
Red Hat OpenStack Platform 13

Networking with Open Virtual Network

OpenStack Networking with OVN

Last Updated: 2023-01-31

Red Hat OpenStack Platform 13 Networking with Open Virtual Network

OpenStack Networking with OVN

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

A Cookbook for using OVN for OpenStack Networking Tasks.

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. OPEN VIRTUAL NETWORK (OVN)
1.1. LIST OF COMPONENTS IN THE RHOSP OVN ARCHITECTURE

CHAPTER 2. PLANNING YOUR OVN DEPLOYMENT
2.1. THE OVN-CONTROLLER SERVICE ON COMPUTE NODES
2.2. THE OVN COMPOSABLE SERVICE
2.3. DEPLOYING A CUSTOM ROLE WITH ML2/OVN
2.4. HIGH AVAILABILITY WITH PACEMAKER AND DVR
2.5. LAYER 3 HIGH AVAILABILITY WITH OVN

CHAPTER 3. DEPLOYING OVN WITH DIRECTOR
3.1. DEPLOYING ML2/OVN WITH DVR
3.2. DEPLOYING THE OVN METADATA AGENT ON COMPUTE NODES

3.2.1. Troubleshooting Metadata issues
3.3. DEPLOYING INTERNAL DNS WITH OVN

CHAPTER 4. MONITORING OVN
4.1. CREATING ALIASES FOR OVN TROUBLESHOOTING COMMANDS
4.2. MONITORING OVN LOGICAL FLOWS
4.3. MONITORING OPENFLOWS

3

4
4

6
6
6
7
8
8

10
10
11
11
11

13
13
14
16

Table of Contents

1

Red Hat OpenStack Platform 13 Networking with Open Virtual Network

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. OPEN VIRTUAL NETWORK (OVN)
Open Virtual Network (OVN) is an Open vSwitch-based software-defined networking (SDN) solution
for supplying network services to instances. OVN provides platform-neutral support for the full
OpenStack Networking API. With OVN, you can programatically connect groups of guest instances into
private L2 and L3 networks. OVN uses a standard approach to virtual networking that is capable of
extending to other Red Hat platforms and solutions.

This release of the Red Hat OpenStack Platform (RHOSP) does not provide a supported migration from
the ML2/OVS mechanism driver to the ML2/OVN mechanism driver. This RHOSP release does not
support the OpenStack community migration strategy. Migration support is planned for a future RHOSP
release.

NOTE

The minimum OVS version required is OVS 2.9.

This section describes the steps required to deploy OVN using director.

NOTE

OVN is supported only in a a RHOSP high availability (HA) environment with at least
three controller nodes with distributed virtual routing (DVR).

1.1. LIST OF COMPONENTS IN THE RHOSP OVN ARCHITECTURE

The RHOSP OVN architecture replaces the OVS Modular Layer 2 (ML2) mechanism driver with the
OVN ML2 mechanism driver to support the Networking API. OVN provides networking services for the
Red Hat OpenStack platform.

The OVN architecture consists of the following components and services:

ML2 plugin with OVN mechanism driver

The ML2 plug-in translates the OpenStack-specific networking configuration into the platform-
neutral OVN logical networking configuration. It typically runs on the Controller node.

OVN Northbound (NB) database (ovn-nb)

This database stores the logical OVN networking configuration from the OVN ML2 plugin. It typically
runs on the Controller node and listens on TCP port 6641.

OVN Northbound service (ovn-northd)

This service converts the logical networking configuration from the OVN NB database to the logical
data path flows and populates these on the OVN Southbound database. It typically runs on the
Controller node.

OVN Southbound (SB) database (ovn-sb)

This database stores the converted logical data path flows. It typically runs on the Controller node
and listens on TCP port 6642.

OVN controller (ovn-controller)

This controller connects to the OVN SB database and acts as the open vSwitch controller to control
and monitor network traffic. It runs on all Compute and gateway nodes where
OS::Tripleo::Services::OVNController is defined.

