
Red Hat OpenStack Platform 17.1

Configuring the Compute service for instance
creation

Configuring and managing the Red Hat OpenStack Platform Compute service (nova)
for creating instances

Last Updated: 2024-05-23

Red Hat OpenStack Platform 17.1 Configuring the Compute service for
instance creation

Configuring and managing the Red Hat OpenStack Platform Compute service (nova) for creating
instances

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides concepts and procedures for cloud administrators to configure and manage the
Red Hat OpenStack Platform Compute (nova) service using the OpenStack Client CLI.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. COMPUTE SERVICE (NOVA) FUNCTIONALITY

CHAPTER 2. CONFIGURING THE COMPUTE SERVICE (NOVA)

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES
3.1. CREATING A FLAVOR
3.2. FLAVOR ARGUMENTS
3.3. FLAVOR METADATA

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES
4.1. CONFIGURING CPU PINNING ON COMPUTE NODES

4.1.1. Prerequisites
4.1.2. Designating Compute nodes for CPU pinning
4.1.3. Configuring Compute nodes for CPU pinning
4.1.4. Creating a dedicated CPU flavor for instances
4.1.5. Creating a shared CPU flavor for instances
4.1.6. Creating a mixed CPU flavor for instances
4.1.7. Configuring CPU pinning on Compute nodes with simultaneous multithreading (SMT)
4.1.8. Additional resources

4.2. CONFIGURING EMULATOR THREADS
4.3. CONFIGURING CPU FEATURE FLAGS FOR INSTANCES

4.3.1. Prerequisites
4.3.2. Configuring CPU feature flags for instances

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES
5.1. CONFIGURING MEMORY FOR OVERALLOCATION
5.2. CALCULATING RESERVED HOST MEMORY ON COMPUTE NODES
5.3. CALCULATING SWAP SIZE
5.4. CONFIGURING HUGE PAGES ON COMPUTE NODES

5.4.1. Creating a huge pages flavor for instances
5.4.2. Mounting multiple huge page folders during first boot

5.5. CONFIGURING COMPUTE NODES TO USE FILE-BACKED MEMORY FOR INSTANCES
5.5.1. Changing the memory backing directory host disk

5.6. CONFIGURING AMD SEV COMPUTE NODES TO PROVIDE MEMORY ENCRYPTION FOR INSTANCES
5.6.1. Secure Encrypted Virtualization (SEV)
5.6.2. Designating AMD SEV Compute nodes for memory encryption
5.6.3. Configuring AMD SEV Compute nodes for memory encryption
5.6.4. Creating an image for memory encryption
5.6.5. Creating a flavor for memory encryption
5.6.6. Launching an instance with memory encryption

CHAPTER 6. CONFIGURING COMPUTE SERVICE STORAGE
6.1. CONFIGURATION OPTIONS FOR IMAGE CACHING
6.2. CONFIGURATION OPTIONS FOR INSTANCE EPHEMERAL STORAGE PROPERTIES
6.3. CONFIGURING THE MAXIMUM NUMBER OF STORAGE DEVICES TO ATTACH TO ONE INSTANCE
6.4. CONFIGURING SHARED INSTANCE STORAGE
6.5. CONFIGURING IMAGE DOWNLOADS DIRECTLY FROM RED HAT CEPH RADOS BLOCK DEVICE (RBD)

6.6. ADDITIONAL RESOURCES

5

6

7

9

11
11

12
14

31
31
31
31

34
36
37
38
39
40
40
41
41

42

44
44
45
45
46
47
48
50
52
52
52
53
56
57
58
59

60
60
62
65
66

67
68

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT
7.1. PREFILTERING USING THE PLACEMENT SERVICE

7.1.1. Filtering by requested image type support
7.1.2. Filtering by resource provider traits

7.1.2.1. Creating an image that requires or forbids a resource provider trait
7.1.2.2. Creating a flavor that requires or forbids a resource provider trait

7.1.3. Filtering by isolating host aggregates
7.1.4. Filtering by availability zone using the Placement service

7.2. CONFIGURING FILTERS AND WEIGHTS FOR THE COMPUTE SCHEDULER SERVICE
7.3. COMPUTE SCHEDULER FILTERS
7.4. COMPUTE SCHEDULER WEIGHTS
7.5. DECLARING CUSTOM TRAITS AND RESOURCE CLASSES
7.6. CREATING AND MANAGING HOST AGGREGATES

7.6.1. Enabling scheduling on host aggregates
7.6.2. Creating a host aggregate
7.6.3. Creating an availability zone
7.6.4. Deleting a host aggregate
7.6.5. Creating a project-isolated host aggregate

CHAPTER 8. CONFIGURING PCI PASSTHROUGH
8.1. DESIGNATING COMPUTE NODES FOR PCI PASSTHROUGH
8.2. CONFIGURING A PCI PASSTHROUGH COMPUTE NODE
8.3. PCI PASSTHROUGH DEVICE TYPE FIELD
8.4. GUIDELINES FOR CONFIGURING NOVAPCIPASSTHROUGH

CHAPTER 9. CONFIGURING VDPA COMPUTE NODES TO ENABLE INSTANCES THAT USE VDPA PORTS

9.1. DESIGNATING COMPUTE NODES FOR VDPA
9.2. CONFIGURING A VDPA COMPUTE NODE

CHAPTER 10. CONFIGURING VIRTUAL GPUS FOR INSTANCES
10.1. SUPPORTED CONFIGURATIONS AND LIMITATIONS
10.2. CONFIGURING VGPU ON THE COMPUTE NODES

10.2.1. Prerequisites
10.2.2. Designating Compute nodes for vGPU
10.2.3. Configuring the Compute node for vGPU and deploying the overcloud

10.3. CREATING A CUSTOM VGPU RESOURCE PROVIDER TRAIT
10.4. CREATING A CUSTOM GPU INSTANCE IMAGE
10.5. CREATING A VGPU FLAVOR FOR INSTANCES
10.6. LAUNCHING A VGPU INSTANCE
10.7. ENABLING PCI PASSTHROUGH FOR A GPU DEVICE

CHAPTER 11. ADDING METADATA TO INSTANCES
11.1. TYPES OF INSTANCE METADATA
11.2. ADDING A CONFIG DRIVE TO ALL INSTANCES
11.3. ADDING DYNAMIC METADATA TO INSTANCES

CHAPTER 12. CONFIGURING MANUAL NODE REBOOT TO DEFINE KERNELARGS
12.1. CONFIGURING MANUAL NODE REBOOT TO DEFINE KERNELARGS

CHAPTER 13. CONFIGURING INSTANCE SECURITY
13.1. SECURING CONNECTIONS TO THE VNC CONSOLE OF AN INSTANCE
13.2. CONFIGURING COMPUTE NODES TO PROVIDE EMULATED TRUSTED PLATFORM MODULE (TPM)
DEVICES FOR INSTANCES

13.2.1. Enabling support for instances with vTPM devices

69
69
70
70
71
72
73
75
75
76
81

88
91
91

92
94
95
95

98
98
101

104
104

106
106
109

112
112
113
113
114
116
118
118
119

120
120

125
125
125
127

129
129

131
131

132
132

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

2

. .

. .

13.2.2. Creating an image for vTPM devices
13.2.3. Creating a flavor for vTPM devices

CHAPTER 14. DATABASE CLEANING
14.1. CONFIGURING DATABASE MANAGEMENT
14.2. CONFIGURATION OPTIONS FOR THE COMPUTE SERVICE AUTOMATED DATABASE MANAGEMENT

CHAPTER 15. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES
15.1. MIGRATION TYPES
15.2. MIGRATION CONSTRAINTS
15.3. PREPARING TO MIGRATE
15.4. COLD MIGRATING AN INSTANCE
15.5. LIVE MIGRATING AN INSTANCE
15.6. CHECKING MIGRATION STATUS
15.7. EVACUATING AN INSTANCE

15.7.1. Evacuating one instance
15.7.2. Evacuating all instances on a host

15.8. TROUBLESHOOTING MIGRATION
15.8.1. Errors during migration
15.8.2. Never-ending live migration
15.8.3. Instance performance degrades after migration

133
134

136
136

136

140
140
142
144
144
145
146
147
148
149
150
150
151
152

Table of Contents

3

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

6

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. COMPUTE SERVICE (NOVA) FUNCTIONALITY
You use the Compute (nova) service to create, provision, and manage virtual machine instances and
bare metal servers in a Red Hat OpenStack Platform (RHOSP) environment. The Compute service
abstracts the underlying hardware that it runs on, rather than exposing specifics about the underlying
host platforms. For example, rather than exposing the types and topologies of CPUs running on hosts,
the Compute service exposes a number of virtual CPUs (vCPUs) and allows for overcommitting of these
vCPUs.

The Compute service uses the KVM hypervisor to execute Compute service workloads. The libvirt driver
interacts with QEMU to handle all interactions with KVM, and enables the creation of virtual machine
instances. To create and provision instances, the Compute service interacts with the following RHOSP
services:

Identity (keystone) service for authentication.

Placement service for resource inventory tracking and selection.

Image Service (glance) for disk and instance images.

Networking (neutron) service for provisioning the virtual or physical networks that instances
connect to on boot.

The Compute service consists of daemon processes and services, named nova-*. The following are the
core Compute services:

Compute service (nova-compute)

This service creates, manages and terminates instances by using the libvirt for KVM or QEMU
hypervisor APIs, and updates the database with instance states.

Compute conductor (nova-conductor)

This service mediates interactions between the Compute service and the database, which insulates
Compute nodes from direct database access. Do not deploy this service on nodes where the nova-
compute service runs.

Compute scheduler (nova-scheduler)

This service takes an instance request from the queue and determines on which Compute node to
host the instance.

Compute API (nova-api)

This service provides the external REST API to users.

API database

This database tracks instance location information, and provides a temporary location for instances
that are built but not scheduled. In multi-cell deployments, this database also contains cell mappings
that specify the database connection for each cell.

Cell database

This database contains most of the information about instances. It is used by the API database, the
conductor, and the Compute services.

Message queue

This messaging service is used by all services to communicate with each other within the cell and with
the global services.

Compute metadata

This service stores data specific to instances. Instances access the metadata service at
http://169.254.169.254 or over IPv6 at the link-local address fe80::a9fe:a9fe. The Networking

CHAPTER 1. COMPUTE SERVICE (NOVA) FUNCTIONALITY

7

http://169.254.169.254

(neutron) service is responsible for forwarding requests to the metadata API server. You must use
the NeutronMetadataProxySharedSecret parameter to set a secret keyword in the configuration of
both the Networking service and the Compute service to allow the services to communicate. The
Compute metadata service can be run globally, as part of the Compute API, or in each cell.

You can deploy more than one Compute node. The hypervisor that operates instances runs on each
Compute node. Each Compute node requires a minimum of two network interfaces. The Compute node
also runs a Networking service agent that connects instances to virtual networks and provides
firewalling services to instances through security groups.

By default, director installs the overcloud with a single cell for all Compute nodes. This cell contains all
the Compute services and databases that control and manage the virtual machine instances, and all the
instances and instance metadata. For larger deployments, you can deploy the overcloud with multiple
cells to accommodate a larger number of Compute nodes. You can add cells to your environment when
you install a new overcloud or at any time afterwards.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

8

CHAPTER 2. CONFIGURING THE COMPUTE SERVICE (NOVA)
As a cloud administrator, you use environment files to customize the Compute (nova) service. Puppet
generates and stores this configuration in the /var/lib/config-data/puppet-
generated/<nova_container>/etc/nova/nova.conf file. Use the following configuration methods to
customize the Compute service configuration, in the following order of precedence:

1. Heat parameters - as detailed in the Compute (nova) Parameters section in the Overcloud
parameters guide. The following example uses heat parameters to set the default scheduler
filters, and configure an NFS backend for the Compute service:

parameter_defaults:
 NovaNfsEnabled: true
 NovaNfsOptions: "context=system_u:object_r:nfs_t:s0"
 NovaNfsShare: "192.0.2.254:/export/nova"
 NovaNfsVersion: "4.2"
 NovaSchedulerEnabledFilters:
 - AggregateInstanceExtraSpecsFilter
 - ComputeFilter
 - ComputeCapabilitiesFilter
 - ImagePropertiesFilter

2. Puppet parameters - as defined in /etc/puppet/modules/nova/manifests/*:

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::force_raw_images: True

NOTE

Only use this method if an equivalent heat parameter does not exist.

3. Manual hieradata overrides - for customizing parameters when no heat or Puppet parameter
exists. For example, the following sets the timeout_nbd in the [DEFAULT] section on the
Compute role:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 DEFAULT/timeout_nbd:
 value: '20'

WARNING

If a heat parameter exists, use it instead of the Puppet parameter. If a Puppet
parameter exists, but not a heat parameter, use the Puppet parameter instead of
the manual override method. Use the manual override method only if there is no
equivalent heat or Puppet parameter.

CHAPTER 2. CONFIGURING THE COMPUTE SERVICE (NOVA)

9

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/overcloud_parameters/ref_compute-nova-parameters_overcloud_parameters

TIP

Follow the guidance in Identifying parameters that you want to modify to determine if a heat or Puppet
parameter is available for customizing a particular configuration.

For more information about how to configure overcloud services, see Heat parameters in the
Customizing your Red Hat OpenStack Platform deployment guide.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

10

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#proc_identifying-parameters-that-you-want-to-modify_heat-parameters
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#assembly_heat-parameters

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING
INSTANCES

An instance flavor is a resource template that specifies the virtual hardware profile for the instance.
Cloud users must specify a flavor when they launch an instance.

A flavor can specify the quantity of the following resources the Compute service must allocate to an
instance:

The number of vCPUs.

The RAM, in MB.

The root disk, in GB.

The virtual storage, including secondary ephemeral storage and swap disk.

You can specify who can use flavors by making the flavor public to all projects, or private to specific
projects or domains.

Flavors can use metadata, also referred to as "extra specs", to specify instance hardware support and
quotas. The flavor metadata influences the instance placement, resource usage limits, and
performance. For a complete list of available metadata properties, see Flavor metadata.

You can also use the flavor metadata keys to find a suitable host aggregate to host the instance, by
matching the extra_specs metadata set on the host aggregate. To schedule an instance on a host
aggregate, you must scope the flavor metadata by prefixing the extra_specs key with the
aggregate_instance_extra_specs: namespace. For more information, see Creating and managing host
aggregates.

A Red Hat OpenStack Platform (RHOSP) deployment includes the following set of default public
flavors that your cloud users can use.

Table 3.1. Default Flavors

Name vCPUs RAM Root Disk Size

m1.nano 1 128 MB 1 GB

m1.micro 1 192 MB 1 GB

NOTE

Behavior set using flavor properties override behavior set using images. When a cloud
user launches an instance, the properties of the flavor they specify override the
properties of the image they specify.

3.1. CREATING A FLAVOR

You can create and manage specialized flavors for specific functionality or behaviors, for example:

Change default memory and capacity to suit the underlying hardware needs.

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

11

Add metadata to force a specific I/O rate for the instance or to match a host aggregate.

Procedure

1. Create a flavor that specifies the basic resources to make available to an instance:

(overcloud)$ openstack flavor create --ram <size_mb> \
 --disk <size_gb> --vcpus <no_vcpus> \
 [--private --project <project_id>] <flavor_name>

Replace <size_mb> with the size of RAM to allocate to an instance created with this flavor.

Replace <size_gb> with the size of root disk to allocate to an instance created with this
flavor.

Replace <no_vcpus> with the number of vCPUs to reserve for an instance created with this
flavor.

Optional: Specify the --private and --project options to make the flavor accessible only by a
particular project or group of users. Replace <project_id> with the ID of the project that
can use this flavor to create instances. If you do not specify the accessibility, the flavor
defaults to public, which means that it is available to all projects.

NOTE

You cannot make a public flavor private after it has been created.

Replace <flavor_name> with a unique name for your flavor.
For more information about flavor arguments, see Flavor arguments.

2. Optional: To specify flavor metadata, set the required properties by using key-value pairs:

(overcloud)$ openstack flavor set \
 --property <key=value> --property <key=value> ... <flavor_name>

Replace <key> with the metadata key of the property you want to allocate to an instance
that is created with this flavor. For a list of available metadata keys, see Flavor metadata.

Replace <value> with the value of the metadata key you want to allocate to an instance
that is created with this flavor.

Replace <flavor_name> with the name of your flavor.
For example, an instance that is launched by using the following flavor has two CPU sockets,
each with two CPUs:

(overcloud)$ openstack flavor set \
 --property hw:cpu_sockets=2 \
 --property hw:cpu_cores=2 processor_topology_flavor

3.2. FLAVOR ARGUMENTS

The openstack flavor create command has one positional argument, <flavor_name>, to specify the
name of your new flavor.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

12

The following table details the optional arguments that you can specify as required when you create a
new flavor.

Table 3.2. Optional flavor arguments

Optional argument Description

--id Unique ID for the flavor. The default value, auto, generates a
UUID4 value. You can use this argument to manually specify an
integer or UUID4 value.

--ram (Mandatory) Size of memory to make available to the instance,
in MB.

Default: 256 MB

--disk (Mandatory) Amount of disk space to use for the root (/)
partition, in GB. The root disk is an ephemeral disk that the base
image is copied into. When an instance boots from a persistent
volume, the root disk is not used.

NOTE

Creation of an instance with a flavor that has --
disk set to 0 requires that the instance boots
from volume.

Default: 0 GB

--ephemeral Amount of disk space to use for the ephemeral disks, in GB.
Defaults to 0 GB, which means that no secondary ephemeral
disk is created. Ephemeral disks offer machine local disk storage
linked to the lifecycle of the instance. Ephemeral disks are not
included in any snapshots. This disk is destroyed and all data is
lost when the instance is deleted.

Default: 0 GB

--swap Swap disk size in MB. Do not specify swap in a flavor if the
Compute service back end storage is not local storage.

Default: 0 GB

--vcpus (Mandatory) Number of virtual CPUs for the instance.

Default: 1

--public The flavor is available to all projects. By default, a flavor is public
and available to all projects.

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

13

--private The flavor is only available to the projects specified by using the
--project option. If you create a private flavor but add no
projects to it then the flavor is only available to the cloud
administrator.

--property Metadata, or "extra specs", specified by using key-value pairs in
the following format:

--property <key=value>

Repeat this option to set multiple properties.

--project Specifies the project that can use the private flavor. You must
use this argument with the --private option. If you do not
specify any projects, the flavor is visible only to the admin user.

Repeat this option to allow access to multiple projects.

--project-domain Specifies the project domain that can use the private flavor. You
must use this argument with the --private option.

Repeat this option to allow access to multiple project domains.

--description Description of the flavor. Limited to 65535 characters in length.
You can use only printable characters.

Optional argument Description

3.3. FLAVOR METADATA

Use the --property option to specify flavor metadata when you create a flavor. Flavor metadata is also
referred to as extra specs. Flavor metadata determines instance hardware support and quotas, which
influence instance placement, instance limits, and performance.

Instance resource usage

Use the property keys in the following table to configure limits on CPU, memory and disk I/O usage by
instances.

NOTE

The extra specs for limiting instance CPU resource usage are host-specific tunable
properties that are passed directly to libvirt, which then passes the limits onto the host
OS. Therefore, the supported instance CPU resource limits configurations are dependent
on the underlying host OS.

For more information on how to configure instance CPU resource usage for the
Compute nodes in your RHOSP deployment, see Understanding cgroups in the RHEL 9
documentation, and CPU Tuning in the Libvirt documentation.

Table 3.3. Flavor metadata for resource usage

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

14

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/setting-limits-for-applications_managing-monitoring-and-updating-the-kernel
https://libvirt.org/formatdomain.html#cpu-tuning

Key Description

quota:cpu_shares Specifies the proportional weighted share of CPU time for the
domain. Defaults to the OS provided defaults. The Compute
scheduler weighs this value relative to the setting of this
property on other instances in the same domain. For example, an
instance that is configured with quota:cpu_shares=2048 is
allocated double the CPU time as an instance that is configured
with quota:cpu_shares=1024.

quota:cpu_period Specifies the period of time within which to enforce the
cpu_quota, in microseconds. Within the cpu_period, each
vCPU cannot consume more than cpu_quota of runtime. Set
to a value in the range 1000 – 1000000. Set to 0 to disable.

quota:cpu_quota Specifies the maximum allowed bandwidth for the vCPU in each
cpu_period, in microseconds:

Set to a value in the range 1000 –
18446744073709551.

Set to 0 to disable.

Set to a negative value to allow infinite bandwidth.

You can use cpu_quota and cpu_period to ensure that all
vCPUs run at the same speed. For example, you can use the
following flavor to launch an instance that can consume a
maximum of only 50% CPU of a physical CPU computing
capability:

$ openstack flavor set cpu_limits_flavor \
 --property quota:cpu_quota=10000 \
 --property quota:cpu_period=20000

Instance disk tuning

Use the property keys in the following table to tune the instance disk performance.

NOTE

The Compute service applies the following quality of service settings to storage that the
Compute service has provisioned, such as ephemeral storage. To tune the performance
of Block Storage (cinder) volumes, you must also configure and associate a Quality of
Service (QoS) specification for the volume type. For more information, see Block
Storage service (cinder) Quality of Service specifications in the Configuring persistent
storage guide.

Table 3.4. Flavor metadata for disk tuning

Key Description

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

15

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_persistent_storage/assembly_configuring-the-block-storage-service_osp-storage-guide#assembly_block-storage-service-qos-specifications_configuring-cinder

quota:disk_read_bytes_sec Specifies the maximum disk reads available to an instance, in
bytes per second.

quota:disk_read_iops_sec Specifies the maximum disk reads available to an instance, in
IOPS.

quota:disk_write_bytes_sec Specifies the maximum disk writes available to an instance, in
bytes per second.

quota:disk_write_iops_sec Specifies the maximum disk writes available to an instance, in
IOPS.

quota:disk_total_bytes_sec Specifies the maximum I/O operations available to an instance,
in bytes per second.

quota:disk_total_iops_sec Specifies the maximum I/O operations available to an instance,
in IOPS.

Key Description

Instance network traffic bandwidth

Use the property keys in the following table to configure bandwidth limits on the instance network
traffic by configuring the VIF I/O options.

NOTE

The quota :vif_* properties are deprecated. Instead, you should use the Networking
(neutron) service Quality of Service (QoS) policies. For more information about QoS
policies, see Configuring Quality of Service (QoS) policies in the Configuring Red Hat
OpenStack Platform networking guide. The quota:vif_* properties are only supported
when you use the ML2/OVS mechanism driver with NeutronOVSFirewallDriver set to
iptables_hybrid.

Table 3.5. Flavor metadata for bandwidth limits

Key Description

quota:vif_inbound_average (Deprecated) Specifies the required average bit rate on the
traffic incoming to the instance, in kbps.

quota:vif_inbound_burst (Deprecated) Specifies the maximum amount of incoming
traffic that can be burst at peak speed, in KB.

quota:vif_inbound_peak (Deprecated) Specifies the maximum rate at which the instance
can receive incoming traffic, in kbps.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

16

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/config-qos-policies_rhosp-network

quota:vif_outbound_average (Deprecated) Specifies the required average bit rate on the
traffic outgoing from the instance, in kbps.

quota:vif_outbound_burst (Deprecated) Specifies the maximum amount of outgoing
traffic that can be burst at peak speed, in KB.

quota:vif_outbound_peak (Deprecated) Specifies the maximum rate at which the instance
can send outgoing traffic, in kbps.

Key Description

Hardware video RAM

Use the property key in the following table to configure limits on the instance RAM to use for video
devices.

Table 3.6. Flavor metadata for video devices

Key Description

hw_video:ram_max_mb Specifies the maximum RAM to use for video devices, in MB. Use
with the hw_video_ram image property. hw_video_ram
must be less than or equal to hw_video:ram_max_mb.

Watchdog behavior

Use the property key in the following table to enable the virtual hardware watchdog device on the
instance.

Table 3.7. Flavor metadata for watchdog behavior

Key Description

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

17

hw:watchdog_action Specify to enable the virtual hardware watchdog device and set
its behavior. Watchdog devices perform the configured action if
the instance hangs or fails. The watchdog uses the i6300esb
device, which emulates a PCI Intel 6300ESB. If
hw:watchdog_action is not specified, the watchdog is
disabled.

Set to one of the following valid values:

disabled: (Default) The device is not attached.

reset: Force instance reset.

poweroff: Force instance shut down.

pause: Pause the instance.

none: Enable the watchdog, but do nothing if the
instance hangs or fails.

NOTE

Watchdog behavior that you set by
using the properties of a specific
image override behavior that you set
by using flavors.

Key Description

Random number generator (RNG)

Use the property keys in the following table to enable the RNG device on the instance.

Table 3.8. Flavor metadata for RNG

Key Description

hw_rng:allowed Set to False to disable the RNG device that is added to the
instance through its image properties.

Default: True

hw_rng:rate_bytes Specifies the maximum number of bytes that the instance can
read from the entropy of the host, per period.

hw_rng:rate_period Specifies the duration of the read period in milliseconds.

Virtual Performance Monitoring Unit (vPMU)

Use the property key in the following table to enable the vPMU for the instance.

Table 3.9. Flavor metadata for vPMU

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

18

Key Description

hw:pmu Set to True to enable a vPMU for the instance.

Tools such as perf use the vPMU on the instance to provide
more accurate information to profile and monitor instance
performance. For realtime workloads, the emulation of a vPMU
can introduce additional latency which might be undesirable. If
the telemetry it provides is not required, set hw:pmu=False.

Virtual Trusted Platform Module (vTPM) devices

Use the property keys in the following table to enable a vTPM device for the instance.

Table 3.10. Flavor metadata for vTPM

Key Description

hw:tpm_version Set to the version of TPM to use. TPM version 2.0 is the only
supported version.

hw:tpm_model Set to the model of TPM device to use. Ignored if
hw:tpm_version is not configured. Set to one of the following
valid values:

tpm-tis: (Default) TPM Interface Specification.

tpm-crb: Command-Response Buffer. Compatible
only with TPM version 2.0.

Instance CPU topology

Use the property keys in the following table to define the topology of the processors in the instance.

Table 3.11. Flavor metadata for CPU topology

Key Description

hw:cpu_sockets Specifies the preferred number of sockets for the instance.

Default: the number of vCPUs requested

hw:cpu_cores Specifies the preferred number of cores per socket for the
instance.

Default: 1

hw:cpu_threads Specifies the preferred number of threads per core for the
instance.

Default: 1

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

19

hw:cpu_max_sockets Specifies the maximum number of sockets that users can select
for their instances by using image properties.

Example: hw:cpu_max_sockets=2

hw:cpu_max_cores Specifies the maximum number of cores per socket that users
can select for their instances by using image properties.

hw:cpu_max_threads Specifies the maximum number of threads per core that users
can select for their instances by using image properties.

Key Description

Serial ports

Use the property key in the following table to configure the number of serial ports per instance.

Table 3.12. Flavor metadata for serial ports

Key Description

hw:serial_port_count Maximum serial ports per instance.

CPU pinning policy

By default, instance virtual CPUs (vCPUs) are sockets with one core and one thread. You can use
properties to create flavors that pin the vCPUs of instances to the physical CPU cores (pCPUs) of the
host. You can also configure the behavior of hardware CPU threads in a simultaneous multithreading
(SMT) architecture where one or more cores have thread siblings.

Use the property keys in the following table to define the CPU pinning policy of the instance.

Table 3.13. Flavor metadata for CPU pinning

Key Description

hw:cpu_policy Specifies the CPU policy to use. Set to one of the following valid
values:

shared: (Default) The instance vCPUs float across
host pCPUs.

dedicated: Pin the instance vCPUs to a set of host
pCPUs. This creates an instance CPU topology that
matches the topology of the CPUs to which the
instance is pinned. This option implies an overcommit
ratio of 1.0.

mixed: The instance vCPUs use a mix of dedicated
(pinned) host pCPUs and shared (unpinned) host
pCPUs.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

20

hw:cpu_thread_policy Specifies the CPU thread policy to use when
hw:cpu_policy=dedicated. Set to one of the following valid
values:

prefer: (Default) The host might or might not have an
SMT architecture. If an SMT architecture is present, the
Compute scheduler gives preference to thread siblings.

isolate: The host must not have an SMT architecture
or must emulate a non-SMT architecture. This policy
ensures that the Compute scheduler places the
instance on a host without SMT by requesting hosts
that do not report the
HW_CPU_HYPERTHREADING trait. It is also
possible to request this trait explicitly by using the
following property:

--property
trait:HW_CPU_HYPERTHREADING=forbidden

If the host does not have an SMT architecture, the
Compute service places each vCPU on a different core
as expected. If the host does have an SMT
architecture, then the behaviour is determined by the
configuration of the
[workarounds]/disable_fallback_pcpu_query
parameter:

True: The host with an SMT architecture is not
used and scheduling fails.

False: The Compute service places each vCPU on
a different physical core. The Compute service
does not place vCPUs from other instances on the
same core. All but one thread sibling on each used
core is therefore guaranteed to be unusable.

require: The host must have an SMT architecture. This
policy ensures that the Compute scheduler places the
instance on a host with SMT by requesting hosts that
report the HW_CPU_HYPERTHREADING trait. It is
also possible to request this trait explicitly by using the
following property:

--property
trait:HW_CPU_HYPERTHREADING=required

The Compute service allocates each vCPU on thread
siblings. If the host does not have an SMT architecture,
then it is not used. If the host has an SMT architecture,
but not enough cores with free thread siblings are
available, then scheduling fails.

Key Description

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

21

hw:cpu_dedicated_mask Specifies which CPUs are dedicated (pinned) or shared
(unpinned/floating).

To specify dedicated CPUs, specify the CPU number or
CPU range. For example, set the property to 2-3 to
specify that CPUs 2 and 3 are dedicated and all the
remaining CPUs are shared.

To specify shared CPUs, prepend the CPU number or
CPU range with a caret (^). For example, set the
property to ^0-1 to specify that CPUs 0 and 1 are
shared and all the remaining CPUs are dedicated.

Key Description

Instance PCI NUMA affinity policy

Use the property key in the following table to create flavors that specify the NUMA affinity policy for
PCI passthrough devices and SR-IOV interfaces.

Table 3.14. Flavor metadata for PCI NUMA affinity policy

Key Description

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

22

hw:pci_numa_affinity_policy Specifies the NUMA affinity policy for PCI passthrough devices
and SR-IOV interfaces. Set to one of the following valid values:

required: The Compute service creates an instance
that requests a PCI device only when at least one of
the NUMA nodes of the instance has affinity with the
PCI device. This option provides the best performance.

preferred: The Compute service attempts a best
effort selection of PCI devices based on NUMA affinity.
If this is not possible, then the Compute service
schedules the instance on a NUMA node that has no
affinity with the PCI device.

legacy: (Default) The Compute service creates
instances that request a PCI device in one of the
following cases:

The PCI device has affinity with at least one of the
NUMA nodes.

The PCI devices do not provide information about
their NUMA affinities.

socket: The Compute service creates an instance that
requests a PCI device only when at least one of the
instance NUMA nodes has affinity with a NUMA node in
the same host socket as the PCI device. For example,
the following host architecture has two sockets, each
socket has two NUMA nodes, and a PCI device is
connected to one of the nodes in one of the sockets.

