
Red Hat OpenStack Platform 16.0

Instances and Images Guide

Managing Instances and Images

Last Updated: 2020-10-23

Red Hat OpenStack Platform 16.0 Instances and Images Guide

Managing Instances and Images

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Instances and Images guide provides procedures for the management of instances, images of a
Red Hat OpenStack Platform environment.

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. IMAGE SERVICE
1.1. UNDERSTANDING THE IMAGE SERVICE

1.1.1. Image Signing and Verification
1.1.2. Image conversion
1.1.3. Image Introspection
1.1.4. Interoperable Image Import
1.1.5. Improving scalability with Image service caching
1.1.6. Image pre-caching

1.1.6.1. Configuring the default interval for periodic image pre-caching
1.1.6.2. Using a periodic job to pre-cache an image

1.2. MANAGE IMAGES
1.2.1. Creating an Image

1.2.1.1. Use a KVM Guest Image With Red Hat OpenStack Platform
1.2.1.2. Create Custom Red Hat Enterprise Linux or Windows Images

1.2.1.2.1. Create a Red Hat Enterprise Linux 7 Image
1.2.1.2.2. Create a Red Hat Enterprise Linux 6 Image
1.2.1.2.3. Create a Windows Image

1.2.1.3. Use libosinfo
1.2.2. Upload an Image
1.2.3. Update an Image
1.2.4. Import an Image

1.2.4.1. Import from a Remote URI
1.2.4.2. Import from a Local Volume

1.2.5. Delete an Image
1.2.6. Hide or Unhide an Image
1.2.7. Show Hidden Images
1.2.8. Enabling image conversion
1.2.9. Converting an image to RAW format

1.2.9.1. Configuring Image Service to accept RAW and ISO only
1.2.10. Storing an image in RAW format

CHAPTER 2. CONFIGURING THE COMPUTE (NOVA) SERVICE
2.1. CONFIGURING MEMORY FOR OVERALLOCATION
2.2. CALCULATING RESERVED HOST MEMORY ON COMPUTE NODES
2.3. CALCULATING SWAP SIZE

CHAPTER 3. CONFIGURE OPENSTACK COMPUTE STORAGE
3.1. ARCHITECTURE OVERVIEW
3.2. CONFIGURATION

CHAPTER 4. VIRTUAL MACHINE INSTANCES
4.1. MANAGE INSTANCES

4.1.1. Add Components
4.1.2. Launch an Instance

4.1.2.1. Launch Instance Options
4.1.3. Update an Instance (Actions menu)
4.1.4. Resize an Instance
4.1.5. Connect to an Instance

4.1.5.1. Access an Instance Console using the Dashboard
4.1.5.2. Directly Connect to a VNC Console

6

7
7
7
8
8
9
9

10
10
10
13
13
13
14
15

20
25
26
26
27
28
28
28
29
29
30
30
30
30
31

32
33
33
34

35
35
36

39
39
39
39
40
41

43
43
44
44

Table of Contents

1

4.1.6. View Instance Usage
4.1.7. Delete an Instance
4.1.8. Manage Multiple Instances at Once

4.2. MANAGE INSTANCE SECURITY
4.2.1. Manage Key Pairs

4.2.1.1. Create a Key Pair
4.2.1.2. Import a Key Pair
4.2.1.3. Delete a Key Pair

4.2.2. Create a Security Group
4.2.3. Create, Assign, and Release Floating IP Addresses

4.2.3.1. Allocate a Floating IP to the Project
4.2.3.2. Assign a Floating IP
4.2.3.3. Release a Floating IP

4.2.4. Log in to an Instance
4.2.5. Inject an admin Password Into an Instance

4.3. MANAGE FLAVORS
4.3.1. Update Configuration Permissions
4.3.2. Create a Flavor
4.3.3. Update General Attributes
4.3.4. Update Flavor Metadata

4.3.4.1. View Metadata
4.3.4.2. Add Metadata

4.4. MANAGE HOST AGGREGATES
4.4.1. Enable Host Aggregate Scheduling
4.4.2. View Availability Zones or Host Aggregates
4.4.3. Add a Host Aggregate
4.4.4. Update a Host Aggregate
4.4.5. Delete a Host Aggregate

4.5. SCHEDULE HOSTS
4.5.1. Configure Scheduling Filters
4.5.2. Configure Scheduling Weights

4.5.2.1. Configure Weight Options for Hosts
4.5.3. Configure Placement Service Traits

4.5.3.1. libvirt virtualization driver capabilities as placement service traits
4.5.3.2. Using placement service traits to specify resource provider requirements

4.5.4. Configuring a guaranteed minimum bandwidth QoS
4.5.4.1. Removing a guaranteed minimum bandwidth QoS from an instance

4.5.5. Reserve NUMA Nodes with PCI Devices
4.5.6. Configure Emulator Threads to run on Dedicated Physical CPU

4.6. MANAGE INSTANCE SNAPSHOTS
4.6.1. Create an Instance Snapshot
4.6.2. Manage a Snapshot
4.6.3. Rebuild an Instance to a State in a Snapshot
4.6.4. Consistent Snapshots

4.7. USE RESCUE MODE FOR INSTANCES
4.7.1. Preparing an Image for a Rescue Mode Instance

4.7.1.1. Rescue Image if Using ext4 Filesystem
4.7.2. Adding the Rescue Image to the OpenStack Image Service
4.7.3. Launching an Instance in Rescue Mode
4.7.4. Unrescuing an Instance

4.8. SET A CONFIGURATION DRIVE FOR INSTANCES
4.8.1. Configuration Drive Options
4.8.2. Use a Configuration Drive

45
45
45
46
46
46
46
46
47
47
47
47
48
48
49
50
51
51
52
52
52
52
57
58
58
58
59
59
60
61

64
64
65
66
66
67
69
69
70
70
71
72
72
72
73
73
73
74
74
75
75
75
75

Red Hat OpenStack Platform 16.0 Instances and Images Guide

2

. .

. .

. .

. .

. .

. .

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES
5.1. MIGRATION TYPES
5.2. MIGRATION CONSTRAINTS
5.3. PREPARING TO MIGRATE
5.4. COLD MIGRATING AN INSTANCE
5.5. LIVE MIGRATING AN INSTANCE
5.6. CHECKING MIGRATION STATUS
5.7. EVACUATING AN INSTANCE

5.7.1. Evacuating one instance
5.7.2. Evacuating all instances on a host
5.7.3. Configuring shared storage

5.8. TROUBLESHOOTING MIGRATION
5.8.1. Errors during migration
5.8.2. Never-ending live migration
5.8.3. Instance performance degrades after migration

CHAPTER 6. SCALING DEPLOYMENTS WITH COMPUTE CELLS
6.1. CELL COMPONENTS
6.2. CELL DEPLOYMENTS ARCHITECTURE
6.3. CONSIDERATIONS FOR MULTI-CELL DEPLOYMENTS
6.4. DEPLOYING A MULTI-CELL OVERCLOUD
6.5. CREATING AND PROVISIONING A CELL
6.6. ADDING COMPUTE NODES TO A CELL
6.7. CONFIGURING AN AVAILABILITY ZONE
6.8. DELETING A COMPUTE NODE FROM A CELL
6.9. DELETING A CELL

CHAPTER 7. CONFIGURING COMPUTE NODES FOR PERFORMANCE
7.1. CONFIGURING CPU PINNING ON THE COMPUTE NODE

7.1.1. Upgrading CPU pinning configuration
7.1.2. Launching an instance with CPU pinning
7.1.3. Launching a floating instance

7.2. CONFIGURING HUGE PAGES ON THE COMPUTE NODE
7.2.1. Allocating huge pages to instances

CHAPTER 8. CONFIGURING VIRTUAL GPUS FOR INSTANCES
8.1. SUPPORTED CONFIGURATIONS AND LIMITATIONS
8.2. CONFIGURING VGPU ON THE COMPUTE NODES

8.2.1. Building a custom GPU overcloud image
8.2.2. Designating Compute nodes for vGPU
8.2.3. Configuring the Compute node for vGPU and deploying the overcloud

8.3. CREATING THE VGPU IMAGE AND FLAVOR
8.3.1. Creating a custom GPU instance image
8.3.2. Creating a vGPU flavor for instances
8.3.3. Launching a vGPU instance

8.4. ENABLING PCI PASSTHROUGH FOR A GPU DEVICE

CHAPTER 9. CONFIGURING REAL-TIME COMPUTE
9.1. PREPARING YOUR COMPUTE NODES FOR REAL-TIME
9.2. DEPLOYING THE REAL-TIME COMPUTE ROLE
9.3. SAMPLE DEPLOYMENT AND TESTING SCENARIO
9.4. LAUNCHING AND TUNING REAL-TIME INSTANCES

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

76
76
78
79
80
81

82
83
83
84
85
86
86
87
88

89
89
90
91

93
98

100
100
101
101

103
103
105
105
106
106
108

110
110
110
111

112
115
116
116
117
118
118

122
122
125
127
129

131

Table of Contents

3

. .APPENDIX B. ENABLING THE LAUNCH INSTANCE WIZARD 141

Red Hat OpenStack Platform 16.0 Instances and Images Guide

4

Table of Contents

5

PREFACE
Red Hat OpenStack Platform (Red Hat OpenStack Platform) provides the foundation to build a private
or public Infrastructure-as-a-Service (IaaS) cloud on top of Red Hat Enterprise Linux. It offers a
massively scalable, fault-tolerant platform for the development of cloud-enabled workloads.

This guide discusses procedures for creating and managing images, and instances. It also mentions the
procedure for configuring the storage for instances for Red Hat OpenStack Platform.

You can manage the cloud using either the OpenStack dashboard or the command-line clients. Most
procedures can be carried out using either method; some of the more advanced procedures can only be
executed on the command line. This guide provides procedures for the dashboard where possible.

NOTE

For the complete suite of documentation for Red Hat OpenStack Platform, see Red Hat
OpenStack Platform Documentation Suite.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

6

https://access.redhat.com/documentation/en/red-hat-openstack-platform

CHAPTER 1. IMAGE SERVICE
This chapter discusses the steps you can follow to manage images and storage in Red Hat OpenStack
Platform.

A virtual machine image is a file which contains a virtual disk which has a bootable operating system
installed on it. Virtual machine images are supported in different formats. The following formats are
available on Red Hat OpenStack Platform:

RAW - Unstructured disk image format.

QCOW2 - Disk format supported by QEMU emulator. This format includes QCOW2v3
(sometimes referred to as QCOW3), which requires QEMU 1.1 or higher.

ISO - Sector-by-sector copy of the data on a disk, stored in a binary file.

AKI - Indicates an Amazon Kernel Image.

AMI - Indicates an Amazon Machine Image.

ARI - Indicates an Amazon RAMDisk Image.

VDI - Disk format supported by VirtualBox virtual machine monitor and the QEMU emulator.

VHD - Common disk format used by virtual machine monitors from VMware, VirtualBox, and
others.

VMDK - Disk format supported by many common virtual machine monitors.

While ISO is not normally considered a virtual machine image format, since ISOs contain bootable
filesystems with an installed operating system, you can treat them the same as you treat other virtual
machine image files.

To download the official Red Hat Enterprise Linux cloud images, your account must have a valid Red Hat
Enterprise Linux subscription:

Red Hat Enterprise Linux 8 KVM Guest Image

Red Hat Enterprise Linux 7 KVM Guest Image

Red Hat Enterprise Linux 6 KVM Guest Image

You will be prompted to enter your Red Hat account credentials if you are not logged in to the
Customer Portal.

1.1. UNDERSTANDING THE IMAGE SERVICE

The following notable OpenStack Image service (glance) features are available.

1.1.1. Image Signing and Verification

Image signing and verification protects image integrity and authenticity by enabling deployers to sign
images and save the signatures and public key certificates as image properties.

By taking advantage of this feature, you can:

Sign an image using your private key and upload the image, the signature, and a reference to

CHAPTER 1. IMAGE SERVICE

7

https://access.redhat.com/downloads/content/479/ver=/rhel---8
https://access.redhat.com/downloads/content/69/ver=/rhel---7
https://access.redhat.com/downloads/content/69/ver=/rhel---6/6.10/x86_64/product-software

Sign an image using your private key and upload the image, the signature, and a reference to
your public key certificate (the verification metadata). The Image service then verifies that the
signature is valid.

Create an image in the Compute service, have the Compute service sign the image, and upload
the image and its verification metadata. The Image service again verifies that the signature is
valid.

Request a signed image in the Compute service. The Image service provides the image and its
verification metadata, allowing the Compute service to validate the image before booting it.

For information on image signing and verification, refer to the Validate Glance Images chapter of the
Manage Secrets with OpenStack Key Manager Guide .

1.1.2. Image conversion

Image conversion converts images by calling the task API while importing an image.

As part of the import workflow, a plugin provides the image conversion. This plugin can be activated or
deactivated based on the deployer configuration. Therefore, the deployer needs to specify the
preferred format of images for the deployment.

Internally, the Image service receives the bits of the image in a particular format. These bits are stored in
a temporary location. The plugin is then triggered to convert the image to the target format and moved
to a final destination. When the task is finished, the temporary location is deleted. As a result, the format
uploaded initially is not retained by the Image service.

For more information about image conversion, see Enabling image conversion.

NOTE

The conversion can be triggered only when importing an image. It does not run when
uploading an image. For example:

$ glance image-create-via-import \
 --disk-format qcow2 \
 --container-format bare \
 --name NAME \
 --visibility public \
 --import-method web-download \
 --uri http://server/image.qcow2

1.1.3. Image Introspection

Every image format comes with a set of metadata embedded inside the image itself. For example, a
stream optimized vmdk would contain the following parameters:

$ head -20 so-disk.vmdk

Disk DescriptorFile
version=1
CID=d5a0bce5
parentCID=ffffffff
createType="streamOptimized"

Red Hat OpenStack Platform 16.0 Instances and Images Guide

8

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/manage_secrets_with_openstack_key_manager/validate_glance_images

Extent description
RDONLY 209714 SPARSE "generated-stream.vmdk"

The Disk Data Base
#DDB

ddb.adapterType = "buslogic"
ddb.geometry.cylinders = "102"
ddb.geometry.heads = "64"
ddb.geometry.sectors = "32"
ddb.virtualHWVersion = "4"

By introspecting this vmdk, you can easily know that the disk_type is streamOptimized, and the
adapter_type is buslogic. These metadata parameters are useful for the consumer of the image. In
Compute, the workflow to instantiate a streamOptimized disk is different from the one to instantiate a
flat disk. This new feature allows metadata extraction. You can achieve image introspection by calling
the task API while importing the image. An administrator can override metadata settings.

1.1.4. Interoperable Image Import

The OpenStack Image service provides two methods for importing images using the interoperable
image import workflow:

web-download (default) for importing images from a URI and

glance-direct for importing from a local file system.

1.1.5. Improving scalability with Image service caching

Use the glance-api caching mechanism to store copies of images on your local machine and retrieve
them automatically to improve scalability. With Image service caching, the glance-api can run on
multiple hosts. This means that it does not need to retrieve the same image from back-end storage
multiple times. Image service caching does not affect any Image service operations.

To configure Image service caching with the Red Hat OpenStack Platform director (tripleo) heat
templates, complete the following steps:

Procedure

1. In an environment file, set the value of the GlanceCacheEnabled parameter to true, which
automatically sets the flavor value to keystone+cachemanagement in the glance-api.conf
heat template:

parameter_defaults:
 GlanceCacheEnabled: true

2. Include the environment file in the openstack overcloud deploy command when you redeploy
the overcloud.

3. Optional: Tune the glance_cache_pruner to an alternative frequency when you redeploy the
overcloud. The following example shows a frequency of 5 minutes:

parameter_defaults:
 ControllerExtraConfig:
 glance::cache::pruner::minute: '*/5'

CHAPTER 1. IMAGE SERVICE

9

Adjust the frequency according to your needs to avoid file system full scenarios. Include the
following elements when you choose an alternative frequency:

The size of the files that you want to cache in your environment.

The amount of available file system space.

The frequency at which the environment caches images.

1.1.6. Image pre-caching

This feature is available in this release as a Technology Preview , and therefore is not fully supported by
Red Hat. It should only be used for testing, and should not be deployed in a production environment. For
more information about Technology Preview features, see Scope of Coverage Details.

1.1.6.1. Configuring the default interval for periodic image pre-caching

Because the Red Hat OpenStack Platform director can now pre-cache images as part of the glance-api
service, you no longer require glance-registry to pre-cache images. The default periodic interval is 300
seconds. You can increase or decrease the default interval based on your requirements.

Procedure

1. Add a new interval with the ExtraConfig parameter in an environment file on the undercloud
according to your requirements:

parameter_defaults:
 ControllerExtraConfig:
 glance::config::glance_api_config:
 DEFAULT/cache_prefetcher_interval:
 value: '<300>'

Replace <300> with the number of seconds that you want as an interval to pre-cache images.

2. After you adjust the interval in the environment file in /home/stack/templates/, log in as the
stack user and deploy the configuration:

$ openstack overcloud deploy --templates \
-e /home/stack/templates/<ENV_FILE>.yaml

Replace <ENV_FILE> with the name of the environment file that contains the ExtraConfig
settings that you added.

IMPORTANT

If you passed any extra environment files when you created the overcloud, pass them
again here using the -e option to avoid making undesired changes to the overcloud.

For more information about the openstack overcloud deploy command, see Deployment command in
the Director Installation and Usage guide.

1.1.6.2. Using a periodic job to pre-cache an image

Prerequisite

Red Hat OpenStack Platform 16.0 Instances and Images Guide

10

https://access.redhat.com/support/offerings/production/scope_moredetail
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/index#deployment-command

To use a periodic job to pre-cache an image, you must use the glance-cache-manage command
connected directly to the node where the glance_api service is running. Do not use a proxy, which hides
the node that answers a service request. Because the undercloud might not have access to the network
where the glance_api service is running, run commands on the first overcloud node, which is called
controller-0 by default.

Complete the following prerequisite procedure to ensure the following actions:

You run commands from the correct host.

You have the necessary credentials.

You are running the glance-cache-manage commands from inside the glance-api container.

1. Log in to the undercloud as the stack user and identify the provisioning IP address of
controller-0:

$ ssh stack@undercloud-0
[stack@undercloud-0 ~]$ source ~/overcloudrc
(overcloud) [stack@undercloud-0 ~]$ openstack server list -f value -c Name -c Networks
| grep controller
overcloud-controller-1 ctlplane=192.168.24.40
overcloud-controller-2 ctlplane=192.168.24.13
overcloud-controller-0 ctlplane=192.168.24.71
(overcloud) [stack@undercloud-0 ~]$

2. To authenticate to the overcloud, copy the credentials that are stored in
/home/stack/overcloudrc, by default, to controller-0:

(overcloud) [stack@undercloud-0 ~]$ scp ~/overcloudrc heat-
admin@192.168.24.71:/home/heat-admin/

3. Connect to controller-0 as the heat-admin user:

(overcloud) [stack@undercloud-0 ~]$ ssh heat-admin@192.168.24.71

4. On controller-0 as the heat-admin user, identify the IP address of the glance_api service.
In the following example, the IP address is 172.25.1.105:

[heat-admin@controller-0 ~]$ sudo grep -A 10 '^listen glance_api' /var/lib/config-
data/puppet-generated/haproxy/etc/haproxy/haproxy.cfg
listen glance_api
 server controller0-0.internalapi.redhat.local 172.25.1.105:9292 check fall 5 inter 2000
rise 2
...

5. Because the `glance-cache-manage\` command is only available in the glance_api
container, you must create a script to exec into that container where the overcloud
authentication environment variables are already set. Create a script called glance_pod.sh
in /home/heat-admin on controller-0 with the following contents:

sudo podman exec -ti \
 -e NOVA_VERSION=$NOVA_VERSION \
 -e COMPUTE_API_VERSION=$COMPUTE_API_VERSION \
 -e OS_USERNAME=$OS_USERNAME \

CHAPTER 1. IMAGE SERVICE

11

 -e OS_PROJECT_NAME=$OS_PROJECT_NAME \
 -e OS_USER_DOMAIN_NAME=$OS_USER_DOMAIN_NAME \
 -e OS_PROJECT_DOMAIN_NAME=$OS_PROJECT_DOMAIN_NAME \
 -e OS_NO_CACHE=$OS_NO_CACHE \
 -e OS_CLOUDNAME=$OS_CLOUDNAME \
 -e no_proxy=$no_proxy \
 -e OS_AUTH_TYPE=$OS_AUTH_TYPE \
 -e OS_PASSWORD=$OS_PASSWORD \
 -e OS_AUTH_URL=$OS_AUTH_URL \
 -e OS_IDENTITY_API_VERSION=$OS_IDENTITY_API_VERSION \
 -e OS_COMPUTE_API_VERSION=$OS_COMPUTE_API_VERSION \
 -e OS_IMAGE_API_VERSION=$OS_IMAGE_API_VERSION \
 -e OS_VOLUME_API_VERSION=$OS_VOLUME_API_VERSION \
 -e OS_REGION_NAME=$OS_REGION_NAME \
glance_api /bin/bash

6. Source the overcloudrc file and run the glance_pod.sh script to exec into the glance_api
container with the necessary environment variables to authenticate to the overcloud
Controller node.

[heat-admin@controller-0 ~]$ source overcloudrc
(overcloudrc) [heat-admin@controller-0 ~]$ bash glance_pod.sh
()[glance@controller-0 /]$

7. Use a command such as glance image-list to verify that the container can run
authenticated commands against the overcloud.

()[glance@controller-0 /]$ glance image-list
+--------------------------------------+----------------------------------+
| ID | Name |
+--------------------------------------+----------------------------------+
| ad2f8daf-56f3-4e10-b5dc-d28d3a81f659 | cirros-0.4.0-x86_64-disk.img |
+--------------------------------------+----------------------------------+
()[glance@controller-0 /]$

Procedure

1. As the admin user, queue an image to cache:

()[glance@controller-0 /]$ glance-cache-manage --host=<HOST-IP> queue-image <IMAGE-
ID>

Replace <HOST-IP> with the IP address of the Controller node where the glance-api container
is running, and replace <IMAGE-ID> with the ID of the image that you want to queue. After you
queue images that you want to pre-cache, the cache_images periodic job prefetches all
queued images concurrently.

NOTE

Because the image cache is local to each node, if your Red Hat OpenStack
Platform is deployed with HA (with 3, 5, or 7 Controllers) then you must specify
the host address with the --host option when you run the glance-cache-manage
command.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

12

2. Run the following command to view the images in the image cache:

()[glance@controller-0 /]$ glance-cache-manage --host=<HOST-IP> list-cached

Replace <HOST-IP> with the IP address of the host in your environment.

WARNING

When you complete this procedure, remove the overcloudrc file from the
Controller node.

Related information

You can use additional glance-cache-manage commands for the following purposes:

list-cached to list all images that are currently cached.

list-queued to list all images that are currently queued for caching.

queue-image to queue an image for caching.

delete-cached-image to purge an image from the cache.

delete-all-cached-images to remove all images from the cache.

delete-queued-image to delete an image from the cache queue.

delete-all-queued-images to delete all images from the cache queue.

1.2. MANAGE IMAGES

The OpenStack Image service (glance) provides discovery, registration, and delivery services for disk
and server images. It provides the ability to copy or snapshot a server image, and immediately store it
away. Stored images can be used as a template to get new servers up and running quickly and more
consistently than installing a server operating system and individually configuring services.

1.2.1. Creating an Image

This section provides you with the steps to manually create OpenStack-compatible images in the
QCOW2 format using Red Hat Enterprise Linux 7 ISO files, Red Hat Enterprise Linux 6 ISO files, or
Windows ISO files.

1.2.1.1. Use a KVM Guest Image With Red Hat OpenStack Platform

You can use a ready RHEL KVM guest QCOW2 image:

Red Hat Enterprise Linux 8 KVM Guest Image

Red Hat Enterprise Linux 7 KVM Guest Image



CHAPTER 1. IMAGE SERVICE

13

https://access.redhat.com/downloads/content/479/ver=/rhel---8
https://access.redhat.com/downloads/content/69/ver=/rhel---7

Red Hat Enterprise Linux 6 KVM Guest Image

These images are configured with cloud-init and must take advantage of ec2-compatible metadata
services for provisioning SSH keys in order to function properly.

Ready Windows KVM guest QCOW2 images are not available.

NOTE

For the KVM guest images:

The root account in the image is disabled, but sudo access is granted to a special
user named cloud-user.

There is no root password set for this image.

The root password is locked in /etc/shadow by placing !! in the second field.

For an OpenStack instance, it is recommended that you generate an ssh keypair from the OpenStack
dashboard or command line and use that key combination to perform an SSH public authentication to
the instance as root.

When the instance is launched, this public key will be injected to it. You can then authenticate using the
private key downloaded while creating the keypair.

If you do not want to use keypairs, you can use the admin password that has been set using the Inject an
admin Password Into an Instance procedure.

If you want to create custom Red Hat Enterprise Linux or Windows images, see Create a Red Hat
Enterprise Linux 7 Image, Create a Red Hat Enterprise Linux 6 Image , or Create a Windows Image .

1.2.1.2. Create Custom Red Hat Enterprise Linux or Windows Images

Prerequisites:

Linux host machine to create an image. This can be any machine on which you can install and run
the Linux packages.

libvirt, virt-manager (run command dnf groupinstall -y @virtualization). This installs all
packages necessary for creating a guest operating system.

Libguestfs tools (run command dnf install -y libguestfs-tools-c). This installs a set of tools for
accessing and modifying virtual machine images.

A Red Hat Enterprise Linux 7 or 6 ISO file (see RHEL 7.2 Binary DVD or RHEL 6.8 Binary DVD)
or a Windows ISO file. If you do not have a Windows ISO file, visit the Microsoft TechNet
Evaluation Center and download an evaluation image.

Text editor, if you want to change the kickstart files (RHEL only).

IMPORTANT

Red Hat OpenStack Platform 16.0 Instances and Images Guide

14

https://access.redhat.com/downloads/content/69/ver=/rhel---6/6.10/x86_64/product-software
https://access.redhat.com/downloads/content/69/ver=/rhel---7/7.2/x86_64/product-software/
https://access.redhat.com/downloads/content/69/ver=/rhel---6/6.8/x86_64/product-software/
http://www.microsoft.com/en-us/evalcenter/

IMPORTANT

If you install the libguestfs-tools package on the undercloud, disable iscsid.socket to
avoid port conflicts with the tripleo_iscsid service on the undercloud:

$ sudo systemctl disable --now iscsid.socket

NOTE

In the following procedures, all commands with the [root@host]# prompt should be run
on your host machine.

1.2.1.2.1. Create a Red Hat Enterprise Linux 7 Image

This section provides you with the steps to manually create an OpenStack-compatible image in the
QCOW2 format using a Red Hat Enterprise Linux 7 ISO file.

1. Start the installation using virt-install as shown below:

[root@host]# qemu-img create -f qcow2 rhel7.qcow2 8G
[root@host]# virt-install --virt-type kvm --name rhel7 --ram 2048 \
--cdrom /tmp/rhel-server-7.2-x86_64-dvd.iso \
--disk rhel7.qcow2,format=qcow2 \
--network=bridge:virbr0 --graphics vnc,listen=0.0.0.0 \
--noautoconsole --os-type=linux --os-variant=rhel7

This launches an instance and starts the installation process.

NOTE

If the instance does not launch automatically, run the virt-viewer command to
view the console:

[root@host]# virt-viewer rhel7

2. Set up the virtual machine as follows:

a. At the initial Installer boot menu, choose the Install Red Hat Enterprise Linux 7.X option.

CHAPTER 1. IMAGE SERVICE

15

b. Choose the appropriate Language and Keyboard options.

c. When prompted about which type of devices your installation uses, choose Auto-detected
installation media.

d. When prompted about which type of installation destination, choose Local Standard Disks.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

16

d. When prompted about which type of installation destination, choose Local Standard Disks.

For other storage options, choose Automatically configure partitioning.

e. For software selection, choose Minimal Install.

f. For network and host name, choose eth0 for network and choose a hostname for your
device. The default host name is localhost.localdomain.

g. Choose the root password.

CHAPTER 1. IMAGE SERVICE

17

g. Choose the root password.

The installation process completes and the Complete! screen appears.

3. After the installation is complete, reboot the instance and log in as the root user.

4. Update the /etc/sysconfig/network-scripts/ifcfg-eth0 file so it only contains the following
values:

TYPE=Ethernet
DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp
NM_CONTROLLED=no

5. Reboot the machine.

6. Register the machine with the Content Delivery Network.

sudo subscription-manager register
sudo subscription-manager attach --pool=Valid-Pool-Number-123456
sudo subscription-manager repos --enable=rhel-7-server-rpms

7. Update the system:

dnf -y update

8. Install the cloud-init packages:

dnf install -y cloud-utils-growpart cloud-init

9. Edit the /etc/cloud/cloud.cfg configuration file and under cloud_init_modules add:

Red Hat OpenStack Platform 16.0 Instances and Images Guide

18

- resolv-conf

The resolv-conf option automatically configures the resolv.conf when an instance boots for
the first time. This file contains information related to the instance such as nameservers,
domain and other options.