OVN metadata agent (ovn-metadata-agent)

Red Hat OpenStack Platform 13 Networking with Open Virtual Network

4

This agent creates the haproxy instances for managing the OVS interfaces, network namespaces
and HAProxy processes used to proxy metadata API requests. The agent runs on all Compute and
gateway nodes where OS::TripleO::Services::OVNMetadataAgent is defined.

OVS database server (OVSDB)

Hosts the OVN Northbound and Southbound databases. Also interacts with ovs-vswitchd to host
the OVS database conf.db.

NOTE

The schema file for the NB database is located in /usr/share/ovn/ovn-nb.ovsschema,
and the SB database schema file is in /usr/share/ovn/ovn-sb.ovsschema.

CHAPTER 1. OPEN VIRTUAL NETWORK (OVN)

5

CHAPTER 2. PLANNING YOUR OVN DEPLOYMENT
Deploy OVN only in high-availability RHOSP high availability (HA) environments with at least three
controller nodes. Deploy OVN with distributed virtual routing (DVR) enabled.

DVR is enabled by default in new ML2/OVN deployments and disabled by default in new ML2/OVS
deployments. The neutron-ovn-dvr-ha.yaml environment file configures the required DVR-specific
parameters for deployments using OVN in an HA environment.

NOTE

To use OVN, your director deployment must use Generic Network Virtualization
Encapsulation (Geneve), and not VXLAN. Geneve allows OVN to identify the network
using the 24-bit Virtual Network Identifier (VNI) field and an additional 32-bit Type
Length Value (TLV) to specify both the source and destination logical ports. You should
account for this larger protocol header when you determine your MTU setting.

2.1. THE OVN-CONTROLLER SERVICE ON COMPUTE NODES

The ovn-controller service runs on each Compute node and connects to the OVN southbound (SB)
database server to retrieve the logical flows. The ovn-controller translates these logical flows into
physical OpenFlow flows and adds the flows to the OVS bridge (br-int). To communicate with ovs-
vswitchd and install the OpenFlow flows, the ovn-controller connects to the local ovsdb-server
(which hosts conf.db) using the UNIX socket path that was passed when ovn-controller was started (for
example unix:/var/run/openvswitch/db.sock).

The ovn-controller service expects certain key-value pairs in the external_ids column of the
Open_vSwitch table; puppet-ovn uses puppet-vswitch to populate these fields. The following
example shows the key-value pairs that puppet-vswitch configures in the external_ids column:

hostname=<HOST NAME>
ovn-encap-ip=<IP OF THE NODE>
ovn-encap-type=geneve
ovn-remote=tcp:OVN_DBS_VIP:6642

2.2. THE OVN COMPOSABLE SERVICE

Red Hat OpenStack Platform usually consists of nodes in pre-defined roles, such as nodes in Controller
roles, Compute roles, and different storage role types. Each of these default roles contains a set of
services that are defined in the core heat template collection.

In a default RHOSP ML2/OVN deployment, the ML2/OVN composable service runs on Controller
nodes. You can optionally create a custom Networker role and run the OVN composable service on
dedicated Networker nodes.

The OVN composable service ovn-dbs is deployed in a container called ovn-dbs-bundle. In a default
installation ovn-dbs is included in the Controller role and runs on Controller nodes. Because the service
is composable, you can assign it to another role, such as a Networker role.

If you assign the OVN composable service to another role, ensure that the service is co-located on the
same node as the pacemaker service, which controls the OVN database containers.

Related information

Red Hat OpenStack Platform 13 Networking with Open Virtual Network

6

Deploying a Custom Role with ML2/OVN

2.3. DEPLOYING A CUSTOM ROLE WITH ML2/OVN

In a default RHOSP ML2/OVN deployment, the ML2/OVN composable service runs on Controller
nodes. You can optionally use supported custom roles such as Networker, which runs the OVN
composable services on dedicated networker nodes.

You can also generate your own custom roles.

Prerequisites

You know how to deploy custom roles. For more information see Composable Services and
Custom Roles in the Advanced Overcloud Customization guide.

