnet mask: 255.255.255.0

CIDR format:
The subnet mask is shortened into its total number of active bits.

For example, in 192.168.100.0/24, /24 is a shortened representation of 255.255.255.0, and is a
total of the number of flipped bits when converted to binary.

Also, CIDR format can be used in ifcfg-xxx scripts instead of the NETMASK value:

#NETMASK=255.255.255.0
PREFIX=24

Red Hat OpenStack Platform 13 Networking Guide

10

files/ref_source-NetworkFlowMatrix.csv

CHAPTER 2. OPENSTACK NETWORKING CONCEPTS
OpenStack Networking has system services to manage core services such as routing, DHCP, and
metadata. Together, these services are included in the concept of the Controller node, which is a
conceptual role assigned to a physical server.

A physical server is typically assigned the role of Network node and dedicated to the task of managing
Layer 3 routing for network traffic to and from instances. In OpenStack Networking, you can have
multiple physical hosts performing this role, allowing for redundant service in the event of hardware
failure. For more information, see the chapter on Layer 3 High Availability.

NOTE

Red Hat OpenStack Platform 11 added support for composable roles, allowing you to
separate network services into a custom role. However, for simplicity, this guide assumes
that a deployment uses the default controller role.

2.1. INSTALLING OPENSTACK NETWORKING (NEUTRON)

The OpenStack Networking component is installed as part of a Red Hat OpenStack Platform director
deployment. For more information about director deployment, see Director Installation and Usage.

2.2. OPENSTACK NETWORKING DIAGRAM

This diagram depicts a sample OpenStack Networking deployment, with a dedicated OpenStack
Networking node performing layer 3 routing and DHCP, and running the advanced service load
balancing as a Service (LBaaS). Two Compute nodes run the Open vSwitch (openvswitch-agent) and
have two physical network cards each, one for project traffic, and another for management connectivity.
The OpenStack Networking node has a third network card specifically for provider traffic:

CHAPTER 2. OPENSTACK NETWORKING CONCEPTS

11

https://access.redhat.com/documentation/en/red-hat-openstack-platform/

2.3. SECURITY GROUPS

Security groups and rules filter the type and direction of network traffic that neutron ports send and
receive. This provides an additional layer of security to complement any firewall rules present on the
compute instance. The security group is a container object with one or more security rules. A single
security group can manage traffic to multiple compute instances.

Ports created for floating IP addresses, OpenStack Networking LBaaS VIPs, and instances are
associated with a security group. If you do not specify a security group, then the port is associated with
the default security group. By default, this group drops all inbound traffic and allows all outbound traffic.
However, traffic flows between instances that are members of the default security group, because the
group has a remote group ID that points to itself.

To change the filtering behavior of the default security group, you can add security rules to the group, or
create entirely new security groups.

2.4. OPEN VSWITCH

Open vSwitch (OVS) is a software-defined networking (SDN) virtual switch similar to the Linux software
bridge. OVS provides switching services to virtualized networks with support for industry standard ,
OpenFlow, and sFlow. OVS can also integrate with physical switches using layer 2 features, such as STP,
LACP, and 802.1Q VLAN tagging. Open vSwitch version 1.11.0-1.el6 or later also supports tunneling with
VXLAN and GRE.

For more information about network interface bonds, see the Network Interface Bonding chapter of the
Advanced Overcloud Customization guide.

NOTE

Red Hat OpenStack Platform 13 Networking Guide

12

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/#overcloud-network-interface-bonding

NOTE

To mitigate the risk of network loops in OVS, only a single interface or a single bond can
be a member of a given bridge. If you require multiple bonds or interfaces, you can
configure multiple bridges.

IMPORTANT

Using single root I/O virtualization (SR-IOV) on bonded interfaces is not supported.

2.5. CHANGING THE OPENFLOW INTERFACE FOR OPEN VSWITCH

In Red Hat OpenStack Platform 13, the Networking service (neutron) uses Python 2.7 which does not
work well with the python-ryu library that Open vSwitch depends on for managing OpenFlow rules.

If you experience timeouts when the neutron Open vSwitch (OVS) agent connects to OVS, then you
must change the value for the OpenFlow interface and OVS database options.

Prerequesites

You are using Open vSwitch in RHOSP 13.

Procedure

1. On the undercloud host, logged in as the stack user, create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-ovs-environment.yaml

TIP

The Orchestration service (heat) uses a set of plans called templates to install and configure
your environment. You can customize aspects of the overcloud with a custom environment file,
which is a special type of template that provides customization for your heat templates.

2. In the YAML environment file under parameter_defaults, add the following Puppet variables:

parameter_defaults:
 ExtraConfig:
 neutron::agents::ml2::ovs::of_interface: ovs-ofctl
 neutron::agents::ml2::ovs::ovsdb_interface: vsctl
 ...

IMPORTANT

Ensure that you add a whitespace character between the single colon (:) and the
value.

3. Run the openstack overcloud deploy command and include the core heat templates,
environment files, and this new custom environment file.

IMPORTANT

CHAPTER 2. OPENSTACK NETWORKING CONCEPTS

13

IMPORTANT

The order of the environment files is important as the parameters and resources
defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-ovs-
environment.yaml

Additional resources

Puppet: Customizing Hieradata for Individual Nodes in the Advanced Overcloud Customization
guide

Environment files in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

2.6. MODULAR LAYER 2 (ML2) NETWORKING

ML2 is the OpenStack Networking core plug-in introduced in the OpenStack Havana release.
Superseding the previous model of monolithic plug-ins, the ML2 modular design enables the concurrent
operation of mixed network technologies. The monolithic Open vSwitch and Linux Bridge plug-ins have
been deprecated and removed; their functionality is now implemented by ML2 mechanism drivers.

NOTE

ML2 is the default OpenStack Networking plug-in, with OVN configured as the default
mechanism driver.

2.6.1. The reasoning behind ML2

Previously, OpenStack Networking deployments could use only the plug-in selected at implementation
time. For example, a deployment running the Open vSwitch (OVS) plug-in was required to use the OVS
plug-in exclusively. The monolithic plug-in did not support the simultaneously use of another plug-in
such as linuxbridge. This limitation made it difficult to meet the needs of environments with
heterogeneous requirements.

2.6.2. ML2 network types

Multiple network segment types can be operated concurrently. In addition, these network segments can
interconnect using ML2 support for multi-segmented networks. Ports are automatically bound to the
segment with connectivity; it is not necessary to bind ports to a specific segment. Depending on the
mechanism driver, ML2 supports the following network segment types:

flat

GRE

local

Red Hat OpenStack Platform 13 Networking Guide

14

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Customizing_Hieradata_for_Individual_Nodes
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_Overcloud_Creation

VLAN

VXLAN

Geneve

Enable Type drivers in the ML2 section of the ml2_conf.ini file. For example:

[ml2]
type_drivers = local,flat,vlan,gre,vxlan,geneve

2.6.3. ML2 mechanism drivers

Plug-ins are implemented as mechanisms with a common code base. This approach enables code reuse
and eliminates much of the complexity around code maintenance and testing.

The default mechanism driver is OVN. You enable mechanism drivers using the Orchestration service
(heat) parameter, NeutronMechanismDrivers. Here is an example from a heat custom environment
file:

parameter_defaults:
 ...
 NeutronMechanismDrivers: ansible,ovn,baremetal
 ...

The order in which you specify the mechanism drivers matters. In the earlier example, if you want to bind
a port using the baremetal mechanism driver, then you must specify baremetal before ansible.
Otherwise, the ansible driver will bind the port, because it precedes baremetal in the list of values for
NeutronMechanismDrivers.

Additional resources

Neutron in Component, Plug-In, and Driver Support in Red Hat OpenStack Platform

Environment Files in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

2.7. ML2 TYPE AND MECHANISM DRIVER COMPATIBILITY

Mechanism
Driver

Type Driver

 flat gre vlan vxlan geneve

ovn yes no yes no yes

openvswitch yes yes yes yes no

2.8. LIMITS OF THE ML2/OVN MECHANISM DRIVER

CHAPTER 2. OPENSTACK NETWORKING CONCEPTS

15

https://access.redhat.com/articles/1535373#Neutron
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_Overcloud_Creation

The following table describes features that Red Hat does not yet support with ML2/OVN. Red Hat plans
to support each of these features in a future Red Hat OpenStack Platform release.

In addition, this release of the Red Hat OpenStack Platform (RHOSP) does not provide a supported
migration from the ML2/OVS mechanism driver to the ML2/OVN mechanism driver. This RHPOSP
release does not support the OpenStack community migration strategy. Migration support is planned
for a future RHOSP release.

Feature Notes Track this Feature

Fragmentation /
Jumbo Frames

OVN does not yet support sending ICMP
"fragmentation needed" packets. Larger
ICMP/UDP packets that require fragmentation
do not work with ML2/OVN as they would with
the ML2/OVS driver implementation. TCP
traffic is handled by maximum segment sized
(MSS) clamping.

https://bugzilla.redhat.com/show_
bug.cgi?id=1547074 (ovn-
network)

https://bugzilla.redhat.com/show_
bug.cgi?id=1702331 (Core ovn)

Port Forwarding OVN does not support port forwarding. https://bugzilla.redhat.com/show_
bug.cgi?id=1654608

https://blueprints.launchpad.net/n
eutron/+spec/port-forwarding

Security Groups
Logging API

ML2/OVN does not provide a log file that logs
security group events such as an instance trying
to execute restricted operations or access
restricted ports in remote servers.

https://bugzilla.redhat.com/show_
bug.cgi?id=1619266

Multicast When using ML2/OVN as the integration
bridge, multicast traffic is treated as broadcast
traffic.

The integration bridge operates in FLOW
mode, so IGMP snooping is not available. To
support this, core OVN must support IGMP
snooping.

https://bugzilla.redhat.com/show_
bug.cgi?id=1672278

SR-IOV Presently, SR-IOV only works with the neutron
DHCP agent deployed.

https://bugzilla.redhat.com/show_
bug.cgi?id=1666684

Provisioning
Baremetal
Machines with OVN
DHCP

The built-in DHCP server on OVN presently can
not provision baremetal nodes. It cannot serve
DHCP for the provisioning networks.
Chainbooting iPXE requires tagging (--dhcp-
match in dnsmasq), which is not supported in
the OVN DHCP server.

https://bugzilla.redhat.com/show_
bug.cgi?id=1622154

OVS_DPDK OVS_DPDK is presently not supported with
OVN.

2.9. LIMIT FOR NON-SECURE PORTS WITH ML2/OVN

Red Hat OpenStack Platform 13 Networking Guide

16

https://bugzilla.redhat.com/show_bug.cgi?id=1547074
https://bugzilla.redhat.com/show_bug.cgi?id=1702331
https://bugzilla.redhat.com/show_bug.cgi?id=1654608
https://blueprints.launchpad.net/neutron/+spec/port-forwarding
https://bugzilla.redhat.com/show_bug.cgi?id=1619266
https://bugzilla.redhat.com/show_bug.cgi?id=1672278
https://bugzilla.redhat.com/show_bug.cgi?id=1666684
https://bugzilla.redhat.com/show_bug.cgi?id=1622154

Ports might become unreachable if you disable the port security plug-in extension in Red Hat Open
Stack Platform (RHOSP) deployments with the default ML2/OVN mechanism driver and a large number
of ports.

In some large ML2/OVN RHSOP deployments, a flow chain limit inside ML2/OVN can drop ARP
requests that are targeted to ports where the security plug-in is disabled.

There is no documented maximum limit for the actual number of logical switch ports that ML2/OVN can
support, but the limit approximates 4,000 ports.

Attributes that contribute to the approximated limit are the number of resubmits in the OpenFlow
pipeline that ML2/OVN generates, and changes to the overall logical topology.

2.10. CONFIGURING THE L2 POPULATION DRIVER

The L2 Population driver enables broadcast, multicast, and unicast traffic to scale out on large overlay
networks. By default, Open vSwitch GRE and VXLAN replicate broadcasts to every agent, including
those that do not host the destination network. This design requires the acceptance of significant
network and processing overhead. The alternative design introduced by the L2 Population driver
implements a partial mesh for ARP resolution and MAC learning traffic; it also creates tunnels for a
particular network only between the nodes that host the network. This traffic is sent only to the
necessary agent by encapsulating it as a targeted unicast.

To enable the L2 Population driver, complete the following steps:

1. Enable the L2 population driver by adding it to the list of mechanism drivers. You also must enable at
least one tunneling driver enabled; either GRE, VXLAN, or both. Add the appropriate configuration
options to the ml2_conf.ini file:

[ml2]
type_drivers = local,flat,vlan,gre,vxlan
mechanism_drivers = openvswitch,linuxbridge,l2population

NOTE

Neutron’s Linux Bridge ML2 driver and agent were deprecated in Red Hat OpenStack
Platform 11. The Open vSwitch (OVS) plugin OpenStack Platform director default, and is
recommended by Red Hat for general usage.

2. Enable L2 population in the openvswitch_agent.ini file. Enable it on each node that contains the L2
agent:

[agent]
l2_population = True

NOTE

To install ARP reply flows, configure the arp_responder flag:

[agent]
l2_population = True
arp_responder = True

CHAPTER 2. OPENSTACK NETWORKING CONCEPTS

17

2.11. OPENSTACK NETWORKING SERVICES

By default, Red Hat OpenStack Platform includes components that integrate with the ML2 and Open
vSwitch plugin to provide networking functionality in your deployment:

2.11.1. L3 agent

The L3 agent is part of the openstack-neutron package. Use network namespaces to provide each
project with its own isolated layer 3 routers, which direct traffic and provide gateway services for the
layer 2 networks. The L3 agent assists with managing these routers. The nodes that host the L3 agent
must not have a manually-configured IP address on a network interface that is connected to an external
network. Instead there must be a range of IP addresses from the external network that are available for
use by OpenStack Networking. Neutron assigns these IP addresses to the routers that provide the link
between the internal and external networks. The IP range that you select must be large enough to
provide a unique IP address for each router in the deployment as well as each floating IP.

2.11.2. DHCP agent

The OpenStack Networking DHCP agent manages the network namespaces that are spawned for each
project subnet to act as DHCP server. Each namespace runs a dnsmasq process that can allocate IP
addresses to virtual machines on the network. If the agent is enabled and running when a subnet is
created then by default that subnet has DHCP enabled.

2.11.3. Open vSwitch agent

The Open vSwitch (OVS) neutron plug-in uses its own agent, which runs on each node and manages the
OVS bridges. The ML2 plugin integrates with a dedicated agent to manage L2 networks. By default, Red
Hat OpenStack Platform uses ovs-agent, which builds overlay networks using OVS bridges.

2.12. PROJECT AND PROVIDER NETWORKS

The following diagram presents an overview of the project and provider network types, and illustrates
how they interact within the overall OpenStack Networking topology:

Red Hat OpenStack Platform 13 Networking Guide

18

2.12.1. Project networks

Users create project networks for connectivity within projects. Project networks are fully isolated by
default and are not shared with other projects. OpenStack Networking supports a range of project
network types:

Flat - All instances reside on the same network, which can also be shared with the hosts. No
VLAN tagging or other network segregation occurs.

VLAN - OpenStack Networking allows users to create multiple provider or project networks
using VLAN IDs (802.1Q tagged) that correspond to VLANs present in the physical network.
This allows instances to communicate with each other across the environment. They can also
communicate with dedicated servers, firewalls, load balancers and other network infrastructure
on the same layer 2 VLAN.

VXLAN and GRE tunnels - VXLAN and GRE use network overlays to support private
communication between instances. An OpenStack Networking router is required to enable
traffic to traverse outside of the GRE or VXLAN project network. A router is also required to
connect directly-connected project networks with external networks, including the Internet; the
router provides the ability to connect to instances directly from an external network using
floating IP addresses. VXLAN and GRE type drivers are compatible with the ML2/OVS
mechanism driver.

GENEVE tunnels - GENEVE recognizes and accommodates changing capabilities and needs of
different devices in network virtualization. It provides a framework for tunneling rather than
being prescriptive about the entire system. Geneve defines the content of the metadata flexibly
that is added during encapsulation and tries to adapt to various virtualization scenarios. It uses
UDP as its transport protocol and is dynamic in size using extensible option headers. Geneve
supports unicast, multicast, and broadcast. The GENEVE type driver is compatible with the
ML2/OVN mechanism driver.

Additional resources

Configuring Quality of Service (QoS) policies

2.12.2. Provider networks

The OpenStack administrator creates provider networks. Provider networks map directly to an existing
physical network in the data center. Useful network types in this category include flat (untagged) and
VLAN (802.1Q tagged). You can also share provider networks among projects as part of the network
creation process.

Additional resources

Configuring flat provider networks

Configuring VLAN provider networks

2.13. LAYER 2 AND LAYER 3 NETWORKING

When designing your virtual network, anticipate where the majority of traffic is going to be sent. Network
traffic moves faster within the same logical network, rather than between multiple logical networks. This
is because traffic between logical networks (using different subnets) must pass through a router,
resulting in additional latency.

CHAPTER 2. OPENSTACK NETWORKING CONCEPTS

19

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#config-qos-policies_networking-concepts
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#config-flat-prov-networks_connect-instance
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#config_controller_nodes_vlan_connect-instance

Consider the diagram below which has network traffic flowing between instances on separate VLANs:

NOTE

Even a high performance hardware router adds latency to this configuration.

2.13.1. Use switching where possible

Because switching occurs at a lower level of the network (layer 2) it can function faster than the routing
that occurs at layer 3. Design as few hops as possible between systems that communicate frequently.

For example, the following diagram depicts a switched network that spans two physical nodes, allowing
the two instances to communicate directly without using a router for navigation first. Note that the
instances now share the same subnet, to indicate that they are on the same logical network:

Red Hat OpenStack Platform 13 Networking Guide

20

To allow instances on separate nodes to communicate as if they are on the same logical network, use an
encapsulation tunnel such as VXLAN or GRE. Red Hat recommends adjusting the MTU size from end-
to-end to accommodate the additional bits required for the tunnel header, otherwise network
performance can be negatively impacted as a result of fragmentation. For more information, see
Configure MTU Settings.

You can further improve the performance of VXLAN tunneling by using supported hardware that
features VXLAN offload capabilities.

Additional resources

https://access.redhat.com/articles/1390483

CHAPTER 2. OPENSTACK NETWORKING CONCEPTS

21

https://access.redhat.com/articles/1390483

CHAPTER 3. COMMON ADMINISTRATIVE NETWORKING
TASKS

OpenStack Networking (neutron) is the software-defined networking component of Red Hat
OpenStack Platform. The virtual network infrastructure enables connectivity between instances and the
physical external network.

This section contains information about common administration tasks, such as adding and removing
subnets and routers to suit your Red Hat OpenStack Platform deployment.

3.1. CREATING A NETWORK

Create a network so that your instances can communicate with each other and receive IP addresses
using DHCP. You can also integrate a network with external networks in your Red Hat OpenStack
Platform deployment, or elsewhere, such as the physical network. This integration allows your instances
to communicate with outside systems. For more information, see Bridge the physical network .

When creating networks, it is important to know that networks can host multiple subnets. This is useful if
you intend to host distinctly different systems in the same network, and prefer a measure of isolation
between them. For example, you can designate that only webserver traffic is present on one subnet,
while database traffic traverses another. Subnets are isolated from each other, and any instance that
wants to communicate with another subnet must have their traffic directed by a router. Consider placing
systems that require a high volume of traffic amongst themselves in the same subnet, so that they do
not require routing, and can avoid the subsequent latency and load.

1. In the dashboard, select Project > Network > Networks.

2. Click +Create Network and specify the following values:

Field Description

Network Name Descriptive name, based on the role that the
network will perform. If you are integrating the
network with an external VLAN, consider
appending the VLAN ID number to the name.
For example, webservers_122, if you are
hosting HTTP web servers in this subnet, and
your VLAN tag is 122. Or you might use
internal-only if you intend to keep the network
traffic private, and not integrate the network
with an external network.

Admin State Controls whether the network is immediately
available. Use this field to create the network in a
Down state, where it is logically present but
inactive. This is useful if you do not intend to
enter the network into production immediately.

3. Click the Next button, and specify the following values in the Subnet tab:

Field Description

Red Hat OpenStack Platform 13 Networking Guide

22

Create Subnet Determines whether to create a subnet. For
example, you might not want to create a subnet
if you intend to keep this network as a
placeholder without network connectivity.

Subnet Name Enter a descriptive name for the subnet.

Network Address Enter the address in CIDR format, which
contains the IP address range and subnet mask
in one value. To determine the address, calculate
the number of bits masked in the subnet mask
and append that value to the IP address range.
For example, the subnet mask 255.255.255.0 has
24 masked bits. To use this mask with the IPv4
address range 192.168.122.0, specify the address
192.168.122.0/24.

IP Version Specifies the internet protocol version, where
valid types are IPv4 or IPv6. The IP address
range in the Network Address field must match
whichever version you select.

Gateway IP IP address of the router interface for your
default gateway. This address is the next hop for
routing any traffic destined for an external
location, and must be within the range that you
specify in the Network Address field. For
example, if your CIDR network address is
192.168.122.0/24, then your default gateway is
likely to be 192.168.122.1.

Disable Gateway Disables forwarding and isolates the subnet.

Field Description

4. Click Next to specify DHCP options:

Enable DHCP - Enables DHCP services for this subnet. You can use DHCP to automate the
distribution of IP settings to your instances.

IPv6 Address - Configuration Modes. If you create an IPv6 network, you must specify how
to allocate IPv6 addresses and additional information:

No Options Specified - Select this option if you want to set IP addresses manually, or if
you use a non OpenStack-aware method for address allocation.

SLAAC (Stateless Address Autoconfiguration) - Instances generate IPv6 addresses
based on Router Advertisement (RA) messages sent from the OpenStack Networking
router. Use this configuration to create an OpenStack Networking subnet with ra_mode
set to slaac and address_mode set to slaac.

DHCPv6 stateful - Instances receive IPv6 addresses as well as additional options (for

CHAPTER 3. COMMON ADMINISTRATIVE NETWORKING TASKS

23

DHCPv6 stateful - Instances receive IPv6 addresses as well as additional options (for
example, DNS) from the OpenStack Networking DHCPv6 service. Use this
configuration to create a subnet with ra_mode set to dhcpv6-stateful and
address_mode set to dhcpv6-stateful.

DHCPv6 stateless - Instances generate IPv6 addresses based on Router
Advertisement (RA) messages sent from the OpenStack Networking router. Additional
options (for example, DNS) are allocated from the OpenStack Networking DHCPv6
service. Use this configuration to create a subnet with ra_mode set to dhcpv6-stateless
and address_mode set to dhcpv6-stateless.

Allocation Pools - Range of IP addresses that you want DHCP to assign. For example, the
value 192.168.22.100,192.168.22.100 considers all up addresses in that range as available for
allocation.

DNS Name Servers - IP addresses of the DNS servers available on the network. DHCP
distributes these addresses to the instances for name resolution.

IMPORTANT

For strategic services such as DNS, it is a best practice not to host them on
your cloud. For example, if your cloud hosts DNS and your cloud becomes
inoperable, DNS is unavailable and the cloud components cannot do lookups
on each other.

Host Routes - Static host routes. First, specify the destination network in CIDR format,
followed by the next hop that you want to use for routing (for example, 192.168.23.0/24,
10.1.31.1). Provide this value if you need to distribute static routes to instances.

5. Click Create.
You can view the complete network in the Networks tab. You can also click Edit to change any
options as needed. When you create instances, you can configure them now to use its subnet,
and they receive any specified DHCP options.

3.2. ADDING NETWORK ROUTING

To allow traffic to be routed to and from your new network, you must add its subnet as an interface to an
existing virtual router:

1. In the dashboard, select Project > Network > Routers.

2. Select your virtual router name in the Routers list, and click Add Interface.
In the Subnet list, select the name of your new subnet. You can optionally specify an IP address
for the interface in this field.

3. Click Add Interface.
Instances on your network can now communicate with systems outside the subnet.

3.3. DELETING A NETWORK

There are occasions where it becomes necessary to delete a network that was previously created,
perhaps as housekeeping or as part of a decommissioning process. You must first remove or detach any
interfaces where the network is still in use, before you can successfully delete a network.

To delete a network in your project, together with any dependent interfaces, complete the following

Red Hat OpenStack Platform 13 Networking Guide

24

To delete a network in your project, together with any dependent interfaces, complete the following
steps:

1. In the dashboard, select Project > Network > Networks.
Remove all router interfaces associated with the target network subnets.

To remove an interface, find the ID number of the network that you want to delete by clicking on
your target network in the Networks list, and looking at the ID field. All the subnets associated
with the network share this value in the Network ID field.

2. Navigate to Project > Network > Routers, click the name of your virtual router in the Routers
list, and locate the interface attached to the subnet that you want to delete.
You can distinguish this subnet from the other subnets by the IP address that served as the
gateway IP. You can further validate the distinction by ensuring that the network ID of the
interface matches the ID that you noted in the previous step.

3. Click the Delete Interface button for the interface that you want to delete.

4. Select Project > Network > Networks, and click the name of your network.

5. Click the Delete Subnet button for the subnet that you want to delete.

NOTE

If you are still unable to remove the subnet at this point, ensure it is not already
being used by any instances.

6. Select Project > Network > Networks, and select the network you would like to delete.

7. Click Delete Networks.

3.4. PURGING ALL RESOURCES AND DELETING A PROJECT

Use the openstack project purge command to delete all resources that belong to a particular project
as well as deleting the project, too.

For example, to purge the resources of the test-project project, and then delete the project, run the
following commands:

openstack project list
+----------------------------------+--------------+
| ID | Name |
+----------------------------------+--------------+
02e501908c5b438dbc73536c10c9aac0	test-project
519e6344f82e4c079c8e2eabb690023b	services
80bf5732752a41128e612fe615c886c6	demo
98a2f53c20ce4d50a40dac4a38016c69	admin
+----------------------------------+--------------+

openstack project purge --project 02e501908c5b438dbc73536c10c9aac0

3.5. WORKING WITH SUBNETS

Use subnets to grant network connectivity to instances. Each instance is assigned to a subnet as part of

CHAPTER 3. COMMON ADMINISTRATIVE NETWORKING TASKS

25

Use subnets to grant network connectivity to instances. Each instance is assigned to a subnet as part of
the instance creation process, therefore it’s important to consider proper placement of instances to
best accommodate their connectivity requirements.

You can create subnets only in pre-existing networks. Remember that project networks in OpenStack
Networking can host multiple subnets. This is useful if you intend to host distinctly different systems in
the same network, and prefer a measure of isolation between them.

For example, you can designate that only webserver traffic is present on one subnet, while database
traffic traverse another.

Subnets are isolated from each other, and any instance that wants to communicate with another subnet
must have their traffic directed by a router. Therefore, you can lessen network latency and load by
grouping systems in the same subnet that require a high volume of traffic between each other.

3.5.1. Creating a subnet

To create a subnet, follow these steps:

1. In the dashboard, select Project > Network > Networks, and click the name of your network in
the Networks view.

2. Click Create Subnet, and specify the following values:

Field Description

Subnet Name Descriptive subnet name.

Network Address Address in CIDR format, which contains the IP
address range and subnet mask in one value. To
determine the CIDR address, calculate the
number of bits masked in the subnet mask and
append that value to the IP address range. For
example, the subnet mask 255.255.255.0 has 24
masked bits. To use this mask with the IPv4
address range 192.168.122.0, specify the address
192.168.122.0/24.

IP Version Internet protocol version, where valid types are
IPv4 or IPv6. The IP address range in the
Network Address field must match whichever
protocol version you select.

Gateway IP IP address of the router interface for your
default gateway. This address is the next hop for
routing any traffic destined for an external
location, and must be within the range that you
specify in the Network Address field. For
example, if your CIDR network address is
192.168.122.0/24, then your default gateway is
likely to be 192.168.122.1.

Disable Gateway Disables forwarding and isolates the subnet.

Red Hat OpenStack Platform 13 Networking Guide

26

3. Click Next to specify DHCP options:

Enable DHCP - Enables DHCP services for this subnet. You can use DHCP to automate the
distribution of IP settings to your instances.

IPv6 Address - Configuration Modes. If you create an IPv6 network, you must specify how
to allocate IPv6 addresses and additional information:

No Options Specified - Select this option if you want to set IP addresses manually, or if
you use a non OpenStack-aware method for address allocation.

SLAAC (Stateless Address Autoconfiguration) - Instances generate IPv6 addresses
based on Router Advertisement (RA) messages sent from the OpenStack Networking
router. Use this configuration to create an OpenStack Networking subnet with ra_mode
set to slaac and address_mode set to slaac.

DHCPv6 stateful - Instances receive IPv6 addresses as well as additional options (for
example, DNS) from the OpenStack Networking DHCPv6 service. Use this
configuration to create a subnet with ra_mode set to dhcpv6-stateful and
address_mode set to dhcpv6-stateful.

DHCPv6 stateless - Instances generate IPv6 addresses based on Router
Advertisement (RA) messages sent from the OpenStack Networking router. Additional
options (for example, DNS) are allocated from the OpenStack Networking DHCPv6
service. Use this configuration to create a subnet with ra_mode set to dhcpv6-stateless
and address_mode set to dhcpv6-stateless.

Allocation Pools - Range of IP addresses that you want DHCP to assign. For example, the
value 192.168.22.100,192.168.22.100 considers all up addresses in that range as available for
allocation.