The Compute service can pin an instance with two
NUMA nodes and the socket PCI NUMA affinity policy
only to the following combinations of host nodes
because they all have at least one instance NUMA node
pinned to the PCI device’s socket:

node 0 and node 1

node 0 and node 2

node 0 and node 3

node 1 and node 2

node 1 and node 3

The only combination of host nodes that the instance
cannot be pinned to is node 2 and node 3, as neither of
those nodes are on the same socket as the PCI device.
If the other nodes are consumed by other instances and
only nodes 2 and 3 are available, the instance does not
boot.

Key Description

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

23

Key Description

Instance NUMA topology

You can use properties to create flavors that define the host NUMA placement for the instance vCPU
threads, and the allocation of instance vCPUs and memory from the host NUMA nodes.

Defining a NUMA topology for the instance improves the performance of the instance OS for flavors
whose memory and vCPU allocations are larger than the size of NUMA nodes in the Compute hosts.

The Compute scheduler uses these properties to determine a suitable host for the instance. For
example, a cloud user launches an instance by using the following flavor:

$ openstack flavor set numa_top_flavor \
 --property hw:numa_nodes=2 \
 --property hw:numa_cpus.0=0,1,2,3,4,5 \
 --property hw:numa_cpus.1=6,7 \
 --property hw:numa_mem.0=3072 \
 --property hw:numa_mem.1=1024

The Compute scheduler searches for a host that has two NUMA nodes, one with 3GB of RAM and the
ability to run six CPUs, and the other with 1GB of RAM and two CPUS. If a host has a single NUMA node
with capability to run eight CPUs and 4GB of RAM, the Compute scheduler does not consider it a valid
match.

NOTE

NUMA topologies defined by a flavor cannot be overridden by NUMA topologies defined
by the image. The Compute service raises an ImageNUMATopologyForbidden error if
the image NUMA topology conflicts with the flavor NUMA topology.

CAUTION

You cannot use this feature to constrain instances to specific host CPUs or NUMA nodes. Use this
feature only after you complete extensive testing and performance measurements. You can use the
hw:pci_numa_affinity_policy property instead.

Use the property keys in the following table to define the instance NUMA topology.

Table 3.15. Flavor metadata for NUMA topology

Key Description

hw:numa_nodes Specifies the number of host NUMA nodes to restrict execution
of instance vCPU threads to. If not specified, the vCPU threads
can run on any number of the available host NUMA nodes.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

24

hw:numa_cpus.N A comma-separated list of instance vCPUs to map to instance
NUMA node N. If this key is not specified, vCPUs are evenly
divided among available NUMA nodes.

N starts from 0. Use *.N values with caution, and only if you have
at least two NUMA nodes.

This property is valid only if you have set hw:numa_nodes,
and is required only if the NUMA nodes of the instance have an
asymmetrical allocation of CPUs and RAM, which is important for
some NFV workloads.

hw:numa_mem.N The number of MB of instance memory to map to instance
NUMA node N. If this key is not specified, memory is evenly
divided among available NUMA nodes.

N starts from 0. Use *.N values with caution, and only if you have
at least two NUMA nodes.

This property is valid only if you have set hw:numa_nodes,
and is required only if the NUMA nodes of the instance have an
asymmetrical allocation of CPUs and RAM, which is important for
some NFV workloads.

Key Description

WARNING

If the combined values of hw:numa_cpus.N or hw:numa_mem.N are greater than
the available number of CPUs or memory respectively, the Compute service raises
an exception.

CPU real-time policy

Use the property keys in the following table to define the real-time policy of the processors in the
instance.

NOTE

Although most of your instance vCPUs can run with a real-time policy, you must
mark at least one vCPU as non-real-time to use for both non-real-time guest
processes and emulator overhead processes.

To use this extra spec, you must enable pinned CPUs.

Table 3.16. Flavor metadata for CPU real-time policy

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

25

Key Description

hw:cpu_realtime Set to yes to create a flavor that assigns a real-time policy to
the instance vCPUs.

Default: no

hw:cpu_realtime_mask Specifies the vCPUs to not assign a real-time policy to. You
must prepend the mask value with a caret symbol (^). The
following example indicates that all vCPUs except vCPUs 0 and 1
have a real-time policy:

$ openstack flavor set <flavor> \
 --property hw:cpu_realtime="yes" \
 --property hw:cpu_realtime_mask=^0-1

NOTE

If the hw_cpu_realtime_mask property is set
on the image then it takes precedence over the
hw:cpu_realtime_mask property set on the
flavor.

Emulator threads policy

You can assign a pCPU to an instance to use for emulator threads. Emulator threads are emulator
processes that are not directly related to the instance. A dedicated emulator thread pCPU is required
for real-time workloads. To use the emulator threads policy, you must enable pinned CPUs by setting
the following property:

--property hw:cpu_policy=dedicated

Use the property key in the following table to define the emulator threads policy of the instance.

Table 3.17. Flavor metadata for the emulator threads policy

Key Description

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

26

hw:emulator_threads_policy Specifies the emulator threads policy to use for instances. Set to
one of the following valid values:

share: The emulator thread floats across the pCPUs
defined in the NovaComputeCpuSharedSet heat
parameter. If NovaComputeCpuSharedSet is not
configured, then the emulator thread floats across the
pinned CPUs that are associated with the instance.

isolate: Reserves an additional dedicated pCPU per
instance for the emulator thread. Use this policy with
caution, as it is prohibitively resource intensive.

unset: (Default) The emulator thread policy is not
enabled, and the emulator thread floats across the
pinned CPUs associated with the instance.

Key Description

Instance memory page size

Use the property keys in the following table to create an instance with an explicit memory page size.

Table 3.18. Flavor metadata for memory page size

Key Description

hw:mem_page_size Specifies the size of large pages to use to back the instances.
Use of this option creates an implicit NUMA topology of 1 NUMA
node unless otherwise specified by hw:numa_nodes. Set to
one of the following valid values:

large: Selects a page size larger than the smallest page
size supported on the host, which can be 2 MB or 1 GB
on x86_64 systems.

small: Selects the smallest page size supported on the
host. On x86_64 systems this is 4 kB (normal pages).

any: Selects the largest available huge page size, as
determined by the libvirt driver.

<pagesize>: (String) Sets an explicit page size if the
workload has specific requirements. Use an integer
value for the page size in KB, or any standard suffix. For
example: 4KB, 2MB, 2048, 1GB.

unset: (Default) Large pages are not used to back
instances and no implicit NUMA topology is generated.

PCI passthrough

Use the property key in the following table to attach a physical PCI device, such as a graphics card or a
network device, to an instance. For more information about using PCI passthrough, see Configuring PCI
passthrough.

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

27

Table 3.19. Flavor metadata for PCI passthrough

Key Description

pci_passthrough:alias Specifies the PCI device to assign to an instance by using the
following format:

<alias>:<count>

Replace <alias> with the alias that corresponds to a
particular PCI device class.

Replace <count> with the number of PCI devices of
type <alias> to assign to the instance.

Hypervisor signature

Use the property key in the following table to hide the hypervisor signature from the instance.

Table 3.20. Flavor metadata for hiding hypervisor signature

Key Description

hide_hypervisor_id Set to True to hide the hypervisor signature from the instance,
to allow all drivers to load and work on the instance.

UEFI Secure Boot

Use the property key in the following table to create an instance that is protected with UEFI Secure
Boot.

NOTE

Instances with UEFI Secure Boot must support UEFI and the GUID Partition Table (GPT)
standard, and include an EFI system partition.

Table 3.21. Flavor metadata for UEFI Secure Boot

Key Description

os:secure_boot Set to required to enable Secure Boot for instances launched
with this flavor. Disabled by default.

Instance resource traits

Each resource provider has a set of traits. Traits are the qualitative aspects of a resource provider, for
example, the type of storage disk, or the Intel CPU instruction set extension. An instance can specify
which of these traits it requires.

The traits that you can specify are defined in the os-traits library. Example traits include the following:

COMPUTE_TRUSTED_CERTS

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

28

COMPUTE_NET_ATTACH_INTERFACE_WITH_TAG

COMPUTE_IMAGE_TYPE_RAW

HW_CPU_X86_AVX

HW_CPU_X86_AVX512VL

HW_CPU_X86_AVX512CD

For details about how to use the os-traits library, see https://docs.openstack.org/os-
traits/latest/user/index.html.

Use the property key in the following table to define the resource traits of the instance.

Table 3.22. Flavor metadata for resource traits

Key Description

trait:<trait_name> Specifies Compute node traits. Set the trait to one of the
following valid values:

required: The Compute node selected to host the
instance must have the trait.

forbidden: The Compute node selected to host the
instance must not have the trait.

Example:

$ openstack flavor set --property
trait:HW_CPU_X86_AVX512BW=required avx512-
flavor

Instance bare-metal resource class

Use the property key in the following table to request a bare-metal resource class for an instance.

Table 3.23. Flavor metadata for bare-metal resource class

Key Description

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

29

https://docs.openstack.org/os-traits/latest/user/index.html

resources:<resource_class_name> Use this property to specify standard bare-metal resource
classes to override the values of, or to specify custom bare-
metal resource classes that the instance requires.

The standard resource classes that you can override are VCPU,
MEMORY_MB and DISK_GB. To prevent the Compute
scheduler from using the bare-metal flavor properties for
scheduling instance, set the value of the standard resource
classes to 0.

The name of custom resource classes must start with
CUSTOM_. To determine the name of a custom resource class
that corresponds to a resource class of a Bare Metal service
node, convert the resource class to uppercase, replace all
punctuation with an underscore, and prefix with CUSTOM_.

For example, to schedule instances on a node that has --
resource-class baremetal.SMALL, create the following
flavor:

$ openstack flavor set \
 --property
resources:CUSTOM_BAREMETAL_SMALL=1 \
 --property resources:VCPU=0 --property
resources:MEMORY_MB=0 \
 --property resources:DISK_GB=0 compute-small

Key Description

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

30

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES
As a cloud administrator, you can configure the scheduling and placement of instances for optimal
performance by creating customized flavors to target specialized workloads, including NFV and High
Performance Computing (HPC).

Use the following features to tune your instances for optimal CPU performance:

CPU pinning: Pin virtual CPUs to physical CPUs.

Emulator threads: Pin emulator threads associated with the instance to physical CPUs.

CPU feature flags: Configure the standard set of CPU feature flags that are applied to
instances to improve live migration compatibility across Compute nodes.

4.1. CONFIGURING CPU PINNING ON COMPUTE NODES

You can configure each instance CPU process to run on a dedicated host CPU by enabling CPU pinning
on the Compute nodes. When an instance uses CPU pinning, each instance vCPU process is allocated
its own host pCPU that no other instance vCPU process can use. Instances that run on Compute nodes
with CPU pinning enabled have a NUMA topology. Each NUMA node of the instance NUMA topology
maps to a NUMA node on the host Compute node.

You can configure the Compute scheduler to schedule instances with dedicated (pinned) CPUs and
instances with shared (floating) CPUs on the same Compute node. To configure CPU pinning on
Compute nodes that have a NUMA topology, you must complete the following:

1. Designate Compute nodes for CPU pinning.

2. Configure the Compute nodes to reserve host cores for pinned instance vCPU processes,
floating instance vCPU processes, and host processes.

3. Deploy the overcloud.

4. Create a flavor for launching instances that require CPU pinning.

5. Create a flavor for launching instances that use shared, or floating, CPUs.

NOTE

Configuring CPU pinning creates an implicit NUMA topology on the instance even if a
NUMA topology is not requested. Do not run NUMA and non-NUMA virtual machines
(VMs) on the same hosts. For more information, see Constraints when using NUMA .

4.1.1. Prerequisites

You know the NUMA topology of your Compute node.

You have configured NovaReservedHugePages on the Compute nodes. For more information,
see Configuring huge pages on Compute nodes .

4.1.2. Designating Compute nodes for CPU pinning

To designate Compute nodes for instances with pinned CPUs, you must create a new role file to

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES

31

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_planning-your-overcloud#con_constraints-when-using-numa_planning-your-overcloud

To designate Compute nodes for instances with pinned CPUs, you must create a new role file to
configure the CPU pinning role, and configure the bare metal nodes with a CPU pinning resource class
to use to tag the Compute nodes for CPU pinning.

NOTE

The following procedure applies to new overcloud nodes that have not yet been
provisioned. To assign a resource class to an existing overcloud node that has already
been provisioned, you must use the scale down procedure to unprovision the node, then
use the scale up procedure to reprovision the node with the new resource class
assignment. For more information, see Scaling overcloud nodes .

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Generate a new roles data file named roles_data_cpu_pinning.yaml that includes the
Controller, Compute, and ComputeCPUPinning roles, along with any other roles that you need
for the overcloud:

(undercloud)$ openstack overcloud roles \
 generate -o /home/stack/templates/roles_data_cpu_pinning.yaml \
 Compute:ComputeCPUPinning Compute Controller

4. Open roles_data_cpu_pinning.yaml and edit or add the following parameters and sections:

Section/Parameter Current value New value

Role comment Role: Compute Role:
ComputeCPUPinning

Role name name: Compute name:
ComputeCPUPinning

description Basic Compute Node role CPU Pinning Compute
Node role

HostnameFormatDefault %stackname%-
novacompute-%index%

%stackname%-
novacomputepinning-
%index%

deprecated_nic_config_na
me

compute.yaml compute-cpu-
pinning.yaml

5. Register the CPU pinning Compute nodes for the overcloud by adding them to your node
definition template, node.json or node.yaml. For more information, see Registering nodes for
the overcloud in the Installing and managing Red Hat OpenStack Platform with director guide.

6. Inspect the node hardware:

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

32

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_scaling-overcloud-nodes
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#proc_registering-nodes-for-the-overcloud_ironic_provisioning

1

(undercloud)$ openstack overcloud node introspect \
 --all-manageable --provide

For more information, see Creating an inventory of the bare-metal node hardware in the
Installing and managing Red Hat OpenStack Platform with director guide.

7. Tag each bare metal node that you want to designate for CPU pinning with a custom CPU
pinning resource class:

(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.CPU-PINNING <node>

Replace <node> with the ID of the bare metal node.

8. Add the ComputeCPUPinning role to your node definition file, overcloud-baremetal-
deploy.yaml, and define any predictive node placements, resource classes, network topologies,
or other attributes that you want to assign to your nodes:

- name: Controller
 count: 3
- name: Compute
 count: 3
- name: ComputeCPUPinning
 count: 1
 defaults:
 resource_class: baremetal.CPU-PINNING
 network_config:
 template: /home/stack/templates/nic-config/myRoleTopology.j2 1

You can reuse an existing network topology or create a new custom network interface
template for the role. For more information, see Custom network interface templates in
the Installing and managing Red Hat OpenStack Platform with director guide. If you do not
define the network definitions by using the network_config property, then the default
network definitions are used.

For more information about the properties you can use to configure node attributes in your
node definition file, see Bare metal node provisioning attributes . For an example node definition
file, see Example node definition file .

9. Run the provisioning command to provision the new nodes for your role:

(undercloud)$ openstack overcloud node provision \
--stack <stack> \
[--network-config \]
--output /home/stack/templates/overcloud-baremetal-deployed.yaml \
/home/stack/templates/overcloud-baremetal-deploy.yaml

Replace <stack> with the name of the stack for which the bare-metal nodes are
provisioned. If not specified, the default is overcloud.

Include the --network-config optional argument to provide the network definitions to the
cli-overcloud-node-network-config.yaml Ansible playbook. If you do not define the
network definitions by using the network_config property, then the default network
definitions are used.

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES

33

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_creating-an-inventory-of-the-bare-metal-node-hardware_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_custom-network-interface-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#ref_bare-metal-node-provisioning-attributes_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#ref_example-node-definition-file_ironic_provisioning

10. Monitor the provisioning progress in a separate terminal. When provisioning is successful, the
node state changes from available to active:

(undercloud)$ watch openstack baremetal node list

11. If you did not run the provisioning command with the --network-config option, then configure
the <Role>NetworkConfigTemplate parameters in your network-environment.yaml file to
point to your NIC template files:

parameter_defaults:
 ComputeNetworkConfigTemplate: /home/stack/templates/nic-configs/compute.j2
 ComputeCPUPinningNetworkConfigTemplate: /home/stack/templates/nic-
configs/<cpu_pinning_net_top>.j2
 ControllerNetworkConfigTemplate: /home/stack/templates/nic-configs/controller.j2

Replace <cpu_pinning_net_top> with the name of the file that contains the network topology
of the ComputeCPUPinning role, for example, compute.yaml to use the default network
topology.

4.1.3. Configuring Compute nodes for CPU pinning

Configure CPU pinning on your Compute nodes based on the NUMA topology of the nodes. Reserve
some CPU cores across all the NUMA nodes for the host processes for efficiency. Assign the remaining
CPU cores to managing your instances.

This procedure uses the following NUMA topology, with eight CPU cores spread across two NUMA
nodes, to illustrate how to configure CPU pinning:

Table 4.1. Example of NUMA Topology

NUMA Node 0 NUMA Node 1

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

The procedure reserves cores 0 and 4 for host processes, cores 1, 3, 5 and 7 for instances that require
CPU pinning, and cores 2 and 6 for floating instances that do not require CPU pinning.

Procedure

1. Create an environment file to configure Compute nodes to reserve cores for pinned instances,
floating instances, and host processes, for example, cpu_pinning.yaml.

2. To schedule instances with a NUMA topology on NUMA-capable Compute nodes, add
NUMATopologyFilter to the NovaSchedulerEnabledFilters parameter in your Compute
environment file, if not already present:

parameter_defaults:
 NovaSchedulerEnabledFilters:
 - AvailabilityZoneFilter
 - ComputeFilter
 - ComputeCapabilitiesFilter

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

34

 - ImagePropertiesFilter
 - ServerGroupAntiAffinityFilter
 - ServerGroupAffinityFilter
 - PciPassthroughFilter
 - NUMATopologyFilter

For more information on NUMATopologyFilter, see Compute scheduler filters .

3. To reserve physical CPU cores for the dedicated instances, add the following configuration to
cpu_pinning.yaml:

parameter_defaults:
 ComputeCPUPinningParameters:
 NovaComputeCpuDedicatedSet: 1,3,5,7

4. To reserve physical CPU cores for the shared instances, add the following configuration to
cpu_pinning.yaml:

parameter_defaults:
 ComputeCPUPinningParameters:
 ...
 NovaComputeCpuSharedSet: 2,6

5. If you are not using file-backed memory, specify the amount of RAM to reserve for host
processes:

parameter_defaults:
 ComputeCPUPinningParameters:
 ...
 NovaReservedHugePages: <ram>

Replace <ram> with the amount of RAM to reserve in MB.

6. To ensure that host processes do not run on the CPU cores reserved for instances, set the
parameter IsolCpusList to the CPU cores you have reserved for instances:

parameter_defaults:
 ComputeCPUPinningParameters:
 ...
 IsolCpusList: 1-3,5-7

Specify the value of the IsolCpusList parameter using a list, or ranges, of CPU indices
separated by a comma.

7. Add your new files to the stack with your other environment files and deploy the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -r /home/stack/templates/roles_data_cpu_pinning.yaml \
 -e /home/stack/templates/network-environment.yaml \
 -e /home/stack/templates/cpu_pinning.yaml \
 -e /home/stack/templates/overcloud-baremetal-deployed.yaml \
 -e /home/stack/templates/node-info.yaml

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES

35

4.1.4. Creating a dedicated CPU flavor for instances

To enable your cloud users to create instances that have dedicated CPUs, you can create a flavor with a
dedicated CPU policy for launching instances.

Prerequisites

Simultaneous multithreading (SMT) is enabled on the host.

The Compute node is configured to allow CPU pinning. For more information, see Configuring
CPU pinning on the Compute nodes.

Procedure

1. Source the overcloudrc file:

(undercloud)$ source ~/overcloudrc

2. Create a flavor for instances that require CPU pinning:

(overcloud)$ openstack flavor create --ram <size_mb> \
 --disk <size_gb> --vcpus <no_reserved_vcpus> pinned_cpus

3. To request pinned CPUs, set the hw:cpu_policy property of the flavor to dedicated:

(overcloud)$ openstack flavor set \
 --property hw:cpu_policy=dedicated pinned_cpus

4. If you are not using file-backed memory, set the hw:mem_page_size property of the flavor to
enable NUMA-aware memory allocation:

(overcloud)$ openstack flavor set \
 --property hw:mem_page_size=<page_size> pinned_cpus

Replace <page_size> with one of the following valid values:

large: Selects the largest page size supported on the host, which may be 2 MB or 1 GB
on x86_64 systems.

small: (Default) Selects the smallest page size supported on the host. On x86_64
systems this is 4 kB (normal pages).

any: Selects the page size by using the hw_mem_page_size set on the image. If the
page size is not specified by the image, selects the largest available page size, as
determined by the libvirt driver.

<pagesize>: Set an explicit page size if the workload has specific requirements. Use an
integer value for the page size in KB, or any standard suffix. For example: 4KB, 2MB,
2048, 1GB.

NOTE

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

36

NOTE

To set hw:mem_page_size to small or any, you must have configured the
amount of memory pages to reserve on each NUMA node for processes that are
not instances. For more information, see Configuring huge pages on Compute
nodes.

5. To place each vCPU on thread siblings, set the hw:cpu_thread_policy property of the flavor to
require:

(overcloud)$ openstack flavor set \
 --property hw:cpu_thread_policy=require pinned_cpus

NOTE

If the host does not have an SMT architecture or enough CPU cores with
available thread siblings, scheduling fails. To prevent this, set
hw:cpu_thread_policy to prefer instead of require. The prefer policy is the
default policy that ensures that thread siblings are used when available.

If you use hw:cpu_thread_policy=isolate, you must have SMT disabled or
use a platform that does not support SMT.

Verification

1. To verify the flavor creates an instance with dedicated CPUs, use your new flavor to launch an
instance:

(overcloud)$ openstack server create --flavor pinned_cpus \
 --image <image> pinned_cpu_instance

4.1.5. Creating a shared CPU flavor for instances

To enable your cloud users to create instances that use shared, or floating, CPUs, you can create a
flavor with a shared CPU policy for launching instances.

Prerequisites

The Compute node is configured to reserve physical CPU cores for the shared CPUs. For more
information, see Configuring CPU pinning on the Compute nodes .

Procedure

1. Source the overcloudrc file:

(undercloud)$ source ~/overcloudrc

2. Create a flavor for instances that do not require CPU pinning:

(overcloud)$ openstack flavor create --ram <size_mb> \
 --disk <size_gb> --vcpus <no_reserved_vcpus> floating_cpus

3. To request floating CPUs, set the hw:cpu_policy property of the flavor to shared:

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES

37

(overcloud)$ openstack flavor set \
 --property hw:cpu_policy=shared floating_cpus

4. If you are not using file-backed memory, set the hw:mem_page_size property of the flavor to
enable NUMA-aware memory allocation:

(overcloud)$ openstack flavor set \
 --property hw:mem_page_size=<page_size> pinned_cpus

Replace <page_size> with one of the following valid values:

large: Selects the largest page size supported on the host, which may be 2 MB or 1 GB
on x86_64 systems.

small: (Default) Selects the smallest page size supported on the host. On x86_64
systems this is 4 kB (normal pages).

any: Selects the page size by using the hw_mem_page_size set on the image. If the
page size is not specified by the image, selects the largest available page size, as
determined by the libvirt driver.

<pagesize>: Set an explicit page size if the workload has specific requirements. Use an
integer value for the page size in KB, or any standard suffix. For example: 4KB, 2MB,
2048, 1GB.

NOTE

To set hw:mem_page_size to small or any, you must have configured the
amount of memory pages to reserve on each NUMA node for processes that are
not instances. For more information, see Configuring huge pages on Compute
nodes.

4.1.6. Creating a mixed CPU flavor for instances

To enable your cloud users to create instances that have a mix of dedicated and shared CPUs, you can
create a flavor with a mixed CPU policy for launching instances.

Procedure

1. Source the overcloudrc file:

(undercloud)$ source ~/overcloudrc

2. Create a flavor for instances that require a mixed of dedicated and shared CPUs:

(overcloud)$ openstack flavor create --ram <size_mb> \
 --disk <size_gb> --vcpus <number_of_reserved_vcpus> \
 --property hw:cpu_policy=mixed mixed_CPUs_flavor

3. Specify which CPUs must be dedicated or shared:

(overcloud)$ openstack flavor set \
 --property hw:cpu_dedicated_mask=<CPU_number> \
 mixed_CPUs_flavor

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

38

Replace <CPU_number> with the CPUs that must be either dedicated or shared:

To specify dedicated CPUs, specify the CPU number or CPU range. For example, set
the property to 2-3 to specify that CPUs 2 and 3 are dedicated and all the remaining
CPUs are shared.

To specify shared CPUs, prepend the CPU number or CPU range with a caret (^). For
example, set the property to ^0-1 to specify that CPUs 0 and 1 are shared and all the
remaining CPUs are dedicated.

4. If you are not using file-backed memory, set the hw:mem_page_size property of the flavor to
enable NUMA-aware memory allocation:

(overcloud)$ openstack flavor set \
 --property hw:mem_page_size=<page_size> pinned_cpus

Replace <page_size> with one of the following valid values:

large: Selects the largest page size supported on the host, which may be 2 MB or 1 GB
on x86_64 systems.

small: (Default) Selects the smallest page size supported on the host. On x86_64
systems this is 4 kB (normal pages).

any: Selects the page size by using the hw_mem_page_size set on the image. If the
page size is not specified by the image, selects the largest available page size, as
determined by the libvirt driver.

<pagesize>: Set an explicit page size if the workload has specific requirements. Use an
integer value for the page size in KB, or any standard suffix. For example: 4KB, 2MB,
2048, 1GB.

NOTE

To set hw:mem_page_size to small or any, you must have configured the
amount of memory pages to reserve on each NUMA node for processes that are
not instances. For more information, see Configuring huge pages on Compute
nodes.

4.1.7. Configuring CPU pinning on Compute nodes with simultaneous multithreading
(SMT)

If a Compute node supports simultaneous multithreading (SMT), group thread siblings together in
either the dedicated or the shared set. Thread siblings share some common hardware which means it is
possible for a process running on one thread sibling to impact the performance of the other thread
sibling.

For example, the host identifies four logical CPU cores in a dual core CPU with SMT: 0, 1, 2, and 3. Of
these four, there are two pairs of thread siblings:

Thread sibling 1: logical CPU cores 0 and 2

Thread sibling 2: logical CPU cores 1 and 3

In this scenario, do not assign logical CPU cores 0 and 1 as dedicated and 2 and 3 as shared. Instead,

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES

39

In this scenario, do not assign logical CPU cores 0 and 1 as dedicated and 2 and 3 as shared. Instead,
assign 0 and 2 as dedicated and 1 and 3 as shared.

The files /sys/devices/system/cpu/cpuN/topology/thread_siblings_list, where N is the logical CPU
number, contain the thread pairs. You can use the following command to identify which logical CPU
cores are thread siblings:

grep -H . /sys/devices/system/cpu/cpu*/topology/thread_siblings_list | sort -n -t ':' -k 2 -u

The following output indicates that logical CPU core 0 and logical CPU core 2 are threads on the same
core:

/sys/devices/system/cpu/cpu0/topology/thread_siblings_list:0,2
/sys/devices/system/cpu/cpu2/topology/thread_siblings_list:1,3

4.1.8. Additional resources

Discovering your NUMA node topology

4.2. CONFIGURING EMULATOR THREADS

Compute nodes have overhead tasks associated with the hypervisor for each instance, known as
emulator threads. By default, emulator threads run on the same CPUs as the instance, which impacts the
performance of the instance.

You can configure the emulator thread policy to run emulator threads on separate CPUs to those the
instance uses.

NOTE

To avoid packet loss, you must never preempt the vCPUs in an NFV deployment.

Prerequisites

CPU pinning must be enabled.

Procedure

1. Log in to the undercloud as the stack user.

2. Open your Compute environment file.

3. To reserve physical CPU cores for instances that require CPU pinning, configure the
NovaComputeCpuDedicatedSet parameter in the Compute environment file. For example, the
following configuration sets the dedicated CPUs on a Compute node with a 32-core CPU:

parameter_defaults:
 ...
 NovaComputeCpuDedicatedSet: 2-15,18-31
 ...

For more information, see Configuring CPU pinning on the Compute nodes .

4. To reserve physical CPU cores for the emulator threads, configure the

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

40

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/hardware-req-nfv_rhosp-nfv#discover-numa-node-topo_hw-req-nfv

4. To reserve physical CPU cores for the emulator threads, configure the
NovaComputeCpuSharedSet parameter in the Compute environment file. For example, the
following configuration sets the shared CPUs on a Compute node with a 32-core CPU:

parameter_defaults:
 ...
 NovaComputeCpuSharedSet: 0,1,16,17
 ...

NOTE

The Compute scheduler also uses the CPUs in the shared set for instances that
run on shared, or floating, CPUs. For more information, see Configuring CPU
pinning on Compute nodes

5. Add the Compute scheduler filter NUMATopologyFilter to the NovaSchedulerEnabledFilters
parameter, if not already present.

6. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

7. Configure a flavor that runs emulator threads for the instance on a dedicated CPU, which is
selected from the shared CPUs configured using NovaComputeCpuSharedSet:

(overcloud)$ openstack flavor set --property hw:cpu_policy=dedicated \
 --property hw:emulator_threads_policy=share \
 dedicated_emulator_threads

For more information about configuration options for hw:emulator_threads_policy, see
Emulator threads policy in Flavor metadata.

4.3. CONFIGURING CPU FEATURE FLAGS FOR INSTANCES

You can enable or disable CPU feature flags for an instance without changing the settings on the host
Compute node and rebooting the Compute node. By configuring the standard set of CPU feature flags
that are applied to instances, you are helping to achieve live migration compatibility across Compute
nodes. You are also helping to manage the performance and security of the instances, by disabling flags
that have a negative impact on the security or performance of the instances with a particular CPU
model, or enabling flags that provide mitigation from a security problem or alleviates performance
problems.

4.3.1. Prerequisites

The CPU model and feature flags must be supported by the hardware and software of the host
Compute node:

To check the hardware your host supports, enter the following command on the Compute
node:

$ cat /proc/cpuinfo

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES

41

To check the CPU models supported on your host, enter the following command on the
Compute node:

$ sudo podman exec -it nova_libvirt virsh cpu-models <arch>

Replace <arch> with the name of the architecture, for example, x86_64.

4.3.2. Configuring CPU feature flags for instances

Configure the Compute service to apply CPU feature flags to instances with specific vCPU models.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Open your Compute environment file.

4. Configure the instance CPU mode:

parameter_defaults:
 ComputeParameters:
 NovaLibvirtCPUMode: <cpu_mode>

Replace <cpu_mode> with the CPU mode of each instance on the Compute node. Set to one
of the following valid values:

host-model: (Default) Use the CPU model of the host Compute node. Use this CPU mode
to automatically add critical CPU flags to the instance to provide mitigation from security
flaws.

custom: Use to configure the specific CPU models each instance should use.