Procedure

1. Log in to the undercloud host as the stack user and source the stackrc file.

$ source stackrc

2. Choose the custom roles file that is appropriate for your deployment. For example, for the
Networker role, choose Networker.yaml. Use it directly in the deploy command if it suits your
needs as-is. Or you can generate your own custom roles file that combines other custom roles
files.

3. [Optional] Generate a new custom roles data file that combines one of these custom roles files
with other custom roles files. Follow the instructions in Creating a roles_data file . Include the
appropriate source role files depending on your deployment.

4. [Optional] To identify specific nodes for the role, you can create a specific hardware flavor and
assign the flavor to specific nodes. Then use an environment file define the flavor for the role,
and to specify a node count. For more information, see the example in Creating a new role .

5. Create an environment file as appropriate for your deployment. For example, for the Networker
role, create a file named neutron-ovn-dvr-ha.yaml.

6. Include the following settings as appropriate for your deployment. For example, for the
Networker role, include the following settings.

ControllerParameters:
 OVNCMSOptions: ""
ControllerSriovParameters:
 OVNCMSOptions: ""
NetworkerParameters:
 OVNCMSOptions: "enable-chassis-as-gw"

7. Deploy the overcloud. Include the environment file in your deployment command with the -e
option. Include the custom roles data file in your deployment command with the -r option. For
example: ``-r Networker.yaml` or '-r mycustomrolesfile.yaml`.

Verification steps

1. Ensure that ovn_metadata_agent is running on Controller and Networker nodes.

CHAPTER 2. PLANNING YOUR OVN DEPLOYMENT

7

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/networking_with_open_virtual_network/planning_your_ovn_deployment#create-custom-network-role-ovn/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/chap-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/chap-roles#sect-Creating_a_Custom_Roles_File
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/chap-roles#sect-Creating_a_New_Role

[heat-admin@controller-0 ~]$ sudo docker ps | grep ovn_metadata

Expect output similar to the following example.

a65125d9588d undercloud-0.ctlplane.localdomain:8787/rh-osbs/rhosp13-openstack-
neutron-metadata-agent-ovn:13.1_20200813.1 kolla_start 23 hours ago Up 21 hours
ago ovn_metadata_agent

2. Ensure that Controller nodes with OVN services or dedicated Networker nodes have been
configured as gateways for OVS.

[heat-admin@controller-0 ~]$ sudo ovs-vsctl get Open_Vswitch .
...OS::TripleO::Services::NeutronDhcpAgent: OS::Heat::None

Expect output similar to the following example.

external_ids:ovn-cms-options
 enable-chassis-as-gw

Additional resources

Composable Services and Custom Roles in the Advanced Overcloud Customization guide.

2.4. HIGH AVAILABILITY WITH PACEMAKER AND DVR

You can choose one of two ovn-dbs profiles: the base profile, ovn-dbs-container, and the pacemaker
high availability (HA) profile, ovn-dbs-container-puppet.

With the pacemaker HA profile enabled, ovsdb-server runs in master-slave mode, managed by
pacemaker and the resource agent Open Cluster Framework (OCF) script. The OVN database servers
start on all the Controllers, and pacemaker then selects one controller to serve in the master role. The
instance of ovsdb-server that runs in master mode can write to the database, while all the other slave
ovsdb-server services replicate the database locally from the master, and can not write to the database.

The YAML file for this profile is the tripleo-heat-templates/environments/services-docker/neutron-
ovn-dvr-ha.yaml file. When enabled, the OVN database servers are managed by Pacemaker, and
puppet-tripleo creates a pacemaker OCF resource named ovn:ovndb-servers.

The OVN database servers are started on each Controller node, and the controller owning the virtual IP
address (OVN_DBS_VIP) runs the OVN DB servers in master mode. The OVN ML2 mechanism driver
and ovn-controller then connect to the database servers using the OVN_DBS_VIP value. In the event
of a failover, Pacemaker moves the virtual IP address (OVN_DBS_VIP) to another controller, and also
promotes the OVN database server running on that node to master.