10. Add the following line to /etc/sysconfig/network to avoid problems accessing the EC2
metadata service:

NOZEROCONF=yes

11. To ensure the console messages appear in the Log tab on the dashboard and the nova
console-log output, add the following boot option to the /etc/default/grub file:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty0 console=ttyS0,115200n8"

Run the grub2-mkconfig command:

grub2-mkconfig -o /boot/grub2/grub.cfg

The output is as follows:

Generating grub configuration file ...
Found linux image: /boot/vmlinuz-3.10.0-229.7.2.el7.x86_64
Found initrd image: /boot/initramfs-3.10.0-229.7.2.el7.x86_64.img
Found linux image: /boot/vmlinuz-3.10.0-121.el7.x86_64
Found initrd image: /boot/initramfs-3.10.0-121.el7.x86_64.img
Found linux image: /boot/vmlinuz-0-rescue-b82a3044fb384a3f9aeacf883474428b
Found initrd image: /boot/initramfs-0-rescue-b82a3044fb384a3f9aeacf883474428b.img
done

12. Un-register the virtual machine so that the resulting image does not contain the same
subscription details for every instance cloned based on it:

subscription-manager repos --disable=*
subscription-manager unregister
dnf clean all

13. Power off the instance:

poweroff

14. Reset and clean the image using the virt-sysprep command so it can be used to create
instances without issues:

[root@host]# virt-sysprep -d rhel7

15. Reduce image size using the virt-sparsify command. This command converts any free space
within the disk image back to free space within the host:

[root@host]# virt-sparsify --compress /tmp/rhel7.qcow2 rhel7-cloud.qcow2

CHAPTER 1. IMAGE SERVICE

19

This creates a new rhel7-cloud.qcow2 file in the location from where the command is run.

The rhel7-cloud.qcow2 image file is ready to be uploaded to the Image service. For more information
on uploading this image to your OpenStack deployment using the dashboard, see Upload an Image.

1.2.1.2.2. Create a Red Hat Enterprise Linux 6 Image

This section provides you with the steps to manually create an OpenStack-compatible image in the
QCOW2 format using a Red Hat Enterprise Linux 6 ISO file.

1. Start the installation using virt-install:

[root@host]# qemu-img create -f qcow2 rhel6.qcow2 4G
[root@host]# virt-install --connect=qemu:///system --network=bridge:virbr0 \
--name=rhel6 --os-type linux --os-variant rhel6 \
--disk path=rhel6.qcow2,format=qcow2,size=10,cache=none \
--ram 4096 --vcpus=2 --check-cpu --accelerate \
--hvm --cdrom=rhel-server-6.8-x86_64-dvd.iso

This launches an instance and starts the installation process.

NOTE

If the instance does not launch automatically, run the virt-viewer command to
view the console:

[root@host]# virt-viewer rhel6

2. Set up the virtual machines as follows:

a. At the initial Installer boot menu, choose the Install or upgrade an existing system option.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

20

a. At the initial Installer boot menu, choose the Install or upgrade an existing system option.

Step through the installation prompts. Accept the defaults.
The installer checks for the disc and lets you decide whether you want to test your
installation media before installation. Select OK to run the test or Skip to proceed without
testing.

b. Choose the appropriate Language and Keyboard options.

c. When prompted about which type of devices your installation uses, choose Basic Storage

CHAPTER 1. IMAGE SERVICE

21

c. When prompted about which type of devices your installation uses, choose Basic Storage
Devices.

d. Choose a hostname for your device. The default host name is localhost.localdomain.

e. Set timezone and root password.

f. Based on the space on the disk, choose the type of installation.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

22

g. Choose the Basic Server install, which installs an SSH server.

h. The installation process completes and Congratulations, your Red Hat Enterprise Linux
installation is complete screen appears.

3. Reboot the instance and log in as the root user.

4. Update the /etc/sysconfig/network-scripts/ifcfg-eth0 file so it only contains the following
values:

TYPE=Ethernet
DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp
NM_CONTROLLED=no

5. Reboot the machine.

6. Register the machine with the Content Delivery Network:

sudo subscription-manager register
sudo subscription-manager attach --pool=Valid-Pool-Number-123456
sudo subscription-manager repos --enable=rhel-6-server-rpms

7. Update the system:

dnf -y update

8. Install the cloud-init packages:

dnf install -y cloud-utils-growpart cloud-init

CHAPTER 1. IMAGE SERVICE

23

9. Edit the /etc/cloud/cloud.cfg configuration file and under cloud_init_modules add:

- resolv-conf

The resolv-conf option automatically configures the resolv.conf configuration file when an
instance boots for the first time. This file contains information related to the instance such as
nameservers, domain, and other options.

10. To prevent network issues, create the /etc/udev/rules.d/75-persistent-net-generator.rules file
as follows:

echo "#" > /etc/udev/rules.d/75-persistent-net-generator.rules

This prevents /etc/udev/rules.d/70-persistent-net.rules file from being created. If
/etc/udev/rules.d/70-persistent-net.rules is created, networking may not function properly
when booting from snapshots (the network interface is created as "eth1" rather than "eth0" and
IP address is not assigned).

11. Add the following line to /etc/sysconfig/network to avoid problems accessing the EC2
metadata service:

NOZEROCONF=yes

12. To ensure the console messages appear in the Log tab on the dashboard and the nova
console-log output, add the following boot option to the /etc/grub.conf:

console=tty0 console=ttyS0,115200n8

13. Un-register the virtual machine so that the resulting image does not contain the same
subscription details for every instance cloned based on it:

subscription-manager repos --disable=*
subscription-manager unregister
dnf clean all

14. Power off the instance:

poweroff

15. Reset and clean the image using the virt-sysprep command so it can be used to create
instances without issues:

[root@host]# virt-sysprep -d rhel6

16. Reduce image size using the virt-sparsify command. This command converts any free space
within the disk image back to free space within the host:

[root@host]# virt-sparsify --compress rhel6.qcow2 rhel6-cloud.qcow2

This creates a new rhel6-cloud.qcow2 file in the location from where the command is run.

NOTE

Red Hat OpenStack Platform 16.0 Instances and Images Guide

24

NOTE

You will need to manually resize the partitions of instances based on the image in
accordance with the disk space in the flavor that is applied to the instance.

The rhel6-cloud.qcow2 image file is ready to be uploaded to the Image service. For more information
on uploading this image to your OpenStack deployment using the dashboard, see Upload an Image

1.2.1.2.3. Create a Windows Image

This section provides you with the steps to manually create an OpenStack-compatible image in the
QCOW2 format using a Windows ISO file.

1. Start the installation using virt-install as shown below:

[root@host]# virt-install --name=name \
--disk size=size \
--cdrom=path \
--os-type=windows \
--network=bridge:virbr0 \
--graphics spice \
--ram=RAM

Replace the values of the virt-install parameters as follows:

name — the name that the Windows guest should have.

size — disk size in GB.

path — the path to the Windows installation ISO file.

RAM — the requested amount of RAM in MB.

NOTE

The --os-type=windows parameter ensures that the clock is set up correctly
for the Windows guest, and enables its Hyper-V enlightenment features.

Note that virt-install saves the guest image as /var/lib/libvirt/images/name.qcow2 by
default. If you want to keep the guest image elsewhere, change the parameter of the --disk
option as follows:

--disk path=filename,size=size

Replace filename with the name of the file which should store the guest image (and
optionally its path); for example path=win8.qcow2,size=8 creates an 8 GB file named
win8.qcow2 in the current working directory.

TIP

If the guest does not launch automatically, run the virt-viewer command to view the
console:

[root@host]# virt-viewer name

CHAPTER 1. IMAGE SERVICE

25

2. Installation of Windows systems is beyond the scope of this document. For instructions on how
to install Windows, see the relevant Microsoft documentation.

3. To allow the newly-installed Windows system to use the virtualized hardware, you might need to
install virtio drivers. To so do, first install the virtio-win package on the host system. This
package contains the virtio ISO image, which you must attach as a CD-ROM drive to the
Windows guest. To install the virtio-win package you must add the virtio ISO image to the
guest, and install the virtio drivers. See Installing KVM paravirtualized drivers for Windows virtual
machines in the Configuring and managing virtualization guide.

4. To complete the setup, download and execute Cloudbase-Init on the Windows system. At the
end of the installation of Cloudbase-Init, select the Run Sysprep and Shutdown check boxes.
The Sysprep tool makes the guest unique by generating an OS ID, which is used by certain
Microsoft services.

IMPORTANT

Red Hat does not provide technical support for Cloudbase-Init. If you encounter
an issue, contact Cloudbase Solutions .

When the Windows system shuts down, the name.qcow2 image file is ready to be uploaded to the Image
service. For more information on uploading this image to your OpenStack deployment using the
dashboard or the command line, see Upload an Image.

1.2.1.3. Use libosinfo

Image Service (glance) can process libosinfo data for images, making it easier to configure the optimal
virtual hardware for an instance. This can be done by adding the libosinfo-formatted operating system
name to the glance image.

1. This example specifies that the image with ID 654dbfd5-5c01-411f-8599-a27bd344d79b uses
the libosinfo value of rhel7.2:

$ openstack image set 654dbfd5-5c01-411f-8599-a27bd344d79b --property
os_name=rhel7.2

As a result, Compute will supply virtual hardware optimized for rhel7.2 whenever an instance is
built using the 654dbfd5-5c01-411f-8599-a27bd344d79b image.

NOTE

For a complete list of libosinfo values, refer to the libosinfo project:
https://gitlab.com/libosinfo/osinfo-db/tree/master/data/os

1.2.2. Upload an Image

1. In the dashboard, select Project > Compute > Images.

2. Click Create Image.

3. Fill out the values, and click Create Image when finished.

Table 1.1. Image Options

Red Hat OpenStack Platform 16.0 Instances and Images Guide

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_virtualization/index#installing-kvm-paravirtualized-drivers-for-rhel-8-virtual-machines_optimizing-windows-virtual-machines-on-rhel-8
http://www.cloudbase.it/cloudbase-init/
https://cloudbase.it/about/#contact
https://gitlab.com/libosinfo/osinfo-db/tree/master/data/os

Field Notes

Name Name for the image. The name must be unique within the project.

Description Brief description to identify the image.

Image Source Image source: Image Location or Image File. Based on your selection, the
next field is displayed.

Image Location or Image File
Select Image Location option to specify the image location URL.

Select Image File option to upload an image from the local disk.

Format Image format (for example, qcow2).

Architecture Image architecture. For example, use i686 for a 32-bit architecture or
x86_64 for a 64-bit architecture.

Minimum Disk (GB) Minimum disk size required to boot the image. If this field is not specified, the
default value is 0 (no minimum).

Minimum RAM (MB) Minimum memory size required to boot the image. If this field is not
specified, the default value is 0 (no minimum).

Public If selected, makes the image public to all users with access to the project.

Protected If selected, ensures only users with specific permissions can delete this
image.

When the image has been successfully uploaded, its status is changed to active, which indicates that the
image is available for use. Note that the Image service can handle even large images that take a long
time to upload — longer than the lifetime of the Identity service token which was used when the upload
was initiated. This is due to the fact that the Image service first creates a trust with the Identity service
so that a new token can be obtained and used when the upload is complete and the status of the image
is to be updated.

NOTE

You can also use the glance image-create command with the property option to upload
an image. More values are available on the command line. For a complete listing, see
Image Configuration Parameters.

1.2.3. Update an Image

1. In the dashboard, select Project > Compute > Images.

2. Click Edit Image from the dropdown list.

NOTE

CHAPTER 1. IMAGE SERVICE

27

NOTE

The Edit Image option is available only when you log in as an admin user. When
you log in as a demo user, you have the option to Launch an instance or Create
Volume.

3. Update the fields and click Update Image when finished. You can update the following values -
name, description, kernel ID, ramdisk ID, architecture, format, minimum disk, minimum RAM,
public, protected.

4. Click the drop-down menu and select Update Metadata option.

5. Specify metadata by adding items from the left column to the right one. In the left column, there
are metadata definitions from the Image Service Metadata Catalog. Select Other to add
metadata with the key of your choice and click Save when finished.

NOTE

You can also use the glance image-update command with the property option to
update an image. More values are available on the command line; for a complete listing,
see Image Configuration Parameters.

1.2.4. Import an Image

You can import images into the Image service (glance) using web-download to import an image from a
URI and glance-direct to import an image from a local file system. Both options are enabled by default.

Import methods are configured by the cloud administrator. Run the glance import-info command to list
available import options.

1.2.4.1. Import from a Remote URI

You can use the web-download method to copy an image from a remote URI.

1. Create an image and specify the URI of the image to import.

glance image-create --uri <URI>

2. You can monitor the image’s availability using the glance image-show <image-ID> command
where the ID is the one provided during image creation.

The Image service web-download method uses a two-stage process to perform the import. First, it
creates an image record. Second, it retrieves the image the specified URI. This method provides a more
secure way to import images than the deprecated copy-from method used in Image API v1.

The URI is subject to optional blacklist and whitelist filtering as described in the Advanced Overcloud
Customization Guide.

The Image Property Injection plugin may inject metadata properties to the image as described in the
Advanced Overcloud Customization Guide. These injected properties determine which compute nodes
the image instances are launched on.

1.2.4.2. Import from a Local Volume

The glance-direct method creates an image record, which generates an image ID. Once the image is

Red Hat OpenStack Platform 16.0 Instances and Images Guide

28

uploaded to the service from a local volume, it is stored in a staging area and is made active after it
passes any configured checks. The glance-direct method requires a shared staging area when used in a
highly available (HA) configuration.

NOTE

Image uploads using the glance-direct method fail in an HA environment if a common
staging area is not present. In an HA active-active environment, API calls are distributed
to the glance controllers. The download API call could be sent to a different controller
than the API call to upload the image. For more information about configuring the staging
area, refer to the Storage Configuration section in the Advanced Overcloud
Customization Guide.

The glance-direct method uses three different calls to import an image:

glance image-create

glance image-stage

glance image-import

You can use the glance image-create-via-import command to perform all three of these calls in one
command. In the example below, uppercase words should be replaced with the appropriate options.

glance image-create-via-import --container-format FORMAT --disk-format DISKFORMAT --name
NAME --file /PATH/TO/IMAGE

Once the image moves from the staging area to the back end location, the image is listed. However, it
may take some time for the image to become active.

You can monitor the image’s availability using the glance image-show <image-ID> command where the
ID is the one provided during image creation.

1.2.5. Delete an Image

1. In the dashboard, select Project > Compute > Images.

2. Select the image you want to delete and click Delete Images.

1.2.6. Hide or Unhide an Image

You can hide public images from normal listings presented to users. For instance, you can hide obsolete
CentOS 7 images and show only the latest version to simplify the user experience. Users can discover
and use hidden images.

To hide an image:

glance image-update <image-id> --hidden 'true'

To create a hidden image, add the --hidden argument to the glance image-create command.

To unhide an image:

glance image-update <image-id> --hidden 'false'

CHAPTER 1. IMAGE SERVICE

29

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/advanced_overcloud_customization/storage_configuration

1.2.7. Show Hidden Images

To list hidden images:

glance image-list --hidden 'true'

1.2.8. Enabling image conversion

With the GlanceImageImportPlugins parameter enabled, you can upload a QCOW2 image, and the
Image service will convert it to RAW.

NOTE

Image conversion is automatically enabled when you use Red Hat Ceph Storage RBD to
store images and boot Nova instances.

To enable image conversion, create an environment file that contains the following parameter value and
include the new environment file with the -e option in the openstack overcloud deploy command:

parameter_defaults:
 GlanceImageImportPlugins:'image_conversion'

1.2.9. Converting an image to RAW format

Red Hat Ceph Storage can store, but does not support using, QCOW2 images to host virtual machine
(VM) disks.

When you upload a QCOW2 image and create a VM from it, the compute node downloads the image,
converts the image to RAW, and uploads it back into Ceph, which can then use it. This process affects
the time it takes to create VMs, especially during parallel VM creation.

For example, when you create multiple VMs simultaneously, uploading the converted image to the Ceph
cluster may impact already running workloads. The upload process can starve those workloads of IOPS
and impede storage responsiveness.

To boot VMs in Ceph more efficiently (ephemeral back end or boot from volume), the glance image
format must be RAW.

Converting an image to RAW may yield an image that is larger in size than the original QCOW2 image
file. Run the following command before the conversion to determine the final RAW image size:

qemu-img info <image>.qcow2

To convert an image from QCOW2 to RAW format, do the following:

qemu-img convert -p -f qcow2 -O raw <original qcow2 image>.qcow2 <new raw image>.raw

1.2.9.1. Configuring Image Service to accept RAW and ISO only

Optionally, to configure the Image Service to accept only RAW and ISO image formats, deploy using an
additional environment file that contains the following:

Red Hat OpenStack Platform 16.0 Instances and Images Guide

30

parameter_defaults:
 ExtraConfig:
 glance::config::api_config:
 image_format/disk_formats:
 value: "raw,iso"

1.2.10. Storing an image in RAW format

With the GlanceImageImportPlugins parameter enabled, run the following command to store a
previously created image in RAW format:

$ glance image-create-via-import \
 --disk-format qcow2 \
 --container-format bare \
 --name NAME \
 --visibility public \
 --import-method web-download \
 --uri http://server/image.qcow2

For --name, replace NAME with the name of the image; this is the name that will appear in
glance image-list.

For --uri, replace http://server/image.qcow2 with the location and file name of the QCOW2
image.

NOTE

This command example creates the image record and imports it by using the web-
download method. The glance-api downloads the image from the --uri location during
the import process. If web-download is not available, glanceclient cannot automatically
download the image data. Run the glance import-info command to list the available
image import methods.

CHAPTER 1. IMAGE SERVICE

31

CHAPTER 2. CONFIGURING THE COMPUTE (NOVA) SERVICE
Use environment files to customize the Compute (nova) service. Puppet generates and stores this
configuration in the /var/lib/config-data/puppet-generated/<nova_container>/etc/nova/nova.conf
file. Use the following configuration methods to customize the Compute service configuration:

Heat parameters - as detailed in the Compute (nova) Parameters section in the Overcloud
Parameters guide. For example:

parameter_defaults:
 NovaSchedulerDefaultFilters:
AggregateInstanceExtraSpecsFilter,RetryFilter,ComputeFilter,ComputeCapabilitiesFilter,Image
PropertiesFilter
 NovaNfsEnabled: true
 NovaNfsShare: '192.0.2.254:/export/nova'
 NovaNfsOptions: 'context=system_u:object_r:nfs_t:s0'
 NovaNfsVersion: '4.2'

Puppet parameters - as defined in /etc/puppet/modules/nova/manifests/*:

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::force_raw_images: True

NOTE

Only use this method if an equivalent heat parameter does not exist.

Manual hieradata overrides - for customizing parameters when no heat or Puppet parameter
exists. For example, the following sets the disk_allocation_ratio in the [DEFAULT] section on
the Compute role:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 DEFAULT/disk_allocation_ratio:
 value: '2.0'

WARNING

If a heat parameter exists, it must be used instead of the Puppet parameter; if a
Puppet parameter exists, but not a heat parameter, then the Puppet parameter
must be used instead of the manual override method. The manual override method
must only be used if there is no equivalent heat or Puppet parameter.

TIP



Red Hat OpenStack Platform 16.0 Instances and Images Guide

32

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/overcloud_parameters/compute-nova-parameters

TIP

Follow the guidance in Identifying Parameters to Modify to determine if a heat or Puppet parameter is
available for customizing a particular configuration.

See Parameters in the Advanced Overcloud Customization guide for further details on configuring
overcloud services.

2.1. CONFIGURING MEMORY FOR OVERALLOCATION

When you use memory overcommit (NovaRAMAllocationRatio >= 1.0), you need to deploy your
overcloud with enough swap space to support the allocation ratio.

NOTE

If your NovaRAMAllocationRatio parameter is set to < 1, follow the RHEL
recommendations for swap size. For more information, see Recommended system swap
space in the RHEL Managing Storage Devices guide.

Prerequisites

You have calculated the swap size your node requires. For more information, see Section 2.3,
“Calculating swap size”.

Procedure

1. Copy the /usr/share/openstack-tripleo-heat-templates/environments/enable-swap.yaml file
to your environment file directory:

$ cp /usr/share/openstack-tripleo-heat-templates/environments/enable-swap.yaml
/home/stack/templates/enable-swap.yaml

2. Configure the swap size by adding the following parameters to your enable-swap.yaml file:

parameter_defaults:
 swap_size_megabytes: <swap size in MB>
 swap_path: <full path to location of swap, default: /swap>

3. To apply this configuration, add the enable_swap.yaml environment file to the stack with your
other environment files and deploy the overcloud:

(undercloud) $ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/enable-swap.yaml \

2.2. CALCULATING RESERVED HOST MEMORY ON COMPUTE NODES

To determine the total amount of RAM to reserve for host processes, you need to allocate enough
memory for each of the following:

The resources that run on the node, for instance, OSD consumes 3 GB of memory.

The emulator overhead required to visualize instances on a host.

CHAPTER 2. CONFIGURING THE COMPUTE (NOVA) SERVICE

33

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/advanced_overcloud_customization/sect-configuring_base_parameters#identifying_parameters_to_modify
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/advanced_overcloud_customization/sect-configuring_base_parameters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-swap_managing-storage-devices#recommended-system-swap-space_getting-started-with-swap

The hypervisor for each instance.

After you calculate the additional demands on memory, use the following formula to help you determine
the amount of memory to reserve for host processes on each node:

NovaReservedHostMemory = total_RAM - ((vm_no * (avg_instance_size + overhead)) + (resource1 *
resource_ram) + (resource _n_ * resource_ram))

Replace vm_no with the number of instances.

Replace avg_instance_size with the average amount of memory each instance can use.

Replace overhead with the hypervisor overhead required for each instance.

Replace resource1 with the number of a resource type on the node.

Replace resource_ram with the amount of RAM each resource of this type requires.

2.3. CALCULATING SWAP SIZE

The allocated swap size must be large enough to handle any memory overcommit. You can use the
following formulas to calculate the swap size your node requires:

overcommit_ratio = NovaRAMAllocationRatio - 1

Minimum swap size (MB) = (total_RAM * overcommit_ratio) + RHEL_min_swap

Recommended (maximum) swap size (MB) = total_RAM * (overcommit_ratio +
percentage_of_RAM_to_use_for_swap)

The percentage_of_RAM_to_use_for_swap variable creates a buffer to account for QEMU overhead
and any other resources consumed by the operating system or host services.

For instance, to use 25% of the available RAM for swap, with 64GB total RAM, and
NovaRAMAllocationRatio set to 1:

Recommended (maximum) swap size = 64000 MB * (0 + 0.25) = 16000 MB

For information on how to calculate the NovaReservedHostMemory value, see Section 2.2,
“Calculating reserved host memory on Compute nodes”.

For information on how to determine the RHEL_min_swap value, see Recommended system swap
space in the RHEL Managing Storage Devices guide.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

34

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-swap_managing-storage-devices#recommended-system-swap-space_getting-started-with-swap

CHAPTER 3. CONFIGURE OPENSTACK COMPUTE STORAGE
This chapter describes the architecture for the back-end storage of images in OpenStack Compute
(nova), and provides basic configuration options.

3.1. ARCHITECTURE OVERVIEW

In Red Hat OpenStack Platform, the OpenStack Compute service uses the KVM hypervisor to execute
compute workloads. The libvirt driver handles all interactions with KVM, and enables the creation of
virtual machines.

Two types of libvirt storage must be considered for Compute:

Base image, which is a cached and formatted copy of the Image service image.

Instance disk, which is created using the libvirt base and is the back end for the virtual machine
instance. Instance disk data can be stored either in Compute’s ephemeral storage (using the
libvirt base) or in persistent storage (for example, using Block Storage).

The steps that Compute takes to create a virtual machine instance are:

1. Cache the Image service’s backing image as the libvirt base.

2. Convert the base image to the raw format (if configured).

3. Resize the base image to match the VM’s flavor specifications.

4. Use the base image to create the libvirt instance disk.

In the diagram above, the #1 instance disk uses ephemeral storage; the #2 disk uses a block-storage
volume.

Ephemeral storage is an empty, unformatted, additional disk available to an instance. This storage value
is defined by the instance flavor. The value provided by the user must be less than or equal to the
ephemeral value defined for the flavor. The default value is 0, meaning no ephemeral storage is created.

The ephemeral disk appears in the same way as a plugged-in hard drive or thumb drive. It is available as
a block device which you can check using the lsblk command. You can format it, mount it, and use it
however you normally would a block device. There is no way to preserve or reference that disk beyond
the instance it is attached to.

Block storage volume is persistant storage available to an instance regardless of the state of the running

CHAPTER 3. CONFIGURE OPENSTACK COMPUTE STORAGE

35

Block storage volume is persistant storage available to an instance regardless of the state of the running
instance.

3.2. CONFIGURATION

You can configure performance tuning and security for your virtual disks by customizing the Compute
(nova) configuration files. Compute is configured in custom environment files and heat templates using
the parameters detailed in the Compute (nova) Parameters section in the Overcloud Parameters guide.
This configuration is generated and stored in the /var/lib/config-data/puppet-
generated/<nova_container>/etc/nova/nova.conf file, as detailed in the following table.

Table 3.1. Compute Image Parameters

Section Parameter Description Default

[DEFAULT] force_raw_im
ages

Whether to convert a non-raw cached base
image to be raw (boolean). If a non-raw image
is converted to raw, Compute:

Disallows backing files (which might be
a security issue).

Removes existing compression (to
avoid CPU bottlenecks).

Converting the base to raw uses more space for
any image that could have been used directly by
the hypervisor (for example, a qcow2 image). If
you have a system with slower I/O or less
available space, you might want to specify false,
trading the higher CPU requirements of
compression for that of minimized input
bandwidth.

Raw base images are always used with
libvirt_images_type=lvm.

true

[DEFAULT] use_cow_ima
ges

Whether to use CoW (Copy on Write) images for
libvirt instance disks (boolean):

false - The raw format is used. Without
CoW, more space is used for common
parts of the disk image

true - The cqow2 format is used. With
CoW, depending on the backing store
and host caching, there may be better
concurrency achieved by having each
VM operate on its own copy.

true

Red Hat OpenStack Platform 16.0 Instances and Images Guide

36

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/overcloud_parameters/compute-nova-parameters

[DEFAULT] preallocate_i
mages

Preallocation mode for libvirt instance disks.
Value can be:

none - No storage is provisioned at
instance start.

space - Storage is fully allocated at
instance start (using fallocate), which
can help with both space guarantees
and I/O performance.

Even when not using CoW instance disks, the
copy each VM gets is sparse and so the VM may
fail unexpectedly at run time with ENOSPC. By
running fallocate(1) on the instance disk
images, Compute immediately and efficiently
allocates the space for them in the file system (if
supported). Run time performance should also
be improved because the file system does not
have to dynamically allocate blocks at run time
(reducing CPU overhead and more importantly
file fragmentation).

none

[DEFAULT] resize_fs_usin
g_block_devi
ce

Whether to enable direct resizing of the base
image by accessing the image over a block
device (boolean). This is only necessary for
images with older versions of cloud-init (that
cannot resize themselves).

Because this parameter enables the direct
mounting of images which might otherwise be
disabled for security reasons, it is not enabled by
default.

false

[DEFAULT] default_ephe
meral_format

The default format that is used for a new
ephemeral volume. Value can be: ext2, ext3, or
ext4. The ext4 format provides much faster
initialization times than ext3 for new, large disks.
You can also override per instance using the
guest_format configuration option.

ext4

[DEFAULT] image_cache_
manager_inte
rval

Number of seconds to wait between runs of the
image cache manager, which impacts base
caching on libvirt compute nodes. This period is
used in the auto removal of unused cached
images (see remove_unused_base_images
and
remove_unused_original_minimum_age_
seconds).

2400

Section Parameter Description Default

CHAPTER 3. CONFIGURE OPENSTACK COMPUTE STORAGE

37

[DEFAULT] remove_unus
ed_base_ima
ges

Whether to enable the automatic removal of
unused base images (checked every
image_cache_manager_interval seconds).
Images are defined as unused if they have not
been accessed in
remove_unused_original_minimum_age_
seconds seconds.

true

[DEFAULT] remove_unus
ed_original_m
inimum_age_
seconds

How old an unused base image must be before
being removed from the libvirt cache (see
remove_unused_base_images).

86400

[libvirt] images_type Image type to use for libvirt instance disks
(deprecates use_cow_images). Value can be:
raw, qcow2, lvm, rbd, or default. If default is
specified, the value used for the
use_cow_images parameter is used.

default

Section Parameter Description Default

Red Hat OpenStack Platform 16.0 Instances and Images Guide

38

CHAPTER 4. VIRTUAL MACHINE INSTANCES
OpenStack Compute is the central component that provides virtual machines on demand. Compute
interacts with the Identity service for authentication, Image service for images (used to launch
instances), and the dashboard service for the user and administrative interface.

Red Hat OpenStack Platform allows you to easily manage virtual machine instances in the cloud. The
Compute service creates, schedules, and manages instances, and exposes this functionality to other
OpenStack components. This chapter discusses these procedures along with procedures to add
components like key pairs, security groups, host aggregates and flavors. The term instance is used by
OpenStack to mean a virtual machine instance.

4.1. MANAGE INSTANCES

Before you can create an instance, you need to ensure certain other OpenStack components (for
example, a network, key pair and an image or a volume as the boot source) are available for the instance.

This section discusses the procedures to add these components, create and manage an instance.
Managing an instance refers to updating, and logging in to an instance, viewing how the instances are
being used, resizing or deleting them.

4.1.1. Add Components

Use the following sections to create a network, key pair and upload an image or volume source. These
components are used in the creation of an instance and are not available by default. You will also need to
create a new security group to allow SSH access to the user.

1. In the dashboard, select Project.

2. Select Network > Networks, and ensure there is a private network to which you can attach the
new instance (to create a network, see Create a Network section in the Networking Guide).

3. Select Compute > Access & Security > Key Pairs, and ensure there is a key pair (to create a key
pair, see Section 4.2.1.1, “Create a Key Pair”).

4. Ensure that you have either an image or a volume that can be used as a boot source:

To view boot-source images, select the Images tab (to create an image, see Section 1.2.1,
“Creating an Image”).

To view boot-source volumes, select the Volumes tab (to create a volume, see Create a
Volume in the Storage Guide).

