& RedHat

Red Hat OpenStack Platform 16.2

Federate with Identity Service

Federate with Identity Service using Red Hat Single Sign-On

Last Updated: 2023-11-09

Red Hat OpenStack Platform 16.2 Federate with Identity Service

Federate with Identity Service using Red Hat Single Sign-On

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Federate with Identity Service using Red Hat Single Sign-On

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... ittt ettt e eiii e eaennnneenn, 4
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ..ottt ettt eiiiieeenannnneennns 5
CHAPTER L INTRODUCTION .ottt ittt et ettt et e aaete e eaanneeeesannnneesesennnneesennnns 6
1.1. OVERVIEW 6
1.2. PREREQUISITES 6
1.3. ACCESSING THE RED HAT OPENSTACK PLATFORM NODES 7
1.4. OVERVIEW OF TECHNOLOGIES 8
1.4.1. High availability 8
1.4.1.1. Managing Pacemaker Services 8

1.4.2. HAProxy Overview 8

1.5. USING A CONFIGURATION SCRIPT 8
1.6. USING A PROXY OR SSL TERMINATOR 9
CHAPTER 2. CONFIGURING RED HAT IDENTITY MANAGEMENT ... it eenns 10
2.1. CREATING THE IDM SERVICE ACCOUNT FOR RH-SSO 10
2.2. CREATING A TEST USER 10
2.3. CREATING AN IDM GROUP FOR OPENSTACK USERS 1
CHAPTER 3. CONFIGURING RED HAT SINGLE SIGN-ON ittt eenneeeeannns 12
3.1. CONFIGURING THE RH-SSO REALM 12
3.2. ADDING USER ATTRIBUTES USING SAML ASSERTION 13
3.3. ADDING GROUP INFORMATION TO THE SAML ASSERTION 14
CHAPTER 4. CONFIGURING RED HAT OPENSTACK PLATFORM FORFEDERATIONcvvuvt... 16
4. RETRIEVING THE IP ADDRESS 16
4.2. SETTING THE HOST VARIABLES AND NAMING THE HOST 16
4.3.INSTALLING HELPER FILES 17
4.4, SETTING YOUR DEPLOYMENT VARIABLES 17
45. COPYING THE HELPER FILES 17
4.6. INITIALIZING THE WORKING ENVIRONMENTS 18
4.7. INSTALLING MOD_AUTH_MELLON 18
4.8. ADDING THE RH-SSO FQDN TO EACH CONTROLLER 18
4.9. INSTALLING AND CONFIGURING MELLON ON THE CONTROLLER NODE 19
4.10. EDITING THE MELLON CONFIGURATION 20
4.11. CREATING AN ARCHIVE OF THE GENERATED CONFIGURATION FILES 20
412. RETRIEVING THE MELLON CONFIGURATION ARCHIVE 21
4.13. PREVENTING PUPPET FROM DELETING UNMANAGED HTTPD FILES 21
4.14. CONFIGURING IDENTITY SERVICE (KEYSTONE) FOR FEDERATION 22
4.15. DEPLOYING THE MELLON CONFIGURATION ARCHIVE 23
4.16. REDEPLOYING THE OVERCLOUD 23
4.17. USE PROXY PERSISTENCE FOR THE IDENTITY SERVICE (KEYSTONE) ON EACH CONTROLLER 23
4.18. CREATING FEDERATED RESOURCES 24
4.19. CREATING THE IDENTITY PROVIDER IN RED HAT OPENSTACK PLATFORM 24
4.20. CREATE THE MAPPING FILE AND UPLOAD TO KEYSTONE 25
4.20.1. Create the mapping 26
4.21. CREATE AKEYSTONE FEDERATION PROTOCOL 26
4.22. FULLY-QUALIFY THE KEYSTONE SETTINGS 27
4.23. CONFIGURE HORIZON TO USE FEDERATION 27
4.24. CONFIGURE HORIZON TO USE THE X-FORWARDED-PROTO HTTP HEADER 27

CHAPTER 5. TROUBLESHOOTING ... i i e i et 29

Red Hat OpenStack Platform 16.2 Federate with Identity Service

5.1. TEST THE KEYSTONE MAPPING RULES
5.2. DETERMINE THE ACTUAL ASSERTION VALUES RECEIVED BY KEYSTONE
5.3. REVIEW THE SAML MESSAGES EXCHANGED BETWEEN THE SP AND IDP

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

CHAPTER 7. THE FED_VARIABLES FILE

29
30
30

Table of Contents

Red Hat OpenStack Platform 16.2 Federate with Identity Service

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue
3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not

modify any other fields in the form.

4. Click Create.

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

Red Hat OpenStack Platform 16.2 Federate with Identity Service

CHAPTER 1. INTRODUCTION

' WARNING
A Red Hat does not support federation at this time. This feature should only be used

for testing, and should not be deployed in a production environment.

To configure federation in a high availability Red Hat OpenStack Platform director environment, you
must configure the following:

® Red Hat Identity Management
® Red Hat single sign-on (RH-SSO)

® The Red Hat OpenStack Platform overcloud

1.1. OVERVIEW

Federated authentication is a method of providing authentication across disparate services. This
authentication solution relies on an identity provider (IdP), a service provider (SP), and is based on the
Security Assertion Markup Language (SAML).

When OpenStack is the service provider in a federated authentication solution, members of the Red Hat
Identity Management (IdM) group openstack-users are mapped into OpenStack Keystone group
federated_users with the Member role for project access. Consequently, you are able to grant users
access to OpenStack by adding those users to the IdM group openstack-users.

1.2. PREREQUISITES

You will need the following completed before deploying federated authentication:

® You have deployed Red Hat OpenStack Platform director and the overcloud with the following
properties:

© You can use SSH to connect to both Red Hat OpenStack Platform director, and each of the
overcloud nodes.

o All nodes have a fully qualified domain name (FQDN).
o TLS encryption is used for all external communications.

o HAProxy terminates TLS front-end connections, and servers running behind HAProxy do
not use TLS.

® An RH-SSO server is present, and you either have administrative privileges on the server, or the
RH-SSO administrator has created a realm for you and given you administrative privileges on
that realm. Because federated |dPs are external by definition, the RH-SSO server is assumed to
be external to the Red Hat OpenStack Platform director overcloud. For more information, see
Installing and configuring RH-SSO and Creating a realm and user.

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.0/html/integrating_red_hat_process_automation_manager_with_red_hat_single_sign-on/sso-realm-proc
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.0/html/getting_started_guide/create_a_realm_and_user

CHAPTER 1. INTRODUCTION

® AnldM server is present, and also external to the Red Hat OpenStack Platform director
overcloud where users and groups are managed. RH-SSO uses IdM as its User Federation
backing store.

® You follow the examples described in the Keystone Federation Configuration Guide.

e On the undercloud-0 node, you install the helper files into the home directory of the stack
user, and work in the stack user home directory.

e On the controller-0 node, you install the helper files into the home directory of the heat-admin
user, and work in the heat-admin user home directory.

e |fmod_auth_mellon was previously installed on your controller nodes, you must reinstall it as
the Puppet Apache class will remove any Apache configuration files not under Puppet'’s control.

NOTE

Only the Red Hat OpenStack overcloud has federation enabled. The director is not
federated.

1.3. ACCESSING THE RED HAT OPENSTACK PLATFORM NODES

By default, you must login to Red Hat OpenStack Platform director to access the overcloud nodes.

1. Use SSH to connect to Red Hat OpenStack director:

I # ssh undercloud-0

2. Become the stack user:

I $ su - stack

3. Source the stackrec configuration to enable the required OpenStack environment variables:

I $ source stackrc

4. After you source stackre, you can issue commands using the openstack command line tool,
which operates against Red Hat OpenStack Platform director. To directly access one of the
overcloud nodes, retrieve the ip address by using openstack server list and then using SSH to
connect:

(undercloud) [stack@director ~]$ openstack server list -c Name -¢ Networks
+- + +

| Name | Networks |

+- + +

| rhosp-controller-0 | ctlplane=10.94.101.11 |

| rhosp-controller-1 | ctlplane=10.94.101.14 |

| rhosp-controller-2 | ctlplane=10.94.101.17 |

| rhosp-hypervisor-0 | ctlplane=10.94.101.18 |

| rhosp-hypervisor-1 | ctlplane=10.94.101.20 |

+- + +

$ ssh heat-admin@10.94.101.11

http://docs.openstack.org/developer/keystone/federation/federated_identity.html

Red Hat OpenStack Platform 16.2 Federate with Identity Service

1.4. OVERVIEW OF TECHNOLOGIES

The following technologies are a part of Red Hat OpenStack Platform.

1.4.1. High availability

Red Hat OpenStack Platform director distributes redundant copies of various OpenStack services
across the overcloud deployment. These redundant services are deployed on the overcloud controller
nodes, with director naming these nodes controller-0, controller-1, controller-2, and so on, depending
on how many controller nodes Red Hat OpenStack Platform director has configured.

The IP addresses of the Controller nodes are not externally visible because the services running on the
Controller nodes are HAProxy back-end servers. There is one publicly visible IP address for the set of
controller nodes; this is HAProxy's front end. When a request arrives for a service on the public IP
address, HAProxy selects a back-end server to service the request.