2.5. LAYER 3 HIGH AVAILABILITY WITH OVN

OVN supports Layer 3 high availability (L3 HA) without any special configuration. OVN automatically
schedules the router port to all available gateway nodes that can act as an L3 gateway on the specified
external network. OVN L3 HA uses the gateway_chassis column in the OVN Logical_Router_Port
table. Most functionality is managed by OpenFlow rules with bundled active_passive outputs. The ovn-
controller handles the Address Resolution Protocol (ARP) responder and router enablement and
disablement. Gratuitous ARPs for FIPs and router external addresses are also periodically sent by the
ovn-controller.

Red Hat OpenStack Platform 13 Networking with Open Virtual Network

8

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/chap-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html-single/advanced_overcloud_customization/index

NOTE

L3HA uses OVN to balance the routers back to the original gateway nodes to avoid any
nodes becoming a bottleneck.

BFD monitoring

OVN uses the Bidirectional Forwarding Detection (BFD) protocol to monitor the availability of the
gateway nodes. This protocol is encapsulated on top of the Geneve tunnels established from node to
node.

Each gateway node monitors all the other gateway nodes in a star topology in the deployment. Gateway
nodes also monitor the compute nodes to let the gateways enable and disable routing of packets and
ARP responses and announcements.

Each compute node uses BFD to monitor each gateway node and automatically steers external traffic,
such as source and destination Network Address Translation (SNAT and DNAT), through the active
gateway node for a given router. Compute nodes do not need to monitor other compute nodes.

NOTE

External network failures are not detected as would happen with an ML2-OVS
configuration.

L3 HA for OVN supports the following failure modes:

The gateway node becomes disconnected from the network (tunneling interface).

ovs-vswitchd stops (ovs-switchd is responsible for BFD signaling)

ovn-controller stops (ovn-controller removes itself as a registered node).

NOTE

This BFD monitoring mechanism only works for link failures, not for routing failures.

CHAPTER 2. PLANNING YOUR OVN DEPLOYMENT

9

CHAPTER 3. DEPLOYING OVN WITH DIRECTOR
The following events are triggered when you deploy OVN on the Red Hat OpenStack Platform:

1. Enables the OVN ML2 plugin and generates the necessary configuration options.

2. Deploys the OVN databases and the ovn-northd service on the controller node(s).

3. Deploys ovn-controller on each Compute node.

4. Deploys neutron-ovn-metadata-agent on each Compute node.

3.1. DEPLOYING ML2/OVN WITH DVR

To deploy and manage distributed virtual routing (DVR) in an ML2/OVN deployment, you configure
settings in heat templates and environment files.

NOTE

This procedures in this guide deploy OVN with the default DVR in an HA environment.

The default settings are provided as guidelines only. They are not expected to work in production or test
environments which may require customization for network isolation, dedicated NICs, or any number of
other variable factors.

The following example procedure shows how to configure a proof-of-concept deployment of
ML2/OVN, HA, DVR using the typical defaults.

Procedure

1. Verify that the value for OS::TripleO::Compute::Net::SoftwareConfig in the
environments/services/neutron-ovn-dvr-ha.yaml file is the same as the
OS::TripleO::Controller::Net::SoftwareConfig value in use. This can normally be found in the
network environment file used to deploy the overcloud, such as the environments/net-
multiple-nics.yaml file. This creates the appropriate external network bridge on the Compute
node.

NOTE

If you customize the network configuration of the Compute node, you may need
to add the appropriate configuration to your custom files instead.