NOTE

You can also set the CPU mode to host-passthrough to use the same CPU
model and feature flags as the Compute node for the instances hosted on
that Compute node.

5. Optional: If you set NovaLibvirtCPUMode to custom, configure the instance CPU models that
you want to customise:

parameter_defaults:
 ComputeParameters:
 NovaLibvirtCPUMode: 'custom'
 NovaLibvirtCPUModels: <cpu_model>

Replace <cpu_model> with a comma-separated list of the CPU models that the host supports.
List the CPU models in order, placing the more common and less advanced CPU models first in
the list, and the more feature-rich CPU models last, for example,

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

42

SandyBridge,IvyBridge,Haswell,Broadwell. For a list of model names, see
/usr/share/libvirt/cpu_map.xml, or enter the following command on the host Compute node:

$ sudo podman exec -it nova_libvirt virsh cpu-models <arch>

Replace <arch> with the name of the architecture of the Compute node, for example, x86_64.

6. Configure the CPU feature flags for instances with the specified CPU models:

parameter_defaults:
 ComputeParameters:
 ...
 NovaLibvirtCPUModelExtraFlags: <cpu_feature_flags>

Replace <cpu_feature_flags> with a comma-separated list of feature flags to enable or
disable. Prefix each flag with "+" to enable the flag, or "-" to disable it. If a prefix is not specified,
the flag is enabled. For a list of the available feature flags for a given CPU model, see
/usr/share/libvirt/cpu_map/*.xml.

The following example enables the CPU feature flags pcid and ssbd for the IvyBridge and
Cascadelake-Server models, and disables the feature flag mtrr.

parameter_defaults:
 ComputeParameters:
 NovaLibvirtCPUMode: 'custom'
 NovaLibvirtCPUModels: 'IvyBridge','Cascadelake-Server'
 NovaLibvirtCPUModelExtraFlags: 'pcid,+ssbd,-mtrr'

7. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES

43

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES
As a cloud administrator, you can configure the scheduling and placement of instances for optimal
performance by creating customized flavors to target specialized workloads, including NFV and High
Performance Computing (HPC).

Use the following features to tune your instances for optimal memory performance:

Overallocation: Tune the virtual RAM to physical RAM allocation ratio.

Swap: Tune the allocated swap size to handle memory overcommit.

Huge pages: Tune instance memory allocation policies both for normal memory (4k pages) and
huge pages (2 MB or 1 GB pages).

File-backed memory: Use to expand your Compute node memory capacity.

SEV: Use to enable your cloud users to create instances that use memory encryption.

5.1. CONFIGURING MEMORY FOR OVERALLOCATION

When you use memory overcommit (NovaRAMAllocationRatio >= 1.0), you need to deploy your
overcloud with enough swap space to support the allocation ratio.

NOTE

If your NovaRAMAllocationRatio parameter is set to < 1, follow the RHEL
recommendations for swap size. For more information, see Recommended system swap
space in the RHEL Managing Storage Devices guide.

Prerequisites

You have calculated the swap size your node requires. For more information, see Calculating
swap size.

Procedure

1. Copy the /usr/share/openstack-tripleo-heat-templates/environments/enable-swap.yaml file
to your environment file directory:

$ cp /usr/share/openstack-tripleo-heat-templates/environments/enable-swap.yaml
/home/stack/templates/enable-swap.yaml

2. Configure the swap size by adding the following parameters to your enable-swap.yaml file:

parameter_defaults:
 swap_size_megabytes: <swap size in MB>
 swap_path: <full path to location of swap, default: /swap>

3. Add the enable_swap.yaml environment file to the stack with your other environment files and
deploy the overcloud:

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

44

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-swap_managing-storage-devices#recommended-system-swap-space_getting-started-with-swap

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/enable-swap.yaml

5.2. CALCULATING RESERVED HOST MEMORY ON COMPUTE NODES

To determine the total amount of RAM to reserve for host processes, you need to allocate enough
memory for each of the following:

The resources that run on the host, for example, OSD consumes 3 GB of memory.

The emulator overhead required to host instances.

The hypervisor for each instance.

After you calculate the additional demands on memory, use the following formula to help you determine
the amount of memory to reserve for host processes on each node:

NovaReservedHostMemory = total_RAM - ((vm_no * (avg_instance_size + overhead)) + (resource1 *
resource_ram) + (resourcen * resource_ram))

Replace vm_no with the number of instances.

Replace avg_instance_size with the average amount of memory each instance can use.

Replace overhead with the hypervisor overhead required for each instance.

Replace resource1 and all resources up to <resourcen> with the number of a resource type on
the node.

Replace resource_ram with the amount of RAM each resource of this type requires.

5.3. CALCULATING SWAP SIZE

The allocated swap size must be large enough to handle any memory overcommit. You can use the
following formulas to calculate the swap size your node requires:

overcommit_ratio = NovaRAMAllocationRatio - 1

Minimum swap size (MB) = (total_RAM * overcommit_ratio) + RHEL_min_swap

Recommended (maximum) swap size (MB) = total_RAM * (overcommit_ratio +
percentage_of_RAM_to_use_for_swap)

The percentage_of_RAM_to_use_for_swap variable creates a buffer to account for QEMU overhead
and any other resources consumed by the operating system or host services.

For instance, to use 25% of the available RAM for swap, with 64GB total RAM, and
NovaRAMAllocationRatio set to 1:

Recommended (maximum) swap size = 64000 MB * (0 + 0.25) = 16000 MB

For information about how to calculate the NovaReservedHostMemory value, see Calculating
reserved host memory on Compute nodes.

For information about how to determine the RHEL_min_swap value, see Recommended system swap

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

45

For information about how to determine the RHEL_min_swap value, see Recommended system swap
space in the RHEL Managing Storage Devices guide.

5.4. CONFIGURING HUGE PAGES ON COMPUTE NODES

As a cloud administrator, you can configure Compute nodes to enable instances to request huge pages.

NOTE

Configuring huge pages creates an implicit NUMA topology on the instance even if a
NUMA topology is not requested.

Procedure

1. Open your Compute environment file.

2. Configure the amount of huge page memory to reserve on each NUMA node for processes that
are not instances:

parameter_defaults:
 ComputeParameters:
 NovaReservedHugePages: ["node:0,size:1GB,count:1","node:1,size:1GB,count:1"]

Replace the size value for each node with the size of the allocated huge page. Set to one of
the following valid values:

2048 (for 2MB)

1GB

Replace the count value for each node with the number of huge pages used by OVS per
NUMA node. For example, for 4096 of socket memory used by Open vSwitch, set this to 2.

3. Configure huge pages on the Compute nodes:

parameter_defaults:
 ComputeParameters:
 ...
 KernelArgs: "default_hugepagesz=1GB hugepagesz=1G hugepages=32"

NOTE

If you configure multiple huge page sizes, you must also mount the huge page
folders during first boot. For more information, see Mounting multiple huge page
folders during first boot.

4. Optional: To allow instances to allocate 1GB huge pages, configure the CPU feature flags,
NovaLibvirtCPUModelExtraFlags, to include pdpe1gb:

parameter_defaults:
 ComputeParameters:
 NovaLibvirtCPUMode: 'custom'
 NovaLibvirtCPUModels: 'Haswell-noTSX'
 NovaLibvirtCPUModelExtraFlags: 'vmx, pdpe1gb'

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

46

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-swap_managing-storage-devices#recommended-system-swap-space_getting-started-with-swap

NOTE

CPU feature flags do not need to be configured to allow instances to only
request 2 MB huge pages.

You can only allocate 1G huge pages to an instance if the host supports 1G
huge page allocation.

You only need to set NovaLibvirtCPUModelExtraFlags to pdpe1gb when
NovaLibvirtCPUMode is set to host-model or custom.

If the host supports pdpe1gb, and host-passthrough is used as the
NovaLibvirtCPUMode, then you do not need to set pdpe1gb as a
NovaLibvirtCPUModelExtraFlags. The pdpe1gb flag is only included in
Opteron_G4 and Opteron_G5 CPU models, it is not included in any of the
Intel CPU models supported by QEMU.

To mitigate for CPU hardware issues, such as Microarchitectural Data
Sampling (MDS), you might need to configure other CPU flags. For more
information, see RHOS Mitigation for MDS ("Microarchitectural Data
Sampling") Security Flaws.

5. To avoid loss of performance after applying Meltdown protection, configure the CPU feature
flags, NovaLibvirtCPUModelExtraFlags, to include +pcid:

parameter_defaults:
 ComputeParameters:
 NovaLibvirtCPUMode: 'custom'
 NovaLibvirtCPUModels: 'Haswell-noTSX'
 NovaLibvirtCPUModelExtraFlags: 'vmx, pdpe1gb, +pcid'

TIP

For more information, see Reducing the performance impact of Meltdown CVE fixes for
OpenStack guests with "PCID" CPU feature flag.

6. Add NUMATopologyFilter to the NovaSchedulerEnabledFilters parameter, if not already
present.

7. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

5.4.1. Creating a huge pages flavor for instances

To enable your cloud users to create instances that use huge pages, you can create a flavor with the
hw:mem_page_size extra spec key for launching instances.

Prerequisites

The Compute node is configured for huge pages. For more information, see Configuring huge

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

47

https://access.redhat.com/solutions/4161561
https://access.redhat.com/solutions/3370461

The Compute node is configured for huge pages. For more information, see Configuring huge
pages on Compute nodes.

Procedure

1. Create a flavor for instances that require huge pages:

$ openstack flavor create --ram <size_mb> --disk <size_gb> \
 --vcpus <no_reserved_vcpus> huge_pages

2. To request huge pages, set the hw:mem_page_size property of the flavor to the required size:

$ openstack flavor set huge_pages --property hw:mem_page_size=<page_size>

Replace <page_size> with one of the following valid values:

large: Selects the largest page size supported on the host, which may be 2 MB or 1 GB
on x86_64 systems.

small: (Default) Selects the smallest page size supported on the host. On x86_64
systems this is 4 kB (normal pages).

any: Selects the page size by using the hw_mem_page_size set on the image. If the
page size is not specified by the image, selects the largest available page size, as
determined by the libvirt driver.

<pagesize>: Set an explicit page size if the workload has specific requirements. Use an
integer value for the page size in KB, or any standard suffix. For example: 4KB, 2MB,
2048, 1GB.

3. To verify the flavor creates an instance with huge pages, use your new flavor to launch an
instance:

$ openstack server create --flavor huge_pages \
 --image <image> huge_pages_instance

The Compute scheduler identifies a host with enough free huge pages of the required size to
back the memory of the instance. If the scheduler is unable to find a host and NUMA node with
enough pages, then the request will fail with a NoValidHost error.

5.4.2. Mounting multiple huge page folders during first boot

You can configure the Compute service (nova) to handle multiple page sizes as part of the first boot
process. The first boot process adds the heat template configuration to all nodes the first time you boot
the nodes. Subsequent inclusion of these templates, such as updating the overcloud stack, does not run
these scripts.

Procedure

1. Create a first boot template file, hugepages.yaml, that runs a script to create the mounts for
the huge page folders. You can use the OS::TripleO::MultipartMime resource type to send the
configuration script:

heat_template_version: <version>

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

48

description: >
 Huge pages configuration

resources:
 userdata:
 type: OS::Heat::MultipartMime
 properties:
 parts:
 - config: {get_resource: hugepages_config}

 hugepages_config:
 type: OS::Heat::SoftwareConfig
 properties:
 config: |
 #!/bin/bash
 hostname | grep -qiE 'co?mp' || exit 0
 systemctl mask dev-hugepages.mount || true
 for pagesize in 2M 1G;do
 if ! [-d "/dev/hugepages${pagesize}"]; then
 mkdir -p "/dev/hugepages${pagesize}"
 cat << EOF > /etc/systemd/system/dev-hugepages${pagesize}.mount
 [Unit]
 Description=${pagesize} Huge Pages File System
 Documentation=https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
 Documentation=https://www.freedesktop.org/wiki/Software/systemd/APIFileSystems
 DefaultDependencies=no
 Before=sysinit.target
 ConditionPathExists=/sys/kernel/mm/hugepages
 ConditionCapability=CAP_SYS_ADMIN
 ConditionVirtualization=!private-users

 [Mount]
 What=hugetlbfs
 Where=/dev/hugepages${pagesize}
 Type=hugetlbfs
 Options=pagesize=${pagesize}

 [Install]
 WantedBy = sysinit.target
 EOF
 fi
 done
 systemctl daemon-reload
 for pagesize in 2M 1G;do
 systemctl enable --now dev-hugepages${pagesize}.mount
 done

outputs:
 OS::stack_id:
 value: {get_resource: userdata}

The config script in this template performs the following tasks:

a. Filters the hosts to create the mounts for the huge page folders on, by specifying
hostnames that match 'co?mp'. You can update the filter grep pattern for specific
computes as required.

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

49

b. Masks the default dev-hugepages.mount systemd unit file to enable new mounts to be
created using the page size.

c. Ensures that the folders are created first.

d. Creates systemd mount units for each pagesize.

e. Runs systemd daemon-reload after the first loop, to include the newly created unit files.

f. Enables each mount for 2M and 1G pagesizes. You can update this loop to include additional
pagesizes, as required.

2. Optional: The /dev folder is automatically bind mounted to the nova_compute and
nova_libvirt containers. If you have used a different destination for the huge page mounts, then
you need to pass the mounts to the nova_compute and nova_libvirt containers:

parameter_defaults
 NovaComputeOptVolumes:
 - /opt/dev:/opt/dev
 NovaLibvirtOptVolumes:
 - /opt/dev:/opt/dev

3. Register your heat template as the OS::TripleO::NodeUserData resource type in your
~/templates/firstboot.yaml environment file:

resource_registry:
 OS::TripleO::NodeUserData: ./hugepages.yaml

IMPORTANT

You can only register the NodeUserData resources to one heat template for
each resource. Subsequent usage overrides the heat template to use.

4. Add your first boot environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/firstboot.yaml \
 ...

5.5. CONFIGURING COMPUTE NODES TO USE FILE-BACKED MEMORY
FOR INSTANCES

You can use file-backed memory to expand your Compute node memory capacity, by allocating files
within the libvirt memory backing directory as instance memory. You can configure the amount of host
disk that is available for instance memory, and the location on the disk of the instance memory files.

The Compute service reports the capacity configured for file-backed memory to the Placement service
as the total system memory capacity. This allows the Compute node to host more instances than would
normally fit within the system memory.

To use file-backed memory for instances, you must enable file-backed memory on the Compute node.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

50

Limitations

You cannot live migrate instances between Compute nodes that have file-backed memory
enabled and Compute nodes that do not have file-backed memory enabled.

File-backed memory is not compatible with huge pages. Instances that use huge pages cannot
start on a Compute node with file-backed memory enabled. Use host aggregates to ensure that
instances that use huge pages are not placed on Compute nodes with file-backed memory
enabled.

File-backed memory is not compatible with memory overcommit.

You cannot reserve memory for host processes using NovaReservedHostMemory. When file-
backed memory is in use, reserved memory corresponds to disk space not set aside for file-
backed memory. File-backed memory is reported to the Placement service as the total system
memory, with RAM used as cache memory.

Prerequisites

NovaRAMAllocationRatio must be set to "1.0" on the node and any host aggregate the node is
added to.

NovaReservedHostMemory must be set to "0".

Procedure

1. Open your Compute environment file.

2. Configure the amount of host disk space, in MiB, to make available for instance RAM, by adding
the following parameter to your Compute environment file:

parameter_defaults:
 NovaLibvirtFileBackedMemory: 102400

3. Optional: To configure the directory to store the memory backing files, set the
QemuMemoryBackingDir parameter in your Compute environment file. If not set, the memory
backing directory defaults to /var/lib/libvirt/qemu/ram/.

NOTE

You must locate your backing store in a directory at or above the default
directory location, /var/lib/libvirt/qemu/ram/.

You can also change the host disk for the backing store. For more information, see Changing
the memory backing directory host disk.

4. Save the updates to your Compute environment file.

5. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

51

5.5.1. Changing the memory backing directory host disk

You can move the memory backing directory from the default primary disk location to an alternative
disk.

Procedure

1. Create a file system on the alternative backing device. For example, enter the following
command to create an ext4 filesystem on /dev/sdb:

mkfs.ext4 /dev/sdb

2. Mount the backing device. For example, enter the following command to mount /dev/sdb on
the default libvirt memory backing directory:

mount /dev/sdb /var/lib/libvirt/qemu/ram

NOTE

The mount point must match the value of the QemuMemoryBackingDir
parameter.

5.6. CONFIGURING AMD SEV COMPUTE NODES TO PROVIDE
MEMORY ENCRYPTION FOR INSTANCES

As a cloud administrator, you can provide cloud users the ability to create instances that run on SEV-
capable Compute nodes with memory encryption enabled.

This feature is available to use from the 2nd Gen AMD EPYC™ 7002 Series ("Rome").

To enable your cloud users to create instances that use memory encryption, you must perform the
following tasks:

1. Designate the AMD SEV Compute nodes for memory encryption.

2. Configure the Compute nodes for memory encryption.

3. Deploy the overcloud.

4. Create a flavor or image for launching instances with memory encryption.

TIP

If the AMD SEV hardware is limited, you can also configure a host aggregate to optimize scheduling on
the AMD SEV Compute nodes. To schedule only instances that request memory encryption on the AMD
SEV Compute nodes, create a host aggregate of the Compute nodes that have the AMD SEV hardware,
and configure the Compute scheduler to place only instances that request memory encryption on the
host aggregate. For more information, see Creating and managing host aggregates and Filtering by
isolating host aggregates.

5.6.1. Secure Encrypted Virtualization (SEV)

Secure Encrypted Virtualization (SEV), provided by AMD, protects the data in DRAM that a running

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

52

Secure Encrypted Virtualization (SEV), provided by AMD, protects the data in DRAM that a running
virtual machine instance is using. SEV encrypts the memory of each instance with a unique key.

SEV increases security when you use non-volatile memory technology (NVDIMM), because an NVDIMM
chip can be physically removed from a system with the data intact, similar to a hard drive. Without
encryption, any stored information such as sensitive data, passwords, or secret keys can be
compromised.

For more information, see the AMD Secure Encrypted Virtualization (SEV) documentation.

Limitations of instances with memory encryption

You cannot live migrate, or suspend and resume instances with memory encryption.

You cannot use PCI passthrough to directly access devices on instances with memory
encryption.

You cannot use virtio-blk as the boot disk of instances with memory encryption with Red Hat
Enterprise Linux (RHEL) kernels earlier than kernel-4.18.0-115.el8 (RHEL-8.1.0).

NOTE

You can use virtio-scsi or SATA as the boot disk, or virtio-blk for non-boot
disks.

The operating system that runs in an encrypted instance must provide SEV support. For more
information, see the Red Hat Knowledgebase solution Enabling AMD Secure Encrypted
Virtualization in RHEL 8.

Machines that support SEV have a limited number of slots in their memory controller for storing
encryption keys. Each running instance with encrypted memory consumes one of these slots.
Therefore, the number of instances with memory encryption that can run concurrently is limited
to the number of slots in the memory controller. For example, on 1st Gen AMD EPYC™ 7001
Series ("Naples") the limit is 16, and on 2nd Gen AMD EPYC™ 7002 Series ("Rome") the limit is
255.

Instances with memory encryption pin pages in RAM. The Compute service cannot swap these
pages, therefore you cannot overcommit memory on a Compute node that hosts instances with
memory encryption.

You cannot use memory encryption with instances that have multiple NUMA nodes.

5.6.2. Designating AMD SEV Compute nodes for memory encryption

To designate AMD SEV Compute nodes for instances that use memory encryption, you must create a
new role file to configure the AMD SEV role, and configure the bare metal nodes with an AMD SEV
resource class to use to tag the Compute nodes for memory encryption.

NOTE

The following procedure applies to new overcloud nodes that have not yet been
provisioned. To assign a resource class to an existing overcloud node that has already
been provisioned, you must use the scale down procedure to unprovision the node, then
use the scale up procedure to reprovision the node with the new resource class
assignment. For more information, see Scaling overcloud nodes .

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

53

https://developer.amd.com/sev/
https://access.redhat.com/articles/4491591
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_scaling-overcloud-nodes

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Generate a new roles data file that includes the ComputeAMDSEV role, along with any other
roles that you need for the overcloud. The following example generates the roles data file
roles_data_amd_sev.yaml, which includes the roles Controller and ComputeAMDSEV:

(undercloud)$ openstack overcloud roles \
 generate -o /home/stack/templates/roles_data_amd_sev.yaml \
 Compute:ComputeAMDSEV Controller

4. Open roles_data_amd_sev.yaml and edit or add the following parameters and sections:

Section/Parameter Current value New value

Role comment Role: Compute Role: ComputeAMDSEV

Role name name: Compute name: ComputeAMDSEV

description Basic Compute Node role AMD SEV Compute Node
role

HostnameFormatDefault %stackname%-
novacompute-%index%

%stackname%-
novacomputeamdsev-
%index%

deprecated_nic_config_na
me

compute.yaml compute-amd-sev.yaml

5. Register the AMD SEV Compute nodes for the overcloud by adding them to your node
definition template, node.json or node.yaml. For more information, see Registering nodes for
the overcloud in the Installing and managing Red Hat OpenStack Platform with director guide.

6. Inspect the node hardware:

(undercloud)$ openstack overcloud node introspect \
 --all-manageable --provide

For more information, see Creating an inventory of the bare-metal node hardware in the
Installing and managing Red Hat OpenStack Platform with director guide.

7. Tag each bare metal node that you want to designate for memory encryption with a custom
AMD SEV resource class:

(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.AMD-SEV <node>

Replace <node> with the name or ID of the bare metal node.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

54

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#proc_registering-nodes-for-the-overcloud_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_creating-an-inventory-of-the-bare-metal-node-hardware_ironic_provisioning

1

8. Add the ComputeAMDSEV role to your node definition file, overcloud-baremetal-
deploy.yaml, and define any predictive node placements, resource classes, network topologies,
or other attributes that you want to assign to your nodes:

- name: Controller
 count: 3
- name: Compute
 count: 3
- name: ComputeAMDSEV
 count: 1
 defaults:
 resource_class: baremetal.AMD-SEV
 network_config:
 template: /home/stack/templates/nic-config/myRoleTopology.j2 1

You can reuse an existing network topology or create a new custom network interface
template for the role. For more information, see Custom network interface templates in
the Installing and managing Red Hat OpenStack Platform with director guide. If you do not
define the network definitions by using the network_config property, then the default
network definitions are used.

For more information about the properties you can use to configure node attributes in your
node definition file, see Bare metal node provisioning attributes . For an example node definition
file, see Example node definition file .

9. Run the provisioning command to provision the new nodes for your role:

(undercloud)$ openstack overcloud node provision \
--stack <stack> \
[--network-config \]
--output /home/stack/templates/overcloud-baremetal-deployed.yaml \
/home/stack/templates/overcloud-baremetal-deploy.yaml

Replace <stack> with the name of the stack for which the bare-metal nodes are
provisioned. If not specified, the default is overcloud.

Include the --network-config optional argument to provide the network definitions to the
cli-overcloud-node-network-config.yaml Ansible playbook. If you do not define the
network definitions by using the network_config property, then the default network
definitions are used.

10. Monitor the provisioning progress in a separate terminal. When provisioning is successful, the
node state changes from available to active:

(undercloud)$ watch openstack baremetal node list

11. If you did not run the provisioning command with the --network-config option, then configure
the <Role>NetworkConfigTemplate parameters in your network-environment.yaml file to
point to your NIC template files:

parameter_defaults:
 ComputeNetworkConfigTemplate: /home/stack/templates/nic-configs/compute.j2
 ComputeAMDSEVNetworkConfigTemplate: /home/stack/templates/nic-

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

55

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_custom-network-interface-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#ref_bare-metal-node-provisioning-attributes_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#ref_example-node-definition-file_ironic_provisioning

configs/<amd_sev_net_top>.j2
 ControllerNetworkConfigTemplate: /home/stack/templates/nic-configs/controller.j2

Replace <amd_sev_net_top> with the name of the file that contains the network topology of
the ComputeAMDSEV role, for example, compute.yaml to use the default network topology.

5.6.3. Configuring AMD SEV Compute nodes for memory encryption

To enable your cloud users to create instances that use memory encryption, you must configure the
Compute nodes that have the AMD SEV hardware.

NOTE

From RHOSP OSP17.0 onwards, Q35 is the default machine type. The Q35 machine type
uses PCIe ports. You can manage the number of PCIe port devices by configuring the
heat parameter NovaLibvirtNumPciePorts. The number of devices that can attach to a
PCIe port is fewer than instances running on previous versions. If you want to use more
devices, you must use the hw_disk_bus=scsi or hw_scsi_model=virtio-scsi image
property. For more information, see Metadata properties for virtual hardware .

Prerequisites

Your deployment must include a Compute node that runs on AMD hardware capable of
supporting SEV, such as an AMD EPYC CPU. You can use the following command to determine
if your deployment is SEV-capable:

$ lscpu | grep sev

Procedure

1. Open your Compute environment file.

2. Optional: Add the following configuration to your Compute environment file to specify the
maximum number of memory-encrypted instances that the AMD SEV Compute nodes can host
concurrently:

parameter_defaults:
 ComputeAMDSEVExtraConfig:
 nova::config::nova_config:
 libvirt/num_memory_encrypted_guests:
 value: 15

NOTE

The default value of the libvirt/num_memory_encrypted_guests parameter is
none. If you do not set a custom value, the AMD SEV Compute nodes do not
impose a limit on the number of memory-encrypted instances that the nodes can
host concurrently. Instead, the hardware determines the maximum number of
memory-encrypted instances that the AMD SEV Compute nodes can host
concurrently, which might cause some memory-encrypted instances to fail to
launch.

3. Optional: To specify that all x86_64 images use the q35 machine type by default, add the

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

56

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_images/assembly_glance-creating-images_osp#ref_metadata-properties-for-virtual-hardware_glance-creating-images

3. Optional: To specify that all x86_64 images use the q35 machine type by default, add the
following configuration to your Compute environment file:

parameter_defaults:
 ComputeAMDSEVParameters:
 NovaHWMachineType: x86_64=q35

If you specify this parameter value, you do not need to set the hw_machine_type property to
q35 on every AMD SEV instance image.

4. To ensure that the AMD SEV Compute nodes reserve enough memory for host-level services to
function, add 16MB for each potential AMD SEV instance:

parameter_defaults:
 ComputeAMDSEVParameters:
 ...
 NovaReservedHostMemory: <libvirt/num_memory_encrypted_guests * 16>

5. Configure the kernel parameters for the AMD SEV Compute nodes:

parameter_defaults:
 ComputeAMDSEVParameters:
 ...
 KernelArgs: "hugepagesz=1GB hugepages=32 default_hugepagesz=1GB
mem_encrypt=on kvm_amd.sev=1"

NOTE

When you first add the KernelArgs parameter to the configuration of a role, the
overcloud nodes are automatically rebooted. If required, you can disable the
automatic rebooting of nodes and instead perform node reboots manually after
each overcloud deployment. For more information, see Configuring manual node
reboot to define KernelArgs.

6. Save the updates to your Compute environment file.

7. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -r /home/stack/templates/roles_data_amd_sev.yaml \
 -e /home/stack/templates/network-environment.yaml \
 -e /home/stack/templates/<compute_environment_file>.yaml \
 -e /home/stack/templates/overcloud-baremetal-deployed.yaml \
 -e /home/stack/templates/node-info.yaml

5.6.4. Creating an image for memory encryption

When the overcloud contains AMD SEV Compute nodes, you can create an AMD SEV instance image
that your cloud users can use to launch instances that have memory encryption.

NOTE

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

57

NOTE

From RHOSP OSP17.0 onwards, Q35 is the default machine type. The Q35 machine type
uses PCIe ports. You can manage the number of PCIe port devices by configuring the
heat parameter NovaLibvirtNumPciePorts. The number of devices that can attach to a
PCIe port is fewer than instances running on previous versions. If you want to use more
devices, you must use the hw_disk_bus=scsi or hw_scsi_model=virtio-scsi image
property. For more information, see Metadata properties for virtual hardware .

Procedure

1. Create a new image for memory encryption:

(overcloud)$ openstack image create ... \
 --property hw_firmware_type=uefi amd-sev-image

NOTE

If you use an existing image, the image must have the hw_firmware_type
property set to uefi.

2. Optional: Add the property hw_mem_encryption=True to the image to enable AMD SEV
memory encryption on the image:

(overcloud)$ openstack image set \
 --property hw_mem_encryption=True amd-sev-image

TIP

You can enable memory encryption on the flavor. For more information, see Creating a flavor
for memory encryption.

3. Optional: Set the machine type to q35, if not already set in the Compute node configuration:

(overcloud)$ openstack image set \
 --property hw_machine_type=q35 amd-sev-image

4. Optional: To schedule memory-encrypted instances on a SEV-capable host aggregate, add the
following trait to the image extra specs:

(overcloud)$ openstack image set \
 --property trait:HW_CPU_X86_AMD_SEV=required amd-sev-image

TIP

You can also specify this trait on the flavor. For more information, see Creating a flavor for
memory encryption.

5.6.5. Creating a flavor for memory encryption

When the overcloud contains AMD SEV Compute nodes, you can create one or more AMD SEV flavors
that your cloud users can use to launch instances that have memory encryption.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

58

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_images/assembly_glance-creating-images_osp#ref_metadata-properties-for-virtual-hardware_glance-creating-images

NOTE

An AMD SEV flavor is necessary only when the hw_mem_encryption property is not set
on an image.

Procedure

1. Create a flavor for memory encryption:

(overcloud)$ openstack flavor create --vcpus 1 --ram 512 --disk 2 \
 --property hw:mem_encryption=True m1.small-amd-sev

2. To schedule memory-encrypted instances on a SEV-capable host aggregate, add the following
trait to the flavor extra specs:

(overcloud)$ openstack flavor set \
 --property trait:HW_CPU_X86_AMD_SEV=required m1.small-amd-sev

5.6.6. Launching an instance with memory encryption

To verify that you can launch instances on an AMD SEV Compute node with memory encryption
enabled, use a memory encryption flavor or image to create an instance.

Procedure

1. Create an instance by using an AMD SEV flavor or image. The following example creates an
instance by using the flavor created in Creating a flavor for memory encryption and the image
created in Creating an image for memory encryption :

(overcloud)$ openstack server create --flavor m1.small-amd-sev \
 --image amd-sev-image amd-sev-instance

2. Log in to the instance as a cloud user.

3. To verify that the instance uses memory encryption, enter the following command from the
instance:

$ dmesg | grep -i sev
AMD Secure Encrypted Virtualization (SEV) active

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

59

CHAPTER 6. CONFIGURING COMPUTE SERVICE STORAGE
You create an instance from a base image, which the Compute service copies from the Image (glance)
service, and caches locally on the Compute nodes. The instance disk, which is the back end for the
instance, is also based on the base image.

You can configure the Compute service to store ephemeral instance disk data locally on the host
Compute node or remotely on either an NFS share or Ceph cluster. Alternatively, you can also configure
the Compute service to store instance disk data in persistent storage provided by the Block Storage
(Cinder) service.