The overcloud is organized as a high availability cluster. Pacemaker manages the cluster, performs
health checks, and can failover to another cluster resource if the resource stops functioning. You use
Pacemaker to start and stop these resources.

For more information about high availability, see the High Availability Deployment and Usage guide.

1.4.1.1. Managing Pacemaker Services

Do not use the podman command on a Controller node to manage contained services that Pacemaker
manages. Use the Pacemaker pcs command:

I sudo pcs resource restart haproxy-bundle

To determine the resource name, use the Pacemaker status command:

sudo pcs status

* Container bundle set: haproxy-bundle [cluster.common.tag/openstack-haproxy:pcmklatest]:

* haproxy-bundle-podman-0 (ocf::heartbeat:podman): Started rhosp13-controller-0
* haproxy-bundle-podman-1 (ocf::heartbeat:podman): Started rhosp13-controller-1
* haproxy-bundle-podman-2 (ocf::heartbeat:podman): Started rhosp13-controller-2

1.4.2. HAProxy Overview

HAProxy serves a similar role to Pacemaker. It performs health checks on the back-end servers and
forwards requests to functioning back-end servers. There is a cop of HAProxy running on all Controller
nodes.

Although there are N copies of HAProxy running, only one is actually fielding requests at any given time;
this active HAProxy instance is managed by Pacemaker. This approach prevents conflicts from
occurring, and allows multiple copies of HAProxy to coordinate the distribution of requests across
multiple back-ends. If Pacemaker detects that HAProxy has failed, it reassigns the front-end IP address
to a different HAProxy instance. This HAProxy instance then becomes the controlling HAProxy instance.

1.5. USING A CONFIGURATION SCRIPT

To configure federated authentication, you will need to run long and complex commands. To make that

http://clusterlabs.org/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/high_availability_deployment_and_usage/

CHAPTER 1. INTRODUCTION

task easier and to allow for repeatability, the commands are saved to a shell script called configure-
federation. You can execute a specific step if you pass the name of the step to configure-federation.
To view the list of possible commands, use the help option (-h or --help).

NOTE

For more information on the contents of the script, see Chapter 6, The configure-
federation file.

To view the commands that are executed after variable substitution, use the following options:

-Nn

This option provides a dry-run mode that writes its operations to stdout without making changes on
the system.

-V

This option provides a verbose mode that writes its operations to stdout before executing. This is
useful for logging.

1.6. USING A PROXY OR SSL TERMINATOR

Consider the following key features for environments behind a proxy.

® A back-end server might have a different hostname, listen on different port, or use a different
protocol than what a client sees on the front side of the proxy.
Problems can occur when a server generates a self-referential URL, for example if the server
redirects the client to a different URL on the same server. The URL that the server generates
must match the public address and port as seen by the client.

® Authentication protocols such as HTTP and HTTPS are sensitive to the host, port, and protocol,
because they often need to ensure a request was targeted for a specific server, port and on a
secure transport. Proxies can interfere with this information.

o A proxy transforms a request received on its public front-end before dispatching it to a non-
public server in the back-end.

o Responses from the non-public back-end server sometimes need adjustment so that it
appears as if the response came from the public front-end of the proxy.
There are various approaches to solving this problem. Because SAML is sensitive to host,
port, and protocol information, and because you are configuring SAML behind a high
availability proxy (HAProxy), you must deal with these issues or your configuration will likely
fail.

Red Hat OpenStack Platform 16.2 Federate with Identity Service

CHAPTER 2. CONFIGURING RED HAT IDENTITY
MANAGEMENT

You can configure Red Hat OpenStack Platform with federated user management with the following
features:

® Red Hat Identity Management (IdM) is external to Red Hat OpenStack Platform
® RedHatldMis the source of all user and group information

® Red Hat Single Signon (RH-SSO) is configured to use Red Hat IdM for user Federation

2.1. CREATING THE IDM SERVICE ACCOUNT FOR RH-SSO

If you use anonomous binds, some information that is essential for Red Hat Single Sign-On (RH-SSO) is
withheld for security reasons. As a result, you need provide the appropriate privileges for RH-SSO in the
forma a dedicated account to query the IdM LDAP server for this information:

LDAP_URL="Idaps://$FED_IPA_HOST"

DIR_MGR_DN="cn=Directory Manager"

SERVICE_NAME="rhsso"
SERVICE_DN="uid=$service_name,cn=sysaccounts,cn=etc,$FED_IPA_BASE_DN"

$ Idapmodify -H "${LDAP_URL}" -x -D "${DIR_MGR_DN}" -w <_FED_IPA_ADMIN_PASSWD_>
<<EOF

dn: ${SERVICE_DN}

changetype: add

objectclass: account

objectclass: simplesecurityobject

uid: ${SERVICE_NAME}

userPassword: <_FED_IPA_RHSSO_SERVICE_PASSWD_>
passwordExpirationTime: 20380119031407Z

nsldleTimeout: 0

EOF

9’ NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation create-ipa-service-account

2.2. CREATING ATEST USER

Create a user account in |[dM for testing:

Procedure

1. Create a user jdoe in IdM:

I $ipa user-add --first John --last Doe --email jdoe@example.com jdoe

2. Assign a password to the user:

10

CHAPTER 2. CONFIGURING RED HAT IDENTITY MANAGEMENT
I $ipa passwd jdoe

2.3. CREATING AN IDM GROUP FOR OPENSTACK USERS

You must have an IdM group openstack-users to map to the Keystone group federated_users. Map
the test user to this group.

Create the openstack-users group in Red Hat Identity Management (IdM):

Procedure

1. Ensure that the openstack-users group does not exist:

$ ipa group-show openstack-users
ipa: ERROR: openstack-users: group not found

2. Add the openstack-users group to IdM:
I ipa group-add openstack-users
3. Add the test users to the openstack-users group:
I ipa group-add-member --users jdoe openstack-users

4. Verify that the openstack-users group exists and has the test user as a member:

$ ipa group-show openstack-users
Group name: openstack-users
GID: 331400001
Member users: jdoe

1

Red Hat OpenStack Platform 16.2 Federate with Identity Service

CHAPTER 3. CONFIGURING RED HAT SINGLE SIGN-ON

Red Hat Single Sign-On (RH-SSO) supports multi-tenancy, and uses realms to allow for separation
between tenants. As a result RH-SSO operations always occur within the context of a realm. You can
either create the realm manually, or with the keycloak-httpd-client-install tool if you have
administrative privileges on the RH-SSO server.

Prerequisites

You must have a fully installed RH-SSO server. For more information on installing RH-SSO, see Server
installation and configuration guide.

You need definitions for the following variables as they appear below:

< RH_RHSSO_URL_> The Red Hat Single Sign-On URL

<_FED_RHSSO_REALM_»> Identifies the RH-SSO realm in use

3.1. CONFIGURING THE RH-SSO REALM

When the Red Hat Single Sign-On (RH-SSO) realm is available, use the RH-SSO web console to
configure the realm for user federation against |[dM:

Procedure

1. From the drop-down list in the uppper left corner, select your RH-SSO realm.
2. From the Configure panel, select User Federation.
3. From the Add provider drop-down list in the User Federation panel, select Idap.

4. Provide values for the following parameters. Substitute all site-specific values with values
relevant to your environment.

Property Value

Console Display Name Red Hat IDM

Edit Mode READ_ONLY

Sync Registrations Off

Vendor Red Hat Directory Server

Username LDAP attribute uid

RDN LDAP attribute uid

UUID LDAP attribute ipaUniquelD

User Object Classes inetOrgPerson, organizationalPerson

12

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html/server_installation_and_configuration_guide/index

CHAPTER 3. CONFIGURING RED HAT SINGLE SIGN-ON

Property Value

Connection URL LDAPS://<_FED_IPA_HOST_>

Users DN cn=users,cn=accounts,<_FED_IPA_BASE_DN_>
Authentication Type simple

Bind DN uid=rhsso,cn=sysaccounts,cn=etc,<_FED_IPA_BASE_DN_>
Bind Credential <_FED_IPA_RHSSO_SERVICE_PASSWD_>

5. Use the Test connection and Test authentication buttons to ensure that user federation is
working.

6. Click Save to save the new user federation provider.
7. Click the Mappers tab at the top of the Red Hat IdM user federation page you created.

8. Create a mapper to retrieve the user group information. A user’s group membership returns the
SAM assertion. Use group membership later to provide authorization in OpenStack.

9. Click Create in the Mappers page.
10. On the Add user federation mapper page, select group-ldap-mapper from the Mapper Type

drop-down list, and name it Group Mapper. Provide values for the following parameters.
Substitute all site-specific values with values relevant to your environment.