2. Include environments/services/neutron-ovn-dvr-ha.yaml as an environment file when deploying
the overcloud. For example:

$ openstack overcloud deploy \
 --templates /usr/share/openstack-tripleo-heat-templates \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-dvr-
ha.yaml

3. Ensure that the Compute and Controller roles in roles_data.yaml include the tag external_bridge,
and that an external network entry is added to the Compute nodes. For example:

Red Hat OpenStack Platform 13 Networking with Open Virtual Network

10

- name: Compute
 description: |
 Basic Compute Node role
 CountDefault: 1
 # Create external Neutron bridge (unset if using ML2/OVS without DVR)
 tags:
 - external_bridge
 networks:
 External:
 subnet: external_subnet
...
- name: Controller
 description: |
 Controller role that has all the controller services loaded and handles
 Database, Messaging and Network functions.
 CountDefault: 1
 tags:
 - primary
 - controller
 - external_bridge

3.2. DEPLOYING THE OVN METADATA AGENT ON COMPUTE NODES

The OVN metadata agent is configured in the tripleo-heat-templates/docker/services/ovn-
metadata.yaml file and included in the default Compute role through
OS::TripleO::Services::OVNMetadataAgent. As such, the OVN metadata agent with default
parameters is deployed as part of the OVN deployment. See Chapter 3, Deploying OVN with director .

OpenStack guest instances access the Networking metadata service available at the link-local IP
address: 169.254.169.254. The neutron-ovn-metadata-agent has access to the host networks where the
Compute metadata API exists. Each HAProxy is in a network namespace that is not able to reach the
appropriate host network. HaProxy adds the necessary headers to the metadata API request and then
forwards the request to the neutron-ovn-metadata-agent over a UNIX domain socket.

The OVN Networking service creates a unique network namespace for each virtual network that enables
the metadata service. Each network accessed by the instances on the Compute node has a
corresponding metadata namespace (ovnmeta-<net_uuid>).

3.2.1. Troubleshooting Metadata issues

You can use metadata namespaces for troubleshooting to access the local instances on the Compute
node. To troubleshoot metadata namespace issues, run the following command as root on the Compute
node:

ip netns exec ovnmeta-fd706b96-a591-409e-83be-33caea824114 ssh
USER@INSTANCE_IP_ADDRESS

USER@INSTANCE_IP_ADDRESS is the user name and IP address for the local instance you want to
troubleshoot.

3.3. DEPLOYING INTERNAL DNS WITH OVN

To use domain names instead of IP addresses on your local network for east-west traffic, use internal
domain name service (DNS). With internal DNS, ovn-controller responds to DNS queries locally on the

CHAPTER 3. DEPLOYING OVN WITH DIRECTOR

11

compute node. Note that internal DNS overrides any custom DNS server specified in an instance’s
/etc/resolv.conf file. With internal DNS deployed, the instance’s DNS queries are handled by ovn-
controller instead of the custom DNS server.

Procedure

1. Enable DNS with the NeutronPluginExtensions parameter:

parameter_defaults:
 NeutronPluginExtensions: "dns"

2. Set the DNS domain before you deploy the overcloud:

 NeutronDnsDomain: "mydns-example.org"

3. Deploy the overcloud:

$ openstack overcloud deploy \
 --templates /usr/share/openstack-tripleo-heat-templates \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/neutron-ovn-
dvr-ha.yaml

Red Hat OpenStack Platform 13 Networking with Open Virtual Network

12

CHAPTER 4. MONITORING OVN
You can use the ovn-trace command to monitor and troubleshoot OVN logical flows, and you can use
the ovs-ofctl dump-flows command to monitor and troubleshoot OpenFlows.

4.1. CREATING ALIASES FOR OVN TROUBLESHOOTING COMMANDS

OVN database commands (such as ovn-nbctl show) run on the ovn_controller container. The container
runs on the controller node and compute nodes. To simplify your access to the commands, create and
source a script that defines aliases.

Prerequisites

Deployment of Red Hat OpenStack Platform 13 with ML2/OVN as the mechanism driver.

Creating and using OVN database command aliases

1. Create a shell script file in the appropriate directory on the overcloud node where you want to
run the ovn commands. For example, log in to the controller node as heat-admin and create the
file ovn-alias.sh in the heat-admin user’s ~/bin directory.