You can configure image caching for your environment, and configure the performance and security of
the instance disks. You can also configure the Compute service to download images directly from the
RBD image repository without using the Image service API, when the Image service (glance) uses Red
Hat Ceph RADOS Block Device (RBD) as the back end.

6.1. CONFIGURATION OPTIONS FOR IMAGE CACHING

Use the parameters detailed in the following table to configure how the Compute service implements
and manages an image cache on Compute nodes.

Table 6.1. Compute (nova) service image cache parameters

Configuration
method

Parameter Description

Puppet nova::compute::image_cache::
manager_interval

Specifies the number of seconds to wait
between runs of the image cache manager,
which manages base image caching on
Compute nodes. The Compute service uses this
period to perform automatic removal of unused
cached images when
nova::compute::image_cache::remove_
unused_base_images is set to True.

Set to 0 to run at the default metrics interval of
60 seconds (not recommended). Set to -1 to
disable the image cache manager.

Default: 2400

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

60

Puppet nova::compute::image_cache::
precache_concurrency

Specifies the maximum number of Compute
nodes that can pre-cache images in parallel.

NOTE

Setting this parameter
to a high number can
cause slower pre-
cache performance
and might result in a
DDoS on the Image
service.

Setting this parameter
to a low number
reduces the load on
the Image service, but
can cause longer
runtime to completion
as the pre-cache is
performed as a more
sequential operation.

Default: 1

Puppet nova::compute::image_cache::r
emove_unused_base_images

Set to True to automatically remove unused
base images from the cache at intervals
configured by using manager_interval.
Images are defined as unused if they have not
been accessed during the time specified by
using NovaImageCacheTTL.

Default: True

Puppet nova::compute::image_cache::r
emove_unused_resized_minim
um_age_seconds

Specifies the minimum age that an unused
resized base image must be to be removed
from the cache, in seconds. Unused resized base
images younger than this will not be removed.
Set to undef to disable.

Default: 3600

Configuration
method

Parameter Description

CHAPTER 6. CONFIGURING COMPUTE SERVICE STORAGE

61

Puppet nova::compute::image_cache::
subdirectory_name

Specifies the name of the folder where cached
images are stored, relative to
$instances_path.

Default: _base

Heat NovaImageCacheTTL Specifies the length of time in seconds that the
Compute service should continue caching an
image when it is no longer used by any
instances on the Compute node. The Compute
service deletes images cached on the Compute
node that are older than this configured lifetime
from the cache directory until they are needed
again.

Default: 86400 (24 hours)

Configuration
method

Parameter Description

6.2. CONFIGURATION OPTIONS FOR INSTANCE EPHEMERAL
STORAGE PROPERTIES

Use the parameters detailed in the following table to configure the performance and security of
ephemeral storage used by instances.

NOTE

Red Hat OpenStack Platform (RHOSP) does not support the LVM image type for
instance disks. Therefore, the [libvirt]/volume_clear configuration option, which wipes
ephemeral disks when instances are deleted, is not supported because it only applies
when the instance disk image type is LVM.

Table 6.2. Compute (nova) service instance ephemeral storage parameters

Configuration
method

Parameter Description

Puppet nova::compute::default_ephem
eral_format

Specifies the default format that is used for a
new ephemeral volume. Set to one of the
following valid values:

ext2

ext3

ext4

The ext4 format provides much faster
initialization times than ext3 for new, large disks.

Default: ext4

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

62

Puppet nova::compute::force_raw_ima
ges

Set to True to convert non-raw cached base
images to raw format. The raw image format
uses more space than other image formats,
such as qcow2. Non-raw image formats use
more CPU for compression. When set to False,
the Compute service removes any compression
from the base image during compression to
avoid CPU bottlenecks. Set to False if you
have a system with slow I/O or low available
space to reduce input bandwidth.

Default: True

Puppet nova::compute::use_cow_imag
es

Set to True to use CoW (Copy on Write)
images in qcow2 format for instance disks. With
CoW, depending on the backing store and host
caching, there might be better concurrency
achieved by having each instance operate on
its own copy.

Set to False to use the raw format. Raw format
uses more space for common parts of the disk
image.

Default: True

Puppet nova::compute::libvirt::prealloc
ate_images

Specifies the preallocation mode for instance
disks. Set to one of the following valid values:

none - No storage is provisioned at
instance start.

space - The Compute service fully
allocates storage at instance start by
running fallocate(1) on the instance
disk images. This reduces CPU
overhead and file fragmentation,
improves I/O performance, and helps
guarantee the required disk space.

Default: none

Configuration
method

Parameter Description

CHAPTER 6. CONFIGURING COMPUTE SERVICE STORAGE

63

Hieradata
override

DEFAULT/resize_fs_using_bloc
k_device

Set to True to enable direct resizing of the
base image by accessing the image over a block
device. This is only necessary for images with
older versions of cloud-init that cannot resize
themselves.

This parameter is not enabled by default
because it enables the direct mounting of
images which might otherwise be disabled for
security reasons.

Default: False

Hieradata
override

[libvirt]/images_type Specifies the image type to use for instance
disks. Set to one of the following valid values:

raw

qcow2

flat

rbd

default

NOTE

RHOSP does not support the
LVM image type for instance
disks.

When set to a valid value other than default
the image type supersedes the configuration of
use_cow_images. If default is specified, the
configuration of use_cow_images
determines the image type:

If use_cow_images is set to True
(default) then the image type is
qcow2.

If use_cow_images is set to False
then the image type is Flat.

The default value is determined by the
configuration of NovaEnableRbdBackend:

NovaEnableRbdBackend: False
Default: default

NovaEnableRbdBackend: True
Default: rbd

Configuration
method

Parameter Description

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

64

6.3. CONFIGURING THE MAXIMUM NUMBER OF STORAGE DEVICES
TO ATTACH TO ONE INSTANCE

By default, you can attach an unlimited number of storage devices to a single instance. Attaching a large
number of disk devices to an instance can degrade performance on the instance. You can tune the
maximum number of devices that can be attached to an instance based on the boundaries of what your
environment can support. The number of storage disks supported by an instance depends on the bus
that the disk uses. For example, the IDE disk bus is limited to 4 attached devices. You can attach a
maximum of 500 disk devices to instances with machine type Q35.

NOTE

From RHOSP OSP17.0 onwards, Q35 is the default machine type. The Q35 machine type
uses PCIe ports. You can manage the number of PCIe port devices by configuring the
heat parameter NovaLibvirtNumPciePorts. The number of devices that can attach to a
PCIe port is fewer than instances running on previous versions. If you want to use more
devices, you must use the hw_disk_bus=scsi or hw_scsi_model=virtio-scsi image
property. For more information, see Metadata properties for virtual hardware .

WARNING

Changing the value of the NovaMaxDiskDevicesToAttach parameter on a
Compute node with active instances can cause rebuilds to fail if the
maximum number is lower than the number of devices already attached to
instances. For example, if instance A has 26 devices attached and you
change NovaMaxDiskDevicesToAttach to 20, a request to rebuild
instance A will fail.

During cold migration, the configured maximum number of storage devices
is enforced only on the source for the instance that you want to migrate.
The destination is not checked before the move. This means that if
Compute node A has 26 attached disk devices, and Compute node B has a
configured maximum of 20 attached disk devices, a cold migration of an
instance with 26 attached devices from Compute node A to Compute node
B succeeds. However, a subsequent request to rebuild the instance in
Compute node B fails because 26 devices are already attached which
exceeds the configured maximum of 20.

NOTE

The configured maximum number of storage devices is not enforced on shelved
offloaded instances, as they have no Compute node.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

CHAPTER 6. CONFIGURING COMPUTE SERVICE STORAGE

65

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_images/assembly_glance-creating-images_osp#ref_metadata-properties-for-virtual-hardware_glance-creating-images

3. Create a new environment file, or open an existing environment file.

4. Configure the limit on the maximum number of storage devices that can be attached to a single
instance by adding the following configuration to your environment file:

parameter_defaults:
 ...
 NovaMaxDiskDevicesToAttach: <max_device_limit>
 ...

Replace <max_device_limit> with the maximum number of storage devices that can be
attached to an instance.

5. Save the updates to your environment file.

6. Add your environment file to the stack with your other environment files and deploy the
overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<environment_file>.yaml

6.4. CONFIGURING SHARED INSTANCE STORAGE

By default, when you launch an instance, the instance disk is stored as a file in the instance directory,
/var/lib/nova/instances. You can configure an NFS storage backend for the Compute service to store
these instance files on shared NFS storage.

Prerequisites

You must be using NFSv4 or later. Red Hat OpenStack Platform (RHOSP) does not support
earlier versions of NFS. For more information, see the Red Hat Knowledgebase solution RHOS
NFSv4-Only Support Notes.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Create an environment file to configure shared instance storage, for example,
nfs_instance_disk_backend.yaml.

4. To configure an NFS backend for instance files, add the following configuration to
nfs_instance_disk_backend.yaml:

parameter_defaults:
 ...
 NovaNfsEnabled: True
 NovaNfsShare: <nfs_share>

Replace <nfs_share> with the NFS share directory to mount for instance file storage, for

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

66

https://access.redhat.com/articles/6202772

Replace <nfs_share> with the NFS share directory to mount for instance file storage, for
example, '192.168.122.1:/export/nova' or '192.168.24.1:/var/nfs'. If using IPv6, use both double
and single-quotes, e.g. "'[fdd0::1]:/export/nova'".

5. Optional: The default mount SELinux context for NFS storage when NFS backend storage is
enabled is 'context=system_u:object_r:nfs_t:s0'. Add the following parameter to amend the
mount options for the NFS instance file storage mount point:

Replace <additional_nfs_mount_options> with a comma-separated list of the mount options
you want to use for NFS instance file storage. For more information on the available mount
options, see the mount man page:

$ man 8 mount.

6. Save the updates to your environment file.

7. Add your new environment file to the stack with your other environment files and deploy the
overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/nfs_instance_disk_backend.yaml

6.5. CONFIGURING IMAGE DOWNLOADS DIRECTLY FROM RED HAT
CEPH RADOS BLOCK DEVICE (RBD)

When the Image service (glance) uses Red Hat Ceph RADOS Block Device (RBD) as the back end, and
the Compute service uses local file-based ephemeral storage, you can configure the Compute service
to download images directly from the RBD image repository without using the Image service API. This
reduces the time it takes to download an image to the Compute node image cache at instance boot
time, which improves instance launch time.

Prerequisites

The Image service back end is a Red Hat Ceph RADOS Block Device (RBD).

The Compute service is using a local file-based ephemeral store for the image cache and
instance disks.

Procedure

1. Log in to the undercloud as the stack user.

2. Open your Compute environment file.

3. To download images directly from the RBD back end, add the following configuration to your
Compute environment file:

parameter_defaults:
 ComputeParameters:

parameter_defaults:
 ...
 NovaNfsOptions: 'context=system_u:object_r:nfs_t:s0,<additional_nfs_mount_options>'

CHAPTER 6. CONFIGURING COMPUTE SERVICE STORAGE

67

 NovaGlanceEnableRbdDownload: True
 NovaEnableRbdBackend: False
 ...

4. Optional: If the Image service is configured to use multiple Red Hat Ceph Storage back ends,
add the following configuration to your Compute environment file to identify the RBD back end
to download images from:

parameter_defaults:
 ComputeParameters:
 NovaGlanceEnableRbdDownload: True
 NovaEnableRbdBackend: False
 NovaGlanceRbdDownloadMultistoreID: <rbd_backend_id>
 ...

Replace <rbd_backend_id> with the ID used to specify the back end in the
GlanceMultistoreConfig configuration, for example rbd2_store.

5. Add the following configuration to your Compute environment file to specify the Image service
RBD back end, and the maximum length of time that the Compute service waits to connect to
the Image service RBD back end, in seconds:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 glance/rbd_user:
 value: 'glance'
 glance/rbd_pool:
 value: 'images'
 glance/rbd_ceph_conf:
 value: '/etc/ceph/ceph.conf'
 glance/rbd_connect_timeout:
 value: '5'

6. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

7. To verify that the Compute service downloads images directly from RBD, create an instance
then check the instance debug log for the entry "Attempting to export RBD image:".

6.6. ADDITIONAL RESOURCES

Configuring the Compute service (nova)

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

68

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND
PLACEMENT

The Compute scheduler service determines on which Compute node or host aggregate to place an
instance. When the Compute (nova) service receives a request to launch or move an instance, it uses
the specifications provided in the request, the flavor, and the image to find a suitable host. For example,
a flavor can specify the traits an instance requires a host to have, such as the type of storage disk, or the
Intel CPU instruction set extension.

The Compute scheduler service uses the configuration of the following components, in the following
order, to determine on which Compute node to launch or move an instance:

1. Placement service prefilters: The Compute scheduler service uses the Placement service to
filter the set of candidate Compute nodes based on specific attributes. For example, the
Placement service automatically excludes disabled Compute nodes.

2. Filters: Used by the Compute scheduler service to determine the initial set of Compute nodes
on which to launch an instance.

3. Weights: The Compute scheduler service prioritizes the filtered Compute nodes using a
weighting system. The highest weight has the highest priority.

In the following diagram, host 1 and 3 are eligible after filtering. Host 1 has the highest weight and
therefore has the highest priority for scheduling.

7.1. PREFILTERING USING THE PLACEMENT SERVICE

The Compute service (nova) interacts with the Placement service when it creates and manages
instances. The Placement service tracks the inventory and usage of resource providers, such as a
Compute node, a shared storage pool, or an IP allocation pool, and their available quantitative
resources, such as the available vCPUs. Any service that needs to manage the selection and
consumption of resources can use the Placement service.

The Placement service also tracks the mapping of available qualitative resources to resource providers,
such as the type of storage disk trait a resource provider has.

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

69

The Placement service applies prefilters to the set of candidate Compute nodes based on Placement
service resource provider inventories and traits. You can create prefilters based on the following criteria:

Supported image types

Traits

Projects or tenants

Availability zone

7.1.1. Filtering by requested image type support

You can exclude Compute nodes that do not support the disk format of the image used to launch an
instance. This is useful when your environment uses Red Hat Ceph Storage as an ephemeral backend,
which does not support QCOW2 images. Enabling this feature ensures that the scheduler does not send
requests to launch instances using a QCOW2 image to Compute nodes backed by Red Hat Ceph
Storage.

Procedure

1. Open your Compute environment file.

2. To exclude Compute nodes that do not support the disk format of the image used to launch an
instance, set the NovaSchedulerQueryImageType parameter to True in the Compute
environment file.

3. Save the updates to your Compute environment file.

4. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

7.1.2. Filtering by resource provider traits

Each resource provider has a set of traits. Traits are the qualitative aspects of a resource provider, for
example, the type of storage disk, or the Intel CPU instruction set extension.

The Compute node reports its capabilities to the Placement service as traits. An instance can specify
which of these traits it requires, or which traits the resource provider must not have. The Compute
scheduler can use these traits to identify a suitable Compute node or host aggregate to host an
instance.

To enable your cloud users to create instances on hosts that have particular traits, you can define a
flavor that requires or forbids a particular trait, and you can create an image that requires or forbids a
particular trait.

For a list of the available traits, see the os-traits library. You can also create custom traits, as required.

Additional resources

Section 7.5, “Declaring custom traits and resource classes”

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

70

https://opendev.org/openstack/os-traits/src/branch/master/os_traits/compute

7.1.2.1. Creating an image that requires or forbids a resource provider trait

You can create an instance image that your cloud users can use to launch instances on hosts that have
particular traits.

Procedure

1. Create a new image:

(overcloud)$ openstack image create ... trait-image

2. Identify the trait you require a host or host aggregate to have. You can select an existing trait, or
create a new trait:

To use an existing trait, list the existing traits to retrieve the trait name:

(overcloud)$ openstack --os-placement-api-version 1.6 trait list

To create a new trait, enter the following command:

(overcloud)$ openstack --os-placement-api-version 1.6 trait \
 create CUSTOM_TRAIT_NAME

Custom traits must begin with the prefix CUSTOM_ and contain only the letters A through
Z, the numbers 0 through 9 and the underscore “_” character.

3. Collect the existing resource provider traits of each host:

(overcloud)$ existing_traits=$(openstack --os-placement-api-version 1.6 resource provider
trait list -f value <host_uuid> | sed 's/^/--trait /')

4. Check the existing resource provider traits for the traits you require a host or host aggregate to
have:

(overcloud)$ echo $existing_traits

5. If the traits you require are not already added to the resource provider, then add the existing
traits and your required traits to the resource providers for each host:

(overcloud)$ openstack --os-placement-api-version 1.6 \
 resource provider trait set $existing_traits \
 --trait <TRAIT_NAME> \
 <host_uuid>

Replace <TRAIT_NAME> with the name of the trait that you want to add to the resource
provider. You can use the --trait option more than once to add additional traits, as required.

NOTE

This command performs a full replacement of the traits for the resource
provider. Therefore, you must retrieve the list of existing resource provider traits
on the host and set them again to prevent them from being removed.

6. To schedule instances on a host or host aggregate that has a required trait, add the trait to the

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

71

6. To schedule instances on a host or host aggregate that has a required trait, add the trait to the
image extra specs. For example, to schedule instances on a host or host aggregate that
supports AVX-512, add the following trait to the image extra specs:

(overcloud)$ openstack image set \
 --property trait:HW_CPU_X86_AVX512BW=required \
 trait-image

7. To filter out hosts or host aggregates that have a forbidden trait, add the trait to the image
extra specs. For example, to prevent instances from being scheduled on a host or host
aggregate that supports multi-attach volumes, add the following trait to the image extra specs:

(overcloud)$ openstack image set \
 --property trait:COMPUTE_VOLUME_MULTI_ATTACH=forbidden \
 trait-image

7.1.2.2. Creating a flavor that requires or forbids a resource provider trait

You can create flavors that your cloud users can use to launch instances on hosts that have particular
traits.

Procedure

1. Create a flavor:

(overcloud)$ openstack flavor create --vcpus 1 --ram 512 \
 --disk 2 trait-flavor

2. Identify the trait you require a host or host aggregate to have. You can select an existing trait, or
create a new trait:

To use an existing trait, list the existing traits to retrieve the trait name:

(overcloud)$ openstack --os-placement-api-version 1.6 trait list

To create a new trait, enter the following command:

(overcloud)$ openstack --os-placement-api-version 1.6 trait \
 create CUSTOM_TRAIT_NAME

Custom traits must begin with the prefix CUSTOM_ and contain only the letters A through
Z, the numbers 0 through 9 and the underscore “_” character.

3. Collect the existing resource provider traits of each host:

(overcloud)$ existing_traits=$(openstack --os-placement-api-version 1.6 resource provider
trait list -f value <host_uuid> | sed 's/^/--trait /')

4. Check the existing resource provider traits for the traits you require a host or host aggregate to
have:

(overcloud)$ echo $existing_traits

5. If the traits you require are not already added to the resource provider, then add the existing

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

72

5. If the traits you require are not already added to the resource provider, then add the existing
traits and your required traits to the resource providers for each host:

(overcloud)$ openstack --os-placement-api-version 1.6 \
 resource provider trait set $existing_traits \
 --trait <TRAIT_NAME> \
 <host_uuid>

Replace <TRAIT_NAME> with the name of the trait that you want to add to the resource
provider. You can use the --trait option more than once to add additional traits, as required.

NOTE

This command performs a full replacement of the traits for the resource
provider. Therefore, you must retrieve the list of existing resource provider traits
on the host and set them again to prevent them from being removed.

6. To schedule instances on a host or host aggregate that has a required trait, add the trait to the
flavor extra specs. For example, to schedule instances on a host or host aggregate that
supports AVX-512, add the following trait to the flavor extra specs:

(overcloud)$ openstack flavor set \
 --property trait:HW_CPU_X86_AVX512BW=required \
 trait-flavor

7. To filter out hosts or host aggregates that have a forbidden trait, add the trait to the flavor
extra specs. For example, to prevent instances from being scheduled on a host or host
aggregate that supports multi-attach volumes, add the following trait to the flavor extra specs:

(overcloud)$ openstack flavor set \
 --property trait:COMPUTE_VOLUME_MULTI_ATTACH=forbidden \
 trait-flavor

7.1.3. Filtering by isolating host aggregates

You can restrict scheduling on a host aggregate to only those instances whose flavor and image traits
match the metadata of the host aggregate. The combination of flavor and image metadata must
require all the host aggregate traits to be eligible for scheduling on Compute nodes in that host
aggregate.

Procedure

1. Open your Compute environment file.

2. To isolate host aggregates to host only instances whose flavor and image traits match the
aggregate metadata, set the NovaSchedulerEnableIsolatedAggregateFiltering parameter to
True in the Compute environment file.

3. Save the updates to your Compute environment file.

4. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

73

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

5. Identify the traits you want to isolate the host aggregate for. You can select an existing trait, or
create a new trait:

To use an existing trait, list the existing traits to retrieve the trait name:

(overcloud)$ openstack --os-placement-api-version 1.6 trait list

To create a new trait, enter the following command:

(overcloud)$ openstack --os-placement-api-version 1.6 trait \
 create CUSTOM_TRAIT_NAME

Custom traits must begin with the prefix CUSTOM_ and contain only the letters A through
Z, the numbers 0 through 9 and the underscore “_” character.

6. Collect the existing resource provider traits of each Compute node:

(overcloud)$ existing_traits=$(openstack --os-placement-api-version 1.6 resource provider
trait list -f value <host_uuid> | sed 's/^/--trait /')

7. Check the existing resource provider traits for the traits you want to isolate the host aggregate
for:

(overcloud)$ echo $existing_traits

8. If the traits you require are not already added to the resource provider, then add the existing
traits and your required traits to the resource providers for each Compute node in the host
aggregate:

(overcloud)$ openstack --os-placement-api-version 1.6 \
 resource provider trait set $existing_traits \
 --trait <TRAIT_NAME> \
 <host_uuid>

Replace <TRAIT_NAME> with the name of the trait that you want to add to the resource
provider. You can use the --trait option more than once to add additional traits, as required.

NOTE

This command performs a full replacement of the traits for the resource
provider. Therefore, you must retrieve the list of existing resource provider traits
on the host and set them again to prevent them from being removed.

9. Repeat steps 6 - 8 for each Compute node in the host aggregate.

10. Add the metadata property for the trait to the host aggregate:

(overcloud)$ openstack --os-compute-api-version 2.53 aggregate set \
 --property trait:<TRAIT_NAME>=required <aggregate_name>

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

74

11. Add the trait to a flavor or an image:

(overcloud)$ openstack flavor set \
 --property trait:<TRAIT_NAME>=required <flavor>
(overcloud)$ openstack image set \
 --property trait:<TRAIT_NAME>=required <image>

7.1.4. Filtering by availability zone using the Placement service

You can use the Placement service to honor availability zone requests. To use the Placement service to
filter by availability zone, placement aggregates must exist that match the membership and UUID of the
availability zone host aggregates.

Procedure

1. Open your Compute environment file.

2. To use the Placement service to filter by availability zone, set the
NovaSchedulerQueryPlacementForAvailabilityZone parameter to True in the Compute
environment file.

3. Remove the AvailabilityZoneFilter filter from the NovaSchedulerEnabledFilters parameter.

4. Save the updates to your Compute environment file.

5. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

Additional resources

For more information on creating a host aggregate to use as an availability zone, see Creating
an availability zone.

7.2. CONFIGURING FILTERS AND WEIGHTS FOR THE COMPUTE
SCHEDULER SERVICE

You need to configure the filters and weights for the Compute scheduler service to determine the initial
set of Compute nodes on which to launch an instance.

Procedure

1. Open your Compute environment file.

2. Add the filters you want the scheduler to use to the NovaSchedulerEnabledFilters parameter,
for example:

parameter_defaults:
 NovaSchedulerEnabledFilters:
 - AggregateInstanceExtraSpecsFilter

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

75

 - ComputeFilter
 - ComputeCapabilitiesFilter
 - ImagePropertiesFilter

3. Specify which attribute to use to calculate the weight of each Compute node, for example:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 filter_scheduler/weight_classes:
 value: nova.scheduler.weights.all_weighers

For more information on the available attributes, see Compute scheduler weights.

4. Optional: Configure the multiplier to apply to each weigher. For example, to specify that the
available RAM of a Compute node has a higher weight than the other default weighers, and that
the Compute scheduler prefers Compute nodes with more available RAM over those nodes with
less available RAM, use the following configuration:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 filter_scheduler/weight_classes:
 value: nova.scheduler.weights.all_weighers
 filter_scheduler/ram_weight_multiplier:
 value: 2.0

TIP

You can also set multipliers to a negative value. In the above example, to prefer Compute nodes
with less available RAM over those nodes with more available RAM, set ram_weight_multiplier
to -2.0.

5. Save the updates to your Compute environment file.

6. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

Additional resources

For a list of the available Compute scheduler service filters, see Compute scheduler filters.

For a list of the available weight configuration options, see Compute scheduler weights.

7.3. COMPUTE SCHEDULER FILTERS

You configure the NovaSchedulerEnabledFilters parameter in your Compute environment file to
specify the filters the Compute scheduler must apply when selecting an appropriate Compute node to
host an instance. The default configuration applies the following filters:

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

76

AvailabilityZoneFilter: The Compute node must be in the requested availability zone.

ComputeFilter: The Compute node can service the request.

ComputeCapabilitiesFilter: The Compute node satisfies the flavor extra specs.

ImagePropertiesFilter: The Compute node satisfies the requested image properties.

ServerGroupAntiAffinityFilter: The Compute node is not already hosting an instance in a
specified group.

ServerGroupAffinityFilter: The Compute node is already hosting instances in a specified group.

You can add and remove filters. The following table describes all the available filters.

Table 7.1. Compute scheduler filters

Filter Description

AggregateImagePropert
iesIsolation

Use this filter to match the image metadata of an instance with host
aggregate metadata. If any of the host aggregate metadata matches the
metadata of the image, then the Compute nodes that belong to that host
aggregate are candidates for launching instances from that image. The
scheduler only recognises valid image metadata properties. For details on
valid image metadata properties, see Image configuration parameters.

AggregateInstanceExtra
SpecsFilter

Use this filter to match namespaced properties defined in the flavor extra
specs of an instance with host aggregate metadata.

You must scope your flavor extra_specs keys by prefixing them with the
aggregate_instance_extra_specs: namespace.

If any of the host aggregate metadata matches the metadata of the flavor
extra spec, then the Compute nodes that belong to that host aggregate are
candidates for launching instances from that image.

AggregateIoOpsFilter Use this filter to filter hosts by I/O operations with a per-aggregate
filter_scheduler/max_io_ops_per_host value. If the per-aggregate
value is not found, the value falls back to the global setting. If the host is in
more than one aggregate and more than one value is found, the scheduler
uses the minimum value.

AggregateMultiTenancy
Isolation

Use this filter to limit the availability of Compute nodes in project-isolated
host aggregates to a specified set of projects. Only projects specified using
the filter_tenant_id metadata key can launch instances on Compute nodes
in the host aggregate. For more information, see Creating a project-isolated
host aggregate.

NOTE

The project can still place instances on other hosts. To restrict
this, use the
NovaSchedulerPlacementAggregateRequiredForTen
ants parameter.

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

77

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_images/assembly_image-config-parameters_glance-creating-images

AggregateNumInstance
sFilter

Use this filter to limit the number of instances each Compute node in an
aggregate can host. You can configure the maximum number of instances per-
aggregate by using the filter_scheduler/max_instances_per_host
parameter. If the per-aggregate value is not found, the value falls back to the
global setting. If the Compute node is in more than one aggregate, the
scheduler uses the lowest max_instances_per_host value.

AggregateTypeAffinityF
ilter

Use this filter to pass hosts if no flavor metadata key is set, or the flavor
aggregate metadata value contains the name of the requested flavor. The
value of the flavor metadata entry is a string that may contain either a single
flavor name or a comma-separated list of flavor names, such as m1.nano or
m1.nano,m1.small.

AllHostsFilter Use this filter to consider all available Compute nodes for instance scheduling.

NOTE

Using this filter does not disable other filters.

AvailabilityZoneFilter Use this filter to launch instances on a Compute node in the availability zone
specified by the instance.

ComputeCapabilitiesFilt
er

Use this filter to match namespaced properties defined in the flavor extra
specs of an instance against the Compute node capabilities. You must prefix
the flavor extra specs with the capabilities: namespace.

A more efficient alternative to using the ComputeCapabilitiesFilter filter is
to use CPU traits in your flavors, which are reported to the Placement service.
Traits provide consistent naming for CPU features. For more information, see
Filtering by using resource provider traits.

ComputeFilter Use this filter to pass all Compute nodes that are operational and enabled.
This filter should always be present.

DifferentHostFilter Use this filter to enable scheduling of an instance on a different Compute
node from a set of specific instances. To specify these instances when
launching an instance, use the --hint argument with different_host as the
key and the instance UUID as the value:

$ openstack server create --image cedef40a-ed67-4d10-800e-
17455edce175 \
 --flavor 1 --hint different_host=a0cf03a5-d921-4877-bb5c-
86d26cf818e1 \
 --hint different_host=8c19174f-4220-44f0-824a-cd1eeef10287
server-1

Filter Description

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

78

ImagePropertiesFilter Use this filter to filter Compute nodes based on the following properties
defined on the instance image:

hw_architecture - Corresponds to the architecture of the host, for
example, x86, ARM, and Power.

img_hv_type - Corresponds to the hypervisor type, for example,
KVM, QEMU, Xen, and LXC.

img_hv_requested_version - Corresponds to the hypervisor
version the Compute service reports.

hw_vm_mode - Corresponds to the hyperviser type, for example
hvm, xen, uml, or exe.

Compute nodes that can support the specified image properties contained in
the instance are passed to the scheduler. For more information on image
properties, see Image configuration parameters.

IsolatedHostsFilter Use this filter to only schedule instances with isolated images on isolated
Compute nodes. You can also prevent non-isolated images from being used
to build instances on isolated Compute nodes by configuring
filter_scheduler/restrict_isolated_hosts_to_isolated_images.

To specify the isolated set of images and hosts use the
filter_scheduler/isolated_hosts and
filter_scheduler/isolated_images configuration options, for example:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 filter_scheduler/isolated_hosts:
 value: server1, server2
 filter_scheduler/isolated_images:
 value: 342b492c-128f-4a42-8d3a-c5088cf27d13, ebd267a6-
ca86-4d6c-9a0e-bd132d6b7d09

IoOpsFilter Use this filter to filter out hosts that have concurrent I/O operations that
exceed the configured filter_scheduler/max_io_ops_per_host, which
specifies the maximum number of I/O intensive instances allowed to run on
the host.

Filter Description

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

79

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_images/assembly_image-config-parameters_glance-creating-images

MetricsFilter Use this filter to limit scheduling to Compute nodes that report the metrics
configured by using metrics/weight_setting.

To use this filter, add the following configuration to your Compute
environment file:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 DEFAULT/compute_monitors:
 value: 'cpu.virt_driver'

By default, the Compute scheduler service updates the metrics every 60
seconds.