Property Value

LDAP Groups DN cn=groups,cn=accounts,<_FED_IPA_BASE_DN_>
Group Name LDAP Attribute cn

Group Object Classes groupOfNames

Membership LDAP Attribute member

Membership Attribute Type DN

Mode READ_ONLY

User Groups Retrieve Strategy GET_GROUPS_FROM_USER_MEMBEROF_ATTRIBUTE

11. Click Save.

3.2. ADDING USER ATTRIBUTES USING SAML ASSERTION

13

Red Hat OpenStack Platform 16.2 Federate with Identity Service

Security Assertion Markup Language (SAML) is an open standard that allows the communication of
user attributes and authorization credentials between the identity provider (IdP) and a service provider
(SP).

You can configure Red Hat Single Sign-On (RH-SSO) to return the attributes that you require in the
assertion. When the OpenStack Identity service receives the SAML assertion, it maps those attributes
onto OpenStack users. The process of mapping IdP attributes into Identity Service data is called
Federated Mapping. For more information, see Section 4.20, "Create the Mapping File and Upload to
Keystone”.

Use the following process to add attributes to SAML.:

Procedure

1. In the RH-SSO administration web console, select <_FED_RHSSO_REALM_> from the drop-
down list in the upper left corner.

2. Select Clients from the Configure panel.

3. Select the service provider client that keycloak-httpd-client-install configured. You can identify
the client with the SAML Entityld.

4. Select the mappers tab from the horizontal list of tabs.
5. In the Mappers panel, select Create or Add Builtin to add a protocol mapper to the client.

You can add additional attributes, but you only need the list of groups for which the user is a member.
Group membership is how you authorize the user.

3.3. ADDING GROUP INFORMATION TO THE SAML ASSERTION

Procedure

1. Click the Create button in the Mappers Panel.
2. In the Create Protocol Mapper panel, select Group list from the Mapper tpe drop-down list.
3. Enter Group List as a name in the Name field.

4. Enter groups as the name of the SAML attribute in the Group attribute Name field.

NOTE

This is the name of the attribute as it appears in the SAML assertion. When the
keystone mapper searches for names in the Remote section of the mapping
declaration, it searches for the SAML attribute name. When you add an attribute
in RH-SSO to be passed in the assertion, specify the SAML attribute name. You
define the name in the RH-SSO protocol mapper.

5. In the SAML Attribute NameFormat parameter, select Basic.
6. In the Single Group Attribute toggle box, select On.

7. Click Save.

14

CHAPTER 3. CONFIGURING RED HAT SINGLE SIGN-ON

NOTE

When you run the keycloak-httpd-client-install tool, the process adds a group mapper.

15

Red Hat OpenStack Platform 16.2 Federate with Identity Service

CHAPTER 4. CONFIGURING RED HAT OPENSTACK
PLATFORM FOR FEDERATION

The following nodes require an assigned Fully-Qualified Domain Name (FQDN):

® The host running the Dashboard (horizon).

® The host running the Identity Service (keystone), referenced in this guide as
$FED_KEYSTONE_HOST. Note that more than one host will run a service in a high-availability
environment, so the IP address is not a host address but rather the IP address bound to the
service.

® The host running RH-SSO.

® The host running IdM.

The Red Hat OpenStack Platform director deployment does not configure DNS or assign FQDNs to the

nodes, however, the authentication protocols (and TLS) require the use of FQDNSs.

4.1. RETRIEVING THE IP ADDRESS

In Red Hat OpenStack Platform, there is one common public IP address for all OpenStack services,
separated by port number. To determine the public IP address of the overcloud services, use the
openstack endpoint list command:

(overcloud) [stack@director ~]$ openstack endpoint list -c "Service Name" -c Interface -c URL | grep
public

| swift | public | http://10.0.0.101:8080/v1/AUTH_%(tenant_id)s |
| panko | public | http://10.0.0.101:8977 |

| nova | public | http:/10.0.0.101:8774/v2.1 |

| glance | public | http://10.0.0.101:9292 |

| neutron | public | http://10.0.0.101:9696 |

| keystone | public | http://10.0.0.101:5000 |

cinderv2	public	http://10.0.0.101:8776/v2/%(tenant_id)s
placement	public	http://10.0.0.101:8778/placement
cinderv3	public	http://10.0.0.101:8776/v3/%(tenant_id)s
heat	public	http://10.0.0.101:8004/v1/%(tenant_id)s

| heat-cfn | public | http://10.0.0.101:8000/v1 |

| gnocchi | public | http://10.0.0.101:8041 |

| aodh | public | http://10.0.0.101:8042 |

| cinderv3 | public | http://10.0.0.101:8776/v3/%(tenant_id)s |

4.2. SETTING THE HOST VARIABLES AND NAMING THE HOST

You must determine the IP address and port to use. In this example, the IP address is 10.0.0.101 and the
port is 13000.

16

1. Confirm this value in overcloudrc:

I export OS_AUTH_URL=https://10.0.0.101:13000/v2.0

CHAPTER 4. CONFIGURING RED HAT OPENSTACK PLATFORM FOR FEDERATION

2. Assign the IP address a fully qualified domain name (FQDN), and write it to the /etc/hosts file.
This example uses overcloud.localdomain:

I 10.0.0.101 overcloud.localdomain # FQDN of the external VIP

NOTE

Although Red Hat OpenStack Platform director configures the hosts files on the
overcloud nodes, you might need to add the host entry on any external hosts that
participate.

3. Set the $FED_KEYSTONE_HOST and $FED_KEYSTONE_HTTPS_PORT in the fed_variables
file. This example uses the same values:

FED_KEYSTONE_HOST="overcloud.localdomain”
FED KEYSTONE_HTTPS PORT=13000

Because Mellon runs on the Apache server that hosts Identity service (keystone), the Mellon host:port
and keystone host:port values must match.

NOTE

If you run the hostname command on one of the Controller nodes, is output is similar to
controller-0.localdomain. This is an internal cluster name, not its public name. Use the
public IP address instead.

4.3. INSTALLING HELPER FILES

You must install the helper files as part of the configuration.

e Copy the configure-federation and fed_variables files that you created as part of Section 1.5,
“Using a configuration script” into the stack home directory on undercloud-0.

4.4. SETTING YOUR DEPLOYMENT VARIABLES
The file fed_variables contains variables specific to your federation deployment. These variables are
referenced in this guide as well as in the configure-federation helper script. Each site-specific

federation variable is prefixed with FED_. Ensure that every FED_ variable in fed_variables is provided a
value.

4.5. COPYING THE HELPER FILES
You must have the configuration file and variable files on controller-O to continue.

® Copy the configure-federation and the edited fed_variables from the ~/stack home directory
on undercloud-0 to the ~/heat-admin home directory on controller-0:

I $ scp configure-federation fed_variables heat-admin@controller-0:/home/heat-admin

17

Red Hat OpenStack Platform 16.2 Federate with Identity Service

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation copy-helper-to-controller

4.6. INITIALIZING THE WORKING ENVIRONMENTS

1. On the undercloud node, as the stack user, create the fed_deployment directory. This location
is the file stash:

$ su - stack
$ mkdir fed_deployment

NOTE

You can use the configure-federation script to perform the previous step:

L

I $./configure-federation initialize

2. Use SSH to connect to controller-0, and create the ~/fed_deployment directory as the head-
admin user. This location is the file stash:

$ ssh heat-admin@controller-0
$ mkdir fed_deployment

NOTE

You can use the configure-federation script to perform the previous step. From
the controller-0 node:

I $./configure-federation initialize

4.7.INSTALLING MOD_AUTH_MELLON
You must install the mod_auth_mellon on each controller in your environment.

® On each controller, run the following:

$ ssh heat-admin@controller-n # replace n with controller number
$ sudo dnf install mod_auth_mellon

4.8. ADDING THE RH-SSO FQDN TO EACH CONTROLLER

Ensure that every controller is reachable by its fully-qualified domain name (FQDN).
® The mellon service runs on each Controller node and connects to the RH-SSO IdP. If the FQDN

of the RH-SSO IdP is not resolvable through DNS, manually add the FQDN to the /etc/hosts
file on all controller nodes after the Heat Hosts section:

I $ ssh heat-admin@controller-n

18

CHAPTER 4. CONFIGURING RED HAT OPENSTACK PLATFORM FOR FEDERATION

$ sudo vi /etc/hosts

Add this line (substituting the variables) before this line:
HEAT_HOSTS_START - Do not edit manually within this section!

HEAT _HOSTS_END
$FED_RHSSO_IP_ADDR $FED_RHSSO_FQDN

4.9.INSTALLING AND CONFIGURING MELLON ON THE CONTROLLER
NODE

The keycloak-httpd-client-install tool performs many of the steps needed to configure
mod_auth_mellon and have it authenticate against the RH-SSO IdP. Run the keycloak-httpd-client-
install tool on the node where mellon runs. In this example, mellon runs on the overcloud controllers
protecting the Identity service (keystone).

NOTE

Red Hat OpenStack Platform is a high availability deployment with multiple overcloud
Controller nodes, each running identical copies. As a result, you must replicate the mellon
configuration on each Controller node. To do this, install and configure mellon on
controller-0, and collect the configuration files that the keycloak-httpd-client-install
tool created into a tar file. Use Object Storage (swift) to copy the archive to each
Controller and unarchive the files there.