DNS Name Servers - IP addresses of the DNS servers available on the network. DHCP
distributes these addresses to the instances for name resolution.

Host Routes - Static host routes. First, specify the destination network in CIDR format,
followed by the next hop that you want to use for routing (for example, 192.168.23.0/24,
10.1.31.1). Provide this value if you need to distribute static routes to instances.

4. Click Create.
You can view the subnet in the Subnets list. You can also click Edit to change any options as
needed. When you create instances, you can configure them now to use its subnet, and they
receive any specified DHCP options.

3.6. DELETING A SUBNET

You can delete a subnet if it is no longer in use. However, if any instances are still configured to use the
subnet, the deletion attempt fails and the dashboard displays an error message.

Complete the following steps to delete a specific subnet in a network:

1. In the dashboard, select Project > Network > Networks.

2. Click the name of your network.

3. Select the target subnet, and click Delete Subnets.

CHAPTER 3. COMMON ADMINISTRATIVE NETWORKING TASKS

27

3.7. ADDING A ROUTER

OpenStack Networking provides routing services using an SDN-based virtual router. Routers are a
requirement for your instances to communicate with external subnets, including those in the physical
network. Routers and subnets connect using interfaces, with each subnet requiring its own interface to
the router.

The default gateway of a router defines the next hop for any traffic received by the router. Its network is
typically configured to route traffic to the external physical network using a virtual bridge.

To create a router, complete the following steps:

1. In the dashboard, select Project > Network > Routers, and click Create Router.

2. Enter a descriptive name for the new router, and click Create router.

3. Click Set Gateway next to the entry for the new router in the Routers list.

4. In the External Network list, specify the network that you want to receive traffic destined for an
external location.

5. Click Set Gateway.
After you add a router, you must configure any subnets you have created to send traffic using
this router. You do this by creating interfaces between the subnet and the router.

IMPORTANT

The default routes for subnets must not be overwritten. When the default route for a
subnet is removed, the L3 agent automatically removes the corresponding route in the
router namespace too, and network traffic cannot flow to and from the associated
subnet. If the existing router namespace route has been removed, to fix this problem,
perform these steps:

1. Disassociate all floating IPs on the subnet.

2. Detach the router from the subnet.

3. Re-attach the router to the subnet.

4. Re-attach all floating IPs.

3.8. DELETING A ROUTER

You can delete a router if it has no connected interfaces.

To remove its interfaces and delete a router, complete the following steps:

1. In the dashboard, select Project > Network > Routers, and click the name of the router that you
want to delete.

2. Select the interfaces of type Internal Interface, and click Delete Interfaces.

3. From the Routers list, select the target router and click Delete Routers.

3.9. TUNING KEEPALIVED TO AVOID VRRP PACKET LOSS

Red Hat OpenStack Platform 13 Networking Guide

28

If the number of highly available (HA) routers on a single host is high, when an HA router fail over occurs,
the Virtual Router Redundancy Protocol (VRRP) messages might overflow the IRQ queues. This
overflow stops Open vSwitch (OVS) from responding and forwarding those VRRP messages.

To avoid VRRP packet overload, you must increase the VRRP advertisement interval using the
ha_vrrp_advert_int option in Networking service (neutron) agent configuration file, l3_agent.conf.

Procedure

1. Log in as the stack user on the overcloud Networking controller host and open l3_agent.conf in
a text editor.

Example

vi /var/lib/config-data/neutron/etc/neutron/l3_agent.conf

2. Locate the ha_vrrp_advert_int option, and increase the VRRP advert interval. (The default is 2
seconds.)

Example

[DEFAULT]
ha_vrrp_advert_int = 7
ha_vrrp_garp_master_repeat = 5
ha_vrrp_garp_master_delay = 5

There are also options for gratuitous ARP messages that you can set:

ha_vrrp_garp_master_repeat

The number of gratuitous ARP messages to send at one time after the transition to the
master state. (The default is 5 messages.)

ha_vrrp_garp_master_delay

The delay for second set of gratuitous ARP messages after the lower priority advert is
received in the master state. (The default is 5 seconds.)

TIP

The next time that the openstack overcloud deploy command is run, any manual changes like
this one to l3_agent.conf are overwritten. You can write a post-deployment script that re-
applies your changes after future overcloud updates. If you incorporate the puppet hieradata
role name described in the following document in your script, the script will run only on the
overcloud node roles that must have your l3_agent.conf changes re-applied. For more
information, see Post-Configuration: Customizing All Overcloud Roles in the Advanced
Overcloud Customization guide.

Additional resources

2.1.2 Data Forwarding Rules, Subsection 2 in RFC 4541

3.10. ADDING AN INTERFACE

You can use interfaces to interconnect routers with subnets so that routers can direct any traffic that
instances send to destinations outside of their intermediate subnet.

CHAPTER 3. COMMON ADMINISTRATIVE NETWORKING TASKS

29

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Customizing_Overcloud_PostConfiguration_All
https://tools.ietf.org/html/rfc4541#section-2.1.2

To add a router interface and connect the new interface to a subnet, complete these steps:

NOTE

This procedure uses the Network Topology feature. Using this feature, you can see a
graphical representation of all your virtual routers and networks while you to perform
network management tasks.

1. In the dashboard, select Project > Network > Network Topology.

2. Locate the router that you want to manage, hover your mouse over it, and click Add Interface.

3. Specify the Subnet that you want to connect to the router.
You can also specify an IP address. The address is useful for testing and troubleshooting
purposes, since a successful ping to this interface indicates that the traffic is routing as
expected.

4. Click Add interface.
The Network Topology diagram automatically updates to reflect the new interface connection
between the router and subnet.

3.11. DELETING AN INTERFACE

You can remove an interface to a subnet if you no longer require the router to direct traffic for the
subnet.

To delete an interface, complete the following steps:

1. In the dashboard, select Project > Network > Routers.

2. Click the name of the router that hosts the interface that you want to delete.

3. Select the interface type (Internal Interface), and click Delete Interfaces.

3.12. CREATING FLOATING IP POOLS

You can use floating IP addresses to direct ingress network traffic to your OpenStack instances. First,
you must define a pool of validly routable external IP addresses, which you can then assign to instances
dynamically. OpenStack Networking routes all incoming traffic destined for that floating IP to the
instance that you associate with the floating IP.

NOTE

OpenStack Networking allocates floating IP addresses to all projects (tenants) from the
same IP ranges in CIDR format. As a result, all projects can consume floating IPs from
every floating IP subnet. You can manage this behavior using quotas for specific projects.
For example, you can set the default to 10 for ProjectA and ProjectB, while setting the
quota for ProjectC to 0.

Procedure

When you create an external subnet, you can also define the floating IP allocation pool.

Red Hat OpenStack Platform 13 Networking Guide

30

$ openstack subnet create --no-dhcp --allocation-pool
start=IP_ADDRESS,end=IP_ADDRESS --gateway IP_ADDRESS --network
SUBNET_RANGE NETWORK_NAME

If the subnet hosts only floating IP addresses, consider disabling DHCP allocation with the --no-
dhcp option in the openstack subnet create command.

Example

$ openstack subnet create --no-dhcp --allocation_pool
start=192.168.100.20,end=192.168.100.100 --gateway 192.168.100.1 --network
192.168.100.0/24 public

Verification steps

You can verify that the pool is configured properly by assigning a random floating IP to an
instance. (See the later link that follows.)

Additional resources

subnet create in the Command Line Interface Reference

Assigning a random floating IP

3.13. ASSIGNING A SPECIFIC FLOATING IP

You can assign a specific floating IP address to a VM instance.

Procedure

Allocate a floating IP address to an instance by using the openstack server add floating ip
command.

Example

$ openstack server add floating ip prod-serv1 192.0.2.200

Validation steps

Confirm that your floating IP is associated with your instance by using the openstack server
show command.

Example

$ openstack server show prod-serv1

Sample output

+-----------------------------+--+
| Field | Value |
+-----------------------------+--+
| OS-DCF:diskConfig | MANUAL |

CHAPTER 3. COMMON ADMINISTRATIVE NETWORKING TASKS

31

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#subnet_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#assign-random-float-ip_common-network-tasks

OS-EXT-AZ:availability_zone	nova
OS-EXT-STS:power_state	Running
OS-EXT-STS:task_state	None
OS-EXT-STS:vm_state	active
OS-SRV-USG:launched_at	2021-08-11T14:45:37.000000
OS-SRV-USG:terminated_at	None
accessIPv4	
accessIPv6	
addresses	public=198.51.100.56,192.0.2.200
config_drive	
created	2021-08-11T14:44:54Z
flavor	review-ephemeral
	(8130dd45-78f6-44dc-8173-4d6426b8e520)
hostId	2308c8d8f60ed5394b1525122fb5bf8ea55c78b8
	0ec6157eca4488c9
id	aef3ca09-887d-4d20-872d-1d1b49081958
image	rhel8
	(20724bfe-93a9-4341-a5a3-78b37b3a5dfb)
key_name	example-keypair
name	prod-serv1
progress	0
project_id	bd7a8c4a19424cf09a82627566b434fa
properties	
security_groups	name='default'
status	ACTIVE
updated	2021-08-11T14:45:37Z
user_id	4b7e19a0d723310fd92911eb2fe59743a3a5cd32
	45f76ffced91096196f646b5
volumes_attached	
+-----------------------------+--+

Additional resources

server add floating ip in the Command Line Interface Reference

server show in the Command Line Interface Reference

Assigning a random floating IP

3.14. CREATING AN ADVANCED NETWORK

Advanced network options are available for administrators, when creating a network from the Admin
view. Use these options to specify projects and to define the network type that you want to use.

Procedure

1. In the dashboard, select Admin > Networks > Create Network > Project.

2. Select the project that you want to host the new network with the Project drop-down list.

3. Review the options in Provider Network Type:

Local - Traffic remains on the local Compute host and is effectively isolated from any
external networks.

Flat - Traffic remains on a single network and can also be shared with the host. No VLAN

Red Hat OpenStack Platform 13 Networking Guide

32

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#server_add_floating_ip
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#server_show
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#assign-random-float-ip_common-network-tasks

Flat - Traffic remains on a single network and can also be shared with the host. No VLAN
tagging or other network segregation takes place.

VLAN - Create a network using a VLAN ID that corresponds to a VLAN present in the
physical network. This option allows instances to communicate with systems on the same
layer 2 VLAN.

GRE - Use a network overlay that spans multiple nodes for private communication between
instances. Traffic egressing the overlay must be routed.

VXLAN - Similar to GRE, and uses a network overlay to span multiple nodes for private
communication between instances. Traffic egressing the overlay must be routed.

4. Click Create Network.
Review the Project Network Topology to validate that the network has been successfully
created.

Additional resources

Assigning a specific floating IP

Assigning a random floating IP

3.15. ASSIGNING A RANDOM FLOATING IP

You can dynamically allocate floating IP addresses to VM instances from a pool of external IP addresses.

Prerequisites

A pool of routable external IP addresses.
For more information, see Section 3.12, “Creating floating IP pools” .

Procedure

1. Enter the following command to allocate a floating IP address from the pool. In this example, the
network is named public.

Example

$ openstack floating ip create public

Sample output

In the following example, the newly allocated floating IP is 192.0.2.200. You can assign it to an
instance.

+---------------------+--+
| Field | Value |
+---------------------+--+
fixed_ip_address	None
floating_ip_address	192.0.2.200
floating_network_id	f0dcc603-f693-4258-a940-0a31fd4b80d9
id	6352284c-c5df-4792-b168-e6f6348e2620
port_id	None

CHAPTER 3. COMMON ADMINISTRATIVE NETWORKING TASKS

33

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#assign-specific-float-ip_common-network-tasks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#assign-random-float-ip_common-network-tasks

| router_id | None |
| status | ACTIVE |
+---------------------+--+

2. Enter the following command to locate your instance:

$ openstack server list

Sample output

+-------------+-------------+--------+-------------+-------+-------------+
| ID | Name | Status | Networks | Image | Flavor |
+-------------+-------------+--------+-------------+-------+-------------+
aef3ca09-88	prod-serv1	ACTIVE	public=198.	rhel8	review-
7d-4d20-872			51.100.56		ephemeral
d-1d1b49081					
958					
+-------------+-------------+--------+-------------+-------+-------------+

3. Associate the instance name or ID with the floating IP.

Example

$ openstack server add floating ip prod-serv1 192.0.2.200

Validation steps

Enter the following command to confirm that your floating IP is associated with your instance.

Example

$ openstack server show prod-serv1

Sample output

+-----------------------------+--+
| Field | Value |
+-----------------------------+--+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	nova
OS-EXT-STS:power_state	Running
OS-EXT-STS:task_state	None
OS-EXT-STS:vm_state	active
OS-SRV-USG:launched_at	2021-08-11T14:45:37.000000
OS-SRV-USG:terminated_at	None
accessIPv4	
accessIPv6	
addresses	public=198.51.100.56,192.0.2.200
config_drive	
created	2021-08-11T14:44:54Z
flavor	review-ephemeral

Red Hat OpenStack Platform 13 Networking Guide

34

	(8130dd45-78f6-44dc-8173-4d6426b8e520)
hostId	2308c8d8f60ed5394b1525122fb5bf8ea55c78b8
	0ec6157eca4488c9
id	aef3ca09-887d-4d20-872d-1d1b49081958
image	rhel8
	(20724bfe-93a9-4341-a5a3-78b37b3a5dfb)
key_name	example-keypair
name	prod-serv1
progress	0
project_id	bd7a8c4a19424cf09a82627566b434fa
properties	
security_groups	name='default'
status	ACTIVE
updated	2021-08-11T14:45:37Z
user_id	4b7e19a0d723310fd92911eb2fe59743a3a5cd32
	45f76ffced91096196f646b5
volumes_attached	
+-----------------------------+--+

Additional resources

floating ip create in the Command Line Interface Reference

server add floating ip in the Command Line Interface Reference

server show in the Command Line Interface Reference

Creating floating IP pools

3.16. CREATING MULTIPLE FLOATING IP POOLS

OpenStack Networking supports one floating IP pool for each L3 agent. Therefore, you must scale your
L3 agents to create additional floating IP pools.

Procedure

Make sure that in /var/lib/config-data/neutron/etc/neutron/neutron.conf the property
handle_internal_only_routers is set to True for only one L3 agent in your environment. This
option configures the L3 agent to manage only non-external routers.

Additional resources

Creating floating IP pools

Assigning a random floating IP

3.17. BRIDGING THE PHYSICAL NETWORK

Bridge your virtual network to the physical network to enable connectivity to and from virtual instances.

In this procedure, the example physical interface, eth0, is mapped to the bridge, br-ex; the virtual bridge
acts as the intermediary between the physical network and any virtual networks.

As a result, all traffic traversing eth0 uses the configured Open vSwitch to reach instances.

CHAPTER 3. COMMON ADMINISTRATIVE NETWORKING TASKS

35

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#floating_ip_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#server_add_floating_ip
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#server_show
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#create-float-ip-pools_common-network-tasks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#create-float-ip-pools_common-network-tasks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#assign-random-float-ip_common-network-tasks

To map a physical NIC to the virtual Open vSwitch bridge, complete the following steps:

Procedure

1. Open /etc/sysconfig/network-scripts/ifcfg-eth0 in a text editor, and update the following
parameters with values appropriate for the network at your site:

IPADDR

NETMASK GATEWAY

DNS1 (name server)
Here is an example:

vi /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
TYPE=OVSPort
DEVICETYPE=ovs
OVS_BRIDGE=br-ex
ONBOOT=yes

2. Open /etc/sysconfig/network-scripts/ifcfg-br-ex in a text editor and update the virtual bridge
parameters with the IP address values that were previously allocated to eth0:

vi /etc/sysconfig/network-scripts/ifcfg-br-ex
DEVICE=br-ex
DEVICETYPE=ovs
TYPE=OVSBridge
BOOTPROTO=static
IPADDR=192.168.120.10
NETMASK=255.255.255.0
GATEWAY=192.168.120.1
DNS1=192.168.120.1
ONBOOT=yes

You can now assign floating IP addresses to instances and make them available to the physical
network.

Additional resources

Configuring bridge mappings

3.18. SPECIFYING THE NAME THAT DNS ASSIGNS TO PORTS

You can specify the name assigned to ports by the internal DNS when you enable the Red Hat
OpenStack Platform (RHOSP) Networking service (neutron) dns_domain for ports extension
(dns_domain_ports).

You enable the dns_domain for ports extension by declaring the RHOSP Orchestration (heat)
NeutronPluginExtensions parameter in a YAML-formatted environment file. Using a corresponding
parameter, NeutronDnsDomain, you specify your domain name, which overrides the default value,
openstacklocal. After redeploying your overcloud, you can use the OpenStack Client port commands,
port set or port create, with --dns-name to assign a port name.

Also, when the dns_domain for ports extension is enabled, the Compute service automatically populates

Red Hat OpenStack Platform 13 Networking Guide

36

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#configuring-bridge-mappings_config-bridge-mappings

Also, when the dns_domain for ports extension is enabled, the Compute service automatically populates
the dns_name attribute with the hostname attribute of the instance during the boot of VM instances.
At the end of the boot process, dnsmasq recognizes the allocated ports by their instance hostname.

Procedure

1. Log in to the undercloud as the stack user, and source the stackrc file to enable the director
command line tools.

Example

$ source ~/stackrc

2. Create a custom YAML environment file (my-neutron-environment.yaml).

NOTE

Values inside parentheses are sample values that are used in the example
commands in this procedure. Substitute these sample values with ones that are
appropriate for your site.

Example

$ vi /home/stack/templates/my-neutron-environment.yaml

TIP

The undercloud includes a set of Orchestration service templates that form the plan for your
overcloud creation. You can customize aspects of the overcloud with environment files, which
are YAML-formatted files that override parameters and resources in the core Orchestration
service template collection. You can include as many environment files as necessary.

3. In the environment file, add a parameter_defaults section. Under this section, add the
dns_domain for ports extension, dns_domain_ports.

Example

parameter_defaults:
 NeutronPluginExtensions: "qos,port_security,dns_domain_ports"

NOTE

If you set dns_domain_ports, ensure that the deployment does not also use
dns_domain, the DNS Integration extension. These extensions are incompatible,
and both extensions cannot be defined simultaneously.

4. Also in the parameter_defaults section, add your domain name (example.com) using the
NeutronDnsDomain parameter.

Example

CHAPTER 3. COMMON ADMINISTRATIVE NETWORKING TASKS

37

parameter_defaults:
 NeutronPluginExtensions: "qos,port_security,dns_domain_ports"
 NeutronDnsDomain: "example.com"

5. Run the openstack overcloud deploy command and include the core Orchestration templates,
environment files, and this new environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-neutron-
environment.yaml

Verification steps

1. Log in to the overcloud, and create a new port (new_port) on a network (public). Assign a DNS
name (my_port) to the port.

Example

$ source ~/overcloudrc
$ openstack port create --network public --dns-name my_port new_port

2. Display the details for your port (new_port).

Example

$ openstack port show -c dns_assignment -c dns_domain -c dns_name -c name new_port

Output

+-------------------------+--+
| Field | Value |
+-------------------------+--+
dns_assignment	fqdn='my_port.example.com',
	hostname='my_port',
	ip_address='10.65.176.113'
dns_domain	example.com
dns_name	my_port
name	new_port
+-------------------------+--+

Under dns_assignment, the fully qualified domain name (fqdn) value for the port contains a
concatenation of the DNS name (my_port) and the domain name (example.com) that you set
earlier with NeutronDnsDomain.

Red Hat OpenStack Platform 13 Networking Guide

38

3. Create a new VM instance (my_vm) using the port (new_port) that you just created.

Example

$ openstack server create --image rhel --flavor m1.small --port new_port my_vm

4. Display the details for your port (new_port).

Example

$ openstack port show -c dns_assignment -c dns_domain -c dns_name -c name new_port

Output

+-------------------------+--+
| Field | Value |
+-------------------------+--+
dns_assignment	fqdn='my_vm.example.com',
	hostname='my_vm',
	ip_address='10.65.176.113'
dns_domain	example.com
dns_name	my_vm
name	new_port
+-------------------------+--+

Note that the Compute service changes the dns_name attribute from its original value
(my_port) to the name of the instance with which the port is associated (my_vm).

Additional resources

Environment files in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

port in the Command Line Interface Reference

server create in the Command Line Interface Reference

3.19. ASSIGNING DHCP ATTRIBUTES TO PORTS

You can use Red Hat Openstack Plaform (RHOSP) Networking service (neutron) extensions to add
networking functions. You can use the extra DHCP option extension (extra_dhcp_opt) to configure
ports of DHCP clients with DHCP attributes. For example, you can add a PXE boot option such as tftp-
server, server-ip-address, or bootfile-name to a DHCP client port.

The value of the extra_dhcp_opt attribute is an array of DHCP option objects, where each object
contains an opt_name and an opt_value. IPv4 is the default version, but you can change this to IPv6 by
including a third option, ip-version=6.

When a VM instance starts, the RHOSP Networking service supplies port information to the instance
using DHCP protocol. If you add DHCP information to a port already connected to a running instance,
the instance only uses the new DHCP port information when the instance is restarted.

Some of the more common DHCP port attributes are: bootfile-name, dns-server, domain-name, mtu,

CHAPTER 3. COMMON ADMINISTRATIVE NETWORKING TASKS

39

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_Overcloud_Creation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#port
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#server_create

Some of the more common DHCP port attributes are: bootfile-name, dns-server, domain-name, mtu,
server-ip-address, and tftp-server. For the complete set of acceptable values for opt_name, refer to
the DHCP specification.

Prerequisites

You must have RHOSP administrator privileges.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

3. Create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-octavia-environment.yaml

4. Your environment file must contain the keywords parameter_defaults. Under these keywords,
add the extra DHCP option extension, extra_dhcp_opt.

Example

parameter_defaults:
 NeutronPluginExtensions: "qos,port_security,extra_dhcp_opt"

5. Run the deployment command and include the core heat templates, environment files, and this
new custom environment file.

The order of the environment files is important because the parameters and resources
defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e <your_environment_files> \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/octavia.yaml \
-e /home/stack/templates/my-octavia-environment.yaml

Verification

1. Source your credentials file.

Example

$ source ~/overcloudrc

2. Create a new port (new_port) on a network (public). Assign a valid attribute from the DHCP

Red Hat OpenStack Platform 13 Networking Guide

40

2. Create a new port (new_port) on a network (public). Assign a valid attribute from the DHCP
specification to the new port.

Example

$ openstack port create --extra-dhcp-option name=domain-name,value=test.domain --extra-
dhcp-option name=ntp-server,value=192.0.2.123 --network public new_port

3. Display the details for your port (new_port).

Example

$ openstack port show new_port -c extra_dhcp_opts

Sample output

+-----------------+--+
| Field | Value |
+-----------------+--+
| extra_dhcp_opts | ip_version='4', opt_name='domain-name', opt_value='test.domain' |
| | ip_version='4', opt_name='ntp-server', opt_value='192.0.2.123' |
+-----------------+--+

Additional resources

OVN supported DHCP options

Dynamic Host Configuration Protocol (DHCP) and Bootstrap Protocol (BOOTP) Parameters

Environment files in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

port create in the Command Line Interface Reference

port show in the Command Line Interface Reference

3.20. LOADING KERNEL MODULES

Some features in Red Hat OpenStack Platform (RHOSP) require certain kernel modules to be loaded.
For example, the OVS firewall driver requires you to load the nf_conntrack_proto_gre kernel module to
support GRE tunneling between two VM instances.

By using a special Orchestration service (heat) parameter, ExtraKernelModules, you can ensure that
heat stores configuration information about the required kernel modules needed for features like GRE
tunneling. Later, during normal module management, these required kernel modules are loaded.

Procedure

1. On the undercloud host, logged in as the stack user, create a custom YAML environment file.

Example

CHAPTER 3. COMMON ADMINISTRATIVE NETWORKING TASKS

41

https://docs.openstack.org/neutron/latest/ovn/dhcp_opts.html
https://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.xhtml
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_Overcloud_Creation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/command_line_interface_reference/port#port_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/command_line_interface_reference/port#port_show

$ vi /home/stack/templates/my-modules-environment.yaml

TIP

Heat uses a set of plans called templates to install and configure your environment. You can
customize aspects of the overcloud with a custom environment file , which is a special type of
template that provides customization for your heat templates.

2. In the YAML environment file under parameter_defaults, set ExtraKernelModules to the
name of the module that you want to load.

Example

ComputeParameters:
 ExtraKernelModules:
 nf_conntrack_proto_gre: {}
ControllerParameters:
 ExtraKernelModules:
 nf_conntrack_proto_gre: {}

3. Run the openstack overcloud deploy command and include the core heat templates,
environment files, and this new custom environment file.

IMPORTANT

The order of the environment files is important as the parameters and resources
defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-modules-
environment.yaml

Verification steps

If heat has properly loaded the module, you should see output when you run the lsmod
command on the Compute node:

Example

sudo lsmod | grep nf_conntrack_proto_gre

Additional resources

Environment files in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

Red Hat OpenStack Platform 13 Networking Guide

42

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_Overcloud_Creation

CHAPTER 4. PLANNING IP ADDRESS USAGE
An OpenStack deployment can consume a larger number of IP addresses than might be expected. This
section contains information about correctly anticipating the quantity of addresses that you require, and
where the addresses are used in your environment.

4.1. VLAN PLANNING

When you plan your Red Hat OpenStack Platform deployment, you start with a number of subnets, from
which you allocate individual IP addresses. When you use multiple subnets you can segregate traffic
between systems into VLANs.

For example, it is ideal that your management or API traffic is not on the same network as systems that
serve web traffic. Traffic between VLANs travels through a router where you can implement firewalls to
govern traffic flow.

You must plan your VLANs as part of your overall plan that includes traffic isolation, high availability, and
IP address utilization for the various types of virtual networking resources in your deployment.

NOTE

The maximum number of VLANs in a single network, or in one OVS agent for a network
node, is 4094. In situations where you require more than the maximum number of VLANs,
you can create several provider networks (VXLAN networks) and several network nodes,
one per network. Each node can contain up to 4094 private networks.

4.2. TYPES OF NETWORK TRAFFIC

You can allocate separate VLANs for the different types of network traffic that you want to host. For
example, you can have separate VLANs for each of these types of networks. Only the External network
must be routable to the external physical network. In this release, director provides DHCP services.

NOTE

You do not require all of the isolated VLANs in this section for every OpenStack
deployment.. For example, if your cloud users do not create ad hoc virtual networks on
demand, then you may not require a project network. If you want each VM to connect
directly to the same switch as any other physical system, connect your Compute nodes
directly to a provider network and configure your instances to use that provider network
directly.

Provisioning network - This VLAN is dedicated to deploying new nodes using director over
PXE boot. OpenStack Orchestration (heat) installs OpenStack onto the overcloud bare metal
servers. These servers attach to the physical network to receive the platform installation image
from the undercloud infrastructure.

Internal API network - The OpenStack services use the Internal API networkfor
communication, including API communication, RPC messages, and database communication. In
addition, this network is used for operational messages between controller nodes. When
planning your IP address allocation, note that each API service requires its own IP address.
Specifically, you must plan IP addresses for each of the following services:

vip-msg (ampq)

CHAPTER 4. PLANNING IP ADDRESS USAGE

43

vip-keystone-int

vip-glance-int

vip-cinder-int

vip-nova-int

vip-neutron-int

vip-horizon-int

vip-heat-int

vip-ceilometer-int

vip-swift-int

vip-keystone-pub

vip-glance-pub

vip-cinder-pub

vip-nova-pub

vip-neutron-pub

vip-horizon-pub

vip-heat-pub

vip-ceilometer-pub

vip-swift-pub

NOTE

When using High Availability, Pacemaker moves VIP addresses between the physical
nodes.

Storage - Block Storage, NFS, iSCSI, and other storage services. Isolate this network to
separate physical Ethernet links for performance reasons.

Storage Management - OpenStack Object Storage (swift) uses this network to synchronise
data objects between participating replica nodes. The proxy service acts as the intermediary
interface between user requests and the underlying storage layer. The proxy receives incoming
requests and locates the necessary replica to retrieve the requested data. Services that use a
Ceph back end connect over the Storage Management network, since they do not interact with
Ceph directly but rather use the front end service. Note that the RBD driver is an exception; this
traffic connects directly to Ceph.

Project networks - Neutron provides each project with their own networks using either VLAN
segregation (where each project network is a network VLAN), or tunneling using VXLAN or
GRE. Network traffic is isolated within each project network. Each project network has an IP
subnet associated with it, and multiple project networks may use the same addresses.

Red Hat OpenStack Platform 13 Networking Guide

44

External - The External network hosts the public API endpoints and connections to the
Dashboard (horizon). You can also use this network for SNAT. In a production deployment, it is
common to use a separate network for floating IP addresses and NAT.

Provider networks - Use provider networks to attach instances to existing network
infrastructure. You can use provider networks to map directly to an existing physical network in
the data center, using flat networking or VLAN tags. This allows an instance to share the same
layer-2 network as a system external to the OpenStack Networking infrastructure.

4.3. IP ADDRESS CONSUMPTION

The following systems consume IP addresses from your allocated range:

Physical nodes - Each physical NIC requires one IP address. It is common practice to dedicate
physical NICs to specific functions. For example, allocate management and NFS traffic to
distinct physical NICs, sometimes with multiple NICs connecting across to different switches for
redundancy purposes.