NUMATopologyFilter Use this filter to schedule instances with a NUMA topology on NUMA-capable
Compute nodes. Use flavor extra_specs and image properties to specify the
NUMA topology for an instance. The filter tries to match the instance NUMA
topology to the Compute node topology, taking into consideration the over-
subscription limits for each host NUMA cell.

NumInstancesFilter Use this filter to filter out Compute nodes that have more instances running
than specified by the max_instances_per_host option.

PciPassthroughFilter Use this filter to schedule instances on Compute nodes that have the devices
that the instance requests by using the flavor extra_specs.

Use this filter if you want to reserve nodes with PCI devices, which are
typically expensive and limited, for instances that request them.

SameHostFilter Use this filter to enable scheduling of an instance on the same Compute node
as a set of specific instances. To specify these instances when launching an
instance, use the --hint argument with same_host as the key and the
instance UUID as the value:

$ openstack server create --image cedef40a-ed67-4d10-800e-
17455edce175 \
 --flavor 1 --hint same_host=a0cf03a5-d921-4877-bb5c-
86d26cf818e1 \
 --hint same_host=8c19174f-4220-44f0-824a-cd1eeef10287 server-
1

Filter Description

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

80

ServerGroupAffinityFilt
er

Use this filter to schedule instances in an affinity server group on the same
Compute node. To create the server group, enter the following command:

$ openstack server group create --policy affinity <group_name>

To launch an instance in this group, use the --hint argument with group as
the key and the group UUID as the value:

$ openstack server create --image <image> \
 --flavor <flavor> \
 --hint group=<group_uuid> <instance_name>

ServerGroupAntiAffinity
Filter

Use this filter to schedule instances that belong to an anti-affinity server
group on different Compute nodes. To create the server group, enter the
following command:

$ openstack server group create --policy anti-affinity <group_name>

To launch an instance in this group, use the --hint argument with group as
the key and the group UUID as the value:

$ openstack server create --image <image> \
 --flavor <flavor> \
 --hint group=<group_uuid> <instance_name>

SimpleCIDRAffinityFilte
r

Use this filter to schedule instances on Compute nodes that have a specific IP
subnet range. To specify the required range, use the --hint argument to pass
the keys build_near_host_ip and cidr when launching an instance:

$ openstack server create --image <image> \
 --flavor <flavor> \
 --hint build_near_host_ip=<ip_address> \
 --hint cidr=<subnet_mask> <instance_name>

Filter Description

7.4. COMPUTE SCHEDULER WEIGHTS

Each Compute node has a weight that the scheduler can use to prioritize instance scheduling. After the
Compute scheduler applies the filters, it selects the Compute node with the largest weight from the
remaining candidate Compute nodes.

The Compute scheduler determines the weight of each Compute node by performing the following
tasks:

1. The scheduler normalizes each weight to a value between 0.0 and 1.0.

2. The scheduler multiplies the normalized weight by the weigher multiplier.

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

81

The Compute scheduler calculates the weight normalization for each resource type by using the lower
and upper values for the resource availability across the candidate Compute nodes:

Nodes with the lowest availability of a resource (minval) are assigned '0'.

Nodes with the highest availability of a resource (maxval) are assigned '1'.

Nodes with resource availability within the minval - maxval range are assigned a normalized
weight calculated by using the following formula:

(node_resource_availability - minval) / (maxval - minval)

If all the Compute nodes have the same availability for a resource then they are all normalized to 0.

For example, the scheduler calculates the normalized weights for available vCPUs across 10 Compute
nodes, each with a different number of available vCPUs, as follows:

Compute node 1 2 3 4 5 6 7 8 9 10

No of vCPUs 5 5 10 10 15 20 20 15 10 5

Normalized weight 0 0 0.33 0.33 0.67 1 1 0.67 0.33 0

The Compute scheduler uses the following formula to calculate the weight of a Compute node:

(w1_multiplier * norm(w1)) + (w2_multiplier * norm(w2)) + ...

The following table describes the available configuration options for weights.

NOTE

Weights can be set on host aggregates using the aggregate metadata key with the same
name as the options detailed in the following table. If set on the host aggregate, the host
aggregate value takes precedence.

Table 7.2. Compute scheduler weights

Configuration
option

Type Description

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

82

filter_scheduler/w
eight_classes

String Use this parameter to configure which of the following
attributes to use for calculating the weight of each
Compute node:

nova.scheduler.weights.ram.RAMWeigher -
Weighs the available RAM on the Compute node.

nova.scheduler.weights.cpu.CPUWeigher -
Weighs the available CPUs on the Compute node.

nova.scheduler.weights.disk.DiskWeigher -
Weighs the available disks on the Compute node.

nova.scheduler.weights.metrics.MetricsWe
igher - Weighs the metrics of the Compute node.

nova.scheduler.weights.affinity.ServerGrou
pSoftAffinityWeigher - Weighs the proximity of
the Compute node to other nodes in the given
instance group.

nova.scheduler.weights.affinity.ServerGrou
pSoftAntiAffinityWeigher - Weighs the
proximity of the Compute node to other nodes in
the given instance group.

nova.scheduler.weights.compute.BuildFail
ureWeigher - Weighs Compute nodes by the
number of recent failed boot attempts.

nova.scheduler.weights.io_ops.IoOpsWeig
her - Weighs Compute nodes by their workload.

nova.scheduler.weights.pci.PCIWeigher -
Weighs Compute nodes by their PCI availability.

nova.scheduler.weights.cross_cell.CrossC
ellWeigher - Weighs Compute nodes based on
which cell they are in, giving preference to
Compute nodes in the source cell when moving an
instance.

nova.scheduler.weights.all_weighers -
(Default) Uses all the above weighers.

Configuration
option

Type Description

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

83

filter_scheduler/ra
m_weight_multipl
ier

Floating point Use this parameter to specify the multiplier to use to weigh
hosts based on the available RAM.

Set to a positive value to prefer hosts with more available
RAM, which spreads instances across many hosts.

Set to a negative value to prefer hosts with less available
RAM, which fills up (stacks) hosts as much as possible
before scheduling to a less-used host.

The absolute value, whether positive or negative, controls
how strong the RAM weigher is relative to other weighers.

Default: 1.0 - The scheduler spreads instances across all
hosts evenly.

filter_scheduler/di
sk_weight_multipl
ier

 Floating point Use this parameter to specify the multiplier to use to weigh
hosts based on the available disk space.

Set to a positive value to prefer hosts with more available
disk space, which spreads instances across many hosts.

Set to a negative value to prefer hosts with less available
disk space, which fills up (stacks) hosts as much as possible
before scheduling to a less-used host.

The absolute value, whether positive or negative, controls
how strong the disk weigher is relative to other weighers.

Default: 1.0 - The scheduler spreads instances across all
hosts evenly.

filter_scheduler/c
pu_weight_multip
lier

 Floating point Use this parameter to specify the multiplier to use to weigh
hosts based on the available vCPUs.

Set to a positive value to prefer hosts with more available
vCPUs, which spreads instances across many hosts.

Set to a negative value to prefer hosts with less available
vCPUs, which fills up (stacks) hosts as much as possible
before scheduling to a less-used host.

The absolute value, whether positive or negative, controls
how strong the vCPU weigher is relative to other weighers.

Default: 1.0 - The scheduler spreads instances across all
hosts evenly.

Configuration
option

Type Description

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

84

filter_scheduler/io
_ops_weight_mul
tiplier

 Floating point Use this parameter to specify the multiplier to use to weigh
hosts based on the host workload.

Set to a negative value to prefer hosts with lighter
workloads, which distributes the workload across more
hosts.

Set to a positive value to prefer hosts with heavier
workloads, which schedules instances onto hosts that are
already busy.

The absolute value, whether positive or negative, controls
how strong the I/O operations weigher is relative to other
weighers.

Default: -1.0 - The scheduler distributes the workload
across more hosts.

filter_scheduler/b
uild_failure_weig
ht_multiplier

Floating point Use this parameter to specify the multiplier to use to weigh
hosts based on recent build failures.

Set to a positive value to increase the significance of build
failures recently reported by the host. Hosts with recent
build failures are then less likely to be chosen.

Set to 0 to disable weighing compute hosts by the number
of recent failures.

Default: 1000000.0

filter_scheduler/cr
oss_cell_move_w
eight_multiplier

Floating point Use this parameter to specify the multiplier to use to weigh
hosts during a cross-cell move. This option determines how
much weight is placed on a host which is within the same
source cell when moving an instance. By default, the
scheduler prefers hosts within the same source cell when
migrating an instance.

Set to a positive value to prefer hosts within the same cell
the instance is currently running. Set to a negative value to
prefer hosts located in a different cell from that where the
instance is currently running.

Default: 1000000.0

Configuration
option

Type Description

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

85

filter_scheduler/p
ci_weight_multipli
er

Positive floating
point

Use this parameter to specify the multiplier to use to weigh
hosts based on the number of PCI devices on the host and
the number of PCI devices requested by an instance. If an
instance requests PCI devices, then the more PCI devices a
Compute node has the higher the weight allocated to the
Compute node.

For example, if there are three hosts available, one with a
single PCI device, one with multiple PCI devices and one
without any PCI devices, then the Compute scheduler
prioritizes these hosts based on the demands of the
instance. The scheduler should prefer the first host if the
instance requests one PCI device, the second host if the
instance requires multiple PCI devices and the third host if
the instance does not request a PCI device.

Configure this option to prevent non-PCI instances from
occupying resources on hosts with PCI devices.

Default: 1.0

filter_scheduler/h
ost_subset_size

Integer Use this parameter to specify the size of the subset of
filtered hosts from which to select the host. You must set
this option to at least 1. A value of 1 selects the first host
returned by the weighing functions. The scheduler ignores
any value less than 1 and uses 1 instead.

Set to a value greater than 1 to prevent multiple scheduler
processes handling similar requests selecting the same host,
creating a potential race condition. By selecting a host
randomly from the N hosts that best fit the request, the
chance of a conflict is reduced. However, the higher you set
this value, the less optimal the chosen host may be for a
given request.

Default: 1

filter_scheduler/s
oft_affinity_weigh
t_multiplier

Positive floating
point

Use this parameter to specify the multiplier to use to weigh
hosts for group soft-affinity.

NOTE

You need to specify the microversion when
creating a group with this policy:

$ openstack --os-compute-api-
version 2.15 server group create --
policy soft-affinity <group_name>

Default: 1.0

Configuration
option

Type Description

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

86

filter_scheduler/s
oft_anti_affinity_
weight_multiplier

Positive floating
point

Use this parameter to specify the multiplier to use to weigh
hosts for group soft-anti-affinity.

NOTE

You need to specify the microversion when
creating a group with this policy:

$ openstack --os-compute-api-
version 2.15 server group create --
policy soft-affinity <group_name>

Default: 1.0

metrics/weight_m
ultiplier

Floating point Use this parameter to specify the multiplier to use for
weighting metrics. By default, weight_multiplier=1.0,
which spreads instances across possible hosts.

Set to a number greater than 1.0 to increase the effect of
the metric on the overall weight.

Set to a number between 0.0 and 1.0 to reduce the effect
of the metric on the overall weight.

Set to 0.0 to ignore the metric value and return the value of
the weight_of_unavailable option.

Set to a negative number to prioritize the host with lower
metrics, and stack instances in hosts.

Default: 1.0

Configuration
option

Type Description

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

87

metrics/weight_se
tting

Comma-separated
list of metric=ratio
pairs

Use this parameter to specify the metrics to use for
weighting, and the ratio to use to calculate the weight of
each metric. Valid metric names:

cpu.frequency - CPU frequency

cpu.user.time - CPU user mode time

cpu.kernel.time - CPU kernel time

cpu.idle.time - CPU idle time

cpu.iowait.time - CPU I/O wait time

cpu.user.percent - CPU user mode percentage

cpu.kernel.percent - CPU kernel percentage

cpu.idle.percent - CPU idle percentage

cpu.iowait.percent - CPU I/O wait percentage

cpu.percent - Generic CPU use

Example: weight_setting=cpu.user.time=1.0

metrics/required Boolean Use this parameter to specify how to handle configured
metrics/weight_setting metrics that are unavailable:

True - Metrics are required. If the metric is
unavailable, an exception is raised. To avoid the
exception, use the MetricsFilter filter in
NovaSchedulerEnabledFilters.

False - The unavailable metric is treated as a
negative factor in the weighing process. Set the
returned value by using the
weight_of_unavailable configuration option.

metrics/weight_of
_unavailable

Floating point Use this parameter to specify the weight to use if any
metrics/weight_setting metric is unavailable, and
metrics/required=False.

Default: -10000.0

Configuration
option

Type Description

7.5. DECLARING CUSTOM TRAITS AND RESOURCE CLASSES

As an administrator, you can declare which custom physical features and consumable resources are
available on the Red Hat OpenStack Platform (RHOSP) overcloud nodes by defining a custom
inventory of resources in a YAML file, provider.yaml.

You can declare the availability of physical host features by defining custom traits, such as
CUSTOM_DIESEL_BACKUP_POWER, CUSTOM_FIPS_COMPLIANT, and
CUSTOM_HPC_OPTIMIZED. You can also declare the availability of consumable resources by defining

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

88

resource classes, such as CUSTOM_DISK_IOPS, and CUSTOM_POWER_WATTS.

NOTE

You can use flavor metadata to request custom resources and custom traits. For more
information, see Instance bare-metal resource class and Instance resource traits .

Procedure

1. Create a file in /home/stack/templates/ called provider.yaml.

2. To configure the resource provider, add the following configuration to your provider.yaml file:

meta:
 schema_version: '1.0'
providers:
 - identification:
 uuid: <node_uuid>

Replace <node_uuid> with the UUID for the node, for example, '5213b75d-9260-42a6-
b236-f39b0fd10561'. Alternatively, you can use the name property to identify the resource
provider: name: 'EXAMPLE_RESOURCE_PROVIDER'.

3. To configure the available custom resource classes for the resource provider, add the following
configuration to your provider.yaml file:

meta:
 schema_version: '1.0'
providers:
 - identification:
 uuid: <node_uuid>
 inventories:
 additional:
 - CUSTOM_EXAMPLE_RESOURCE_CLASS:
 total: <total_available>
 reserved: <reserved>
 min_unit: <min_unit>
 max_unit: <max_unit>
 step_size: <step_size>
 allocation_ratio: <allocation_ratio>

Replace CUSTOM_EXAMPLE_RESOURCE_CLASS with the name of the resource class.
Custom resource classes must begin with the prefix CUSTOM_ and contain only the letters
A through Z, the numbers 0 through 9 and the underscore “_” character.

Replace <total_available> with the number of available
CUSTOM_EXAMPLE_RESOURCE_CLASS for this resource provider.

Replace <reserved> with the number of available
CUSTOM_EXAMPLE_RESOURCE_CLASS for this resource provider.

Replace <min_unit> with the minimum units of resources a single instance can consume.

Replace <max_unit> with the maximum units of resources a single instance can consume.

Replace <step_size> with the number of available

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

89

1

Replace <step_size> with the number of available
CUSTOM_EXAMPLE_RESOURCE_CLASS for this resource provider.

Replace <allocation_ratio> with the value to set the allocation ratio. If allocation_ratio is
set to 1.0, then no overallocation is allowed. But if allocation_ration is greater than 1.0, then
the total available resource is more than the physically existing one.

4. To configure the available traits for the resource provider, add the following configuration to
your provider.yaml file:

meta:
 schema_version: '1.0'
providers:
 - identification:
 uuid: <node_uuid>
 inventories:
 additional:
 ...
 traits:
 additional:
 - 'CUSTOM_EXAMPLE_TRAIT'

Replace CUSTOM_EXAMPLE_TRAIT with the name of the trait. Custom traits must begin
with the prefix CUSTOM_ and contain only the letters A through Z, the numbers 0 through
9 and the underscore “_” character.

Example provider.yaml file

The following example declares one custom resource class and one custom trait for a
resource provider.

meta:
 schema_version: 1.0
providers:
 - identification:
 uuid: $COMPUTE_NODE
 inventories:
 additional:
 CUSTOM_LLC:
 # Describing LLC on this compute node
 # max_unit indicates maximum size of single LLC
 # total indicates sum of sizes of all LLC
 total: 22 1
 reserved: 2 2
 min_unit: 1 3
 max_unit: 11 4
 step_size: 1 5
 allocation_ratio: 1.0 6
 traits:
 additional:
 # Describing that this compute node enables support for
 # P-state control
 - CUSTOM_P_STATE_ENABLED

This hypervisor has 22 units of last level cache (LLC).

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

90

2

3 4

5

6

Two of the units of LLC are reserved for the host.

The min_unit and max_unit values define how many units of resources a single VM can
consume.

The step size defines the increments of consumption.

The allocation ratio configures the overallocation of resources.

5. Save and close the provider.yaml file.

6. Add the provider.yaml file to the stack with your other environment files and deploy the
overcloud:

(undercloud)$ openstack overcloud deploy --templates \
-e [your environment files] \
-e /home/stack/templates/provider.yaml

7.6. CREATING AND MANAGING HOST AGGREGATES

As a cloud administrator, you can partition a Compute deployment into logical groups for performance
or administrative purposes. Red Hat OpenStack Platform (RHOSP) provides the following mechanisms
for partitioning logical groups:

Host aggregate

A host aggregate is a grouping of Compute nodes into a logical unit based on attributes such as the
hardware or performance characteristics. You can assign a Compute node to one or more host
aggregates.
You can map flavors and images to host aggregates by setting metadata on the host aggregate, and
then matching flavor extra specs or image metadata properties to the host aggregate metadata. The
Compute scheduler can use this metadata to schedule instances when the required filters are
enabled. Metadata that you specify in a host aggregate limits the use of that host to any instance
that has the same metadata specified in its flavor or image.

You can configure weight multipliers for each host aggregate by setting the xxx_weight_multiplier
configuration option in the host aggregate metadata.

You can use host aggregates to handle load balancing, enforce physical isolation or redundancy,
group servers with common attributes, or separate classes of hardware.

When you create a host aggregate, you can specify a zone name. This name is presented to cloud
users as an availability zone that they can select.

Availability zones

An availability zone is the cloud user view of a host aggregate. A cloud user cannot view the Compute
nodes in the availability zone, or view the metadata of the availability zone. The cloud user can only
see the name of the availability zone.
You can assign each Compute node to only one availability zone. You can configure a default
availability zone where instances will be scheduled when the cloud user does not specify a zone. You
can direct cloud users to use availability zones that have specific capabilities.

7.6.1. Enabling scheduling on host aggregates

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

91

To schedule instances on host aggregates that have specific attributes, update the configuration of the
Compute scheduler to enable filtering based on the host aggregate metadata.

Procedure

1. Open your Compute environment file.

2. Add the following values to the NovaSchedulerEnabledFilters parameter, if they are not
already present:

AggregateInstanceExtraSpecsFilter: Add this value to filter Compute nodes by host
aggregate metadata that match flavor extra specs.

NOTE

For this filter to perform as expected, you must scope the flavor extra specs
by prefixing the extra_specs key with the
aggregate_instance_extra_specs: namespace.

AggregateImagePropertiesIsolation: Add this value to filter Compute nodes by host
aggregate metadata that match image metadata properties.

NOTE

To filter host aggregate metadata by using image metadata properties, the
host aggregate metadata key must match a valid image metadata property.
For information about valid image metadata properties, see Image
configuration parameters.

AvailabilityZoneFilter: Add this value to filter by availability zone when launching an
instance.

NOTE

Instead of using the AvailabilityZoneFilter Compute scheduler service filter,
you can use the Placement service to process availability zone requests. For
more information, see Filtering by availability zone using the Placement
service.

3. Save the updates to your Compute environment file.

4. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

7.6.2. Creating a host aggregate

As a cloud administrator, you can create as many host aggregates as you require.

Procedure

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

92

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_images/assembly_image-config-parameters_glance-creating-images

1. To create a host aggregate, enter the following command:

(overcloud)# openstack aggregate create <aggregate_name>

Replace <aggregate_name> with the name you want to assign to the host aggregate.

2. Add metadata to the host aggregate:

(overcloud)# openstack aggregate set \
 --property <key=value> \
 --property <key=value> \
 <aggregate_name>

Replace <key=value> with the metadata key-value pair. If you are using the
AggregateInstanceExtraSpecsFilter filter, the key can be any arbitrary string, for example,
ssd=true. If you are using the AggregateImagePropertiesIsolation filter, the key must
match a valid image metadata property. For more information about valid image metadata
properties, see Image configuration parameters.

Replace <aggregate_name> with the name of the host aggregate.

3. Add the Compute nodes to the host aggregate:

(overcloud)# openstack aggregate add host \
 <aggregate_name> \
 <host_name>

Replace <aggregate_name> with the name of the host aggregate to add the Compute
node to.

Replace <host_name> with the name of the Compute node to add to the host aggregate.

4. Create a flavor or image for the host aggregate:

Create a flavor:

(overcloud)$ openstack flavor create \
 --ram <size_mb> \
 --disk <size_gb> \
 --vcpus <no_reserved_vcpus> \
 host-agg-flavor

Create an image:

(overcloud)$ openstack image create host-agg-image

5. Set one or more key-value pairs on the flavor or image that match the key-value pairs on the
host aggregate.

To set the key-value pairs on a flavor, use the scope aggregate_instance_extra_specs:

(overcloud)# openstack flavor set \
 --property aggregate_instance_extra_specs:ssd=true \
 host-agg-flavor

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

93

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_images/assembly_image-config-parameters_glance-creating-images

To set the key-value pairs on an image, use valid image metadata properties as the key:

(overcloud)# openstack image set \
 --property os_type=linux \
 host-agg-image

7.6.3. Creating an availability zone

As a cloud administrator, you can create an availability zone that cloud users can select when they create
an instance.

Procedure

1. To create an availability zone, you can create a new availability zone host aggregate, or make an
existing host aggregate an availability zone:

a. To create a new availability zone host aggregate, enter the following command:

(overcloud)# openstack aggregate create \
 --zone <availability_zone> \
 <aggregate_name>

Replace <availability_zone> with the name you want to assign to the availability zone.

Replace <aggregate_name> with the name you want to assign to the host aggregate.

b. To make an existing host aggregate an availability zone, enter the following command:

(overcloud)# openstack aggregate set --zone <availability_zone> \
 <aggregate_name>

Replace <availability_zone> with the name you want to assign to the availability zone.

Replace <aggregate_name> with the name of the host aggregate.

2. Optional: Add metadata to the availability zone:

(overcloud)# openstack aggregate set --property <key=value> \
 <aggregate_name>

Replace <key=value> with your metadata key-value pair. You can add as many key-value
properties as required.

Replace <aggregate_name> with the name of the availability zone host aggregate.

3. Add Compute nodes to the availability zone host aggregate:

(overcloud)# openstack aggregate add host <aggregate_name> \
 <host_name>

Replace <aggregate_name> with the name of the availability zone host aggregate to add
the Compute node to.

Replace <host_name> with the name of the Compute node to add to the availability zone.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

94

7.6.4. Deleting a host aggregate

To delete a host aggregate, you first remove all the Compute nodes from the host aggregate.

Procedure

1. To view a list of all the Compute nodes assigned to the host aggregate, enter the following
command:

(overcloud)# openstack aggregate show <aggregate_name>

2. To remove all assigned Compute nodes from the host aggregate, enter the following command
for each Compute node:

(overcloud)# openstack aggregate remove host <aggregate_name> \
 <host_name>

Replace <aggregate_name> with the name of the host aggregate to remove the Compute
node from.

Replace <host_name> with the name of the Compute node to remove from the host
aggregate.

3. After you remove all the Compute nodes from the host aggregate, enter the following
command to delete the host aggregate:

(overcloud)# openstack aggregate delete <aggregate_name>

7.6.5. Creating a project-isolated host aggregate

You can create a host aggregate that is available only to specific projects. Only the projects that you
assign to the host aggregate can launch instances on the host aggregate.

NOTE

Project isolation uses the Placement service to filter host aggregates for each project.
This process supersedes the functionality of the AggregateMultiTenancyIsolation filter.
You therefore do not need to use the AggregateMultiTenancyIsolation filter.

Procedure

1. Open your Compute environment file.

2. To schedule project instances on the project-isolated host aggregate, set the
NovaSchedulerLimitTenantsToPlacementAggregate parameter to True in the Compute
environment file.

3. Optional: To ensure that only the projects that you assign to a host aggregate can create
instances on your cloud, set the NovaSchedulerPlacementAggregateRequiredForTenants
parameter to True.

NOTE

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

95

NOTE

NovaSchedulerPlacementAggregateRequiredForTenants is False by default.
When this parameter is False, projects that are not assigned to a host aggregate
can create instances on any host aggregate.

4. Save the updates to your Compute environment file.

5. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml \

6. Create the host aggregate.

7. Retrieve the list of project IDs:

(overcloud)# openstack project list

8. Use the filter_tenant_id<suffix> metadata key to assign projects to the host aggregate:

(overcloud)# openstack aggregate set \
 --property filter_tenant_id<ID0>=<project_id0> \
 --property filter_tenant_id<ID1>=<project_id1> \
 ...
 --property filter_tenant_id<IDn>=<project_idn> \
 <aggregate_name>

Replace <ID0>, <ID1>, and all IDs up to <IDn> with unique values for each project filter that
you want to create.

Replace <project_id0>, <project_id1>, and all project IDs up to <project_idn> with the ID
of each project that you want to assign to the host aggregate.

Replace <aggregate_name> with the name of the project-isolated host aggregate.
For example, use the following syntax to assign projects 78f1, 9d3t, and aa29 to the host
aggregate project-isolated-aggregate:

(overcloud)# openstack aggregate set \
 --property filter_tenant_id0=78f1 \
 --property filter_tenant_id1=9d3t \
 --property filter_tenant_id2=aa29 \
 project-isolated-aggregate

TIP

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

96

TIP

You can create a host aggregate that is available only to a single specific project by omitting
the suffix from the filter_tenant_id metadata key:

(overcloud)# openstack aggregate set \
 --property filter_tenant_id=78f1 \
 single-project-isolated-aggregate

Additional resources

For more information on creating a host aggregate, see Creating and managing host
aggregates.

CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

97

CHAPTER 8. CONFIGURING PCI PASSTHROUGH
You can use PCI passthrough to attach a physical PCI device, such as a graphics card or a network
device, to an instance. If you use PCI passthrough for a device, the instance reserves exclusive access to
the device for performing tasks, and the device is not available to the host.

IMPORTANT

Using PCI passthrough with routed provider networks

The Compute service does not support single networks that span multiple provider
networks. When a network contains multiple physical networks, the Compute service only
uses the first physical network. Therefore, if you are using routed provider networks you
must use the same physical_network name across all the Compute nodes.

If you use routed provider networks with VLAN or flat networks, you must use the same
physical_network name for all segments. You then create multiple segments for the
network and map the segments to the appropriate subnets.

To enable your cloud users to create instances with PCI devices attached, you must complete the
following:

1. Designate Compute nodes for PCI passthrough.

2. Configure the Compute nodes for PCI passthrough that have the required PCI devices.

3. Deploy the overcloud.

4. Create a flavor for launching instances with PCI devices attached.

Prerequisites

The Compute nodes have the required PCI devices.

8.1. DESIGNATING COMPUTE NODES FOR PCI PASSTHROUGH

To designate Compute nodes for instances with physical PCI devices attached, you must create a new
role file to configure the PCI passthrough role, and configure the bare metal nodes with a PCI
passthrough resource class to use to tag the Compute nodes for PCI passthrough.

NOTE

The following procedure applies to new overcloud nodes that have not yet been
provisioned. To assign a resource class to an existing overcloud node that has already
been provisioned, you must use the scale down procedure to unprovision the node, then
use the scale up procedure to reprovision the node with the new resource class
assignment. For more information, see Scaling overcloud nodes .

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

98

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_scaling-overcloud-nodes

[stack@director ~]$ source ~/stackrc

3. Generate a new roles data file named roles_data_pci_passthrough.yaml that includes the
Controller, Compute, and ComputePCI roles, along with any other roles that you need for the
overcloud:

(undercloud)$ openstack overcloud roles \
 generate -o /home/stack/templates/roles_data_pci_passthrough.yaml \
 Compute:ComputePCI Compute Controller

4. Open roles_data_pci_passthrough.yaml and edit or add the following parameters and
sections:

Section/Parameter Current value New value

Role comment Role: Compute Role: ComputePCI

Role name name: Compute name: ComputePCI

description Basic Compute Node role PCI Passthrough Compute
Node role

HostnameFormatDefault %stackname%-
novacompute-%index%

%stackname%-
novacomputepci-%index%

deprecated_nic_config_na
me

compute.yaml compute-pci-
passthrough.yaml

5. Register the PCI passthrough Compute nodes for the overcloud by adding them to your node
definition template, node.json or node.yaml. For more information, see Registering nodes for
the overcloud in the Installing and managing Red Hat OpenStack Platform with director guide.

6. Inspect the node hardware:

(undercloud)$ openstack overcloud node introspect \
 --all-manageable --provide

For more information, see Creating an inventory of the bare-metal node hardware in the
Installing and managing Red Hat OpenStack Platform with director guide.

7. Tag each bare metal node that you want to designate for PCI passthrough with a custom PCI
passthrough resource class:

(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.PCI-PASSTHROUGH <node>

Replace <node> with the ID of the bare metal node.

8. Add the ComputePCI role to your node definition file, overcloud-baremetal-deploy.yaml, and
define any predictive node placements, resource classes, network topologies, or other
attributes that you want to assign to your nodes:

CHAPTER 8. CONFIGURING PCI PASSTHROUGH

99

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#proc_registering-nodes-for-the-overcloud_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_creating-an-inventory-of-the-bare-metal-node-hardware_ironic_provisioning

1

- name: Controller
 count: 3
- name: Compute
 count: 3
- name: ComputePCI
 count: 1
 defaults:
 resource_class: baremetal.PCI-PASSTHROUGH
 network_config:
 template: /home/stack/templates/nic-config/myRoleTopology.j2 1

You can reuse an existing network topology or create a new custom network interface
template for the role. For more information, see Custom network interface templates in
the Installing and managing Red Hat OpenStack Platform with director guide. If you do not
define the network definitions by using the network_config property, then the default
network definitions are used.

For more information about the properties you can use to configure node attributes in your
node definition file, see Bare metal node provisioning attributes . For an example node definition
file, see Example node definition file .

9. Run the provisioning command to provision the new nodes for your role:

(undercloud)$ openstack overcloud node provision \
--stack <stack> \
[--network-config \]
--output /home/stack/templates/overcloud-baremetal-deployed.yaml \
/home/stack/templates/overcloud-baremetal-deploy.yaml

Replace <stack> with the name of the stack for which the bare-metal nodes are
provisioned. If not specified, the default is overcloud.

Include the --network-config optional argument to provide the network definitions to the
cli-overcloud-node-network-config.yaml Ansible playbook. If you do not define the
network definitions by using the network_config property, then the default network
definitions are used.