® Run the RH-SSO client installation:

$ ssh heat-admin@controller-0

$ dnf -y install keycloak-httpd-client-install

$ sudo keycloak-httpd-client-install \

--client-originate-method registration \

--mellon-https-port SFED_KEYSTONE_HTTPS_PORT \
--mellon-hostname $FED_KEYSTONE_HOST \

--mellon-root /v3\

--keycloak-server-url $FED_RHSSO_URL \

--keycloak-admin-password $FED_RHSSO_ADMIN_PASSWORD \
--app-name v3\

--keycloak-realm $FED_RHSSO_REALM \

-1 "/v3/auth/OS-FEDERATION/websso/mapped” \

-1 "/v3/auth/OS-FEDERATION/identity _providers/rhsso/protocols/mapped/websso” \
-1 "/v3/0S-FEDERATION/identity_providers/rhsso/protocols/mapped/auth”

NOTE

You can use the configure-federation script to perform the above step: $
./configure-federation client-install

After the client RPM installation, you should see output similar to this:

[Step 1] Connect to Keycloak Server

[Step 2] Create Directories

[Step 3] Set up template environment

[Step 4] Set up Service Provider X509 Certificates

19

Red Hat OpenStack Platform 16.2 Federate with Identity Service

[Step 5] Build Mellon httpd config file

[Step 6] Build Mellon SP metadata file

[Step 7] Query realms from Keycloak server

[Step 8] Create realm on Keycloak server

[Step 9] Query realm clients from Keycloak server
[Step 10] Get new initial access token

[Step 11] Creating new client using registration service
[Step 12] Enable saml.force.post.binding

[Step 13] Add group attribute mapper to client

[Step 14] Add Redirect URIs to client

[Step 15] Retrieve IdP metadata from Keycloak server
[Step 16] Completed Successfully

4.10. EDITING THE MELLON CONFIGURATION

During the IdP-assertion-to-Keystone mapping phase, your groups must be in a semicolon separated
list. Use the following procedure to configure mellon so that when it receives multiple values for an
attribute, it combines them into a semicolon-separated single value.

Procedure

1. Open the v3_mellon_keycloak_openstack.conf configuration file for editing:

$ vi /var/lib/config-data/puppet-
generated/keystone/etc/httpd/conf.d/v3_mellon_keycloak_openstack.conf

1. Add the MellonMergeEnvVars parameter to the <Location /v3> block:

<Location /v3>

MellonMergeEnvVars On ;"
</Location>

4.11. CREATING AN ARCHIVE OF THE GENERATED CONFIGURATION
FILES

To replicate the mellon configuration on all Controller nodes, create an archive of the files to install on
each Controller node. Store the archive in the ~/fed_deployment subdirectory.

1. Create the compressed archive:

mkdir fed_deployment && cd fed_deployment
tar -czvf rhsso_config.tar.gz \
--exclude "™.orig" \
--exclude "~'"\
/var/lib/config-data/puppet-generated/keystone/etc/httpd/federation \
/var/lib/config-data/puppet-
generated/keystone/etc/httpd/conf.d/v3_mellon_keycloak_openstack.conf

NOTE

You can use the configure-federation script to perform the previous step:

20

CHAPTER 4. CONFIGURING RED HAT OPENSTACK PLATFORM FOR FEDERATION
I $./configure-federation create-sp-archive

4.12. RETRIEVING THE MELLON CONFIGURATION ARCHIVE

® On the undercloud-0 node, retrieve the archive you created and extract the files so that you
can access the data as needed in subsequent steps.

$ scp heat-admin@controller-0:/home/heat-admin/fed_deployment/rhsso_config.tar.gz
~/fed_deployment
$ tar -C fed_deployment -xvf fed_deployment/rhsso_config.tar.gz

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation fetch-sp-archive

4.13. PREVENTING PUPPET FROM DELETING UNMANAGED HTTPD
FILES

By default, the Puppet Apache module purges any files in Apache configuration directories that it does
not manage. This prevents Apache from operating against the configuration that Puppet enforces.
However, this conflicts with the manual configuration of mellon in the HTTPD configuration directories.
The Apache Puppet apache::purge_configs flag is enabled by default, which directs Puppet to delete
files that belong to the mod_auth_mellon RPM. Puppet also deletes the configuration files that
keycloak-httpd-client-install generates. Until Puppet controls the mellon files, disable the
apache::purge_configs flag.

NOTE

Disabling the apache::purge_configs flag opens the Controller nodes to vulnerabilities.

€ Re-enable it when Puppet adds support managing mellon.

To override the apache::purge_configs flag, create a Puppet file that contains the override, and add
the override file to the list of Puppet files you use when you run the overcloud_deploy.sh script.

1. Create the fed_deployment/puppet_override_apache.yaml environment file and add the
following content:

parameter_defaults:
ControllerExtraConfig:
apache::purge_configs: false

2. Add puppet_override_apache.yaml as the last environment file in the overcloud_deploy.sh
script:

-e /home/stack/fed_deployment/puppet_override_apache.yaml \
--log-file overcloud_deployment_14.log &> overcloud_install.log

21

Red Hat OpenStack Platform 16.2 Federate with Identity Service

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation puppet-override-apache

4.14. CONFIGURING IDENTITY SERVICE (KEYSTONE) FOR
FEDERATION

Keystone domains require extra configuration. However if the keystone Puppet module is enabled, it can
perform this extra configuration step.

® |non of the Puppet YAML files, add the following:
I keystone::using_domain_config: true

Set the following values in /etc/keystone/keystone.conf to enable federation.

auth:methods

A list of allowed authentication methods. By default the list is: ['external’, 'password’, 'token’,
'oauth1']. You must enable SAML by using the mapped method. Additionally, the external method
must be excluded. Set the value to the following: password,token,oauth1,mapped.

federation:trusted_dashboard

A list of trusted dashboard hosts. Before accepting a Single Sign-On request to return a token, the
origin host must be a member of this list. You can use use this configuration option multiple times for
different values. You must set this to use web-based SSO flows. For this deployment the value is:
https://$FED_KEYSTONE_HOST/dashboard/auth/websso/ The host is $FED_KEYSTONE_HOST
because Red Hat OpenStack Platform director co-locates both keystone and horizon on the same
host. If horizon runs on a different host to keystone, you must adjust accordingly.

federation:sso_callback_template

The absolute path to an HTML file that is used as a Single Sign-On callback handler This page
redirects the user from the Identity service back to a trusted dashboard host by form encoding a
token in a POST request. The default value is sufficient for most deployments.

federation:remote_id_attribute

The value that is used to obtain the entity ID of the Identity provider. For mod_auth_mellon, use
Mellon_IDP. Set this value in the mellon configuration file using the Mellon IDP directive.

® Create the fed_deployment/puppet_override_keystone.yaml file with the following content:

parameter_defaults:
controllerExtraConfig:
keystone::using_domain_config: true
keystone::config::keystone_config:
identity/domain_configurations_from_database:
value: true
auth/methods:
value: external,password,token,oauth1,mapped
federation/trusted_dashboard:
value: https://$FED_KEYSTONE_HOST/dashboard/auth/websso/
federation/sso_callback_template:
value: /etc/keystone/sso_callback_template.html
federation/remote_id_attribute:
value: MELLON_IDP

22

CHAPTER 4. CONFIGURING RED HAT OPENSTACK PLATFORM FOR FEDERATION

® Append the created environment file at the end of the overcloud_deploy.sh script.

-e /home/stack/fed_deployment/puppet_override_keystone.yaml \
--log-file overcloud_deployment_14.log &> overcloud_install.log

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation puppet-override-keystone

4.15. DEPLOYING THE MELLON CONFIGURATION ARCHIVE

® Use Object Storage (swift) artifacts to install the mellon configuration files on each Controller
node.

$ source ~/stackrc
$ upload-swift-artifacts -f fed_deployment/rhsso_config.tar.gz

NOTE

You can use the configure-federation script to perform the above step: *./configure-
federation deploy-mellon-configuration °

4.16. REDEPLOYING THE OVERCLOUD

® To apply the changes from the Puppet YAML configuration files and Object Storage artifacts,
run the deploy command:

I .Jovercloud_deploy.sh

Important: When you make additional changes to the Controller nodes by re-running Puppet, the
overcloud_deploy.sh script might overwrite previous configurations. Do not apply the Puppet
configuration after this procedure to avoid losing manual edits that you make to the configuration files
on the overcloud Controller nodes.

4.17. USE PROXY PERSISTENCE FOR THE IDENTITY SERVICE
(KEYSTONE) ON EACH CONTROLLER

When mod_auth_mellon establishes a session, it cannot share its state information across multiple
servers. Because the high number of redirections used by SAML involves state information, the same
server must process all transactions. Therefore, you must configure HAProxy to direct each client’s
requests to the same server each time.

There are two way that HAProxy can bind a client to the same server:

Affinity

Use affinity when information from a layer below the application layer is used to pin a client request to
a single server.

Persistence

23

Red Hat OpenStack Platform 16.2 Federate with Identity Service

Use persistence when the application layer information binds a client to a single server sticky session.

Persistence is much more accurate than affinity. Use the following procedure to implement
persistence.