5. Select Compute > Access & Security > Security Groups, and ensure you have created a
security group rule (to create a security group, see Project Security Management in the Users
and Identity Management Guide).

4.1.2. Launch an Instance

Launch one or more instances from the dashboard.

NOTE

CHAPTER 4. VIRTUAL MACHINE INSTANCES

39

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/networking_guide/#create_a_network
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/storage_guide/#section-create-volume
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/users_and_identity_management_guide/#project-security

NOTE

By default, the Launch Instance form is used to launch instances. However, you can also
enable a Launch Instance wizard that simplifies the steps required. For more information,
see Appendix B, Enabling the Launch Instance Wizard .

1. In the dashboard, select Project > Compute > Instances.

2. Click Launch Instance.

3. Fill out the fields (those marked with '* ' are required), and click Launch.

One or more instances are created, and launched based on the options provided.

4.1.2.1. Launch Instance Options

The following table outlines the options available when launching a new instance using the Launch
Instance form. The same options are also available in the Launch instance wizard.

Table 4.1. Launch Instance Form Options

Tab Field Notes

Project and User Project Select the project from the dropdown list.

 User Select the user from the dropdown list.

Details Availability Zone Zones are logical groupings of cloud resources in which your
instance can be placed. If you are unsure, use the default
zone (for more information, see Section 4.4, “Manage Host
Aggregates”).

 Instance Name A name to identify your instance.

 Flavor The flavor determines what resources the instance is given
(for example, memory). For default flavor allocations and
information on creating new flavors, see Section 4.3,
“Manage Flavors”.

 Instance Count The number of instances to create with these parameters.
"1" is preselected.

 Instance Boot
Source

Depending on the item selected, new fields are displayed
allowing you to select the source:

Image sources must be compatible with
OpenStack (see Section 1.2, “Manage Images”).

If a volume or volume source is selected, the
source must be formatted using an image (see
Basic Volume Usage and Configuration in the
Storage Guide).

Red Hat OpenStack Platform 16.0 Instances and Images Guide

40

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/storage_guide/#section-volumes_basic

Access and Security Key Pair The specified key pair is injected into the instance and is
used to remotely access the instance using SSH (if neither a
direct login information or a static key pair is provided).
Usually one key pair per project is created.

 Security Groups Security groups contain firewall rules which filter the type
and direction of the instance’s network traffic (for more
information on configuring groups, see Project Security
Management in the Users and Identity Management Guide).

Networking Selected Networks You must select at least one network. Instances are
typically assigned to a private network, and then later given
a floating IP address to enable external access.

Post-Creation Customization Script
Source

You can provide either a set of commands or a script file,
which will run after the instance is booted (for example, to
set the instance host name or a user password). If Direct
Input is selected, write your commands in the Script Data
field; otherwise, specify your script file.

NOTE

Any script that starts with #cloud-config is
interpreted as using the cloud-config
syntax (for information on the syntax, see
http://cloudinit.readthedocs.org/en/latest/
topics/examples.html).

Advanced Options Disk Partition By default, the instance is built as a single partition and
dynamically resized as needed. However, you can choose to
manually configure the partitions yourself.

 Configuration Drive If selected, OpenStack writes metadata to a read-only
configuration drive that is attached to the instance when it
boots (instead of to Compute’s metadata service). After the
instance has booted, you can mount this drive to view its
contents (enables you to provide files to the instance).

Tab Field Notes

4.1.3. Update an Instance (Actions menu)

You can update an instance by selecting Project > Compute > Instances, and selecting an action for
that instance in the Actions column. Actions allow you to manipulate the instance in a number of ways:

Table 4.2. Update Instance Options

Action Description

CHAPTER 4. VIRTUAL MACHINE INSTANCES

41

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/users_and_identity_management_guide/#project-security
http://cloudinit.readthedocs.org/en/latest/topics/examples.html

Create Snapshot Snapshots preserve the disk state of a running
instance. You can create a snapshot to migrate the
instance, as well as to preserve backup copies.

Associate/Disassociate Floating IP You must associate an instance with a floating IP
(external) address before it can communicate with
external networks, or be reached by external users.
Because there are a limited number of external
addresses in your external subnets, it is
recommended that you disassociate any unused
addresses.

Edit Instance Update the instance’s name and associated security
groups.

Edit Security Groups Add and remove security groups to or from this
instance using the list of available security groups (for
more information on configuring groups, see Project
Security Management in the Users and Identity
Management Guide).

Console View the instance’s console in the browser (allows
easy access to the instance).

View Log View the most recent section of the instance’s
console log. Once opened, you can view the full log
by clicking View Full Log.

Pause/Resume Instance Immediately pause the instance (you are not asked
for confirmation); the state of the instance is stored
in memory (RAM).

Suspend/Resume Instance Immediately suspend the instance (you are not asked
for confirmation); like hibernation, the state of the
instance is kept on disk.

Resize Instance Bring up the Resize Instance window (see
Section 4.1.4, “Resize an Instance”).

Soft Reboot Gracefully stop and restart the instance. A soft
reboot attempts to gracefully shut down all
processes before restarting the instance.

Hard Reboot Stop and restart the instance. A hard reboot
effectively just shuts down the instance’s power and
then turns it back on.

Shut Off Instance Gracefully stop the instance.

Action Description

Red Hat OpenStack Platform 16.0 Instances and Images Guide

42

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/users_and_identity_management_guide/#project-security

Rebuild Instance Use new image and disk-partition options to rebuild
the image (shut down, re-image, and re-boot the
instance). If encountering operating system issues,
this option is easier to try than terminating the
instance and starting over.

Terminate Instance Permanently destroy the instance (you are asked for
confirmation).

Action Description

You can create and allocate an external IP address, see Section 4.2.3, “Create, Assign, and Release
Floating IP Addresses”

4.1.4. Resize an Instance

To resize an instance (memory or CPU count), you must select a new flavor for the instance that has the
right capacity. If you are increasing the size, remember to first ensure that the host has enough space.

1. Ensure communication between hosts by setting up each host with SSH key authentication so
that Compute can use SSH to move disks to other hosts (for example, compute nodes can
share the same SSH key).

2. Enable resizing on the original host by setting the allow_resize_to_same_host parameter to
"True" in your Compute environment file.

NOTE

The allow_resize_to_same_host parameter does not resize the instance on the
same host. Even if the parameter equals "True" on all Compute nodes, the
scheduler does not force the instance to resize on the same host. This is the
expected behavior.

3. In the dashboard, select Project > Compute > Instances.

4. Click the instance’s Actions arrow, and select Resize Instance.

5. Select a new flavor in the New Flavor field.

6. If you want to manually partition the instance when it launches (results in a faster build time):

a. Select Advanced Options.

b. In the Disk Partition field, select Manual.

7. Click Resize.

4.1.5. Connect to an Instance

This section discusses the different methods you can use to access an instance console using the
dashboard or the command-line interface. You can also directly connect to an instance’s serial port
allowing you to debug even if the network connection fails.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

43

4.1.5.1. Access an Instance Console using the Dashboard

The console allows you a way to directly access your instance within the dashboard.

1. In the dashboard, select Compute > Instances.

2. Click the instance’s More button and select Console.

3. Log in using the image’s user name and password (for example, a CirrOS image uses
cirros/cubswin:)).

4.1.5.2. Directly Connect to a VNC Console

You can directly access an instance’s VNC console using a URL returned by nova get-vnc-console
command.

Browser

To obtain a browser URL, use:

$ nova get-vnc-console INSTANCE_ID novnc

Java Client

To obtain a Java-client URL, use:

$ nova get-vnc-console INSTANCE_ID xvpvnc

NOTE

Red Hat OpenStack Platform 16.0 Instances and Images Guide

44

NOTE

nova-xvpvncviewer provides a simple example of a Java client. To download the client,
use:

git clone https://github.com/cloudbuilders/nova-xvpvncviewer
cd nova-xvpvncviewer/viewer
make

Run the viewer with the instance’s Java-client URL:

java -jar VncViewer.jar URL

This tool is provided only for customer convenience, and is not officially supported by Red
Hat.

4.1.6. View Instance Usage

The following usage statistics are available:

Per Project
To view instance usage per project, select Project > Compute > Overview. A usage summary is
immediately displayed for all project instances.

You can also view statistics for a specific period of time by specifying the date range and
clicking Submit.

Per Hypervisor
If logged in as an administrator, you can also view information for all projects. Click Admin >
System and select one of the tabs. For example, the Resource Usage tab offers a way to view
reports for a distinct time period. You might also click Hypervisors to view your current vCPU,
memory, or disk statistics.

NOTE

The vCPU Usage value (x of y) reflects the number of total vCPUs of all virtual
machines (x) and the total number of hypervisor cores (y).

4.1.7. Delete an Instance

1. In the dashboard, select Project > Compute > Instances, and select your instance.

2. Click Terminate Instance.

NOTE

Deleting an instance does not delete its attached volumes; you must do this separately
(see Delete a Volume in the Storage Guide).

4.1.8. Manage Multiple Instances at Once

If you need to start multiple instances at the same time (for example, those that were down for compute
or controller maintenance) you can do so easily at Project > Compute > Instances:

CHAPTER 4. VIRTUAL MACHINE INSTANCES

45

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/storage_guide/#section-delete-volume

1. Click the check boxes in the first column for the instances that you want to start. If you want to
select all of the instances, click the check box in the first row in the table.

2. Click More Actions above the table and select Start Instances.

Similarly, you can shut off or soft reboot multiple instances by selecting the respective actions.

4.2. MANAGE INSTANCE SECURITY

You can manage access to an instance by assigning it the correct security group (set of firewall rules)
and key pair (enables SSH user access). Further, you can assign a floating IP address to an instance to
enable external network access. The sections below outline how to create and manage key pairs,
security groups, floating IP addresses and logging in to an instance using SSH. There is also a procedure
for injecting an admin password in to an instance.

For information on managing security groups, see Project Security Management in the Users and
Identity Management Guide.

4.2.1. Manage Key Pairs

Key pairs provide SSH access to the instances. Each time a key pair is generated, its certificate is
downloaded to the local machine and can be distributed to users. Typically, one key pair is created for
each project (and used for multiple instances).

You can also import an existing key pair into OpenStack.

4.2.1.1. Create a Key Pair

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Key Pairs tab, click Create Key Pair.

3. Specify a name in the Key Pair Name field, and click Create Key Pair.

When the key pair is created, a key pair file is automatically downloaded through the browser. Save this
file for later connections from external machines. For command-line SSH connections, you can load this
file into SSH by executing:

ssh-add ~/.ssh/os-key.pem

4.2.1.2. Import a Key Pair

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Key Pairs tab, click Import Key Pair.

3. Specify a name in the Key Pair Name field, and copy and paste the contents of your public key
into the Public Key field.

4. Click Import Key Pair.

4.2.1.3. Delete a Key Pair

1. In the dashboard, select Project > Compute > Access & Security.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

46

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/users_and_identity_management_guide/#project-security

2. On the Key Pairs tab, click the key’s Delete Key Pair button.

4.2.2. Create a Security Group

Security groups are sets of IP filter rules that can be assigned to project instances, and which define
networking access to the instance. Security group are project specific; project members can edit the
default rules for their security group and add new rule sets.

1. In the dashboard, select the Project tab, and click Compute > Access & Security.

2. On the Security Groups tab, click + Create Security Group.

3. Provide a name and description for the group, and click Create Security Group.

For more information on managing project security, see Project Security Management in the Users and
Identity Management Guide.

4.2.3. Create, Assign, and Release Floating IP Addresses

By default, an instance is given an internal IP address when it is first created. However, you can enable
access through the public network by creating and assigning a floating IP address (external address).
You can change an instance’s associated IP address regardless of the instance’s state.

Projects have a limited range of floating IP address that can be used (by default, the limit is 50), so you
should release these addresses for reuse when they are no longer needed. Floating IP addresses can
only be allocated from an existing floating IP pool, see Create Floating IP Pools in the Networking Guide.

4.2.3.1. Allocate a Floating IP to the Project

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Floating IPs tab, click Allocate IP to Project.

3. Select a network from which to allocate the IP address in the Pool field.

4. Click Allocate IP.

4.2.3.2. Assign a Floating IP

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Floating IPs tab, click the address' Associate button.

3. Select the address to be assigned in the IP address field.

NOTE

If no addresses are available, you can click the + button to create a new address.

4. Select the instance to be associated in the Port to be Associated field. An instance can only be
associated with one floating IP address.

5. Click Associate.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

47

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/users_and_identity_management_guide/#project-security
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/networking_guide/#create_floating_ip_pools

4.2.3.3. Release a Floating IP

1. In the dashboard, select Project > Compute > Access & Security.

2. On the Floating IPs tab, click the address' menu arrow (next to the Associate/Disassociate
button).

3. Select Release Floating IP.

4.2.4. Log in to an Instance

Prerequisites:

Ensure that the instance’s security group has an SSH rule (see Project Security Management in
the Users and Identity Management Guide).

Ensure the instance has a floating IP address (external address) assigned to it (see
Section 4.2.3, “Create, Assign, and Release Floating IP Addresses”).

Obtain the instance’s key-pair certificate. The certificate is downloaded when the key pair is
created; if you did not create the key pair yourself, ask your administrator (see Section 4.2.1,
“Manage Key Pairs”).

To first load the key pair file into SSH, and then use ssh without naming it:

1. Change the permissions of the generated key-pair certificate.

$ chmod 600 os-key.pem

2. Check whether ssh-agent is already running:

ps -ef | grep ssh-agent

3. If not already running, start it up with:

eval `ssh-agent`

4. On your local machine, load the key-pair certificate into SSH. For example:

$ ssh-add ~/.ssh/os-key.pem

5. You can now SSH into the file with the user supplied by the image.

The following example command shows how to SSH into the Red Hat Enterprise Linux guest image with
the user cloud-user:

$ ssh cloud-user@192.0.2.24

NOTE

You can also use the certificate directly. For example:

$ ssh -i /myDir/os-key.pem cloud-user@192.0.2.24

Red Hat OpenStack Platform 16.0 Instances and Images Guide

48

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/users_and_identity_management_guide/#project-security

4.2.5. Inject an admin Password Into an Instance

You can inject an admin (root) password into an instance using the following procedure.

1. In the /etc/openstack-dashboard/local_settings file, set the change_set_password
parameter value to True.

can_set_password: True

2. Set the inject_password parameter to "True" in your Compute environment file.

inject_password=true

3. Restart the Compute service.

service nova-compute restart

When you use the nova boot command to launch a new instance, the output of the command displays
an adminPass parameter. You can use this password to log into the instance as the root user.

The Compute service overwrites the password value in the /etc/shadow file for the root user. This
procedure can also be used to activate the root account for the KVM guest images. For more
information on how to use KVM guest images, see Section 1.2.1.1, “Use a KVM Guest Image With Red Hat
OpenStack Platform”

You can also set a custom password from the dashboard. To enable this, run the following command
after you have set can_set_password parameter to true.

systemctl restart httpd.service

The newly added admin password fields are as follows:

CHAPTER 4. VIRTUAL MACHINE INSTANCES

49

These fields can be used when you launch or rebuild an instance.

4.3. MANAGE FLAVORS

Each created instance is given a flavor (resource template), which determines the instance’s size and
capacity. Flavors can also specify secondary ephemeral storage, swap disk, metadata to restrict usage,
or special project access (none of the default flavors have these additional attributes defined).

Table 4.3. Default Flavors

Name vCPUs RAM Root Disk Size

m1.tiny 1 512 MB 1 GB

m1.small 1 2048 MB 20 GB

m1.medium 2 4096 MB 40 GB

m1.large 4 8192 MB 80 GB

m1.xlarge 8 16384 MB 160 GB

The majority of end users will be able to use the default flavors. However, you can create and manage
specialized flavors. For example, you can:

Red Hat OpenStack Platform 16.0 Instances and Images Guide

50

Change default memory and capacity to suit the underlying hardware needs.

Add metadata to force a specific I/O rate for the instance or to match a host aggregate.

NOTE

Behavior set using image properties overrides behavior set using flavors (for more
information, see Section 1.2, “Manage Images”).

4.3.1. Update Configuration Permissions

By default, only administrators can create flavors or view the complete flavor list (select Admin > System
> Flavors). To allow all users to configure flavors, specify the following in the /etc/nova/policy.json file
(nova-api server):

"compute_extension:flavormanage": "",

4.3.2. Create a Flavor

1. As an admin user in the dashboard, select Admin > System > Flavors.

2. Click Create Flavor, and specify the following fields:

Table 4.4. Flavor Options

Tab Field Description

Flavor Information Name Unique name.

 ID Unique ID. The default value,
auto, generates a UUID4
value, but you can also
manually specify an integer or
UUID4 value.

 VCPUs Number of virtual CPUs.

 RAM (MB) Memory (in megabytes).

 Root Disk (GB) Ephemeral disk size (in
gigabytes); to use the native
image size, specify 0. This disk
is not used if Instance Boot
Source=Boot from Volume.

 Epehemeral Disk (GB) Secondary ephemeral disk size
(in gigabytes) available to an
instance. This disk is destroyed
when an instance is deleted.

The default value is 0, which
implies that no ephemeral disk
is created.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

51

 Swap Disk (MB) Swap disk size (in megabytes).

Flavor Access Selected Projects Projects which can use the
flavor. If no projects are
selected, all projects have
access (Public=Yes).

Tab Field Description

3. Click Create Flavor.

4.3.3. Update General Attributes

1. As an admin user in the dashboard, select Admin > System > Flavors.

2. Click the flavor’s Edit Flavor button.

3. Update the values, and click Save.

4.3.4. Update Flavor Metadata

In addition to editing general attributes, you can add metadata to a flavor (extra_specs), which can help
fine-tune instance usage. For example, you might want to set the maximum-allowed bandwidth or disk
writes.

Pre-defined keys determine hardware support or quotas. Pre-defined keys are limited by the
hypervisor you are using (for libvirt, see Table 4.5, “Libvirt Metadata”).

Both pre-defined and user-defined keys can determine instance scheduling. For example, you
might specify SpecialComp=True; any instance with this flavor can then only run in a host
aggregate with the same key-value combination in its metadata (see Section 4.4, “Manage
Host Aggregates”).

4.3.4.1. View Metadata

1. As an admin user in the dashboard, select Admin > System > Flavors.

2. Click the flavor’s Metadata link (Yes or No). All current values are listed on the right-hand side
under Existing Metadata.

4.3.4.2. Add Metadata

You specify a flavor’s metadata using a key/value pair.

1. As an admin user in the dashboard, select Admin > System > Flavors.

2. Click the flavor’s Metadata link (Yes or No). All current values are listed on the right-hand side
under Existing Metadata.

3. Under Available Metadata, click on the Other field, and specify the key you want to add (see
Table 4.5, “Libvirt Metadata”).

4. Click the + button; you can now view the new key under Existing Metadata.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

52

5. Fill in the key’s value in its right-hand field.

6. When finished with adding key-value pairs, click Save.

Table 4.5. Libvirt Metadata

Key Description

hw:action Action that configures support limits per instance. Valid actions are:

cpu_max_sockets - Maximum supported CPU sockets.

cpu_max_cores - Maximum supported CPU cores.

cpu_max_threads - Maximum supported CPU threads.

cpu_sockets - Preferred number of CPU sockets.

cpu_cores - Preferred number of CPU cores.

cpu_threads - Preferred number of CPU threads.

serial_port_count - Maximum serial ports per instance.

Example: hw:cpu_max_sockets=2

CHAPTER 4. VIRTUAL MACHINE INSTANCES

53

hw:NUMA_def Definition of NUMA topology for the instance. For flavors whose RAM and
vCPU allocations are larger than the size of NUMA nodes in the compute
hosts, defining NUMA topology enables hosts to better utilize NUMA and
improve performance of the guest OS. NUMA definitions defined through the
flavor override image definitions. Valid definitions are:

numa_nodes - Number of NUMA nodes to expose to the instance.
Specify 1 to ensure image NUMA settings are overridden.

numa_cpus.0 - Mapping of vCPUs N-M to NUMA node 0 (comma-
separated list).

numa_cpus.1 - Mapping of vCPUs N-M to NUMA node 1 (comma-
separated list).

numa_mem.0 - Mapping N MB of RAM to NUMA node 0.

numa_mem.1 - Mapping N MB of RAM to NUMA node 1.

numa_cpu.N and numa_mem.N are only valid if numa_nodes is
set. Additionally, they are only required if the instance’s NUMA nodes
have an asymetrical allocation of CPUs and RAM (important for some
NFV workloads).

NOTE

If the values of numa_cpu or numa_mem.N specify more
than that available, an exception is raised.

Example when the instance has 8 vCPUs and 4GB RAM:

hw:numa_nodes=2

hw:numa_cpus.0=0,1,2,3,4,5

hw:numa_cpus.1=6,7

hw:numa_mem.0=3072

hw:numa_mem.1=1024

The scheduler looks for a host with 2 NUMA nodes with the ability to run 6
CPUs + 3072 MB, or 3 GB, of RAM on one node, and 2 CPUS + 1024 MB, or 1
GB, of RAM on another node. If a host has a single NUMA node with capability
to run 8 CPUs and 4 GB of RAM, it will not be considered a valid match.

Key Description

Red Hat OpenStack Platform 16.0 Instances and Images Guide

54

hw:watchdog_action An instance watchdog device can be used to trigger an action if the instance
somehow fails (or hangs). Valid actions are:

disabled - The device is not attached (default value).

pause - Pause the instance.

poweroff - Forcefully shut down the instance.

reset - Forcefully reset the instance.

none - Enable the watchdog, but do nothing if the instance fails.

Example: hw:watchdog_action=poweroff

hw:pci_numa_affinity_p
olicy

You can use this parameter to specify the NUMA affinity policy for PCI
passthrough devices and SR-IOV interfaces. Set to one of the following valid
values:

required: The Compute service only creates an instance that
requests a PCI device when at least one of the NUMA nodes of the
instance has affinity with the PCI device. This option provides the
best performance.

preferred: The Compute service attempts a best effort selection of
PCI devices based on NUMA affinity. If this is not possible, then the
Compute service schedules the instance on a NUMA node that has
no affinity with the PCI device.

legacy: (Default) The Compute service creates instances that
request a PCI device when either:

The PCI device has affinity with at least one of the NUMA nodes;
or

The PCI devices do not provide information on their NUMA
affinities.

Example: hw:pci_numa_affinity_policy=required

hw_rng:action A random-number generator device can be added to an instance using its
image properties (see hw_rng_model in the "Command-Line Interface
Reference" in Red Hat OpenStack Platform documentation).

If the device has been added, valid actions are:

allowed - If True, the device is enabled; if False, disabled. By
default, the device is disabled.

rate_bytes - Maximum number of bytes the instance’s kernel can
read from the host to fill its entropy pool every rate_period (integer).

rate_period - Duration of the read period in seconds (integer).

Example: hw_rng:allowed=True.

Key Description

CHAPTER 4. VIRTUAL MACHINE INSTANCES

55

hw_video:ram_max_mb Maximum permitted RAM to be allowed for video devices (in MB).

Example: hw:ram_max_mb=64

quota:option Enforcing limit for the instance. Valid options are:

cpu_period - Time period for enforcing cpu_quota (in
microseconds). Within the specified cpu_period, each vCPU cannot
consume more than cpu_quota of runtime. The value must be in
range [1000, 1000000]; 0 means no value.

cpu_quota - Maximum allowed bandwidth (in
microseconds) for the vCPU in each `cpu_period. The value
must be in range [1000, 18446744073709551]. 0 means no value; a
negative value means that the vCPU is not controlled. cpu_quota
and cpu_period can be used to ensure that all vCPUs run at the
same speed.

cpu_shares - Share of CPU time for the domain. The value only has
meaning when weighted against other machine values in the same
domain. That is, an instance with a flavor with 200 will get twice as
much machine time as an instance with 100.

disk_read_bytes_sec - Maximum disk reads in bytes per second.

disk_read_iops_sec - Maximum read I/O operations per second.

disk_write_bytes_sec - Maximum disk writes in bytes per second.

disk_write_iops_sec - Maximum write I/O operations per second.

disk_total_bytes_sec - Maximum total throughput limit in bytes
per second.

disk_total_iops_sec - Maximum total I/O operations per second.

vif_inbound_average - Desired average of incoming traffic.

vif_inbound_burst - Maximum amount of traffic that can be
received at vif_inbound_peak speed.

vif_inbound_peak - Maximum rate at which incoming traffic can
be received.

vif_outbound_average - Desired average of outgoing traffic.

vif_outbound_burst - Maximum amount of traffic that can be
sent at vif_outbound_peak speed.

vif_outbound_peak - Maximum rate at which outgoing traffic can
be sent.

Example: quota:vif_inbound_average=10240

In addition, the VMware driver supports the following quota options, which
control upper and lower limits for CPUs, RAM, disks, and networks, as well as
shares, which can be used to control relative allocation of available resources
among projects:

cpu_limit - Maximum CPU frequency available to a virtual machine

Key Description

Red Hat OpenStack Platform 16.0 Instances and Images Guide

56

cpu_limit - Maximum CPU frequency available to a virtual machine
(in MHz).

cpu_reservation - Guaranteed minimum amount of CPU
resources available to a virtual machine (in MHz).

cpu_shares_level - CPU allocation level (shares) in the case of
contention. Possible values are high, normal, low, and custom.

cpu_shares_share - The number of allocated CPU shares.
Applicable when cpu_shares_level is set to custom.

memory_limit - Maximum amount of RAM available to a virtual
machine (in MB).

memory_reservation - Guaranteed minimum amount of RAM
available to a virtual machine (in MB).

memory_shares_level - RAM allocation level (shares) in the case
of contention. Possible values are high, normal, low, and custom.

memory_shares_share - The number of allocated RAM shares.
Applicable when memory_shares_level is set to custom.

disk_io_limit - Maximum I/O utilization by a virtual machine (in I/O
operations per second).

disk_io_reservation - Guaranteed minimum amount of disk
resources available to a virtual machine (in I/O operations per
second).

disk_io_shares_level - I/O allocation level (shares) in the case of
contention. Possible values are high, normal, low, and custom.

disk_io_shares_share - The number of allocated I/O shares.
Applicable when disk_io_shares_level is set to custom.

vif_limit - Maximum network bandwidth available to a virtual
network adapter (in Mbps).

vif_reservation - Guaranteed minimum network bandwidth
available to a virtual network adapter (in Mbps).

vif_shares_level - Network bandwidth allocation level (shares) in
the case of contention. Possible values are high, normal, low, and
custom.

vif_shares_share - The number of allocated network bandwidth
shares. Applicable when vif_shares_level is set to custom.

Key Description

4.4. MANAGE HOST AGGREGATES

A single Compute deployment can be partitioned into logical groups for performance or administrative
purposes. OpenStack uses the following terms:

Host aggregates - A host aggregate creates logical units in a OpenStack deployment by
grouping together hosts. Aggregates are assigned Compute hosts and associated metadata; a
host can be in more than one host aggregate. Only administrators can see or create host
aggregates.
An aggregate’s metadata is commonly used to provide information for use with the Compute
scheduler (for example, limiting specific flavors or images to a subset of hosts). Metadata
specified in a host aggregate will limit the use of that host to any instance that has the same

CHAPTER 4. VIRTUAL MACHINE INSTANCES

57

metadata specified in its flavor.

Administrators can use host aggregates to handle load balancing, enforce physical isolation (or
redundancy), group servers with common attributes, or separate out classes of hardware. When
you create an aggregate, a zone name must be specified, and it is this name which is presented
to the end user.

Availability zones - An availability zone is the end-user view of a host aggregate. An end user
cannot view which hosts make up the zone, nor see the zone’s metadata; the user can only see
the zone’s name.
End users can be directed to use specific zones which have been configured with certain
capabilities or within certain areas.

4.4.1. Enable Host Aggregate Scheduling

By default, host-aggregate metadata is not used to filter instance usage. You must update the Compute
scheduler’s configuration to enable metadata usage:

1. Open your Compute environment file.

2. Add the following values to the NovaSchedulerDefaultFilters parameter, if they are not already
present:

AggregateInstanceExtraSpecsFilter for host aggregate metadata.

NOTE

Scoped specifications must be used for setting flavor extra_specs when
specifying both AggregateInstanceExtraSpecsFilter and
ComputeCapabilitiesFilter filters as values of the same
NovaSchedulerDefaultFilters parameter, otherwise the
ComputeCapabilitiesFilter will fail to select a suitable host. For details on
the namespaces to use to scope the flavor extra_specs keys for these
filters, see Table 4.7, “Scheduling Filters” .

AvailabilityZoneFilter for availability zone host specification when launching an instance.

3. Save the configuration file.

4. Deploy the overcloud.

4.4.2. View Availability Zones or Host Aggregates

As an admin user in the dashboard, select Admin > System > Host Aggregates. All currently defined
aggregates are listed in the Host Aggregates section; all zones are in the Availability Zones section.

4.4.3. Add a Host Aggregate

1. As an admin user in the dashboard, select Admin > System > Host Aggregates. All currently
defined aggregates are listed in the Host Aggregates section.

2. Click Create Host Aggregate.

3. Add a name for the aggregate in the Name field, and a name by which the end user should see it
in the Availability Zone field.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

58

4. Click Manage Hosts within Aggregate.

5. Select a host for use by clicking its + icon.

6. Click Create Host Aggregate.

4.4.4. Update a Host Aggregate

1. As an admin user in the dashboard, select Admin > System > Host Aggregates. All currently
defined aggregates are listed in the Host Aggregates section.

2. To update the instance’s Name or Availability zone:

Click the aggregate’s Edit Host Aggregate button.

Update the Name or Availability Zone field, and click Save.

3. To update the instance’s Assigned hosts:

Click the aggregate’s arrow icon under Actions.