10. Monitor the provisioning progress in a separate terminal. When provisioning is successful, the
node state changes from available to active:

(undercloud)$ watch openstack baremetal node list

11. If you did not run the provisioning command with the --network-config option, then configure
the <Role>NetworkConfigTemplate parameters in your network-environment.yaml file to
point to your NIC template files:

parameter_defaults:
 ComputeNetworkConfigTemplate: /home/stack/templates/nic-configs/compute.j2
 ComputePCINetworkConfigTemplate: /home/stack/templates/nic-
configs/<pci_passthrough_net_top>.j2
 ControllerNetworkConfigTemplate: /home/stack/templates/nic-configs/controller.j2

Replace <pci_passthrough_net_top> with the name of the file that contains the network

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

100

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_custom-network-interface-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#ref_bare-metal-node-provisioning-attributes_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#ref_example-node-definition-file_ironic_provisioning

Replace <pci_passthrough_net_top> with the name of the file that contains the network
topology of the ComputePCI role, for example, compute.yaml to use the default network
topology.

8.2. CONFIGURING A PCI PASSTHROUGH COMPUTE NODE

To enable your cloud users to create instances with PCI devices attached, you must configure both the
Compute nodes that have the PCI devices and the Controller nodes.

Procedure

1. Create an environment file to configure the Controller node on the overcloud for PCI
passthrough, for example, pci_passthrough_controller.yaml.

2. Add PciPassthroughFilter to the NovaSchedulerEnabledFilters parameter in
pci_passthrough_controller.yaml:

parameter_defaults:
 NovaSchedulerEnabledFilters:
 - AvailabilityZoneFilter
 - ComputeFilter
 - ComputeCapabilitiesFilter
 - ImagePropertiesFilter
 - ServerGroupAntiAffinityFilter
 - ServerGroupAffinityFilter
 - PciPassthroughFilter
 - NUMATopologyFilter

3. To specify the PCI alias for the devices on the Controller node, add the following configuration
to pci_passthrough_controller.yaml:

parameter_defaults:
 ...
 ControllerExtraConfig:
 nova::pci::aliases:
 - name: "a1"
 product_id: "1572"
 vendor_id: "8086"
 device_type: "type-PF"

For more information about configuring the device_type field, see PCI passthrough device type
field.

NOTE

If the nova-api service is running in a role different from the Controller role,
replace ControllerExtraConfig with the user role in the format
<Role>ExtraConfig.

4. Optional: To set a default NUMA affinity policy for PCI passthrough devices, add numa_policy
to the nova::pci::aliases: configuration from step 3:

parameter_defaults:
 ...

CHAPTER 8. CONFIGURING PCI PASSTHROUGH

101

 ControllerExtraConfig:
 nova::pci::aliases:
 - name: "a1"
 product_id: "1572"
 vendor_id: "8086"
 device_type: "type-PF"
 numa_policy: "preferred"

5. To configure the Compute node on the overcloud for PCI passthrough, create an environment
file, for example, pci_passthrough_compute.yaml.

6. To specify the available PCIs for the devices on the Compute node, use the vendor_id and
product_id options to add all matching PCI devices to the pool of PCI devices available for
passthrough to instances. For example, to add all Intel® Ethernet Controller X710 devices to the
pool of PCI devices available for passthrough to instances, add the following configuration to
pci_passthrough_compute.yaml:

parameter_defaults:
 ...
 ComputePCIParameters:
 NovaPCIPassthrough:
 - vendor_id: "8086"
 product_id: "1572"

For more information about how to configure NovaPCIPassthrough, see Guidelines for
configuring NovaPCIPassthrough.

7. You must create a copy of the PCI alias on the Compute node for instance migration and resize
operations. To specify the PCI alias for the devices on the PCI passthrough Compute node, add
the following to pci_passthrough_compute.yaml:

parameter_defaults:
 ...
 ComputePCIExtraConfig:
 nova::pci::aliases:
 - name: "a1"
 product_id: "1572"
 vendor_id: "8086"
 device_type: "type-PF"

NOTE

The Compute node aliases must be identical to the aliases on the Controller
node. Therefore, if you added numa_affinity to nova::pci::aliases in
pci_passthrough_controller.yaml, then you must also add it to
nova::pci::aliases in pci_passthrough_compute.yaml.

8. To enable IOMMU in the server BIOS of the Compute nodes to support PCI passthrough, add
the KernelArgs parameter to pci_passthrough_compute.yaml. For example, use the
following KernalArgs settings to enable an Intel IOMMU:

parameter_defaults:
 ...
 ComputePCIParameters:

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

102

 KernelArgs: "intel_iommu=on iommu=pt"

To enable an AMD IOMMU, set KernelArgs to "amd_iommu=on iommu=pt".

NOTE

When you first add the KernelArgs parameter to the configuration of a role, the
overcloud nodes are automatically rebooted. If required, you can disable the
automatic rebooting of nodes and instead perform node reboots manually after
each overcloud deployment. For more information, see Configuring manual node
reboot to define KernelArgs.

9. Add your custom environment files to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -r /home/stack/templates/roles_data_pci_passthrough.yaml \
 -e /home/stack/templates/network-environment.yaml \
 -e /home/stack/templates/pci_passthrough_controller.yaml \
 -e /home/stack/templates/pci_passthrough_compute.yaml \
 -e /home/stack/templates/overcloud-baremetal-deployed.yaml \
 -e /home/stack/templates/node-info.yaml

10. Create and configure the flavors that your cloud users can use to request the PCI devices. The
following example requests two devices, each with a vendor ID of 8086 and a product ID of 1572,
using the alias defined in step 7:

(overcloud)$ openstack flavor set \
 --property "pci_passthrough:alias"="a1:2" device_passthrough

11. Optional: To override the default NUMA affinity policy for PCI passthrough devices, you can add
the NUMA affinity policy property key to the flavor or the image:

To override the default NUMA affinity policy by using the flavor, add the
hw:pci_numa_affinity_policy property key:

(overcloud)$ openstack flavor set \
 --property "hw:pci_numa_affinity_policy"="required" \
 device_passthrough

For more information about the valid values for hw:pci_numa_affinity_policy, see Flavor
metadata.

To override the default NUMA affinity policy by using the image, add the
hw_pci_numa_affinity_policy property key:

(overcloud)$ openstack image set \
 --property hw_pci_numa_affinity_policy=required \
 device_passthrough_image

NOTE

CHAPTER 8. CONFIGURING PCI PASSTHROUGH

103

NOTE

If you set the NUMA affinity policy on both the image and the flavor then the
property values must match. The flavor setting takes precedence over the
image and default settings. Therefore, the configuration of the NUMA
affinity policy on the image only takes effect if the property is not set on the
flavor.

Verification

1. Create an instance with a PCI passthrough device:

$ openstack server create --flavor device_passthrough \
 --image <image> --wait test-pci

2. Log in to the instance as a cloud user. For more information, see Connecting to an instance .

3. To verify that the PCI device is accessible from the instance, enter the following command from
the instance:

$ lspci -nn | grep <device_name>

8.3. PCI PASSTHROUGH DEVICE TYPE FIELD

The Compute service categorizes PCI devices into one of three types, depending on the capabilities the
devices report. The following lists the valid values that you can set the device_type field to:

type-PF

The device supports SR-IOV and is the parent or root device. Specify this device type to
passthrough a device that supports SR-IOV in its entirety.

type-VF

The device is a child device of a device that supports SR-IOV.

type-PCI

The device does not support SR-IOV. This is the default device type if the device_type field is not
set.

NOTE

You must configure the Compute and Controller nodes with the same device_type.

8.4. GUIDELINES FOR CONFIGURING NOVAPCIPASSTHROUGH

Do not use the devname parameter when configuring PCI passthrough, as the device name of a
NIC can change. Instead, use vendor_id and product_id because they are more stable, or use
the address of the NIC.

To pass through a specific Physical Function (PF), you can use the address parameter because
the PCI address is unique to each device. Alternatively, you can use the product_id parameter
to pass through a PF, but you must also specify the address of the PF if you have multiple PFs
of the same type.

To pass through all the Virtual Functions (VFs) specify only the product_id and vendor_id of

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

104

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_instances/assembly_connecting-to-an-instance_instances

To pass through all the Virtual Functions (VFs) specify only the product_id and vendor_id of
the VFs that you want to use for PCI passthrough. You must also specify the address of the VF
if you are using SRIOV for NIC partitioning and you are running OVS on a VF.

To pass through only the VFs for a PF but not the PF itself, you can use the address parameter
to specify the PCI address of the PF and product_id to specify the product ID of the VF.

Configuring the address parameter

The address parameter specifies the PCI address of the device. You can set the value of the address
parameter using either a String or a dict mapping.

String format

If you specify the address using a string you can include wildcards (*), as shown in the following
example:

NovaPCIPassthrough:
 -
 address: "*:0a:00.*"
 physical_network: physnet1

Dictionary format

If you specify the address using the dictionary format you can include regular expression syntax, as
shown in the following example:

NovaPCIPassthrough:
 -
 address:
 domain: ".*"
 bus: "02"
 slot: "01"
 function: "[0-2]"
 physical_network: net1

NOTE

The Compute service restricts the configuration of address fields to the following
maximum values:

domain - 0xFFFF

bus - 0xFF

slot - 0x1F

function - 0x7

The Compute service supports PCI devices with a 16-bit address domain. The Compute
service ignores PCI devices with a 32-bit address domain.

CHAPTER 8. CONFIGURING PCI PASSTHROUGH

105

CHAPTER 9. CONFIGURING VDPA COMPUTE NODES TO
ENABLE INSTANCES THAT USE VDPA PORTS

VIRTIO data path acceleration (VDPA) provides wirespeed data transfer over VIRTIO. A VDPA device
provides a VIRTIO abstraction over an SR-IOV virtual function (VF), which enables VFs to be consumed
without a vendor-specific driver on the instance.

NOTE

When you use a NIC as a VDPA interface it must be dedicated to the VDPA interface. You
cannot use the NIC for other connections because you must configure the NIC’s physical
function (PF) in switchdev mode and manage the PF by using hardware offloaded OVS.

To enable your cloud users to create instances that use VDPA ports, complete the following tasks:

1. Optional: Designate Compute nodes for VDPA.

2. Configure the Compute nodes for VDPA that have the required VDPA drivers.

3. Deploy the overcloud.

TIP

If the VDPA hardware is limited, you can also configure a host aggregate to optimize scheduling on the
VDPA Compute nodes. To schedule only instances that request VDPA on the VDPA Compute nodes,
create a host aggregate of the Compute nodes that have the VDPA hardware, and configure the
Compute scheduler to place only VDPA instances on the host aggregate. For more information, see
Filtering by isolating host aggregates and Creating and managing host aggregates .

Prerequisites

Your Compute nodes have the required VDPA devices and drivers.

Your Compute nodes have Mellanox NICs.

Your overcloud is configured for OVS hardware offload. For more information, see Configuring
OVS hardware offload.

Your overcloud is configured to use ML2/OVN.

9.1. DESIGNATING COMPUTE NODES FOR VDPA

To designate Compute nodes for instances that request a VIRTIO data path acceleration (VDPA)
interface, create a new role file to configure the VDPA role, and configure the bare-metal nodes with a
VDPA resource class to tag the Compute nodes for VDPA.

NOTE

The following procedure applies to new overcloud nodes that have not yet been
provisioned. To assign a resource class to an existing overcloud node that has already
been provisioned, scale down the overcloud to unprovision the node, then scale up the
overcloud to reprovision the node with the new resource class assignment. For more
information, see Scaling overcloud nodes .

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

106

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_network_functions_virtualization/part-sriov-nfv-configuration#sect-configuring-hw-offload
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_scaling-overcloud-nodes

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

[stack@director ~]$ source ~/stackrc

3. Generate a new roles data file named roles_data_vdpa.yaml that includes the Controller,
Compute, and ComputeVdpa roles:

(undercloud)$ openstack overcloud roles \
 generate -o /home/stack/templates/roles_data_vdpa.yaml \
 ComputeVdpa Compute Controller

4. Update the roles_data_vdpa.yaml file for the VDPA role:

###
####
Role: ComputeVdpa
###
####
- name: ComputeVdpa
 description: |
 VDPA Compute Node role
 CountDefault: 1
 # Create external Neutron bridge
 tags:
 - compute
 - external_bridge
 networks:
 InternalApi:
 subnet: internal_api_subnet
 Tenant:
 subnet: tenant_subnet
 Storage:
 subnet: storage_subnet
 HostnameFormatDefault: '%stackname%-computevdpa-%index%'
 deprecated_nic_config_name: compute-vdpa.yaml

5. Register the VDPA Compute nodes for the overcloud by adding them to your node definition
template: node.json or node.yaml. For more information, see Registering nodes for the
overcloud in the Installing and managing Red Hat OpenStack Platform with director guide.

6. Inspect the node hardware:

(undercloud)$ openstack overcloud node introspect \
 --all-manageable --provide

For more information, see Creating an inventory of the bare-metal node hardware in the
Installing and managing Red Hat OpenStack Platform with director guide.

7. Tag each bare-metal node that you want to designate for VDPA with a custom VDPA resource
class:

CHAPTER 9. CONFIGURING VDPA COMPUTE NODES TO ENABLE INSTANCES THAT USE VDPA PORTS

107

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_registering-nodes-for-the-overcloud_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#assembly_creating-an-inventory-of-the-bare-metal-node-hardware_ironic_provisioning

(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.VDPA <node>

Replace <node> with the name or UUID of the bare-metal node.

8. Add the ComputeVdpa role to your node definition file, overcloud-baremetal-deploy.yaml,
and define any predictive node placements, resource classes, network topologies, or other
attributes that you want to assign to your nodes:

- name: Controller
 count: 3
- name: Compute
 count: 3
- name: ComputeVdpa
 count: 1
 defaults:
 resource_class: baremetal.VDPA
 network_config:
 template: /home/stack/templates/nic-config/<role_topology_file>

Replace <role_topology_file> with the name of the topology file to use for the
ComputeVdpa role, for example, vdpa_net_top.j2. You can reuse an existing network
topology or create a new custom network interface template for the role. For more
information, see Custom network interface templates in the Installing and managing Red
Hat OpenStack Platform with director guide. To use the default network definition settings,
do not include network_config in the role definition.

For more information about the properties that you can use to configure node attributes in your
node definition file, see Bare-metal node provisioning attributes. For an example node
definition file, see Example node definition file .

9. Open your network interface template, vdpa_net_top.j2, and add the following configuration to
specify your VDPA-supported network interfaces as a member of the OVS bridge:

- type: ovs_bridge
 name: br-tenant
 members:
 - type: sriov_pf
 name: enp6s0f0
 numvfs: 8
 use_dhcp: false
 vdpa: true
 link_mode: switchdev
 - type: sriov_pf
 name: enp6s0f1
 numvfs: 8
 use_dhcp: false
 vdpa: true
 link_mode: switchdev

10. Provision the new nodes for your role:

(undercloud)$ openstack overcloud node provision \
[--stack <stack>] \
[--network-config \]

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

108

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#assembly_custom-network-interface-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#ref_bare-metal-node-provisioning-attributes_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#ref_example-node-definition-file_ironic_provisioning

--output <deployment_file> \
/home/stack/templates/overcloud-baremetal-deploy.yaml

Optional: Replace <stack> with the name of the stack for which the bare-metal nodes are
provisioned. Defaults to overcloud.

Optional: Include the --network-config optional argument to provide the network
definitions to the cli-overcloud-node-network-config.yaml Ansible playbook. If you have
not defined the network definitions in the node definition file by using the network_config
property, then the default network definitions are used.

Replace <deployment_file> with the name of the heat environment file to generate for
inclusion in the deployment command, for example /home/stack/templates/overcloud-
baremetal-deployed.yaml.

11. Monitor the provisioning progress in a separate terminal. When provisioning is successful, the
node state changes from available to active:

(undercloud)$ watch openstack baremetal node list

12. If you ran the provisioning command without the --network-config option, then configure the
<Role>NetworkConfigTemplate parameters in your network-environment.yaml file to point
to your NIC template files:

parameter_defaults:
 ComputeNetworkConfigTemplate: /home/stack/templates/nic-configs/compute.j2
 ComputeVdpaNetworkConfigTemplate: /home/stack/templates/nic-
configs/<role_topology_file>
 ControllerNetworkConfigTemplate: /home/stack/templates/nic-configs/controller.j2

Replace <role_topology_file> with the name of the file that contains the network topology of
the ComputeVdpa role, for example, vdpa_net_top.j2. Set to compute.j2 to use the default
network topology.

9.2. CONFIGURING A VDPA COMPUTE NODE

To enable your cloud users to create instances that use VIRTIO data path acceleration (VDPA) ports,
configure the Compute nodes that have the VDPA devices.

Procedure

1. Create a new Compute environment file for configuring VDPA Compute nodes, for example,
vdpa_compute.yaml.

2. Add PciPassthroughFilter and NUMATopologyFilter to the NovaSchedulerEnabledFilters
parameter in vdpa_compute.yaml:

parameter_defaults:
 NovaSchedulerEnabledFilters:
['AvailabilityZoneFilter','ComputeFilter','ComputeCapabilitiesFilter','ImagePropertiesFilter','Serve
rGroupAntiAffinityFilter','ServerGroupAffinityFilter','PciPassthroughFilter','NUMATopologyFilter']

3. Add the NovaPCIPassthrough parameter to vdpa_compute.yaml to specify the available
PCIs for the VDPA devices on the Compute node. For example, to add NVIDIA® ConnectX®-6

CHAPTER 9. CONFIGURING VDPA COMPUTE NODES TO ENABLE INSTANCES THAT USE VDPA PORTS

109

Dx devices to the pool of PCI devices that are available for passthrough to instances, add the
following configuration to vdpa_compute.yaml:

parameter_defaults:
 ...
 ComputeVdpaParameters:
 NovaPCIPassthrough:
 - vendor_id: "15b3"
 product_id: "101d"
 address: "06:00.0"
 physical_network: "tenant"
 - vendor_id: "15b3"
 product_id: "101d"
 address: "06:00.1"
 physical_network: "tenant"

For more information about how to configure NovaPCIPassthrough, see Guidelines for
configuring NovaPCIPassthrough.

4. Enable the input–output memory management unit (IOMMU) in each Compute node BIOS by
adding the KernelArgs parameter to vdpa_compute.yaml. For example, use the following
KernalArgs settings to enable an Intel Corporation IOMMU:

parameter_defaults:
 ...
 ComputeVdpaParameters:
 ...
 KernelArgs: "intel_iommu=on iommu=pt"

To enable an AMD IOMMU, set KernelArgs to "amd_iommu=on iommu=pt".

NOTE

When you first add the KernelArgs parameter to the configuration of a role, the
overcloud nodes automatically reboot during overcloud deployment. If required,
you can disable the automatic rebooting of nodes and instead perform node
reboots manually after each overcloud deployment. For more information, see
Configuring manual node reboot to define KernelArgs.

5. Open your network environment file, and add the following configuration to define the physical
network:

parameter_defaults:
 ...
 NeutronBridgeMappings:
 - <bridge_map_1>
 - <bridge_map_n>
 NeutronTunnelTypes: '<tunnel_types>'
 NeutronNetworkType: '<network_types>'
 NeutronNetworkVLANRanges:
 - <network_vlan_range_1>
 - <network_vlan_range_n>

Replace <bridge_map_1>, and all bridge mappings up to <bridge_map_n>, with the logical

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

110

Replace <bridge_map_1>, and all bridge mappings up to <bridge_map_n>, with the logical
to physical bridge mappings that you want to use for the VDPA bridge. For example,
tenant:br-tenant.

Replace <tunnel_types> with a comma-separated list of the tunnel types for the project
network. For example, geneve.

Replace <network_types> with a comma-separated list of the project network types for
the Networking service (neutron). The first type that you specify is used until all available
networks are exhausted, then the next type is used. For example, geneve,vlan.

Replace <network_vlan_range_1>, and all physical network and VLAN ranges up to
<network_vlan_range_n>, with the ML2 and OVN VLAN mapping ranges that you want to
support. For example, datacentre:1:1000,tenant:100:299.

6. Add your custom environment files to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -r /home/stack/templates/roles_data_vdpa.yaml \
 -e /home/stack/templates/network-environment.yaml \
 -e /home/stack/templates/vdpa_compute.yaml \
 -e /home/stack/templates/overcloud-baremetal-deployed.yaml \
 -e /home/stack/templates/node-info.yaml

Verification

1. Create an instance with a VDPA device. For more information, see Creating an instance with a
VDPA interface in the Creating and managing instances guide.

2. Log in to the instance as a cloud user. For more information, see Connecting to an instance in
the Creating and managing instances guide.

3. Verify that the VDPA device is accessible from the instance:

$ openstack port show vdpa-port

CHAPTER 9. CONFIGURING VDPA COMPUTE NODES TO ENABLE INSTANCES THAT USE VDPA PORTS

111

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/creating_and_managing_instances/index#proc_creating-an-instance-with-a-vdpa-interface_osp
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/creating_and_managing_instances/index#assembly_connecting-to-an-instance_instances

CHAPTER 10. CONFIGURING VIRTUAL GPUS FOR INSTANCES
To support GPU-based rendering on your instances, you can define and manage virtual GPU (vGPU)
resources according to your available physical GPU devices and your hypervisor type. You can use this
configuration to divide the rendering workloads between all your physical GPU devices more effectively,
and to have more control over scheduling your vGPU-enabled instances.

To enable vGPU in the Compute (nova) service, create flavors that your cloud users can use to create
Red Hat Enterprise Linux (RHEL) instances with vGPU devices. Each instance can then support GPU
workloads with virtual GPU devices that correspond to the physical GPU devices.

The Compute service tracks the number of vGPU devices that are available for each GPU profile you
define on each host. The Compute service schedules instances to these hosts based on the flavor,
attaches the devices, and monitors usage on an ongoing basis. When an instance is deleted, the
Compute service adds the vGPU devices back to the available pool.

IMPORTANT

Red Hat enables the use of NVIDIA vGPU in RHOSP without the requirement for support
exceptions. However, Red Hat does not provide technical support for the NVIDIA vGPU
drivers. The NVIDIA vGPU drivers are shipped and supported by NVIDIA. You require an
NVIDIA Certified Support Services subscription to obtain NVIDIA Enterprise Support for
NVIDIA vGPU software. For issues that result from the use of NVIDIA vGPUs where you
are unable to reproduce the issue on a supported component, the following support
policies apply:

When Red Hat does not suspect that the third-party component is involved in the
issue, the normal Scope of Support and Red Hat SLA apply.

When Red Hat suspects that the third-party component is involved in the issue,
the customer will be directed to NVIDIA in line with the Red Hat third party
support and certification policies. For more information, see the Knowledge Base
article Obtaining Support from NVIDIA .

10.1. SUPPORTED CONFIGURATIONS AND LIMITATIONS

Supported GPU cards

For a list of supported NVIDIA GPU cards, see Virtual GPU Software Supported Products on the NVIDIA
website.

Limitations when using vGPU devices

Each instance can use only one vGPU resource.

Live migration of vGPU instances between hosts is not supported.

Evacuation of vGPU instances is not supported.

If you need to reboot the Compute node that hosts the vGPU instances, the vGPUs are not
automatically reassigned to the recreated instances. You must either cold migrate the instances
before you reboot the Compute node, or manually allocate each vGPU to the correct instance
after reboot. To manually allocate each vGPU, you must retrieve the mdev UUID from the
instance XML for each vGPU instance that runs on the Compute node before you reboot. You
can use the following command to discover the mdev UUID for each instance:

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

112

https://access.redhat.com/support/offerings/production/soc
https://access.redhat.com/support/offerings/production/sla
https://access.redhat.com/third-party-software-support
https://access.redhat.com/solutions/5174941
https://docs.nvidia.com/grid/latest/product-support-matrix/index.html

virsh dumpxml <instance_name> | grep mdev

Replace <instance_name> with the libvirt instance name, OS-EXT-SRV-
ATTR:instance_name, returned in a /servers request to the Compute API.

Suspend operations on a vGPU-enabled instance is not supported due to a libvirt limitation.
Instead, you can snapshot or shelve the instance.

By default, vGPU types on Compute hosts are not exposed to API users. To expose the vGPU
types on Compute hosts to API users, you must configure resource provider traits and create
flavors that require the traits. For more information, see Creating a custom vGPU resource
provider trait. Alternatively, if you only have one vGPU type, you can grant access by adding the
hosts to a host aggregate. For more information, see Creating and managing host aggregates .

If you use NVIDIA accelerator hardware, you must comply with the NVIDIA licensing
requirements. For example, NVIDIA vGPU GRID requires a licensing server. For more
information about the NVIDIA licensing requirements, see NVIDIA License Server Release Notes
on the NVIDIA website.

10.2. CONFIGURING VGPU ON THE COMPUTE NODES

To enable your cloud users to create instances that use a virtual GPU (vGPU), you must configure the
Compute nodes that have the physical GPUs:

1. Designate Compute nodes for vGPU.

2. Configure the Compute node for vGPU.

3. Deploy the overcloud.

4. Optional: Create custom traits for vGPU types.

5. Optional: Create a custom GPU instance image.

6. Create a vGPU flavor for launching instances that have vGPU.

TIP

If the GPU hardware is limited, you can also configure a host aggregate to optimize scheduling on the
vGPU Compute nodes. To schedule only instances that request vGPUs on the vGPU Compute nodes,
create a host aggregate of the vGPU Compute nodes, and configure the Compute scheduler to place
only vGPU instances on the host aggregate. For more information, see Creating and managing host
aggregates and Filtering by isolating host aggregates .

NOTE

To use an NVIDIA GRID vGPU, you must comply with the NVIDIA GRID licensing
requirements and you must have the URL of your self-hosted license server. For more
information, see the NVIDIA License Server Release Notes web page.

10.2.1. Prerequisites

You have downloaded the NVIDIA GRID host driver RPM package that corresponds to your
GPU device from the NVIDIA website. To determine which driver you need, see the NVIDIA
Driver Downloads Portal. You must be a registered NVIDIA customer to download the drivers

CHAPTER 10. CONFIGURING VIRTUAL GPUS FOR INSTANCES

113

https://docs.nvidia.com/grid/latest/grid-license-server-release-notes/index.html
https://docs.nvidia.com/grid/latest/grid-license-server-release-notes/index.html
https://www.nvidia.com/Download/index.aspx?lang=en-us

from the portal.

You have built a custom overcloud image that has the NVIDIA GRID host driver installed.

10.2.2. Designating Compute nodes for vGPU

To designate Compute nodes for vGPU workloads, you must create a new role file to configure the
vGPU role, and configure the bare metal nodes with a GPU resource class to use to tag the GPU-
enabled Compute nodes.

NOTE

The following procedure applies to new overcloud nodes that have not yet been
provisioned. To assign a resource class to an existing overcloud node that has already
been provisioned, you must use the scale down procedure to unprovision the node, then
use the scale up procedure to reprovision the node with the new resource class
assignment. For more information, see Scaling overcloud nodes .

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Generate a new roles data file named roles_data_gpu.yaml that includes the Controller,
Compute, and ComputeGpu roles, along with any other roles that you need for the overcloud:

(undercloud)$ openstack overcloud roles \
 generate -o /home/stack/templates/roles_data_gpu.yaml \
 Compute:ComputeGpu Compute Controller

4. Open roles_data_gpu.yaml and edit or add the following parameters and sections:

Section/Parameter Current value New value

Role comment Role: Compute Role: ComputeGpu

Role name name: Compute name: ComputeGpu

description Basic Compute Node role GPU Compute Node role

HostnameFormatDefault -compute- -computegpu-

deprecated_nic_config_na
me

compute.yaml compute-gpu.yaml

5. Register the GPU-enabled Compute nodes for the overcloud by adding them to your node
definition template, node.json or node.yaml. For more information, see Registering nodes for
the overcloud in the Installing and managing Red Hat OpenStack Platform with director guide.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

114

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_scaling-overcloud-nodes
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#proc_registering-nodes-for-the-overcloud_ironic_provisioning

1

6. Inspect the node hardware:

(undercloud)$ openstack overcloud node introspect --all-manageable \
 --provide

For more information, see Creating an inventory of the bare-metal node hardware in the
Installing and managing Red Hat OpenStack Platform with director guide.

7. Tag each bare metal node that you want to designate for GPU workloads with a custom GPU
resource class:

(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.GPU <node>

Replace <node> with the ID of the baremetal node.

8. Add the ComputeGpu role to your node definition file, overcloud-baremetal-deploy.yaml, and
define any predictive node placements, resource classes, network topologies, or other
attributes that you want to assign to your nodes:

- name: Controller
 count: 3
- name: Compute
 count: 3
- name: ComputeGpu
 count: 1
 defaults:
 resource_class: baremetal.GPU
 network_config:
 template: /home/stack/templates/nic-config/myRoleTopology.j2 1

You can reuse an existing network topology or create a new custom network interface
template for the role. For more information, see Custom network interface templates in
the Installing and managing Red Hat OpenStack Platform with director guide. If you do not
define the network definitions by using the network_config property, then the default
network definitions are used.

For more information about the properties you can use to configure node attributes in your
node definition file, see Bare metal node provisioning attributes . For an example node definition
file, see Example node definition file .

9. Run the provisioning command to provision the new nodes for your role:

(undercloud)$ openstack overcloud node provision \
--stack <stack> \
[--network-config \]
--output /home/stack/templates/overcloud-baremetal-deployed.yaml \
/home/stack/templates/overcloud-baremetal-deploy.yaml

Replace <stack> with the name of the stack for which the bare-metal nodes are
provisioned. If not specified, the default is overcloud.

Include the --network-config optional argument to provide the network definitions to the
cli-overcloud-node-network-config.yaml Ansible playbook. If you do not define the

CHAPTER 10. CONFIGURING VIRTUAL GPUS FOR INSTANCES

115

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_creating-an-inventory-of-the-bare-metal-node-hardware_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_custom-network-interface-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#ref_bare-metal-node-provisioning-attributes_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#ref_example-node-definition-file_ironic_provisioning

network definitions by using the network_config property, then the default network
definitions are used.

10. Monitor the provisioning progress in a separate terminal. When provisioning is successful, the
node state changes from available to active:

(undercloud)$ watch openstack baremetal node list

11. If you did not run the provisioning command with the --network-config option, then configure
the <Role>NetworkConfigTemplate parameters in your network-environment.yaml file to
point to your NIC template files:

parameter_defaults:
 ComputeNetworkConfigTemplate: /home/stack/templates/nic-configs/compute.j2
 ComputeGpuNetworkConfigTemplate: /home/stack/templates/nic-configs/<gpu_net_top>.j2
 ControllerNetworkConfigTemplate: /home/stack/templates/nic-configs/controller.j2

Replace <gpu_net_top> with the name of the file that contains the network topology of the
ComputeGpu role, for example, compute.yaml to use the default network topology.

10.2.3. Configuring the Compute node for vGPU and deploying the overcloud

You need to retrieve and assign the vGPU type that corresponds to the physical GPU device in your
environment, and prepare the environment files to configure the Compute node for vGPU.

Procedure

1. Install Red Hat Enterprise Linux and the NVIDIA GRID driver on a temporary Compute node and
launch the node.

2. Virtual GPUs are mediated devices, or mdev type devices. Retrieve the PCI address for each
mdev device on each Compute node:

$ ls /sys/class/mdev_bus/

The PCI address is used as the device driver directory name, for example, 0000:84:00.0.