The HAProxy cookie directive names a cookie and its parameters for persistence. The HAProxy server
directive has a cookie option that sets the value of the cookie to the name of the server. If an incoming

request does not have a cookie identifying the back-end server, then HAProxy selects a server based on
its configured balancing algorithm.

Procedure

1. To enable persistence in the keystone_public block of the /var/lib/config-data/puppet-
generated/haproxy/etc/haproxy/haproxy.cfg configuration file, add the following line:

I cookie SERVERID insert indirect nocache

This setting states that SERVERID is the name of the persistence cookie.

2. Edit each server line and add cookie <server-name> as an additional option:

server controller-0 cookie controller-0
server controller-1 cookie controller-1

4.18. CREATING FEDERATED RESOURCES

Create the Identity service (keystone) targets, users, and groups for consumption by the identity
provider (IdP).

Procedure

1. Source the overcloudrc file on the undercloud as the stack user, and run the following
commands:

$ openstack domain create federated_domain

$ openstack project create --domain federated_domain federated_project

$ openstack group create federated_users --domain federated_domain

$ openstack role add --group federated_users --group-domain federated_domain --domain
federated_domain _member_

$ openstack role add --group federated _users --group-domain federated_domain --project
federated_project _member_

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation create-federated-resources

2

4.19. CREATING THE IDENTITY PROVIDER IN RED HAT OPENSTACK
PLATFORM

The IdP must be registered in the Identity service (keystone), which creates a binding between the
entitylD in the SAML assertion and the name of the IdP in the Identity service.

Procedure

24

CHAPTER 4. CONFIGURING RED HAT OPENSTACK PLATFORM FOR FEDERATION

1. Locate the entitylD of the RH-SSO IdP, which is located in the IdP metadata. The IdP metadata
is stored in the /var/lib/config-data/puppet-
generated/keystone/etc/httpd/federation/v3_keycloak_$FED_RHSSO_REALM_idp_metada
ta.xml file. You can also find the IdP metadata in the fed_deployment/var/lib/config-
data/puppet-
generated/keystone/etc/httpd/federation/v3_keycloak_$FED_RHSSO_REALM_idp_metada
ta.xml file.

2. Note the value of the entitylID attribute, which is in the IdP metadata file within the
<EntityDescriptor> element. Assign the $FED_IDP_ENTITY_ID variable this value.

3. Name your IdP rhsso, which is assigned to the variable $FED_OPENSTACK_IDP_NAME:

$ openstack identity provider create --remote-id $FED_IDP_ENTITY_ID
$FED_OPENSTACK_IDP_NAME

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation openstack-create-idp

4.20. CREATE THE MAPPING FILE AND UPLOAD TO KEYSTONE
Keystone performs a mapping to match the IdP’s SAML assertion into a format that keystone can
understand. The mapping is performed by keystone's mapping engine and is based on a set of mapping

rules that are bound to the IdP.

1. These are the mapping rules used in this example (as described in the introduction):

[
{

"local": [
{
"user": {
"name": "{0}"
2
"group™: {
"domain": {

"name": "federated_domain"

b
"name": "federated_users"
}
}
1,

"remote": [

{

b
{

"type": "MELLON_NAME_|D"

"type": "MELLON_groups",
"any_one_of": ["openstack-users"]

}

25

Red Hat OpenStack Platform 16.2 Federate with Identity Service

This mapping file contains only one rule. Rules are divided into two parts: local and remote. The
mapping engine works by iterating over the list of rules until one matches, and then executing it. A rule is
considered a match only if all the conditions in the remote part of the rule match. In this example the
remote conditions specify:

1. The assertion must contain a value called MELLON_NAME_ID.

2. The assertion must contain a values called MELLON_groups and at least one of the groups in
the group list must be openstack-users.

If the rule matches, then:
1. The keystone user name will be assigned the value from MELLON_NAME_ID.

2. The user will be assigned to the keystone group federated_users in the federated_domain
domain.

In summary, if the IdP successfully authenticates the user, and the IdP asserts that user belongs to the
group openstack-users, then keystone will allow that user to access OpenStack with the privileges
bound to the federated_users group in keystone.

4.20.1. Create the mapping

1. To create the mapping in keystone, create a file containing the mapping rules and then upload it
into keystone, giving it a reference name. Create the mapping file in the fed_deployment

directory (for example, in
fed_deployment/mapping_${FED_OPENSTACK_IDP_NAME}_saml2.json), and assign the
name $FED_OPENSTACK_MAPPING_NAME to the mapping rules. For example:

$ openstack mapping create --rules fed_deployment/mapping_rhsso_sami2.json
$FED_OPENSTACK_MAPPING_NAME

NOTE

You can use the configure-federation script to perform the above procedure as two
steps:

$./configure-federation create-mapping
$./configure-federation openstack-create-mapping

e create-mapping - creates the mapping file.

e openstack-create-mapping - performs the upload of the file.

4.21. CREATE AKEYSTONE FEDERATION PROTOCOL

1. Keystone uses the Mapped protocol to bind an IdP to a mapping. To establish this binding:

$ openstack federation protocol create \
--identity-provider SFED_OPENSTACK_IDP_NAME \

26

CHAPTER 4. CONFIGURING RED HAT OPENSTACK PLATFORM FOR FEDERATION

--mapping $SFED_OPENSTACK_MAPPING_NAME \
mapped"

NOTE

You can use the configure-federation script to perform the above step: $./configure-
federation openstack-create-protocol

4.22. FULLY-QUALIFY THE KEYSTONE SETTINGS

1. On each controller node, edit /var/lib/config-data/puppet-
generated/keystone/etc/httpd/conf.d/10-keystone_wsgi_main.conf to confirm that the
ServerName directive inside the VirtualHost block includes the HTTPS scheme, the public

hostname, and the public port. You must also enable the UseCanonicalName directive. For
example:

<VirtualHost>

ServerName https:$FED_KEYSTONE_HOST:$FED_KEYSTONE_HTTPS_PORT
UseCanonicalName On

</VirtualHost>

NOTE
Be sure to substitute the $FED _ variables with the values specific to your deployment.

4.23. CONFIGURE HORIZON TO USE FEDERATION

1. On each controller node, edit /var/lib/config-data/puppet-generated/horizon/etc/openstack-
dashboard/local_settings and make sure the following configuration values are set:

OPENSTACK_KEYSTONE_URL =

"https://$FED_KEYSTONE_HOST:$FED_KEYSTONE_HTTPS_PORT/v3"
OPENSTACK_KEYSTONE_DEFAULT_ROLE ="_member_"
WEBSSO_ENABLED = True
WEBSSO_INITIAL_CHOICE = "mapped"
WEBSSO_CHOICES = (

("mapped", _("RH-SSQO")),

("credentials", _("Keystone Credentials")),

)

4 NOTE
Be sure to substitute the $FED_ variables with the values specific to your deployment.

4.24. CONFIGURE HORIZON TO USE THE X-FORWARDED-PROTO
HTTP HEADER

1. On each controller node, edit /var/lib/config-data/puppet-generated/horizon/etc/openstack-
dashboard/local_settings and uncomment the line:

I #SECURE_PROXY_SSL_HEADER = (HTTP_X_FORWARDED_PROTQ', 'https')

27

Red Hat OpenStack Platform 16.2 Federate with Identity Service

NOTE

You must restart a container for configuration changes to take effect.

28

CHAPTER 5. TROUBLESHOOTING

CHAPTER 5. TROUBLESHOOTING

5.1. TEST THE KEYSTONE MAPPING RULES

It is recommended you verify that your mapping rules work as expected. The keystone-manage
command line tool allows you to exercise a set of mapping rules (read from a file) against assertion data
which is also read from a file. For example:

1. The file mapping_rules.json has this content:

[
{

"local": [
{
"user": {
"name": "{0}"
2
"group™: {
"domain": {

"name": "Default"

b
"name": "federated_users"
}
}
1,

"remote": [

{

b
{

"type": "MELLON_NAME_|D"

"type": "MELLON_groups",
"any_one_of": ["openstack-users"]
}
]
}
]

2. The file assertion_data.txt has this content:

MELLON_NAME_ID: 'G-90eb44bc-06dc-4a90-aabe-fb2aa5d5b0de
MELLON_groups: openstack-users;ipausers

3. If you then run this command:

I $ keystone-manage mapping_engine --rules mapping_rules.json --input assertion_data.txt

4. You should get this mapped result:

{
"group_ids": [],
"user": {
"domain": {
"id": "Federated"
b

29

Red Hat OpenStack Platform 16.2 Federate with Identity Service

"type": "ephemeral”,
"name": "G-90eb44bc-06dc-4a90-aabe-fb2aa5d5b0de"”
1

"group_names":

{
"domain™: {
"name": "Default”

b

"name": "federated_users"

}
]
}

NOTE

You can also include the --engine-debug command line argument, which will output
diagnostic information describing how the mapping rules are being evaluated.