2. Save the following commands in the script file.

EXTERNAL_ID=\
$(sudo ovs-vsctl get open . external_ids:ovn-remote | awk -F: '{print $2}')
export NBDB=tcp:${EXTERNAL_ID}:6641
export SBDB=tcp:${EXTERNAL_ID}:6642

alias ovn-sbctl="sudo docker exec ovn_controller ovn-sbctl --db=$SBDB"
alias ovn-nbctl="sudo docker exec ovn_controller ovn-nbctl --db=$NBDB"
alias ovn-trace="sudo docker exec ovn_controller ovn-trace --db=$SBDB"

3. Source the script file. For example, log in to the controller node as heat-admin and run the
following command.

source ovn-alias.sh

4. Validate an alias. For example, show the northbound database.

ovn-nbctl show

Example output

switch 26ce22db-1795-41bd-b561-9827cbd81778 (neutron-f8e79863-6c58-43d0-8f7d-
8ec4a423e13b) (aka internal_network)
 port 1913c3ae-8475-4b60-a479-df7bcce8d9c8
 addresses: ["fa:16:3e:33:c1:fc 192.168.254.76"]
 port 1aabaee3-b944-4da2-bf0a-573215d3f3d9
 addresses: ["fa:16:3e:16:cb:ce 192.168.254.74"]
 port 7e000980-59f9-4a0f-b76a-4fdf4e86f27b
 type: localport
 addresses: ["fa:16:3e:c9:30:ed 192.168.254.2"]

CHAPTER 4. MONITORING OVN

13

4.2. MONITORING OVN LOGICAL FLOWS

OVN uses logical flows that are tables of flows with a priority, match, and actions. These logical flows are
distributed to the ovn-controller running on each Compute node. You can use the ovn-sbctl lflow-list
command on the Controller node to view the full set of logical flows, as shown in this example.

$ ovn-sbctl --db=tcp:172.17.1.10:6642 lflow-list
 Datapath: "sw0" (d7bf4a7b-e915-4502-8f9d-5995d33f5d10) Pipeline: ingress
 table=0 (ls_in_port_sec_l2), priority=100 , match=(eth.src[40]), action=(drop;)
 table=0 (ls_in_port_sec_l2), priority=100 , match=(vlan.present), action=(drop;)
 table=0 (ls_in_port_sec_l2), priority=50 , match=(inport == "sw0-port1" && eth.src ==
{00:00:00:00:00:01}), action=(next;)
 table=0 (ls_in_port_sec_l2), priority=50 , match=(inport == "sw0-port2" && eth.src ==
{00:00:00:00:00:02}), action=(next;)
 table=1 (ls_in_port_sec_ip), priority=0 , match=(1), action=(next;)
 table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "sw0-port1" && eth.src ==
00:00:00:00:00:01 && arp.sha == 00:00:00:00:00:01), action=(next;)
 table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "sw0-port1" && eth.src ==
00:00:00:00:00:01 && ip6 && nd && ((nd.sll == 00:00:00:00:00:00 || nd.sll == 00:00:00:00:00:01) ||
((nd.tll == 00:00:00:00:00:00 || nd.tll == 00:00:00:00:00:01)))), action=(next;)
 table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "sw0-port2" && eth.src ==
00:00:00:00:00:02 && arp.sha == 00:00:00:00:00:02), action=(next;)
 table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "sw0-port2" && eth.src ==
00:00:00:00:00:02 && ip6 && nd && ((nd.sll == 00:00:00:00:00:00 || nd.sll == 00:00:00:00:00:02) ||
((nd.tll == 00:00:00:00:00:00 || nd.tll == 00:00:00:00:00:02)))), action=(next;)
 table=2 (ls_in_port_sec_nd), priority=80 , match=(inport == "sw0-port1" && (arp || nd)), action=
(drop;)
 table=2 (ls_in_port_sec_nd), priority=80 , match=(inport == "sw0-port2" && (arp || nd)), action=
(drop;)
 table=2 (ls_in_port_sec_nd), priority=0 , match=(1), action=(next;)
 table=3 (ls_in_pre_acl), priority=0 , match=(1), action=(next;)
 table=4 (ls_in_pre_lb), priority=0 , match=(1), action=(next;)
 table=5 (ls_in_pre_stateful), priority=100 , match=(reg0[0] == 1), action=(ct_next;)
 table=5 (ls_in_pre_stateful), priority=0 , match=(1), action=(next;)
 table=6 (ls_in_acl), priority=0 , match=(1), action=(next;)
 table=7 (ls_in_qos_mark), priority=0 , match=(1), action=(next;)
 table=8 (ls_in_lb), priority=0 , match=(1), action=(next;)
 table=9 (ls_in_stateful), priority=100 , match=(reg0[1] == 1), action=(ct_commit(ct_label=0/1);
next;)
 table=9 (ls_in_stateful), priority=100 , match=(reg0[2] == 1), action=(ct_lb;)
 table=9 (ls_in_stateful), priority=0 , match=(1), action=(next;)
 table=10(ls_in_arp_rsp), priority=0 , match=(1), action=(next;)
 table=11(ls_in_dhcp_options), priority=0 , match=(1), action=(next;)
 table=12(ls_in_dhcp_response), priority=0 , match=(1), action=(next;)
 table=13(ls_in_l2_lkup), priority=100 , match=(eth.mcast), action=(outport = "_MC_flood";
output;)
 table=13(ls_in_l2_lkup), priority=50 , match=(eth.dst == 00:00:00:00:00:01), action=(outport
= "sw0-port1"; output;)
 table=13(ls_in_l2_lkup), priority=50 , match=(eth.dst == 00:00:00:00:00:02), action=(outport
= "sw0-port2"; output;)
 Datapath: "sw0" (d7bf4a7b-e915-4502-8f9d-5995d33f5d10) Pipeline: egress
 table=0 (ls_out_pre_lb), priority=0 , match=(1), action=(next;)
 table=1 (ls_out_pre_acl), priority=0 , match=(1), action=(next;)
 table=2 (ls_out_pre_stateful), priority=100 , match=(reg0[0] == 1), action=(ct_next;)
 table=2 (ls_out_pre_stateful), priority=0 , match=(1), action=(next;)
 table=3 (ls_out_lb), priority=0 , match=(1), action=(next;)