3. Review the supported mdev types for each available pGPU device on each Compute node to
discover the available vGPU types:

$ ls /sys/class/mdev_bus/<mdev_device>/mdev_supported_types

Replace <mdev_device> with the PCI address for the mdev device, for example,
0000:84:00.0.
For example, the following Compute node has 4 pGPUs, and each pGPU supports the same
11 vGPU types:

[root@overcloud-computegpu-0 ~]# ls
/sys/class/mdev_bus/0000:84:00.0/mdev_supported_types:
nvidia-35 nvidia-36 nvidia-37 nvidia-38 nvidia-39 nvidia-40 nvidia-41 nvidia-42 nvidia-43
nvidia-44 nvidia-45
[root@overcloud-computegpu-0 ~]# ls
/sys/class/mdev_bus/0000:85:00.0/mdev_supported_types:
nvidia-35 nvidia-36 nvidia-37 nvidia-38 nvidia-39 nvidia-40 nvidia-41 nvidia-42 nvidia-43

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

116

nvidia-44 nvidia-45
[root@overcloud-computegpu-0 ~]# ls
/sys/class/mdev_bus/0000:86:00.0/mdev_supported_types:
nvidia-35 nvidia-36 nvidia-37 nvidia-38 nvidia-39 nvidia-40 nvidia-41 nvidia-42 nvidia-43
nvidia-44 nvidia-45
[root@overcloud-computegpu-0 ~]# ls
/sys/class/mdev_bus/0000:87:00.0/mdev_supported_types:
nvidia-35 nvidia-36 nvidia-37 nvidia-38 nvidia-39 nvidia-40 nvidia-41 nvidia-42 nvidia-43
nvidia-44 nvidia-45

4. Create a gpu.yaml file to specify the vGPU types that each GPU device supports:

parameter_defaults:
 ComputeGpuExtraConfig:
 nova::compute::vgpu::enabled_vgpu_types:
 - nvidia-35
 - nvidia-36

5. Optional: To configure more than one vGPU type, map the supported vGPU types to the
pGPUs:

parameter_defaults:
 ComputeGpuExtraConfig:
 nova::compute::vgpu::enabled_vgpu_types:
 - nvidia-35
 - nvidia-36
 NovaVGPUTypesDeviceAddressesMapping: {'vgpu_<vgpu_type>': ['<pci_address>',
'<pci_address>'],'vgpu_<vgpu_type>': ['<pci_address>', '<pci_address>']}

Replace <vgpu_type> with the name of the vGPU type to create a label for the vGPU
group, for example, vgpu_nvidia-35. Use a comma-separated list of vgpu_<vgpu_type>
definitions to map additional vGPU types.

Replace <pci_address> with the PCI address of a pGPU device that supports the vGPU
type, for example, 0000:84:00.0. Use a comma-separated list of <pci_address> definitions
to map the vGPU group to additional pGPUs.
Example:

NovaVGPUTypesDeviceAddressesMapping: {'vgpu_nvidia-35': ['0000:84:00.0',
'0000:85:00.0'],'vgpu_nvidia-36': ['0000:86:00.0']}

The nvidia-35 vGPU type is supported by the pGPUs that are in the PCI addresses
0000:84:00.0 and 0000:85:00.0.

The nvidia-36 vGPU type is supported only by the pGPUs that are in the PCI address
0000:86:00.0.

6. Save the updates to your Compute environment file.

7. Add your new role and environment files to the stack with your other environment files and
deploy the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -r /home/stack/templates/roles_data_gpu.yaml \

CHAPTER 10. CONFIGURING VIRTUAL GPUS FOR INSTANCES

117

 -e /home/stack/templates/network-environment.yaml \
 -e /home/stack/templates/gpu.yaml \
 -e /home/stack/templates/overcloud-baremetal-deployed.yaml \
 -e /home/stack/templates/node-info.yaml

10.3. CREATING A CUSTOM VGPU RESOURCE PROVIDER TRAIT

You can create custom resource provider traits for each vGPU type that your RHOSP environment
supports. You can then create flavors that your cloud users can use to launch instances on hosts that
have those custom traits. Custom traits are defined in uppercase letters, and must begin with the prefix
CUSTOM_. For more information on resource provider traits, see Filtering by resource provider traits .

Procedure

1. Create a new trait:

(overcloud)$ openstack --os-placement-api-version 1.6 trait \
 create CUSTOM_<TRAIT_NAME>

Replace <TRAIT_NAME> with the name of the trait. The name can contain only the letters
A through Z, the numbers 0 through 9 and the underscore "_" character.

2. Collect the existing resource provider traits of each host:

(overcloud)$ existing_traits=$(openstack --os-placement-api-version 1.6 resource provider
trait list -f value <host_uuid> | sed 's/^/--trait /')

3. Check the existing resource provider traits for the traits you require a host or host aggregate to
have:

(overcloud)$ echo $existing_traits

4. If the traits you require are not already added to the resource provider, then add the existing
traits and your required traits to the resource providers for each host:

(overcloud)$ openstack --os-placement-api-version 1.6 \
 resource provider trait set $existing_traits \
 --trait CUSTOM_<TRAIT_NAME> \
 <host_uuid>

Replace <TRAIT_NAME> with the name of the trait that you want to add to the resource
provider. You can use the --trait option more than once to add additional traits, as required.

NOTE

This command performs a full replacement of the traits for the resource
provider. Therefore, you must retrieve the list of existing resource provider
traits on the host and set them again to prevent them from being removed.

10.4. CREATING A CUSTOM GPU INSTANCE IMAGE

To enable your cloud users to create instances that use a virtual GPU (vGPU), you can create a custom

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

118

To enable your cloud users to create instances that use a virtual GPU (vGPU), you can create a custom
vGPU-enabled image for launching instances. Use the following procedure to create a custom vGPU-
enabled instance image with the NVIDIA GRID guest driver and license file.

Prerequisites

You have configured and deployed the overcloud with GPU-enabled Compute nodes.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the overcloudrc credential file:

$ source ~/overcloudrc

3. Create an instance with the hardware and software profile that your vGPU instances require:

(overcloud)$ openstack server create --flavor <flavor> \
 --image <image> temp_vgpu_instance

Replace <flavor> with the name or ID of the flavor that has the hardware profile that your
vGPU instances require. For information about creating a vGPU flavor, see Creating a
vGPU flavor for instances.

Replace <image> with the name or ID of the image that has the software profile that your
vGPU instances require. For information about downloading RHEL cloud images, see
Creating RHEL KVM or RHOSP-compatible images in Creating and managing images .

4. Log in to the instance as a cloud-user.

5. Create the gridd.conf NVIDIA GRID license file on the instance, following the NVIDIA guidance:
Licensing an NVIDIA vGPU on Linux by Using a Configuration File .

6. Install the GPU driver on the instance. For more information about installing an NVIDIA driver,
see Installing the NVIDIA vGPU Software Graphics Driver on Linux .

NOTE

Use the hw_video_model image property to define the GPU driver type. You
can choose none if you want to disable the emulated GPUs for your vGPU
instances. For more information about supported drivers, see Image
configuration parameters.

7. Create an image snapshot of the instance:

(overcloud)$ openstack server image create \
 --name vgpu_image temp_vgpu_instance

8. Optional: Delete the instance.

10.5. CREATING A VGPU FLAVOR FOR INSTANCES

To enable your cloud users to create instances for GPU workloads, you can create a GPU flavor that can

CHAPTER 10. CONFIGURING VIRTUAL GPUS FOR INSTANCES

119

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_images/assembly_glance-creating-images_osp#doc-wrapper
https://docs.nvidia.com/grid/latest/grid-licensing-user-guide/index.html#licensing-grid-vgpu-linux-config-file
https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#installing-vgpu-drivers-linux
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_images/assembly_image-config-parameters_glance-creating-images

To enable your cloud users to create instances for GPU workloads, you can create a GPU flavor that can
be used to launch vGPU instances, and assign the vGPU resource to that flavor.

Prerequisites

You have configured and deployed the overcloud with GPU-designated Compute nodes.

Procedure

1. Create an NVIDIA GPU flavor, for example:

(overcloud)$ openstack flavor create --vcpus 6 \
 --ram 8192 --disk 100 m1.small-gpu

2. Assign a vGPU resource to the flavor:

(overcloud)$ openstack flavor set m1.small-gpu \
 --property "resources:VGPU=1"

NOTE

You can assign only one vGPU for each instance.

3. Optional: To customize the flavor for a specific vGPU type, add a required trait to the flavor:

(overcloud)$ openstack flavor set m1.small-gpu \
 --property trait:CUSTOM_NVIDIA_11=required

For information on how to create custom resource provider traits for each vGPU type, see
Creating a custom vGPU resource provider trait .

10.6. LAUNCHING A VGPU INSTANCE

You can create a GPU-enabled instance for GPU workloads.

Procedure

1. Create an instance using a GPU flavor and image, for example:

(overcloud)$ openstack server create --flavor m1.small-gpu \
 --image vgpu_image --security-group web --nic net-id=internal0 \
 --key-name lambda vgpu-instance

2. Log in to the instance as a cloud-user.

3. To verify that the GPU is accessible from the instance, enter the following command from the
instance:

$ lspci -nn | grep <gpu_name>

10.7. ENABLING PCI PASSTHROUGH FOR A GPU DEVICE

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

120

You can use PCI passthrough to attach a physical PCI device, such as a graphics card, to an instance. If
you use PCI passthrough for a device, the instance reserves exclusive access to the device for
performing tasks, and the device is not available to the host.

Prerequisites

The pciutils package is installed on the physical servers that have the PCI cards.

The driver for the GPU device must be installed on the instance that the device is passed
through to. Therefore, you need to have created a custom instance image that has the required
GPU driver installed. For more information about how to create a custom instance image with
the GPU driver installed, see Creating a custom GPU instance image .

Procedure

1. To determine the vendor ID and product ID for each passthrough device type, enter the
following command on the physical server that has the PCI cards:

lspci -nn | grep -i <gpu_name>

For example, to determine the vendor and product ID for an NVIDIA GPU, enter the following
command:

lspci -nn | grep -i nvidia
3b:00.0 3D controller [0302]: NVIDIA Corporation TU104GL [Tesla T4] [10de:1eb8] (rev a1)
d8:00.0 3D controller [0302]: NVIDIA Corporation TU104GL [Tesla T4] [10de:1db4] (rev a1)

2. To determine if each PCI device has Single Root I/O Virtualization (SR-IOV) capabilities, enter
the following command on the physical server that has the PCI cards:

lspci -v -s 3b:00.0
3b:00.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)
 ...
 Capabilities: [bcc] Single Root I/O Virtualization (SR-IOV)
 ...

3. To configure the Controller node on the overcloud for PCI passthrough, create an environment
file, for example, pci_passthru_controller.yaml.

4. Add PciPassthroughFilter to the NovaSchedulerEnabledFilters parameter in
pci_passthru_controller.yaml:

parameter_defaults:
 NovaSchedulerEnabledFilters:
 - AvailabilityZoneFilter
 - ComputeFilter
 - ComputeCapabilitiesFilter
 - ImagePropertiesFilter
 - ServerGroupAntiAffinityFilter
 - ServerGroupAffinityFilter
 - PciPassthroughFilter
 - NUMATopologyFilter

5. To specify the PCI alias for the devices on the Controller node, add the following configuration

CHAPTER 10. CONFIGURING VIRTUAL GPUS FOR INSTANCES

121

5. To specify the PCI alias for the devices on the Controller node, add the following configuration
to pci_passthru_controller.yaml:

If the PCI device has SR-IOV capabilities:

ControllerExtraConfig:
 nova::pci::aliases:
 - name: "t4"
 product_id: "1eb8"
 vendor_id: "10de"
 device_type: "type-PF"
 - name: "v100"
 product_id: "1db4"
 vendor_id: "10de"
 device_type: "type-PF"

If the PCI device does not have SR-IOV capabilities:

ControllerExtraConfig:
 nova::pci::aliases:
 - name: "t4"
 product_id: "1eb8"
 vendor_id: "10de"
 - name: "v100"
 product_id: "1db4"
 vendor_id: "10de"

For more information on configuring the device_type field, see PCI passthrough device
type field.

NOTE

If the nova-api service is running in a role other than the Controller, then
replace ControllerExtraConfig with the user role, in the format
<Role>ExtraConfig.

6. To configure the Compute node on the overcloud for PCI passthrough, create an environment
file, for example, pci_passthru_compute.yaml.

7. To specify the available PCIs for the devices on the Compute node, add the following to
pci_passthru_compute.yaml:

parameter_defaults:
 NovaPCIPassthrough:
 - vendor_id: "10de"
 product_id: "1eb8"

8. You must create a copy of the PCI alias on the Compute node for instance migration and resize
operations. To specify the PCI alias for the devices on the Compute node, add the following to
pci_passthru_compute.yaml:

If the PCI device has SR-IOV capabilities:

ComputeExtraConfig:
 nova::pci::aliases:

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

122

 - name: "t4"
 product_id: "1eb8"
 vendor_id: "10de"
 device_type: "type-PF"
 - name: "v100"
 product_id: "1db4"
 vendor_id: "10de"
 device_type: "type-PF"

If the PCI device does not have SR-IOV capabilities:

ComputeExtraConfig:
 nova::pci::aliases:
 - name: "t4"
 product_id: "1eb8"
 vendor_id: "10de"
 - name: "v100"
 product_id: "1db4"
 vendor_id: "10de"

NOTE

The Compute node aliases must be identical to the aliases on the Controller
node.

9. To enable IOMMU in the server BIOS of the Compute nodes to support PCI passthrough, add
the KernelArgs parameter to pci_passthru_compute.yaml:

parameter_defaults:
 ...
 ComputeParameters:
 KernelArgs: "intel_iommu=on iommu=pt"

NOTE

When you first add the KernelArgs parameter to the configuration of a role, the
overcloud nodes are automatically rebooted. If required, you can disable the
automatic rebooting of nodes and instead perform node reboots manually after
each overcloud deployment. For more information, see Configuring manual node
reboot to define KernelArgs.

10. Add your custom environment files to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/pci_passthru_controller.yaml \
 -e /home/stack/templates/pci_passthru_compute.yaml

11. Configure a flavor to request the PCI devices. The following example requests two devices,
each with a vendor ID of 10de and a product ID of 13f2:

CHAPTER 10. CONFIGURING VIRTUAL GPUS FOR INSTANCES

123

openstack flavor set m1.large \
 --property "pci_passthrough:alias"="t4:2"

Verification

1. Create an instance with a PCI passthrough device:

openstack server create --flavor m1.large \
 --image <custom_gpu> --wait test-pci

Replace <custom_gpu> with the name of your custom instance image that has the required
GPU driver installed.

2. Log in to the instance as a cloud user. For more information, see Connecting to an instance .

3. To verify that the GPU is accessible from the instance, enter the following command from the
instance:

$ lspci -nn | grep <gpu_name>

4. To check the NVIDIA System Management Interface status, enter the following command from
the instance:

$ nvidia-smi

Example output:

| NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 10.2 |
|---+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===
====|
| 0 Tesla T4 Off | 00000000:01:00.0 Off | 0 |
| N/A 43C P0 20W / 70W | 0MiB / 15109MiB | 0% Default |

| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===
==|
No running processes found

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

124

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_instances/assembly_connecting-to-an-instance_instances

CHAPTER 11. ADDING METADATA TO INSTANCES
The Compute (nova) service uses metadata to pass configuration information to instances on launch.
The instance can access the metadata by using a config drive or the metadata service.

Config drive

Config drives are special drives that you can attach to an instance when it boots. The config drive is
presented to the instance as a read-only drive. The instance can mount this drive and read files from
it to get information that is normally available through the metadata service.

Metadata service

The Compute service provides the metadata service as a REST API, which can be used to retrieve
data specific to an instance. Instances access this service at 169.254.169.254 or at fe80::a9fe:a9fe.

11.1. TYPES OF INSTANCE METADATA

Cloud users, cloud administrators, and the Compute service can pass metadata to instances:

Cloud user provided data

Cloud users can specify additional data to use when they launch an instance, such as a shell script
that the instance runs on boot. The cloud user can pass data to instances by using the user data
feature, and by passing key-value pairs as required properties when creating or updating an instance.

Cloud administrator provided data

The RHOSP administrator uses the vendordata feature to pass data to instances. The Compute
service provides the vendordata modules StaticJSON and DynamicJSON to allow administrators to
pass metadata to instances:

StaticJSON: (Default) Use for metadata that is the same for all instances.

DynamicJSON: Use for metadata that is different for each instance. This module makes a
request to an external REST service to determine what metadata to add to an instance.

Vendordata configuration is located in one of the following read-only files on the instance:

/openstack/{version}/vendor_data.json

/openstack/{version}/vendor_data2.json

Compute service provided data

The Compute service uses its internal implementation of the metadata service to pass information to
the instance, such as the requested hostname for the instance, and the availability zone the instance
is in. This happens by default and requires no configuration by the cloud user or administrator.

11.2. ADDING A CONFIG DRIVE TO ALL INSTANCES

As an administrator, you can configure the Compute service to always create a config drive for
instances, and populate the config drive with metadata that is specific to your deployment. For example,
you might use a config drive for the following reasons:

To pass a networking configuration when your deployment does not use DHCP to assign IP
addresses to instances. You can pass the IP address configuration for the instance through the
config drive, which the instance can mount and access before you configure the network
settings for the instance.

CHAPTER 11. ADDING METADATA TO INSTANCES

125

To pass data to an instance that is not known to the user starting the instance, for example, a
cryptographic token to be used to register the instance with Active Directory post boot.

To create a local cached disk read to manage the load of instance requests, which reduces the
impact of instances accessing the metadata servers regularly to check in and build facts.

Any instance operating system that is capable of mounting an ISO 9660 or VFAT file system can use
the config drive.

Procedure

1. Open your Compute environment file.

2. To always attach a config drive when launching an instance, set the following parameter to True:

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::force_config_drive: 'true'

3. Optional: To change the format of the config drive from the default value of iso9660 to vfat,
add the config_drive_format parameter to your configuration:

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::force_config_drive: 'true'
 nova::compute::config_drive_format: vfat

4. Save the updates to your Compute environment file.

5. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml \

Verification

1. Create an instance:

(overcloud)$ openstack server create --flavor m1.tiny \
 --image cirros test-config-drive-instance

2. Log in to the instance.

3. Mount the config drive:

If the instance OS uses udev:

mkdir -p /mnt/config
mount /dev/disk/by-label/config-2 /mnt/config

If the instance OS does not use udev, you need to first identify the block device that
corresponds to the config drive:

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

126

blkid -t LABEL="config-2" -odevice
/dev/vdb
mkdir -p /mnt/config
mount /dev/vdb /mnt/config

4. Inspect the files in the mounted config drive directory, mnt/config/openstack/{version}/, for
your metadata.

11.3. ADDING DYNAMIC METADATA TO INSTANCES

You can configure your deployment to create instance-specific metadata, and make the metadata
available to that instance through a JSON file.

TIP

You can use dynamic metadata on the undercloud to integrate director with a Red Hat Identity
Management (IdM) server. An IdM server can be used as a certificate authority and manage the
overcloud certificates when SSL/TLS is enabled on the overcloud. For more information, see
Implementing TLS-e with Ansible in the Hardening Red Hat OpenStack Platform .

Procedure

1. Open your Compute environment file.

2. Add DynamicJSON to the vendordata provider module:

parameter_defaults:
 ControllerExtraConfig:
 nova::vendordata::vendordata_providers:
 - DynamicJSON

3. Specify the REST services to contact to generate the metadata. You can specify as many target
REST services as required, for example:

parameter_defaults:
 ControllerExtraConfig:
 nova::vendordata::vendordata_providers:
 - DynamicJSON
 nova::vendordata::vendordata_dynamic_targets:
 "target1@http://127.0.0.1:125"
 nova::vendordata::vendordata_dynamic_targets:
 "target2@http://127.0.0.1:126"

The Compute service generates the JSON file, vendordata2.json, to contain the metadata
retrieved from the configured target services, and stores it in the config drive directory.

NOTE

Do not use the same name for a target service more than once.

4. Save the updates to your Compute environment file.

5. Add your Compute environment file to the stack with your other environment files and deploy

CHAPTER 11. ADDING METADATA TO INSTANCES

127

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/hardening_red_hat_openstack_platform/assembly_securing-rhos-with-tls-and-pki_security_and_hardening#proc_implementing-tls-e-with-ansible_encryption-and-key-management

5. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

128

CHAPTER 12. CONFIGURING MANUAL NODE REBOOT TO
DEFINE KERNELARGS

Overcloud nodes are automatically rebooted when the overcloud deployment includes setting the
KernelArgs for the first time. Rebooting nodes can be an issue for existing workloads if you are adding
KernelArgs to a deployment that is already in production. You can disable the automatic rebooting of
nodes when updating a deployment, and instead perform node reboots manually after each overcloud
deployment.

NOTE

If you disable automatic reboot and then add new Compute nodes to your deployment,
the new nodes will not be rebooted during their initial provisioning. This might cause
deployment errors because the configuration of KernelArgs is applied only after a
reboot.

12.1. CONFIGURING MANUAL NODE REBOOT TO DEFINE KERNELARGS

You can disable the automatic rebooting of nodes when you configure KernelArgs for the first time,
and instead reboot the nodes manually.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Enable the KernelArgsDeferReboot role parameter in a custom environment file, for example,
kernelargs_manual_reboot.yaml:

parameter_defaults:
 <Role>Parameters:
 KernelArgsDeferReboot: True

4. Add your custom environment file to the stack with your other environment files and deploy the
overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/kernelargs_manual_reboot.yaml

5. Retrieve a list of your Compute nodes to identify the host name of the node that you want to
reboot:

(undercloud)$ source ~/overcloudrc
(overcloud)$ openstack compute service list

6. Disable the Compute service on the Compute node you want to reboot, to prevent the
Compute scheduler from assigning new instances to the node:

CHAPTER 12. CONFIGURING MANUAL NODE REBOOT TO DEFINE KERNELARGS

129

(overcloud)$ openstack compute service set <node> nova-compute --disable

Replace <node> with the host name of the node you want to disable the Compute service on.

7. Retrieve a list of the instances hosted on the Compute node that you want to migrate:

(overcloud)$ openstack server list --host <node_UUID> --all-projects

8. Migrate the instances to another Compute node. For information on migrating instances, see
Migrating virtual machine instances between Compute nodes .

9. Log in to the node that you want to reboot.

10. Reboot the node:

[tripleo-admin@overcloud-compute-0 ~]$ sudo reboot

11. Wait until the node boots.

12. Re-enable the Compute node:

(overcloud)$ openstack compute service set <node_UUID> nova-compute --enable

13. Check that the Compute node is enabled:

(overcloud)$ openstack compute service list

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

130

CHAPTER 13. CONFIGURING INSTANCE SECURITY
As a cloud administrator, you can configure the following security features for the instances that run on
your cloud:

UEFI Secure boot: You can create a UEFI Secure Boot flavor with the property key
os:secure_boot enabled. Cloud users can use this flavor to create instances that are protected
with UEFI Secure Boot. For more information, see UEFI Secure Boot.

VNC console security: You can secure connections to the VNC console for an instance by
configuring the allowed TLS ciphers and the minimum protocol version to enforce for incoming
client connections to the VNC proxy service. For more information, see Securing connections to
the VNC console of an instance.

Emulated virtual Trusted Platform Module (vTPM): You can provide cloud users the ability to
create instances that have emulated vTPM devices. For more information, see Configuring
Compute nodes to provide emulated Trusted Platform Module (TPM) devices for instances.

SEV: Use to enable your cloud users to create instances that use memory encryption. For more
information, see Configuring AMD SEV Compute nodes to provide memory encryption for
instances.

13.1. SECURING CONNECTIONS TO THE VNC CONSOLE OF AN
INSTANCE

You can secure connections to the VNC console for an instance by configuring the allowed TLS ciphers
and the minimum protocol version to enforce for incoming client connections to the VNC proxy service.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Open your Compute environment file.

4. Configure the minimum protocol version to use for VNC console connections to instances:

parameter_defaults:
 ...
 NovaVNCProxySSLMinimumVersion: <version>

Replace <version> with the minimum allowed SSL/TLS protocol version. Set to one of the
following valid values:

default: Uses the underlying system OpenSSL defaults.

tlsv1_1: Use if you have clients that do not support a later version.

NOTE

TLS 1.0 and TLS 1.1 are deprecated in RHEL 8, and not supported in RHEL 9.

CHAPTER 13. CONFIGURING INSTANCE SECURITY

131

tlsv1_2: Use if you want to configure the SSL/TLS ciphers to use for VNC console
connections to instances.

tlsv1_3: Use if you want to use the standard cipher library for TLSv1.3. Configuration of the
NovaVNCProxySSLCiphers parameter is ignored.

5. If you set the minimum allowed SSL/TLS protocol version to tlsv1_2, then configure the
SSL/TLS ciphers to use for VNC console connections to instances:

parameter_defaults:
 NovaVNCProxySSLCiphers: <ciphers>

Replace <ciphers> with a colon-delimited list of the cipher suites to allow. Retrieve the list of
available ciphers from openssl.

6. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

13.2. CONFIGURING COMPUTE NODES TO PROVIDE EMULATED
TRUSTED PLATFORM MODULE (TPM) DEVICES FOR INSTANCES

As a cloud administrator, you can provide cloud users the ability to create instances that have emulated
virtual Trusted Platform Module (vTPM) devices.

To enable your cloud users to create instances that have vTPM devices, you must perform the following
tasks:

1. Enable support for instances with vTPM devices and deploy the overcloud.

2. Create a flavor or image for launching instances with vTPM devices.

Prerequisites

The Key Manager service (barbican) is included in your RHOSP deployment to store vTPM keys.
For information on managing secrets with the Key Manager service, see Managing secrets with
the Key Manager service.

Limitations of instances with vTPM devices

You cannot live migrate or evacuate instances that have vTPM devices.

You cannot rescue or shelve instances that have vTPM devices.

The instance must have the Q35 machine type.

13.2.1. Enabling support for instances with vTPM devices

To enable your cloud users to create instances that have vTPM devices, you must configure the
overcloud to enable vTPM devices for instances.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

132

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/managing_secrets_with_the_key_manager_service

Procedure

1. Open your Compute environment file.

2. Enable support for vTPM devices:

parameter_defaults:
 ComputeParameters:
 ...
 NovaEnableVTPM: True

3. Save the updates to your Compute environment file.

4. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e /home/stack/templates/overcloud-baremetal-deployed.yaml \
 -e /home/stack/templates/node-info.yaml \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

13.2.2. Creating an image for vTPM devices

When the overcloud is enabled to create instances that have vTPM devices, you can create a vTPM
device instance image that your cloud users can use to launch instances that have vTPM devices.

NOTE

If both the flavor and the image specify a TPM device model and the two values do not
match, scheduling fails.

Procedure

1. Create a new image for vTPM devices:

(overcloud)$ openstack image create ... \
 --property hw_tpm_version=2.0 vtpm-image

NOTE

TPM version 1.2 is not supported.

2. Optional: Specify the TPM model to use:

(overcloud)$ openstack image set \
 --property hw_tpm_model=<tpm_model> \
 vtpm-image

Replace <tpm_model> with the model of TPM device to use. Set to one of the following
valid values:

tpm-tis: (Default) TPM Interface Specification.

CHAPTER 13. CONFIGURING INSTANCE SECURITY

133

tpm-crb: Command-Response Buffer.

NOTE

The Compute service ignores the configuration of the hw_tpm_model property
if the hw_tpm_version property is not set.

Verification

1. Create an instance by using the vTPM image:

(overcloud)$ openstack server create --flavor m1.small \
 --image vtpm-image vtpm-instance

2. Log in to the instance as a cloud user.

3. To verify that the instance has access to a vTPM device, enter the following command from the
instance:

$ dmesg | grep -i tpm

13.2.3. Creating a flavor for vTPM devices

When the overcloud is enabled to create instances that have vTPM devices, you can create one or more
vTPM device flavors that your cloud users can use to launch instances that have vTPM devices.

NOTE

A vTPM device flavor is necessary only when the hw_tpm_model and hw_tpm_version
properties are not set on an image. If both the flavor and the image specify a TPM device
model and the two values do not match, scheduling fails.

Procedure

1. Create a flavor for vTPM devices:

(overcloud)$ openstack flavor create --vcpus 1 --ram 512 --disk 2 \
 --property hw:tpm_version=2.0 \
 vtpm-flavor

NOTE

TPM version 1.2 is not supported.

2. Optional: Specify the TPM model to use:

(overcloud)$ openstack flavor set \
 --property hw:tpm_model=<tpm_model> \
 vtpm-flavor

Replace <tpm_model> with the model of TPM device to use. Set to one of the following
valid values:

tpm-tis: (Default) TPM Interface Specification.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

134

tpm-tis: (Default) TPM Interface Specification.

tpm-crb: Command-Response Buffer. Compatible only with TPM version 2.0.

NOTE

The Compute service ignores the configuration of the hw:tpm_model
property if the hw:tpm_version property is not set.

Verification

1. Create an instance by using the vTPM flavor:

(overcloud)$ openstack server create --flavor vtpm-flavor \
 --image rhel-image vtpm-instance

2. Log in to the instance as a cloud user.

3. To verify that the instance has access to a vTPM device, enter the following command from the
instance:

$ dmesg | grep -i tpm

CHAPTER 13. CONFIGURING INSTANCE SECURITY

135

CHAPTER 14. DATABASE CLEANING
The Compute service includes an administrative tool, nova-manage, that you can use to perform
deployment, upgrade, clean-up, and maintenance-related tasks, such as applying database schemas,
performing online data migrations during an upgrade, and managing and cleaning up the database.

Director automates the following database management tasks on the overcloud by using cron:

Archives deleted instance records by moving the deleted rows from the production tables to
shadow tables.

Purges deleted rows from the shadow tables after archiving is complete.

14.1. CONFIGURING DATABASE MANAGEMENT

The cron jobs use default settings to perform database management tasks. By default, the database
archiving cron jobs run daily at 00:01, and the database purging cron jobs run daily at 05:00, both with a
jitter between 0 and 3600 seconds. You can modify these settings as required by using heat
parameters.

Procedure

1. Open your Compute environment file.

2. Add the heat parameter that controls the cron job that you want to add or modify. For example,
to purge the shadow tables immediately after they are archived, set the following parameter to
"True":

parameter_defaults:
 ...
 NovaCronArchiveDeleteRowsPurge: True

For a complete list of the heat parameters to manage database cron jobs, see Configuration
options for the Compute service automated database management.

3. Save the updates to your Compute environment file.

4. Add your Compute environment file to the stack with your other environment files and deploy
the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

14.2. CONFIGURATION OPTIONS FOR THE COMPUTE SERVICE
AUTOMATED DATABASE MANAGEMENT

Use the following heat parameters to enable and modify the automated cron jobs that manage the
database.

Table 14.1. Compute (nova) service cron parameters

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

136

Parameter Description

NovaCronArchiveDeleteAllCells Set this parameter to "True" to archive deleted
instance records from all cells.

Default: True

NovaCronArchiveDeleteRowsAge Use this parameter to archive deleted instance
records based on their age in days.