5.2. DETERMINE THE ACTUAL ASSERTION VALUES RECEIVED BY
KEYSTONE

The mapped assertion values that keystone will use are passed as CGl environment variables. To
retrieve a dump of those environment variables:

1. Create the following test script in /var/www/cgi-bin/keystone/test with the following content:

import pprint
import webob
import webob.dec

@webob.dec.wsgify
def application(req):
return webob.Response(pprint.pformat(req.environ),
content_type="application/json’)

2. Edit the /var/lib/config-data/puppet-generated/keystone/etc/httpd/conf.d/10-
keystone_wsgi_main.conf file setting it to run the test script by temporarily modifying the
WSGiIScriptAlias directive:

WSGiIScriptAlias "/v3/auth/OS-FEDERATION/websso/mapped" "/var/www/cgi-
bin/keystone/test"

3. Restart the container:

I podman restart keystone

4. Attempt to login, and review the information that the script dumps out. When finished,
remember to restore the WSGIScriptAlias directive, and restart the HTTPD service again.

5.3. REVIEW THE SAML MESSAGES EXCHANGED BETWEEN THE SP
AND IDP

30

CHAPTER 5. TROUBLESHOOTING

The SAMLTracer Firefox add-on is a useful tool for capturing and displaying the SAML messages
exchanged between the SP and the IdP.

1. Install SAMLTracer from this URL: https://addons.mozilla.org/en-US/firefox/addon/saml-
tracer/

2. Enable SAMLTracer from the Firefox menu. A SAMLTracer pop-up window will appear in which
all browser requests are displayed. If a request is detected as a SAML message a special SAML
icon is added to the request.

3. Initiate a SSO login from the Firefox browser.

4. In the SAMLTracer window find the first SAML message and click on it. Use the SAML tab in
the window to see the decoded SAML message (note, the tool is not capable of decrypting
encrypted content in the body of the message, if you need to see encrypted content you must
disable encryption in the metadata). The first SAML message should be an AuthnRequest sent
by the SP to the IdP. The second SAML message should be the assertion response sent by the
IdP. Since the SAML HTTP-Redirect profile is being used the Assertion response will be
wrapped in a POST. Click on the SAML tab to see the contents of the assertion.

31

https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/

Red Hat OpenStack Platform 16.2 Federate with Identity Service

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

#!/bin/sh

prog_name="basename $0°
action=

dry_run=0

verbose=0

base_dir=$(pwd)
stage_dir="${base_dir}/fed_deployment"

mellon_root="/v3"
mellon_endpoint="mellon"
mellon_app_name="v3"

overcloud_deploy_script="overcloud_deploy.sh"
overcloudrc_file="./overcloudrc"

function cmd_template {

local status=0

local cmd="$1"

if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo $cmd

fi

if [$dry_run -ne 0]; then
return $status

fi

$cmd
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
fi
return $status

}

function cmds_template {
local return_status=0
declare -a cmds=(
"date"
"Is xxx"
"head $0"

)

if [$dry_run -ne 0]; then
for cmd in "${cmds[@]}"; do
echo $cmd
done
else
for cmd in "${cmds[@]}"; do
if [$verbose -ne 0]; then
echo $cmd
fi

32

}

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

$cmd
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status”)
return_status=$status
fi
done
fi
return $return_status

function show_variables {

}

echo "base_dir: $base_dir"

echo "stage_dir: $stage_dir"

echo "config_tar_filename: $config_tar_filename"

echo "config_tar_pathname: $config_tar_pathname"

echo "overcloud_deploy_script: $overcloud_deploy_script"
echo "overcloudrc_file: $overcloudrc_file"

echo "puppet_override_apache_pathname: $puppet_override_apache_pathname"

echo "puppet_override_keystone_pathname: $puppet_override_keystone_pathname"

echo

echo "FED_RHSSO_URL: $FED_RHSSO_URL"

echo "FED_RHSSO_ADMIN_PASSWORD: $FED_RHSSO_ADMIN_PASSWORD"

echo "FED_RHSSO REALM: $FED _RHSSO_ REALM"
echo

echo "FED_KEYSTONE_HOST: $FED_KEYSTONE_HOST"

echo "FED_KEYSTONE_HTTPS_PORT: $FED_KEYSTONE_HTTPS_PORT"
echo "mellon_http_url: $mellon_http_url"

echo "mellon_root: $mellon_root"

echo "mellon_endpoint: $mellon_endpoint"

echo "mellon_app_name: $mellon_app_name"

echo "mellon_endpoint_path: $mellon_endpoint_path"

echo "mellon_entity id: $mellon_entity_id"

echo

echo "FED_OPENSTACK_IDP_NAME: $FED_OPENSTACK_IDP_NAME"
echo "openstack_mapping_pathname: $openstack_mapping_pathname"

echo "FED_OPENSTACK_MAPPING_NAME: $FED_OPENSTACK_MAPPING_NAME"

echo

echo "idp_metadata_filename: $idp_metadata_filename"
echo "mellon_httpd_config_filename: $mellon_httpd_config_filename"

function initialize {

local return_status=0
declare -a cmds=(

"mkdir -p $stage_dir"
)

33

Red Hat OpenStack Platform 16.2 Federate with Identity Service

if [$dry_run -ne 0]; then
for cmd in "${cmds[@]}"; do
echo $cmd
done
else
for cmd in "${cmds[@]}"; do
if [$verbose -ne 0]; then
echo $cmd
fi
$cmd
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status”)
return_status=$status
fi
done
fi
return $return_status

}

function copy_helper_to_controller {
local status=0
local controller=${1:-"controller-0"}
local cmd="scp configure-federation fed_variables heat-admin@${controller}:/home/heat-admin"
if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo $cmd
fi
if [$dry_run -ne 0]; then
return $status
fi

$cmd
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
fi
return $status

}

function install_mod_auth_mellon {
local status=0
local cmd="sudo dnf -y install mod_auth_mellon"

if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo $cmd

fi

if [$dry_run -ne 0]; then
return $status

fi

$cmd
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
fi

34

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

return $status

}

function create_ipa_service_account {

Note, after setting up the service account it can be tested

by performing a user search like this:

|dapsearch -H $ldap_url -x -D "$service_dn" -w "$FED_IPA_RHSSO_SERVICE_PASSWD" -b
"cn=users,cn=accounts,$FED IPA BASE_DN"

local status=0

local Idap_url="Idaps://$FED_IPA_HOST"

local dir_mgr_dn="cn=Directory Manager"

local service_name="rhsso"

local service_dn="uid=$service_name,cn=sysaccounts,cn=etc,$FED_IPA_BASE_DN"

local cmd="Idapmaodify -H \"$ldap_url\" -x -D \"$dir_mgr_dn\" -w \"$FED_IPA_ADMIN_PASSWD\""

read -r -d " contents <<EOF
dn: $service_dn
changetype: add
objectclass: account
objectclass: simplesecurityobject
uid: $service_name
userPassword: $FED_IPA_RHSSO_SERVICE_PASSWD
passwordExpirationTime: 20380119031407Z
nsldleTimeout: 0

EOF

if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo $cmd
echo -e "$contents"

fi

if [$dry_run -ne 0]; then
return $status

fi

sh <<< "$cmd <<< \"$contents\""
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
fi

return $status

function client_install {
local status=0
local cmd_client_install="sudo dnf -y install keycloak-httpd-client-install"
local cmd="sudo keycloak-httpd-client-install \
--client-originate-method registration \
--mellon-https-port $FED_KEYSTONE_HTTPS_PORT \
--mellon-hostname $FED_KEYSTONE_HOST \
--mellon-root $mellon_root \
--keycloak-server-url $FED_RHSSO_URL \

35

Red Hat OpenStack Platform 16.2 Federate with Identity Service

--keycloak-admin-password $FED_RHSSO_ADMIN_PASSWORD \

--app-name $mellon_app_name \

--keycloak-realm $FED_RHSSO_REALM \

-1 "/v3/auth/OS-FEDERATION/websso/mapped"” \

-1 "/v3/auth/OS-FEDERATION/identity _providers/rhsso/protocols/mapped/websso” \
-1 "/v3/0OS-FEDERATION/identity_providers/rhsso/protocols/mapped/auth”

if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo $cmd_client_install
echo $cmd

fi

if [$dry_run -ne 0]; then
return $status

fi

$cmd_client_install
status=$"?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd_client_install\" failed\nstatus = $status")
else
$cmd
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
fi
fi
return $status

}

function create_sp_archive {
Note, we put the exclude patterns in a file because it is
insanely difficult to put --exclude patttern in the $cmd shell
variable and get the final quoting correct.

local status=0
local cmd="tar -cvzf $config_tar_pathname --exclude-from $stage_dir/tar_excludes /var/lib/config-
data/puppet-generated/keystone/etc/httpd/federation /var/lib/config-data/puppet-
generated/keystone/etc/httpd/conf.d/$mellon_httpd_config_filename"
if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo $cmd
fi
if [$dry_run -ne 0]; then
return $status
fi

cat <<'EOF' > $stage_dir/tar_excludes
*.orig

*

~

EOF

$cmd
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
fi
return $status

36

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

}

function fetch_sp_archive {
local return_status=0
declare -a cmds=(
"scp heat-admin@controller-0:/home/heat-admin/fed_deployment/$config_tar_filename
$stage_dir"
"tar -C $stage_dir -xvf $config_tar_pathname"

)

if [$dry_run -ne 0]; then
for cmd in "${cmds[@]}"; do
echo $cmd
done
else
for cmd in "${cmds[@]}"; do
if [$verbose -ne 0]; then
echo $cmd
fi
$cmd
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status”)
return_status=$status
fi
done
fi
return $return_status

}

function deploy_mellon_configuration {
local status=0
local cmd="upload-swift-artifacts -f $config_tar_pathname"
if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo $cmd
fi
if [$dry_run -ne 0]; then
return $status
fi

$cmd
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
fi
return $status

}

function idp_entity_id {
local metadata_file=${1:-$idp_metadata_filename}

Extract the entitID from the metadata file, should really be parsed
with an XML xpath but a simple string match is probably OK

entity_id="sed -rne 's/*.*entityID="([""]*)".*$/\1/p' ${metadata_file}"
status=$7?