Click Manage Hosts.

Change a host’s assignment by clicking its + or - icon.

When finished, click Save.

4. To update the instance’s Metadata:

Click the aggregate’s arrow icon under Actions.

Click the Update Metadata button. All current values are listed on the right-hand side under
Existing Metadata.

Under Available Metadata, click on the Other field, and specify the key you want to add.
Use predefined keys (see Table 4.6, “Host Aggregate Metadata”) or add your own (which
will only be valid if exactly the same key is set in an instance’s flavor).

Click the + button; you can now view the new key under Existing Metadata.

NOTE

Remove a key by clicking its - icon.

Click Save.

Table 4.6. Host Aggregate Metadata

Key Description

filter_project_id If specified, the aggregate only hosts this project (tenant). Depends
on the AggregateMultiTenancyIsolation filter being set for the
Compute scheduler.

4.4.5. Delete a Host Aggregate

CHAPTER 4. VIRTUAL MACHINE INSTANCES

59

1. As an admin user in the dashboard, select Admin > System > Host Aggregates. All currently
defined aggregates are listed in the Host Aggregates section.

2. Remove all assigned hosts from the aggregate:

a. Click the aggregate’s arrow icon under Actions.

b. Click Manage Hosts.

c. Remove all hosts by clicking their - icon.

d. When finished, click Save.

3. Click the aggregate’s arrow icon under Actions.

4. Click Delete Host Aggregate in this and the next dialog screen.

4.5. SCHEDULE HOSTS

The Compute scheduling service determines on which host, or host aggregate, to place an instance. As
an administrator, you can influence where the scheduler places an instance. For example, you might want
to limit scheduling to hosts in a certain group or with the right RAM.

You can configure the following components:

Filters - Determine the initial set of hosts on which an instance might be placed (see
Section 4.5.1, “Configure Scheduling Filters”).

Weights - When filtering is complete, the resulting set of hosts are prioritized using the
weighting system. The highest weight has the highest priority (see Section 4.5.2, “Configure
Scheduling Weights”).

Scheduler service - There are a number of configuration options in the /var/lib/config-
data/puppet-generated/<nova_container>/etc/nova/nova.conf file (on the scheduler host),
which determine how the scheduler executes its tasks, and handles weights and filters.

Placement service - Specify the traits an instance requires a host to have, such as the type of
storage disk, or the Intel CPU instruction set extension (see Section 4.5.3, “Configure
Placement Service Traits”).

In the following diagram, both host 1 and 3 are eligible after filtering. Host 1 has the highest weight and
therefore has the highest priority for scheduling.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

60

4.5.1. Configure Scheduling Filters

You define the filters you want the scheduler to use using the NovaSchedulerDefaultFilters parameter
in your Compute environment file. Filters can be added or removed.

The default configuration runs the following filters in the scheduler:

RetryFilter

AvailabilityZoneFilter

ComputeFilter

ComputeCapabilitiesFilter

ImagePropertiesFilter

ServerGroupAntiAffinityFilter

ServerGroupAffinityFilter

Some filters use information in parameters passed to the instance in:

The nova boot command.

The instance’s flavor (see Section 4.3.4, “Update Flavor Metadata”)

The instance’s image (see Appendix A, Image Configuration Parameters).

All available filters are listed in the following table.

Table 4.7. Scheduling Filters

Filter Description

AggregateImagePropert
iesIsolation

Only passes hosts in host aggregates whose metadata matches the instance’s
image metadata; only valid if a host aggregate is specified for the instance.
For more information, see Section 1.2.1, “Creating an Image”.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

61

AggregateInstanceExtra
SpecsFilter

Metadata in the host aggregate must match the host’s flavor metadata. For
more information, see Section 4.3.4, “Update Flavor Metadata”.

 This filter can only be specified in the same NovaSchedulerDefaultFilters
parameter as ComputeCapabilitiesFilter when you scope your flavor
extra_specs keys by prefixing them with the correct namespace:

ComputeCapabilitiesFilter namespace = "capabilities:"

AggregateInstanceExtraSpecsFilter namespace =
"aggregate_instance_extra_specs:"

AggregateMultiTenancy
Isolation

A host with the specified filter_project_id can only contain instances from
that project.

NOTE

The project can still place instances on other hosts.

AllHostsFilter Passes all available hosts (however, does not disable other filters).

AvailabilityZoneFilter Filters using the instance’s specified availability zone.

ComputeCapabilitiesFilt
er

Ensures Compute metadata is read correctly. Anything before the : is read as a
namespace. For example, quota:cpu_period uses quota as the namespace
and cpu_period as the key.

ComputeFilter Passes only hosts that are operational and enabled.

DifferentHostFilter Enables an instance to build on a host that is different from one or more
specified hosts. Specify different hosts using the nova boot option --
different_host option.

ImagePropertiesFilter Only passes hosts that match the instance’s image properties. For more
information, see Section 1.2.1, “Creating an Image”.

IsolatedHostsFilter Passes only isolated hosts running isolated images that are specified using
isolated_hosts and isolated_images (comma-separated values).

JsonFilter Recognises and uses an instance’s custom JSON filters:

Valid operators are: =, <, >, in, ⇐, >=, not, or, and

Recognised variables are: $free_ram_mb, $free_disk_mb,
$total_usable_ram_mb, $vcpus_total, $vcpus_used

Filter Description

Red Hat OpenStack Platform 16.0 Instances and Images Guide

62

 The filter is specified as a query hint in the nova boot command. For
example:

--hint query='['>=', '$free_disk_mb', 200 * 1024]'

MetricsFilter Filters out hosts with unavailable metrics.

NUMATopologyFilter Filters out hosts based on its NUMA topology. If the instance has no topology
defined, any host can be used. The filter tries to match the exact NUMA
topology of the instance to those of the host (it does not attempt to pack the
instance onto the host). The filter also looks at the standard over-subscription
limits for each NUMA node, and provides limits to the compute host
accordingly.

PCIWeigher The weigher can compute the weight based on the number of PCI devices on
the host and the number of PCI devices requested by an instance. For
example, if there are three hosts available, one with a single PCI device, one
with multiple PCI devices and one without any PCI devices, then Compute
should prioritize these hosts based on the demands of the instance. The first
host should be preferred if the instance requests one PCI device, the second
host if the instance requires multiple PCI devices and the third host if the
instances does not request a PCI device.

For more information, see Reserve NUMA Nodes with PCI Devices

RetryFilter Filters out hosts that have failed a scheduling attempt; valid if
scheduler_max_attempts is greater than zero (defaults to "3").

SameHostFilter Passes one or more specified hosts; specify hosts for the instance using the --
hint same_host option for nova boot.

ServerGroupAffinityFilt
er

Only passes hosts for a specific server group:

Give the server group the affinity policy (nova server-group-
create --policy affinity groupName).

Build the instance with that group (nova boot option --hint
group=UUID)

ServerGroupAntiAffinity
Filter

Only passes hosts in a server group that do not already host an instance:

Give the server group the anti-affinity policy (nova server-group-
create --policy anti-affinity groupName).

Build the instance with that group (nova boot option --hint
group=UUID).

SimpleCIDRAffinityFilte
r

Only passes hosts on the specified IP subnet range specified by the instance’s
cidr and build_new_host_ip hints. Example:

--hint build_near_host_ip=192.0.2.0 --hint cidr=/24

Filter Description

CHAPTER 4. VIRTUAL MACHINE INSTANCES

63

4.5.2. Configure Scheduling Weights

Hosts can be weighted for scheduling; the host with the largest weight (after filtering) is selected. All
weighers are given a multiplier that is applied after normalising the node’s weight. A node’s weight is
calculated as:

w1_multiplier * norm(w1) + w2_multiplier * norm(w2) + ...

You can configure weight options in the Compute node configuration file.

4.5.2.1. Configure Weight Options for Hosts

You can define the host weighers you would like the scheduler to use in the [DEFAULT]
scheduler_weight_classes option. Valid weighers are:

nova.scheduler.weights.ram - Weighs the host’s available RAM.

nova.scheduler.weights.metrics - Weighs the host’s metrics.

nova.scheduler.weights.affinity - Weighs the host’s proximity to other hosts in the given
server group.

nova.scheduler.weights.all_weighers - Uses all host weighers (default).

Table 4.8. Host Weight Options

Weigher Option Description

All [DEFAULT]
scheduler_host_s
ubset_size

Defines the subset size from which a host is selected
(integer); must be at least 1. A value of 1 selects the first
host returned by the weighing functions. Any value less than
1 is ignored and 1 is used instead (integer value).

affinity [default]
soft_affinity_weig
ht_multiplier

Used for weighing hosts for group soft-affinity. Should be a
positive floating-point number, because a negative value
results in the opposite behavior, which is normally controlled
by soft_anti_affinity_weight_multiplier.

affinity [default]
soft_anti_affinity_
weight_multiplier

Used for weighing hosts for group soft-anti-affinity. Should
be a positive floating-point number, because a negative
value results in the opposite behavior, which is normally
controlled by soft_affinity_weight_multiplier.

metrics [metrics] required Specifies how to handle metrics in [metrics]
weight_setting that are unavailable:

True- Metrics are required; if unavailable, an
exception is raised. To avoid the exception, use the
MetricFilter filter in the
scheduler_default_filters option.

False - The unavailable metric is treated as a
negative factor in the weighing process; the
returned value is set by weight_of_unavailable.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

64

metrics [metrics]
weight_of_unavail
able

Used as the weight if any metric in [metrics]
weight_setting is unavailable; valid if required=False.

metrics [metrics]
weight_multiplier

Mulitplier used for weighing metrics. By default,
weight_multiplier=1.0 and spreads instances across
possible hosts. If this value is negative, the host with lower
metrics is prioritized, and instances are stacked in hosts.

metrics [metrics]
weight_setting

Specifies metrics and the ratio with which they are weighed;
use a comma-separated list of metric=ratio pairs. Valid
metric names are:

cpu.frequency - Current CPU frequency

cpu.user.time - CPU user mode time

cpu.kernel.time - CPU kernel time

cpu.idle.time - CPU idle time

cpu.iowait.time - CPU I/O wait time

cpu.user.percent - CPU user mode percentage

cpu.kernel.percent - CPU kernel percentage

cpu.idle.percent - CPU idle percentage

cpu.iowait.percent - CPU I/O wait percentage

cpu.percent - Generic CPU utilization

Example: weight_setting=cpu.user.time=1.0

ram [DEFAULT]
ram_weight_multi
plier

Multiplier for RAM (floating point). By default,
ram_weight_multiplier=1.0 and spreads instances
across possible hosts. If this value is negative, the host with
less RAM is prioritized, and instances are stacked in hosts.

Weigher Option Description

4.5.3. Configure Placement Service Traits

The placement service tracks the inventory and usage of resource providers, which can be a compute
node, a shared storage pool, or an IP allocation pool. Any service that needs to manage the selection
and consumption of resources can use the placement service.

To query the placement service, install the python3-osc-placement package on the undercloud.

Each resource provider has a set of traits. Traits are the qualitative aspects of a resource provider, for
example, the type of storage disk, or the Intel CPU instruction set extension. An instance can specify
which of these traits it requires.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

65

The Compute (nova) service interacts with the placement service when it creates instances, with the
nova-compute and nova-scheduler processes.

nova-compute

Creates the resource provider record.

Sets the inventory that describes the available quantitative resources, such as the available
vCPUs.

Sets the traits that describe qualitative aspects of the resource provider. The libvirt
virtualization driver reports these traits to the placement service (see Section 4.5.3.1, “libvirt
virtualization driver capabilities as placement service traits” for details).

nova-scheduler

Sends a request to the placement service for a list of allocation candidates.

Decides which destination host to build a server on, based on the traits required by the
instance.

4.5.3.1. libvirt virtualization driver capabilities as placement service traits

You can use the capabilities of libvirt virtualization drivers as placement service traits. The traits that
you can specify are defined in the os-traits library, for example:

COMPUTE_TRUSTED_CERTS

COMPUTE_NET_ATTACH_INTERFACE_WITH_TAG

COMPUTE_IMAGE_TYPE_RAW

HW_CPU_X86_AVX

HW_CPU_X86_AVX512VL

HW_CPU_X86_AVX512CD

See the os-traits library for a catalog of the standardized constants that an instance can request for a
particular hardware, virtualization, storage, network, or device trait.

The following libvirt virtualization drivers automatically report the features that a host CPU provides,
such as the type of instruction set, for example, SSE4, AVX, or AVX-512, to the placement service:

Libvirt QEMU (x86)

Libvirt KVM (x86)

Libvirt KVM (ppc64)

If you are using one of these drivers, you can configure the flavor extra specs or image metadata for an
instance to request a resource provider with specific CPU features.

4.5.3.2. Using placement service traits to specify resource provider requirements

You can use one of the following methods to specify the required resource provider traits for an

Red Hat OpenStack Platform 16.0 Instances and Images Guide

66

https://docs.openstack.org/os-traits/latest/

You can use one of the following methods to specify the required resource provider traits for an
instance:

Requesting a trait using image metadata

Requesting a trait using flavor extra specs

In the following example procedures, the instance requires a particular type of CPU.

Prerequisites

The placement service package, python3-osc-placement, is installed on the undercloud.

Your deployment uses one of the following libvirt virtualization drivers:

Libvirt QEMU (x86)

Libvirt KVM (x86)

Libvirt KVM (ppc64)

Procedure: Requesting a trait using image metadata

1. Create a new image or modify an existing one to set the required trait:

$ openstack image create ... $IMAGE
$ openstack image set --property trait:HW_CPU_X86_AVX512BW=required $IMAGE

2. Boot an instance using the image:

$ openstack server create --image=$IMAGE ... $SERVER_NAME

Result: The instance is created on a host that supports AVX-512.

Procedure: Requesting a trait using flavor extra specs

1. Create a new flavor or modify an existing one to set the required trait:

$ openstack flavor create ... $FLAVOR
$ openstack flavor set --property trait:HW_CPU_X86_AVX512BW=required $FLAVOR

2. Boot an instance using the flavor:

$ openstack server create --flavor=$FLAVOR ... $SERVER_NAME

Result: The instance is created on a host that supports AVX-512.

4.5.4. Configuring a guaranteed minimum bandwidth QoS

You can create instances that request a guaranteed minimum bandwidth by using a Quality of Service
(QoS) policy.

QoS policies with a guaranteed minimum bandwidth rule are assigned to ports on a specific physical
network. When you create an instance that uses the configured port, the Compute scheduling service
selects a host for the instance that satisfies this request. The Compute scheduling service checks the

CHAPTER 4. VIRTUAL MACHINE INSTANCES

67

Placement service for the amount of bandwidth reserved by other instances on each physical interface,
before selecting a host to deploy an instance on.

Limitations/Restrictions

You can only assign a guaranteed minimum bandwidth QoS policy when creating a new instance.
You cannot assign a guaranteed minimum bandwidth QoS policy to instances that are already
running, as the Compute service only updates resource usage for an instance in placement
during creation or move operations, which means the minimum bandwidth available to the
instance cannot be guaranteed.

You cannot live migrate an instance that uses a port that has resource requests, such as a
guaranteed minimum bandwidth QoS policy. Run the following command to check if a port has
resource requests:

$ openstack port show <port_name/port_id>

Prerequisites

A QoS policy is available that has a minimum bandwidth rule. For more information, see
Configuring Quality of Service (QoS) policies

Procedure

1. List the available QoS policies:

(overcloud) $ openstack network qos policy list

--+
| ID | Name | Shared | Default | Project |
--+
| 6d771447-3cf4-4ef1-b613-945e990fa59f | policy2 | True | False |
ba4de51bf7694228a350dd22b7a3dc24 |
| 78a24462-e3c1-4e66-a042-71131a7daed5 | policy1 | True | False |
ba4de51bf7694228a350dd22b7a3dc24 |
| b80acc64-4fc2-41f2-a346-520d7cfe0e2b | policy0 | True | False |
ba4de51bf7694228a350dd22b7a3dc24 |
--+

2. Check the rules of each of the available policies to determine which has the required minimum
bandwidth:

(overcloud) $ openstack network qos policy show policy0

--+
| Field | Value |
--+
| description |
|
| id | b80acc64-4fc2-41f2-a346-520d7cfe0e2b
|
| is_default | False
|

Red Hat OpenStack Platform 16.0 Instances and Images Guide

68

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/networking_guide/sec-qos

| location | cloud=', project.domain_id=, project.domain_name='Default,
project.id=ba4de51bf7694228a350dd22b7a3dc24, project.name=admin,
region_name=regionOne, zone=
|
| name | policy0
|
| project_id | ba4de51bf7694228a350dd22b7a3dc24
|
| rules | [{min_kbps: 100000, direction: egress, id: d46218fe-9218-4e96-952b-
9f45a5cb3b3c, qos_policy_id: b80acc64-4fc2-41f2-a346-520d7cfe0e2b, type:
minimum_bandwidth}, {min_kbps: 100000, direction: ingress, id: 1202c4e3-a03a-464c-80d5-
0bf90bb74c9d, qos_policy_id: b80acc64-4fc2-41f2-a346-520d7cfe0e2b, type:
minimum_bandwidth}] |
| shared | True
|
| tags | []
|
--+

3. Create a port from the appropriate policy:

(overcloud) $ openstack port create port-normal-qos --network net0 --qos-policy policy0

4. Create an instance, specifying the NIC port to use:

$ openstack server create --flavor cirros256 --image cirros-0.3.5-x86_64-disk --nic port-
id=port-normal-qos --wait qos_instance

An "ACTIVE" status in the output indicates that you have successfully created the instance on a
host that can provide the requested guaranteed minimum bandwidth.

4.5.4.1. Removing a guaranteed minimum bandwidth QoS from an instance

If you want to lift the guaranteed minimum bandwidth QoS policy restriction from an instance, you can
detach the interface.

1. To detach the interface, enter the following command:

$ openstack server remove port <vm_name|vm_id> <port_name|port_id>

4.5.5. Reserve NUMA Nodes with PCI Devices

Compute uses the filter scheduler to prioritize hosts with PCI devices for instances requesting PCI. The
hosts are weighted using the PCIWeigher option, based on the number of PCI devices available on the
host and the number of PCI devices requested by an instance. If an instance requests PCI devices, then
the hosts with more PCI devices are allocated a higher weight than the others. If an instance is not
requesting PCI devices, then prioritization does not take place.

This feature is especially useful in the following cases:

As an operator, if you want to reserve nodes with PCI devices (typically expensive and with
limited resources) for guest instances that request them.

As a user launching instances, you want to ensure that PCI devices are available when required.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

69

NOTE

For this value to be considered, one of the following values must be added to the
NovaSchedulerDefaultFilters parameter in your Compute environment file:
PciPassthroughFilter or NUMATopologyFilter.

The pci_weight_multiplier configuration option must be a positive value.

4.5.6. Configure Emulator Threads to run on Dedicated Physical CPU

The Compute scheduler determines the CPU resource utilization and places instances based on the
number of virtual CPUs (vCPUs) in the flavor. There are a number of hypervisor operations that are
performed on the host, on behalf of the guest instance, for example, with QEMU, there are threads used
for the QEMU main event loop, asynchronous I/O operations and so on and these operations need to be
accounted and scheduled separately.

The libvirt driver implements a generic placement policy for KVM which allows QEMU emulator threads
to float across the same physical CPUs (pCPUs) that the vCPUs are running on. This leads to the
emulator threads using time borrowed from the vCPUs operations. When you need a guest to have
dedicated vCPU allocation, it is necessary to allocate one or more pCPUs for emulator threads. It is
therefore necessary to describe to the scheduler any other CPU usage that might be associated with a
guest and account for that during placement.

NOTE

In an NFV deployment, to avoid packet loss, you have to make sure that the vCPUs are
never preempted.

Before you enable the emulator threads placement policy on a flavor, check that the following heat
parameters are defined as follows:

NovaComputeCpuSharedSet: Set this parameter to a list of CPUs defined to run emulator
threads.

NovaSchedulerDefaultFilters: Include NUMATopologyFilter in the list of defined filters.

NOTE

You can define or change heat parameter values on an active cluster, and then redeploy
for those changes to take effect.

To isolate emulator threads, you must use a flavor configured as follows:

openstack flavor set FLAVOR-NAME \
--property hw:cpu_policy=dedicated \
--property hw:emulator_threads_policy=share

4.6. MANAGE INSTANCE SNAPSHOTS

An instance snapshot allows you to create a new image from an instance. This is very convenient for
upgrading base images or for taking a published image and customizing it for local use.

The difference between an image that you upload directly to the Image Service and an image that you

Red Hat OpenStack Platform 16.0 Instances and Images Guide

70

create by snapshot is that an image created by snapshot has additional properties in the Image Service
database. These properties are found in the image_properties table and include the following
parameters:

Table 4.9. Snapshot Options

Name Value

image_type snapshot

instance_uuid <uuid of instance that was snapshotted>

base_image_ref <uuid of original image of instance that was snapshotted>

image_location snapshot

Snapshots allow you to create new instances based on that snapshot, and potentially restore an instance
to that state. Moreover, this can be performed while the instance is running.

By default, a snapshot is accessible to the users and projects that were selected while launching an
instance that the snapshot is based on.

4.6.1. Create an Instance Snapshot

NOTE

If you intend to use an instance snapshot as a template to create new instances, you must
ensure that the disk state is consistent. Before you create a snapshot, set the snapshot
image metadata property os_require_quiesce=yes. For example,

$ glance image-update IMAGE_ID --property os_require_quiesce=yes

For this to work, the guest should have the qemu-guest-agent package installed, and the
image should be created with the metadata property parameter
hw_qemu_guest_agent=yes set. For example,

$ glance image-create --name NAME \
--disk-format raw \
--container-format bare \
--file FILE_NAME \
--is-public True \
--property hw_qemu_guest_agent=yes \
--progress

If you unconditionally enable the hw_qemu_guest_agent=yes parameter, then you are
adding another device to the guest. This consumes a PCI slot, and will limit the number of
other devices you can allocate to the guest. It also causes Windows guests to display a
warning message about an unknown hardware device.

For these reasons, setting the hw_qemu_guest_agent=yes parameter is optional, and
the parameter should be used for only those images that require the QEMU guest agent.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

71

1. In the dashboard, select Project > Compute > Instances.

2. Select the instance from which you want to create a snapshot.

3. In the Actions column, click Create Snapshot.

4. In the Create Snapshot dialog, enter a name for the snapshot and click Create Snapshot.
The Images category now shows the instance snapshot.

To launch an instance from a snapshot, select the snapshot and click Launch.

4.6.2. Manage a Snapshot

1. In the dashboard, select Project > Images.

2. All snapshots you created, appear under the Project option.

3. For every snapshot you create, you can perform the following functions, using the dropdown list:

a. Use the Create Volume option to create a volume and entering the values for volume name,
description, image source, volume type, size and availability zone. For more information, see
Create a Volume in the Storage Guide.

b. Use the Edit Image option to update the snapshot image by updating the values for name,
description, Kernel ID, Ramdisk ID, Architecture, Format, Minimum Disk (GB), Minimum RAM
(MB), public or private. For more information, see Section 1.2.3, “Update an Image” .

c. Use the Delete Image option to delete the snapshot.

4.6.3. Rebuild an Instance to a State in a Snapshot

In an event that you delete an instance on which a snapshot is based, the snapshot still stores the
instance ID. You can check this information using the nova image-list command and use the snapshot to
restore the instance.

1. In the dashboard, select Project > Compute > Images.

2. Select the snapshot from which you want to restore the instance.

3. In the Actions column, click Launch Instance.

4. In the Launch Instance dialog, enter a name and the other details for the instance and click
Launch.

For more information on launching an instance, see Section 4.1.2, “Launch an Instance” .

4.6.4. Consistent Snapshots

Previously, file systems had to be quiesced manually (fsfreeze) before taking a snapshot of active
instances for consistent backups.

Compute’s libvirt driver automatically requests the QEMU Guest Agent to freeze the file systems (and
applications if fsfreeze-hook is installed) during an image snapshot. Support for quiescing file systems
enables scheduled, automatic snapshots at the block device level.

This feature is only valid if the QEMU Guest Agent is installed (qemu-ga) and the image metadata

Red Hat OpenStack Platform 16.0 Instances and Images Guide

72

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/storage_guide/#section-create-volume

This feature is only valid if the QEMU Guest Agent is installed (qemu-ga) and the image metadata
enables the agent (hw_qemu_guest_agent=yes)

NOTE

Snapshots should not be considered a substitute for an actual system backup.

4.7. USE RESCUE MODE FOR INSTANCES

Compute has a method to reboot a virtual machine in rescue mode. Rescue mode provides a mechanism
for access when the virtual machine image renders the instance inaccessible. A rescue virtual machine
allows a user to fix their virtual machine by accessing the instance with a new root password. This feature
is useful if an instance’s filesystem is corrupted. By default, rescue mode starts an instance from the
initial image attaching the current boot disk as a secondary one.

4.7.1. Preparing an Image for a Rescue Mode Instance

Due to the fact that both the boot disk and the disk for rescue mode have same UUID, sometimes the
virtual machine can be booted from the boot disk instead of the disk for rescue mode.

To avoid this issue, you should create a new image as rescue image based on the procedure in
Section 1.2.1, “Creating an Image” :

NOTE

The rescue image is stored in glance and configured in the nova.conf as a default, or
you can select when you do the rescue.

4.7.1.1. Rescue Image if Using ext4 Filesystem

When the base image uses ext4 filesystem, you can create a rescue image from it using the following
procedure:

1. Change the UUID to a random value using the tune2fs command:

tune2fs -U random /dev/DEVICE_NODE

Here DEVICE_NODE is the root device node (for example, sda, vda, and so on).

2. Verify the details of the filesystem, including the new UUID:

tune2fs -l

3. Update the /etc/fstab to use the new UUID. You may need to repeat this for any additional
partitions you have, that are mounted in the fstab by UUID.

4. Update the /boot/grub2/grub.conf file and update the UUID parameter with the new UUID of
the root disk.

5. Shut down and use this image as your rescue image. This will cause the rescue image to have a
new random UUID that will not conflict with the instance that you are rescuing.

NOTE

CHAPTER 4. VIRTUAL MACHINE INSTANCES

73

NOTE

The XFS filesystem cannot change the UUID of the root device on the running virtual
machine. Reboot the virtual machine until the virtual machine is launched from the disk
for rescue mode.

4.7.2. Adding the Rescue Image to the OpenStack Image Service

When you have completed modifying the UUID of your image, use the following commands to add the
generated rescue image to the OpenStack Image service:

1. Add the rescue image to the Image service:

glance image-create --name IMAGE_NAME --disk-format qcow2 \
 --container-format bare --is-public True --file IMAGE_PATH

Here IMAGE_NAME is the name of the image, IMAGE_PATH is the location of the image.

2. Use the image-list command to obtain the IMAGE_ID required for launching an instace in the
rescue mode.

glance image-list

You can also upload an image using the OpenStack Dashboard, see Section 1.2.2, “Upload an Image” .

4.7.3. Launching an Instance in Rescue Mode

1. Since you need to rescue an instance with a specific image, rather than the default one, use the
--image parameter:

nova rescue --image IMAGE_ID VIRTUAL_MACHINE_ID

Here IMAGE_ID is the ID of the image you want to use and VIRTUAL_MACHINE_ID is ID of a
virtual machine that you want to rescue.

NOTE

The nova rescue command allows an instance to perform a soft shut down. This
allows the guest operating system to perform a controlled shutdown before the
instance is powered off. The shut down behavior is configured using
shutdown_timeout in your Compute configuration file. The value stands for the
overall period (in seconds) a guest operation system is allowed to complete the
shutdown. The default timeout is 60 seconds.

The timeout value can be overridden on a per image basis by means of
os_shutdown_timeout that is an image metadata setting allowing different
types of operating systems to specify how much time they need to shut down
cleanly.

2. Reboot the virtual machine.

3. Confirm the status of the virtual machine is RESCUE on the controller node by using nova list
command or by using dashboard.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

74

4. Log in to the new virtual machine dashboard by using the password for rescue mode.

You can now make the necessary changes to your instance to fix any issues.

4.7.4. Unrescuing an Instance

You can unrescue the fixed instance to restart it from the boot disk.

1. Execute the following commands on the controller node.

nova unrescue VIRTUAL_MACHINE_ID

Here VIRTUAL_MACHINE_ID is ID of a virtual machine that you want to unrescue.

The status of your instance returns to ACTIVE once the unrescue operation has completed successfully.

4.8. SET A CONFIGURATION DRIVE FOR INSTANCES

You can use the config-drive parameter to present a read-only drive to your instances. This drive can
contain selected files that are then accessible to the instance. The configuration drive is attached to the
instance at boot, and is presented to the instance as a partition. Configuration drives are useful when
combined with cloud-init (for server bootstrapping), and when you want to pass large files to your
instances.

4.8.1. Configuration Drive Options

Use your Compute environment file to set the following configuration drive parameters:

config_drive_format - sets the format of the drive, and accepts the options iso9660 and vfat.
By default, it uses iso9660.

force_config_drive - this forces the configuration drive to be presented to all instances. Set to
"True".

mkisofs_cmd - specifies the command to use for ISO file creation. This value must not be
changed, as only genisoimage is supported.

4.8.2. Use a Configuration Drive

An instance attaches its configuration drive at boot time. This is enabled by the --config-drive option.
For example, this command creates a new instance named test-instance01 and attaches a drive
containing a file named /root/user-data.txt:

nova boot --flavor m1.tiny --config-drive true --file /root/user-data.txt=/root/user-data.txt --image
cirros test-instance01

Once the instance has booted, you can log in to it and see a file named /root/user-data.txt.

NOTE

You can use the configuration drive as a source for cloud-init information. During the
initial instance boot, cloud-init can automatically mount the configuration drive and run
the setup scripts.