Virtual IPs (VIPs) for High Availability - Plan to allocate between one and three VIPs for each
network that controller nodes share.

4.4. VIRTUAL NETWORKING

The following virtual resources consume IP addresses in OpenStack Networking. These resources are
considered local to the cloud infrastructure, and do not need to be reachable by systems in the external
physical network:

Project networks - Each project network requires a subnet that it can use to allocate IP
addresses to instances.

Virtual routers - Each router interface plugging into a subnet requires one IP address. If you
want to use DHCP, each router interface requires two IP addresses.

Instances - Each instance requires an address from the project subnet that hosts the instance.
If you require ingress traffic, you must allocate a floating IP address to the instance from the
designated external network.

Management traffic - Includes OpenStack Services and API traffic. All services share a small
number of VIPs. API, RPC and database services communicate on the internal API VIP.

4.5. EXAMPLE NETWORK PLAN

This example shows a number of networks that accommodate multiple subnets, with each subnet being
assigned a range of IP addresses:

Table 4.1. Example subnet plan

Subnet name Address range Number of addresses Subnet Mask

Provisioning network 192.168.100.1 -
192.168.100.250

250 255.255.255.0

Internal API network 172.16.1.10 - 172.16.1.250 241 255.255.255.0

CHAPTER 4. PLANNING IP ADDRESS USAGE

45

Storage 172.16.2.10 - 172.16.2.250 241 255.255.255.0

Storage Management 172.16.3.10 - 172.16.3.250 241 255.255.255.0

Tenant network
(GRE/VXLAN)

172.16.4.10 - 172.16.4.250 241 255.255.255.0

External network (incl.
floating IPs)

10.1.2.10 - 10.1.3.222 469 255.255.254.0

Provider network
(infrastructure)

10.10.3.10 - 10.10.3.250 241 255.255.252.0

Subnet name Address range Number of addresses Subnet Mask

Red Hat OpenStack Platform 13 Networking Guide

46

CHAPTER 5. REVIEWING OPENSTACK NETWORKING ROUTER
PORTS

Virtual routers in OpenStack Networking use ports to interconnect with subnets. You can review the
state of these ports to determine whether they connect as expected.

5.1. VIEWING CURRENT PORT STATUS

Complete the following steps to lists all of the ports that attach to a particular router and to retrieve the
current state of a port (DOWN or ACTIVE):

1. To view all the ports that attach to the router named r1, run the following command:

openstack port list --router r1

Example result:

+--------------------------------------+------+-------------------+--
--+
| id | name | mac_address | fixed_ips
|
+--------------------------------------+------+-------------------+--
--+
| b58d26f0-cc03-43c1-ab23-ccdb1018252a | | fa:16:3e:94:a7:df | {"subnet_id": "a592fdba-
babd-48e0-96e8-2dd9117614d3", "ip_address": "192.168.200.1"} |
| c45e998d-98a1-4b23-bb41-5d24797a12a4 | | fa:16:3e:ee:6a:f7 | {"subnet_id": "43f8f625-
c773-4f18-a691-fd4ebfb3be54", "ip_address": "172.24.4.225"} |
+--------------------------------------+------+-------------------+--
--+

2. To view the details of each port, run the following command. Include the port ID of the port that
you want to view. The result includes the port status, indicated in the following example as
having an ACTIVE state:

openstack port show b58d26f0-cc03-43c1-ab23-ccdb1018252a

Example result:

+-----------------------+--
+
| Field | Value |
+-----------------------+--
+
admin_state_up	True
allowed_address_pairs	
binding:host_id	node.example.com
binding:profile	{}
binding:vif_details	{"port_filter": true, "ovs_hybrid_plug": true}
binding:vif_type	ovs
binding:vnic_type	normal
device_id	49c6ebdc-0e62-49ad-a9ca-58cea464472f
device_owner	network:router_interface
extra_dhcp_opts	

CHAPTER 5. REVIEWING OPENSTACK NETWORKING ROUTER PORTS

47

| fixed_ips | {"subnet_id": "a592fdba-babd-48e0-96e8-2dd9117614d3", "ip_address":
"192.168.200.1"} |
id	b58d26f0-cc03-43c1-ab23-ccdb1018252a
mac_address	fa:16:3e:94:a7:df
name	
network_id	63c24160-47ac-4140-903d-8f9a670b0ca4
security_groups	
status	ACTIVE
tenant_id	d588d1112e0f496fb6cac22f9be45d49
+-----------------------+--
+

3. Perform step 2 for each port to retrieve its status.

Red Hat OpenStack Platform 13 Networking Guide

48

CHAPTER 6. TROUBLESHOOTING PROVIDER NETWORKS
A deployment of virtual routers and switches, also known as software-defined networking (SDN), may
seem to introduce complexity. However, the diagnostic process of troubleshooting network
connectivity in OpenStack Networking is similar to the diagnostic process for physical networks. If you
use VLANs, you can consider the virtual infrastructure as a trunked extension of the physical network,
rather than a wholly separate environment.

6.1. BASIC PING TESTING

The ping command is a useful tool for analyzing network connectivity problems. The results serve as a
basic indicator of network connectivity, but might not entirely exclude all connectivity issues, such as a
firewall blocking the actual application traffic. The ping command sends traffic to specific destinations,
and then reports back whether the attempts were successful.

NOTE

The ping command is an ICMP operation. To use ping, you must allow ICMP traffic to
traverse any intermediary firewalls.

Ping tests are most useful when run from the machine experiencing network issues, so it may be
necessary to connect to the command line via the VNC management console if the machine seems to
be completely offline.

For example, the following ping test command validates multiple layers of network infrastructure in
order to succeed; name resolution, IP routing, and network switching must all function correctly:

$ ping www.redhat.com

PING e1890.b.akamaiedge.net (125.56.247.214) 56(84) bytes of data.
64 bytes from a125-56.247-214.deploy.akamaitechnologies.com (125.56.247.214): icmp_seq=1
ttl=54 time=13.4 ms
64 bytes from a125-56.247-214.deploy.akamaitechnologies.com (125.56.247.214): icmp_seq=2
ttl=54 time=13.5 ms
64 bytes from a125-56.247-214.deploy.akamaitechnologies.com (125.56.247.214): icmp_seq=3
ttl=54 time=13.4 ms
^C

You can terminate the ping command with Ctrl-c, after which a summary of the results is presented.
Zero percent packet loss indicates that the connection was stable and did not time out.

--- e1890.b.akamaiedge.net ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 13.461/13.498/13.541/0.100 ms

The results of a ping test can be very revealing, depending on which destination you test. For example, in
the following diagram VM1 is experiencing some form of connectivity issue. The possible destinations
are numbered in blue, and the conclusions drawn from a successful or failed result are presented:

CHAPTER 6. TROUBLESHOOTING PROVIDER NETWORKS

49

1. The internet - a common first step is to send a ping test to an internet location, such as
www.redhat.com.

Success: This test indicates that all the various network points in between the machine and the
Internet are functioning correctly. This includes the virtual and physical network infrastructure.

Failure: There are various ways in which a ping test to a distant internet location can fail. If other
machines on your network are able to successfully ping the internet, that proves the internet
connection is working, and the issue is likely within the configuration of the local machine.

2. Physical router - This is the router interface that the network administrator designates to direct
traffic onward to external destinations.

Success: Ping tests to the physical router can determine whether the local network and
underlying switches are functioning. These packets do not traverse the router, so they do not
prove whether there is a routing issue present on the default gateway.

Failure: This indicates that the problem lies between VM1 and the default gateway. The
router/switches might be down, or you may be using an incorrect default gateway. Compare the
configuration with that on another server that you know is functioning correctly. Try pinging
another server on the local network.

3. Neutron router - This is the virtual SDN (Software-defined Networking) router that Red Hat
OpenStack Platform uses to direct the traffic of virtual machines.

Success: Firewall is allowing ICMP traffic, the Networking node is online.

Failure: Confirm whether ICMP traffic is permitted in the security group of the instance. Check
that the Networking node is online, confirm that all the required services are running, and review
the L3 agent log (/var/log/neutron/l3-agent.log).

4. Physical switch - The physical switch manages traffic between nodes on the same physical network.

Success: Traffic sent by a VM to the physical switch must pass through the virtual network

Red Hat OpenStack Platform 13 Networking Guide

50

Success: Traffic sent by a VM to the physical switch must pass through the virtual network
infrastructure, indicating that this segment is functioning correctly.

Failure: Check that the physical switch port is configured to trunk the required VLANs.

5. VM2 - Attempt to ping a VM on the same subnet, on the same Compute node.

Success: The NIC driver and basic IP configuration on VM1 are functional.

Failure: Validate the network configuration on VM1. Or, firewall on VM2 might simply be blocking
ping traffic. In addition, verify the virtual switching configuration and review the Open vSwitch
(or Linux Bridge) log files.

6.2. TROUBLESHOOTING VLAN NETWORKS

OpenStack Networking can trunk VLAN networks through to the SDN switches. Support for VLAN-
tagged provider networks means that virtual instances can integrate with server subnets in the physical
network.

To troubleshoot connectivity to a VLAN Provider network, complete these steps:

1. Ping the gateway with ping <gateway-IP-address>.
Consider this example, in which a network is created with these commands:

openstack network create --provider-network-type vlan --provider-physical-network phy-
eno1 --provider-segment 120 provider
openstack subnet create --no-dhcp --allocation-pool
start=192.168.120.1,end=192.168.120.153 --gateway 192.168.120.254 --network provider
public_subnet

In this example, the gateway IP address is 192.168.120.254.

$ ping 192.168.120.254

2. If the ping fails, do the following:

a. Confirm that you have network flow for the associated VLAN.
It is possible that the VLAN ID has not been set. In this example, OpenStack Networking is
configured to trunk VLAN 120 to the provider network. (See --
provider:segmentation_id=120 in the example in step 1.)

b. Confirm the VLAN flow on the bridge interface using the command, ovs-ofctl dump-flows
<bridge-name>.
In this example the bridge is named br-ex:

ovs-ofctl dump-flows br-ex

 NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=987.521s, table=0, n_packets=67897, n_bytes=14065247,
idle_age=0, priority=1 actions=NORMAL
 cookie=0x0, duration=986.979s, table=0, n_packets=8, n_bytes=648, idle_age=977,
priority=2,in_port=12 actions=drop

6.2.1. Reviewing the VLAN configuration and log files

CHAPTER 6. TROUBLESHOOTING PROVIDER NETWORKS

51

OpenStack Networking (neutron) agents - Use the openstack network agent list command
to verify that all agents are up and registered with the correct names:

(overcloud)[stack@undercloud~]$ openstack network agent list
+--------------------------------------+--------------------+-----------------------+-------+----------------+
| id | agent_type | host | alive | admin_state_up |
+--------------------------------------+--------------------+-----------------------+-------+----------------+
| a08397a8-6600-437d-9013-b2c5b3730c0c | Metadata agent | rhelosp.example.com | :-)
| True |
| a5153cd2-5881-4fc8-b0ad-be0c97734e6a | L3 agent | rhelosp.example.com | :-) |
True |
| b54f0be7-c555-43da-ad19-5593a075ddf0 | DHCP agent | rhelosp.example.com | :-)
| True |
| d2be3cb0-4010-4458-b459-c5eb0d4d354b | Open vSwitch agent | rhelosp.example.com |
:-) | True |
+--------------------------------------+--------------------+-----------------------+-------+----------------+

Review /var/log/containers/neutron/openvswitch-agent.log - this log should provide
confirmation that the creation process used the ovs-ofctl command to configure VLAN
trunking.

Validate external_network_bridge in the /etc/neutron/l3_agent.ini file. If there is a hardcoded
value in the external_network_bridge parameter, you cannot use a provider network with the
L3-agent, and you cannot create the necessary flows. The external_network_bridge value
must be in the format `external_network_bridge = "" `.

Check the network_vlan_ranges value in the /etc/neutron/plugin.ini file. For provider
networks, do not specify the numeric VLAN ID. Specify IDs only when using VLAN isolated
project networks.

Validate the OVS agent configuration file bridge mappings, confirm that the bridge mapped to
phy-eno1 exists and is properly connected to eno1.

6.3. TROUBLESHOOTING FROM WITHIN PROJECT NETWORKS

In OpenStack Networking, all project traffic is contained within network namespaces so that projects
can configure networks without interfering with each other. For example, network namespaces allow
different projects to have the same subnet range of 192.168.1.1/24 without interference between them.

To begin troubleshooting a project network, first determine which network namespace contains the
network:

1. List all the project networks using the openstack network list command:

(overcloud)[stack@osp13-undercloud ~]$ openstack network list
+--------------------------------------+-------------+---+
| id | name | subnets |
+--------------------------------------+-------------+---+
| 9cb32fe0-d7fb-432c-b116-f483c6497b08 | web-servers | 453d6769-fcde-4796-a205-
66ee01680bba 192.168.212.0/24 |
| a0cc8cdd-575f-4788-a3e3-5df8c6d0dd81 | private | c1e58160-707f-44a7-bf94-
8694f29e74d3 10.0.0.0/24 |
| baadd774-87e9-4e97-a055-326bb422b29b | private | 340c58e1-7fe7-4cf2-96a7-
96a0a4ff3231 192.168.200.0/24 |

Red Hat OpenStack Platform 13 Networking Guide

52

| 24ba3a36-5645-4f46-be47-f6af2a7d8af2 | public | 35f3d2cb-6e4b-4527-a932-
952a395c4bb3 172.24.4.224/28 |
+--------------------------------------+-------------+---+

In this example,examine the web-servers network. Make a note of the id value in the web-server
row (9cb32fe0-d7fb-432c-b116-f483c6497b08). This value is appended to the network
namespace, which helps you identify the namespace in the next step.

2. List all the network namespaces using the ip netns list command:

ip netns list
qdhcp-9cb32fe0-d7fb-432c-b116-f483c6497b08
qrouter-31680a1c-9b3e-4906-bd69-cb39ed5faa01
qrouter-62ed467e-abae-4ab4-87f4-13a9937fbd6b
qdhcp-a0cc8cdd-575f-4788-a3e3-5df8c6d0dd81
qrouter-e9281608-52a6-4576-86a6-92955df46f56

The output contains a namespace that matches the web-servers network id. In this example
the namespace is qdhcp-9cb32fe0-d7fb-432c-b116-f483c6497b08.

3. Examine the configuration of the web-servers network by running commands within the
namespace, prefixing the troubleshooting commands with ip netns exec <namespace>:

ip netns exec qrouter-62ed467e-abae-4ab4-87f4-13a9937fbd6b route -n

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 172.24.4.225 0.0.0.0 UG 0 0 0 qg-8d128f89-87
172.24.4.224 0.0.0.0 255.255.255.240 U 0 0 0 qg-8d128f89-87
192.168.200.0 0.0.0.0 255.255.255.0 U 0 0 0 qr-8efd6357-96

6.3.1. Performing advanced ICMP testing within the namespace

1. Capture ICMP traffic using the tcpdump command:

ip netns exec qrouter-62ed467e-abae-4ab4-87f4-13a9937fbd6b tcpdump -qnntpi any icmp

2. In a separate command line window, perform a ping test to an external network:

ip netns exec qrouter-62ed467e-abae-4ab4-87f4-13a9937fbd6b ping www.redhat.com

3. In the terminal running the tcpdump session, observe detailed results of the ping test.

tcpdump: listening on any, link-type LINUX_SLL (Linux cooked), capture size 65535 bytes
IP (tos 0xc0, ttl 64, id 55447, offset 0, flags [none], proto ICMP (1), length 88)
 172.24.4.228 > 172.24.4.228: ICMP host 192.168.200.20 unreachable, length 68
 IP (tos 0x0, ttl 64, id 22976, offset 0, flags [DF], proto UDP (17), length 60)
 172.24.4.228.40278 > 192.168.200.21: [bad udp cksum 0xfa7b -> 0xe235!] UDP, length 32

NOTE

CHAPTER 6. TROUBLESHOOTING PROVIDER NETWORKS

53

NOTE

When you perform a tcpdump analysis of traffic, you might observe the responding
packets heading to the router interface rather than the instance. This is expected
behavior, as the qrouter performs DNAT on the return packets.

Red Hat OpenStack Platform 13 Networking Guide

54

CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL
NETWORK

This chapter contains information about using provider networks to connect instances directly to an
external network.

7.1. OVERVIEW OF THE OPENSTACK NETWORKING TOPOLOGY

OpenStack Networking (neutron) has two categories of services distributed across a number of node
types.

Neutron server - This service runs the OpenStack Networking API server, which provides the
API for end-users and services to interact with OpenStack Networking. This server also
integrates with the underlying database to store and retrieve project network, router, and
loadbalancer details, among others.

Neutron agents - These are the services that perform the network functions for OpenStack
Networking:

neutron-dhcp-agent - manages DHCP IP addressing for project private networks.

neutron-l3-agent - performs layer 3 routing between project private networks, the external
network, and others.

Compute node - This node hosts the hypervisor that runs the virtual machines, also known as
instances. A Compute node must be wired directly to the network in order to provide external
connectivity for instances. This node is typically where the l2 agents run, such as neutron-
openvswitch-agent.

Additional resources

Placement of OpenStack Networking services

7.2. PLACEMENT OF OPENSTACK NETWORKING SERVICES

The OpenStack Networking services can either run together on the same physical server, or on separate
dedicated servers, which are named according to their roles:

Controller node - The server that runs API service.

Network node - The server that runs the OpenStack Networking agents.

Compute node - The hypervisor server that hosts the instances.

The steps in this chapter apply to an environment that contains these three node types. If your
deployment has both the Controller and Network node roles on the same physical node, then you must
perform the steps from both sections on that server. This also applies for a High Availability (HA)
environment, where all three nodes might be running the Controller node and Network node services
with HA. As a result, you must complete the steps in sections applicable to Controller and Network nodes
on all three nodes.

Additional resources

Overview of the OpenStack Networking topology

CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL NETWORK

55

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#placement-network-services_connect-instance
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#overview-network-topo_connect-instance

7.3. CONFIGURING FLAT PROVIDER NETWORKS

You can use flat provider networks to connect instances directly to the external network. This is useful if
you have multiple physical networks and separate physical interfaces, and intend to connect each
Compute and Network node to those external networks.

Prerequisites

You have multiple physical networks.
This example uses physical networks called physnet1, and physnet2, respectively.

You have separate physical interfaces.
This example uses separate physical interfaces, eth0 and eth1, respectively.

Procedure

1. On the undercloud host, logged in as the stack user, create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-modules-environment.yaml

TIP

The Red Hat OpenStack Platform Orchestration service (heat) uses a set of plans called
templates to install and configure your environment. You can customize aspects of the
overcloud with a custom environment file , which is a special type of template that provides
customization for your orchestration templates.

2. In the YAML environment file under parameter_defaults, use the NeutronBridgeMappings to
specify which OVS bridges are used for accessing external networks.

Example

parameter_defaults:
 NeutronBridgeMappings: 'physnet1:br-net1,physnet2:br-net2'

3. In the custom NIC configuration template for the Controller and Compute nodes, configure the
bridges with interfaces attached.

Example

...
 - type: ovs_bridge
 name: br-net1
 mtu: 1500
 use_dhcp: false
 members:
 - type: interface
 name: eth0
 mtu: 1500
 use_dhcp: false
 primary: true

Red Hat OpenStack Platform 13 Networking Guide

56

 - type: ovs_bridge
 name: br-net2
 mtu: 1500
 use_dhcp: false
 members:
 - type: interface
 name: eth1
 mtu: 1500
 use_dhcp: false
 primary: true
...

4. Run the openstack overcloud deploy command and include the templates and the
environment files, including this modified custom NIC template and the new environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-neutron-
environment.yaml

Verification steps

1. Create an external network (public1) as a flat network and associate it with the configured
physical network (physnet1).
Configure it as a shared network (using --share) to let other users create VM instances that
connect to the external network directly.

Example

openstack network create --share --provider-network-type flat --provider-physical-network
physnet1 --external public01

2. Create a subnet (public_subnet) using the openstack subnet create command.

Example

openstack subnet create --no-dhcp --allocation-pool
start=192.168.100.20,end=192.168.100.100 --gateway 192.168.100.1 --network public01
public_subnet

3. Create a VM instance and connect it directly to the newly-created external network.

Example

$ openstack server create --image rhel --flavor my_flavor --network public01 my_instance

CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL NETWORK

57

Additional resources

Custom network interface templates in the Advanced Overcloud Customization guide

Environment files in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

network create in the Command Line Interface Reference

subnet create in the Command Line Interface Reference

server create in the Command Line Interface Reference

7.4. HOW DOES THE FLAT PROVIDER NETWORK PACKET FLOW
WORK?

This section describes in detail how traffic flows to and from an instance with flat provider network
configuration.

The flow of outgoing traffic in a flat provider network

The following diagram describes the packet flow for traffic leaving an instance and arriving directly at an
external network. After you configure the br-ex external bridge, add the physical interface to the bridge,
and spawn an instance to a Compute node, the resulting configuration of interfaces and bridges
resembles the configuration in the following diagram (if using the iptables_hybrid firewall driver):

Red Hat OpenStack Platform 13 Networking Guide

58

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#custom-network-interface-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_overcloud_Creation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#network_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#subnet_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#server_create

1. Packets leave the eth0 interface of the instance and arrive at the linux bridge qbr-xx.

2. Bridge qbr-xx is connected to br-int using veth pair qvb-xx <-> qvo-xxx. This is because the
bridge is used to apply the inbound/outbound firewall rules defined by the security group.

3. Interface qvb-xx is connected to the qbr-xx linux bridge, and qvoxx is connected to the br-int
Open vSwitch (OVS) bridge.

An example configuration of `qbr-xx`Linux bridge:

 # brctl show
qbr269d4d73-e7 8000.061943266ebb no qvb269d4d73-e7
 tap269d4d73-e7

The configuration of qvo-xx on br-int:

 # ovs-vsctl show
 Bridge br-int
 fail_mode: secure
 Interface "qvof63599ba-8f"
 Port "qvo269d4d73-e7"
 tag: 5
 Interface "qvo269d4d73-e7"

NOTE

Port qvo-xx is tagged with the internal VLAN tag associated with the flat provider
network. In this example, the VLAN tag is 5. When the packet reaches qvo-xx, the VLAN
tag is appended to the packet header.

The packet is then moved to the br-ex OVS bridge using the patch-peer int-br-ex <-> phy-br-ex.

Example configuration of the patch-peer on br-int:

 # ovs-vsctl show
 Bridge br-int
 fail_mode: secure
 Port int-br-ex
 Interface int-br-ex
 type: patch
 options: {peer=phy-br-ex}

Example configuration of the patch-peer on br-ex:

 Bridge br-ex
 Port phy-br-ex
 Interface phy-br-ex
 type: patch
 options: {peer=int-br-ex}
 Port br-ex
 Interface br-ex
 type: internal

CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL NETWORK

59

When this packet reaches phy-br-ex on br-ex, an OVS flow inside br-ex strips the VLAN tag (5) and
forwards it to the physical interface.

In the following example, the output shows the port number of phy-br-ex as 2.

 # ovs-ofctl show br-ex
OFPT_FEATURES_REPLY (xid=0x2): dpid:00003440b5c90dc6
n_tables:254, n_buffers:256
capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP
actions: OUTPUT SET_VLAN_VID SET_VLAN_PCP STRIP_VLAN SET_DL_SRC SET_DL_DST
SET_NW_SRC SET_NW_DST SET_NW_TOS SET_TP_SRC SET_TP_DST ENQUEUE

 2(phy-br-ex): addr:ba:b5:7b:ae:5c:a2
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max

The following output shows any packet that arrives on phy-br-ex (in_port=2) with a VLAN tag of 5
(dl_vlan=5). In addition, an OVS flow in br-ex strips the VLAN tag and forwards the packet to the
physical interface.

ovs-ofctl dump-flows br-ex
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=4703.491s, table=0, n_packets=3620, n_bytes=333744, idle_age=0, priority=1
actions=NORMAL
 cookie=0x0, duration=3890.038s, table=0, n_packets=13, n_bytes=1714, idle_age=3764,
priority=4,in_port=2,dl_vlan=5 actions=strip_vlan,NORMAL
 cookie=0x0, duration=4702.644s, table=0, n_packets=10650, n_bytes=447632, idle_age=0,
priority=2,in_port=2 actions=drop

If the physical interface is another VLAN-tagged interface, then the physical interface adds the tag to
the packet.

The flow of incoming traffic in a flat provider network

This section contains information about the flow of incoming traffic from the external network until it
arrives at the interface of the instance.

Red Hat OpenStack Platform 13 Networking Guide

60

1. Incoming traffic arrives at eth1 on the physical node.

2. The packet passes to the br-ex bridge.

3. The packet moves to br-int via the patch-peer phy-br-ex <--> int-br-ex.

In the following example, int-br-ex uses port number 15. See the entry containing 15(int-br-ex):

 # ovs-ofctl show br-int
OFPT_FEATURES_REPLY (xid=0x2): dpid:00004e67212f644d
n_tables:254, n_buffers:256
capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP
actions: OUTPUT SET_VLAN_VID SET_VLAN_PCP STRIP_VLAN SET_DL_SRC SET_DL_DST
SET_NW_SRC SET_NW_DST SET_NW_TOS SET_TP_SRC SET_TP_DST ENQUEUE
 15(int-br-ex): addr:12:4e:44:a9:50:f4
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max

Observing the traffic flow on br-int

1. When the packet arrives at int-br-ex, an OVS flow rule within the br-int bridge amends the
packet to add the internal VLAN tag 5. See the entry for actions=mod_vlan_vid:5:

 # ovs-ofctl dump-flows br-int
NXST_FLOW reply (xid=0x4):

CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL NETWORK

61

 cookie=0x0, duration=5351.536s, table=0, n_packets=12118, n_bytes=510456, idle_age=0,
priority=1 actions=NORMAL
 cookie=0x0, duration=4537.553s, table=0, n_packets=3489, n_bytes=321696, idle_age=0,
priority=3,in_port=15,vlan_tci=0x0000 actions=mod_vlan_vid:5,NORMAL
 cookie=0x0, duration=5350.365s, table=0, n_packets=628, n_bytes=57892, idle_age=4538,
priority=2,in_port=15 actions=drop
 cookie=0x0, duration=5351.432s, table=23, n_packets=0, n_bytes=0, idle_age=5351, priority=0
actions=drop

1. The second rule manages packets that arrive on int-br-ex (in_port=15) with no VLAN tag
(vlan_tci=0x0000): This rule adds VLAN tag 5 to the packet
(actions=mod_vlan_vid:5,NORMAL) and forwards it to qvoxxx.

2. qvoxxx accepts the packet and forwards it to qvbxx, after stripping away the VLAN tag.

3. The packet then reaches the instance.

NOTE

VLAN tag 5 is an example VLAN that was used on a test Compute node with a flat
provider network; this value was assigned automatically by neutron-openvswitch-agent.
This value may be different for your own flat provider network, and can differ for the
same network on two separate Compute nodes.

Additional resources

Troubleshooting instance-physical network connections on flat provider networks

7.5. TROUBLESHOOTING INSTANCE-PHYSICAL NETWORK
CONNECTIONS ON FLAT PROVIDER NETWORKS

The output provided in "How does the flat provider network packet flow work?" provides sufficient
debugging information for troubleshooting a flat provider network, should anything go wrong. The
following steps contain further information about the troubleshooting process.

Procedure

1. Review the bridge_mappings:

Verify that the physical network name you use (for example, physnet1) is consistent with the contents
of the bridge_mapping configuration as shown in this example:

 # grep bridge_mapping /etc/neutron/plugins/ml2/openvswitch_agent.ini
bridge_mappings = physnet1:br-ex

 # openstack network show provider-flat
...
| provider:physical_network | physnet1
...

2. Review the network configuration:

Confirm that the network is created as external, and uses the flat type:

 # openstack network show provider-flat

Red Hat OpenStack Platform 13 Networking Guide

62

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#phys-connection-troubleshoot-flat_connect-instance

...
| provider:network_type | flat |
| router:external | True |
...

3. Review the patch-peer:

Run the ovs-vsctl show command, and verify that br-int and br-ex are connected using a patch-peer
int-br-ex <--> phy-br-ex.

 # ovs-vsctl show
 Bridge br-int
 fail_mode: secure
 Port int-br-ex
 Interface int-br-ex
 type: patch
 options: {peer=phy-br-ex}

Example configuration of the patch-peer on br-ex:

 Bridge br-ex
 Port phy-br-ex
 Interface phy-br-ex
 type: patch
 options: {peer=int-br-ex}
 Port br-ex
 Interface br-ex
 type: internal

This connection is created when you restart the neutron-openvswitch-agent service, if
bridge_mapping is correctly configured in /etc/neutron/plugins/ml2/openvswitch_agent.ini. Re-
check the bridge_mapping setting if the connection is not created after you restart the service.

4. Review the network flows:

Run ovs-ofctl dump-flows br-ex and ovs-ofctl dump-flows br-int and review whether the flows strip
the internal VLAN IDs for outgoing packets, and add VLAN IDs for incoming packets. This flow is first
added when you spawn an instance to this network on a specific Compute node.

If this flow is not created after spawning the instance, verify that the network is created as flat, is
external, and that the physical_network name is correct. In addition, review the
bridge_mapping settings.

Finally, review the ifcfg-br-ex and ifcfg-ethx configuration. Ensure that ethX is added as a port
within br-ex, and that ifcfg-br-ex and ifcfg-ethx have an UP flag in the output of ip a.