37

Red Hat OpenStack Platform 16.2 Federate with Identity Service

if [$status -ne 0 -o "$entity_id"x = "x"]; then
(>&2 echo -e "ERROR search for entitylD in ${metadata_file} failed\nstatus = $status"”)
return 1

fi

echo $entity_id

return 0

}

function append_deploy_script {
local status=0
local deploy_script=$1
local extra_line=$2
local count

count=$(grep -c -e "$extra_line" $deploy_script)
if [$count -eq 1]; then
echo -e "SKIP appending:\n$extra_line"
echo "already present in $deploy_script"
return $status
elif [$count -gt 1]; then
status=1
(>&2 echo -e "ERROR multiple copies of line in ${deploy_script}\nstatus =
$status\nline=$extra_line")
return $status
fi

if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo "appending $deploy_script with:"
echo -e $extra_line

fi

if [$dry_run -ne 0]; then
return $status

fi

insert line after last -e line already in script

#

This is not easy with sed, we'll use tac and awk instead. Here
is how this works: The logic is easier if you insert before the

first line rather than trying to find the last line and insert

after it. We use tac to reverse the lines in the file. Then the

awk script looks for the candidate line. If found it outputs the
line we're adding, sets a flag (p) to indicate it's already been

printed. The "; 1" pattern always output the input line. Then we
run the output through tac again to set things back in the

original order.

local tmp_file=$(mktemp)
tac $deploy_script | awk "lp && /A-e/{print \"${extra_line} \W\"; p=1}; 1" | tac > $tmp_file

count=$(grep -c -e "${extra_line}" $tmp_file)
if [$count -ne 1]; then
status=1
fi
if [$status -ne 0]; then
rm $tmp_file

38

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

(>&2 echo -e "ERROR failed to append ${deploy_script}\nstatus = $status\nline=$extra_line")
else

mv $tmp_file $deploy_script
fi

return $status

}

function puppet_override_apache {
local status=0
local pathname=${1:-$puppet_override_apache_pathname}
local deploy_cmd="-e $pathname"

read -r -d " contents <<'EOF'
parameter_defaults:
ControllerExtraConfig:
apache::purge_configs: false
EOF

if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo "writing pathname = $pathname with contents"
echo -e "$contents"

fi

if [$dry_run -ne 0]; then
return $status

fi

echo -e "$contents" > $pathname
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR failed to write ${pathname}\nstatus = $status")
fi

append_deploy_script $overcloud_deploy_script "$deploy_cmd"
status=$?

return $status

}

function puppet_override_keystone {
local status=0
local pathname=${1:-$puppet_override_keystone_pathname}
local deploy_cmd="-e $pathname"

read -r -d " contents <<EOF
parameter_defaults:
controllerExtraConfig:
keystone::using_domain_config: true
keystone::config::keystone_config:
identity/domain_configurations_from_database:
value: true
auth/methods:
value: external,password,token,oauth1,mapped
federation/trusted_dashboard:
value: https://$FED_KEYSTONE_HOST/dashboard/auth/websso/

39

Red Hat OpenStack Platform 16.2 Federate with Identity Service

40

federation/sso_callback_template:

value: /etc/keystone/sso_callback_template.html
federation/remote_id_attribute:

value: MELLON_IDP

EOF

}

if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo "writing pathname = $pathname with contents"
echo -e "$contents"

fi

if [$dry_run -ne 0]; then
return $status

fi

echo -e "$contents" > $pathname
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR failed to write ${pathname}\nstatus = $status")
fi

append_deploy_script $overcloud_deploy_script "$deploy_cmd"
status=$?

return $status

function create_federated_resources {

follow example in Keystone federation documentation
http://docs.openstack.org/developer/keystone/federation/federated_identity.html#create-

keystone-groups-and-assign-roles

local return_status=0

declare -a cmds=(

"openstack domain create federated_domain”

"openstack project create --domain federated_domain federated project”

"openstack group create federated_users --domain federated_domain"

"openstack role add --group federated_users --group-domain federated_domain --domain

federated_domain _member "

"openstack role add --group federated_users --project federated_project Member"

)

if [$dry_run -ne 0]; then
for cmd in "${cmds[@]}"; do
echo $cmd
done
else
for cmd in "${cmds[@]}"; do
if [$verbose -ne 0]; then
echo $cmd
fi
$cmd
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status”)
return_status=$status
fi

fi

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

done

return $return_status

}

function create_mapping {
Matches documentation

http://docs.openstack.org/developer/keystone/federation/federated_identity.html#create-

keystone-groups-and-assign-roles
local status=0
local pathname=${1:-$openstack_mapping_pathname}

read -r -d " contents <<'EOF'

{

"local": [
{
"user": {
"name": "{0}"
2
"group™: {
"domain": {
"name": "federated_domain"
2
"name": "federated_users"
}
}
1,
"remote": [
{

"type": "MELLON_NAME_|D"

b
{
"type": "MELLON_groups",

"any_one_of": ["openstack-users"]

if [$verbose -ne 0 -o $dry_run -ne 0]; then

fi

echo "writing pathname = $pathname with contents"
echo -e "$contents”

if [$dry_run -ne 0]; then

fi

return $status

echo -e "$contents" > $pathname
status=$?
if [$status -ne 0]; then

fi

(>&2 echo -e "ERROR failed to write ${pathname}\nstatus = $status")

Red Hat OpenStack Platform 16.2 Federate with Identity Service

42

}

return $status

function create_v3_rcfile {

local status=0
local input_file=${1:-$overcloudrc_file}
local output_file="${input_file}.v3"

source $input_file
#clear the old environment
NEW_OS_AUTH_URL="echo $OS_AUTH_URL | sed 's!v2.0!v3!"

read -r -d " contents <<EOF

for key in \$(set | sed 'sl=.*!lg' | grep -E ""OS_") ; do unset $key ; done
export OS_AUTH_URL=$NEW_OS_AUTH_URL

export OS_USERNAME=$0OS_USERNAME

export OS_PASSWORD=$0S_PASSWORD

export OS_USER_DOMAIN_NAME=Default

export OS_PROJECT_DOMAIN_NAME=Default

export OS_PROJECT_NAME=$0OS_TENANT_NAME

export OS_IDENTITY_API_VERSION=3

EOF

}

if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo "writing output_file = $output_file with contents:"
echo -e "$contents"

fi

if [$dry_run -ne 0]; then
return $status

fi

echo -e "$contents" > $output_file
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR failed to write ${output_file}\nstatus = $status")
fi

return $status

function openstack_create_idp {

local status=0
local metadata_file="$stage_dir/var/lib/config-data/puppet-

generated/keystone/etc/httpd/federation/$idp_metadata_filename"

local entity_id
entity_id=$(idp_entity id $metadata_file)
status=$?
if [$status -ne 0]; then
return $status
fi

local cmd="openstack identity provider create --remote-id $entity_id

$FED_OPENSTACK_IDP_NAME"

if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo $cmd

}

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

fi

if [$dry_run -ne 0]; then
return $status

fi

$cmd
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
fi
return $status

function openstack_create_mapping {

}

local status=0

local mapping_file=${1:-$openstack _mapping_pathname}

local mapping_name=%${2:-$FED_OPENSTACK_MAPPING_NAME}
cmd="openstack mapping create --rules $mapping_file $mapping_name"

if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo $cmd

fi

if [$dry_run -ne 0]; then
return $status

fi

$cmd
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
fi
return $status

function openstack_create_protocol {

local status=0

local idp_name=${1:-$FED_OPENSTACK_IDP_NAME}

local mapping_name=%${2:-$FED_OPENSTACK_MAPPING_NAME}
cmd="openstack federation protocol create --identity-provider $idp_name --mapping

$mapping_name mapped"

if [$verbose -ne 0 -o $dry_run -ne 0]; then
echo $cmd

fi

if [$dry_run -ne 0]; then
return $status

fi

$cmd
status=$?
if [$status -ne 0]; then
(>&2 echo -e "ERROR cmd \"$cmd\" failed\nstatus = $status")
fi
return $status

