
Red Hat OpenStack Platform 17.1

Customizing your Red Hat OpenStack Platform
deployment

Customizing your core Red Hat OpenStack Platform deployment for your
environment and requirements.

Last Updated: 2024-05-23

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack
Platform deployment

Customizing your core Red Hat OpenStack Platform deployment for your environment and
requirements.

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guidance on how to customize a basic Red Hat OpenStack Platform deployment for your
environment and requirements, and how to use Ansible and the Orchestration service.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. PLANNING CUSTOM UNDERCLOUD FEATURES
1.1. CHARACTER ENCODING CONFIGURATION
1.2. CONSIDERATIONS WHEN RUNNING THE UNDERCLOUD WITH A PROXY

CHAPTER 2. COMPOSABLE SERVICES AND CUSTOM ROLES
2.1. SUPPORTED ROLE ARCHITECTURE
2.2. EXAMINING THE ROLES_DATA FILE
2.3. CREATING A ROLES_DATA FILE
2.4. SUPPORTED CUSTOM ROLES
2.5. EXAMINING ROLE PARAMETERS
2.6. CREATING A NEW ROLE
2.7. GUIDELINES AND LIMITATIONS
2.8. CONTAINERIZED SERVICE ARCHITECTURE
2.9. CONTAINERIZED SERVICE PARAMETERS
2.10. EXAMINING COMPOSABLE SERVICE ARCHITECTURE
2.11. ADDING AND REMOVING SERVICES FROM ROLES
2.12. ENABLING DISABLED SERVICES

CHAPTER 3. USING THE VALIDATION FRAMEWORK
3.1. ANSIBLE-BASED VALIDATIONS
3.2. CHANGING THE VALIDATION CONFIGURATION FILE
3.3. LISTING VALIDATIONS
3.4. RUNNING VALIDATIONS
3.5. CREATING A VALIDATION
3.6. VIEWING VALIDATION HISTORY
3.7. VALIDATION FRAMEWORK LOG FORMAT
3.8. VALIDATION FRAMEWORK LOG OUTPUT FORMATS
3.9. IN-FLIGHT VALIDATIONS

CHAPTER 4. ADDITIONAL INTROSPECTION OPERATIONS
4.1. PERFORMING INDIVIDUAL NODE INTROSPECTION
4.2. PERFORMING NODE INTROSPECTION AFTER INITIAL INTROSPECTION
4.3. PERFORMING NETWORK INTROSPECTION FOR INTERFACE INFORMATION
4.4. RETRIEVING HARDWARE INTROSPECTION DETAILS

CHAPTER 5. AUTOMATICALLY DISCOVERING BARE METAL NODES
5.1. ENABLING AUTO-DISCOVERY
5.2. TESTING AUTO-DISCOVERY
5.3. USING RULES TO DISCOVER DIFFERENT VENDOR HARDWARE

CHAPTER 6. CONFIGURING AUTOMATIC PROFILE TAGGING
6.1. POLICY FILE SYNTAX
6.2. POLICY FILE EXAMPLE
6.3. IMPORTING POLICY FILES INTO DIRECTOR

CHAPTER 7. CUSTOMIZING CONTAINER IMAGES
7.1. PREPARING CONTAINER IMAGES FOR DIRECTOR INSTALLATION

7.1.1. Container image preparation parameters
7.1.2. Guidelines for container image tagging

5

6

7
7
7

9
9
9

10
11

14
16
18
19
19

20
22
23

24
24
24
25
26
27
28
28
29
30

31
31
31
31

33

38
38
38
39

41
41

43
44

46
46
46
49

Table of Contents

1

. .

. .

7.1.3. Excluding Ceph Storage container images
7.1.4. Modifying images during preparation
7.1.5. Updating existing packages on container images
7.1.6. Installing additional RPM files to container images
7.1.7. Modifying container images with a custom Dockerfile
7.1.8. Preparing a Satellite server for container images
7.1.9. Deploying a vendor plugin

7.2. PERFORMING ADVANCED CONTAINER IMAGE MANAGEMENT
7.2.1. Pinning container images for the undercloud
7.2.2. Pinning container images for the overcloud

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT
8.1. CUSTOMIZING UNDERCLOUD NETWORKS

8.1.1. Configuring undercloud network interfaces
8.1.2. Configuring the undercloud for bare metal provisioning over IPv6

8.2. CUSTOMIZING OVERCLOUD NETWORKS
8.2.1. Defining custom network interface templates

8.2.1.1. Creating a custom NIC template
8.2.1.2. Network interface configuration options
8.2.1.3. Example custom network interfaces
8.2.1.4. Customizing NIC mappings for pre-provisioned nodes