CHAPTER 4. VIRTUAL MACHINE INSTANCES

75

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES
BETWEEN COMPUTE NODES

You sometimes need to migrate instances from one Compute node to another Compute node in the
overcloud, to perform maintenance, rebalance the workload, or replace a failed or failing node.

Compute node maintenance

If you need to temporarily take a Compute node out of service, for instance, to perform hardware
maintenance or repair, kernel upgrades and software updates, you can migrate instances running on
the Compute node to another Compute node.

Failing Compute node

If a Compute node is about to fail and you need to service it or replace it, you can migrate instances
from the failing Compute node to a healthy Compute node.

Failed Compute nodes

If a Compute node has already failed, you can evacuate the instances. You can rebuild instances from
the original image on another Compute node, using the same name, UUID, network addresses, and
any other allocated resources the instance had before the Compute node failed.

Workload rebalancing

You can migrate one or more instances to another Compute node to rebalance the workload. For
example, you can consolidate instances on a Compute node to conserve power, migrate instances to
a Compute node that is physically closer to other networked resources to reduce latency, or
distribute instances across Compute nodes to avoid hot spots and increase resiliency.

Director configures all Compute nodes to provide secure migration. All Compute nodes also require a
shared SSH key to provide the users of each host with access to other Compute nodes during the
migration process. Director creates this key using the OS::TripleO::Services::NovaCompute
composable service. This composable service is one of the main services included on all Compute roles
by default. For more information, see Composable Services and Custom Roles in the Advanced
Overcloud Customization guide.

NOTE

If you have a functioning Compute node, and you want to make a copy of an instance for
backup purposes, or to copy the instance to a different environment, follow the
procedure in Importing virtual machines into the overcloud in the Director Installation and
Usage guide.

5.1. MIGRATION TYPES

Red Hat OpenStack Platform (RHOSP) supports the following types of migration.

Cold migration

Cold migration, or non-live migration, involves shutting down a running instance before migrating it from
the source Compute node to the destination Compute node.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

76

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/advanced_overcloud_customization/chap-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/index#importing-virtual-machines-into-the-overcloud

Cold migration involves some downtime for the instance. The migrated instance maintains access to the
same volumes and IP addresses.

NOTE

Cold migration requires that both the source and destination Compute nodes are
running.

Live migration

Live migration involves moving the instance from the source Compute node to the destination
Compute node without shutting it down, and while maintaining state consistency.

Live migrating an instance involves little or no perceptible downtime. However, live migration does
impact performance for the duration of the migration operation. Therefore, instances should be taken
out of the critical path while being migrated.

NOTE

Live migration requires that both the source and destination Compute nodes are running.

In some cases, instances cannot use live migration. For more information, see Migration Constraints.

Evacuation

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

77

If you need to migrate instances because the source Compute node has already failed, you can
evacuate the instances.

5.2. MIGRATION CONSTRAINTS

Migration constraints typically arise with block migration, configuration disks, or when one or more
instances access physical hardware on the Compute node.

CPU constraints

The source and destination Compute nodes must have the same CPU architecture. For example, Red
Hat does not support migrating an instance from an x86_64 CPU to a ppc64le CPU. In some cases, the
CPU of the source and destination Compute node must match exactly, such as instances that use CPU
host passthrough. In all cases, the CPU features of the destination node must be a superset of the CPU
features on the source node.

Memory constraints

The destination Compute node must have sufficient available RAM. Memory oversubscription can cause
migration to fail.

Block migration constraints

Migrating instances that use disks that are stored locally on a Compute node takes significantly longer
than migrating volume-backed instances that use shared storage, such as Red Hat Ceph Storage. This
latency arises because OpenStack Compute (nova) migrates local disks block-by-block between the
Compute nodes over the control plane network by default. By contrast, volume-backed instances that
use shared storage, such as Red Hat Ceph Storage, do not have to migrate the volumes, because each
Compute node already has access to the shared storage.

NOTE

Network congestion in the control plane network caused by migrating local disks or
instances that consume large amounts of RAM might impact the performance of other
systems that use the control plane network, such as RabbitMQ.

Read-only drive migration constraints

Migrating a drive is supported only if the drive has both read and write capabilities. For example,
OpenStack Compute (nova) cannot migrate a CD-ROM drive or a read-only config drive. However,
OpenStack Compute (nova) can migrate a drive with both read and write capabilities, including a config
drive with a drive format such as vfat.

Live migration constraints

In some cases, live migrating instances involves additional constraints.

No new operations during migration

To achieve state consistency between the copies of the instance on the source and destination
nodes, RHOSP must prevent new operations during live migration. Otherwise, live migration might
take a long time or potentially never end if writes to memory occur faster than live migration can
replicate the state of the memory.

CPU pinning with NUMA

NovaSchedulerDefaultFilters parameter in the Compute configuration must include the values
AggregateInstanceExtraSpecsFilter and NUMATopologyFilter.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

78

Multi-cell clouds

In a multi-cell cloud, instances can be live migrated to a different host in the same cell, but not across
cells.

Floating instances

When live migrating floating instances, if the configuration of NovaComputeCpuSharedSet on the
destination Compute node is different from the configuration of NovaComputeCpuSharedSet on
the source Compute node, the instances will not be allocated to the CPUs configured for shared
(unpinned) instances on the destination Compute node. Therefore, if you need to live migrate
floating instances, you must configure all the Compute nodes with the same CPU mappings for
dedicated (pinned) and shared (unpinned) instances, or use a host aggregate for the shared
instances.

Destination Compute node capacity

The destination Compute node must have sufficient capacity to host the instance that you want to
migrate.

SR-IOV live migration

Instances with SR-IOV-based network interfaces can be live migrated. Live migrating instances with
direct mode SR-IOV network interfaces attached incurs network downtime while the direct mode
interfaces are being detached and re-attached.

Constraints that preclude live migration

You cannot live migrate an instance that uses the following features.

PCI passthrough

QEMU/KVM hypervisors support attaching PCI devices on the Compute node to an instance. Use
PCI passthrough to give an instance exclusive access to PCI devices, which appear and behave as if
they are physically attached to the operating system of the instance. However, because PCI
passthrough involves physical addresses, OpenStack Compute does not support live migration of
instances using PCI passthrough.

Port resource requests

You cannot live migrate an instance that uses a port that has resource requests, such as a
guaranteed minimum bandwidth QoS policy. Use the following command to check if a port has
resource requests:

$ openstack port show <port_name/port_id>

5.3. PREPARING TO MIGRATE

Before you migrate one or more instances, you need to determine the Compute node names and the
IDs of the instances to migrate.

Procedure

1. Identify the source Compute node host name and the destination Compute node host name:

(undercloud) $ source ~/overcloudrc
(overcloud) $ openstack compute service list

2. List the instances on the source Compute node and locate the ID of the instance or instances
that you want to migrate:

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

79

(overcloud) $ openstack server list --host <source> --all-projects

Replace <source> with the name or ID of the source Compute node.

3. Optional: If you are migrating instances from a source Compute node to perform maintenance
on the node, you must disable the node to prevent the scheduler from assigning new instances
to the node during maintenance:

(overcloud) $ source ~/stackrc
(undercloud) $ openstack compute service set <source> nova-compute --disable

Replace <source> with the name or ID of the source Compute node.

You are now ready to perform the migration. Follow the required procedure detailed in Cold migrating
an instance or Live migrating an instance .

5.4. COLD MIGRATING AN INSTANCE

Cold migrating an instance involves stopping the instance and moving it to another Compute node. Cold
migration facilitates migration scenarios that live migrating cannot facilitate, such as migrating instances
that use PCI passthrough. The scheduler automatically selects the destination Compute node. For more
information, see Migration Constraints.

Procedure

1. To cold migrate an instance, enter the following command to power off and move the instance:

(overcloud) $ openstack server migrate <vm> --wait

Replace <vm> with the name or ID of the instance to migrate.

Specify the --block-migration flag if migrating a locally stored volume.

2. Wait for migration to complete. While you wait for the instance migration to complete, you can
check the migration status. For more information, see Checking migration status.

3. Check the status of the instance:

(overcloud) $ openstack server list --all-projects

A status of "VERIFY_RESIZE" indicates you need to confirm or revert the migration:

If the migration worked as expected, confirm it:

(overcloud) $ openstack server resize --confirm <vm>`

Replace <vm> with the name or ID of the instance to migrate. A status of "ACTIVE"
indicates that the instance is ready to use.

If the migration did not work as expected, revert it:

(overcloud) $ openstack server resize --revert <vm>`

Replace <vm> with the name or ID of the instance.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

80

4. Restart the instance:

(overcloud) $ openstack server start <vm>

Replace <vm> with the name or ID of the instance.

5. Optional: If you disabled the source Compute node for maintenance, you must re-enable the
node so that new instances can be assigned to it:

(overcloud) $ source ~/stackrc
(undercloud) $ openstack compute service set <source> nova-compute --enable

Replace <source> with the host name of the source Compute node.

5.5. LIVE MIGRATING AN INSTANCE

Live migration moves an instance from a source Compute node to a destination Compute node with a
minimal amount of downtime. Live migration might not be appropriate for all instances. For more
information, see Migration Constraints.

Procedure

1. To live migrate an instance, specify the instance and the destination Compute node:

(overcloud) $ openstack server migrate <vm> --live-migration [--host <dest>] --wait

Replace <vm> with the name or ID of the instance.

Replace <dest> with the name or ID of the destination Compute node.

NOTE

The openstack server migrate command covers migrating instances with
shared storage, which is the default. Specify the --block-migration flag to
migrate a locally stored volume:

(overcloud) $ openstack server migrate <vm> --live-migration [--host
<dest>] --wait --block-migration

2. Confirm that the instance is migrating:

(overloud) $ openstack server show <vm>

+----------------------+--------------------------------------+
| Field | Value |
+----------------------+--------------------------------------+
...	...
status	MIGRATING
...	...
+----------------------+--------------------------------------+

3. Wait for migration to complete. While you wait for the instance migration to complete, you can
check the migration status. For more information, see Checking migration status.

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

81

4. Check the status of the instance to confirm if the migration was successful:

(overcloud) $ openstack server list --host <dest> --all-projects

Replace <dest> with the name or ID of the destination Compute node.

5. Optional: If you disabled the source Compute node for maintenance, you must re-enable the
node so that new instances can be assigned to it:

(overcloud) $ source ~/stackrc
(undercloud) $ openstack compute service set <source> nova-compute --enable

Replace <source> with the host name of the source Compute node.

5.6. CHECKING MIGRATION STATUS

Migration involves several state transitions before migration is complete. During a healthy migration, the
migration state typically transitions as follows:

1. Queued: The Compute service has accepted the request to migrate an instance, and migration
is pending.

2. Preparing: The Compute service is preparing to migrate the instance.

3. Running: The Compute service is migrating the instance.

4. Post-migrating: The Compute service has built the instance on the destination Compute node
and is releasing resources on the source Compute node.

5. Completed: The Compute service has completed migrating the instance and finished releasing
resources on the source Compute node.

Procedure

1. Retrieve the list of migration IDs for the instance:

$ nova server-migration-list <vm>

+----+-------------+----------- (...)
| Id | Source Node | Dest Node | (...)
+----+-------------+-----------+ (...)
| 2 | - | - | (...)
+----+-------------+-----------+ (...)

Replace <vm> with the name or ID of the instance.

2. Show the status of the migration:

$ <vm> <migration-id>

Replace <vm> with the name or ID of the instance.

Replace <migration-id> with the ID of the migration.
Running the nova server-migration-show command returns the following example output:

Red Hat OpenStack Platform 16.0 Instances and Images Guide

82

+------------------------+--------------------------------------+
| Property | Value |
+------------------------+--------------------------------------+
created_at	2017-03-08T02:53:06.000000
dest_compute	controller
dest_host	-
dest_node	-
disk_processed_bytes	0
disk_remaining_bytes	0
disk_total_bytes	0
id	2
memory_processed_bytes	65502513
memory_remaining_bytes	786427904
memory_total_bytes	1091379200
server_uuid	d1df1b5a-70c4-4fed-98b7-423362f2c47c
source_compute	compute2
source_node	-
status	running
updated_at	2017-03-08T02:53:47.000000
+------------------------+--------------------------------------+

TIP

The OpenStack Compute service measures progress of the migration by the number of
remaining memory bytes to copy. If this number does not decrease over time, the migration
might be unable to complete, and the Compute service might abort it.

Sometimes instance migration can take a long time or encounter errors. For more information, see
Troubleshooting migration.

5.7. EVACUATING AN INSTANCE

If you want to move an instance from a dead or shut-down Compute node to a new host in the same
environment, you can evacuate it.

The evacuate process destroys the original instance and rebuilds it on another Compute node using the
original image, instance name, UUID, network addresses, and any other resources the original instance
had allocated to it.

If the instance uses shared storage, the instance root disk is not rebuilt during the evacuate process, as
the disk remains accessible by the destination Compute node. If the instance does not use shared
storage, then the instance root disk is also rebuilt on the destination Compute node.

NOTE

You can only perform an evacuation when the Compute node is fenced, and the
API reports that the state of the Compute node is "down" or "forced-down". If
the Compute node is not reported as "down" or "forced-down", the evacuate
command fails.

To perform an evacuation, you must be a cloud administrator.

5.7.1. Evacuating one instance

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

83

You can evacuate instances one at a time.

Procedure

1. Log onto the failed Compute node as an administrator.

2. Disable the Compute node:

(overcloud) [stack@director ~]$ openstack compute service set \
<host> <service> --disable

Replace <host> with the name of the Compute node to evacuate the instance from.

Replace <service> with the name of the service to disable, for example nova-compute.

3. To evacuate an instance, enter the following command:

(overcloud) [stack@director ~]$ nova evacuate [--password <pass>] <vm> [<dest>]

Replace <pass> with the admin password to set for the evacuated instance. If a password is
not specified, a random password is generated and output when the evacuation is complete.

Replace <vm> with the name or ID of the instance to evacuate.

Replace <dest> with the name of the Compute node to evacuate the instance to. If you do
not specify the destination Compute node, the Compute scheduler selects one for you. You
can find possible Compute nodes by using the following command:

(overcloud) [stack@director ~]$ openstack hypervisor list

5.7.2. Evacuating all instances on a host

You can evacuate all instances on a specified Compute node.

Procedure

1. Log onto the failed Compute node as an administrator.

2. Disable the Compute node:

(overcloud) [stack@director ~]$ openstack compute service set \
<host> <service> --disable

Replace <host> with the name of the Compute node to evacuate the instances from.

Replace <service> with the name of the service to disable, for example nova-compute.

3. Evacuate all instances on a specified Compute node:

(overcloud) [stack@director ~]$ nova host-evacuate [--target_host <dest>] [--force] <host>

Replace <dest> with the name of the destination Compute node to evacuate the instances
to. If you do not specify the destination, the Compute scheduler selects one for you. You
can find possible Compute nodes by using the following command:

Red Hat OpenStack Platform 16.0 Instances and Images Guide

84

(overcloud) [stack@director ~]$ openstack hypervisor list

Replace <host> with the name of the Compute node to evacuate the instances from.

5.7.3. Configuring shared storage

If you are using shared storage, export the instance directory for the Compute service to the two nodes,
and ensure that the nodes have access. The directory path is set in the state_path and instances_path
parameters in your Compute environment file. This procedure uses the default value, which is
/var/lib/nova/instances. Only users with root access can set up shared storage. The Compute service
user in the following procedure must be the same across Controller and Compute nodes.

Procedure

1. Perform the following steps on the Controller node:

a. Ensure that the /var/lib/nova/instances directory has read-write access by the Compute
service user, as shown in the following example:

drwxr-xr-x. 9 nova nova 4096 Nov 5 20:37 instances

b. Add the following lines to the /etc/exports file:

/var/lib/nova/instances node1_IP(rw,sync,fsid=0,no_root_squash)
/var/lib/nova/instances node2_IP(rw,sync,fsid=0,no_root_squash)

Replace node1_IP and node2_IP for the IP addresses of the two Compute nodes, for
example:

/var/lib/nova/instances 192.168.24.9(rw,sync,fsid=0,no_root_squash)
/var/lib/nova/instances 192.168.24.21(rw,sync,fsid=0,no_root_squash)

c. Export the /var/lib/nova/instances directory to the Compute nodes:

exportfs -avr

d. Restart the NFS server:

systemctl restart nfs-server

2. Perform the following steps on each Compute node:

a. Ensure that the /var/lib/nova/instances directory exists locally.

b. Add the following line to the /etc/fstab file:

NFS_SHARE_PATH:/var/lib/nova/instances /var/lib/nova/instances nfs4 defaults 0 0

c. Mount the controller’s instance directory to mount all the devices listed in /etc/fstab:

mount -a -v

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

85

d. Ensure that QEMU can access the directory’s images:

ls -ld /var/lib/nova/instances
drwxr-xr-x. 9 nova nova 4096 Nov 5 20:37 /var/lib/nova/instances

e. Ensure that the node can see the instances directory with:

drwxr-xr-x. 9 nova nova 4096 Nov 5 20:37 /var/lib/nova/instances

NOTE

You can also run the following to view all mounted devices:

df -k

5.8. TROUBLESHOOTING MIGRATION

The following issues can arise during instance migration:

The migration process encounters errors.

The migration process never ends.

Performance of the instance degrades after migration.

5.8.1. Errors during migration

The following issues can send the migration operation into an error state:

Running a cluster with different versions of Red Hat OpenStack Platform (RHOSP).

Specifying an instance ID that cannot be found.

The instance you are trying to migrate is in an error state.

The Compute service is shutting down.

A race condition occurs.

Live migration enters a failed state.

When live migration enters a failed state, it is typically followed by an error state. The following common
issues can cause a failed state:

A destination Compute host is not available.

A scheduler exception occurs.

The rebuild process fails due to insufficient computing resources.

A server group check fails.

The instance on the source Compute node gets deleted before migration to the destination
Compute node is complete.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

86

5.8.2. Never-ending live migration

Live migration can fail to complete, which leaves migration in a perpetual running state. A common
reason for a live migration that never completes is that client requests to the instance running on the
source Compute node create changes that occur faster than the Compute service can replicate them to
the destination Compute node.

Use one of the following methods to address this situation:

Abort the live migration.

Force the live migration to complete.

Aborting live migration

If the instance state changes faster than the migration procedure can copy it to the destination node,
and you do not want to temporarily suspend the instance operations, you can abort the live migration.

Procedure

1. Retrieve the list of migrations for the instance:

$ nova server-migration-list <vm>

Replace <vm> with the name or ID of the instance.

2. Abort the live migration:

$ nova live-migration-abort <vm> <migration-id>

Replace <vm> with the name or ID of the instance.

Replace <migration-id> with the ID of the migration.

Forcing live migration to complete

If the instance state changes faster than the migration procedure can copy it to the destination node,
and you want to temporarily suspend the instance operations to force migration to complete, you can
force the live migration procedure to complete.

IMPORTANT

Forcing live migration to complete might lead to perceptible downtime.

Procedure

1. Retrieve the list of migrations for the instance:

$ nova server-migration-list <vm>

Replace <vm> with the name or ID of the instance.

2. Force the live migration to complete:

$ nova live-migration-force-complete <vm> <migration-id>

CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

87

Replace <vm> with the name or ID of the instance.

Replace <migration-id> with the ID of the migration.

5.8.3. Instance performance degrades after migration

For instances that use a NUMA topology, the source and destination Compute nodes must have the
same NUMA topology and configuration. The NUMA topology of the destination Compute node must
have sufficient resources available. If the NUMA configuration between the source and destination
Compute nodes is not the same, it is possible that live migration succeeds while the instance
performance degrades. For example, if the source Compute node maps NIC 1 to NUMA node 0, but the
destination Compute node maps NIC 1 to NUMA node 5, after migration the instance might route
network traffic from a first CPU across the bus to a second CPU with NUMA node 5 to route traffic to
NIC 1. This can result in expected behavior, but degraded performance. Similarly, if NUMA node 0 on the
source Compute node has sufficient available CPU and RAM, but NUMA node 0 on the destination
Compute node already has instances using some of the resources, the instance might run correctly but
suffer performance degradation. For more information, see Migration constraints.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

88

CHAPTER 6. SCALING DEPLOYMENTS WITH COMPUTE
CELLS

You can use cells to divide Compute nodes in large deployments into groups, each with a message
queue and dedicated database that contains instance information.

By default, the director installs the overcloud with a single cell for all Compute nodes. This single-cell
deployment contains all instances and instance metadata. For larger deployments, you can deploy the
overcloud with multiple cells to accommodate a larger number of Compute nodes.

In multi-cell deployments, each cell runs standalone copies of the cell-specific components and stores
instance metadata only for instances in that cell. Global information and cell mappings are stored in the
global Controller cell, which helps with security and recovery in case one of the cells fails.

You can add cells to your environment when you install a new overcloud or at any time afterwards.

6.1. CELL COMPONENTS

In single-cell deployments, all components are contained in the same cell. In multi-cell deployments, the
global services run on the main Controller cell, and each Compute cell runs standalone copies of the
cell-specific components and contains the database and message queue for the Compute nodes in that
cell.

Global components

The following components are deployed in a Controller cell once for each overcloud, regardless of the
number of Compute cells.

Compute API

Provides the external REST API to users.

Scheduler

Determines to which Compute node to assign the instances.

Placement service

Monitors and allocates Compute resources to the instances.

API database

Used by the Compute API and the Compute scheduler services to track location information about
instances, and provides a temporary location for instances that are built but not scheduled.
In multi-cell deployments, this database also contains cell mappings that specify the database
connection for each cell.

cell0 database

Dedicated database for information about instances that failed to be scheduled.

Super conductor

In multi-cell deployments, this service coordinates between the global services and each Compute
cell, and also sends failed instance information to the cell0 database.

NOTE

This component exists only in multi-cell deployments.

CHAPTER 6. SCALING DEPLOYMENTS WITH COMPUTE CELLS

89

Cell-specific components

The following components are deployed in each Compute cell.

Cell database

Contains most of the information about instances. Used by the global API, the conductor, and the
Compute services.

Conductor

Coordinates database queries and long-running tasks from the global services, and insulates
Compute nodes from direct database access.

Message queue

Messaging service used by all services to communicate with each other within the cell and with the
global services.

Configuration files

The overcloud includes configuration files that define the following information for the Compute cells:

[DEFAULT]/transport_url: Message queue endpoint for each cell.

[DATABASE]/connection: Database connection for each cell.

[API_DATABASE]/connection: Routing and placement information for the global components.

(Multi-cell deployments only) Cell mapping records to be stored in the global API database.

This information is extracted from the overcloud when you deploy the multi-cell environment, as
described in Section 6.4, “Deploying a multi-cell overcloud” .

6.2. CELL DEPLOYMENTS ARCHITECTURE

Each deployment type allows you to optimize your overcloud for different use-cases.

Single-cell deployment architecture (default)

The following diagram shows an example of the basic structure and interaction in a default single-cell
overcloud.

In this deployment, all services are configured to use a single conductor to communicate between the
Compute API and the Compute nodes, and a single database stores all live instance data.

In smaller deployments this configuration might be sufficient, but if any API-level (global) service or the

Red Hat OpenStack Platform 16.0 Instances and Images Guide

90

In smaller deployments this configuration might be sufficient, but if any API-level (global) service or the
database fails, the entire Compute deployment cannot send or receive information, regardless of high
availability configurations.

Multi-cell deployment architecture (custom)

The following diagram shows an example of the basic structure and interaction in a custom multi-cell
overcloud.

In this deployment, the Compute nodes are divided to multiple cells, each with their own conductor,
database, and message queue. The global services use the super conductor to communicate with each
cell, and the global database contains only information required for the whole overcloud.

The cell-level services cannot access global services directly. This isolation provides additional security
and fail-safe capabilities in case of cell failure.

IMPORTANT

In Edge deployments, you must deploy the first cell on the central site, therefore, do not
deploy the first cell on any of the edge sites. Do not run any Compute services on the
first cell. Instead, deploy each new cell containing the Compute nodes separately on the
edge sites.

6.3. CONSIDERATIONS FOR MULTI-CELL DEPLOYMENTS

Maximum number of Compute nodes in a multi-cell deployment

The maximum number of Compute nodes is 500 across all cells.

SSL/TLS

You cannot enable SSL/TLS on the overcloud.

Cross-cell instance migrations

Migrating an instance from a host in one cell to a host in another cell is not supported. This limitation

CHAPTER 6. SCALING DEPLOYMENTS WITH COMPUTE CELLS

91

Migrating an instance from a host in one cell to a host in another cell is not supported. This limitation
affects the following operations:

cold migration

live migration

unshelve

resize

evacuation

Service quotas

Compute service quotas are calculated dynamically at each resource consumption point, instead of
statically in the database. In multi-cell deployments, unreachable cells cannot provide usage
information in real-time, which might cause the quotas to be exceeded when the cell is reachable
again.
You can use the Placement service and API database to configure the quota calculation to withstand
failed or unreachable cells.

API database

The Compute API database is always global for all cells and cannot be duplicated for each cell.

Console proxies

You must configure console proxies for each cell, because console token authorizations are stored in
cell databases. Each console proxy server needs to access the database.connection information of
the corresponding cell database.

Template URLs in cell mappings

You can create templates for the --database_connection and --transport-url in cell mappings with
variables that are dynamically updated each time you query the global database. The values are taken
from the configuration files of the Compute nodes.
The format of a template URL is as follows:

{scheme}://{username}:{password}@{hostname}/{path}

The following table shows the variables that you can use in cell mapping URLs:

Variable Description

scheme Prefix before ://

username User name

password Password

hostname Host name or IP address

port Port number (must be specified)

path Path to the directory in the host (without leading slash)

Red Hat OpenStack Platform 16.0 Instances and Images Guide

92

query Full query with string arguments (without leading question mark)

fragment Path after the first hash # sign

Variable Description

Compute metadata API

You can run the Compute metadata API globally or in each cell. Choose one of the following:

If you have networks that cover multiple cells, you need to run the metadata API globally so
that it can bridge between the cells. In this case, the metadata API needs to access the
api_database.connection information.

If you have networks in separate segments for each cell, you can run the metadata API
separately in each cell. This configuration can improve performance and data isolation. In this
case, neutron-metadata-agent service point to the corresponding nova-api-metadata
service.

You use the api.local_metadata_per_cell configuration option to set which method to implement.
For details on configuring this option, see the Create environment files with cell parameters section in
Section 6.4, “Deploying a multi-cell overcloud” .

6.4. DEPLOYING A MULTI-CELL OVERCLOUD

Deploying a multi-cell overcloud includes the following stages:

1. Extracting parameter information from the default first cell in the basic overcloud. This cell
becomes the global Controller after you redeploy the overcloud.

2. Configuring a custom role and flavor for the cell.

3. Creating an environment file with cell-specific parameters.

4. Redeploying the overcloud with the new cell stack.

NOTE

This process adds one cell to the overcloud. Repeat these steps for each
additional cell you want to deploy in the overcloud.

In this procedure, the name of the new cell is cell1. Replace the name in all
commands with the actual cell name.

Prerequisites

Deploy a basic overcloud with the required number of Controller and Compute nodes.

Review the requirements and limitations for a multi-cell overcloud as described in Section 6.3,
“Considerations for multi-cell deployments”.

Extract parameter information from the overcloud

1. Create a new directory for the new cell and export the contents to the new directory. For

CHAPTER 6. SCALING DEPLOYMENTS WITH COMPUTE CELLS

93

1. Create a new directory for the new cell and export the contents to the new directory. For
example:

$ source ~/stackrc
(undercloud) $ mkdir cell1
(undercloud) $ export DIR=cell1

2. Export the EndpointMap, HostsEntry, AllNodesConfig, GlobalConfig parameters, and the
password information from the overcloud to a new environment file for the cell. For example:

(undercloud) $ openstack overcloud cell export cell1 -o cell1/cell1-ctrl-input.yaml

NOTE

If the environment file already exists, run the command with the --force-
overwrite or -f option.

Configure a custom role for a cell

1. Add the CellController role to your roles data file and regenerate the file. For example:

(undercloud) $ openstack overcloud roles generate --roles-path \
 /usr/share/openstack-tripleo-heat-templates/roles \
 -o $DIR/cell_roles_data.yaml Compute CellController

The CellController custom role includes the services from the default Compute role and
additional configuration for the following services:

Galera database

RabbitMQ

nova-conductor

nova novnc proxy

nova metadata (only in case you set the NovaLocalMetadataPerCell parameter)

2. In case you want to divide your network between the global Controller and the cells, configure
network access in the roles file that you created. For example:

name: Compute
 description: |
 Basic Compute Node role
 CountDefault: 1
 # Create external Neutron bridge (unset if using ML2/OVS without DVR)
 tags:
 - external_bridge
 networks:
 InternalApi:
 subnet: internal_api_cell1
 Tenant:
 subnet: tenant_subnet
 Storage:
 subnet: storage_cell1

Red Hat OpenStack Platform 16.0 Instances and Images Guide

94

...
- name: CellController
 description: |
 CellController role for the nova cell_v2 controller services
 CountDefault: 1
 tags:
 - primary
 - controller
 networks:
 External:
 subnet: external_cell1
 InternalApi:
 subnet: internal_api_cell1
 Storage:
 subnet: storage_cell1
 StorageMgmt:
 subnet: storage_mgmt_cell1
 Tenant:
 subnet: tenant_subnet

Configure a flavor and tag nodes to a cell

1. Create the cellcontroller flavor to tag nodes that you want to allocate to the cell. For example:

(undercloud) $ openstack flavor create --id auto --ram 4096 --disk 40 --vcpus 1 cellcontroller
(undercloud) $ openstack flavor set --property "cpu_arch"="x86_64" \
 --property "capabilities:boot_option"="local" \
 --property "capabilities:profile"="cellcontroller" \
 --property "resources:CUSTOM_BAREMETAL=1" \
 --property "resources:DISK_GB=0" \
 --property "resources:MEMORY_MB=0" \
 --property "resources:VCPU=0" \
 cellcontroller

2. Tag each node that you want to assign to the cell with the cellcontroller profile.

(undercloud) $ openstack baremetal node set --property \
 capabilities='profile:cellcontroller,boot_option:local' <NODE_UUID>

Replace <NODE_UUID> with the actual ID of the Compute node that you want to assign to the
cell.