43

Red Hat OpenStack Platform 16.2 Federate with Identity Service

44

function usage {
cat <<EOF
$prog_name action

-h --help print usage
-n --dry-run dry run, just print computed command
-v --verbose be chatty

action may be one of:

show-variables

initialize
copy-helper-to-controller
install-mod-auth-mellon
create-ipa-service-account
client-install
create-sp-archive
fetch-sp-archive
deploy-mellon-configuration
puppet-override-apache
puppet-override-keystone
create-federated-resources
create-mapping
create-v3-rcfile
openstack-create-idp
openstack-create-mapping
openstack-create-protocol

EOF
}

#

options may be followed by one colon to indicate they have a required argument
if 1 options=$(getopt -0 hnv -I help,dry-run,verbose -- "$@")

then

something went wrong, getopt will put out an error message for us

exit 1

eval set -- "$options"

while [$# -gt 0]

do
case $1in
-h|--help) usage; exit 1 ;;
-n|--dry-run) dry_run=1 ;;
-v|--verbose) verbose=1 ;;

for options with required arguments, an additional shift is required

(--) shift; break;;

(-*) echo "$0: error - unrecognized option $1" 1>&2; exit 1;;

(*) break;;
esac
shift
done
#

source ./fed_variables

CHAPTER 6. THE CONFIGURE-FEDERATION FILE

Strip leading and trailing space and slash from these variables
mellon_root="echo ${mellon_root} | perl -pe 's!"[/T*(.:*?)[/*$\1I"
mellon_endpoint="echo ${mellon_endpoint} | perl -pe 'sI"[/]*(.*?)[/]*$\1!"

mellon_root="/${mellon_root}"

mellon_endpoint_path="${mellon_root}/${mellon_endpoint}"
mellon_http_url="https://${FED_KEYSTONE_HOST}:${FED_KEYSTONE_HTTPS_PORT}"
mellon_entity_id="${mellon_http_url}${mellon_endpoint_path}/metadata”
openstack_mapping_pathname="${stage_dir}/mapping_${FED_OPENSTACK_IDP_NAME}_sami2.json
idp_metadata_filename="${mellon_app_name}_keycloak_${FED_RHSSO_REALM}_idp_metadata.xml"
mellon_httpd_config_filename="${mellon_app_name}_mellon_keycloak ${FED_RHSSO_REALM}.conf'
config_tar_filename="rhsso_config.tar.gz"

config_tar_pathname="${stage_dir}/${config_tar_filename}"

puppet_override_apache_pathname="${stage_dir}/puppet_override_apache.yaml"
puppet_override_keystone_pathname="${stage_dir}/puppet_override_keystone.yaml"

#
if [$# -1t 1]; then
echo "ERROR: no action specified"

exit 1
fi
action="$1"; shift

if [$dry_run -ne 0]; then
echo "Dry Run Enabled!"
fi

case $action in
show-var*)
show_variables ;;
initialize)
initialize ;;
copy-helper-to-controller)
copy_helper_to_controller "$1" ;;
install-mod-auth-mellon)
install_mod_auth_mellon ;;
create-ipa-service-account)
create_ipa_service_account ;;
client-install)
client_install ;;
create-sp-archive)
create_sp_archive ;;
fetch-sp-archive)
fetch_sp_archive ;;
deploy-mellon-configuration)
deploy_mellon_configuration ;;
create-v3-rcfile)
create_v3 rcfile "$1" ;;

45

Red Hat OpenStack Platform 16.2 Federate with Identity Service

puppet-override-apache)

puppet_override_apache "$1" ;;
puppet-override-keystone)

puppet_override_keystone "$1" ;;
create-federated-resources)

create_federated resources ;;
create-mapping)

create_mapping "$1" ;;
openstack-create-idp)

openstack_create_idp "$1" ;;
openstack-create-mapping)

openstack_create_mapping "$1" "$2" ;;
openstack-create-protocol)

openstack_create_protocol "$1" "$2" ;;
%)

echo "unknown action: $action"

usage

exit 1

esac

46

CHAPTER 7. THE FED_VARIABLES FILE

CHAPTER 7. THE FED_VARIABLES FILE

FQDN of IPA server
FED_IPA_HOST="jdennis-ipa.example.com"

Base DN of IPA server
FED_IPA_BASE_DN="dc=example,dc=com"

IPA administrator password
FED_IPA_ADMIN_PASSWD="FreelPA4All"

Password used by RH-SSO service to authenticate to IPA

when RH-SSO obtains user/group information from IPA as part of
RH-SSO's User Federation.
FED_IPA_RHSSO_SERVICE_PASSWD="rhsso-passwd"

RH-SSO server IP address
FED RHSSO IP_ADDR="10.0.0.12"

RH-SSO server FQDN
FED_RHSSO_FQDN="jdennis-rhsso-7"

URL used to access the RH-SSO server
FED_RHSSO_URL="https://$FED_RHSSO_FQDN"

Administrator password for RH-SSO server
FED_RHSSO_ADMIN_PASSWORD=FreelPA4All

Name of the RH-SSO realm
FED_RHSSO_REALM="openstack"

Host name of the mellon server

Note, this is identical to the Keystone server since Keystone is

being front by Apache which is protecting it's resources with mellon.
FED_KEYSTONE_HOST="overcloud.localdomain"

Port number mellon is running on the FED_KEYSTONE_HOST
Note, this is identical to the Keystone server port
FED_KEYSTONE_HTTPS_PORT=13000

Name assigned in OpenStack to our IdP
FED_OPENSTACK_IDP_NAME="rhsso"

Name of our Keystone mapping rules
FED_OPENSTACK_MAPPING_NAME="${FED_OPENSTACK_IDP_NAME}_mapping"

47

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION
	1.1. OVERVIEW
	1.2. PREREQUISITES
	1.3. ACCESSING THE RED HAT OPENSTACK PLATFORM NODES
	1.4. OVERVIEW OF TECHNOLOGIES
	1.4.1. High availability
	1.4.1.1. Managing Pacemaker Services

	1.4.2. HAProxy Overview

	1.5. USING A CONFIGURATION SCRIPT
	1.6. USING A PROXY OR SSL TERMINATOR

	CHAPTER 2. CONFIGURING RED HAT IDENTITY MANAGEMENT
	2.1. CREATING THE IDM SERVICE ACCOUNT FOR RH-SSO
	2.2. CREATING A TEST USER
	2.3. CREATING AN IDM GROUP FOR OPENSTACK USERS

	CHAPTER 3. CONFIGURING RED HAT SINGLE SIGN-ON
	3.1. CONFIGURING THE RH-SSO REALM
	3.2. ADDING USER ATTRIBUTES USING SAML ASSERTION
	3.3. ADDING GROUP INFORMATION TO THE SAML ASSERTION

	CHAPTER 4. CONFIGURING RED HAT OPENSTACK PLATFORM FOR FEDERATION
	4.1. RETRIEVING THE IP ADDRESS
	4.2. SETTING THE HOST VARIABLES AND NAMING THE HOST
	4.3. INSTALLING HELPER FILES
	4.4. SETTING YOUR DEPLOYMENT VARIABLES
	4.5. COPYING THE HELPER FILES
	4.6. INITIALIZING THE WORKING ENVIRONMENTS
	4.7. INSTALLING MOD_AUTH_MELLON
	4.8. ADDING THE RH-SSO FQDN TO EACH CONTROLLER
	4.9. INSTALLING AND CONFIGURING MELLON ON THE CONTROLLER NODE
	4.10. EDITING THE MELLON CONFIGURATION
	4.11. CREATING AN ARCHIVE OF THE GENERATED CONFIGURATION FILES
	4.12. RETRIEVING THE MELLON CONFIGURATION ARCHIVE
	4.13. PREVENTING PUPPET FROM DELETING UNMANAGED HTTPD FILES
	4.14. CONFIGURING IDENTITY SERVICE (KEYSTONE) FOR FEDERATION
	4.15. DEPLOYING THE MELLON CONFIGURATION ARCHIVE
	4.16. REDEPLOYING THE OVERCLOUD
	4.17. USE PROXY PERSISTENCE FOR THE IDENTITY SERVICE (KEYSTONE) ON EACH CONTROLLER
	4.18. CREATING FEDERATED RESOURCES
	4.19. CREATING THE IDENTITY PROVIDER IN RED HAT OPENSTACK PLATFORM
	4.20. CREATE THE MAPPING FILE AND UPLOAD TO KEYSTONE
	4.20.1. Create the mapping

	4.21. CREATE A KEYSTONE FEDERATION PROTOCOL
	4.22. FULLY-QUALIFY THE KEYSTONE SETTINGS
	4.23. CONFIGURE HORIZON TO USE FEDERATION
	4.24. CONFIGURE HORIZON TO USE THE X-FORWARDED-PROTO HTTP HEADER

	CHAPTER 5. TROUBLESHOOTING
	5.1. TEST THE KEYSTONE MAPPING RULES
	5.2. DETERMINE THE ACTUAL ASSERTION VALUES RECEIVED BY KEYSTONE
	5.3. REVIEW THE SAML MESSAGES EXCHANGED BETWEEN THE SP AND IDP

	CHAPTER 6. THE CONFIGURE-FEDERATION FILE
	CHAPTER 7. THE FED_VARIABLES FILE