Red Hat OpenStack Platform 13 Networking with Open Virtual Network

14

 table=4 (ls_out_acl), priority=0 , match=(1), action=(next;)
 table=5 (ls_out_qos_mark), priority=0 , match=(1), action=(next;)
 table=6 (ls_out_stateful), priority=100 , match=(reg0[1] == 1), action=(ct_commit(ct_label=0/1);
next;)
 table=6 (ls_out_stateful), priority=100 , match=(reg0[2] == 1), action=(ct_lb;)
 table=6 (ls_out_stateful), priority=0 , match=(1), action=(next;)
 table=7 (ls_out_port_sec_ip), priority=0 , match=(1), action=(next;)
 table=8 (ls_out_port_sec_l2), priority=100 , match=(eth.mcast), action=(output;)
 table=8 (ls_out_port_sec_l2), priority=50 , match=(outport == "sw0-port1" && eth.dst ==
{00:00:00:00:00:01}), action=(output;)
 table=8 (ls_out_port_sec_l2), priority=50 , match=(outport == "sw0-port2" && eth.dst ==
{00:00:00:00:00:02}), action=(output;)

Key differences between OVN and OpenFlow include:

OVN ports are logical entities that reside somewhere on a network, not physical ports on a single
switch.

OVN gives each table in the pipeline a name in addition to its number. The name describes the
purpose of that stage in the pipeline.

The OVN match syntax supports complex Boolean expressions.

The actions supported in OVN logical flows extend beyond those of OpenFlow. You can
implement higher level features, such as DHCP, in the OVN logical flow syntax.

ovn-trace

The ovn-trace command can simulate how a packet travels through the OVN logical flows, or help you
determine why a packet is dropped. Provide the ovn-trace command with the following parameters:

DATAPATH

The logical switch or logical router where the simulated packet starts.