The following output shows eth1 is a port in br-ex:

 Bridge br-ex
 Port phy-br-ex
 Interface phy-br-ex
 type: patch
 options: {peer=int-br-ex}
 Port "eth1"
 Interface "eth1"

CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL NETWORK

63

The following example demonstrates that eth1 is configured as an OVS port, and that the kernel knows
to transfer all packets from the interface, and send them to the OVS bridge br-ex. This can be observed
in the entry: master ovs-system.

 # ip a
5: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master ovs-system state
UP qlen 1000

Additional resources

How does the flat provider network packet flow work?

Configuring bridge mappings

7.6. CONFIGURING VLAN PROVIDER NETWORKS

When you connect multiple VLAN-tagged interfaces on a single NIC to multiple provider networks,
these new VLAN provider networks can connect VM instances directly to external networks.

Prerequisites

You have a physical network, with a range of VLANs.
This example uses a physical network called physnet1, with a range of VLANs, 171-172.

Your Network nodes and Compute nodes are connected to a physical network using a physical
interface.
This example uses Network nodes and Compute nodes that are connected to a physical
network, physnet1, using a physical interface, eth1.

The switch ports that these interfaces connect to must be configured to trunk the required
VLAN ranges.

Procedure

1. On the undercloud host, logged in as the stack user, create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-modules-environment.yaml

TIP

The Red Hat OpenStack Platform Orchestration service (heat) uses a set of plans called
templates to install and configure your environment. You can customize aspects of the
overcloud with a custom environment file , which is a special type of template that provides
customization for your orchestration templates.

2. In the YAML environment file under parameter_defaults, use NeutronTypeDrivers to specify
your network type drivers.

Example

Red Hat OpenStack Platform 13 Networking Guide

64

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#how-does-flat-packet-flow-work_connect-instance
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#configuring-bridge-mappings_config-bridge-mappings

parameter_defaults:
 NeutronTypeDrivers: vxlan,flat,vlan

3. Configure the NeutronNetworkVLANRanges setting to reflect the physical network and VLAN
ranges in use:

Example

parameter_defaults:
 NeutronTypeDrivers: 'vxlan,flat,vlan'
 NeutronNetworkVLANRanges: 'physnet1:171,172'

4. Create an external network bridge (br-ex), and associate a port (eth1) with it.
This example configures eth1 to use br-ex:

Example

parameter_defaults:
 NeutronTypeDrivers: 'vxlan,flat,vlan'
 NeutronNetworkVLANRanges: 'physnet1:171,172'
 NeutronBridgeMappings: 'datacentre:br-ex,tenant:br-int'

5. Run the openstack overcloud deploy command and include the core templates and the
environment files, including this new environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-neutron-
environment.yaml

Verification steps

1. Create the external networks as type vlan, and associate them with the configured
physical_network.
When you create the external networks, use the --shared option so that users in other project
can share the external networks and can connect VM instances directly.

Run the following example command to create two networks: one for VLAN 171, and another for
VLAN 172:

Example

$ openstack network create \
 --provider-network-type vlan \
 --external \

CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL NETWORK

65

 --provider-physical-network physnet1 \
 --provider-segment 171 \
 --share \
 provider-vlan171

$ openstack network create \
 --provider-network-type vlan \
 --external \
 --provider-physical-network physnet1 \
 --provider-segment 172 \
 --share \
 provider-vlan172

2. Create a number of subnets and configure them to use the external network.
You can use either openstack subnet create or the dashboard to create these subnets. Ensure
that the external subnet details you have received from your network administrator are correctly
associated with each VLAN.

In this example, VLAN 171 uses subnet 10.65.217.0/24 and VLAN 172 uses 10.65.218.0/24:

Example

$ openstack subnet create \
 --network provider-171 \
 --subnet-range 10.65.217.0/24 \
 --dhcp \
 --gateway 10.65.217.254 \
 subnet-provider-171

$ openstack subnet create \
 --network provider-172 \
 --subnet-range 10.65.218.0/24 \
 --dhcp \
 --gateway 10.65.218.254 \
 subnet-provider-172

Additional resources

Custom network interface templates in the Advanced Overcloud Customization guide

Environment files in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

network create in the Command Line Interface Reference

subnet create in the Command Line Interface Reference

7.7. HOW DOES THE VLAN PROVIDER NETWORK PACKET FLOW
WORK?

This section describes in detail how traffic flows to and from an instance with VLAN provider network
configuration.

Red Hat OpenStack Platform 13 Networking Guide

66

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#custom-network-interface-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_overcloud_Creation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#network_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#subnet_create

The flow of outgoing traffic in a VLAN provider network

The following diagram describes the packet flow for traffic leaving an instance and arriving directly to a
VLAN provider external network. This example uses two instances attached to the two VLAN networks
(171 and 172). After you configure br-ex, add a physical interface to it, and spawn an instance to a
Compute node, the resulting configuration of interfaces and bridges resembles the configuration in the
following diagram:

1. Packets leaving the eth0 interface of the instance arrive at the linux bridge qbr-xx connected to
the instance.

2. qbr-xx is connected to br-int using veth pair qvbxx <→ qvoxxx.

3. qvbxx is connected to the linux bridge qbr-xx and qvoxx is connected to the Open vSwitch
bridge br-int.

Example configuration of qbr-xx on the Linux bridge.

This example features two instances and two corresponding linux bridges:

brctl show
bridge name bridge id STP enabled interfaces
qbr84878b78-63 8000.e6b3df9451e0 no qvb84878b78-63
 tap84878b78-63

qbr86257b61-5d 8000.3a3c888eeae6 no qvb86257b61-5d
 tap86257b61-5d

CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL NETWORK

67

The configuration of qvoxx on br-int:

 options: {peer=phy-br-ex}
 Port "qvo86257b61-5d"
 tag: 3

 Interface "qvo86257b61-5d"
 Port "qvo84878b78-63"
 tag: 2
 Interface "qvo84878b78-63"

qvoxx is tagged with the internal VLAN tag associated with the VLAN provider network. In this
example, the internal VLAN tag 2 is associated with the VLAN provider network provider-171
and VLAN tag 3 is associated with VLAN provider network provider-172. When the packet
reaches qvoxx, the this VLAN tag is added to the packet header.

The packet is then moved to the br-ex OVS bridge using patch-peer int-br-ex <→ phy-br-ex.
Example patch-peer on br-int:

 Bridge br-int
 fail_mode: secure
 Port int-br-ex
 Interface int-br-ex
 type: patch
 options: {peer=phy-br-ex}

Example configuration of the patch peer on br-ex:

 Bridge br-ex
 Port phy-br-ex
 Interface phy-br-ex
 type: patch
 options: {peer=int-br-ex}
 Port br-ex
 Interface br-ex
 type: internal

When this packet reaches phy-br-ex on br-ex, an OVS flow inside br-ex replaces the internal
VLAN tag with the actual VLAN tag associated with the VLAN provider network.

The output of the following command shows that the port number of phy-br-ex is 4:

ovs-ofctl show br-ex
 4(phy-br-ex): addr:32:e7:a1:6b:90:3e
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max

The following command shows any packet that arrives on phy-br-ex (in_port=4) which has VLAN tag 2
(dl_vlan=2). Open vSwitch replaces the VLAN tag with 171 (actions=mod_vlan_vid:171,NORMAL) and
forwards the packet to the physical interface. The command also shows any packet that arrives on phy-
br-ex (in_port=4) which has VLAN tag 3 (dl_vlan=3). Open vSwitch replaces the VLAN tag with 172
(actions=mod_vlan_vid:172,NORMAL) and forwards the packet to the physical interface. The
neutron-openvswitch-agent adds these rules.

Red Hat OpenStack Platform 13 Networking Guide

68

ovs-ofctl dump-flows br-ex
NXST_FLOW reply (xid=0x4):
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=6527.527s, table=0, n_packets=29211, n_bytes=2725576, idle_age=0,
priority=1 actions=NORMAL
 cookie=0x0, duration=2939.172s, table=0, n_packets=117, n_bytes=8296, idle_age=58,
priority=4,in_port=4,dl_vlan=3 actions=mod_vlan_vid:172,NORMAL
 cookie=0x0, duration=6111.389s, table=0, n_packets=145, n_bytes=9368, idle_age=98,
priority=4,in_port=4,dl_vlan=2 actions=mod_vlan_vid:171,NORMAL
 cookie=0x0, duration=6526.675s, table=0, n_packets=82, n_bytes=6700, idle_age=2462,
priority=2,in_port=4 actions=drop

This packet is then forwarded to physical interface eth1.

The flow of incoming traffic in a VLAN provider network

The following example flow was tested on a Compute node using VLAN tag 2 for provider network
provider-171 and VLAN tag 3 for provider network provider-172. The flow uses port 18 on the integration
bridge br-int.

Your VLAN provider network may require a different configuration. Also, the configuration requirement
for a network may differ between two different Compute nodes.

The output of the following command shows int-br-ex with port number 18:

ovs-ofctl show br-int
 18(int-br-ex): addr:fe:b7:cb:03:c5:c1
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max

The output of the following command shows the flow rules on br-int.

ovs-ofctl dump-flows br-int
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=6770.572s, table=0, n_packets=1239, n_bytes=127795, idle_age=106,
priority=1 actions=NORMAL

 cookie=0x0, duration=3181.679s, table=0, n_packets=2605, n_bytes=246456, idle_age=0,
 priority=3,in_port=18,dl_vlan=172 actions=mod_vlan_vid:3,NORMAL

 cookie=0x0, duration=6353.898s, table=0, n_packets=5077, n_bytes=482582, idle_age=0,
 priority=3,in_port=18,dl_vlan=171 actions=mod_vlan_vid:2,NORMAL

 cookie=0x0, duration=6769.391s, table=0, n_packets=22301, n_bytes=2013101, idle_age=0,
priority=2,in_port=18 actions=drop

 cookie=0x0, duration=6770.463s, table=23, n_packets=0, n_bytes=0, idle_age=6770, priority=0
actions=drop

Incoming flow example

This example demonstrates the the following br-int OVS flow:

CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL NETWORK

69

cookie=0x0, duration=3181.679s, table=0, n_packets=2605, n_bytes=246456, idle_age=0,
priority=3,in_port=18,dl_vlan=172 actions=mod_vlan_vid:3,NORMAL

A packet with VLAN tag 172 from the external network reaches the br-ex bridge via eth1 on the
physical node.

The packet moves to br-int via the patch-peer phy-br-ex <-> int-br-ex.

The packet matches the flow’s criteria (in_port=18,dl_vlan=172).

The flow actions (actions=mod_vlan_vid:3,NORMAL) replace the VLAN tag 172 with internal
VLAN tag 3 and forwards the packet to the instance with normal Layer 2 processing.

Additional resources

Troubleshooting instance-physical network connections on VLAN provider networks

7.8. TROUBLESHOOTING INSTANCE-PHYSICAL NETWORK
CONNECTIONS ON VLAN PROVIDER NETWORKS

Refer to the packet flow described in "How does the VLAN provider network packet flow work?" when
troubleshooting connectivity in a VLAN provider network. In addition, review the following configuration
options:

Procedure

1. Verify that physical network name is used consistently. In this example, physnet1 is used consistently
while creating the network, and within the bridge_mapping configuration:

grep bridge_mapping /etc/neutron/plugins/ml2/openvswitch_agent.ini
bridge_mappings = physnet1:br-ex

openstack network show provider-vlan171
...
| provider:physical_network | physnet1
...

2. Confirm that the network was created as external, is type vlan, and uses the correct
segmentation_id value:

openstack network show provider-vlan171
...
provider:network_type	vlan
provider:physical_network	physnet1
provider:segmentation_id	171
...

3. Run ovs-vsctl show and verify that br-int and br-ex are connected using the patch-peer int-br-ex
<→ phy-br-ex.
This connection is created while restarting neutron-openvswitch-agent, provided that the
bridge_mapping is correctly configured in /etc/neutron/plugins/ml2/openvswitch_agent.ini.
Recheck the bridge_mapping setting if this is not created even after restarting the service.

4. To review the flow of outgoing packets, run ovs-ofctl dump-flows br-ex and ovs-ofctl dump-flows

Red Hat OpenStack Platform 13 Networking Guide

70

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#physical-connection-troubleshoot-vlan_connect-instance

br-int, and verify that the flows map the internal VLAN IDs to the external VLAN ID (segmentation_id).
For incoming packets, map the external VLAN ID to the internal VLAN ID.
This flow is added by the neutron OVS agent when you spawn an instance to this network for the first
time. If this flow is not created after spawning the instance, ensure that the network is created as vlan, is
external, and that the physical_network name is correct. In addition, re-check the bridge_mapping
settings.

5. Finally, re-check the ifcfg-br-ex and ifcfg-ethx configuration. Ensure that br-ex includes port ethX,
and that both ifcfg-br-ex and ifcfg-ethx have an UP flag in the output of the ip a command.
For example, the following output shows that eth1 is a port in br-ex:

 Bridge br-ex
 Port phy-br-ex
 Interface phy-br-ex
 type: patch
 options: {peer=int-br-ex}
 Port "eth1"
 Interface "eth1"

The following command shows that eth1 has been added as a port, and that the kernel is configured to
move all packets from the interface to the OVS bridge br-ex. This is demonstrated by the entry: master
ovs-system.

ip a
5: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master ovs-system state
UP qlen 1000

Additional resources

How does the VLAN provider network packet flow work?

7.9. ENABLING MULTICAST SNOOPING FOR PROVIDER NETWORKS
IN AN ML2/OVS DEPLOYMENT

To prevent flooding multicast packets to every port in a Red Hat OpenStack Platform (RHOSP)
provider network, you must enable multicast snooping. In RHOSP deployments that use the Modular
Layer 2 plug-in with the Open vSwitch mechanism driver (ML2/OVS), you do this by adding the
appropriate Puppet variable to a custom environment file and running the openstack overcloud
deploy command.

IMPORTANT

You should thoroughly test and understand any multicast snooping configuration before
applying it to a production environment. Misconfiguration can break multicasting or cause
erratic network behavior.

Prerequisites

Your configuration must only use ML2/OVS provider networks.

Your physical routers must also have IGMP snooping enabled.

That is, the physical router must send IGMP query packets on the provider network to solicit

CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL NETWORK

71

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#how-does-vlan-packet-flow-work_connect-instance

That is, the physical router must send IGMP query packets on the provider network to solicit
regular IGMP reports from multicast group members to maintain the snooping cache in OVS
(and for physical networking).

An RHOSP Networking service security group rule must be in place to allow inbound IGMP to
the VM instances (or port security disabled).
In this example, a rule is created for the ping_ssh security group:

Example

$ openstack security group rule create --protocol igmp --ingress ping_ssh

Procedure

1. On the undercloud host, logged in as the stack user, create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-ovs-environment.yaml

TIP

The Orchestration service (heat) uses a set of plans called templates to install and configure
your environment. You can customize aspects of the overcloud with a custom environment file,
which is a special type of template that provides customization for your heat templates.

2. In the YAML environment file under the ExtraConfig section for the appropriate role, set the
Puppet variable, igmp_snooping_enable, to true.

Example

If the role used is ComputeOvsDpdk, then the lines that you add to the custom envirnoment
file would be:

parameter_defaults:
 ComputeOvsDpdkExtraConfig:
 neutron::agents::ml2::ovs::igmp_snooping_enable: true

IMPORTANT

Ensure that you add a whitespace character between the single colon (:) and the
value.

3. Run the openstack overcloud deploy command and include the core heat templates,
environment files, and this new custom environment file.

IMPORTANT

The order of the environment files is important as the parameters and resources
defined in subsequent environment files take precedence.

Example

Red Hat OpenStack Platform 13 Networking Guide

72

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-ovs-
environment.yaml

Verification steps

Verify that the multicast snooping is enabled.

Example

sudo ovs-vsctl list bridge br-int

Sample output

...
mcast_snooping_enable: true
...
other_config: {mac-table-size="50000", mcast-snooping-disable-flood-unregistered=True}
...

Additional resources

Neutron in Component, Plug-In, and Driver Support in Red Hat OpenStack Platform

Environment Files in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

7.10. ENABLING MULTICAST IN AN ML2/OVN DEPLOYMENT

To support multicast traffic, modify the deployment’s security configuration to allow multicast traffic to
reach the virtual machine (VM) instances in the multicast group. To prevent multicast traffic flooding,
enable IGMP snooping.

IMPORTANT

Test and understand any multicast snooping configuration before applying it to a
production environment. Misconfiguration can break multicasting or cause erratic
network behavior.

Prerequisites

An OpenStack deployment with the ML2/OVN mechanism driver.

Procedure

1. Configure security to allow multicast traffic to the appropriate VM instances. For instance,
create a pair of security group rules to allow IGMP traffic from the IGMP querier to enter and
exit the VM instances, and a third rule to allow multicast traffic.

Example

CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL NETWORK

73

https://access.redhat.com/articles/1535373#Neutron
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_overcloud_Creation

A security group mySG allows IGMP traffic to enter and exit the VM instances.

 openstack security group rule create --protocol igmp --ingress mySG

 openstack security group rule create --protocol igmp --egress mySG

Another rule allows multicast traffic to reach VM instances.

openstack security group rule create --protocol udp mySG

As an alternative to setting security group rules, some operators choose to selectively disable
port security on the network. If you choose to disable port security, consider and plan for any
related security risks.

2. Set the heat parameter NeutronEnableIgmpSnooping: True in an environment file on the
undercloud node. For instance, add the following lines to ovn-extras.yaml.

Example

parameter_defaults:
 NeutronEnableIgmpSnooping: True

3. Include the environment file in the openstack overcloud deploy command with any other
environment files that are relevant to your environment and deploy the overcloud.

$ openstack overcloud deploy \
--templates \
…
-e <other_overcloud_environment_files> \

-e ovn-extras.yaml \
…

Replace <other_overcloud_environment_files> with the list of environment files that are part
of your existing deployment.

Verification steps

1. Verify that the multicast snooping is enabled. List the northbound database Logical_Switch
table.

$ ovn-nbctl list Logical_Switch

Sample output

_uuid : d6a2fbcd-aaa4-4b9e-8274-184238d66a15
other_config : {mcast_flood_unregistered="false", mcast_snoop="true"}
...

The Networking Service (neutron) igmp_snooping_enable configuration is translated into the
mcast_snoop option set in the other_config column of the Logical_Switch table in the OVN
Northbound Database. Note that mcast_flood_unregistered is always “false”.

Red Hat OpenStack Platform 13 Networking Guide

74

2. Show the IGMP groups.

$ ovn-sbctl list IGMP_group

Sample output

_uuid : 2d6cae4c-bd82-4b31-9c63-2d17cbeadc4e
address : "225.0.0.120"
chassis : 34e25681-f73f-43ac-a3a4-7da2a710ecd3
datapath : eaf0f5cc-a2c8-4c30-8def-2bc1ec9dcabc
ports : [5eaf9dd5-eae5-4749-ac60-4c1451901c56, 8a69efc5-38c5-48fb-bbab-
30f2bf9b8d45]
...

Additional resources

Neutron in Component, Plug-In, and Driver Support in Red Hat OpenStack Platform

Environment Files in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

7.11. ENABLING COMPUTE METADATA ACCESS

Instances connected as described in this chapter are directly attached to the provider external networks,
and have external routers configured as their default gateway. No OpenStack Networking (neutron)
routers are used. This means that neutron routers cannot be used to proxy metadata requests from
instances to the nova-metadata server, which may result in failures while running cloud-init. However,
this issue can be resolved by configuring the dhcp agent to proxy metadata requests. You can enable
this functionality in /etc/neutron/dhcp_agent.ini. For example:

enable_isolated_metadata = True

7.12. FLOATING IP ADDRESSES

You can use the same network to allocate floating IP addresses to instances, even if the floating IPs are
already associated with private networks. The addresses that you allocate as floating IPs from this
network are bound to the qrouter-xxx namespace on the Network node, and perform DNAT-SNAT to
the associated private IP address. In contrast, the IP addresses that you allocate for direct external
network access are bound directly inside the instance, and allow the instance to communicate directly
with external network.

CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL NETWORK

75

https://access.redhat.com/articles/1535373#Neutron
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_Overcloud_Creation

CHAPTER 8. CONFIGURING PHYSICAL SWITCHES FOR
OPENSTACK NETWORKING

This chapter documents the common physical switch configuration steps required for OpenStack
Networking. Vendor-specific configuration is included for certain switches.

8.1. PLANNING YOUR PHYSICAL NETWORK ENVIRONMENT

The physical network adapters in your OpenStack nodes carry different types of network traffic, such as
instance traffic, storage data, or authentication requests. The type of traffic these NICs carry affects
how you must configure the ports on the physical switch.

First, you must decide which physical NICs on your Compute node you want to carry which types of
traffic. Then, when the NIC is cabled to a physical switch port, you must configure the switch port to allow
trunked or general traffic.

For example, the following diagram depicts a Compute node with two NICs, eth0 and eth1. Each NIC is
cabled to a Gigabit Ethernet port on a physical switch, with eth0 carrying instance traffic, and eth1
providing connectivity for OpenStack services:

Figure 8.1. Sample network layout

NOTE

This diagram does not include any additional redundant NICs required for fault tolerance.

For information on network interface bonds, see the Network Interface Bonding chapter of the
Advanced Overcloud Customization guide.

8.2. CONFIGURING A CISCO CATALYST SWITCH

8.2.1. About trunk ports

With OpenStack Networking you can connect instances to the VLANs that already exist on your physical

Red Hat OpenStack Platform 13 Networking Guide

76

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/#overcloud-network-interface-bonding

network. The term trunk is used to describe a port that allows multiple VLANs to traverse through the
same port. Using these ports, VLANs can span across multiple switches, including virtual switches. For
example, traffic tagged as VLAN110 in the physical network reaches the Compute node, where the
8021q module directs the tagged traffic to the appropriate VLAN on the vSwitch.

8.2.2. Configuring trunk ports for a Cisco Catalyst switch

If using a Cisco Catalyst switch running Cisco IOS, you might use the following configuration
syntax to allow traffic for VLANs 110 and 111 to pass through to your instances.
This configuration assumes that your physical node has an ethernet cable connected to
interface GigabitEthernet1/0/12 on the physical switch.

IMPORTANT

These values are examples. You must change the values in this example to match
those in your environment. Copying and pasting these values into your switch
configuration without adjustment can result in an unexpected outage.

interface GigabitEthernet1/0/12
 description Trunk to Compute Node
 spanning-tree portfast trunk
 switchport trunk encapsulation dot1q
 switchport mode trunk
 switchport trunk native vlan 2
 switchport trunk allowed vlan 2,110,111

Use the following list to understand these parameters:

Field Description

interface GigabitEthernet1/0/12 The switch port that the NIC of the X node
connects to. Ensure that you replace the
GigabitEthernet1/0/12 value with the correct
port value for your environment. Use the show
interface command to view a list of ports.

description Trunk to Compute Node A unique and descriptive value that you can use
to identify this interface.

spanning-tree portfast trunk If your environment uses STP, set this value to
instruct Port Fast that this port is used to trunk
traffic.

switchport trunk encapsulation dot1q Enables the 802.1q trunking standard (rather
than ISL). This value varies depending on the
configuration that your switch supports.

switchport mode trunk Configures this port as a trunk port, rather than
an access port, meaning that it allows VLAN
traffic to pass through to the virtual switches.

CHAPTER 8. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

77

switchport trunk native vlan 2 Set a native VLAN to instruct the switch where
to send untagged (non-VLAN) traffic.

switchport trunk allowed vlan 2,110,111 Defines which VLANs are allowed through the
trunk.

Field Description

8.2.3. About access ports

Not all NICs on your Compute node carry instance traffic, and so you do not need to configure all NICs
to allow multiple VLANs to pass through. Access ports require only one VLAN, and might fulfill other
operational requirements, such as transporting management traffic or Block Storage data. These ports
are commonly known as access ports and usually require a simpler configuration than trunk ports.

8.2.4. Configuring access ports for a Cisco Catalyst switch

Using the example from the Figure 8.1, “Sample network layout” diagram, GigabitEthernet1/0/13
(on a Cisco Catalyst switch) is configured as an access port for eth1.
In this configuration,your physical node has an ethernet cable connected to interface
GigabitEthernet1/0/12 on the physical switch.

IMPORTANT

These values are examples. You must change the values in this example to match
those in your environment. Copying and pasting these values into your switch
configuration without adjustment can result in an unexpected outage.

interface GigabitEthernet1/0/13
 description Access port for Compute Node
 switchport mode access
 switchport access vlan 200
 spanning-tree portfast

These settings are described below:

Field Description

interface GigabitEthernet1/0/13 The switch port that the NIC of the X node
connects to. Ensure that you replace the
GigabitEthernet1/0/12 value with the correct
port value for your environment. Use the show
interface command to view a list of ports.

description Access port for Compute
Node

A unique and descriptive value that you can use
to identify this interface.

Red Hat OpenStack Platform 13 Networking Guide

78

switchport mode access Configures this port as an access port, rather
than a trunk port.

switchport access vlan 200 Configures the port to allow traffic on VLAN
200. You must configure your Compute node
with an IP address from this VLAN.

spanning-tree portfast If using STP, set this value to instruct STP not to
attempt to initialize this as a trunk, allowing for
quicker port handshakes during initial
connections (such as server reboot).

Field Description

8.2.5. About LACP port aggregation

You can use LACP to bundle multiple physical NICs together to form a single logical channel. Also
known as 802.3ad (or bonding mode 4 in Linux), LACP creates a dynamic bond for load-balancing and
fault tolerance. You must configure LACP at both physical ends: on the physical NICs, and on the
physical switch ports.

8.2.6. Configuring LACP on the physical NIC

1. Edit the /home/stack/network-environment.yaml file:

- type: linux_bond
 name: bond1
 mtu: 9000
 bonding_options:{get_param: BondInterfaceOvsOptions};
 members:
 - type: interface
 name: nic3
 mtu: 9000
 primary: true
 - type: interface
 name: nic4
 mtu: 9000

2. Configure the Open vSwitch bridge to use LACP:

BondInterfaceOvsOptions:
 "mode=802.3ad"

For information on configuring network bonds, see the Network Interface Bonding chapter of the
Advanced Overcloud Customization guide.

8.2.7. Configuring LACP for a Cisco Catalyst switch

In this example, the Compute node has two NICs using VLAN 100:

Procedure

CHAPTER 8. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

79

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/#overcloud-network-interface-bonding

1. Physically connect both NICs on the Compute node to the switch (for example, ports 12 and 13).

2. Create the LACP port channel:

interface port-channel1
 switchport access vlan 100
 switchport mode access
 spanning-tree guard root

3. Configure switch ports 12 (Gi1/0/12) and 13 (Gi1/0/13):

sw01# config t
Enter configuration commands, one per line. End with CNTL/Z.

sw01(config) interface GigabitEthernet1/0/12
 switchport access vlan 100
 switchport mode access
 speed 1000
 duplex full
 channel-group 10 mode active
 channel-protocol lacp

interface GigabitEthernet1/0/13
 switchport access vlan 100
 switchport mode access
 speed 1000
 duplex full
 channel-group 10 mode active
 channel-protocol lacp

4. Review your new port channel. The resulting output lists the new port-channel Po1, with
member ports Gi1/0/12 and Gi1/0/13:

sw01# show etherchannel summary
<snip>

Number of channel-groups in use: 1
Number of aggregators: 1

Group Port-channel Protocol Ports
------+-------------+-----------+---
1 Po1(SD) LACP Gi1/0/12(D) Gi1/0/13(D)

NOTE

Remember to apply your changes by copying the running-config to the startup-
config: copy running-config startup-config.

8.2.8. About MTU settings

You must adjust your MTU size for certain types of network traffic. For example, jumbo frames (9000
bytes) are required for certain NFS or iSCSI traffic.

NOTE

Red Hat OpenStack Platform 13 Networking Guide

80

NOTE

You must change MTU settings from end-to-end on all hops that the traffic is expected
to pass through, including any virtual switches.

Additional resources

Configuring maximum transmission unit (MTU) settings

8.2.9. Configuring MTU settings for a Cisco Catalyst switch

Complete the steps in this example procedure to enable jumbo frames on your Cisco Catalyst 3750
switch.

1. Review the current MTU settings:

sw01# show system mtu

System MTU size is 1600 bytes
System Jumbo MTU size is 1600 bytes
System Alternate MTU size is 1600 bytes
Routing MTU size is 1600 bytes

2. MTU settings are changed switch-wide on 3750 switches, and not for individual interfaces. Run
the following commands to configure the switch to use jumbo frames of 9000 bytes. You might
prefer to configure the MTU settings for individual interfaces, if your switch supports this
feature.

sw01# config t
Enter configuration commands, one per line. End with CNTL/Z.

sw01(config)# system mtu jumbo 9000
Changes to the system jumbo MTU will not take effect until the next reload is done

NOTE

Remember to save your changes by copying the running-config to the startup-
config: copy running-config startup-config.

3. Reload the switch to apply the change.

IMPORTANT

Reloading the switch causes a network outage for any devices that are
dependent on the switch. Therefore, reload the switch only during a scheduled
maintenance period.

sw01# reload
Proceed with reload? [confirm]

4. After the switch reloads, confirm the new jumbo MTU size.
The exact output may differ depending on your switch model. For example, System MTU might
apply to non-Gigabit interfaces, and Jumbo MTU might describe all Gigabit interfaces.