8.2.2. Composable networks
8.2.2.1. Adding a composable network
8.2.2.2. Including a composable network in a role
8.2.2.3. Assigning OpenStack services to composable networks
8.2.2.4. Enabling custom composable networks
8.2.2.5. Renaming the default networks

8.2.3. Additional overcloud network configuration
8.2.3.1. Configuring routes and default routes
8.2.3.2. Configuring policy-based routing
8.2.3.3. Configuring jumbo frames
8.2.3.4. Configuring ML2/OVN northbound path MTU discovery for jumbo frame fragmentation
8.2.3.5. Configuring the native VLAN on a trunked interface
8.2.3.6. Increasing the maximum number of connections that netfilter tracks

8.2.4. Network interface bonding
8.2.4.1. Network interface bonding for overcloud nodes
8.2.4.2. Creating Open vSwitch (OVS) bonds
8.2.4.3. Open vSwitch (OVS) bonding options
8.2.4.4. Using Link Aggregation Control Protocol (LACP) with Open vSwitch (OVS) bonding modes
8.2.4.5. Creating Linux bonds

8.2.5. Updating the format of your network configuration files
8.2.5.1. Updating the format of your network configuration file
8.2.5.2. Automatically converting NIC templates to Jinja2 Ansible format
8.2.5.3. Manually converting NIC templates to Jinja2 Ansible format
8.2.5.4. Heat parameter to Ansible variable mappings
8.2.5.5. Heat parameter to provisioning definition file mappings
8.2.5.6. Changes to the network data schema

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE
9.1. ANSIBLE-BASED OVERCLOUD REGISTRATION

9.1.1. Red Hat Subscription Manager (RHSM) composable service
9.1.2. RhsmVars sub-parameters
9.1.3. Registering the overcloud with the rhsm composable service

51
51
52
53
54
54
59
60
60
61

64
64
64
66
69
69
69
70
79
81

83
84
87
87
88
89
90
90
90
92
93
94
95
96
96
97
97
98

100
101
102
102
104
105
108
109

111
111
111

113
114

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

2

. .

9.1.4. Applying the rhsm composable service to different roles
9.1.5. Registering the overcloud to Red Hat Satellite Server
9.1.6. Switching to the rhsm composable service
9.1.7. rhel-registration to rhsm mappings
9.1.8. Deploying the overcloud with the rhsm composable service
9.1.9. Running Ansible-based registration manually

9.2. CONFIGURING THE OVERCLOUD WITH ANSIBLE
9.2.1. Ansible-based overcloud configuration (config-download)
9.2.2. config-download working directory
9.2.3. Checking config-download log
9.2.4. Performing Git operations on the working directory
9.2.5. Deployment methods that use config-download
9.2.6. Running config-download on a standard deployment
9.2.7. Running config-download with separate provisioning and configuration
9.2.8. Running config-download with the ansible-playbook-command.sh script
9.2.9. Running config-download with manually created playbooks
9.2.10. Limitations of config-download
9.2.11. config-download top level files
9.2.12. config-download tags
9.2.13. config-download deployment steps

9.3. MANAGING CONTAINERS WITH ANSIBLE
9.3.1. tripleo-container-manage role defaults and variables
9.3.2. tripleo-container-manage molecule scenarios
9.3.3. tripleo_container_manage role variables
9.3.4. tripleo-container-manage healthchecks
9.3.5. tripleo-container-manage debug

CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE ORCHESTRATION SERVICE (HEAT)
10.1. UNDERSTANDING HEAT TEMPLATES

10.1.1. heat templates
10.1.2. Environment files
10.1.3. Core overcloud heat templates
10.1.4. Including environment files in overcloud creation
10.1.5. Using customized core heat templates
10.1.6. Jinja2 rendering

10.2. HEAT PARAMETERS
10.2.1. Example 1: Configuring the time zone
10.2.2. Example 2: Configuring RabbitMQ file descriptor limit
10.2.3. Example 3: Enabling and disabling parameters
10.2.4. Example 4: Role-based parameters
10.2.5. Identifying parameters that you want to modify

10.3. CONFIGURATION HOOKS
10.3.1. Pre-configuration: customizing specific overcloud roles
10.3.2. Pre-configuration: customizing all overcloud roles
10.3.3. Post-configuration: customizing all overcloud roles
10.3.4. Puppet: Customizing hieradata for roles
10.3.5. Puppet: Customizing hieradata for individual nodes
10.3.6. Puppet: Applying custom manifests

116
117
118
119
119

120
121
121
122
122
122
123
124
124
125
127
130
131
131
132
133
134
134
135
137
138

140
140
140
141

142
143
144
147
149
149
150
150
150
150
152
152
154
156
158
159
160

Table of Contents

3

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

6

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. PLANNING CUSTOM UNDERCLOUD FEATURES
Before you configure and install director on the undercloud, you can plan to include custom features in
your undercloud.