Create environment files with cell parameters

1. Create a new environment file in the directory for the cell, such as /cell1/cell1.yaml, and add the
following parameters:

resource_registry:
 # since the same networks are used in this example, the
 # creation of the different networks is omitted
 OS::TripleO::Network::External: OS::Heat::None
 OS::TripleO::Network::InternalApi: OS::Heat::None
 OS::TripleO::Network::Storage: OS::Heat::None
 OS::TripleO::Network::StorageMgmt: OS::Heat::None
 OS::TripleO::Network::Tenant: OS::Heat::None

CHAPTER 6. SCALING DEPLOYMENTS WITH COMPUTE CELLS

95

 OS::TripleO::Network::Management: OS::Heat::None
 OS::TripleO::Network::Ports::OVNDBsVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml
 OS::TripleO::Network::Ports::RedisVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml

parameter_defaults:
 # CELL Parameter to reflect that this is an additional CELL
 NovaAdditionalCell: True

 # mapping of the CellController flavor to the CellController role
 CellControllerFlavor: cellcontroller

 # The DNS names for the VIPs for the cell
 CloudName: cell1.ooo.test
 CloudNameInternal: cell1.internalapi.ooo.test
 CloudNameStorage: cell1.storage.ooo.test
 CloudNameStorageManagement: cell1.storagemgmt.ooo.test
 CloudNameCtlplane: cell1.ctlplane.ooo.test

 # Flavors used for the cell controller and computes
 OvercloudCellControllerFlavor: cellcontroller
 OvercloudComputeFlavor: compute

 # Number of controllers/computes in the cell
 CellControllerCount: 1
 ComputeCount: 1

 # Compute node name (must be unique)
 ComputeHostnameFormat: 'cell1-compute-%index%'

 # default gateway
 ControlPlaneStaticRoutes:
 - ip_netmask: 0.0.0.0/0
 next_hop: 192.168.24.1
 default: true
 DnsServers:
 - x.x.x.x

Change the parameter values in this example according to your deployment needs.

2. Depending on your network configuration, you might need to allocate a network resource to the
cell. Add the following parameter if you need to register cells to the network:

resource_registry:
 OS::TripleO::CellController::Net::SoftwareConfig: single-nic-vlans/controller.yaml
 OS::TripleO::Compute::Net::SoftwareConfig: single-nic-vlans/compute.yaml

3. If you divide your network between the global Controller and the cells and want to run the
Compute metadata API in each cell instead of in the global Controller, add the following
parameter:

parameter_defaults:
 NovaLocalMetadataPerCell: True

NOTE

Red Hat OpenStack Platform 16.0 Instances and Images Guide

96

NOTE

The parameters in this file restrict the overcloud to use a single network for
all cells.

The Compute host names must be unique across all cells.

4. Copy the network_data.yaml file and name it according to the cell name. For example:

(undercloud) $ cp /usr/share/openstack-tripleo-heat-templates/network_data.yaml
cell1/network_data-ctrl.yaml

5. Add the UUIDs for the network components you want to reuse for the cells to the new network
data file.

external_resource_network_id: [EXISTING_NETWORK_UUID]
external_resource_subnet_id: [EXISTING_SUBNET_UUID]
external_resource_segment_id: [EXISTING_SEGMENT_UUID]
external_resource_vip_id: [EXISTING_VIP_UUID]

(Optional) Configure networking for segmented networks

If you want to divide your network between the global Controller and the Compute cells, create an
environment file such as routes.yaml and add the routing information and virtual IP address (VIP)
information for the cell. For example:

parameter_defaults:
 InternalApiInterfaceRoutes:
 - destination: 172.17.2.0/24
 nexthop: 172.16.2.254
 StorageInterfaceRoutes:
 - destination: 172.17.1.0/24
 nexthop: 172.16.1.254
 StorageMgmtInterfaceRoutes:
 - destination: 172.17.3.0/24
 nexthop: 172.16.3.254

parameter_defaults:
 VipSubnetMap:
 InternalApi: internal_api_cell1
 Storage: storage_cell1
 StorageMgmt: storage_mgmt_cell1
 External: external_cell1

(Optional) Configure networking for Edge sites

To distribute Compute nodes across Edge sites, create one environment file for the main Controller cell
and separate environment files for each Compute cell in that Edge site.

In the primary environment file, set the ComputeCount parameter to 0 in the Controller cell.
This cell is separate from the Edge site Compute cells, which will contain the actual Compute
nodes.

In the Compute cell environment files, add the following parameter to disable external VIP
ports:

CHAPTER 6. SCALING DEPLOYMENTS WITH COMPUTE CELLS

97

resource_registry:
 # Since the compute stack deploys only compute nodes ExternalVIPPorts are not required.
 OS::TripleO::Network::Ports::ExternalVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml

Deploy the overcloud

Choose one of the following:

Multi-cell deployment with a single network

Run the overcloud deploy command and add the environment files that you created to configure
the new cell stack. For example:

$ openstack overcloud deploy \
 --templates /usr/share/openstack-tripleo-heat-templates \
 --stack cell1 \
 -r $HOME/$DIR/cell_roles_data.yaml \
 -e $HOME/$DIR/cell1-ctrl_input.yaml \
 -e $HOME/$DIR/cell1.yaml

Multi-cell deployment with segmented networks

Run the overcloud deploy command with the additional network data environment file that you
created in the previous steps.
The following example shows the overcloud deploy command with the environment files that you
created to designate a network segment for the cell. Edit the command according to the actual
number and names of the cells that you want to deploy.

openstack overcloud deploy \
 --templates /usr/share/openstack-tripleo-heat-templates \
 --stack cell1-ctrl \
 -r $HOME/$DIR/cell_roles_data.yaml \
 -n $HOME/$DIR/cell1_routes.yaml \
 -n $HOME/$DIR/network_data-ctrl.yaml \
 -e $HOME/$DIR/cell1-ctrl-input.yaml \
 -e $HOME/$DIR/cell1.yaml

NOTE

If you deploy Compute cells in Edge sites, run the overcloud deploy command in
each site with the environment files and configuration for each Compute cell in that
site.

6.5. CREATING AND PROVISIONING A CELL

After you deploy the overcloud with a new cell stack as described in Section 6.4, “Deploying a multi-cell
overcloud”, you create and provision the Compute cell.

NOTE

Red Hat OpenStack Platform 16.0 Instances and Images Guide

98

NOTE

This process must be repeated for each cell that you create and launch. You can
automate the steps in an Ansible playbook. For an example of an Ansible playbook, see
the Create the cell and discover Compute nodes section of the OpenStack community
documentation. Community documentation is provided as-is and is not officially
supported.

1. Get the IP addresses of the control plane and cell controller.

$ CTRL_IP=$(openstack server list -f value -c Networks --name overcloud-controller-0 | sed
's/ctlplane=//')
$ CELL_CTRL_IP=$(openstack server list -f value -c Networks --name cellcontroller-0 | sed
's/ctlplane=//')

2. Add the cell information to all Controller nodes. This information is used to connect to the cell
endpoint from the undercloud.

(undercloud) [stack@undercloud ~]$ CELL_INTERNALAPI_INFO=$(ssh heat-
admin@${CELL_CTRL_IP} egrep \
 cellcontrol.*\.internalapi /etc/hosts)
(undercloud) [stack@undercloud ~]$ ansible -i /usr/bin/tripleo-ansible-inventory Controller -b
\
 -m lineinfile -a "dest=/etc/hosts line=\"$CELL_INTERNALAPI_INFO\""

3. Get the transport_url and database.connection endpoint information from the controller cell.

(undercloud) [stack@undercloud ~]$ CELL_TRANSPORT_URL=$(ssh heat-
admin@${CELL_CTRL_IP} sudo \
 crudini --get /var/lib/config-data/nova/etc/nova/nova.conf DEFAULT
transport_url)
(undercloud) [stack@undercloud ~]$ CELL_MYSQL_VIP=$(ssh heat-
admin@${CELL_CTRL_IP} sudo \
 crudini --get /var/lib/config-data/nova/etc/nova/nova.conf database
connection \
 | perl -nle'/(\d+\.\d+\.\d+\.\d+)/ && print $1')

4. Log in to one of the global Controller nodes to create the cell based on the information that you
retrieved in the previous steps. For example:

$ export CONTAINERCLI='podman'

$ ssh heat-admin@${CTRL_IP} sudo ${CONTAINERCLI} exec -i -u root nova_api \
 nova-manage cell_v2 create_cell --name computecell1 \
 --database_connection "{scheme}://{username}:{password}@$CELL_MYSQL_VIP/nova?
{query}" \
 --transport-url "$CELL_TRANSPORT_URL"

5. Check that the cell is created and appears in the cell list.

$ ssh heat-admin@${CTRL_IP} sudo ${CONTAINERCLI} exec -i -u root nova_api \
nova-manage cell_v2 list_cells --verbose

6. Restart the Compute services on the Controller nodes.

CHAPTER 6. SCALING DEPLOYMENTS WITH COMPUTE CELLS

99

https://docs.openstack.org/project-deploy-guide/tripleo-docs/latest/features/deploy_cellv2_basic.html#cell-create-cell

$ ansible -i /usr/bin/tripleo-ansible-inventory Controller -b -a \
"systemctl restart tripleo_nova_api tripleo_nova_conductor tripleo_nova_scheduler"

7. Check that the cell controller services are provisioned.

(overcloud) [stack@undercloud ~]$ nova service-list

6.6. ADDING COMPUTE NODES TO A CELL

1. Log into one of the Controller nodes.

2. Get the IP address of the control plane for the cell and run the host discovery command to
expose and assign Compute hosts to the cell.

$ CTRL=overcloud-controller-0
$ CTRL_IP=$(openstack server list -f value -c Networks --name $CTRL | sed 's/ctlplane=//')

$ export CONTAINERCLI='podman'

$ ssh heat-admin@${CTRL_IP} sudo ${CONTAINERCLI} exec -i -u root nova_api \
 nova-manage cell_v2 discover_hosts --by-service --verbose

3. Verify that the Compute hosts were assigned to the cell.

$ ssh heat-admin@${CTRL_IP} sudo ${CONTAINERCLI} exec -i -u root nova_api \
 nova-manage cell_v2 list_hosts

6.7. CONFIGURING AN AVAILABILITY ZONE

You must assign each cell to an availability zone (AZ) to keep the Compute nodes in that cell during
instance creation and migration. The Controller cell must be in a different AZ from the Compute cells.

You can use host aggregates to configure the AZ for the Compute cell. The following example shows
the command to create a host aggregate for the cell cell1, define the AZ for the host aggregate, and
add the hosts within the cell to the AZ:

(undercloud)$ source ~/overcloudrc
(overcloud)$ openstack aggregate create cell1 --zone cell1
(overcloud)$ openstack aggregate add host cell1 hostA
(overcloud)$ openstack aggregate add host cell1 hostB

NOTE

You cannot use the OS::TripleO::Services::NovaAZConfig parameter to
automatically create the AZ during deployment, because the cell is not created
at this stage.

Migrating instances between cells is not supported. To move an instance to a
different cell, you must delete it from the old cell and re-create it in the new cell.

For general information on host aggregates and availability zones, see Manage Host Aggregates .

Red Hat OpenStack Platform 16.0 Instances and Images Guide

100

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0-beta/html-single/instances_and_images_guide/index#section-manage-host-aggregates

6.8. DELETING A COMPUTE NODE FROM A CELL

To delete a Compute node from a cell, you must delete all instances from the cell and delete the host
names from the Placement database.

1. Delete all instances from the Compute nodes in the cell.

NOTE

Migrating instances between cells is not supported. You must delete the
instances and re-create them in another cell.

2. On one of the global Controllers, delete all Compute nodes from the cell.

$ CTRL=overcloud-controller-0
$ CTRL_IP=$(openstack server list -f value -c Networks --name $CTRL | sed 's/ctlplane=//')

$ export CONTAINERCLI='podman'

$ ssh heat-admin@${CTRL_IP} sudo ${CONTAINERCLI} exec -i -u root nova_api \
 nova-manage cell_v2 list_hosts

$ ssh heat-admin@${CTRL_IP} sudo ${CONTAINERCLI} exec -i -u root nova_api \
 nova-manage cell_v2 delete_host --cell_uuid <uuid> --host <compute>

3. Delete the resource providers for the cell from the Placement service, to ensure that the host
name is available in case you want to add Compute nodes with the same host name to another
cell later. For example:

(undercloud) $ source ~/overcloudrc

(overcloud) $ openstack resource provider list
 +--------------------------------------+---------------------------------------+------------+
 | uuid | name | generation |
 +--------------------------------------+---------------------------------------+------------+
 | 9cd04a8b-5e6c-428e-a643-397c9bebcc16 | computecell1-novacompute-0.site1.test
| 11 |
 +--------------------------------------+---------------------------------------+------------+

(overcloud) $ openstack resource provider delete 9cd04a8b-5e6c-428e-a643-397c9bebcc16

6.9. DELETING A CELL

To delete a cell, you must first delete all instances and Compute nodes from the cell, as described in
Section 6.8, “Deleting a Compute node from a cell” . Then, you delete the cell itself and the cell stack.

1. On one of the global Controllers, delete the cell.

$ CTRL=overcloud-controller-0
$ CTRL_IP=$(openstack server list -f value -c Networks --name $CTRL | sed 's/ctlplane=//')

$ export CONTAINERCLI='podman'

$ ssh heat-admin@${CTRL_IP} sudo ${CONTAINERCLI} exec -i -u root nova_api \

CHAPTER 6. SCALING DEPLOYMENTS WITH COMPUTE CELLS

101

 nova-manage cell_v2 list_cells

$ ssh heat-admin@${CTRL_IP} sudo ${CONTAINERCLI} exec -i -u root nova_api \
 nova-manage cell_v2 delete_cell --cell_uuid <uuid>

2. Delete the cell stack from the overcloud.

$ openstack stack delete <stack name> --wait --yes && openstack overcloud plan delete
<STACK_NAME>

NOTE

If you deployed separate cell stacks for a Controller and Compute cell, delete the
Compute cell stack first and then the Controller cell stack.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

102

CHAPTER 7. CONFIGURING COMPUTE NODES FOR
PERFORMANCE

You can configure the scheduling and placement of instances for optimal performance by creating
customized flavors to target specialized workloads, including NFV and High Performance Computing
(HPC).

Use the following features to tune your instances for optimal performance:

CPU pinning: Pin virtual CPUs to physical CPUs.

Emulator threads: Pin emulator threads associated with the instance to physical CPUs.

Huge pages: Tune instance memory allocation policies both for normal memory (4k pages) and
huge pages (2 MB or 1 GB pages).

NOTE

Configuring any of these features creates an implicit NUMA topology on the instance if
there is no NUMA topology already present.

7.1. CONFIGURING CPU PINNING ON THE COMPUTE NODE

You can configure instances to run on dedicated host CPUs. Enabling CPU pinning implicitly configures
a guest NUMA topology. Each NUMA node of this NUMA topology maps to a separate host NUMA
node. For more information about NUMA, see CPUs and NUMA nodes in the Network Functions
Virtualization Product Guide.

Configure CPU pinning on your Compute node based on the NUMA topology of your host system.
Reserve some CPU cores across all the NUMA nodes for the host processes for efficiency. Assign the
remaining CPU cores to managing your instances.

The following example illustrates eight CPU cores spread across two NUMA nodes.

Table 7.1. Example of NUMA Topology

NUMA Node 0 NUMA Node 1

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

You can schedule dedicated (pinned) and shared (unpinned) instances on the same Compute node.
The following procedure reserves cores 0 and 4 for host processes, cores 1, 3, 5 and 7 for instances that
require CPU pinning, and cores 2 and 6 for floating instances that do not require CPU pinning.

NOTE

CHAPTER 7. CONFIGURING COMPUTE NODES FOR PERFORMANCE

103

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/network_functions_virtualization_product_guide/ch-nfv_tuning_for_performance#c_cpu-numa

NOTE

If the host supports simultaneous multithreading (SMT), group thread siblings together in
either the dedicated or the shared set. Thread siblings share some common hardware
which means it is possible for a process running on one thread sibling to impact the
performance of the other thread sibling.

For example, the host identifies four CPUs in a dual core CPU with SMT: 0, 1, 2, and 3. Of
these four, there are two pairs of thread siblings:

Thread sibling 1: CPUs 0 and 2

Thread sibling 2: CPUs 1 and 3

In this scenario, you should not assign CPUs 0 and 1 as dedicated and 2 and 3 as shared.
Instead, you should assign 0 and 2 as dedicated and 1 and 3 as shared.

Prerequisite

You know the NUMA topology of your Compute node. For more information, see Discovering
your NUMA node topology in the Network Functions Virtualization Planning and Configuration
Guide.

Procedure

1. Reserve physical CPU cores for the dedicated instances by setting the
NovaComputeCpuDedicatedSet configuration in the Compute environment file for each
Compute node:

NovaComputeCpuDedicatedSet: 1,3,5,7

2. Reserve physical CPU cores for the shared instances by setting the
NovaComputeCpuSharedSet configuration in the Compute environment file for each
Compute node:

NovaComputeCpuSharedSet: 2,6

3. Set the NovaReservedHostMemory option in the same files to the amount of RAM to reserve
for host processes. For example, if you want to reserve 512 MB, use:

NovaReservedHostMemory: 512

4. To ensure that host processes do not run on the CPU cores reserved for instances, set the
parameter IsolCpusList in each Compute environment file to the CPU cores you have reserved
for instances. Specify the value of the IsolCpusList parameter using a list, or ranges, of CPU
indices separated by a whitespace.

IsolCpusList: 1 2 3 5 6 7

5. To filter out hosts based on its NUMA topology, add NUMATopologyFilter to the
NovaSchedulerDefaultFilters parameter in each Compute environment file.

6. To apply this configuration, add the environment file(s) to your deployment command and
deploy the overcloud:

Red Hat OpenStack Platform 16.0 Instances and Images Guide

104

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/network_functions_virtualization_planning_and_configuration_guide/ch-hardware-requirements#proc_finding-numa-topology

(undercloud) $ openstack overcloud deploy --templates \
 -e [your environment files]
 -e /home/stack/templates/<compute_environment_file>.yaml

7.1.1. Upgrading CPU pinning configuration

From Red Hat OpenStack Platform (RHOSP) 16+ it is not necessary to use host aggregates to ensure
dedicated (pinned) and shared (unpinned) instance types run on separate hosts. Also, the [DEFAULT]
reserved_host_cpus config option is no longer necessary and can be unset.

To upgrade your CPU pinning configuration from earlier versions of RHOSP:

Migrate the value of NovaVcpuPinSet to NovaComputeCpuDedicatedSet for hosts that were
previously used for pinned instances.

Migrate the value of NovaVcpuPinSet to NovaComputeCpuSharedSet for hosts that were
previously used for unpinned instances.

If there is no value set for NovaVcpuPinSet, then all host cores should be assigned to either
NovaComputeCpuDedicatedSet or NovaComputeCpuSharedSet, depending on the type of
instance running there.

Once the upgrade is complete, it is possible to start setting both options on the same host. However, to
do this, all the instances should be migrated from the host, as the Compute service cannot start when
cores for an unpinned instance are not listed in NovaComputeCpuSharedSet, or when cores for a
pinned instance are not listed in NovaComputeCpuDedicatedSet.

7.1.2. Launching an instance with CPU pinning

You can launch an instance that uses CPU pinning by specifying a flavor with a dedicated CPU policy.

Prerequisites

Simultaneous multithreading (SMT) is enabled on the host.

The Compute node is configured to allow CPU pinning. For more information, see Configuring
CPU pinning on the Compute node.

Procedure

1. Create a flavor for instances that require CPU pinning:

(overcloud) $ openstack flavor create --ram <size-mb> --disk <size-gb> --vcpus
<no_reserved_vcpus> pinned_cpus

2. To request pinned CPUs, set the hw:cpu_policy property of the flavor to dedicated:

(overcloud) $ openstack flavor set --property hw:cpu_policy=dedicated pinned_cpus

3. To place each vCPU on thread siblings, set the hw:cpu_thread_policy property of the flavor to
require:

(overcloud) $ openstack flavor set --property hw:cpu_thread_policy=require pinned_cpus

NOTE

CHAPTER 7. CONFIGURING COMPUTE NODES FOR PERFORMANCE

105

NOTE

If the host does not have an SMT architecture or enough CPU cores with
available thread siblings, scheduling will fail. To prevent this, set
hw:cpu_thread_policy to prefer instead of require. The (default) prefer
policy ensures that thread siblings are used when available.

If you use cpu_thread_policy=isolate, you must have SMT disabled or use a
platform that does not support SMT.

4. Create an instance using the new flavor:

(overcloud) $ openstack server create --flavor pinned_cpus --image <image>
pinned_cpu_instance

5. To verify correct placement of the new instance, run the following command and check for OS-
EXT-SRV-ATTR:hypervisor_hostname in the output:

(overcloud) $ openstack server show pinned_cpu_instance

7.1.3. Launching a floating instance

You can launch an instance that is placed on a floating CPU by specifying a flavor with a shared CPU
policy.

Prerequisites

The Compute node is configured to reserve physical CPU cores for the floating instances. For
more information, see Configuring CPU pinning on the Compute node .

Procedure

1. Create a flavor for instances that do not require CPU pinning:

(overcloud) $ openstack flavor create --ram <size-mb> --disk <size-gb> --vcpus
<no_reserved_vcpus> floating_cpus

2. To request floating CPUs, set the hw:cpu_policy property of the flavor to shared:

(overcloud) $ openstack flavor set --property hw:cpu_policy=shared floating_cpus

3. Create an instance using the new flavor:

(overcloud) $ openstack server create --flavor floating_cpus --image <image>
floating_cpu_instance

4. To verify correct placement of the new instance, run the following command and check for OS-
EXT-SRV-ATTR:hypervisor_hostname in the output:

(overcloud) $ openstack server show floating_cpu_instance

7.2. CONFIGURING HUGE PAGES ON THE COMPUTE NODE

Red Hat OpenStack Platform 16.0 Instances and Images Guide

106

Configure the Compute node to enable instances to request huge pages.

Procedure

1. Configure the amount of huge page memory to reserve on each NUMA node for processes that
are not instances:

parameter_defaults:
 NovaReservedHugePages: ["node:0,size:2048,count:64","node:1,size:1GB,count:1"]

Where:

Attribute Description

size The size of the allocated huge page. Valid values: * 2048 (for 2MB) *
1GB

count The number of huge pages used by OVS per NUMA node. For
example, for 4096 of socket memory used by Open vSwitch, set this
to 2.

2. (Optional) To allow instances to allocate 1GB huge pages, configure the CPU feature flags,
cpu_model_extra_flags, to include "pdpe1gb":

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::libvirt::libvirt_cpu_mode: 'custom'
 nova::compute::libvirt::libvirt_cpu_model: 'Haswell-noTSX'
 nova::compute::libvirt::libvirt_cpu_model_extra_flags: 'vmx, pdpe1gb'

NOTE

CPU feature flags do not need to be configured to allow instances to only
request 2 MB huge pages.

You can only allocate 1G huge pages to an instance if the host supports 1G
huge page allocation.

You only need to set cpu_model_extra_flags to pdpe1gb when cpu_mode
is set to host-model or custom.

If the host supports pdpe1gb, and host-passthrough is used as the
cpu_mode, then you do not need to set pdpe1gb as a
cpu_model_extra_flags. The pdpe1gb flag is only included in Opteron_G4
and Opteron_G5 CPU models, it is not included in any of the Intel CPU
models supported by QEMU.

To mitigate for CPU hardware issues, such as Microarchitectural Data
Sampling (MDS), you might need to configure other CPU flags. For more
information, see RHOS Mitigation for MDS ("Microarchitectural Data
Sampling") Security Flaws.

3. To avoid loss of performance after applying Meltdown protection, configure the CPU feature

CHAPTER 7. CONFIGURING COMPUTE NODES FOR PERFORMANCE

107

https://access.redhat.com/solutions/4161561

3. To avoid loss of performance after applying Meltdown protection, configure the CPU feature
flags, cpu_model_extra_flags, to include "+pcid":

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::libvirt::libvirt_cpu_mode: 'custom'
 nova::compute::libvirt::libvirt_cpu_model: 'Haswell-noTSX'
 nova::compute::libvirt::libvirt_cpu_model_extra_flags: 'vmx, pdpe1gb, +pcid'

TIP

For more information, see Reducing the performance impact of Meltdown CVE fixes for
OpenStack guests with "PCID" CPU feature flag.

4. Add NUMATopologyFilter to the NovaSchedulerDefaultFilters parameter in each Compute
environment file, if not already present.

5. Apply this huge page configuration by adding the environment file(s) to your deployment
command and deploying the overcloud:

(undercloud) $ openstack overcloud deploy --templates \
 -e [your environment files]
 -e /home/stack/templates/<compute_environment_file>.yaml

7.2.1. Allocating huge pages to instances

Create a flavor with the hw:mem_page_size extra specification key to specify that the instance should
use huge pages.

Prerequisites

The Compute node is configured for huge pages. For more information, see Configuring huge
pages on the Compute node.

Procedure

1. Create a flavor for instances that require huge pages:

$ openstack flavor create --ram <size-mb> --disk <size-gb> --vcpus <no_reserved_vcpus>
huge_pages

2. Set the flavor for huge pages:

$ openstack flavor set huge_pages --property hw:mem_page_size=1GB

Valid values for hw:mem_page_size:

large - Selects the largest page size supported on the host, which may be 2 MB or 1 GB on
x86_64 systems.

small - (Default) Selects the smallest page size supported on the host. On x86_64 systems
this is 4 kB (normal pages).

Red Hat OpenStack Platform 16.0 Instances and Images Guide

108

https://access.redhat.com/solutions/3370461

any - Selects the largest available huge page size, as determined by the libvirt driver.

<pagesize>: (string) Set an explicit page size if the workload has specific requirements. Use
an integer value for the page size in KB, or any standard suffix. For example: 4KB, 2MB,
2048, 1GB.

3. Create an instance using the new flavor:

$ openstack server create --flavor huge_pages --image <image> huge_pages_instance

Validation

The scheduler identifies a host with enough free huge pages of the required size to back the memory of
the instance. If the scheduler is unable to find a host and NUMA node with enough pages, then the
request will fail with a NoValidHost error.

CHAPTER 7. CONFIGURING COMPUTE NODES FOR PERFORMANCE

109

CHAPTER 8. CONFIGURING VIRTUAL GPUS FOR INSTANCES
To support GPU-based rendering on your instances, you can define and manage virtual GPU (vGPU)
resources according to your available physical GPU devices and your hypervisor type. You can use this
configuration to divide the rendering workloads between all your physical GPU devices more effectively,
and to have more control over scheduling your vGPU-enabled instances.

To enable vGPU in OpenStack Compute, create flavors that your cloud users can use to create Red Hat
Enterprise Linux (RHEL) instances with vGPU devices. Each instance can then support GPU workloads
with virtual GPU devices that correspond to the physical GPU devices.

The OpenStack Compute service tracks the number of vGPU devices that are available for each GPU
profile you define on each host. The Compute service schedules instances to these hosts based on the
flavor, attaches the devices, and monitors usage on an ongoing basis. When an instance is deleted, the
Compute service adds the vGPU devices back to the available pool.

8.1. SUPPORTED CONFIGURATIONS AND LIMITATIONS

Supported GPU cards

For a list of supported NVIDIA GPU cards, see Virtual GPU Software Supported Products on the NVIDIA
website.

Limitations when using vGPU devices

You can enable only one vGPU type on each Compute node.

Each instance can use only one vGPU resource.

Live migration of vGPU between hosts is not supported.

Suspend operations on a vGPU-enabled instance is not supported due to a libvirt limitation.
Instead, you can snapshot or shelve the instance.

Resize and cold migration operations on an instance with a vGPU flavor does not automatically
re-allocate the vGPU resources to the instance. After you resize or migrate the instance, you
must rebuild it manually to re-allocate the vGPU resources.

By default, vGPU types on Compute hosts are not exposed to API users. To grant access, add
the hosts to a host aggregate. For more information, see Section 4.4, “Manage Host
Aggregates”.

If you use NVIDIA accelerator hardware, you must comply with the NVIDIA licensing
requirements. For example, NVIDIA vGPU GRID requires a licensing server. For more
information about the NVIDIA licensing requirements, see NVIDIA License Server Release Notes
on the NVIDIA website.

8.2. CONFIGURING VGPU ON THE COMPUTE NODES

To enable your cloud users to create instances that use a virtual GPU (vGPU), you must configure the
Compute nodes that have the physical GPUs:

1. Build a custom GPU-enabled overcloud image.

2. Prepare the GPU role, profile, and flavor for designating Compute nodes for vGPU.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

110

https://docs.nvidia.com/grid/latest/product-support-matrix/index.html
https://docs.nvidia.com/grid/latest/grid-license-server-release-notes/index.html

3. Configure the Compute node for vGPU.

4. Deploy the overcloud.

NOTE

To use an NVIDIA GRID vGPU, you must comply with the NVIDIA GRID licensing
requirements and you must have the URL of your self-hosted license server. For more
information, see the NVIDIA License Server Release Notes web page.