CHAPTER 8. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

81

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#config-max-mtu_cisco-catalyst

sw01# show system mtu

System MTU size is 1600 bytes
System Jumbo MTU size is 9000 bytes
System Alternate MTU size is 1600 bytes
Routing MTU size is 1600 bytes

8.2.10. About LLDP discovery

The ironic-python-agent service listens for LLDP packets from connected switches. The collected
information can include the switch name, port details, and available VLANs. Similar to Cisco Discovery
Protocol (CDP), LLDP assists with the discovery of physical hardware during the director introspection
process.

8.2.11. Configuring LLDP for a Cisco Catalyst switch

Procedure

1. Run the lldp run command to enable LLDP globally on your Cisco Catalyst switch:

sw01# config t
Enter configuration commands, one per line. End with CNTL/Z.

sw01(config)# lldp run

2. View any neighboring LLDP-compatible devices:

sw01# show lldp neighbor
Capability codes:
 (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
 (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other

Device ID Local Intf Hold-time Capability Port ID
DEP42037061562G3 Gi1/0/11 180 B,T 422037061562G3:P1

Total entries displayed: 1

NOTE

Remember to save your changes by copying the running-config to the startup-config:
copy running-config startup-config.

8.3. CONFIGURING A CISCO NEXUS SWITCH

8.3.1. About trunk ports

With OpenStack Networking you can connect instances to the VLANs that already exist on your physical
network. The term trunk is used to describe a port that allows multiple VLANs to traverse through the
same port. Using these ports, VLANs can span across multiple switches, including virtual switches. For
example, traffic tagged as VLAN110 in the physical network reaches the Compute node, where the
8021q module directs the tagged traffic to the appropriate VLAN on the vSwitch.

Red Hat OpenStack Platform 13 Networking Guide

82

8.3.2. Configuring trunk ports for a Cisco Nexus switch

If using a Cisco Nexus you might use the following configuration syntax to allow traffic for
VLANs 110 and 111 to pass through to your instances.
This configuration assumes that your physical node has an ethernet cable connected to
interface Ethernet1/12 on the physical switch.

IMPORTANT

These values are examples. You must change the values in this example to match
those in your environment. Copying and pasting these values into your switch
configuration without adjustment can result in an unexpected outage.

interface Ethernet1/12
 description Trunk to Compute Node
 switchport mode trunk
 switchport trunk allowed vlan 2,110,111
 switchport trunk native vlan 2
end

8.3.3. About access ports

Not all NICs on your Compute node carry instance traffic, and so you do not need to configure all NICs
to allow multiple VLANs to pass through. Access ports require only one VLAN, and might fulfill other
operational requirements, such as transporting management traffic or Block Storage data. These ports
are commonly known as access ports and usually require a simpler configuration than trunk ports.

8.3.4. Configuring access ports for a Cisco Nexus switch

Procedure

Using the example from the Figure 8.1, “Sample network layout” diagram, Ethernet1/13 (on a
Cisco Nexus switch) is configured as an access port for eth1. This configuration assumes that
your physical node has an ethernet cable connected to interface Ethernet1/13 on the physical
switch.

IMPORTANT

These values are examples. You must change the values in this example to match
those in your environment. Copying and pasting these values into your switch
configuration without adjustment can result in an unexpected outage.

interface Ethernet1/13
 description Access port for Compute Node
 switchport mode access
 switchport access vlan 200

8.3.5. About LACP port aggregation

You can use LACP to bundle multiple physical NICs together to form a single logical channel. Also
known as 802.3ad (or bonding mode 4 in Linux), LACP creates a dynamic bond for load-balancing and
fault tolerance. You must configure LACP at both physical ends: on the physical NICs, and on the

CHAPTER 8. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

83

physical switch ports.

8.3.6. Configuring LACP on the physical NIC

1. Edit the /home/stack/network-environment.yaml file:

- type: linux_bond
 name: bond1
 mtu: 9000
 bonding_options:{get_param: BondInterfaceOvsOptions};
 members:
 - type: interface
 name: nic3
 mtu: 9000
 primary: true
 - type: interface
 name: nic4
 mtu: 9000

2. Configure the Open vSwitch bridge to use LACP:

BondInterfaceOvsOptions:
 "mode=802.3ad"

For information on configuring network bonds, see the Network Interface Bonding chapter of the
Advanced Overcloud Customization guide.

8.3.7. Configuring LACP for a Cisco Nexus switch

In this example, the Compute node has two NICs using VLAN 100:

Procedure

1. Physically connect the Compute node NICs to the switch (for example, ports 12 and 13).

2. Confirm that LACP is enabled:

(config)# show feature | include lacp
lacp 1 enabled

3. Configure ports 1/12 and 1/13 as access ports, and as members of a channel group.
Depending on your deployment, you can deploy trunk interfaces rather than access interfaces.

For example, for Cisco UCI the NICs are virtual interfaces, so you might prefer to configure
access ports exclusively. Often these interfaces contain VLAN tagging configurations.

interface Ethernet1/13
 description Access port for Compute Node
 switchport mode access
 switchport access vlan 200
 channel-group 10 mode active

interface Ethernet1/13
 description Access port for Compute Node

Red Hat OpenStack Platform 13 Networking Guide

84

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/#overcloud-network-interface-bonding

 switchport mode access
 switchport access vlan 200
 channel-group 10 mode active

8.3.8. About MTU settings

You must adjust your MTU size for certain types of network traffic. For example, jumbo frames (9000
bytes) are required for certain NFS or iSCSI traffic.

NOTE

You must change MTU settings from end-to-end on all hops that the traffic is expected
to pass through, including any virtual switches.

Additional resources

Configuring maximum transmission unit (MTU) settings

8.3.9. Configuring MTU settings for a Cisco Nexus 7000 switch

Apply MTU settings to a single interface on 7000-series switches.

Procedure

Run the following commands to configure interface 1/12 to use jumbo frames of 9000 bytes:

interface ethernet 1/12
 mtu 9216
 exit

8.3.10. About LLDP discovery

The ironic-python-agent service listens for LLDP packets from connected switches. The collected
information can include the switch name, port details, and available VLANs. Similar to Cisco Discovery
Protocol (CDP), LLDP assists with the discovery of physical hardware during the director introspection
process.

8.3.11. Configuring LLDP for a Cisco Nexus 7000 switch

Procedure

You can enable LLDP for individual interfaces on Cisco Nexus 7000-series switches:

interface ethernet 1/12
 lldp transmit
 lldp receive
 no lacp suspend-individual
 no lacp graceful-convergence

interface ethernet 1/13
 lldp transmit

CHAPTER 8. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

85

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#config-max-mtu_cisco-nexus

 lldp receive
 no lacp suspend-individual
 no lacp graceful-convergence

NOTE

Remember to save your changes by copying the running-config to the startup-config:
copy running-config startup-config.

8.4. CONFIGURING A CUMULUS LINUX SWITCH

8.4.1. About trunk ports

With OpenStack Networking you can connect instances to the VLANs that already exist on your physical
network. The term trunk is used to describe a port that allows multiple VLANs to traverse through the
same port. Using these ports, VLANs can span across multiple switches, including virtual switches. For
example, traffic tagged as VLAN110 in the physical network reaches the Compute node, where the
8021q module directs the tagged traffic to the appropriate VLAN on the vSwitch.

8.4.2. Configuring trunk ports for a Cumulus Linux switch

This configuration assumes that your physical node has transceivers connected to switch ports swp1 and
swp2 on the physical switch.

IMPORTANT

These values are examples. You must change the values in this example to match those in
your environment. Copying and pasting these values into your switch configuration
without adjustment can result in an unexpected outage.

Procedure

Use the following configuration syntax to allow traffic for VLANs 100 and 200 to pass through
to your instances.

auto bridge
iface bridge
 bridge-vlan-aware yes
 bridge-ports glob swp1-2
 bridge-vids 100 200

8.4.3. About access ports

Not all NICs on your Compute node carry instance traffic, and so you do not need to configure all NICs
to allow multiple VLANs to pass through. Access ports require only one VLAN, and might fulfill other
operational requirements, such as transporting management traffic or Block Storage data. These ports
are commonly known as access ports and usually require a simpler configuration than trunk ports.

8.4.4. Configuring access ports for a Cumulus Linux switch

This configuration assumes that your physical node has an ethernet cable connected to the interface on

Red Hat OpenStack Platform 13 Networking Guide

86

This configuration assumes that your physical node has an ethernet cable connected to the interface on
the physical switch. Cumulus Linux switches use eth for management interfaces and swp for
access/trunk ports.

IMPORTANT

These values are examples. You must change the values in this example to match those in
your environment. Copying and pasting these values into your switch configuration
without adjustment can result in an unexpected outage.

Procedure

Using the example from the Figure 8.1, “Sample network layout” diagram, swp1 (on a Cumulus
Linux switch) is configured as an access port.

auto bridge
iface bridge
 bridge-vlan-aware yes
 bridge-ports glob swp1-2
 bridge-vids 100 200

auto swp1
iface swp1
 bridge-access 100

auto swp2
iface swp2
 bridge-access 200

8.4.5. About LACP port aggregation

You can use LACP to bundle multiple physical NICs together to form a single logical channel. Also
known as 802.3ad (or bonding mode 4 in Linux), LACP creates a dynamic bond for load-balancing and
fault tolerance. You must configure LACP at both physical ends: on the physical NICs, and on the
physical switch ports.

8.4.6. About MTU settings

You must adjust your MTU size for certain types of network traffic. For example, jumbo frames (9000
bytes) are required for certain NFS or iSCSI traffic.

NOTE

You must change MTU settings from end-to-end on all hops that the traffic is expected
to pass through, including any virtual switches.

Additional resources

Configuring maximum transmission unit (MTU) settings

8.4.7. Configuring MTU settings for a Cumulus Linux switch

CHAPTER 8. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

87

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#config-max-mtu_cumulus-linux

Procedure

This example enables jumbo frames on your Cumulus Linux switch.

auto swp1
iface swp1
 mtu 9000

NOTE

Remember to apply your changes by reloading the updated configuration: sudo
ifreload -a

8.4.8. About LLDP discovery

The ironic-python-agent service listens for LLDP packets from connected switches. The collected
information can include the switch name, port details, and available VLANs. Similar to Cisco Discovery
Protocol (CDP), LLDP assists with the discovery of physical hardware during the director introspection
process.

8.4.9. Configuring LLDP for a Cumulus Linux switch

By default, the LLDP service lldpd runs as a daemon and starts when the switch boots.

Procedure

To view all LLDP neighbors on all ports/interfaces, run the following command:

cumulus@switch$ netshow lldp
Local Port Speed Mode Remote Port Remote Host Summary
---------- --- --------- ----- ----- ----------- --------
eth0 10G Mgmt ==== swp6 mgmt-sw IP: 10.0.1.11/24
swp51 10G Interface/L3 ==== swp1 spine01 IP: 10.0.0.11/32
swp52 10G Interface/L ==== swp1 spine02 IP: 10.0.0.11/32

8.5. CONFIGURING A EXTREME EXOS SWITCH

8.5.1. About trunk ports

With OpenStack Networking you can connect instances to the VLANs that already exist on your physical
network. The term trunk is used to describe a port that allows multiple VLANs to traverse through the
same port. Using these ports, VLANs can span across multiple switches, including virtual switches. For
example, traffic tagged as VLAN110 in the physical network reaches the Compute node, where the
8021q module directs the tagged traffic to the appropriate VLAN on the vSwitch.

8.5.2. Configuring trunk ports on an Extreme Networks EXOS switch

If using an X-670 series switch, refer to the following example to allow traffic for VLANs 110 and 111 to
pass through to your instances.

IMPORTANT

Red Hat OpenStack Platform 13 Networking Guide

88

IMPORTANT

These values are examples. You must change the values in this example to match those in
your environment. Copying and pasting these values into your switch configuration
without adjustment can result in an unexpected outage.

Procedure

This configuration assumes that your physical node has an ethernet cable connected to
interface 24 on the physical switch. In this example, DATA and MNGT are the VLAN names.

#create vlan DATA tag 110
#create vlan MNGT tag 111
#configure vlan DATA add ports 24 tagged
#configure vlan MNGT add ports 24 tagged

8.5.3. About access ports

Not all NICs on your Compute node carry instance traffic, and so you do not need to configure all NICs
to allow multiple VLANs to pass through. Access ports require only one VLAN, and might fulfill other
operational requirements, such as transporting management traffic or Block Storage data. These ports
are commonly known as access ports and usually require a simpler configuration than trunk ports.

8.5.4. Configuring access ports for an Extreme Networks EXOS switch

This configuration assumes that your physical node has an ethernet cable connected to interface 10 on
the physical switch.

IMPORTANT

These values are examples. You must change the values in this example to match those in
your environment. Copying and pasting these values into your switch configuration
without adjustment can result in an unexpected outage.

Procedure

In this configuration example, on a Extreme Networks X-670 series switch, 10 is used as an
access port for eth1.

create vlan VLANNAME tag NUMBER
configure vlan Default delete ports PORTSTRING
configure vlan VLANNAME add ports PORTSTRING untagged

For example:

#create vlan DATA tag 110
#configure vlan Default delete ports 10
#configure vlan DATA add ports 10 untagged

8.5.5. About LACP port aggregation

You can use LACP to bundle multiple physical NICs together to form a single logical channel. Also
known as 802.3ad (or bonding mode 4 in Linux), LACP creates a dynamic bond for load-balancing and

CHAPTER 8. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

89

fault tolerance. You must configure LACP at both physical ends: on the physical NICs, and on the
physical switch ports.

8.5.6. Configuring LACP on the physical NIC

1. Edit the /home/stack/network-environment.yaml file:

- type: linux_bond
 name: bond1
 mtu: 9000
 bonding_options:{get_param: BondInterfaceOvsOptions};
 members:
 - type: interface
 name: nic3
 mtu: 9000
 primary: true
 - type: interface
 name: nic4
 mtu: 9000

2. Configure the Open vSwitch bridge to use LACP:

BondInterfaceOvsOptions:
 "mode=802.3ad"

For information on configuring network bonds, see the Network Interface Bonding chapter of the
Advanced Overcloud Customization guide.

8.5.7. Configuring LACP on an Extreme Networks EXOS switch

Procedure

In this example, the Compute node has two NICs using VLAN 100:

enable sharing MASTERPORT grouping ALL_LAG_PORTS lacp
configure vlan VLANNAME add ports PORTSTRING tagged

For example:

#enable sharing 11 grouping 11,12 lacp
#configure vlan DATA add port 11 untagged

NOTE

You might need to adjust the timeout period in the LACP negotiation script. For
more information, see
https://gtacknowledge.extremenetworks.com/articles/How_To/LACP-
configured-ports-interfere-with-PXE-DHCP-on-servers

8.5.8. About MTU settings

You must adjust your MTU size for certain types of network traffic. For example, jumbo frames (9000

Red Hat OpenStack Platform 13 Networking Guide

90

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/#overcloud-network-interface-bonding
https://gtacknowledge.extremenetworks.com/articles/How_To/LACP-configured-ports-interfere-with-PXE-DHCP-on-servers

You must adjust your MTU size for certain types of network traffic. For example, jumbo frames (9000
bytes) are required for certain NFS or iSCSI traffic.

NOTE

You must change MTU settings from end-to-end on all hops that the traffic is expected
to pass through, including any virtual switches.

Additional resources

Configuring maximum transmission unit (MTU) settings

8.5.9. Configuring MTU settings on an Extreme Networks EXOS switch

Procedure

Run the commands in this example to enable jumbo frames on an Extreme Networks EXOS
switch and configure support for forwarding IP packets with 9000 bytes:

enable jumbo-frame ports PORTSTRING
configure ip-mtu 9000 vlan VLANNAME

Example

enable jumbo-frame ports 11
configure ip-mtu 9000 vlan DATA

8.5.10. About LLDP discovery

The ironic-python-agent service listens for LLDP packets from connected switches. The collected
information can include the switch name, port details, and available VLANs. Similar to Cisco Discovery
Protocol (CDP), LLDP assists with the discovery of physical hardware during the director introspection
process.

8.5.11. Configuring LLDP settings on an Extreme Networks EXOS switch

Procedure

In this example, LLDP is enabled on an Extreme Networks EXOS switch. 11 represents the port
string:

enable lldp ports 11

8.6. CONFIGURING A JUNIPER EX SERIES SWITCH

8.6.1. About trunk ports

With OpenStack Networking you can connect instances to the VLANs that already exist on your physical
network. The term trunk is used to describe a port that allows multiple VLANs to traverse through the
same port. Using these ports, VLANs can span across multiple switches, including virtual switches. For

CHAPTER 8. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

91

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#config-max-mtu_extreme-exos

example, traffic tagged as VLAN110 in the physical network reaches the Compute node, where the
8021q module directs the tagged traffic to the appropriate VLAN on the vSwitch.

8.6.2. Configuring trunk ports for a Juniper EX Series switch

Procedure

If using a Juniper EX series switch running Juniper JunOS, use the following configuration
syntax to allow traffic for VLANs 110 and 111 to pass through to your instances.
This configuration assumes that your physical node has an ethernet cable connected to
interface ge-1/0/12 on the physical switch.

IMPORTANT

These values are examples. You must change the values in this example to match
those in your environment. Copying and pasting these values into your switch
configuration without adjustment can result in an unexpected outage.

 ge-1/0/12 {
 description Trunk to Compute Node;
 unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members [110 111];
 }
 native-vlan-id 2;
 }
 }
}

8.6.3. About access ports

Not all NICs on your Compute node carry instance traffic, and so you do not need to configure all NICs
to allow multiple VLANs to pass through. Access ports require only one VLAN, and might fulfill other
operational requirements, such as transporting management traffic or Block Storage data. These ports
are commonly known as access ports and usually require a simpler configuration than trunk ports.

8.6.4. Configuring access ports for a Juniper EX Series switch

This example on, a Juniper EX series switch, shows ge-1/0/13 as an access port for eth1.

+

IMPORTANT

These values are examples. You must change the values in this example to match those in
your environment. Copying and pasting these values into your switch configuration
without adjustment can result in an unexpected outage.

Procedure

This configuration assumes that your physical node has an ethernet cable connected to interface ge-

Red Hat OpenStack Platform 13 Networking Guide

92

This configuration assumes that your physical node has an ethernet cable connected to interface ge-
1/0/13 on the physical switch.

+

 ge-1/0/13 {
 description Access port for Compute Node
 unit 0 {
 family ethernet-switching {
 port-mode access;
 vlan {
 members 200;
 }
 native-vlan-id 2;
 }
 }
}

8.6.5. About LACP port aggregation

You can use LACP to bundle multiple physical NICs together to form a single logical channel. Also
known as 802.3ad (or bonding mode 4 in Linux), LACP creates a dynamic bond for load-balancing and
fault tolerance. You must configure LACP at both physical ends: on the physical NICs, and on the
physical switch ports.

8.6.6. Configuring LACP on the physical NIC

1. Edit the /home/stack/network-environment.yaml file:

- type: linux_bond
 name: bond1
 mtu: 9000
 bonding_options:{get_param: BondInterfaceOvsOptions};
 members:
 - type: interface
 name: nic3
 mtu: 9000
 primary: true
 - type: interface
 name: nic4
 mtu: 9000

2. Configure the Open vSwitch bridge to use LACP:

BondInterfaceOvsOptions:
 "mode=802.3ad"

For information on configuring network bonds, see the Network Interface Bonding chapter of the
Advanced Overcloud Customization guide.

8.6.7. Configuring LACP for a Juniper EX Series switch

In this example, the Compute node has two NICs using VLAN 100.

CHAPTER 8. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

93

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/#overcloud-network-interface-bonding

Procedure

1. Physically connect the Compute node’s two NICs to the switch (for example, ports 12 and 13).

2. Create the port aggregate:

chassis {
 aggregated-devices {
 ethernet {
 device-count 1;
 }
 }
}

3. Configure switch ports 12 (ge-1/0/12) and 13 (ge-1/0/13) to join the port aggregate ae1:

interfaces {
 ge-1/0/12 {
 gigether-options {
 802.3ad ae1;
 }
 }
 ge-1/0/13 {
 gigether-options {
 802.3ad ae1;
 }
 }
}

NOTE

For Red Hat OpenStack Platform director deployments, in order to PXE boot
from the bond, you must configure one of the bond members as lacp force-up
toensure that only one bond member comes up during introspection and first
boot. The bond member that you configure with lacp force-up must be the same
bond member that has the MAC address in instackenv.json (the MAC address
known to ironic must be the same MAC address configured with force-up).

4. Enable LACP on port aggregate ae1:

interfaces {
 ae1 {
 aggregated-ether-options {
 lacp {
 active;
 }
 }
 }
}

5. Add aggregate ae1 to VLAN 100:

interfaces {
 ae1 {

Red Hat OpenStack Platform 13 Networking Guide

94

 vlan-tagging;
 native-vlan-id 2;
 unit 100 {
 vlan-id 100;
 }
 }
}

6. Review your new port channel. The resulting output lists the new port aggregate ae1 with
member ports ge-1/0/12 and ge-1/0/13:

> show lacp statistics interfaces ae1

Aggregated interface: ae1
LACP Statistics: LACP Rx LACP Tx Unknown Rx Illegal Rx
ge-1/0/12 0 0 0 0
ge-1/0/13 0 0 0 0

NOTE

Remember to apply your changes by running the commit command.

8.6.8. About MTU settings

You must adjust your MTU size for certain types of network traffic. For example, jumbo frames (9000
bytes) are required for certain NFS or iSCSI traffic.

NOTE

You must change MTU settings from end-to-end on all hops that the traffic is expected
to pass through, including any virtual switches.

Additional resources

Configuring maximum transmission unit (MTU) settings

8.6.9. Configuring MTU settings for a Juniper EX Series switch

This example enables jumbo frames on your Juniper EX4200 switch.

NOTE

The MTU value is calculated differently depending on whether you are using Juniper or
Cisco devices. For example, 9216 on Juniper would equal to 9202 for Cisco. The extra
bytes are used for L2 headers, where Cisco adds this automatically to the MTU value
specified, but the usable MTU will be 14 bytes smaller than specified when using Juniper.
So in order to support an MTU of 9000 on the VLANs, the MTU of 9014 would have to be
configured on Juniper.

Procedure

1. For Juniper EX series switches, MTU settings are set for individual interfaces. These commands
configure jumbo frames on the ge-1/0/14 and ge-1/0/15 ports:

CHAPTER 8. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

95

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#config-max-mtu_juniperex

set interfaces ge-1/0/14 mtu 9216
set interfaces ge-1/0/15 mtu 9216

NOTE

Remember to save your changes by running the commit command.

2. If using a LACP aggregate, you will need to set the MTU size there, and not on the member
NICs. For example, this setting configures the MTU size for the ae1 aggregate:

 set interfaces ae1 mtu 9216

8.6.10. About LLDP discovery

The ironic-python-agent service listens for LLDP packets from connected switches. The collected
information can include the switch name, port details, and available VLANs. Similar to Cisco Discovery
Protocol (CDP), LLDP assists with the discovery of physical hardware during the director introspection
process.

8.6.11. Configuring LLDP for a Juniper EX Series switch

You can enable LLDP globally for all interfaces, or just for individual ones.

Procedure

Use the following too enable LLDP globally on your Juniper EX 4200 switch:

lldp {
 interface all{
 enable;
 }
 }
}

Use the following to enable LLDP for the single interface ge-1/0/14:

lldp {
 interface ge-1/0/14{
 enable;
 }
 }
}

NOTE

Remember to apply your changes by running the commit command.

Red Hat OpenStack Platform 13 Networking Guide

96

CHAPTER 9. CONFIGURING MAXIMUM TRANSMISSION UNIT
(MTU) SETTINGS

9.1. MTU OVERVIEW

OpenStack Networking can calculate the largest possible maximum transmission unit (MTU) size that
you can apply safely to instances. The MTU value specifies the maximum amount of data that a single
network packet can transfer; this number is variable depending on the most appropriate size for the
application. For example, NFS shares might require a different MTU size to that of a VoIP application.

NOTE

You can use the openstack network show <network_name> command to view the
largest possible MTU values that OpenStack Networking calculates. net-mtu is a neutron
API extension that is not present in some implementations. The MTU value that you
require can be advertised to DHCPv4 clients for automatic configuration, if supported by
the instance, as well as to IPv6 clients through Router Advertisement (RA) packets. To
send Router Advertisements, the network must be attached to a router.

You must configure MTU settings consistently from end-to-end. This means that the MTU setting must
be the same at every point the packet passes through, including the VM, the virtual network
infrastructure, the physical network, and the destination server.

For example, the circles in the following diagram indicate the various points where an MTU value must
be adjusted for traffic between an instance and a physical server. You must change the MTU value for
very interface that handles network traffic to accommodate packets of a particular MTU size. This is
necessary if traffic travels from the instance 192.168.200.15 through to the physical server 10.20.15.25:

Inconsistent MTU values can result in several network issues, the most common being random packet
loss that results in connection drops and slow network performance. Such issues are problematic to

CHAPTER 9. CONFIGURING MAXIMUM TRANSMISSION UNIT (MTU) SETTINGS

97

troubleshoot because you must identify and examine every possible network point to ensure it has the
correct MTU value.

9.2. CONFIGURING MTU SETTINGS IN DIRECTOR

This example demonstrates how to set the MTU using the NIC config templates. You must set the MTU
on the bridge, bond (if applicable), interface(s), and VLAN(s):

 -
 type: ovs_bridge
 name: br-isolated
 use_dhcp: false
 mtu: 9000 # <--- Set MTU
 members:
 -
 type: ovs_bond
 name: bond1
 mtu: 9000 # <--- Set MTU
 ovs_options: {get_param: BondInterfaceOvsOptions}
 members:
 -
 type: interface
 name: ens15f0
 mtu: 9000 # <--- Set MTU
 primary: true
 -
 type: interface
 name: enp131s0f0
 mtu: 9000 # <--- Set MTU
 -
 type: vlan
 device: bond1
 vlan_id: {get_param: InternalApiNetworkVlanID}
 mtu: 9000 # <--- Set MTU
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 -
 type: vlan
 device: bond1
 mtu: 9000 # <--- Set MTU
 vlan_id: {get_param: TenantNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: TenantIpSubnet}

9.3. REVIEWING THE RESULTING MTU CALCULATION

You can view the calculated MTU value, which is the largest possible MTU value that instances can use.
Use this calculated MTU value to configure all interfaces involved in the path of network traffic.

openstack network show <network>

Red Hat OpenStack Platform 13 Networking Guide

98

CHAPTER 10. CONFIGURING QUALITY OF SERVICE (QOS)
POLICIES

With Red Hat OpenStack Platform network quality-of-service (QoS) policies, an OpenStack
administrator can offer varying service levels by applying rate limits to egress traffic for instances. As a
result of implementing a QoS policy, any traffic that exceeds the specified rate is consequently
dropped.

10.1. QOS POLICY SCOPE

You can apply QoS policies to individual ports, or to a particular tenant network, where ports with no
specific policy attached inherit the policy.

10.2. CREATING AND APPLYING A QOS POLICY AND RULE

To create a quality of service (QoS) policy and rule and apply the policy to a port, complete the following
steps:

1. If the qos extension is not already enabled for OpenStack Networking in
/etc/neutron/plugins/ml2/<agent_name>_agent.ini, then follow these steps:

a. Create a custom Heat environment file, and add the following lines:

parameter_defaults:
 NeutronSriovAgentExtensions: 'qos'

IMPORTANT

YAML files are extremely sensitive about where in the file a parameter is
placed. Make sure that parameter_defaults: starts in the first column (no
leading whitespace characters), and your parameter value pair starts in
column three (the parameter has two whitespace characters in front of it).

b. Run the Red Hat OpenStack Platform director command, openstack overcloud deploy
and include all your current environment files and this custom new one.
For more information, see "Modifying the overcloud environment" in the Director
Installation and Usage guide.

2. Review the list of tenants and determine the id of where you need to create QoS policy:

openstack project list
+----------------------------------+----------+
| ID | Name |
+----------------------------------+----------+
4b0b98f8c6c040f38ba4f7146e8680f5	auditors
519e6344f82e4c079c8e2eabb690023b	services
80bf5732752a41128e612fe615c886c6	demo
98a2f53c20ce4d50a40dac4a38016c69	admin
+----------------------------------+----------+

3. Create a QoS policy named bw-limiter in the admin tenant:

CHAPTER 10. CONFIGURING QUALITY OF SERVICE (QOS) POLICIES

99

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/director_installation_and_usage/index#sect-Modifying_the_Overcloud_Environment

openstack network qos policy create --project 98a2f53c20ce4d50a40dac4a38016c69 bw-
limiter

4. Configure the policing rules for the bw-limiter policy:

openstack network qos rule create --type bandwidth-limit --max-kbps 3000 --max-burst-
kbits 30000 bw-limiter

5. Configure a neutron port to apply the bw-limiter policy:

openstack port set --qos-policy bw-limiter port_name_or_id

6. Review the QoS rule. For example:

openstack network qos policy show 9be535c3-daa2-4d7b-88ea-e8de16

+-------------------+---------------------------------+
| Field | Value |
+-------------------+---------------------------------+
id	9be535c3-daa2-4d7b-88ea-e8de16
rule_type	bandwidth_limit
description	
max_kbps	3000
max_burst_kbps	300
+-------------------+---------------------------------+

These values allow you to configure the policing algorithm accordingly:

max_kbps - the maximum rate (in Kbps) that the instance is allowed to send.

max_burst_kbps - the maximum amount of data (in kbits) that the port could send in a instant
if the token buffer was full. The token buffer is replenished at a "max_kbps" rate.