MICROFLOW

The simulated packet, in the syntax used by the ovn-sb database.

This example displays the --minimal output option on a simulated packet and shows that the packet
reaches its destination:

$ ovn-trace --minimal sw0 'inport == "sw0-port1" && eth.src == 00:00:00:00:00:01 && eth.dst ==
00:00:00:00:00:02'
 # reg14=0x1,vlan_tci=0x0000,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,dl_type=0x0000
 output("sw0-port2");

In more detail, the --summary output for this same simulated packet shows the full execution pipeline:

$ ovn-trace --summary sw0 'inport == "sw0-port1" && eth.src == 00:00:00:00:00:01 && eth.dst ==
00:00:00:00:00:02'
reg14=0x1,vlan_tci=0x0000,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,dl_type=0x0000
ingress(dp="sw0", inport="sw0-port1") {
 outport = "sw0-port2";
 output;
 egress(dp="sw0", inport="sw0-port1", outport="sw0-port2") {
 output;

CHAPTER 4. MONITORING OVN

15

 /* output to "sw0-port2", type "" */;
 };
};

The example output shows:

The packet enters the sw0 network from the sw0-port1 port and runs the ingress pipeline.

The outport variable is set to sw0-port2 indicating that the intended destination for this packet
is sw0-port2.

The packet is output from the ingress pipeline, which brings it to the egress pipeline for sw0
with the outport variable set to sw0-port2.

The output action is executed in the egress pipeline, which outputs the packet to the current
value of the outport variable, which is sw0-port2.

See the ovn-trace man page for complete details.

4.3. MONITORING OPENFLOWS

You can use ovs-ofctl dump-flows command to monitor the OpenFlow flows on a logical switch in your
network.

$ ovs-ofctl dump-flows br-int
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=72.132s, table=0, n_packets=0, n_bytes=0, idle_age=72,
priority=10,in_port=1,dl_src=00:00:00:00:00:01 actions=resubmit(,1)
 cookie=0x0, duration=60.565s, table=0, n_packets=0, n_bytes=0, idle_age=60,
priority=10,in_port=2,dl_src=00:00:00:00:00:02 actions=resubmit(,1)
 cookie=0x0, duration=28.127s, table=0, n_packets=0, n_bytes=0, idle_age=28, priority=0
actions=drop
 cookie=0x0, duration=13.887s, table=1, n_packets=0, n_bytes=0, idle_age=13, priority=0,in_port=1
actions=output:2
 cookie=0x0, duration=4.023s, table=1, n_packets=0, n_bytes=0, idle_age=4, priority=0,in_port=2
actions=output:1

Red Hat OpenStack Platform 13 Networking with Open Virtual Network

16

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. OPEN VIRTUAL NETWORK (OVN)
	1.1. LIST OF COMPONENTS IN THE RHOSP OVN ARCHITECTURE

	CHAPTER 2. PLANNING YOUR OVN DEPLOYMENT
	2.1. THE OVN-CONTROLLER SERVICE ON COMPUTE NODES
	2.2. THE OVN COMPOSABLE SERVICE
	2.3. DEPLOYING A CUSTOM ROLE WITH ML2/OVN
	2.4. HIGH AVAILABILITY WITH PACEMAKER AND DVR
	2.5. LAYER 3 HIGH AVAILABILITY WITH OVN

	CHAPTER 3. DEPLOYING OVN WITH DIRECTOR
	3.1. DEPLOYING ML2/OVN WITH DVR
	3.2. DEPLOYING THE OVN METADATA AGENT ON COMPUTE NODES
	3.2.1. Troubleshooting Metadata issues

	3.3. DEPLOYING INTERNAL DNS WITH OVN

	CHAPTER 4. MONITORING OVN
	4.1. CREATING ALIASES FOR OVN TROUBLESHOOTING COMMANDS
	4.2. MONITORING OVN LOGICAL FLOWS
	4.3. MONITORING OPENFLOWS