8.2.1. Building a custom GPU overcloud image

Perform the following steps on the director node to install the NVIDIA GRID host driver on an overcloud
Compute image and upload the image to the OpenStack Image Service (glance).

Procedure

1. Copy the overcloud image and add the gpu suffix to the copied image.

$ cp overcloud-full.qcow2 overcloud-full-gpu.qcow2

2. Install an ISO image generator tool from YUM.

$ sudo yum install genisoimage -y

3. Download the NVIDIA GRID host driver RPM package that corresponds to your GPU device
from the NVIDIA website. To determine which driver you need, see the NVIDIA Driver
Downloads Portal.

NOTE

You must be a registered NVIDIA customer to download the drivers from the
portal.

4. Create an ISO image from the driver RPM package and save the image in the nvidia-host
directory.

$ genisoimage -o nvidia-host.iso -R -J -V NVIDIA nvidia-host/
I: -input-charset not specified, using utf-8 (detected in locale settings)
 9.06% done, estimate finish Wed Oct 31 11:24:46 2018
 18.08% done, estimate finish Wed Oct 31 11:24:46 2018
 27.14% done, estimate finish Wed Oct 31 11:24:46 2018
 36.17% done, estimate finish Wed Oct 31 11:24:46 2018
 45.22% done, estimate finish Wed Oct 31 11:24:46 2018
 54.25% done, estimate finish Wed Oct 31 11:24:46 2018
 63.31% done, estimate finish Wed Oct 31 11:24:46 2018
 72.34% done, estimate finish Wed Oct 31 11:24:46 2018
 81.39% done, estimate finish Wed Oct 31 11:24:46 2018
 90.42% done, estimate finish Wed Oct 31 11:24:46 2018
 99.48% done, estimate finish Wed Oct 31 11:24:46 2018
Total translation table size: 0
Total rockridge attributes bytes: 358
Total directory bytes: 0

CHAPTER 8. CONFIGURING VIRTUAL GPUS FOR INSTANCES

111

https://docs.nvidia.com/grid/latest/grid-license-server-release-notes/index.html
https://www.nvidia.com/Download/index.aspx?lang=en-us

Path table size(bytes): 10
Max brk space used 0
55297 extents written (108 MB)

5. Create a driver installation script for your Compute nodes. This script installs the NVIDIA GRID
host driver on each Compute node that you run it on. The following example creates a script
named install_nvidia.sh:

#/bin/bash

NVIDIA GRID package
mkdir /tmp/mount
mount LABEL=NVIDIA /tmp/mount
rpm -ivh /tmp/mount/NVIDIA-vGPU-rhel-8.1-430.27.x86_64.rpm

6. Customize the overcloud image by attaching the ISO image that you generated in Step 4, and
running the driver installation script that you created in Step 5:

$ virt-customize --attach nvidia-packages.iso -a overcloud-full-gpu.qcow2 -v --run
install_nvidia.sh
[0.0] Examining the guest ...
libguestfs: launch: program=virt-customize
libguestfs: launch: version=1.36.10rhel=8,release=6.el8_5.2,libvirt
libguestfs: launch: backend registered: unix
libguestfs: launch: backend registered: uml
libguestfs: launch: backend registered: libvirt

7. Relabel the customized image with SELinux:

$ virt-customize -a overcloud-full-gpu.qcow2 --selinux-relabel
[0.0] Examining the guest ...
[2.2] Setting a random seed
[2.2] SELinux relabelling
[27.4] Finishing off

8. Prepare the custom image files for upload to the OpenStack Image Service:

$ mkdir /var/image/x86_64/image
$ guestmount -a overcloud-full-gpu.qcow2 -i --ro image
$ cp image/boot/vmlinuz-3.10.0-862.14.4.el8.x86_64 ./overcloud-full-gpu.vmlinuz
$ cp image/boot/initramfs-3.10.0-862.14.4.el8.x86_64.img ./overcloud-full-gpu.initrd

9. From the undercloud, upload the custom image to the OpenStack Image Service:

(undercloud) $ openstack overcloud image upload --update-existing --os-image-name
overcloud-full-gpu.qcow2

8.2.2. Designating Compute nodes for vGPU

To designate Compute nodes for vGPU workloads, you must create a new role file to configure the
vGPU role, and configure a new flavor to use to tag the GPU-enabled Compute nodes.

Procedure

Red Hat OpenStack Platform 16.0 Instances and Images Guide

112

1. To create the new ComputeGPU role file, copy the file /usr/share/openstack-tripleo-heat-
templates/roles/Compute.yaml to /usr/share/openstack-tripleo-heat-
templates/roles/ComputeGPU.yaml and edit the following file sections:

Table 8.1. ComputeGPU role file edits

Section/Parameter Current value New value

Role comment Role: Compute Role: ComputeGpu

Role name name: Compute name: ComputeGpu

description Basic Compute Node role GPU Compute Node role

ImageDefault overcloud-full overcloud-full-gpu

HostnameFormatDefault -compute- -computegpu-

deprecated_nic_config_na
me

compute.yaml compute-gpu.yaml

2. Generate a new roles data file named gpu_roles_data.yaml that includes the Controller,
Compute, and ComputeGpu roles.

(undercloud) [stack@director templates]$ openstack overcloud roles generate -o
/home/stack/templates/gpu_roles_data.yaml Controller Compute ComputeGpu

The following example shows the ComputeGpu role details:

###
Role: ComputeGpu
###
- name: ComputeGpu
 description: |
 GPU Compute Node role
 CountDefault: 1
 ImageDefault: overcloud-full-gpu
 networks:
 - InternalApi
 - Tenant
 - Storage
 HostnameFormatDefault: '%stackname%-computegpu-%index%'
 RoleParametersDefault:
 TunedProfileName: "virtual-host"
 # Deprecated & backward-compatible values (FIXME: Make parameters consistent)
 # Set uses_deprecated_params to True if any deprecated params are used.
 uses_deprecated_params: True
 deprecated_param_image: 'NovaImage'
 deprecated_param_extraconfig: 'NovaComputeExtraConfig'
 deprecated_param_metadata: 'NovaComputeServerMetadata'
 deprecated_param_scheduler_hints: 'NovaComputeSchedulerHints'
 deprecated_param_ips: 'NovaComputeIPs'

CHAPTER 8. CONFIGURING VIRTUAL GPUS FOR INSTANCES

113

 deprecated_server_resource_name: 'NovaCompute'
 deprecated_nic_config_name: 'compute-gpu.yaml'
 ServicesDefault:
 - OS::TripleO::Services::Aide
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::BootParams
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::ComputeCeilometerAgent
 - OS::TripleO::Services::ComputeNeutronCorePlugin
 - OS::TripleO::Services::ComputeNeutronL3Agent
 - OS::TripleO::Services::ComputeNeutronMetadataAgent
 - OS::TripleO::Services::ComputeNeutronOvsAgent
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::Fluentd
 - OS::TripleO::Services::IpaClient
 - OS::TripleO::Services::Ipsec
 - OS::TripleO::Services::Iscsid
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::LoginDefs
 - OS::TripleO::Services::MetricsQdr
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::NeutronBgpVpnBagpipe
 - OS::TripleO::Services::NeutronLinuxbridgeAgent
 - OS::TripleO::Services::NeutronVppAgent
 - OS::TripleO::Services::NovaCompute
 - OS::TripleO::Services::NovaLibvirt
 - OS::TripleO::Services::NovaLibvirtGuests
 - OS::TripleO::Services::NovaMigrationTarget
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::OpenDaylightOvs
 - OS::TripleO::Services::Podman
 - OS::TripleO::Services::Rhsm
 - OS::TripleO::Services::RsyslogSidecar
 - OS::TripleO::Services::Securetty
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Sshd
 - OS::TripleO::Services::Timesync
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::Tuned
 - OS::TripleO::Services::Vpp
 - OS::TripleO::Services::OVNController
 - OS::TripleO::Services::OVNMetadataAgent

3. Register the node for the overcloud. For more information, see Registering nodes for the
overcloud in the Director Installation and Usage guide.

4. Inspect the node hardware. For more information, see Inspecting the hardware of nodes in the
Director Installation and Usage guide.

5. Create the compute-vgpu-nvidia flavor to use to tag nodes that you want to designate for

Red Hat OpenStack Platform 16.0 Instances and Images Guide

114

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/index#sect-Registering_Nodes_for_the_Overcloud-basic
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/director_installation_and_usage/index#inspecting-the-hardware-of-nodes-basic

5. Create the compute-vgpu-nvidia flavor to use to tag nodes that you want to designate for
vGPU workloads:

(undercloud) [stack@director templates]$ openstack flavor create --id auto --ram 6144 --disk
40 --vcpus 4 compute-vgpu-nvidia
+----------------------------+--------------------------------------+
| Field | Value |
+----------------------------+--------------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	40
id	9cb47954-be00-47c6-a57f-44db35be3e69
name	compute-vgpu-nvidia
os-flavor-access:is_public	True
properties	
ram	6144
rxtx_factor	1.0
swap	
vcpus	4
+----------------------------+--------------------------------------+

6. Tag each node that you want to designate for GPU workloads with the compute-vgpu-nvidia
profile.

(undercloud) [stack@director templates]$ openstack baremetal node set --property
capabilities='profile:compute-vgpu-nvidia,boot_option:local' <node>

Replace <node> with the ID of the baremetal node.

8.2.3. Configuring the Compute node for vGPU and deploying the overcloud

You need to retrieve and assign the vGPU type that corresponds to the physical GPU device in your
environment, and prepare the environment files to configure the Compute node for vGPU.

Procedure

1. Install Red Hat Enterprise Linux and the NVIDIA GRID driver on a temporary Compute node and
launch the node. For more information about installing the NVIDIA GRID driver, see
Section 8.2.1, “Building a custom GPU overcloud image” .

2. On the Compute node, locate the vGPU type of the physical GPU device that you want to
enable. For libvirt, virtual GPUs are mediated devices, or mdev type devices. To discover the
supported mdev devices, enter the following command:

[root@overcloud-computegpu-0 ~]# ls
/sys/class/mdev_bus/0000\:06\:00.0/mdev_supported_types/
nvidia-11 nvidia-12 nvidia-13 nvidia-14 nvidia-15 nvidia-16 nvidia-17 nvidia-18 nvidia-19
nvidia-20 nvidia-21 nvidia-210 nvidia-22

[root@overcloud-computegpu-0 ~]# cat
/sys/class/mdev_bus/0000\:06\:00.0/mdev_supported_types/nvidia-18/description
num_heads=4, frl_config=60, framebuffer=2048M, max_resolution=4096x2160,
max_instance=4

3. Add the compute-gpu.yaml file to the network-environment.yaml file:

CHAPTER 8. CONFIGURING VIRTUAL GPUS FOR INSTANCES

115

resource_registry:
 OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute.yaml
 OS::TripleO::ComputeGpu::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute-gpu.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-
configs/controller.yaml
 #OS::TripleO::AllNodes::Validation: OS::Heat::None

4. Add the following parameters to the node-info.yaml file to specify the number of GPU
Compute nodes, and the flavor to use for the GPU-designated Compute nodes:

parameter_defaults:
 OvercloudControllerFlavor: control
 OvercloudComputeFlavor: compute
 OvercloudComputeGpuFlavor: compute-vgpu-nvidia
 ControllerCount: 1
 ComputeCount: 0
 ComputeGpuCount: 1

5. Create a gpu.yaml file to specify the vGPU type of your GPU device:

parameter_defaults:
 ComputeGpuExtraConfig:
 nova::compute::vgpu::enabled_vgpu_types:
 - nvidia-18

NOTE

Each physical GPU supports only one virtual GPU type. If you specify multiple
vGPU types in this property, only the first type is used.

6. Deploy the overcloud, adding your new role and environment files to the stack along with your
other environment files:

(undercloud) $ openstack overcloud deploy --templates \
 -r /home/stack/templates/nvidia/gpu_roles_data.yaml
 -e /home/stack/templates/node-info.yaml
 -e /home/stack/templates/network-environment.yaml
 -e [your environment files]
 -e /home/stack/templates/gpu.yaml

8.3. CREATING THE VGPU IMAGE AND FLAVOR

To enable your cloud users to create instances that use a virtual GPU (vGPU), you can define a custom
vGPU-enabled image, and you can create a vGPU flavor.

8.3.1. Creating a custom GPU instance image

After you deploy the overcloud with GPU-enabled Compute nodes, you can create a custom vGPU-
enabled instance image with the NVIDIA GRID guest driver and license file.

Red Hat OpenStack Platform 16.0 Instances and Images Guide

116

Procedure

1. Create an instance with the hardware and software profile that your vGPU instances require:

(overcloud) [stack@director ~]$ openstack server create --flavor <flavor> --image <image>
temp_vgpu_instance

Replace <flavor> with the name or ID of the flavor that has the hardware profile that your
vGPU instances require. For information on default flavors, see Manage flavors.

Replace <image> with the name or ID of the image that has the software profile that your
vGPU instances require. For information on downloading RHEL cloud images, see Image
service.

2. Log in to the instance as a cloud-user. For more information, see Log in to an Instance .

3. Create the gridd.conf NVIDIA GRID license file on the instance, following the NVIDIA guidance:
Licensing an NVIDIA vGPU on Linux by Using a Configuration File .

4. Install the GPU driver on the instance. For more information about installing an NVIDIA driver,
see Installing the NVIDIA vGPU Software Graphics Driver on Linux .

NOTE

Use the hw_video_model image property to define the GPU driver type. You
can choose none if you want to disable the emulated GPUs for your vGPU
instances. For more information about supported drivers, see Appendix A, Image
Configuration Parameters.

5. Create an image snapshot of the instance:

(overcloud) [stack@director ~]$ openstack server image create --name vgpu_image
temp_vgpu_instance

6. Optional: Delete the instance.

8.3.2. Creating a vGPU flavor for instances

After you deploy the overcloud with GPU-enabled Compute nodes, you can create a custom flavor that
your cloud users can use to launch instances for GPU workloads.

Procedure

1. Create an NVIDIA GPU flavor. For example:

(overcloud) [stack@virtlab-director2 ~]$ openstack flavor create --vcpus 6 --ram 8192 --disk
100 m1.small-gpu
+----------------------------+--------------------------------------+
| Field | Value |
+----------------------------+--------------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	100
id	a27b14dd-c42d-4084-9b6a-225555876f68

CHAPTER 8. CONFIGURING VIRTUAL GPUS FOR INSTANCES

117

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/instances_and_images_guide/ch-manage_instances#section-flavors
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/instances_and_images_guide/ch-image-service
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/instances_and_images_guide/index#section-Check-instance
https://docs.nvidia.com/grid/latest/grid-licensing-user-guide/index.html#licensing-grid-vgpu-linux-config-file
https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#installing-vgpu-drivers-linux

name	m1.small-gpu
os-flavor-access:is_public	True
properties	
ram	8192
rxtx_factor	1.0
swap	
vcpus	6
+----------------------------+--------------------------------------+

2. Assign a vGPU resource to the flavor that you created. You can assign only one vGPU for each
instance.

(overcloud) [stack@virtlab-director2 ~]$ openstack flavor set m1.small-gpu --property
"resources:VGPU=1"

(overcloud) [stack@virtlab-director2 ~]$ openstack flavor show m1.small-gpu
+----------------------------+--------------------------------------+
| Field | Value |
+----------------------------+--------------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
access_project_ids	None
disk	100
id	a27b14dd-c42d-4084-9b6a-225555876f68
name	m1.small-gpu
os-flavor-access:is_public	True
properties	resources:VGPU='1'
ram	8192
rxtx_factor	1.0
swap	
vcpus	6
+----------------------------+--------------------------------------+

8.3.3. Launching a vGPU instance

You can create a GPU-enabled instance for GPU workloads.

Procedure

1. Create an instance using a GPU flavor and image. For example:

(overcloud) [stack@virtlab-director2 ~]$ openstack server create --flavor m1.small-gpu --
image vgpu_image --security-group web --nic net-id=internal0 --key-name lambda vgpu-
instance

2. Log in to the instance as a cloud-user. For more information, see Log in to an Instance .

3. To verify that the GPU is accessible from the instance, run the following command from the
instance:

$ lspci -nn | grep <gpu_name>

8.4. ENABLING PCI PASSTHROUGH FOR A GPU DEVICE

Red Hat OpenStack Platform 16.0 Instances and Images Guide

118

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/instances_and_images_guide/index#section-Check-instance

You can use PCI passthrough to attach a physical PCI device, such as a graphics card, to an instance. If
you use PCI passthrough for a device, the instance reserves exclusive access to the device for
performing tasks, and the device is not available to the host.

Prerequisites

The pciutils package is installed on the physical servers that have the PCI cards.

The GPU driver is available to install on the GPU instances. For more information, see
Section 8.2.1, “Building a custom GPU overcloud image” .

Procedure

1. To determine the vendor ID and product ID for each passthrough device type, run the following
command on the physical server that has the PCI cards:

lspci -nn | grep -i <gpu_name>

For example, to determine the vendor and product ID for an NVIDIA GPU, run the following
command:

lspci -nn | grep -i nvidia
3b:00.0 3D controller [0302]: NVIDIA Corporation TU104GL [Tesla T4] [10de:1eb8] (rev a1)
d8:00.0 3D controller [0302]: NVIDIA Corporation TU104GL [Tesla T4] [10de:1db4] (rev a1)

2. To configure the Controller node on the overcloud for PCI passthrough, create an environment
file, for example, pci_passthru_controller.yaml.

3. Add PciPassthroughFilter to the NovaSchedulerDefaultFilters parameter in
pci_passthru_controller.yaml:

parameter_defaults:
 NovaSchedulerDefaultFilters:
['RetryFilter','AvailabilityZoneFilter','ComputeFilter','ComputeCapabilitiesFilter','ImageProperties
Filter','ServerGroupAntiAffinityFilter','ServerGroupAffinityFilter','PciPassthroughFilter','NUMATo
pologyFilter']

4. To specify the PCI alias for the devices on the Controller node, add the following to
pci_passthru_controller.yaml:

ControllerExtraConfig:
 nova::pci::aliases:
 - name: "t4"
 product_id: "1eb8"
 vendor_id: "10de"
 - name: "v100"
 product_id: "1db4"
 vendor_id: "10de"

NOTE

If the nova-api service is running in a role other than the Controller, then replace
ControllerExtraConfig with the user role, in the format <Role>ExtraConfig.

CHAPTER 8. CONFIGURING VIRTUAL GPUS FOR INSTANCES

119

5. To configure the Compute node on the overcloud for PCI passthrough, create an environment
file, for example, pci_passthru_compute.yaml.

6. To specify the allowed PCIs for the devices on the Compute node, add the following to
pci_passthru_compute.yaml:

parameter_defaults:
 NovaPCIPassthrough:
 - vendor_id: "10de"
 product_id: "1eb8"

7. To enable IOMMU in the server BIOS of the Compute nodes to support PCI passthrough, add
the KernelArgs parameter to pci_passthru_compute.yaml:

 parameter_defaults:
 ...
 ComputeParameters:
 KernelArgs: "intel_iommu=on iommu=pt"

8. Deploy the overcloud, adding your custom environment files to the stack along with your other
environment files:

(undercloud) $ openstack overcloud deploy --templates \
 -e [your environment files]
 -e /home/stack/templates/pci_passthru_controller.yaml
 -e /home/stack/templates/pci_passthru_compute.yaml

9. Configure a flavor to request the PCI devices. The following example requests two devices,
each with a vendor ID of 10de and a product ID of 13f2:

openstack flavor set m1.large --property "pci_passthrough:alias"="t4:2"

10. Create an instance with a PCI passthrough device:

openstack server create --flavor m1.large --image rhelgpu --wait test-pci

11. Log in to the instance as a cloud-user. For more information, see Log in to an Instance .

12. Install the GPU driver on the instance. For example, run the following script to install an NVIDIA
driver:

$ sh NVIDIA-Linux-x86_64-430.24-grid.run

Verification

1. To verify that the GPU is accessible from the instance, run the following command from the
instance:

$ lspci -nn | grep <gpu_name>

2. To check the NVIDIA System Management Interface status, run the following command from
the instance:

Red Hat OpenStack Platform 16.0 Instances and Images Guide

120

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/instances_and_images_guide/index#section-Check-instance

$ nvidia-smi

Example output:

| NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 10.2 |
|---+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===
====|
| 0 Tesla T4 Off | 00000000:01:00.0 Off | 0 |
| N/A 43C P0 20W / 70W | 0MiB / 15109MiB | 0% Default |

| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===
==|
No running processes found

CHAPTER 8. CONFIGURING VIRTUAL GPUS FOR INSTANCES

121

CHAPTER 9. CONFIGURING REAL-TIME COMPUTE
In some use-cases, you might need instances on your Compute nodes to adhere to low-latency policies
and perform real-time processing. Real-time Compute nodes include a real-time capable kernel,
specific virtualization modules, and optimized deployment parameters, to facilitate real-time processing
requirements and minimize latency.

The process to enable Real-time Compute includes:

configuring the BIOS settings of the Compute nodes

building a real-time image with real-time kernel and Real-Time KVM (RT-KVM) kernel module

assigning the ComputeRealTime role to the Compute nodes

For a use-case example of Real-time Compute deployment for NFV workloads, see the Example:
Configuring OVS-DPDK with ODL and VXLAN tunnelling section in the Network Functions Virtualization
Planning and Configuration Guide.

9.1. PREPARING YOUR COMPUTE NODES FOR REAL-TIME

NOTE

Real-time Compute nodes are supported only with Red Hat Enterprise Linux version 7.5
or later.

Before you can deploy Real-time Compute in your overcloud, you must enable Red Hat Enterprise Linux
Real-Time KVM (RT-KVM), configure your BIOS to support real-time, and build the real-time image.

Prerequisites

You must use Red Hat certified servers for your RT-KVM Compute nodes. See Red Hat
Enterprise Linux for Real Time 7 certified servers for details.

You must enable the rhel-8-for-x86_64-nfv-rpms repository for RT-KVM to build the real-time
image.

NOTE

You need a separate subscription to Red Hat OpenStack Platform for Real Time
before you can access this repository. For details on managing repositories and
subscriptions for your undercloud, see the Registering and updating your
undercloud section in the Director Installation and Usage guide.

To check which packages will be installed from the repository, run the following command:

$ dnf repo-pkgs rhel-8-for-x86_64-nfv-rpms list
Loaded plugins: product-id, search-disabled-repos, subscription-manager
Available Packages
kernel-rt.x86_64 4.18.0-80.7.1.rt9.153.el8_0 rhel-8-for-x86_64-nfv-rpms
kernel-rt-debug.x86_64 4.18.0-80.7.1.rt9.153.el8_0 rhel-8-for-x86_64-nfv-
rpms
kernel-rt-debug-devel.x86_64 4.18.0-80.7.1.rt9.153.el8_0 rhel-8-for-x86_64-nfv-

Red Hat OpenStack Platform 16.0 Instances and Images Guide

122

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/network_functions_virtualization_planning_and_configuration_guide/#assembly_config-vxlan-dpdk-odl
https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat Enterprise Linux?sort=sortTitle asc&certifications=Red Hat Enterprise Linux for Real Time 7&category=Server
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/director_installation_and_usage/installing-the-undercloud#registering-and-updating-your-undercloud

rpms
kernel-rt-debug-kvm.x86_64 4.18.0-80.7.1.rt9.153.el8_0 rhel-8-for-x86_64-nfv-
rpms
kernel-rt-devel.x86_64 4.18.0-80.7.1.rt9.153.el8_0 rhel-8-for-x86_64-nfv-
rpms
kernel-rt-doc.noarch 4.18.0-80.7.1.rt9.153.el8_0 rhel-8-for-x86_64-nfv-rpms
kernel-rt-kvm.x86_64 4.18.0-80.7.1.rt9.153.el8_0 rhel-8-for-x86_64-nfv-
rpms
[output omitted…]

Building the real-time image

To build the overcloud image for Real-time Compute nodes:

1. Install the libguestfs-tools package on the undercloud to get the virt-customize tool:

(undercloud) [stack@undercloud-0 ~]$ sudo dnf install libguestfs-tools

IMPORTANT

If you install the libguestfs-tools package on the undercloud, disable
iscsid.socket to avoid port conflicts with the tripleo_iscsid service on the
undercloud:

$ sudo systemctl disable --now iscsid.socket

2. Extract the images:

(undercloud) [stack@undercloud-0 ~]$ tar -xf /usr/share/rhosp-director-images/overcloud-
full.tar
(undercloud) [stack@undercloud-0 ~]$ tar -xf /usr/share/rhosp-director-images/ironic-python-
agent.tar

3. Copy the default image:

(undercloud) [stack@undercloud-0 ~]$ cp overcloud-full.qcow2 overcloud-realtime-
compute.qcow2

4. Register the image and configure the required subscriptions:

(undercloud) [stack@undercloud-0 ~]$ virt-customize -a overcloud-realtime-compute.qcow2
--run-command 'subscription-manager register --username=[username] --password=
[password]'
[0.0] Examining the guest ...
[10.0] Setting a random seed
[10.0] Running: subscription-manager register --username=[username] --password=
[password]
[24.0] Finishing off

Replace the username and password values with your Red Hat customer account details. For
general information about building a Real-time overcloud image, see the Modifying the Red Hat
Enterprise Linux OpenStack Platform Overcloud Image with virt-customize knowledgebase
article.

CHAPTER 9. CONFIGURING REAL-TIME COMPUTE

123

https://access.redhat.com/articles/1556833

5. Find the SKU of the Red Hat OpenStack Platform for Real Time subscription. The SKU might be
located on a system that is already registered to the Red Hat Subscription Manager with the
same account and credentials. For example:

$ sudo subscription-manager list

6. Attach the Red Hat OpenStack Platform for Real Time subscription to the image:

(undercloud) [stack@undercloud-0 ~]$ virt-customize -a overcloud-realtime-compute.qcow2
--run-command 'subscription-manager attach --pool [subscription-pool]'

7. Create a script to configure rt on the image:

(undercloud) [stack@undercloud-0 ~]$ cat rt.sh
 #!/bin/bash

 set -eux

 subscription-manager repos --enable=[REPO_ID]
 dnf -v -y --setopt=protected_packages= erase kernel.$(uname -m)
 dnf -v -y install kernel-rt kernel-rt-kvm tuned-profiles-nfv-host

 # END OF SCRIPT

8. Run the script to configure the real-time image:

(undercloud) [stack@undercloud-0 ~]$ virt-customize -a overcloud-realtime-compute.qcow2 -
v --run rt.sh 2>&1 | tee virt-customize.log

9. Re-label SELinux:

(undercloud) [stack@undercloud-0 ~]$ virt-customize -a overcloud-realtime-compute.qcow2 -
-selinux-relabel

10. Extract vmlinuz and initrd. For example:

(undercloud) [stack@undercloud-0 ~]$ mkdir image
(undercloud) [stack@undercloud-0 ~]$ guestmount -a overcloud-realtime-compute.qcow2 -i -
-ro image
(undercloud) [stack@undercloud-0 ~]$ cp image/boot/vmlinuz-4.18.0-
80.7.1.rt9.153.el8_0.x86_64 ./overcloud-realtime-compute.vmlinuz
(undercloud) [stack@undercloud-0 ~]$ cp image/boot/initramfs-4.18.0-
80.7.1.rt9.153.el8_0.x86_64.img ./overcloud-realtime-compute.initrd
(undercloud) [stack@undercloud-0 ~]$ guestunmount image

NOTE

The software version in the vmlinuz and initramfs filenames vary with the kernel
version.

11. Upload the image:

Red Hat OpenStack Platform 16.0 Instances and Images Guide

124

(undercloud) [stack@undercloud-0 ~]$ openstack overcloud image upload --update-existing -
-os-image-name overcloud-realtime-compute.qcow2

You now have a real-time image you can use with the ComputeRealTime composable role on select
Compute nodes.

Modifying BIOS settings on Real-time Compute nodes

To reduce latency on your Real-time Compute nodes, you must modify the BIOS settings in the
Compute nodes. You should disable all options for the following components in your Compute node
BIOS settings:

Power Management

Hyper-Threading

CPU sleep states

Logical processors

See Setting BIOS parameters for descriptions of these settings and the impact of disabling them. See
your hardware manufacturer documentation for complete details on how to change BIOS settings.

9.2. DEPLOYING THE REAL-TIME COMPUTE ROLE

Red Hat OpenStack Platform director provides the template for the ComputeRealTime role, which you
can use to deploy real-time Compute nodes. You must perform additional steps to designate Compute
nodes for real-time.

Procedure

1. Based on the /usr/share/openstack-tripleo-heat-templates/environments/compute-real-
time-example.yaml file, create a compute-real-time.yaml environment file that sets the
parameters for the ComputeRealTime role.

cp /usr/share/openstack-tripleo-heat-templates/environments/compute-real-time-
example.yaml /home/stack/templates/compute-real-time.yaml

The file must include values for the following parameters:

IsolCpusList and NovaComputeCpuDedicatedSet: List of isolated CPU cores and virtual
CPU pins to reserve for real-time workloads. This value depends on the CPU hardware of
your real-time Compute nodes.

NovaComputeCpuSharedSet: List of host CPUs to reserve for emulator threads.

KernelArgs: Arguments to pass to the kernel of the Real-time Compute nodes. For
example, you can use default_hugepagesz=1G hugepagesz=1G hugepages=
<number_of_1G_pages_to_reserve> hugepagesz=2M hugepages=
<number_of_2M_pages> to define the memory requirements of guests that have huge
pages with multiple sizes. In this example, the default size is 1GB but you can also reserve 2M
huge pages.