10.3. DSCP MARKING FOR EGRESS TRAFFIC

You can use differentiated services code point (DSCP) to implement quality-of-service (QoS) policies
on your network by embedding relevant values in the IP headers. The Networking service (neutron) QoS
policies can use DSCP marking to manage egress traffic on neutron ports and networks.

Procedure

1. If you are:

using ML2/OVN, skip to step 2.

using ML2/OVS without a tunneling protocol, skip to step 2.

using ML2/OVS with a tunneling protocol (VXLAN and GRE), then perform the following
steps:

a. Log in to the undercloud host as the stack user.

$ source ~/stackrc

Red Hat OpenStack Platform 13 Networking Guide

100

b. Create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-neutron-environment.yaml

c. In the YAML environment file under parameter_defaults, add the following lines:

parameter_defaults:
 ControllerExtraConfig:
 neutron::config::server_config:
 agent/dscp_inherit:
 value: true

When dscp_inherit is true, the Networking service copies the DSCP value of the inner
header to the outer header.

d. Run the deployment command and include the core heat templates, environment files,
and this new custom environment file.

IMPORTANT

The order of the environment files is important as the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/ \
neutron-ovs.yaml \
-e /home/stack/templates/my-neutron-environment.yaml

2. Source your credentials file.

Example

$ source ~/overcloudrc

3. Create a new QoS policy:

Example

openstack network qos policy create --project 98a2f53c20ce4d50a40dac4a38016c69 qos-
web-servers

4. Create a DSCP rule and apply it to a policy.

Example

In this example, a DSCP rule is created using DSCP mark 18 and is applied to the qos-web-
servers policy:

CHAPTER 10. CONFIGURING QUALITY OF SERVICE (QOS) POLICIES

101

openstack network qos rule create --type dscp-marking --dscp-mark 18 qos-web-servers

Sample output

Created a new dscp_marking_rule:
+-----------+--------------------------------------+
| Field | Value |
+-----------+--------------------------------------+
| dscp_mark | 18 |
| id | d7f976ec-7fab-4e60-af70-f59bf88198e6 |
+-----------+--------------------------------------+

5. You can change the DSCP value assigned to a rule.

Example

openstack network qos rule set --dscp-mark 22 qos-web-servers d7f976ec-7fab-4e60-af70-
f59bf88198e6

6. You can delete a DSCP rule.

Example

openstack network qos rule delete qos-web-servers d7f976ec-7fab-4e60-af70-f59bf88198e6

Verification

Confirm that the DSCP rule (d7f976ec-7fab-4e60-af70-f59bf88198e6) is applied to the QoS
policy (qos-web-servers).

Example

openstack network qos rule list qos-web-servers

Sample output

+-----------+--------------------------------------+
| dscp_mark | id |
+-----------+--------------------------------------+
| 18 | d7f976ec-7fab-4e60-af70-f59bf88198e6 |
+-----------+--------------------------------------+

Additional resources

Environment files in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

network qos rule create in the Command Line Interface Reference

network qos rule set in the Command Line Interface Reference

Red Hat OpenStack Platform 13 Networking Guide

102

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_overcloud_Creation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/command_line_interface_reference/network#network_qos_rule_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/command_line_interface_reference/network#network_qos_rule_set

network qos rule delete in the Command Line Interface Reference

network qos rule list in the Command Line Interface Reference

10.4. RBAC FOR QOS POLICIES

You can add a role-based access control (RBAC) for quality-of-service (QoS) policies. As a result, you
can now make QoS policies available to certain projects.

For example, you can now create a QoS policy that allows for lower-priority network traffic, and have it
only apply to certain projects. Run the following command to assign the bw-limiter policy to the project,
demo:

openstack network rbac create --type qos_policy --target-project
80bf5732752a41128e612fe615c886c6 --action access_as_shared rbac_name

CHAPTER 10. CONFIGURING QUALITY OF SERVICE (QOS) POLICIES

103

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/command_line_interface_reference/network#network_qos_rule_delete
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/command_line_interface_reference/network#network_qos_rule_list

CHAPTER 11. CONFIGURING BRIDGE MAPPINGS
This chapter contains information about configuring bridge mappings in Red Hat OpenStack Platform.

11.1. OVERVIEW OF BRIDGE MAPPINGS

A bridge mapping associates a physical network name (an interface label) to a bridge created with OVS
or OVN. In this example, the physical name (datacentre) is mapped to the external bridge (br-ex):

bridge_mappings = datacentre:br-ex

Bridge mappings allow provider network traffic to reach the physical network. Traffic leaves the
provider network from the qg-xxx interface of the router and arrives at br-int. For OVS, a patch port
between br-int and br-ex then allows the traffic to pass through the bridge of the provider network and
out to the physical network. OVN creates a patch port on a hypervisor only when there is a VM bound to
the hypervisor that requires the port.

You configure bridge mappings on the network node on which the router is scheduled. Router traffic can
egress using the correct physical network, as represented by the provider network.

11.2. TRAFFIC FLOW

Each external network is represented by an internal VLAN ID, which is tagged to the router qg-xxx port.
When a packet reaches phy-br-ex, the br-ex port strips the VLAN tag and moves the packet to the
physical interface and then to the external network.

The return packet from the external network arrives on br-ex and moves to br-int using phy-br-ex <->
int-br-ex. When the packet is going through br-ex to br-int, the packet’s external vlan ID is replaced by
an internal vlan tag in br-int, and this allows qg-xxx to accept the packet.

In the case of egress packets, the packet’s internal vlan tag is replaced with an external vlan tag in br-ex
(or in the external bridge that is defined in the network_vlan_ranges parameter).

11.3. CONFIGURING BRIDGE MAPPINGS

Red Hat OpenStack Platform (RHOSP) director uses predefined NIC templates to install and configure
your initial networking configuration.

You can customize aspects of your initial networking configuration, such as bridge mappings, by using
the NeutronBridgeMappings parameter in a customized environment file. You call the environment file
in the openstack overcloud deploy command.

Prerequisites

You must configure bridge mappings on the network node on which the router is scheduled.

For both ML2/OVS and ML2/OVN DVR configurations, you must configure bridge mappings
for the compute nodes, too.

Procedure

1. Create a custom environment file and add the NeutronBridgeMappings heat parameter with
values that are appropriate for your site.

Red Hat OpenStack Platform 13 Networking Guide

104

parameter_defaults:
 NeutronBridgeMappings: "datacentre:br-ex,tenant:br-tenant"

The NeutronBridgeMappings heat parameter associates a physical name (datacentre) to a
bridge (br-ex).

NOTE

When the NeutronBridgeMappings parameter is not used, the default maps the
external bridge on hosts (br-ex) to a physical name (datacentre).

2. To apply this configuration, deploy the overcloud, adding your custom environment file to the
stack along with your other environment files.

(undercloud) $ openstack overcloud deploy --templates \
 -e [your environment files]
 -e /home/stack/templates/<custom-environment-file>.yaml

3. You are ready for the next steps, which are the following:

a. Using the network VLAN ranges, create the provider networks that represent the
corresponding external networks. (You use the physical name when creating neutron
provider networks or floating IP networks.)

b. Connect the external networks to your project networks with router interfaces.

Additional resources

Network environment parameters in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

11.4. MAINTAINING BRIDGE MAPPINGS FOR OVS

After removing any OVS bridge mappings, you must perform a subsequent cleanup to ensure that the
bridge configuration is cleared of any associated patch port entries. You can perform this operation in
the following ways:

Manual port cleanup - requires careful removal of the superfluous patch ports. No outages of
network connectivity are required.

Automated port cleanup - performs an automated cleanup, but requires an outage, and requires
that the necessary bridge mappings be re-added. Choose this option during scheduled
maintenance windows when network connectivity outages can be tolerated.

NOTE

When OVN bridge mappings are removed, the OVN controller automatically cleans up
any associated patch ports.

11.4.1. Cleaning up OVS patch ports manually

After removing any OVS bridge mappings, you must also remove the associated patch ports.

CHAPTER 11. CONFIGURING BRIDGE MAPPINGS

105

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#network-environment-parameters
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_Overcloud_Creation

Prerequisites

The patch ports that you are cleaning up must be Open vSwitch (OVS) ports.

A system outage is not required to perform a manual patch port cleanup.

You can identify the patch ports to cleanup by their naming convention:

In br-$external_bridge patch ports are named phy-<external bridge name> (for example,
phy-br-ex2).

In br-int patch ports are named int-<external bridge name> (for example, int-br-ex2).

Procedure

1. Use ovs-vsctl to remove the OVS patch ports associated with the removed bridge mapping
entry:

ovs-vsctl del-port br-ex2 datacentre
ovs-vsctl del-port br-tenant tenant

2. Restart neutron-openvswitch-agent:

service neutron-openvswitch-agent restart

11.4.2. Cleaning up OVS patch ports automatically

After removing any OVS bridge mappings, you must also remove the associated patch ports.

NOTE

When OVN bridge mappings are removed, the OVN controller automatically cleans up
any associated patch ports.

Prerequisites

The patch ports that you are cleaning up must be Open vSwitch (OVS) ports.

Cleaning up patch ports automatically with the neutron-ovs-cleanup command causes a
network connectivity outage, and should be performed only during a scheduled maintenance
window.

Use the flag --ovs_all_ports to remove all patch ports from br-int, cleaning up tunnel ends from
br-tun, and patch ports from bridge to bridge.

The neutron-ovs-cleanup command unplugs all patch ports (instances, qdhcp/qrouter, among
others) from all OVS bridges.

Procedure

1. Run the neutron-ovs-cleanup command with the --ovs_all_ports flag.

IMPORTANT

Red Hat OpenStack Platform 13 Networking Guide

106

IMPORTANT

Perfoming this step will result in a total networking outage.

/usr/bin/neutron-ovs-cleanup
--config-file /etc/neutron/plugins/ml2/openvswitch_agent.ini
--log-file /var/log/neutron/ovs-cleanup.log --ovs_all_ports

2. Restore connectivity by redeploying the overcloud.
When you rerun the openstack overcloud deploy command, your bridge mapping values are
reapplied.

NOTE

After a restart, the OVS agent does not interfere with any connections that are
not present in bridge_mappings. So, if you have br-int connected to br-ex2, and
br-ex2 has some flows on it, removing br-int from the bridge_mappings
configuration does not disconnect the two bridges when you restart the OVS
agent or the node.

Additional resources

Network environment parameters in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

CHAPTER 11. CONFIGURING BRIDGE MAPPINGS

107

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#network-environment-parameters
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_Overcloud_Creation

CHAPTER 12. VLAN-AWARE INSTANCES

12.1. VLAN TRUNKS AND VLAN TRANSPARENT NETWORKS

Instances can send and receive VLAN-tagged traffic over a single virtual NIC. This is particularly useful
for NFV applications (VNFs) that expect VLAN-tagged traffic, allowing a single virtual NIC to serve
multiple customers or services.

Instances can send and receive VLAN-tagged traffic over a single vNIC. This is particularly useful for
NFV applications (VNFs) that expect VLAN-tagged traffic, allowing a single vNIC to serve multiple
customers or services.

For example, the project data network can use VLANs, or tunneling (VXLAN/GRE) segmentation, while
the instances see the traffic tagged with VLAN IDs. As a result, network packets are tagged just before
they are injected to the instance and do not need to be tagged throughout the entire network.

To implement VLAN-tagged traffic, create a parent port and attach the new port to an existing neutron
network. When you attach the new port, OpenStack Networking adds a trunk connection to the parent
port you created. Next, create subports. These subports connect VLANs to instances, which allow
connectivity to the trunk. Within the instance operating system, you must also create a sub-interface
that tags traffic for the VLAN associated with the subport.

12.2. REVIEWING THE TRUNK PLUG-IN

During a Red Hat openStack deployment, the trunk plug-in is enabled by default. You can review the
configuration on the controller nodes:

On the controller node, confirm that the trunk plug-in is enabled in the /var/lib/config-
data/neutron/etc/neutron/neutron.conf file:

service_plugins=router,qos,trunk

12.3. CREATING A TRUNK CONNECTION

To implement trunks for VLAN-tagged traffic, create a parent port and attach the new port to an
existing neutron network. When you attach the new port, OpenStack Networking adds a trunk
connection to the parent port you created. Next, create subports. These subports connect VLANs to
instances, which allow connectivity to the trunk. Within the instance operating system, you must also
create a sub-interface that tags traffic for the VLAN associated with the subport.

1. Identify the network that requires the trunk port connection. This would be the network that will
contain the instance that requires access to the trunked VLANs. In this example, this is the
public network:

openstack network list
+--------------------------------------+---------+--------------------------------------+
| ID | Name | Subnets |
+--------------------------------------+---------+--------------------------------------+
| 82845092-4701-4004-add7-838837837621 | private | 434c7982-cd96-4c41-a8c9-
b93adbdcb197 |
| 8d8bc6d6-5b28-4e00-b99e-157516ff0050 | public | 3fd811b4-c104-44b5-8ff8-
7a86af5e332c |
+--------------------------------------+---------+--------------------------------------+

Red Hat OpenStack Platform 13 Networking Guide

108

2. Create the parent trunk port, and attach it to the network that the instance connects to. In this
example, create a neutron port named parent-trunk-port on the public network. This trunk is the
parent port, as you can use it to create subports.

openstack port create --network public parent-trunk-port
+-----------------------+---+
| Field | Value |
+-----------------------+---+
admin_state_up	UP
allowed_address_pairs	
binding_host_id	
binding_profile	
binding_vif_details	
binding_vif_type	unbound
binding_vnic_type	normal
created_at	2016-10-20T02:02:33Z
description	
device_id	
device_owner	
extra_dhcp_opts	
fixed_ips	ip_address='172.24.4.230', subnet_id='dc608964-9af3-4fed-9f06-
6d3844fb9b9b'	
headers	
id	20b6fdf8-0d43-475a-a0f1-ec8f757a4a39
mac_address	fa:16:3e:33:c4:75
name	parent-trunk-port
network_id	871a6bd8-4193-45d7-a300-dcb2420e7cc3
project_id	745d33000ac74d30a77539f8920555e7
project_id	745d33000ac74d30a77539f8920555e7
revision_number	4
security_groups	59e2af18-93c6-4201-861b-19a8a8b79b23
status	DOWN
updated_at	2016-10-20T02:02:33Z
+-----------------------+---+

3. Create a trunk using the port that you created in step 2. In this example the trunk is named
parent-trunk.

openstack network trunk create --parent-port parent-trunk-port parent-trunk
+-----------------+--------------------------------------+
| Field | Value |
+-----------------+--------------------------------------+
admin_state_up	UP
created_at	2016-10-20T02:05:17Z
description	
id	0e4263e2-5761-4cf6-ab6d-b22884a0fa88
name	parent-trunk
port_id	20b6fdf8-0d43-475a-a0f1-ec8f757a4a39
revision_number	1
status	DOWN
sub_ports	
tenant_id	745d33000ac74d30a77539f8920555e7
updated_at	2016-10-20T02:05:17Z
+-----------------+--------------------------------------+

CHAPTER 12. VLAN-AWARE INSTANCES

109

4. View the trunk connection:

openstack network trunk list
+--------------------------------------+--------------+--------------------------------------+-------------+
| ID | Name | Parent Port | Description |
+--------------------------------------+--------------+--------------------------------------+-------------+
| 0e4263e2-5761-4cf6-ab6d-b22884a0fa88 | parent-trunk | 20b6fdf8-0d43-475a-a0f1-
ec8f757a4a39 | |
+--------------------------------------+--------------+--------------------------------------+-------------+

5. View the details of the trunk connection:

openstack network trunk show parent-trunk
+-----------------+--------------------------------------+
| Field | Value |
+-----------------+--------------------------------------+
admin_state_up	UP
created_at	2016-10-20T02:05:17Z
description	
id	0e4263e2-5761-4cf6-ab6d-b22884a0fa88
name	parent-trunk
port_id	20b6fdf8-0d43-475a-a0f1-ec8f757a4a39
revision_number	1
status	DOWN
sub_ports	
tenant_id	745d33000ac74d30a77539f8920555e7
updated_at	2016-10-20T02:05:17Z
+-----------------+--------------------------------------+

12.4. ADDING SUBPORTS TO THE TRUNK

1. Create a neutron port.
This port is a subport connection to the trunk. You must also specify the MAC address that you
assigned to the parent port:

openstack port create --network private --mac-address fa:16:3e:33:c4:75 subport-trunk-port
+-----------------------+--+
| Field | Value |
+-----------------------+--+
admin_state_up	UP
allowed_address_pairs	
binding_host_id	
binding_profile	
binding_vif_details	
binding_vif_type	unbound
binding_vnic_type	normal
created_at	2016-10-20T02:08:14Z
description	
device_id	
device_owner	
extra_dhcp_opts	
fixed_ips	ip_address='10.0.0.11', subnet_id='1a299780-56df-4c0b-a4c0-
c5a612cef2e8'	
headers	

Red Hat OpenStack Platform 13 Networking Guide

110

id	479d742e-dd00-4c24-8dd6-b7297fab3ee9
mac_address	fa:16:3e:33:c4:75
name	subport-trunk-port
network_id	3fe6b758-8613-4b17-901e-9ba30a7c4b51
project_id	745d33000ac74d30a77539f8920555e7
project_id	745d33000ac74d30a77539f8920555e7
revision_number	4
security_groups	59e2af18-93c6-4201-861b-19a8a8b79b23
status	DOWN
updated_at	2016-10-20T02:08:15Z
+-----------------------+--+

NOTE

If you receive the error HttpException: Conflict, confirm that you are creating
the subport on a different network to the one that has the parent trunk port. This
example uses the public network for the parent trunk port, and private for the
subport.

2. Associate the port with the trunk (parent-trunk), and specify the VLAN ID (55):

openstack network trunk set --subport port=subport-trunk-port,segmentation-
type=vlan,segmentation-id=55 parent-trunk

12.5. CONFIGURING AN INSTANCE TO USE A TRUNK

You must configure the VM instance operating system to use the MAC address that the Red Hat
OpenStack Platform (RHOSP) Networking service (neutron) assigned to the subport. You can also
configure the subport to use a specific MAC address during the subport creation step.

Prerequisites

If you are performing live migrations of your Compute nodes, ensure that the RHOSP
Networking service RPC response timeout is appropriately set for your RHOSP deployment.
The RPC response timeout value can vary between sites and is dependent on the system speed.
The general recommendation is to set the value to at least 120 seconds per/100 trunk ports.
The best practice is to measure the trunk port bind process time for your RHOSP deployment,
and then set the RHOSP Networking service RPC response timeout appropriately. Try to keep
the RPC response timeout value low, but also provide enough time for the RHOSP Networking
service to receive an RPC response. For more information, see Section 12.6, “Configuring
Networking service RPC timeout”.

Procedure

1. Review the configuration of your network trunk, using the network trunk command.

Example

$ openstack network trunk list

Sample output

+---------------------+--------------+---------------------+-------------+

CHAPTER 12. VLAN-AWARE INSTANCES

111

| ID | Name | Parent Port | Description |
+---------------------+--------------+---------------------+-------------+
| 0e4263e2-5761-4cf6- | parent-trunk | 20b6fdf8-0d43-475a- | |
| ab6d-b22884a0fa88 | | a0f1-ec8f757a4a39 | |
+---------------------+--------------+---------------------+-------------+

Example

$ openstack network trunk show parent-trunk

Sample output

+-----------------+--+
| Field | Value |
+-----------------+--+
admin_state_up	UP
created_at	2021-10-20T02:05:17Z
description	
id	0e4263e2-5761-4cf6-ab6d-b22884a0fa88
name	parent-trunk
port_id	20b6fdf8-0d43-475a-a0f1-ec8f757a4a39
revision_number	2
status	DOWN
sub_ports	port_id='479d742e-dd00-4c24-8dd6-b7297fab3ee9', segm
	entation_id='55', segmentation_type='vlan'
tenant_id	745d33000ac74d30a77539f8920555e7
updated_at	2021-08-20T02:10:06Z
+-----------------+--+

2. Create an instance that uses the parent port-id as its vNIC.

Example

openstack server create --image cirros --flavor m1.tiny --security-group default --key-name
sshaccess --nic port-id=20b6fdf8-0d43-475a-a0f1-ec8f757a4a39 testInstance

Sample output

+--------------------------------------+---------------------------------+
| Property | Value |
+--------------------------------------+---------------------------------+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	
OS-EXT-SRV-ATTR:host	-
OS-EXT-SRV-ATTR:hostname	testinstance
OS-EXT-SRV-ATTR:hypervisor_hostname	-
OS-EXT-SRV-ATTR:instance_name	
OS-EXT-SRV-ATTR:kernel_id	
OS-EXT-SRV-ATTR:launch_index	0
OS-EXT-SRV-ATTR:ramdisk_id	
OS-EXT-SRV-ATTR:reservation_id	r-juqco0el
OS-EXT-SRV-ATTR:root_device_name	-
OS-EXT-SRV-ATTR:user_data	-
OS-EXT-STS:power_state	0

Red Hat OpenStack Platform 13 Networking Guide

112

OS-EXT-STS:task_state	scheduling
OS-EXT-STS:vm_state	building
OS-SRV-USG:launched_at	-
OS-SRV-USG:terminated_at	-
accessIPv4	
accessIPv6	
adminPass	uMyL8PnZRBwQ
config_drive	
created	2021-08-20T03:02:51Z
description	-
flavor	m1.tiny (1)
hostId	
host_status	
id	88b7aede-1305-4d91-a180-67e7eac
	8b70d
image	cirros (568372f7-15df-4e61-a05f
	-10954f79a3c4)
key_name	sshaccess
locked	False
metadata	{}
name	testInstance
os-extended-volumes:volumes_attached	[]
progress	0
security_groups	default
status	BUILD
tags	[]
tenant_id	745d33000ac74d30a77539f8920555e
	7
updated	2021-08-20T03:02:51Z
user_id	8c4aea738d774967b4ef388eb41fef5
	e
+--------------------------------------+---------------------------------+

Additional resources

Configuring Networking service RPC timeout

12.6. CONFIGURING NETWORKING SERVICE RPC TIMEOUT

There can be situations when you must modify the Red Hat OpenStack Platform (RHOSP) Networking
service (neutron) RPC response timeout. For example, live migrations for Compute nodes that use
trunk ports can fail if the timeout value is too low.

The RPC response timeout value can vary between sites and is dependent on the system speed. The
general recommendation is to set the value to at least 120 seconds per/100 trunk ports.

If your site uses trunk ports, the best practice is to measure the trunk port bind process time for your
RHOSP deployment, and then set the RHOSP Networking service RPC response timeout appropriately.
Try to keep the RPC response timeout value low, but also provide enough time for the RHOSP
Networking service to receive an RPC response.

By using a manual hieradata override, rpc_response_timeout, you can set the RPC response timeout
value for the RHOSP Networking service.

Procedure

CHAPTER 12. VLAN-AWARE INSTANCES

113

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#proc_config-network-svc-rpc-timeout_vlan-aware-instances

1. On the undercloud host, logged in as the stack user, create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-modules-environment.yaml

TIP

The RHOSP Orchestration service (heat) uses a set of plans called templates to install and
configure your environment. You can customize aspects of the overcloud with a custom
environment file, which is a special type of template that provides customization for your heat
templates.

2. In the YAML environment file under ExtraConfig, set the appropriate value (in seconds) for
rpc_response_timeout. (The default value is 60 seconds.)

Example

parameter_defaults:
 ExtraConfig:
 neutron::rpc_response_timeout: 120

NOTE

The RHOSP Orchestration service (heat) updates all RHOSP nodes with the
value you set in the custom environment file, however this value only impacts the
RHOSP Networking components.

3. Run the openstack overcloud deploy command and include the core heat templates,
environment files, and this new custom environment file.

IMPORTANT

The order of the environment files is important as the parameters and resources
defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-modules-
environment.yaml

Additional resources

Environment files in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

12.7. UNDERSTANDING TRUNK STATES

Red Hat OpenStack Platform 13 Networking Guide

114

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_overcloud_Creation

ACTIVE: The trunk is working as expected and there are no current requests.

DOWN: The virtual and physical resources for the trunk are not in sync. This can be a temporary
state during negotiation.

BUILD: There has been a request and the resources are being provisioned. After successful
completion the trunk returns to ACTIVE.

DEGRADED: The provisioning request did not complete, so the trunk has only been partially
provisioned. It is recommended to remove the subports and try again.

ERROR: The provisioning request was unsuccessful. Remove the resource that caused the error
to return the trunk to a healthier state. Do not add more subports while in the ERROR state, as
this can cause more issues.

CHAPTER 12. VLAN-AWARE INSTANCES

115

CHAPTER 13. CONFIGURING RBAC POLICIES

13.1. OVERVIEW OF RBAC POLICIES

Role-based access control (RBAC) policies in OpenStack Networking allow granular control over shared
neutron networks. OpenStack Networking uses a RBAC table to control sharing of neutron networks
among projects, allowing an administrator to control which projects are granted permission to attach
instances to a network.

As a result, cloud administrators can remove the ability for some projects to create networks and can
instead allow them to attach to pre-existing networks that correspond to their project.

13.2. CREATING RBAC POLICIES

This example procedure demonstrates how to use a role-based access control (RBAC) policy to grant a
project access to a shared network.

1. View the list of available networks:

openstack network list
+--------------------------------------+-------------+---+
| id | name | subnets |
+--------------------------------------+-------------+---+
| fa9bb72f-b81a-4572-9c7f-7237e5fcabd3 | web-servers | 20512ffe-ad56-4bb4-b064-
2cb18fecc923 192.168.200.0/24 |
| bcc16b34-e33e-445b-9fde-dd491817a48a | private | 7fe4a05a-4b81-4a59-8c47-
82c965b0e050 10.0.0.0/24 |
| 9b2f4feb-fee8-43da-bb99-032e4aaf3f85 | public | 2318dc3b-cff0-43fc-9489-
7d4cf48aaab9 172.24.4.224/28 |
+--------------------------------------+-------------+---+

2. View the list of projects:

openstack project list
+----------------------------------+----------+
| ID | Name |
+----------------------------------+----------+
4b0b98f8c6c040f38ba4f7146e8680f5	auditors
519e6344f82e4c079c8e2eabb690023b	services
80bf5732752a41128e612fe615c886c6	demo
98a2f53c20ce4d50a40dac4a38016c69	admin
+----------------------------------+----------+

3. Create a RBAC entry for the web-servers network that grants access to the auditors project
(4b0b98f8c6c040f38ba4f7146e8680f5):

openstack network rbac create --type network --target-project
4b0b98f8c6c040f38ba4f7146e8680f5 --action access_as_shared web-servers
Created a new rbac_policy:
+----------------+--------------------------------------+
| Field | Value |
+----------------+--------------------------------------+
| action | access_as_shared |
| id | 314004d0-2261-4d5e-bda7-0181fcf40709 |

Red Hat OpenStack Platform 13 Networking Guide

116

object_id	fa9bb72f-b81a-4572-9c7f-7237e5fcabd3
object_type	network
target_project	4b0b98f8c6c040f38ba4f7146e8680f5
project_id	98a2f53c20ce4d50a40dac4a38016c69
+----------------+--------------------------------------+

As a result, users in the auditors project can connect instances to the web-servers network.

13.3. REVIEWING RBAC POLICIES

1. Run the openstack network rbac list command to retrieve the ID of your existing role-based
access control (RBAC) policies:

openstack network rbac list
+--------------------------------------+-------------+--------------------------------------+
| id | object_type | object_id |
+--------------------------------------+-------------+--------------------------------------+
| 314004d0-2261-4d5e-bda7-0181fcf40709 | network | fa9bb72f-b81a-4572-9c7f-
7237e5fcabd3 |
| bbab1cf9-edc5-47f9-aee3-a413bd582c0a | network | 9b2f4feb-fee8-43da-bb99-
032e4aaf3f85 |
+--------------------------------------+-------------+--------------------------------------+

2. Run the openstack network rbac-show command to view the details of a specific RBAC entry:

openstack network rbac show 314004d0-2261-4d5e-bda7-0181fcf40709
+----------------+--------------------------------------+
| Field | Value |
+----------------+--------------------------------------+
action	access_as_shared
id	314004d0-2261-4d5e-bda7-0181fcf40709
object_id	fa9bb72f-b81a-4572-9c7f-7237e5fcabd3
object_type	network
target_project	4b0b98f8c6c040f38ba4f7146e8680f5
project_id	98a2f53c20ce4d50a40dac4a38016c69
+----------------+--------------------------------------+

13.4. DELETING RBAC POLICIES

1. Run the openstack network rbac list command to retrieve the ID of your existing role-based
access control (RBAC) policies:

openstack network rbac list
+--------------------------------------+-------------+--------------------------------------+
| id | object_type | object_id |
+--------------------------------------+-------------+--------------------------------------+
| 314004d0-2261-4d5e-bda7-0181fcf40709 | network | fa9bb72f-b81a-4572-9c7f-
7237e5fcabd3 |
| bbab1cf9-edc5-47f9-aee3-a413bd582c0a | network | 9b2f4feb-fee8-43da-bb99-
032e4aaf3f85 |
+--------------------------------------+-------------+--------------------------------------+

2. Run the openstack network rbac delete command to delete the RBAC, using the ID of the

CHAPTER 13. CONFIGURING RBAC POLICIES

117

2. Run the openstack network rbac delete command to delete the RBAC, using the ID of the
RBAC that you want to delete:

openstack network rbac delete 314004d0-2261-4d5e-bda7-0181fcf40709
Deleted rbac_policy: 314004d0-2261-4d5e-bda7-0181fcf40709

13.5. GRANTING RBAC POLICY ACCESS FOR EXTERNAL NETWORKS

You can grant role-based access control (RBAC) policy access to external networks (networks with
gateway interfaces attached) using the --action access_as_external parameter.