Set to 0 to archive data older than today in shadow
tables.

Default: 90

NovaCronArchiveDeleteRowsDestination Use this parameter to configure the file for logging
deleted instance records.

Default: /var/log/nova/nova-rowsflush.log

NovaCronArchiveDeleteRowsHour Use this parameter to configure the hour at which to
run the cron command to move deleted instance
records to another table.

Default: 0

NovaCronArchiveDeleteRowsMaxDelay Use this parameter to configure the maximum delay,
in seconds, before moving deleted instance records
to another table.

Default: 3600

NovaCronArchiveDeleteRowsMaxRows Use this parameter to configure the maximum
number of deleted instance records that can be
moved to another table.

Default: 1000

NovaCronArchiveDeleteRowsMinute Use this parameter to configure the minute past the
hour at which to run the cron command to move
deleted instance records to another table.

Default: 1

NovaCronArchiveDeleteRowsMonthday Use this parameter to configure on which day of the
month to run the cron command to move deleted
instance records to another table.

Default: * (every day)

CHAPTER 14. DATABASE CLEANING

137

NovaCronArchiveDeleteRowsMonth Use this parameter to configure in which month to
run the cron command to move deleted instance
records to another table.

Default: * (every month)

NovaCronArchiveDeleteRowsPurge Set this parameter to "True" to purge shadow tables
immediately after scheduled archiving.

Default: False

NovaCronArchiveDeleteRowsUntilComplete Set this parameter to "True" to continue to move
deleted instance records to another table until all
records are moved.

Default: True

NovaCronArchiveDeleteRowsUser Use this parameter to configure the user that owns
the crontab that archives deleted instance records
and that has access to the log file the crontab uses.

Default: nova

NovaCronArchiveDeleteRowsWeekday Use this parameter to configure on which day of the
week to run the cron command to move deleted
instance records to another table.

Default: * (every day)

NovaCronPurgeShadowTablesAge Use this parameter to purge shadow tables based on
their age in days.

Set to 0 to purge shadow tables older than today.

Default: 14

NovaCronPurgeShadowTablesAllCells Set this parameter to "True" to purge shadow tables
from all cells.

Default: True

NovaCronPurgeShadowTablesDestination Use this parameter to configure the file for logging
purged shadow tables.

Default: /var/log/nova/nova-rowspurge.log

NovaCronPurgeShadowTablesHour Use this parameter to configure the hour at which to
run the cron command to purge shadow tables.

Default: 5

Parameter Description

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

138

NovaCronPurgeShadowTablesMaxDelay Use this parameter to configure the maximum delay,
in seconds, before purging shadow tables.

Default: 3600

NovaCronPurgeShadowTablesMinute Use this parameter to configure the minute past the
hour at which to run the cron command to purge
shadow tables.

Default: 0

NovaCronPurgeShadowTablesMonth Use this parameter to configure in which month to
run the cron command to purge the shadow tables.

Default: * (every month)

NovaCronPurgeShadowTablesMonthday Use this parameter to configure on which day of the
month to run the cron command to purge the
shadow tables.

Default: * (every day)

NovaCronPurgeShadowTablesUser Use this parameter to configure the user that owns
the crontab that purges the shadow tables and that
has access to the log file the crontab uses.

Default: nova

NovaCronPurgeShadowTablesVerbose Use this parameter to enable verbose logging in the
log file for purged shadow tables.

Default: False

NovaCronPurgeShadowTablesWeekday Use this parameter to configure on which day of the
week to run the cron command to purge the shadow
tables.

Default: * (every day)

Parameter Description

CHAPTER 14. DATABASE CLEANING

139

CHAPTER 15. MIGRATING VIRTUAL MACHINE INSTANCES
BETWEEN COMPUTE NODES

You sometimes need to migrate instances from one Compute node to another Compute node in the
overcloud, to perform maintenance, rebalance the workload, or replace a failed or failing node.

Compute node maintenance

If you need to temporarily take a Compute node out of service, for instance, to perform hardware
maintenance or repair, kernel upgrades and software updates, you can migrate instances running on
the Compute node to another Compute node.

Failing Compute node

If a Compute node is about to fail and you need to service it or replace it, you can migrate instances
from the failing Compute node to a healthy Compute node.

Failed Compute nodes

If a Compute node has already failed, you can evacuate the instances. You can rebuild instances from
the original image on another Compute node, using the same name, UUID, network addresses, and
any other allocated resources the instance had before the Compute node failed.

Workload rebalancing

You can migrate one or more instances to another Compute node to rebalance the workload. For
example, you can consolidate instances on a Compute node to conserve power, migrate instances to
a Compute node that is physically closer to other networked resources to reduce latency, or
distribute instances across Compute nodes to avoid hot spots and increase resiliency.

Director configures all Compute nodes to provide secure migration. All Compute nodes also require a
shared SSH key to provide the users of each host with access to other Compute nodes during the
migration process. Director creates this key using the OS::TripleO::Services::NovaCompute
composable service. This composable service is one of the main services included on all Compute roles
by default. For more information, see Composable services and custom roles in the Customizing your
Red Hat OpenStack Platform deployment guide.

NOTE

If you have a functioning Compute node, and you want to make a copy of an instance for
backup purposes, or to copy the instance to a different environment, follow the
procedure in Importing virtual machines into the overcloud in the Installing and managing
Red Hat OpenStack Platform with director guide.

15.1. MIGRATION TYPES

Red Hat OpenStack Platform (RHOSP) supports the following types of migration.

Cold migration

Cold migration, or non-live migration, involves shutting down a running instance before migrating it from
the source Compute node to the destination Compute node.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

140

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#importing-virtual-machines-into-the-overcloud

Cold migration involves some downtime for the instance. The migrated instance maintains access to the
same volumes and IP addresses.

NOTE

Cold migration requires that both the source and destination Compute nodes are
running.

Live migration

Live migration involves moving the instance from the source Compute node to the destination
Compute node without shutting it down, and while maintaining state consistency.

Live migrating an instance involves little or no perceptible downtime. However, live migration does
impact performance for the duration of the migration operation. Therefore, instances should be taken
out of the critical path while being migrated.

IMPORTANT

Live migration impacts the performance of the workload being moved. Red Hat does not
provide support for increased packet loss, network latency, memory latency or a
reduction in network bandwith, memory bandwidth, storage IO, or CPU peformance
during live migration.

NOTE

CHAPTER 15. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

141

NOTE

Live migration requires that both the source and destination Compute nodes are running.

In some cases, instances cannot use live migration. For more information, see Migration constraints.

Evacuation

If you need to migrate instances because the source Compute node has already failed, you can
evacuate the instances.

15.2. MIGRATION CONSTRAINTS

Migration constraints typically arise with block migration, configuration disks, or when one or more
instances access physical hardware on the Compute node.

CPU constraints

The source and destination Compute nodes must have the same CPU architecture. For example, Red
Hat does not support migrating an instance from a ppc64le CPU to a x86_64 CPU.

Migration between different CPU models is not supported. In some cases, the CPU of the source and
destination Compute node must match exactly, such as instances that use CPU host passthrough. In all
cases, the CPU features of the destination node must be a superset of the CPU features on the source
node.

Memory constraints

The destination Compute node must have sufficient available RAM. Memory oversubscription can cause
migration to fail.

Block migration constraints

Migrating instances that use disks that are stored locally on a Compute node takes significantly longer
than migrating volume-backed instances that use shared storage, such as Red Hat Ceph Storage. This
latency arises because OpenStack Compute (nova) migrates local disks block-by-block between the
Compute nodes over the control plane network by default. By contrast, volume-backed instances that
use shared storage, such as Red Hat Ceph Storage, do not have to migrate the volumes, because each
Compute node already has access to the shared storage.

NOTE

Network congestion in the control plane network caused by migrating local disks or
instances that consume large amounts of RAM might impact the performance of other
systems that use the control plane network, such as RabbitMQ.

Read-only drive migration constraints

Migrating a drive is supported only if the drive has both read and write capabilities. For example,
OpenStack Compute (nova) cannot migrate a CD-ROM drive or a read-only config drive. However,
OpenStack Compute (nova) can migrate a drive with both read and write capabilities, including a config
drive with a drive format such as vfat.

Live migration constraints

In some cases, live migrating instances involves additional constraints.

IMPORTANT

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

142

IMPORTANT

Live migration impacts the performance of the workload being moved. Red Hat does not
provide support for increased packet loss, network latency, memory latency or a
reduction in network bandwidth, memory bandwidth, storage IO, or CPU performance
during live migration.

No new operations during migration

To achieve state consistency between the copies of the instance on the source and destination
nodes, RHOSP must prevent new operations during live migration. Otherwise, live migration might
take a long time or potentially never end if writes to memory occur faster than live migration can
replicate the state of the memory.

CPU pinning with NUMA

The NovaSchedulerEnabledFilters parameter in the Compute configuration must include the
values AggregateInstanceExtraSpecsFilter and NUMATopologyFilter.

Multi-cell clouds

In a multi-cell cloud, you can live migrate instances to a different host in the same cell, but not across
cells.

Floating instances

When live migrating floating instances, if the configuration of NovaComputeCpuSharedSet on the
destination Compute node is different from the configuration of NovaComputeCpuSharedSet on
the source Compute node, the instances will not be allocated to the CPUs configured for shared
(unpinned) instances on the destination Compute node. Therefore, if you need to live migrate
floating instances, you must configure all the Compute nodes with the same CPU mappings for
dedicated (pinned) and shared (unpinned) instances, or use a host aggregate for the shared
instances.

Destination Compute node capacity

The destination Compute node must have sufficient capacity to host the instance that you want to
migrate.

SR-IOV live migration

Instances with SR-IOV-based network interfaces can be live migrated. Live migrating instances with
direct mode SR-IOV network interfaces incurs network downtime. This is because the direct mode
interfaces need to be detached and re-attached during the migration.

Live migration on ML2/OVS deployments

During the live migration process, when the virtual machine is unpaused in the destination host, the
metadata service might not be available because the metadata server proxy has not yet spawned.
This unavailability is brief. The service becomes available momentarily and the live migration
succeeds.

Constraints that preclude live migration

You cannot live migrate an instance that uses the following features.

PCI passthrough

QEMU/KVM hypervisors support attaching PCI devices on the Compute node to an instance. Use
PCI passthrough to give an instance exclusive access to PCI devices, which appear and behave as if
they are physically attached to the operating system of the instance. However, because PCI
passthrough involves direct access to the physical devices, QEMU/KVM does not support live
migration of instances using PCI passthrough.

Port resource requests

You cannot live migrate an instance that uses a port that has resource requests, such as a

CHAPTER 15. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

143

You cannot live migrate an instance that uses a port that has resource requests, such as a
guaranteed minimum bandwidth QoS policy. Use the following command to check if a port has
resource requests:

$ openstack port show <port_name/port_id>

15.3. PREPARING TO MIGRATE

Before you migrate one or more instances, you need to determine the Compute node names and the
IDs of the instances to migrate.

Procedure

1. Identify the source Compute node host name and the destination Compute node host name:

(undercloud)$ source ~/overcloudrc
(overcloud)$ openstack compute service list

2. List the instances on the source Compute node and locate the ID of the instance or instances
that you want to migrate:

(overcloud)$ openstack server list --host <source> --all-projects

Replace <source> with the name or ID of the source Compute node.

3. Optional: If you are migrating instances from a source Compute node to perform maintenance
on the node, you must disable the node to prevent the scheduler from assigning new instances
to the node during maintenance:

(overcloud)$ openstack compute service set <source> nova-compute --disable

Replace <source> with the host name of the source Compute node.

You are now ready to perform the migration. Follow the required procedure detailed in Cold migrating
an instance or Live migrating an instance .

15.4. COLD MIGRATING AN INSTANCE

Cold migrating an instance involves stopping the instance and moving it to another Compute node. Cold
migration facilitates migration scenarios that live migrating cannot facilitate, such as migrating instances
that use PCI passthrough. The scheduler automatically selects the destination Compute node. For more
information, see Migration constraints.

Procedure

1. To cold migrate an instance, enter the following command to power off and move the instance:

(overcloud)$ openstack server migrate <instance> --wait

Replace <instance> with the name or ID of the instance to migrate.

Specify the --block-migration flag if migrating a locally stored volume.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

144

2. Wait for migration to complete. While you wait for the instance migration to complete, you can
check the migration status. For more information, see Checking migration status.

3. Check the status of the instance:

(overcloud)$ openstack server list --all-projects

A status of "VERIFY_RESIZE" indicates you need to confirm or revert the migration:

If the migration worked as expected, confirm it:

(overcloud)$ openstack server resize --confirm <instance>

Replace <instance> with the name or ID of the instance to migrate. A status of "ACTIVE"
indicates that the instance is ready to use.

If the migration did not work as expected, revert it:

(overcloud)$ openstack server resize --revert <instance>

Replace <instance> with the name or ID of the instance.

4. Restart the instance:

(overcloud)$ openstack server start <instance>

Replace <instance> with the name or ID of the instance.

5. Optional: If you disabled the source Compute node for maintenance, you must re-enable the
node so that new instances can be assigned to it:

(overcloud)$ openstack compute service set <source> nova-compute --enable

Replace <source> with the host name of the source Compute node.

15.5. LIVE MIGRATING AN INSTANCE

Live migration moves an instance from a source Compute node to a destination Compute node with a
minimal amount of downtime. Live migration might not be appropriate for all instances. For more
information, see Migration constraints.

Procedure

1. To live migrate an instance, specify the instance and the destination Compute node:

(overcloud)$ openstack server migrate <instance> --live-migration [--host <dest>] --wait

Replace <instance> with the name or ID of the instance.

Replace <dest> with the name or ID of the destination Compute node.

NOTE

CHAPTER 15. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

145

NOTE

The openstack server migrate command covers migrating instances with
shared storage, which is the default. Specify the --block-migration flag to
migrate a locally stored volume:

(overcloud)$ openstack server migrate <instance> --live-migration [--host
<dest>] --wait --block-migration

2. Confirm that the instance is migrating:

(overcloud)$ openstack server show <instance>

+----------------------+--------------------------------------+
| Field | Value |
+----------------------+--------------------------------------+
...	...
status	MIGRATING
...	...
+----------------------+--------------------------------------+

3. Wait for migration to complete. While you wait for the instance migration to complete, you can
check the migration status. For more information, see Checking migration status.

4. Check the status of the instance to confirm if the migration was successful:

(overcloud)$ openstack server list --host <dest> --all-projects

Replace <dest> with the name or ID of the destination Compute node.

5. Optional: If you disabled the source Compute node for maintenance, you must re-enable the
node so that new instances can be assigned to it:

(overcloud)$ openstack compute service set <source> nova-compute --enable

Replace <source> with the host name of the source Compute node.

15.6. CHECKING MIGRATION STATUS

Migration involves several state transitions before migration is complete. During a healthy migration, the
migration state typically transitions as follows:

1. Queued: The Compute service has accepted the request to migrate an instance, and migration
is pending.

2. Preparing: The Compute service is preparing to migrate the instance.

3. Running: The Compute service is migrating the instance.

4. Post-migrating: The Compute service has built the instance on the destination Compute node
and is releasing resources on the source Compute node.

5. Completed: The Compute service has completed migrating the instance and finished releasing
resources on the source Compute node.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

146

Procedure

1. Retrieve the list of migration IDs for the instance:

$ openstack server migration list --server <instance>
+----+-------------+----------- (...)
| Id | Source Node | Dest Node | (...)
+----+-------------+-----------+ (...)
| 2 | - | - | (...)
+----+-------------+-----------+ (...)

Replace <instance> with the name or ID of the instance.

2. Show the status of the migration:

$ openstack server migration show <instance> <migration_id>

Replace <instance> with the name or ID of the instance.

Replace <migration_id> with the ID of the migration.
Running the openstack server migration show command returns the following example
output:

+------------------------+--------------------------------------+
| Property | Value |
+------------------------+--------------------------------------+
created_at	2017-03-08T02:53:06.000000
dest_compute	controller
dest_host	-
dest_node	-
disk_processed_bytes	0
disk_remaining_bytes	0
disk_total_bytes	0
id	2
memory_processed_bytes	65502513
memory_remaining_bytes	786427904
memory_total_bytes	1091379200
server_uuid	d1df1b5a-70c4-4fed-98b7-423362f2c47c
source_compute	compute2
source_node	-
status	running
updated_at	2017-03-08T02:53:47.000000
+------------------------+--------------------------------------+

TIP

The Compute service measures progress of the migration by the number of remaining
memory bytes to copy. If this number does not decrease over time, the migration might be
unable to complete, and the Compute service might abort it.

Sometimes instance migration can take a long time or encounter errors. For more information, see
Troubleshooting migration.

15.7. EVACUATING AN INSTANCE

CHAPTER 15. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

147

If you want to move an instance from a dead or shut-down Compute node to a new host in the same
environment, you can evacuate it.

The evacuate process destroys the original instance and rebuilds it on another Compute node using the
original image, instance name, UUID, network addresses, and any other resources the original instance
had allocated to it.

If the instance uses shared storage, the instance root disk is not rebuilt during the evacuate process, as
the disk remains accessible by the destination Compute node. If the instance does not use shared
storage, then the instance root disk is also rebuilt on the destination Compute node.

NOTE

You can only perform an evacuation when the Compute node is fenced, and the
API reports that the state of the Compute node is "down" or "forced-down". If
the Compute node is not reported as "down" or "forced-down", the evacuate
command fails.

To perform an evacuation, you must be a cloud administrator.

15.7.1. Evacuating one instance

You can evacuate instances one at a time.

Procedure

1. Confirm that the instance is not running:

(overcloud)$ openstack server list --host <node> --all-projects

Replace <node> with the name or UUID of the Compute node that hosts the instance.

2. Confirm that the host Compute node is fenced or shut down:

(overcloud)[stack@director ~]$ openstack baremetal node show <node>

Replace <node> with the name or UUID of the Compute node that hosts the instance to
evacuate. To perform an evacuation, the Compute node must have a status of down or
forced-down.

3. Disable the Compute node:

(overcloud)[stack@director ~]$ openstack compute service set \
 <node> nova-compute --disable --disable-reason <disable_host_reason>

Replace <node> with the name of the Compute node to evacuate the instance from.

Replace <disable_host_reason> with details about why you disabled the Compute node.

4. Evacuate the instance:

(overcloud)[stack@director ~]$ nova evacuate [--password <pass>] <instance> [<dest>]

Optional: Replace <pass> with the administrative password required to access the

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

148

Optional: Replace <pass> with the administrative password required to access the
evacuated instance. If a password is not specified, a random password is generated and
output when the evacuation is complete.

NOTE

The password is changed only when ephemeral instance disks are stored on
the local hypervisor disk. The password is not changed if the instance is
hosted on shared storage or has a Block Storage volume attached, and no
error message is displayed to inform you that the password was not changed.

Replace <instance> with the name or ID of the instance to evacuate.

Optional: Replace <dest> with the name of the Compute node to evacuate the instance to.
If you do not specify the destination Compute node, the Compute scheduler selects one for
you. You can find possible Compute nodes by using the following command:

(overcloud)[stack@director ~]$ openstack hypervisor list

5. Optional: Enable the Compute node when it is recovered:

(overcloud)[stack@director ~]$ openstack compute service set \
 <node> nova-compute --enable

Replace <node> with the name of the Compute node to enable.

15.7.2. Evacuating all instances on a host

You can evacuate all instances on a specified Compute node.

Procedure

1. Confirm that the instances to evacuate are not running:

(overcloud)$ openstack server list --host <node> --all-projects

Replace <node> with the name or UUID of the Compute node that hosts the instances to
evacuate.

2. Confirm that the host Compute node is fenced or shut down:

(overcloud)[stack@director ~]$ openstack baremetal node show <node>

Replace <node> with the name or UUID of the Compute node that hosts the instances to
evacuate. To perform an evacuation, the Compute node must have a status of down or
forced-down.

3. Disable the Compute node:

(overcloud)[stack@director ~]$ openstack compute service set \
 <node> nova-compute --disable --disable-reason <disable_host_reason>

Replace <node> with the name of the Compute node to evacuate the instances from.

CHAPTER 15. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

149

Replace <disable_host_reason> with details about why you disabled the Compute node.

4. Evacuate all instances on a specified Compute node:

(overcloud)[stack@director ~]$ nova host-evacuate [--target_host <dest>] <node>

Optional: Replace <dest> with the name of the destination Compute node to evacuate the
instances to. If you do not specify the destination, the Compute scheduler selects one for
you. You can find possible Compute nodes by using the following command:

(overcloud)[stack@director ~]$ openstack hypervisor list

Replace <node> with the name of the Compute node to evacuate the instances from.

5. Optional: Enable the Compute node when it is recovered:

(overcloud)[stack@director ~]$ openstack compute service set \
 <node> nova-compute --enable

Replace <node> with the name of the Compute node to enable.

15.8. TROUBLESHOOTING MIGRATION

The following issues can arise during instance migration:

The migration process encounters errors.

The migration process never ends.

Performance of the instance degrades after migration.

15.8.1. Errors during migration

The following issues can send the migration operation into an error state:

Running a cluster with different versions of Red Hat OpenStack Platform (RHOSP).

Specifying an instance ID that cannot be found.

The instance you are trying to migrate is in an error state.

The Compute service is shutting down.

A race condition occurs.

Live migration enters a failed state.

When live migration enters a failed state, it is typically followed by an error state. The following common
issues can cause a failed state:

A destination Compute host is not available.

A scheduler exception occurs.

The rebuild process fails due to insufficient computing resources.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

150

A server group check fails.

The instance on the source Compute node gets deleted before migration to the destination
Compute node is complete.

15.8.2. Never-ending live migration

Live migration can fail to complete, which leaves migration in a perpetual running state. A common
reason for a live migration that never completes is that client requests to the instance running on the
source Compute node create changes that occur faster than the Compute service can replicate them to
the destination Compute node.

Use one of the following methods to address this situation:

Abort the live migration.

Force the live migration to complete.

Aborting live migration

If the instance state changes faster than the migration procedure can copy it to the destination node,
and you do not want to temporarily suspend the instance operations, you can abort the live migration.

Procedure

1. Retrieve the list of migrations for the instance:

$ openstack server migration list --server <instance>

Replace <instance> with the name or ID of the instance.

2. Abort the live migration:

$ openstack server migration abort <instance> <migration_id>

Replace <instance> with the name or ID of the instance.

Replace <migration_id> with the ID of the migration.

Forcing live migration to complete

If the instance state changes faster than the migration procedure can copy it to the destination node,
and you want to temporarily suspend the instance operations to force migration to complete, you can
force the live migration procedure to complete.

IMPORTANT

Forcing live migration to complete might lead to perceptible downtime.

Procedure

1. Retrieve the list of migrations for the instance:

$ openstack server migration list --server <instance>

CHAPTER 15. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

151

Replace <instance> with the name or ID of the instance.

2. Force the live migration to complete:

$ openstack server migration force complete <instance> <migration_id>

Replace <instance> with the name or ID of the instance.

Replace <migration_id> with the ID of the migration.

15.8.3. Instance performance degrades after migration

For instances that use a NUMA topology, the source and destination Compute nodes must have the
same NUMA topology and configuration. The NUMA topology of the destination Compute node must
have sufficient resources available. If the NUMA configuration between the source and destination
Compute nodes is not the same, it is possible that live migration succeeds while the instance
performance degrades. For example, if the source Compute node maps NIC 1 to NUMA node 0, but the
destination Compute node maps NIC 1 to NUMA node 5, after migration the instance might route
network traffic from a first CPU across the bus to a second CPU with NUMA node 5 to route traffic to
NIC 1. This can result in expected behavior, but degraded performance. Similarly, if NUMA node 0 on the
source Compute node has sufficient available CPU and RAM, but NUMA node 0 on the destination
Compute node already has instances using some of the resources, the instance might run correctly but
suffer performance degradation. For more information, see Migration constraints.

Red Hat OpenStack Platform 17.1 Configuring the Compute service for instance creation

152

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. COMPUTE SERVICE (NOVA) FUNCTIONALITY
	CHAPTER 2. CONFIGURING THE COMPUTE SERVICE (NOVA)
	CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES
	3.1. CREATING A FLAVOR
	3.2. FLAVOR ARGUMENTS
	3.3. FLAVOR METADATA

	CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES
	4.1. CONFIGURING CPU PINNING ON COMPUTE NODES
	4.1.1. Prerequisites
	4.1.2. Designating Compute nodes for CPU pinning
	4.1.3. Configuring Compute nodes for CPU pinning
	4.1.4. Creating a dedicated CPU flavor for instances
	4.1.5. Creating a shared CPU flavor for instances
	4.1.6. Creating a mixed CPU flavor for instances
	4.1.7. Configuring CPU pinning on Compute nodes with simultaneous multithreading (SMT)
	4.1.8. Additional resources

	4.2. CONFIGURING EMULATOR THREADS
	4.3. CONFIGURING CPU FEATURE FLAGS FOR INSTANCES
	4.3.1. Prerequisites
	4.3.2. Configuring CPU feature flags for instances

	CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES
	5.1. CONFIGURING MEMORY FOR OVERALLOCATION
	5.2. CALCULATING RESERVED HOST MEMORY ON COMPUTE NODES
	5.3. CALCULATING SWAP SIZE
	5.4. CONFIGURING HUGE PAGES ON COMPUTE NODES
	5.4.1. Creating a huge pages flavor for instances
	5.4.2. Mounting multiple huge page folders during first boot

	5.5. CONFIGURING COMPUTE NODES TO USE FILE-BACKED MEMORY FOR INSTANCES
	5.5.1. Changing the memory backing directory host disk

	5.6. CONFIGURING AMD SEV COMPUTE NODES TO PROVIDE MEMORY ENCRYPTION FOR INSTANCES
	5.6.1. Secure Encrypted Virtualization (SEV)
	5.6.2. Designating AMD SEV Compute nodes for memory encryption
	5.6.3. Configuring AMD SEV Compute nodes for memory encryption
	5.6.4. Creating an image for memory encryption
	5.6.5. Creating a flavor for memory encryption
	5.6.6. Launching an instance with memory encryption

	CHAPTER 6. CONFIGURING COMPUTE SERVICE STORAGE
	6.1. CONFIGURATION OPTIONS FOR IMAGE CACHING
	6.2. CONFIGURATION OPTIONS FOR INSTANCE EPHEMERAL STORAGE PROPERTIES
	6.3. CONFIGURING THE MAXIMUM NUMBER OF STORAGE DEVICES TO ATTACH TO ONE INSTANCE
	6.4. CONFIGURING SHARED INSTANCE STORAGE
	6.5. CONFIGURING IMAGE DOWNLOADS DIRECTLY FROM RED HAT CEPH RADOS BLOCK DEVICE (RBD)
	6.6. ADDITIONAL RESOURCES

	CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT
	7.1. PREFILTERING USING THE PLACEMENT SERVICE
	7.1.1. Filtering by requested image type support
	7.1.2. Filtering by resource provider traits
	7.1.2.1. Creating an image that requires or forbids a resource provider trait
	7.1.2.2. Creating a flavor that requires or forbids a resource provider trait

	7.1.3. Filtering by isolating host aggregates
	7.1.4. Filtering by availability zone using the Placement service

	7.2. CONFIGURING FILTERS AND WEIGHTS FOR THE COMPUTE SCHEDULER SERVICE
	7.3. COMPUTE SCHEDULER FILTERS
	7.4. COMPUTE SCHEDULER WEIGHTS
	7.5. DECLARING CUSTOM TRAITS AND RESOURCE CLASSES
	7.6. CREATING AND MANAGING HOST AGGREGATES
	7.6.1. Enabling scheduling on host aggregates
	7.6.2. Creating a host aggregate
	7.6.3. Creating an availability zone
	7.6.4. Deleting a host aggregate
	7.6.5. Creating a project-isolated host aggregate

	CHAPTER 8. CONFIGURING PCI PASSTHROUGH
	8.1. DESIGNATING COMPUTE NODES FOR PCI PASSTHROUGH
	8.2. CONFIGURING A PCI PASSTHROUGH COMPUTE NODE
	8.3. PCI PASSTHROUGH DEVICE TYPE FIELD
	8.4. GUIDELINES FOR CONFIGURING NOVAPCIPASSTHROUGH

	CHAPTER 9. CONFIGURING VDPA COMPUTE NODES TO ENABLE INSTANCES THAT USE VDPA PORTS
	9.1. DESIGNATING COMPUTE NODES FOR VDPA
	9.2. CONFIGURING A VDPA COMPUTE NODE

	CHAPTER 10. CONFIGURING VIRTUAL GPUS FOR INSTANCES
	10.1. SUPPORTED CONFIGURATIONS AND LIMITATIONS
	10.2. CONFIGURING VGPU ON THE COMPUTE NODES
	10.2.1. Prerequisites
	10.2.2. Designating Compute nodes for vGPU
	10.2.3. Configuring the Compute node for vGPU and deploying the overcloud

	10.3. CREATING A CUSTOM VGPU RESOURCE PROVIDER TRAIT
	10.4. CREATING A CUSTOM GPU INSTANCE IMAGE
	10.5. CREATING A VGPU FLAVOR FOR INSTANCES
	10.6. LAUNCHING A VGPU INSTANCE
	10.7. ENABLING PCI PASSTHROUGH FOR A GPU DEVICE

	CHAPTER 11. ADDING METADATA TO INSTANCES
	11.1. TYPES OF INSTANCE METADATA
	11.2. ADDING A CONFIG DRIVE TO ALL INSTANCES
	11.3. ADDING DYNAMIC METADATA TO INSTANCES

	CHAPTER 12. CONFIGURING MANUAL NODE REBOOT TO DEFINE KERNELARGS
	12.1. CONFIGURING MANUAL NODE REBOOT TO DEFINE KERNELARGS

	CHAPTER 13. CONFIGURING INSTANCE SECURITY
	13.1. SECURING CONNECTIONS TO THE VNC CONSOLE OF AN INSTANCE
	13.2. CONFIGURING COMPUTE NODES TO PROVIDE EMULATED TRUSTED PLATFORM MODULE (TPM) DEVICES FOR INSTANCES
	13.2.1. Enabling support for instances with vTPM devices
	13.2.2. Creating an image for vTPM devices
	13.2.3. Creating a flavor for vTPM devices

	CHAPTER 14. DATABASE CLEANING
	14.1. CONFIGURING DATABASE MANAGEMENT
	14.2. CONFIGURATION OPTIONS FOR THE COMPUTE SERVICE AUTOMATED DATABASE MANAGEMENT

	CHAPTER 15. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES
	15.1. MIGRATION TYPES
	15.2. MIGRATION CONSTRAINTS
	15.3. PREPARING TO MIGRATE
	15.4. COLD MIGRATING AN INSTANCE
	15.5. LIVE MIGRATING AN INSTANCE
	15.6. CHECKING MIGRATION STATUS
	15.7. EVACUATING AN INSTANCE
	15.7.1. Evacuating one instance
	15.7.2. Evacuating all instances on a host

	15.8. TROUBLESHOOTING MIGRATION
	15.8.1. Errors during migration
	15.8.2. Never-ending live migration
	15.8.3. Instance performance degrades after migration