2. Add the ComputeRealTime role to your roles data file and regenerate the file. For example:

CHAPTER 9. CONFIGURING REAL-TIME COMPUTE

125

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html/tuning_guide/chap-general_system_tuning#Setting_BIOS_parameters

$ openstack overcloud roles generate -o /home/stack/templates/rt_roles_data.yaml Controller
Compute ComputeRealTime

This command generates a ComputeRealTime role with contents similar to the following
example, and also sets the ImageDefault option to overcloud-realtime-compute.

- name: ComputeRealTime
 description: |
 Compute role that is optimized for real-time behaviour. When using this role
 it is mandatory that an overcloud-realtime-compute image is available and
 the role specific parameters IsolCpusList, NovaComputeCpuDedicatedSet and
 NovaComputeCpuSharedSet are set accordingly to the hardware of the real-time compute
nodes.
 CountDefault: 1
 networks:
 InternalApi:
 subnet: internal_api_subnet
 Tenant:
 subnet: tenant_subnet
 Storage:
 subnet: storage_subnet
 HostnameFormatDefault: '%stackname%-computerealtime-%index%'
 ImageDefault: overcloud-realtime-compute
 RoleParametersDefault:
 TunedProfileName: "realtime-virtual-host"
 KernelArgs: "" # these must be set in an environment file
 IsolCpusList: "" # or similar according to the hardware
 NovaComputeCpuDedicatedSet: "" # of real-time nodes
 NovaComputeCpuSharedSet: "" #
 NovaLibvirtMemStatsPeriodSeconds: 0
 ServicesDefault:
 - OS::TripleO::Services::Aide
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::BootParams
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::ComputeCeilometerAgent
 - OS::TripleO::Services::ComputeNeutronCorePlugin
 - OS::TripleO::Services::ComputeNeutronL3Agent
 - OS::TripleO::Services::ComputeNeutronMetadataAgent
 - OS::TripleO::Services::ComputeNeutronOvsAgent
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::Fluentd
 - OS::TripleO::Services::IpaClient
 - OS::TripleO::Services::Ipsec
 - OS::TripleO::Services::Iscsid
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::LoginDefs
 - OS::TripleO::Services::MetricsQdr
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::NeutronBgpVpnBagpipe
 - OS::TripleO::Services::NeutronLinuxbridgeAgent

Red Hat OpenStack Platform 16.0 Instances and Images Guide

126

 - OS::TripleO::Services::NeutronVppAgent
 - OS::TripleO::Services::NovaCompute
 - OS::TripleO::Services::NovaLibvirt
 - OS::TripleO::Services::NovaLibvirtGuests
 - OS::TripleO::Services::NovaMigrationTarget
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::OpenDaylightOvs
 - OS::TripleO::Services::Podman
 - OS::TripleO::Services::Rhsm
 - OS::TripleO::Services::RsyslogSidecar
 - OS::TripleO::Services::Securetty
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::SkydiveAgent
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Sshd
 - OS::TripleO::Services::Timesync
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::Vpp
 - OS::TripleO::Services::OVNController
 - OS::TripleO::Services::OVNMetadataAgent

For general information about custom roles and about the roles-data.yaml, see the Roles
section.

3. Create the compute-realtime flavor to tag nodes that you want to designate for real-time
workloads. For example:

$ source ~/stackrc
$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 compute-realtime
$ openstack flavor set --property "cpu_arch"="x86_64" --property
"capabilities:boot_option"="local" --property "capabilities:profile"="compute-realtime"
compute-realtime

4. Tag each node that you want to designate for real-time workloads with the compute-realtime
profile.

$ openstack baremetal node set --property capabilities='profile:compute-
realtime,boot_option:local' <NODE UUID>

5. Map the ComputeRealTime role to the compute-realtime flavor by creating an environment
file with the following content:

parameter_defaults:
 OvercloudComputeRealTimeFlavor: compute-realtime

6. Run the openstack overcloud deploy command with the -e option and specify all the
environment files that you created, as well as the new roles file. For example:

$ openstack overcloud deploy -r /home/stack/templates/rt~/my_roles_data.yaml -e
home/stack/templates/compute-real-time.yaml <FLAVOR_ENV_FILE>

9.3. SAMPLE DEPLOYMENT AND TESTING SCENARIO

CHAPTER 9. CONFIGURING REAL-TIME COMPUTE

127

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/advanced_overcloud_customization/#roles

The following example procedure uses a simple single-node deployment to test that the environment
variables and other supporting configuration is set up correctly. Actual performance results might vary,
depending on the number of nodes and guests that you deploy in your cloud.

1. Create the compute-real-time.yaml file with the following parameters:

parameter_defaults:
 ComputeRealTimeParameters:
 IsolCpusList: "1"
 NovaComputeCpuDedicatedSet: "1"
 NovaComputeCpuSharedSet: "0"
 KernelArgs: "default_hugepagesz=1G hugepagesz=1G hugepages=16"

2. Create a new rt_roles_data.yaml file with the ComputeRealTime role:

$ openstack overcloud roles generate -o ~/rt_roles_data.yaml Controller ComputeRealTime

3. Deploy the overcloud, adding both your new real-time roles data file and your real-time
environment file to the stack along with your other environment files:

(undercloud) $ openstack overcloud deploy --templates \
 -r /home/stack/rt_roles_data.yaml
 -e [your environment files]
 -e /home/stack/templates/compute-real-time.yaml

This command deploys one Controller node and one Real-time Compute node.

4. Log into the Real-time Compute node and check the following parameters. Replace <...> with
the values of the relevant parameters from the compute-real-time.yaml.

[root@overcloud-computerealtime-0 ~]# uname -a
Linux overcloud-computerealtime-0 4.18.0-80.7.1.rt9.153.el8_0.x86_64 #1 SMP PREEMPT
RT Wed Dec 13 13:37:53 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
[root@overcloud-computerealtime-0 ~]# cat /proc/cmdline
BOOT_IMAGE=/boot/vmlinuz-4.18.0-80.7.1.rt9.153.el8_0.x86_64 root=UUID=45ae42d0-
58e7-44fe-b5b1-993fe97b760f ro console=tty0 crashkernel=auto console=ttyS0,115200
default_hugepagesz=1G hugepagesz=1G hugepages=16
[root@overcloud-computerealtime-0 ~]# tuned-adm active
Current active profile: realtime-virtual-host
[root@overcloud-computerealtime-0 ~]# grep ^isolated_cores /etc/tuned/realtime-virtual-host-
variables.conf
isolated_cores=<IsolCpusList>
[root@overcloud-computerealtime-0 ~]# cat /usr/lib/tuned/realtime-virtual-
host/lapic_timer_adv_ns
X (X != 0)
[root@overcloud-computerealtime-0 ~]# cat
/sys/module/kvm/parameters/lapic_timer_advance_ns
X (X != 0)
[root@overcloud-computerealtime-0 ~]# cat
/sys/devices/system/node/node0/hugepages/hugepages-1048576kB/nr_hugepages
X (X != 0)
[root@overcloud-computerealtime-0 ~]# crudini --get /var/lib/config-data/puppet-
generated/nova_libvirt/etc/nova/nova.conf compute cpu_dedicated_set
<NovaComputeCpuDedicatedSet>

Red Hat OpenStack Platform 16.0 Instances and Images Guide

128

[root@overcloud-computerealtime-0 ~]# crudini --get /var/lib/config-data/puppet-
generated/nova_libvirt/etc/nova/nova.conf compute cpu_shared_set
<NovaComputeCpuSharedSet>

9.4. LAUNCHING AND TUNING REAL-TIME INSTANCES

After you deploy and configure Real-time Compute nodes, you can launch real-time instances on those
nodes. You can further configure these real-time instances with CPU pinning, NUMA topology filters,
and huge pages.

Launching a real-time instance

1. Make sure that the compute-realtime flavor exists on the overcloud, as described in the
Deploying the Real-time Compute Role section.

2. Launch the real-time instance.

openstack server create --image <rhel> --flavor r1.small --nic net-id=<dpdk-net> test-rt

3. Optionally, verify that the instance uses the assigned emulator threads.

virsh dumpxml <instance-id> | grep vcpu -A1
<vcpu placement='static'>4</vcpu>
<cputune>
 <vcpupin vcpu='0' cpuset='1'/>
 <vcpupin vcpu='1' cpuset='3'/>
 <vcpupin vcpu='2' cpuset='5'/>
 <vcpupin vcpu='3' cpuset='7'/>
 <emulatorpin cpuset='0-1'/>
 <vcpusched vcpus='2-3' scheduler='fifo'
 priority='1'/>
</cputune>

Pinning CPUs and setting emulator thread policy

To ensure that there are enough CPUs on each Real-time Compute node for real-time workloads, you
need to pin at least one virtual CPU (vCPU) for an instance to a physical CPU (pCPUs) on the host. The
emulator threads for that vCPU then remain dedicated to that pCPU.

Configure your flavor to use a dedicated CPU policy. To do so, set the hw:cpu_policy parameter to
dedicated on the flavor. For example:

openstack flavor set --property hw:cpu_policy=dedicated 99

NOTE

Make sure that your resources quota has enough pCPUs for the Real-time Compute
nodes to consume.

Optimizing your network configuration

Depending on the needs of your deployment, you might need to set parameters in the network-
environment.yaml file to tune your network for certain real-time workloads.

CHAPTER 9. CONFIGURING REAL-TIME COMPUTE

129

To review an example configuration optimized for OVS-DPDK, see the Configuring the OVS-DPDK
parameters section of the Network Functions Virtualization Planning and Configuration Guide .

Configuring huge pages

It is recommended to set the default huge pages size to 1GB. Otherwise, TLB flushes might create jitter
in the vCPU execution. For general information about using huge pages, see the Running DPDK
applications web page.

Disabling Performance Monitoring Unit (PMU) emulation

Instances can provide PMU metrics by specifying an image or flavor with a vPMU. Providing PMU
metrics introduces latency.

NOTE

The vPMU defaults to enabled when cpu_mode=host-passthrough.

If you do not need PMU metrics, then disable the vPMU to reduce latency by setting the PMU property
to "False" in the image or flavor used to create the instance:

Image: hw_pmu=False

Flavor: hw:pmu=False

Red Hat OpenStack Platform 16.0 Instances and Images Guide

130

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html-single/network_functions_virtualization_planning_and_configuration_guide/#p-ovsdpdk-rtkvm-networkenv
https://doc.dpdk.org/guides/linux_gsg/sys_reqs.html#running-dpdk-applications

APPENDIX A. IMAGE CONFIGURATION PARAMETERS
The following keys can be used with the property option for both the glance image-update and glance
image-create commands.

$ glance image-update IMG-UUID --property architecture=x86_64

NOTE

Behavior set using image properties overrides behavior set using flavors. For more
information, see Section 4.3, “Manage Flavors” .

Table A.1. Property Keys

Specific to Key Description Supported values

All architecture The CPU
architecture
that must be
supported by
the hypervisor.
For example,
x86_64, arm,
or ppc64. Run
uname -m to
get the
architecture of a
machine. We
strongly
recommend
using the
architecture
data vocabulary
defined by the
libosinfo project
for this purpose.

alpha-DEC 64-bit RISC

armv7l-ARM Cortex-A7 MPCore

cris-Ethernet, Token Ring, AXis-Code
Reduced Instruction Set

i686-Intel sixth-generation x86 (P6
micro architecture)

ia64-Itanium

lm32-Lattice Micro32

m68k-Motorola 68000

microblaze-Xilinx 32-bit FPGA (Big
Endian)

microblazeel-Xilinx 32-bit FPGA (Little
Endian)

mips-MIPS 32-bit RISC (Big Endian)

mipsel-MIPS 32-bit RISC (Little
Endian)

mips64-MIPS 64-bit RISC (Big Endian)

mips64el-MIPS 64-bit RISC (Little
Endian)

openrisc-OpenCores RISC

parisc-HP Precision Architecture RISC

parisc64-HP Precision Architecture
64-bit RISC

ppc-PowerPC 32-bit

ppc64-PowerPC 64-bit

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

131

http://libosinfo.org

ppcemb-PowerPC (Embedded 32-bit)

s390-IBM Enterprise Systems
Architecture/390

s390x-S/390 64-bit

sh4-SuperH SH-4 (Little Endian)

sh4eb-SuperH SH-4 (Big Endian)

sparc-Scalable Processor Architecture,
32-bit

sparc64-Scalable Processor
Architecture, 64-bit

unicore32-Microprocessor Research
and Development Center RISC
Unicore32

x86_64-64-bit extension of IA-32

xtensa-Tensilica Xtensa configurable
microprocessor core

xtensaeb-Tensilica Xtensa configurable
microprocessor core (Big Endian)

All hypervisor_type The hypervisor
type.

kvm, vmware

All instance_uuid For snapshot
images, this is
the UUID of the
server used to
create this
image.

Valid server UUID

All kernel_id The ID of an
image stored in
the Image
Service that
should be used
as the kernel
when booting an
AMI-style
image.

Valid image ID

Specific to Key Description Supported values

Red Hat OpenStack Platform 16.0 Instances and Images Guide

132

All os_distro The common
name of the
operating
system
distribution in
lowercase (uses
the same data
vocabulary as
the libosinfo
project). Specify
only a
recognized
value for this
field.
Deprecated
values are listed
to assist you in
searching for
the recognized
value.

arch-Arch Linux. Do not use archlinux
or org.archlinux

centos-Community Enterprise
Operating System. Do not use
org.centos or CentOS

debian-Debian. Do not use Debian or
org.debian

fedora-Fedora. Do not use Fedora,
org.fedora, or org.fedoraproject

freebsd-FreeBSD. Do not use
org.freebsd, freeBSD, or FreeBSD

gentoo-Gentoo Linux. Do not use
Gentoo or org.gentoo

mandrake-Mandrakelinux
(MandrakeSoft) distribution. Do not
use mandrakelinux or MandrakeLinux

mandriva-Mandriva Linux. Do not use
mandrivalinux

mes-Mandriva Enterprise Server. Do
not use mandrivaent or mandrivaES

msdos-Microsoft Disc Operating
System. Do not use ms-dos

netbsd-NetBSD. Do not use NetBSD or
org.netbsd

netware-Novell NetWare. Do not use
novell or NetWare

openbsd-OpenBSD. Do not use
OpenBSD or org.openbsd

opensolaris-OpenSolaris. Do not use
OpenSolaris or org.opensolaris

opensuse-openSUSE. Do not use suse,
SuSE, or org.opensuse

rhel-Red Hat Enterprise Linux. Do not
use redhat, RedHat, or com.redhat

sled-SUSE Linux Enterprise Desktop.
Do not use com.suse

ubuntu-Ubuntu. Do not use Ubuntu,
com.ubuntu, org.ubuntu, or canonical

windows-Microsoft Windows. Do not
use com.microsoft.server

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

133

http://libosinfo.org

All os_version The operating
system version
as specified by
the distributor.

Version number (for example, "11.10")

All ramdisk_id The ID of image
stored in the
Image Service
that should be
used as the
ramdisk when
booting an AMI-
style image.

Valid image ID

All vm_mode The virtual
machine mode.
This represents
the host/guest
ABI (application
binary interface)
used for the
virtual machine.

hvm-Fully virtualized. This is the mode used by
QEMU and KVM.

libvirt API driver hw_disk_bus Specifies the
type of disk
controller to
attach disk
devices to.

scsi, virtio, ide, or usb. Note that if using
iscsi, the hw_scsi_model needs to be set to
virtio-scsi.

libvirt API driver hw_numa_nodes Number of
NUMA nodes to
expose to the
instance (does
not override
flavor
definition).

Integer. For a detailed example of NUMA-
topology definition, see the hw:NUMA_def key in
Add Metadata.

libvirt API driver hw_numa_cpus.
0

Mapping of
vCPUs N-M to
NUMA node 0
(does not
override flavor
definition).

Comma-separated list of integers.

libvirt API driver hw_numa_cpus.1 Mapping of
vCPUs N-M to
NUMA node 1
(does not
override flavor
definition).

Comma-separated list of integers.

Specific to Key Description Supported values

Red Hat OpenStack Platform 16.0 Instances and Images Guide

134

libvirt API driver hw_numa_mem.
0

Mapping N MB
of RAM to
NUMA node 0
(does not
override flavor
definition).

Integer

libvirt API driver hw_numa_mem.1 Mapping N MB
of RAM to
NUMA node 1
(does not
override flavor
definition).

Integer

libvirt API driver hw_qemu_guest
_agent

Guest agent
support. If set to
yes, and if
qemu-ga is
also installed,
file systems can
be quiesced
(frozen) and
snapshots
created
automatically.

yes / no

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

135

libvirt API driver hw_rng_model Adds a random-
number
generator
device to the
image’s
instances. The
cloud
administrator
can enable and
control device
behavior by
configuring the
instance’s flavor.
By default:

The
genera
tor
device
is
disable
d.

/dev/ra
ndom
is used
as the
default
entrop
y
source.
To
specify
a
physica
l HW
RNG
device,
set
rng_d
ev_pa
th to
"/dev/
hwrng"
in your
Compu
te
environ
ment
file.

virtio, or other supported device.

Specific to Key Description Supported values

Red Hat OpenStack Platform 16.0 Instances and Images Guide

136

libvirt API driver hw_scsi_model Enables the use
of VirtIO SCSI
(virtio-scsi) to
provide block
device access
for compute
instances; by
default,
instances use
VirtIO Block
(virtio-blk).
VirtIO SCSI is a
para-virtualized
SCSI controller
device that
provides
improved
scalability and
performance,
and supports
advanced SCSI
hardware.

virtio-scsi

libvirt API driver hw_video_model The video image
driver used.

vga, cirrus, vmvga, xen, or qxl

libvirt API driver hw_video_ram Maximum RAM
for the video
image. Used
only if a
hw_video:ram
_max_mb
value has been
set in the
flavor’s
extra_specs
and that value is
higher than the
value set in
hw_video_ra
m.

Integer in MB (for example, 64)

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

137

libvirt API driver hw_watchdog_a
ction

Enables a virtual
hardware
watchdog
device that
carries out the
specified action
if the server
hangs. The
watchdog uses
the i6300esb
device
(emulating a
PCI Intel
6300ESB). If
hw_watchdog
_action is not
specified, the
watchdog is
disabled.

disabled-The device is not attached.
Allows the user to disable the watchdog
for the image, even if it has been
enabled using the image’s flavor. The
default value for this parameter is
disabled.

reset-Forcefully reset the guest.

poweroff-Forcefully power off the
guest.

pause-Pause the guest.

none-Only enable the watchdog; do
nothing if the server hangs.

libvirt API driver os_command_lin
e

The kernel
command line to
be used by the
libvirt driver,
instead of the
default. For
Linux
Containers
(LXC), the value
is used as
arguments for
initialization.
This key is valid
only for Amazon
kernel, ramdisk,
or machine
images (aki, ari,
or ami).

libvirt API driver
and VMware API
driver

hw_vif_model Specifies the
model of virtual
network
interface device
to use.

The valid options depend on the configured
hypervisor.

KVM and QEMU: e1000, ne2k_pci,
pcnet, rtl8139, and virtio.

VMware: e1000, e1000e, VirtualE1000,
VirtualE1000e, VirtualPCNet32,
VirtualSriovEthernetCard, and
VirtualVmxnet.

Xen: e1000, netfront, ne2k_pci, pcnet,
and rtl8139.

Specific to Key Description Supported values

Red Hat OpenStack Platform 16.0 Instances and Images Guide

138

VMware API
driver

vmware_adapter
type

The virtual SCSI
or IDE controller
used by the
hypervisor.

lsiLogic, busLogic, or ide

VMware API
driver

vmware_ostype A VMware
GuestID which
describes the
operating
system installed
in the image.
This value is
passed to the
hypervisor when
creating a
virtual machine.
If not specified,
the key defaults
to otherGuest.

For more information, see Images with VMware
vSphere.

VMware API
driver

vmware_image_
version

Currently
unused.

1

XenAPI driver auto_disk_config If true, the root
partition on the
disk is
automatically
resized before
the instance
boots. This
value is only
taken into
account by the
Compute
service when
using a Xen-
based
hypervisor with
the XenAPI
driver. The
Compute
service will only
attempt to
resize if there is
a single partition
on the image,
and only if the
partition is in
ext3 or ext4
format.

true / false

Specific to Key Description Supported values

APPENDIX A. IMAGE CONFIGURATION PARAMETERS

139

https://docs.openstack.org/nova/train/admin/configuration/hypervisor-vmware.html#images-with-vmware-vsphere

libvirt API driver
and XenAPI
driver

os_type The operating
system installed
on the image.
The XenAPI
driver contains
logic that takes
different actions
depending on
the value of the
os_type
parameter of
the image. For
example, for
os_type=wind
ows images, it
creates a
FAT32-based
swap partition
instead of a
Linux swap
partition, and it
limits the
injected host
name to less
than 16
characters.

linux or windows

Specific to Key Description Supported values

Red Hat OpenStack Platform 16.0 Instances and Images Guide

140

APPENDIX B. ENABLING THE LAUNCH INSTANCE WIZARD
There are two methods that you can use to launch instances from the dashboard:

The Launch Instance form

The Launch Instance wizard

The Launch Instance form is enabled by default, but you can enable the Launch Instance wizard at any
time. You can also enable both the Launch Instance form and the Launch Instance wizard at the same
time. The Launch Instance wizard simplifies the steps required to create instances.

1. Edit /etc/openstack-dashboard/local_settings file, and add the following values:

LAUNCH_INSTANCE_LEGACY_ENABLED = False
LAUNCH_INSTANCE_NG_ENABLED = True

2. Restart the httpd service:

systemctl restart httpd

The preferences for the Launch Instance form and Launch Instance wizard are updated.

If you enabled only one of these options, the Launch Instance button in the dashboard opens that
option by default. If you enabled both options, two Launch Instance buttons are displayed in the
dashboard, with the button on the left opening the Launch Instance wizard and the button on the right
opening the Launch Instance form.

APPENDIX B. ENABLING THE LAUNCH INSTANCE WIZARD

141

	Table of Contents
	PREFACE
	CHAPTER 1. IMAGE SERVICE
	1.1. UNDERSTANDING THE IMAGE SERVICE
	1.1.1. Image Signing and Verification
	1.1.2. Image conversion
	1.1.3. Image Introspection
	1.1.4. Interoperable Image Import
	1.1.5. Improving scalability with Image service caching
	1.1.6. Image pre-caching
	1.1.6.1. Configuring the default interval for periodic image pre-caching
	1.1.6.2. Using a periodic job to pre-cache an image

	1.2. MANAGE IMAGES
	1.2.1. Creating an Image
	1.2.1.1. Use a KVM Guest Image With Red Hat OpenStack Platform
	1.2.1.2. Create Custom Red Hat Enterprise Linux or Windows Images
	1.2.1.3. Use libosinfo

	1.2.2. Upload an Image
	1.2.3. Update an Image
	1.2.4. Import an Image
	1.2.4.1. Import from a Remote URI
	1.2.4.2. Import from a Local Volume

	1.2.5. Delete an Image
	1.2.6. Hide or Unhide an Image
	1.2.7. Show Hidden Images
	1.2.8. Enabling image conversion
	1.2.9. Converting an image to RAW format
	1.2.9.1. Configuring Image Service to accept RAW and ISO only

	1.2.10. Storing an image in RAW format

	CHAPTER 2. CONFIGURING THE COMPUTE (NOVA) SERVICE
	2.1. CONFIGURING MEMORY FOR OVERALLOCATION
	2.2. CALCULATING RESERVED HOST MEMORY ON COMPUTE NODES
	2.3. CALCULATING SWAP SIZE

	CHAPTER 3. CONFIGURE OPENSTACK COMPUTE STORAGE
	3.1. ARCHITECTURE OVERVIEW
	3.2. CONFIGURATION

	CHAPTER 4. VIRTUAL MACHINE INSTANCES
	4.1. MANAGE INSTANCES
	4.1.1. Add Components
	4.1.2. Launch an Instance
	4.1.2.1. Launch Instance Options

	4.1.3. Update an Instance (Actions menu)
	4.1.4. Resize an Instance
	4.1.5. Connect to an Instance
	4.1.5.1. Access an Instance Console using the Dashboard
	4.1.5.2. Directly Connect to a VNC Console

	4.1.6. View Instance Usage
	4.1.7. Delete an Instance
	4.1.8. Manage Multiple Instances at Once

	4.2. MANAGE INSTANCE SECURITY
	4.2.1. Manage Key Pairs
	4.2.1.1. Create a Key Pair
	4.2.1.2. Import a Key Pair
	4.2.1.3. Delete a Key Pair

	4.2.2. Create a Security Group
	4.2.3. Create, Assign, and Release Floating IP Addresses
	4.2.3.1. Allocate a Floating IP to the Project
	4.2.3.2. Assign a Floating IP
	4.2.3.3. Release a Floating IP

	4.2.4. Log in to an Instance
	4.2.5. Inject an admin Password Into an Instance

	4.3. MANAGE FLAVORS
	4.3.1. Update Configuration Permissions
	4.3.2. Create a Flavor
	4.3.3. Update General Attributes
	4.3.4. Update Flavor Metadata
	4.3.4.1. View Metadata
	4.3.4.2. Add Metadata

	4.4. MANAGE HOST AGGREGATES
	4.4.1. Enable Host Aggregate Scheduling
	4.4.2. View Availability Zones or Host Aggregates
	4.4.3. Add a Host Aggregate
	4.4.4. Update a Host Aggregate
	4.4.5. Delete a Host Aggregate

	4.5. SCHEDULE HOSTS
	4.5.1. Configure Scheduling Filters
	4.5.2. Configure Scheduling Weights
	4.5.2.1. Configure Weight Options for Hosts

	4.5.3. Configure Placement Service Traits
	4.5.3.1. libvirt virtualization driver capabilities as placement service traits
	4.5.3.2. Using placement service traits to specify resource provider requirements

	4.5.4. Configuring a guaranteed minimum bandwidth QoS
	4.5.4.1. Removing a guaranteed minimum bandwidth QoS from an instance

	4.5.5. Reserve NUMA Nodes with PCI Devices
	4.5.6. Configure Emulator Threads to run on Dedicated Physical CPU

	4.6. MANAGE INSTANCE SNAPSHOTS
	4.6.1. Create an Instance Snapshot
	4.6.2. Manage a Snapshot
	4.6.3. Rebuild an Instance to a State in a Snapshot
	4.6.4. Consistent Snapshots

	4.7. USE RESCUE MODE FOR INSTANCES
	4.7.1. Preparing an Image for a Rescue Mode Instance
	4.7.1.1. Rescue Image if Using ext4 Filesystem

	4.7.2. Adding the Rescue Image to the OpenStack Image Service
	4.7.3. Launching an Instance in Rescue Mode
	4.7.4. Unrescuing an Instance

	4.8. SET A CONFIGURATION DRIVE FOR INSTANCES
	4.8.1. Configuration Drive Options
	4.8.2. Use a Configuration Drive

	CHAPTER 5. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES
	5.1. MIGRATION TYPES
	5.2. MIGRATION CONSTRAINTS
	5.3. PREPARING TO MIGRATE
	5.4. COLD MIGRATING AN INSTANCE
	5.5. LIVE MIGRATING AN INSTANCE
	5.6. CHECKING MIGRATION STATUS
	5.7. EVACUATING AN INSTANCE
	5.7.1. Evacuating one instance
	5.7.2. Evacuating all instances on a host
	5.7.3. Configuring shared storage

	5.8. TROUBLESHOOTING MIGRATION
	5.8.1. Errors during migration
	5.8.2. Never-ending live migration
	5.8.3. Instance performance degrades after migration

	CHAPTER 6. SCALING DEPLOYMENTS WITH COMPUTE CELLS
	6.1. CELL COMPONENTS
	6.2. CELL DEPLOYMENTS ARCHITECTURE
	6.3. CONSIDERATIONS FOR MULTI-CELL DEPLOYMENTS
	6.4. DEPLOYING A MULTI-CELL OVERCLOUD
	6.5. CREATING AND PROVISIONING A CELL
	6.6. ADDING COMPUTE NODES TO A CELL
	6.7. CONFIGURING AN AVAILABILITY ZONE
	6.8. DELETING A COMPUTE NODE FROM A CELL
	6.9. DELETING A CELL

	CHAPTER 7. CONFIGURING COMPUTE NODES FOR PERFORMANCE
	7.1. CONFIGURING CPU PINNING ON THE COMPUTE NODE
	7.1.1. Upgrading CPU pinning configuration
	7.1.2. Launching an instance with CPU pinning
	7.1.3. Launching a floating instance

	7.2. CONFIGURING HUGE PAGES ON THE COMPUTE NODE
	7.2.1. Allocating huge pages to instances

	CHAPTER 8. CONFIGURING VIRTUAL GPUS FOR INSTANCES
	8.1. SUPPORTED CONFIGURATIONS AND LIMITATIONS
	8.2. CONFIGURING VGPU ON THE COMPUTE NODES
	8.2.1. Building a custom GPU overcloud image
	8.2.2. Designating Compute nodes for vGPU
	8.2.3. Configuring the Compute node for vGPU and deploying the overcloud

	8.3. CREATING THE VGPU IMAGE AND FLAVOR
	8.3.1. Creating a custom GPU instance image
	8.3.2. Creating a vGPU flavor for instances
	8.3.3. Launching a vGPU instance

	8.4. ENABLING PCI PASSTHROUGH FOR A GPU DEVICE

	CHAPTER 9. CONFIGURING REAL-TIME COMPUTE
	9.1. PREPARING YOUR COMPUTE NODES FOR REAL-TIME
	9.2. DEPLOYING THE REAL-TIME COMPUTE ROLE
	9.3. SAMPLE DEPLOYMENT AND TESTING SCENARIO
	9.4. LAUNCHING AND TUNING REAL-TIME INSTANCES

	APPENDIX A. IMAGE CONFIGURATION PARAMETERS
	APPENDIX B. ENABLING THE LAUNCH INSTANCE WIZARD