Complete the steps in the following example procedure to create a RBAC for the web-servers network
and grant access to the engineering project (c717f263785d4679b16a122516247deb):

Create a new RBAC policy using the --action access_as_external option:

openstack network rbac create --type network --target-project
c717f263785d4679b16a122516247deb --action access_as_external web-servers
 Created a new rbac_policy:
+----------------+--------------------------------------+
| Field | Value |
+----------------+--------------------------------------+
action	access_as_external
id	ddef112a-c092-4ac1-8914-c714a3d3ba08
object_id	6e437ff0-d20f-4483-b627-c3749399bdca
object_type	network
target_project	c717f263785d4679b16a122516247deb
project_id	c717f263785d4679b16a122516247deb
+----------------+--------------------------------------+

As a result, users in the engineering project are able to view the network or connect instances to
it:

$ openstack network list
+--------------------------------------+-------------+--+
| id | name | subnets |
+--------------------------------------+-------------+--+
| 6e437ff0-d20f-4483-b627-c3749399bdca | web-servers | fa273245-1eff-4830-b40c-
57eaeac9b904 192.168.10.0/24 |
+--------------------------------------+-------------+--+

Red Hat OpenStack Platform 13 Networking Guide

118

CHAPTER 14. CONFIGURING DISTRIBUTED VIRTUAL
ROUTING (DVR)

14.1. UNDERSTANDING DISTRIBUTED VIRTUAL ROUTING (DVR)

When you deploy Red Hat OpenStack Platform you can choose between a centralized routing model or
DVR.

Each model has advantages and disadvantages. Use this document to carefully plan whether centralized
routing or DVR better suits your needs.

DVR is enabled by default in new ML2/OVN deployments and disabled by default in new ML2/OVS
deployments. The Heat template for the OpenStack Networking (neutron) API
(deployment/neutron/neutron-api-container-puppet.yaml) contains a parameter to enable and
disable Distributed Virtual Routing (DVR). To disable DVR, use the following in an environment file:

parameter_defaults:
 NeutronEnableDVR: false

14.1.1. Overview of Layer 3 routing

The Red Hat OpenStack Platform Networking service (neutron) provides routing services for project
networks. Without a router, VM instances in a project network can communicate with other instances
over a shared L2 broadcast domain. Creating a router and assigning it to a project network allows the
instances in that network to communicate with other project networks or upstream (if an external
gateway is defined for the router).

14.1.2. Routing flows

Routing services in OpenStack can be categorized into three main flows:

East-West routing - routing of traffic between different networks in the same project. This
traffic does not leave the OpenStack deployment. This definition applies to both IPv4 and IPv6
subnets.

North-South routing with floating IPs - Floating IP addressing is a one-to-one network
address translation (NAT) that can be modified and that floats between VM instances. While
floating IPs are modeled as a one-to-one association between the floating IP and a Networking
service (neutron) port, they are implemented by association with a Networking service router
that performs the NAT translation. The floating IPs themselves are taken from the uplink
network that provides the router with external connectivity. As a result, instances can
communicate with external resources (such as endpoints on the internet) or the other way
around. Floating IPs are an IPv4 concept and do not apply to IPv6. It is assumed that the IPv6
addressing used by projects uses Global Unicast Addresses (GUAs) with no overlap across the
projects, and therefore can be routed without NAT.

North-South routing without floating IPs (also known as SNAT) - The Networking service
offers a default port address translation (PAT) service for instances that do not have allocated
floating IPs. With this service, instances can communicate with external endpoints through the
router, but not the other way around. For example, an instance can browse a website on the
internet, but a web browser outside cannot browse a website hosted within the instance. SNAT

CHAPTER 14. CONFIGURING DISTRIBUTED VIRTUAL ROUTING (DVR)

119

is applied for IPv4 traffic only. In addition, Networking service networks that are assigned GUAs
prefixes do not require NAT on the Networking service router external gateway port to access
the outside world.

14.1.3. Centralized routing

Originally, the Networking service (neutron) was designed with a centralized routing model where a
project’s virtual routers, managed by the neutron L3 agent, are all deployed in a dedicated node or
cluster of nodes (referred to as the Network node, or Controller node). This means that each time a
routing function is required (east/west, floating IPs or SNAT), traffic would traverse through a dedicated
node in the topology. This introduced multiple challenges and resulted in sub-optimal traffic flows. For
example:

Traffic between instances flows through a Controller node - when two instances need to
communicate with each other using L3, traffic has to hit the Controller node. Even if the
instances are scheduled on the same Compute node, traffic still has to leave the Compute
node, flow through the Controller, and route back to the Compute node. This negatively
impacts performance.

Instances with floating IPs receive and send packets through the Controller node - the external
network gateway interface is available only at the Controller node, so whether the traffic is
originating from an instance, or destined to an instance from the external network, it has to flow
through the Controller node. Consequently, in large environments the Controller node is subject
to heavy traffic load. This would affect performance and scalability, and also requires careful
planning to accommodate enough bandwidth in the external network gateway interface. The
same requirement applies for SNAT traffic.

To better scale the L3 agent, the Networking service can use the L3 HA feature, which distributes the
virtual routers across multiple nodes. In the event that a Controller node is lost, the HA router will
failover to a standby on another node and there will be packet loss until the HA router failover
completes.

14.2. DVR OVERVIEW

Distributed Virtual Routing (DVR) offers an alternative routing design. DVR isolates the failure domain
of the Controller node and optimizes network traffic by deploying the L3 agent and schedule routers on
every Compute node. DVR has these characteristics:

East-West traffic is routed directly on the Compute nodes in a distributed fashion.

North-South traffic with floating IP is distributed and routed on the Compute nodes. This
requires the external network to be connected to every Compute node.

North-South traffic without floating IP is not distributed and still requires a dedicated Controller
node.

The L3 agent on the Controller node uses the dvr_snat mode so that the node serves only
SNAT traffic.

The neutron metadata agent is distributed and deployed on all Compute nodes. The metadata
proxy service is hosted on all the distributed routers.

14.3. DVR KNOWN ISSUES AND CAVEATS

NOTE

Red Hat OpenStack Platform 13 Networking Guide

120

NOTE

For Red Hat OpenStack Platform 13, do not use DVR unless your kernel version is at least
kernel-3.10.0-514.1.1.el7

Support for DVR is limited to the ML2 core plug-in and the Open vSwitch (OVS) mechanism
driver or ML2/OVN mechanism driver. Other back ends are not supported.

On both OVS and OVN DVR deployments, network traffic for the Red Hat OpenStack Platform
Load-balancing service (octavia) goes through the Controller and network nodes, instead of the
compute nodes.

With an ML2/OVS mechanism driver network back end and DVR, it is possible to create VIPs.
However, the IP address assigned to a bound port using allowed_address_pairs, should match
the virtual port IP address (/32).
If you use a CIDR format IP address for the bound port allowed_address_pairs instead, port
forwarding is not configured in the back end, and traffic fails for any IP in the CIDR expecting to
reach the bound IP port.

SNAT (source network address translation) traffic is not distributed, even when DVR is enabled.
SNAT does work, but all ingress/egress traffic must traverse through the centralized Controller
node.

IPv6 traffic is not distributed, even when DVR is enabled. IPv6 routing does work, but all
ingress/egress traffic must traverse through the centralized Controller node. If you use IPv6
routing extensively, do not use DVR.

DVR is not supported in conjunction with L3 HA. If you use DVR with Red Hat OpenStack
Platform 13 director, L3 HA is disabled. This means that routers are still scheduled on the
Network nodes (and load-shared between the L3 agents), but if one agent fails, all routers
hosted by this agent fail as well. This affects only SNAT traffic. The
allow_automatic_l3agent_failover feature is recommended in such cases, so that if one
network node fails, the routers are rescheduled to a different node.

DHCP servers, which are managed by the neutron DHCP agent, are not distributed and are still
deployed on the Controller node. The DHCP agent is deployed in a highly available
configuration on the Controller nodes, regardless of the routing design (centralized or DVR).

To work with floating IPs, each Compute node requires an interface on the External network. In
addition, each Compute node requires one additional IP address. This is due to the
implementation of the external gateway port and the floating IP network namespace.

VLAN, GRE, and VXLAN are all supported for project data separation. When you use GRE or
VXLAN, you must enable the L2 Population feature. The Red Hat OpenStack Platform director
enforces L2 Population during installation.

14.4. SUPPORTED ROUTING ARCHITECTURES

Red Hat OpenStack Platform (RHOSP) supports both centralized, high-availability (HA) routing and
distributed virtual routing (DVR) in the RHOSP versions listed:

RHOSP centralized HA routing support began in RHOSP 8.

RHOSP distributed routing support began in RHOSP 12.

CHAPTER 14. CONFIGURING DISTRIBUTED VIRTUAL ROUTING (DVR)

121

14.5. DEPLOYING DVR WITH ML2 OVS

To deploy and manage distributed virtual routing (DVR) in an ML2/OVS deployment, you configure
settings in heat templates and environment files.

You use heat template settings to provision host networking:

Configure the interface connected to the physical network for external network traffic on both
the Compute and Controller nodes.

Create a bridge on Compute and Controller nodes, with an interface for external network traffic.

You also configure the Networking service (neutron) to match the provisioned networking environment
and allow traffic to use the bridge.

The default settings are provided as guidelines only. They are not expected to work in production or test
environments which may require customization for network isolation, dedicated NICs, or any number of
other variable factors. In setting up an environment, you need to correctly configure the bridge mapping
type parameters used by the L2 agents and the external facing bridges for other agents, such as the L3
agent.

The following example procedure shows how to configure a proof-of-concept environment using the
typical defaults.

Procedure

1. Verify that the value for OS::TripleO::Compute::Net::SoftwareConfig matches the value of
OS::TripleO::Controller::Net::SoftwareConfig in the file overcloud-resource-registry.yaml or
in an environment file included in the deployment command.
This value names a file, such as net_config_bridge.yaml. The named file configures Neutron
bridge mappings for external networks Compute node L2 agents. The bridge routes traffic for
the floating IP addresses hosted on Compute nodes in a DVR deployment. Normally, you can
find this filename value in the network environment file that you use when deploying the
overcloud, such as environments/net-multiple-nics.yaml.

NOTE

If you customize the network configuration of the Compute node, you may need
to add the appropriate configuration to your custom files instead.

2. Verify that the Compute node has an external bridge.

a. Make a local copy of the openstack-tripleo-heat-templates directory.

b. $ cd <local_copy_of_templates_directory.

c. Run the process-templates script to render the templates to a temporary output directory:

$./tools/process-templates.py -r <roles_data.yaml> \
 -n <network_data.yaml> -o <temporary_output_directory>

d. Check the role files in <temporary_output_directory>/network/config.

3. If needed, customize the Compute template to include an external bridge that matches the

Red Hat OpenStack Platform 13 Networking Guide

122

3. If needed, customize the Compute template to include an external bridge that matches the
Controller nodes, and name the custom file path in
OS::TripleO::Compute::Net::SoftwareConfig in an environment file.

4. Include the environments/services/neutron-ovs-dvr.yaml file in the deployment command when
deploying the overcloud:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/services/neutron-ovs-dvr.yaml

5. Verify that L3 HA is disabled.

NOTE

The external bridge configuration for the L3 agent was deprecated in Red Hat
OpenStack Platform 13 and removed in Red Hat OpenStack Platform 15.

14.6. MIGRATING CENTRALIZED ROUTERS TO DISTRIBUTED ROUTING

This section contains information about upgrading to distributed routing for Red Hat OpenStack
Platform deployments that use L3 HA centralized routing.

Procedure

1. Upgrade your deployment and validate that it is working correctly.

2. Run the director stack update to configure DVR.

3. Confirm that routing functions correctly through the existing routers.

4. You cannot transition an L3 HA router to distributed directly. Instead, for each router, disable
the L3 HA option, and then enable the distributed option:

a. Disable the router:

Example

$ openstack router set --disable router1

b. Clear high availability:

Example

$ openstack router set --no-ha router1

c. Configure the router to use DVR:

Example

$ openstack router set --distributed router1

d. Enable the router:

CHAPTER 14. CONFIGURING DISTRIBUTED VIRTUAL ROUTING (DVR)

123

Example

$ openstack router set --enable router1

e. Confirm that distributed routing functions correctly.

Additional resources

Deploying DVR with ML2 OVS

Red Hat OpenStack Platform 13 Networking Guide

124

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#deploying-dvr

CHAPTER 15. CONFIGURE LOAD BALANCING-AS-A-SERVICE
WITH THE NETWORKING LBAASV2 API

15.1. OVERVIEW OF LBAAS

Load Balancing-as-a-Service (LBaaS) enables OpenStack Networking to distribute incoming requests
evenly between designated instances. Complete the steps in this section to configure OpenStack
Networking to use LBaaS with the Open vSwitch (OVS) plug-in.

Load Balancing-as-a-Service (LBaaS) enables OpenStack Networking to distribute incoming requests
evenly between designated instances. This ensures the workload is shared predictably among instances,
and allows more effective use of system resources. Incoming requests are distributed using one of the
following load balancing methods:

Round robin - Rotates requests evenly between multiple instances.

Source IP - Requests from a unique source IP address are consistently directed to the same
instance.

Least connections - Allocates requests to the instance with the least number of active
connections.

Table 15.1. LBaaS features

Feature Description

Monitors LBaaS provides availability monitoring with the PING,
TCP, HTTP and HTTPS GET methods. Monitors
determine whether pool members are available to
handle requests.

Management LBaaS is managed using a variety of tool sets. The
REST API is available for programmatic
administration and scripting. Users perform
administrative management of load balancers
through either the CLI (neutron) or the OpenStack
dashboard.

Connection limits Ingress traffic can be shaped with connection limits.
This feature allows workload control and can also
assist with mitigating DoS (Denial of Service) attacks.

Session persistence LBaaS supports session persistence by ensuring
incoming requests are routed to the same instance
within a pool of multiple instances. LBaaS supports
routing decisions based on cookies and source IP
address.

NOTE

LBaaS is currently supported only with IPv4 addressing.

CHAPTER 15. CONFIGURE LOAD BALANCING-AS-A-SERVICE WITH THE NETWORKING LBAASV2 API

125

15.2. OPENSTACK NETWORKING AND LBAAS TOPOLOGY

OpenStack Networking (neutron) services can be broadly classified into two categories.

Neutron API server - This service runs the OpenStack Networking API server, which has the main
responsibility of providing an API for end users and services to interact with OpenStack Networking.
This server also has the responsibility of interacting with the underlying database to store and retrieve
tenant network, router, and loadbalancer details, among others.

Neutron Agents - These are the services that deliver various network functionality for OpenStack
Networking.

neutron-dhcp-agent - manages DHCP IP addressing for tenant private networks.

neutron-l3-agent - facilitates layer 3 routing between tenant private networks, the external
network, and other networks.

NOTE

The neutron-lbaasv2-agent (with HAProxy) is deprecated. For the preferred load-
balancing reference implementation with octavia, see the Using Octavia for Load
Balancing-as-a-Service guide.

The following diagram shows the flow of HTTPS traffic through to a pool member:

15.2.1. Support Status of LBaaS

LBaaS v1 API was removed in version 10.

LBaaS v2 API is deprecated and removed after Red Hat OpenStack Platform 13. (Octavia is the
replacement.)

LBaaS deployment is not currently supported in Red Hat OpenStack Platform director.

NOTE

The neutron-lbaasv2-agent (with HAProxy) is deprecated. For the preferred load-
balancing reference implementation with Octavia, see the Using Octavia for Load
Balancing-as-a-Service guide. The neutron-lbaas RPMs are still available to support the
API for third-party plugin support.

15.3. CONFIGURING LBAAS

This procedure configures OpenStack Networking (neutron) to use LBaaS with the Open vSwitch

Red Hat OpenStack Platform 13 Networking Guide

126

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/using_octavia_for_load_balancing-as-a-service/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/using_octavia_for_load_balancing-as-a-service/index

This procedure configures OpenStack Networking (neutron) to use LBaaS with the Open vSwitch
(OVS) plugin.

NOTE

Perform these steps on nodes running the neutron-server service:

Procedure

On the Controller node (API Server):

1. Enable LBaaS:

yum install openstack-neutron-lbaas -y

2. Add the LBaaS tables to the neutron database:

$ neutron-db-manage --subproject neutron-lbaas --config-file /var/lib/config-
data/neutron/etc/neutron/neutron.conf --config-file /var/lib/config-
data/neutron/etc/neutron/plugins/ml2/ml2_conf.ini upgrade head

3. Change the service provider in /var/lib/config-data/neutron/etc/neutron/neutron_lbaas.conf.
In the [service providers] section, comment out (#) all entries except for this entry:

service_provider=LOADBALANCERV2:Haproxy:neutron_lbaas.drivers.haproxy.plugin_driver.H
aproxyOnHostPluginDriver:default

4. In /var/lib/config-data/neutron/etc/neutron/neutron.conf, confirm that you have the LBaaS v2
plugin configured in service_plugins:

service_plugins=neutron_lbaas.services.loadbalancer.plugin.LoadBalancerPluginv2

You can also expect to see any other plugins you have previously added.

NOTE

If you have lbaasv1 configured, replace it with the above setting for lbaasv2.

5. In /var/lib/config-data/neutron/etc/neutron/lbaas_agent.ini, add the following to the
[DEFAULT] section:

ovs_use_veth = False
interface_driver =neutron.agent.linux.interface.OVSInterfaceDriver

6. In /var/lib/config-data/neutron/etc/neutron/services_lbaas.conf, add the following to the
[haproxy] section:

user_group = haproxy

a. Comment out any other device driver entries.

NOTE

CHAPTER 15. CONFIGURE LOAD BALANCING-AS-A-SERVICE WITH THE NETWORKING LBAASV2 API

127

NOTE

If the l3-agent is in a failed mode, see the l3_agent log files. You may need
to edit /var/lib/config-data/neutron/etc/neutron/neutron.conf and
comment out certain values in [DEFAULT], and uncomment the
corresponding values in oslo_messaging_rabbit, as described in the log file.

7. Configure the LbaaS services, and review their status:

a. Stop the lbaasv1 services and start lbaasv2:

systemctl disable neutron-lbaas-agent.service
systemctl stop neutron-lbaas-agent.service
systemctl mask neutron-lbaas-agent.service
systemctl enable neutron-lbaasv2-agent.service
systemctl start neutron-lbaasv2-agent.service

b. Review the status of lbaasv2:

systemctl status neutron-lbaasv2-agent.service

c. Restart neutron-server and check the status:

systemctl restart neutron-server.service
systemctl status neutron-server.service

d. Check the Loadbalancerv2 agent:

$ openstack network agent list

Red Hat OpenStack Platform 13 Networking Guide

128

CHAPTER 16. PROJECT NETWORKING WITH IPV6

16.1. IPV6 SUBNET OPTIONS

When you create IPv6 subnets in a Red Hat OpenStack Platform (RHOSP) project network you can
specify address mode and Router Advertisement mode to obtain a particular result as described in the
following table.

NOTE

RHOSP does not support IPv6 prefix delegation in ML2/OVN deployments. You must set
the Global Unicast Address prefix manually.

RA Mode Address Mode Result

ipv6_ra_mode=not set ipv6-address-mode=slaac The instance receives an IPv6
address from the external router
(not managed by OpenStack
Networking) using Stateless
Address Autoconfiguration
(SLAAC).

NOTE

OpenStack
Networking
supports only
EUI-64 IPv6
address
assignment for
SLAAC. This
allows for
simplified IPv6
networking, as
hosts self-assign
addresses based
on the base 64-
bits plus the MAC
address. You
cannot create
subnets with a
different netmask
and
address_assign_ty
pe of SLAAC.

ipv6_ra_mode=not set ipv6-address-mode=dhcpv6-
stateful

The instance receives an IPv6
address and optional information
from OpenStack Networking
(dnsmasq) using DHCPv6
stateful.

CHAPTER 16. PROJECT NETWORKING WITH IPV6

129

ipv6_ra_mode=not set ipv6-address-mode=dhcpv6-
stateless

The instance receives an IPv6
address from the external router
using SLAAC, and optional
information from OpenStack
Networking (dnsmasq) using
DHCPv6 stateless.

ipv6_ra_mode=slaac ipv6-address-mode=not-set The instance uses SLAAC to
receive an IPv6 address from
OpenStack Networking (radvd).

ipv6_ra_mode=dhcpv6-stateful ipv6-address-mode=not-set The instance receives an IPv6
address and optional information
from an external DHCPv6 server
using DHCPv6 stateful.

ipv6_ra_mode=dhcpv6-stateless ipv6-address-mode=not-set The instance receives an IPv6
address from OpenStack
Networking (radvd) using SLAAC,
and optional information from an
external DHCPv6 server using
DHCPv6 stateless.

ipv6_ra_mode=slaac ipv6-address-mode=slaac The instance receives an IPv6
address from OpenStack
Networking (radvd) using SLAAC.

ipv6_ra_mode=dhcpv6-stateful ipv6-address-mode=dhcpv6-
stateful

The instance receives an IPv6
address from OpenStack
Networking (dnsmasq) using
DHCPv6 stateful, and optional
information from OpenStack
Networking (dnsmasq) using
DHCPv6 stateful.

ipv6_ra_mode=dhcpv6-stateless ipv6-address-mode=dhcpv6-
stateless

The instance receives an IPv6
address from OpenStack
Networking (radvd) using SLAAC,
and optional information from
OpenStack Networking
(dnsmasq) using DHCPv6
stateless.

RA Mode Address Mode Result

16.2. CREATE AN IPV6 SUBNET USING STATEFUL DHCPV6

You can create an IPv6 subnet in a Red Hat OpenStack (RHOSP) project network.

For example, you can create an IPv6 subnet using Stateful DHCPv6 in network named database-servers
in a project named QA.

Red Hat OpenStack Platform 13 Networking Guide

130

Procedure

1. Retrieve the project ID of the Project where you want to create the IPv6 subnet. These values
are unique between OpenStack deployments, so your values differ from the values in this
example.

openstack project list
+----------------------------------+----------+
| ID | Name |
+----------------------------------+----------+
25837c567ed5458fbb441d39862e1399	QA
f59f631a77264a8eb0defc898cb836af	admin
4e2e1951e70643b5af7ed52f3ff36539	demo
8561dff8310e4cd8be4b6fd03dc8acf5	services
+----------------------------------+----------+

2. Retrieve a list of all networks present in OpenStack Networking (neutron), and note the name of
the network where you want to host the IPv6 subnet:

openstack network list
+--------------------------------------+------------------+--
---------+
| id | name | subnets |
+--------------------------------------+------------------+--
---------+
| 8357062a-0dc2-4146-8a7f-d2575165e363 | private | c17f74c4-db41-4538-af40-
48670069af70 10.0.0.0/24 |
| 31d61f7d-287e-4ada-ac29-ed7017a54542 | public | 303ced03-6019-4e79-a21c-
1942a460b920 172.24.4.224/28 |
| 6aff6826-4278-4a35-b74d-b0ca0cbba340 | database-servers |
|
+--------------------------------------+------------------+--
---------+

3. Include the project ID, network name, and ipv6 address mode in the openstack subnet create
command:

openstack subnet create --ip-version 6 --ipv6-address-mode dhcpv6-stateful --project
25837c567ed5458fbb441d39862e1399 --network database-servers --subnet-range
fdf8:f53b:82e4::53/125 subnet_name

Created a new subnet:
+-------------------+--+
| Field | Value |
+-------------------+--+
allocation_pools	{"start": "fdf8:f53b:82e4::52", "end": "fdf8:f53b:82e4::56"}
cidr	fdf8:f53b:82e4::53/125
dns_nameservers	
enable_dhcp	True
gateway_ip	fdf8:f53b:82e4::51
host_routes	
id	cdfc3398-997b-46eb-9db1-ebbd88f7de05
ip_version	6
ipv6_address_mode	dhcpv6-stateful
ipv6_ra_mode	

CHAPTER 16. PROJECT NETWORKING WITH IPV6

131

name	
network_id	6aff6826-4278-4a35-b74d-b0ca0cbba340
tenant_id	25837c567ed5458fbb441d39862e1399
+-------------------+--+

Validation steps

1. Validate this configuration by reviewing the network list. Note that the entry for database-
servers now reflects the newly created IPv6 subnet:

openstack network list
+--------------------------------------+------------------+--
---------+
| id | name | subnets |
+--------------------------------------+------------------+--
---------+
| 6aff6826-4278-4a35-b74d-b0ca0cbba340 | database-servers | cdfc3398-997b-46eb-9db1-
ebbd88f7de05 fdf8:f53b:82e4::50/125 |
| 8357062a-0dc2-4146-8a7f-d2575165e363 | private | c17f74c4-db41-4538-af40-
48670069af70 10.0.0.0/24 |
| 31d61f7d-287e-4ada-ac29-ed7017a54542 | public | 303ced03-6019-4e79-a21c-
1942a460b920 172.24.4.224/28 |
+--------------------------------------+------------------+--
---------+

Result

As a result of this configuration, instances that the QA project creates can receive a DHCP IPv6
address when added to the database-servers subnet:

openstack server list
+--------------------------------------+------------+--------+------------+-------------+---------------------
----------------+
| ID | Name | Status | Task State | Power State | Networks
|
+--------------------------------------+------------+--------+------------+-------------+---------------------
----------------+
| fad04b7a-75b5-4f96-aed9-b40654b56e03 | corp-vm-01 | ACTIVE | - | Running |
database-servers=fdf8:f53b:82e4::52 |
+--------------------------------------+------------+--------+------------+-------------+---------------------
----------------+

Additional resources

To find the Router Advertisement mode and address mode combinations to achieve a particular result in
an IPv6 subnet, see IPv6 subnet options in the Networking Guide.

Red Hat OpenStack Platform 13 Networking Guide

132

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#ipv6-subnet-options_proj-network-ipv6
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index

CHAPTER 17. MANAGING PROJECT QUOTAS

17.1. CONFIGURING PROJECT QUOTAS

OpenStack Networking (neutron) supports the use of quotas to constrain the number of resources
created by tenants/projects.

Procedure

You can set project quotas for various network components in the /var/lib/config-
data/neutron/etc/neutron/neutron.conf file.
For example, to limit the number of routers that a project can create, change the quota_router
value:

quota_router = 10

In this example, each project is limited to a maximum of 10 routers.

For a listing of the quota settings, see sections that immediately follow.

17.2. L3 QUOTA OPTIONS

Here are quota options available for layer 3 (L3) networking:

quota_floatingip - The number of floating IPs available to a project.

quota_network - The number of networks available to a project.

quota_port - The number of ports available to a project.

quota_router - The number of routers available to a project.

quota_subnet - The number of subnets available to a project.

quota_vip - The number of virtual IP addresses available to a project.

17.3. FIREWALL QUOTA OPTIONS

Here are quota options available for managing firewalls for projects:

quota_firewall - The number of firewalls available to a project.

quota_firewall_policy - The number of firewall policies available to a project.

quota_firewall_rule - The number of firewall rules available to a project.

17.4. SECURITY GROUP QUOTA OPTIONS

The Networking service quota engine manages security groups and security group rules, and it is not
possible to set all quotas to zero before creating the default security group (and the two default
security group rules that accepts all egress traffic for IPv4 and IPv6). When you create a new project,
the Networking service does not create the default security group until a network or a port is created, or
until you list the security group or the security group rules.

CHAPTER 17. MANAGING PROJECT QUOTAS

133

Here are quota options available for managing the number of security groups that projects can create:

quota_security_group - The number of security groups available to a project.

quota_security_group_rule - The number of security group rules available to a project.

17.5. MANAGEMENT QUOTA OPTIONS

Here are additonal options available to administrators for managing quotas for projects:

default_quota* - The default number of resources available to a project.

quota_health_monitor* - The number of health monitors available to a project.
Health monitors do not consume resources, however the quota option is available because
OpenStack Networking considers health monitors as resource consumers.

quota_member - The number of pool members available to a project.
Pool members do not consume resources, however the quota option is available because
OpenStack Networking considers pool members as resource consumers.

quota_pool - The number of pools available to a project.

Red Hat OpenStack Platform 13 Networking Guide

134

CHAPTER 18. CONFIGURING FIREWALL-AS-A-SERVICE
(FWAAS)

18.1. OVERVIEW OF FIREWALL-AS-A-SERVICE (FWAAS)

The Firewall-as-a-Service (FWaaS) plug-in adds perimeter firewall management to OpenStack
Networking (neutron). FWaaS uses iptables to apply firewall policy to all virtual routers within a project,
and supports one firewall policy and logical firewall instance for each project.

FWaaS operates at the perimeter by filtering traffic at the OpenStack Networking (neutron) router. This
distinguishes FWaaS from security groups, which operate at the instance level.

NOTE

FWaaS is currently in Technology Preview; untested operation is not recommended.
FWaaS is not available in future releases.

The following example diagram illustrates the flow of ingress and egress traffic for the VM2 instance:

Figure 1. FWaaS architecture

18.2. ENABLING FIREWALL-AS-A-SERVICE (FWAAS)

1. Install the FWaaS packages:

CHAPTER 18. CONFIGURING FIREWALL-AS-A-SERVICE (FWAAS)

135

dnf install openstack-neutron-fwaas python-neutron-fwaas

2. Enable the FWaaS plugin in the /var/lib/config-data/neutron/etc/neutron/neutron.conf file:

service_plugins = neutron.services.firewall.fwaas_plugin.FirewallPlugin

3. Configure FWaaS in the fwaas_driver.ini file:

[fwaas]
driver = neutron.services.firewall.drivers.linux.iptables_fwaas.IptablesFwaasDriver
enabled = True

[service_providers]
service_provider =
LOADBALANCER:Haproxy:neutron_lbaas.services.loadbalancer.drivers.haproxy.plugin_driver.
HaproxyOnHostPluginDriver:default

4. Enable the FWaaS dashboard management option in the local_settings.py file, usually located
on the Controller node:

/usr/share/openstack-dashboard/openstack_dashboard/local/local_settings.py
'enable_firewall' = True

5. Restart neutron-server to apply the changes.

systemctl restart neutron-server

18.3. CONFIGURING FIREWALL-AS-A-SERVICE (FWAAS)

First, create the firewall rules and create a policy to contain them, then create a firewall and apply the
policy:

1. Create a firewall rule:

$ neutron firewall-rule-create --protocol <tcp|udp|icmp|any> --destination-port <port-range> --
action <allow|deny>

The CLI requires a protocol value. If the rule is protocol agnostic, you can use the value any.

2. Create a firewall policy:

$ neutron firewall-policy-create --firewall-rules "<firewall-rule IDs or names separated by
space>" myfirewallpolicy

The order of the rules that you specify in the neutron firewall-policy-create command is
important. You can create an empty firewall policy and add rules later, either with the update
operation (when adding multiple rules) or with the insert-rule operations (when adding a single
rule).

NOTE

Red Hat OpenStack Platform 13 Networking Guide

136

NOTE

FWaaS always adds a default deny all rule at the lowest precedence of each policy.
Consequently, a firewall policy with no rules blocks all traffic by default.

18.4. CREATING FIREWALLS

Use the openstack security group create command, to create a firewall:

$ openstack security group create <firewall-policy-uuid>

The firewall remains in PENDING_CREATE state until you create an OpenStack Networking router and
attach an interface.

CHAPTER 18. CONFIGURING FIREWALL-AS-A-SERVICE (FWAAS)

137

CHAPTER 19. CONFIGURING ALLOWED ADDRESS PAIRS

19.1. OVERVIEW OF ALLOWED ADDRESS PAIRS

An allowed address pair is when you identify a specific MAC address, IP address, or both to allow network
traffic to pass through a port regardless of the subnet. When you define allowed address pairs, you are
able to use protocols like VRRP (Virtual Router Redundancy Protocol) that float an IP address between
two VM instances to enable fast data plane failover.

NOTE

The allowed-address pairs extension is currently supported only by the ML2 and Open
vSwitch plug-ins.

You define allowed address pairs using the Red Hat OpenStack Platform command-line client
openstack port command.

IMPORTANT

Be aware that you should not use the default security group with a wider IP address range
in an allowed address pair. Doing so can allow a single port to bypass security groups for
all other ports within the same network.

For example, this command impacts all ports in the network and bypasses all security
groups:

openstack port set --allowed-address
mac_address=3e:37:09:4b,ip_address=0.0.0.0/0
9e67d44eab334f07bf82fa1b17d824b6

NOTE

With an ML2/OVN mechanism driver network back end, it is possible to create VIPs.
However, the IP address assigned to a bound port using allowed_address_pairs, should
match the virtual port IP address (/32).

If you use a CIDR format IP address for the bound port allowed_address_pairs instead,
port forwarding is not configured in the back end, and traffic fails for any IP in the CIDR
expecting to reach the bound IP port.

Additional resources

port command in the Command Line Interface Reference

Creating a port and allowing one address pair

Adding allowed address pairs

19.2. CREATING A PORT AND ALLOWING ONE ADDRESS PAIR

Creating a port with an allowed address pair enables network traffic to flow through the port regardless
of the subnet.

Red Hat OpenStack Platform 13 Networking Guide

138

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#port
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#create-port-allow-addr-pairs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#add-allow-addr-pairs

Prerequisites

You are using an ML2/OVS plug-in.

IMPORTANT

Do not use the default security group with a wider IP address range in an allowed address
pair. Doing so can allow a single port to bypass security groups for all other ports within
the same network.

Procedure

Use the following command to create a port and allow one address pair:

openstack port create <port-name> --network <network> --allowed-address mac_address=
<mac-address>,ip_address=<ip-cidr>

Additional resources

port command in the Command Line Interface Reference

Overview of allowed address pairs

Adding allowed address pairs

19.3. ADDING ALLOWED ADDRESS PAIRS

You can add an allowed address pair to a port to enable network traffic to flow through the port
regardless of the subnet.

Prerequisites

You are using an ML2/OVS plug-in.

IMPORTANT

Do not use the default security group with a wider IP address range in an allowed address
pair. Doing so can allow a single port to bypass security groups for all other ports within
the same network.

Procedure

Use the following command to add allowed address pairs:

openstack port set <port-uuid> --allowed-address mac_address=
<mac_address>,ip_address=<ip_cidr>

NOTE

You cannot set an allowed-address pair that matches the mac_address and
ip_address of a port. This is because such a setting has no effect since traffic
matching the mac_address and ip_address is already allowed to pass through
the port.

CHAPTER 19. CONFIGURING ALLOWED ADDRESS PAIRS

139

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#port
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#overview-allow-addr-pairs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#add-allow-addr-pairs

Additional resources

port command in the Command Line Interface Reference

Overview of allowed address pairs

Creating a port and allowing one address pair

Red Hat OpenStack Platform 13 Networking Guide

140

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/command_line_interface_reference/index#port
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#overview-allow-addr-pairs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_guide/index#create-port-allow-addr-pairs

CHAPTER 20. CONFIGURING LAYER 3 HIGH AVAILABILITY
(HA)

20.1. RHOSP NETWORKING SERVICE WITHOUT HIGH AVAILABILITY
(HA)

Red Hat OpenStack Platform (RHOSP) Networking service deployments without any high availability
(HA) features are vulnerable to physical node failures.

In a typical deployment, projects create virtual routers, which are scheduled to run on physical
Networking service Layer 3 (L3) agent nodes. This becomes an issue when you lose an L3 agent node
and the dependent virtual machines subsequently lose connectivity to external networks. Any floating IP
addresses are also unavailable. In addition, connectivity is lost between any networks that the router
hosts.

20.2. OVERVIEW OF LAYER 3 HIGH AVAILABILITY (HA)

This active/passive high availability (HA) configuration uses the industry standard VRRP (as defined in
RFC 3768) to protect project routers and floating IP addresses. A virtual router is randomly scheduled
across multiple Red Hat OpenStack Platform (RHOSP) Networking service nodes, with one designated
as the active router, and the remainder serving in a standby role.

NOTE

To deploy Layer 3 (L3) HA, you must maintain similar configuration on the redundant
Networking service nodes, including floating IP ranges and access to external networks.

In the following diagram, the active Router1 and Router2 routers are running on separate physical L3
Networking service agent nodes. L3 HA has scheduled backup virtual routers on the corresponding
nodes, ready to resume service in the case of a physical node failure. When the L3 agent node fails, L3
HA reschedules the affected virtual router and floating IP addresses to a working node:

During a failover event, instance TCP sessions through floating IPs remain unaffected, and migrate to
the new L3 node without disruption. Only SNAT traffic is affected by failover events.

The L3 agent is further protected when in an active/active HA mode.

Additional resources

CHAPTER 20. CONFIGURING LAYER 3 HIGH AVAILABILITY (HA)

141

Virtual Router Redundancy Protocol (VRRP)

20.3. LAYER 3 HIGH AVAILABILITY (HA) FAILOVER CONDITIONS

Layer 3 (L3) high availability (HA) for the Red Hat OpenStack Platform (RHOSP) Networking service
automatically reschedules protected resources in the following events:

The Networking service L3 agent node shuts down or otherwise loses power because of a
hardware failure.

The L3 agent node becomes isolated from the physical network and loses connectivity.

NOTE

Manually stopping the L3 agent service does not induce a failover event.

20.4. PROJECT CONSIDERATIONS FOR LAYER 3 HIGH AVAILABILITY
(HA)

Red Hat OpenStack Platform (RHOSP) Networking service Layer 3 (L3) high availability (HA)
configuration occurs in the back end and is invisible to the project. Projects can continue to create and
manage their virtual routers as usual, however there are some limitations to be aware of when designing
your L3 HA implementation:

L3 HA supports up to 255 virtual routers per project.

Internal VRRP messages are transported within a separate internal network, created
automatically for each project. This process occurs transparently to the user.

When implementing high availability (HA) routers on ML2/OVS, each L3 agent spawns haproxy
and neutron-keepalived-state-change-monitor processes for each router. Each process
consumes approximately 20MB of memory. By default, each HA router resides on three L3
agents and consumes resources on each of the nodes. Therefore, when sizing your RHOSP
networks, ensure that you have allocated enough memory to support the number of HA routers
that you plan to implement.

20.5. HIGH AVAILABILITY (HA) CHANGES TO THE RHOSP
NETWORKING SERVICE

The Red Hat OpenStack Platform (RHOSP) Networking service (neutron) API has been updated to
allow administrators to set the --ha=True/False flag when creating a router, which overrides the default
configuration of l3_ha in /var/lib/config-data/neutron/etc/neutron/neutron.conf.

High availability (HA) changes to neutron-server:

Layer 3 (L3) HA assigns the active role randomly, regardless of the scheduler used by the
Networking service (whether random or leastrouter).

The database schema has been modified to handle allocation of virtual IP addresses (VIPs)
to virtual routers.

A transport network is created to direct L3 HA traffic.

HA changes to the Networking service L3 agent:

A new keepalived manager has been added, providing load-balancing and HA capabilities.

Red Hat OpenStack Platform 13 Networking Guide

142

https://datatracker.ietf.org/doc/html/rfc3768

A new keepalived manager has been added, providing load-balancing and HA capabilities.

IP addresses are converted to VIPs.

20.6. ENABLING LAYER 3 HIGH AVAILABILITY (HA) ON RHOSP
NETWORKING SERVICE NODES

During installation, Red Hat OpenStack Platform (RHOSP) director enables high availability (HA) for
virtual routers by default when you have at least two RHOSP Controllers and are not using distributed
virtual routing (DVR). Using an RHOSP Orchestration service (heat) parameter,
max_l3_agents_per_router, you can set the maximum number of RHOSP Networking service Layer 3
(L3) agents on which an HA router is scheduled.

Prerequisites

Your RHOSP deployment does not use DVR.

You have at least two RHOSP Controllers deployed.

Procedure

1. Log in to the undercloud as the stack user, and source the stackrc file to enable the director
command line tools.

Example

$ source ~/stackrc

2. Create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-neutron-environment.yaml

TIP

The Orchestration service (heat) uses a set of plans called templates to install and configure
your environment. You can customize aspects of the overcloud with a custom environment file ,
which is a special type of template that provides customization for your heat templates.

3. Set the NeutronL3HA parameter to true in the YAML environment file. This ensures HA is
enabled even if director did not set it by default.

parameter_defaults:
 NeutronL3HA: 'true'

4. Set the maximum number of L3 agents on which an HA router is scheduled.
Set the max_l3_agents_per_router parameter to a value between the minimum and total
number of network nodes in your deployment. (A zero value indicates that the router is
scheduled on every agent.)

Example

CHAPTER 20. CONFIGURING LAYER 3 HIGH AVAILABILITY (HA)

143

parameter_defaults:
 NeutronL3HA: 'true'
 ControllerExtraConfig:
 neutron::server::max_l3_agents_per_router: 2

In this example, if you deploy four Networking service nodes, only two L3 agents protect each
HA virtual router: one active, and one standby.

If you set the value of max_l3_agents_per_router to be greater than the number of available
network nodes, you can scale out the number of standby routers by adding new L3 agents. For
every new L3 agent node that you deploy, the Networking service schedules additional standby
versions of the virtual routers until the max_l3_agents_per_router limit is reached.

5. Run the openstack overcloud deploy command and include the core heat templates,
environment files, and this new custom environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-neutron-
environment.yaml

NOTE

When NeutronL3HA is set to true, all virtual routers that are created default to
HA routers. When you create a router, you can override the HA option by including
the --no-ha option in the openstack router create command:

openstack router create --no-ha

Additional resources

Environment files in the Advanced Overcloud Customization guide

Including Environment Files in Overcloud Creation in the Advanced Overcloud Customization
guide

20.7. REVIEWING HIGH AVAILABILITY (HA) RHOSP NETWORKING
SERVICE NODE CONFIGURATIONS

Procedure

Run the ip address command within the virtual router namespace to return a high availability
(HA) device in the result, prefixed with ha-.

ip netns exec qrouter-b30064f9-414e-4c98-ab42-646197c74020 ip address

Red Hat OpenStack Platform 13 Networking Guide

144

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index#sect-Including_Environment_Files_in_overcloud_Creation

<snip>
2794: ha-45249562-ec: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue state DOWN group default
link/ether 12:34:56:78:2b:5d brd ff:ff:ff:ff:ff:ff
inet 169.254.0.2/24 brd 169.254.0.255 scope global ha-54b92d86-4f

With Layer 3 HA enabled, virtual routers and floating IP addresses are protected against individual node
failure.

CHAPTER 20. CONFIGURING LAYER 3 HIGH AVAILABILITY (HA)

145

CHAPTER 21. IDENTIFYING VIRTUAL DEVICES WITH TAGS

21.1. OVERVIEW OF VIRTUAL DEVICE TAGGING

If you launch an instance with multiple network interfaces or block devices, you can use device tagging
to communicate the intended role of each device to the instance operating system. Tags are assigned to
devices at instance boot time, and are available to the instance operating system through the metadata
API and the configuration drive (if enabled).

The tags are set using the following parameters:

--block-device tag=device metadata

--nic tag=device metadata

21.2. TAGGING VIRTUAL DEVICES

Procedure

To tag virtual devices, use the tag parameters, --block-device and --nic, when creating
instances.
Here is an example:

$ nova boot test-vm --flavor m1.tiny --image cirros \
--nic net-id=55411ca3-83dd-4036-9158-bf4a6b8fb5ce,tag=nfv1 \
--block-device id=b8c9bef7-aa1d-4bf4-a14d-17674b370e13,bus=virtio,tag=database-server
NFVappServer

The resulting tags are added to the existing instance metadata and are available through both
the metadata API, and on the configuration drive.

In this example, the following devices section populates the metadata:

Sample contents of the meta_data.json file:

 {
 "devices": [
 {
 "type": "nic",
 "bus": "pci",
 "address": "0030:00:02.0",
 "mac": "aa:00:00:00:01",
 "tags": ["nfv1"]
 },
 {
 "type": "disk",
 "bus": "pci",
 "address": "0030:00:07.0",
 "serial": "disk-vol-227",
 "tags": ["database-server"]
 }
]
}

The device tag metadata is available using GET /openstack/latest/meta_data.json from the

Red Hat OpenStack Platform 13 Networking Guide

146

The device tag metadata is available using GET /openstack/latest/meta_data.json from the
metadata API.

If the configuration drive is enabled, and mounted under /configdrive in the instance operating
system, the metadata is also present in /configdrive/openstack/latest/meta_data.json.

CHAPTER 21. IDENTIFYING VIRTUAL DEVICES WITH TAGS

147

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. NETWORKING OVERVIEW
	1.1. HOW NETWORKING WORKS
	1.1.1. VLANs

	1.2. CONNECTING TWO LANS TOGETHER
	1.2.1. Firewalls

	1.3. RED HAT OPENSTACK NETWORK FLOW MATRIX
	1.4. WORKING WITH OPENSTACK NETWORKING (NEUTRON)
	1.5. WORKING WITH CIDR FORMAT

	CHAPTER 2. OPENSTACK NETWORKING CONCEPTS
	2.1. INSTALLING OPENSTACK NETWORKING (NEUTRON)
	2.2. OPENSTACK NETWORKING DIAGRAM
	2.3. SECURITY GROUPS
	2.4. OPEN VSWITCH
	2.5. CHANGING THE OPENFLOW INTERFACE FOR OPEN VSWITCH
	2.6. MODULAR LAYER 2 (ML2) NETWORKING
	2.6.1. The reasoning behind ML2
	2.6.2. ML2 network types
	2.6.3. ML2 mechanism drivers

	2.7. ML2 TYPE AND MECHANISM DRIVER COMPATIBILITY
	2.8. LIMITS OF THE ML2/OVN MECHANISM DRIVER
	2.9. LIMIT FOR NON-SECURE PORTS WITH ML2/OVN
	2.10. CONFIGURING THE L2 POPULATION DRIVER
	2.11. OPENSTACK NETWORKING SERVICES
	2.11.1. L3 agent
	2.11.2. DHCP agent
	2.11.3. Open vSwitch agent

	2.12. PROJECT AND PROVIDER NETWORKS
	2.12.1. Project networks
	2.12.2. Provider networks

	2.13. LAYER 2 AND LAYER 3 NETWORKING
	2.13.1. Use switching where possible

	CHAPTER 3. COMMON ADMINISTRATIVE NETWORKING TASKS
	3.1. CREATING A NETWORK
	3.2. ADDING NETWORK ROUTING
	3.3. DELETING A NETWORK
	3.4. PURGING ALL RESOURCES AND DELETING A PROJECT
	3.5. WORKING WITH SUBNETS
	3.5.1. Creating a subnet

	3.6. DELETING A SUBNET
	3.7. ADDING A ROUTER
	3.8. DELETING A ROUTER
	3.9. TUNING KEEPALIVED TO AVOID VRRP PACKET LOSS
	3.10. ADDING AN INTERFACE
	3.11. DELETING AN INTERFACE
	3.12. CREATING FLOATING IP POOLS
	3.13. ASSIGNING A SPECIFIC FLOATING IP
	3.14. CREATING AN ADVANCED NETWORK
	3.15. ASSIGNING A RANDOM FLOATING IP
	3.16. CREATING MULTIPLE FLOATING IP POOLS
	3.17. BRIDGING THE PHYSICAL NETWORK
	3.18. SPECIFYING THE NAME THAT DNS ASSIGNS TO PORTS
	3.19. ASSIGNING DHCP ATTRIBUTES TO PORTS
	3.20. LOADING KERNEL MODULES

	CHAPTER 4. PLANNING IP ADDRESS USAGE
	4.1. VLAN PLANNING
	4.2. TYPES OF NETWORK TRAFFIC
	4.3. IP ADDRESS CONSUMPTION
	4.4. VIRTUAL NETWORKING
	4.5. EXAMPLE NETWORK PLAN

	CHAPTER 5. REVIEWING OPENSTACK NETWORKING ROUTER PORTS
	5.1. VIEWING CURRENT PORT STATUS

	CHAPTER 6. TROUBLESHOOTING PROVIDER NETWORKS
	6.1. BASIC PING TESTING
	6.2. TROUBLESHOOTING VLAN NETWORKS
	6.2.1. Reviewing the VLAN configuration and log files

	6.3. TROUBLESHOOTING FROM WITHIN PROJECT NETWORKS
	6.3.1. Performing advanced ICMP testing within the namespace

	CHAPTER 7. CONNECTING AN INSTANCE TO THE PHYSICAL NETWORK
	7.1. OVERVIEW OF THE OPENSTACK NETWORKING TOPOLOGY
	7.2. PLACEMENT OF OPENSTACK NETWORKING SERVICES
	7.3. CONFIGURING FLAT PROVIDER NETWORKS
	7.4. HOW DOES THE FLAT PROVIDER NETWORK PACKET FLOW WORK?
	7.5. TROUBLESHOOTING INSTANCE-PHYSICAL NETWORK CONNECTIONS ON FLAT PROVIDER NETWORKS
	7.6. CONFIGURING VLAN PROVIDER NETWORKS
	7.7. HOW DOES THE VLAN PROVIDER NETWORK PACKET FLOW WORK?
	7.8. TROUBLESHOOTING INSTANCE-PHYSICAL NETWORK CONNECTIONS ON VLAN PROVIDER NETWORKS
	7.9. ENABLING MULTICAST SNOOPING FOR PROVIDER NETWORKS IN AN ML2/OVS DEPLOYMENT
	7.10. ENABLING MULTICAST IN AN ML2/OVN DEPLOYMENT
	7.11. ENABLING COMPUTE METADATA ACCESS
	7.12. FLOATING IP ADDRESSES

	CHAPTER 8. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING
	8.1. PLANNING YOUR PHYSICAL NETWORK ENVIRONMENT
	8.2. CONFIGURING A CISCO CATALYST SWITCH
	8.2.1. About trunk ports
	8.2.2. Configuring trunk ports for a Cisco Catalyst switch
	8.2.3. About access ports
	8.2.4. Configuring access ports for a Cisco Catalyst switch
	8.2.5. About LACP port aggregation
	8.2.6. Configuring LACP on the physical NIC
	8.2.7. Configuring LACP for a Cisco Catalyst switch
	8.2.8. About MTU settings
	8.2.9. Configuring MTU settings for a Cisco Catalyst switch
	8.2.10. About LLDP discovery
	8.2.11. Configuring LLDP for a Cisco Catalyst switch

	8.3. CONFIGURING A CISCO NEXUS SWITCH
	8.3.1. About trunk ports
	8.3.2. Configuring trunk ports for a Cisco Nexus switch
	8.3.3. About access ports
	8.3.4. Configuring access ports for a Cisco Nexus switch
	8.3.5. About LACP port aggregation
	8.3.6. Configuring LACP on the physical NIC
	8.3.7. Configuring LACP for a Cisco Nexus switch
	8.3.8. About MTU settings
	8.3.9. Configuring MTU settings for a Cisco Nexus 7000 switch
	8.3.10. About LLDP discovery
	8.3.11. Configuring LLDP for a Cisco Nexus 7000 switch

	8.4. CONFIGURING A CUMULUS LINUX SWITCH
	8.4.1. About trunk ports
	8.4.2. Configuring trunk ports for a Cumulus Linux switch
	8.4.3. About access ports
	8.4.4. Configuring access ports for a Cumulus Linux switch
	8.4.5. About LACP port aggregation
	8.4.6. About MTU settings
	8.4.7. Configuring MTU settings for a Cumulus Linux switch
	8.4.8. About LLDP discovery
	8.4.9. Configuring LLDP for a Cumulus Linux switch

	8.5. CONFIGURING A EXTREME EXOS SWITCH
	8.5.1. About trunk ports
	8.5.2. Configuring trunk ports on an Extreme Networks EXOS switch
	8.5.3. About access ports
	8.5.4. Configuring access ports for an Extreme Networks EXOS switch
	8.5.5. About LACP port aggregation
	8.5.6. Configuring LACP on the physical NIC
	8.5.7. Configuring LACP on an Extreme Networks EXOS switch
	8.5.8. About MTU settings
	8.5.9. Configuring MTU settings on an Extreme Networks EXOS switch
	8.5.10. About LLDP discovery
	8.5.11. Configuring LLDP settings on an Extreme Networks EXOS switch

	8.6. CONFIGURING A JUNIPER EX SERIES SWITCH
	8.6.1. About trunk ports
	8.6.2. Configuring trunk ports for a Juniper EX Series switch
	8.6.3. About access ports
	8.6.4. Configuring access ports for a Juniper EX Series switch
	8.6.5. About LACP port aggregation
	8.6.6. Configuring LACP on the physical NIC
	8.6.7. Configuring LACP for a Juniper EX Series switch
	8.6.8. About MTU settings
	8.6.9. Configuring MTU settings for a Juniper EX Series switch
	8.6.10. About LLDP discovery
	8.6.11. Configuring LLDP for a Juniper EX Series switch

	CHAPTER 9. CONFIGURING MAXIMUM TRANSMISSION UNIT (MTU) SETTINGS
	9.1. MTU OVERVIEW
	9.2. CONFIGURING MTU SETTINGS IN DIRECTOR
	9.3. REVIEWING THE RESULTING MTU CALCULATION

	CHAPTER 10. CONFIGURING QUALITY OF SERVICE (QOS) POLICIES
	10.1. QOS POLICY SCOPE
	10.2. CREATING AND APPLYING A QOS POLICY AND RULE
	10.3. DSCP MARKING FOR EGRESS TRAFFIC
	10.4. RBAC FOR QOS POLICIES

	CHAPTER 11. CONFIGURING BRIDGE MAPPINGS
	11.1. OVERVIEW OF BRIDGE MAPPINGS
	11.2. TRAFFIC FLOW
	11.3. CONFIGURING BRIDGE MAPPINGS
	11.4. MAINTAINING BRIDGE MAPPINGS FOR OVS
	11.4.1. Cleaning up OVS patch ports manually
	11.4.2. Cleaning up OVS patch ports automatically

	CHAPTER 12. VLAN-AWARE INSTANCES
	12.1. VLAN TRUNKS AND VLAN TRANSPARENT NETWORKS
	12.2. REVIEWING THE TRUNK PLUG-IN
	12.3. CREATING A TRUNK CONNECTION
	12.4. ADDING SUBPORTS TO THE TRUNK
	12.5. CONFIGURING AN INSTANCE TO USE A TRUNK
	12.6. CONFIGURING NETWORKING SERVICE RPC TIMEOUT
	12.7. UNDERSTANDING TRUNK STATES

	CHAPTER 13. CONFIGURING RBAC POLICIES
	13.1. OVERVIEW OF RBAC POLICIES
	13.2. CREATING RBAC POLICIES
	13.3. REVIEWING RBAC POLICIES
	13.4. DELETING RBAC POLICIES
	13.5. GRANTING RBAC POLICY ACCESS FOR EXTERNAL NETWORKS

	CHAPTER 14. CONFIGURING DISTRIBUTED VIRTUAL ROUTING (DVR)
	14.1. UNDERSTANDING DISTRIBUTED VIRTUAL ROUTING (DVR)
	14.1.1. Overview of Layer 3 routing
	14.1.2. Routing flows
	14.1.3. Centralized routing

	14.2. DVR OVERVIEW
	14.3. DVR KNOWN ISSUES AND CAVEATS
	14.4. SUPPORTED ROUTING ARCHITECTURES
	14.5. DEPLOYING DVR WITH ML2 OVS
	14.6. MIGRATING CENTRALIZED ROUTERS TO DISTRIBUTED ROUTING

	CHAPTER 15. CONFIGURE LOAD BALANCING-AS-A-SERVICE WITH THE NETWORKING LBAASV2 API
	15.1. OVERVIEW OF LBAAS
	15.2. OPENSTACK NETWORKING AND LBAAS TOPOLOGY
	15.2.1. Support Status of LBaaS

	15.3. CONFIGURING LBAAS

	CHAPTER 16. PROJECT NETWORKING WITH IPV6
	16.1. IPV6 SUBNET OPTIONS
	16.2. CREATE AN IPV6 SUBNET USING STATEFUL DHCPV6

	CHAPTER 17. MANAGING PROJECT QUOTAS
	17.1. CONFIGURING PROJECT QUOTAS
	17.2. L3 QUOTA OPTIONS
	17.3. FIREWALL QUOTA OPTIONS
	17.4. SECURITY GROUP QUOTA OPTIONS
	17.5. MANAGEMENT QUOTA OPTIONS

	CHAPTER 18. CONFIGURING FIREWALL-AS-A-SERVICE (FWAAS)
	18.1. OVERVIEW OF FIREWALL-AS-A-SERVICE (FWAAS)
	18.2. ENABLING FIREWALL-AS-A-SERVICE (FWAAS)
	18.3. CONFIGURING FIREWALL-AS-A-SERVICE (FWAAS)
	18.4. CREATING FIREWALLS

	CHAPTER 19. CONFIGURING ALLOWED ADDRESS PAIRS
	19.1. OVERVIEW OF ALLOWED ADDRESS PAIRS
	19.2. CREATING A PORT AND ALLOWING ONE ADDRESS PAIR
	19.3. ADDING ALLOWED ADDRESS PAIRS

	CHAPTER 20. CONFIGURING LAYER 3 HIGH AVAILABILITY (HA)
	20.1. RHOSP NETWORKING SERVICE WITHOUT HIGH AVAILABILITY (HA)
	20.2. OVERVIEW OF LAYER 3 HIGH AVAILABILITY (HA)
	20.3. LAYER 3 HIGH AVAILABILITY (HA) FAILOVER CONDITIONS
	20.4. PROJECT CONSIDERATIONS FOR LAYER 3 HIGH AVAILABILITY (HA)
	20.5. HIGH AVAILABILITY (HA) CHANGES TO THE RHOSP NETWORKING SERVICE
	20.6. ENABLING LAYER 3 HIGH AVAILABILITY (HA) ON RHOSP NETWORKING SERVICE NODES
	20.7. REVIEWING HIGH AVAILABILITY (HA) RHOSP NETWORKING SERVICE NODE CONFIGURATIONS

	CHAPTER 21. IDENTIFYING VIRTUAL DEVICES WITH TAGS
	21.1. OVERVIEW OF VIRTUAL DEVICE TAGGING
	21.2. TAGGING VIRTUAL DEVICES