1.1. CHARACTER ENCODING CONFIGURATION

Red Hat OpenStack Platform has special character encoding requirements as part of the locale settings:

Use UTF-8 encoding on all nodes. Ensure the LANG environment variable is set to en_US.UTF-
8 on all nodes.

Avoid using non-ASCII characters if you use Red Hat Ansible Tower to automate the creation of
Red Hat OpenStack Platform resources.

1.2. CONSIDERATIONS WHEN RUNNING THE UNDERCLOUD WITH A
PROXY

Running the undercloud with a proxy has certain limitations, and Red Hat recommends that you use Red
Hat Satellite for registry and package management.

However, if your environment uses a proxy, review these considerations to best understand the different
configuration methods of integrating parts of Red Hat OpenStack Platform with a proxy and the
limitations of each method.

System-wide proxy configuration

Use this method to configure proxy communication for all network traffic on the undercloud. To
configure the proxy settings, edit the /etc/environment file and set the following environment variables:

http_proxy

The proxy that you want to use for standard HTTP requests.

https_proxy

The proxy that you want to use for HTTPs requests.

no_proxy

A comma-separated list of domains that you want to exclude from proxy communications.

The system-wide proxy method has the following limitations:

The maximum length of no_proxy is 1024 characters due to a fixed size buffer in the pam_env
PAM module.

dnf proxy configuration

Use this method to configure dnf to run all traffic through a proxy. To configure the proxy settings, edit
the /etc/dnf/dnf.conf file and set the following parameters:

proxy

The URL of the proxy server.

proxy_username

The username that you want to use to connect to the proxy server.

proxy_password

CHAPTER 1. PLANNING CUSTOM UNDERCLOUD FEATURES

7

The password that you want to use to connect to the proxy server.

proxy_auth_method

The authentication method used by the proxy server.

For more information about these options, run man dnf.conf.

The dnf proxy method has the following limitations:

This method provides proxy support only for dnf.

The dnf proxy method does not include an option to exclude certain hosts from proxy
communication.

Red Hat Subscription Manager proxy

Use this method to configure Red Hat Subscription Manager to run all traffic through a proxy. To
configure the proxy settings, edit the /etc/rhsm/rhsm.conf file and set the following parameters:

proxy_hostname

Host for the proxy.

proxy_scheme

The scheme for the proxy when writing out the proxy to repo definitions.

proxy_port

The port for the proxy.

proxy_username

The username that you want to use to connect to the proxy server.

proxy_password

The password to use for connecting to the proxy server.

no_proxy

A comma-separated list of hostname suffixes for specific hosts that you want to exclude from proxy
communication.

For more information about these options, run man rhsm.conf.

The Red Hat Subscription Manager proxy method has the following limitations:

This method provides proxy support only for Red Hat Subscription Manager.

The values for the Red Hat Subscription Manager proxy configuration override any values set
for the system-wide environment variables.

Transparent proxy

If your network uses a transparent proxy to manage application layer traffic, you do not need to
configure the undercloud itself to interact with the proxy because proxy management occurs
automatically. A transparent proxy can help overcome limitations associated with client-based proxy
configuration in Red Hat OpenStack Platform.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

8

CHAPTER 2. COMPOSABLE SERVICES AND CUSTOM ROLES
The overcloud usually consists of nodes in predefined roles such as Controller nodes, Compute nodes,
and different storage node types. Each of these default roles contains a set of services defined in the
core heat template collection on the director node. However, you can also create custom roles that
contain specific sets of services.

You can use this flexibility to create different combinations of services on different roles. This chapter
explores the architecture of custom roles, composable services, and methods for using them.

2.1. SUPPORTED ROLE ARCHITECTURE

The following architectures are available when you use custom roles and composable services:

Default architecture

Uses the default roles_data files. All controller services are contained within one Controller role.

Custom composable services

Create your own roles and use them to generate a custom roles_data file. Note that only a limited
number of composable service combinations have been tested and verified and Red Hat cannot
support all composable service combinations.

2.2. EXAMINING THE ROLES_DATA FILE

The roles_data file contains a YAML-formatted list of the roles that director deploys onto nodes. Each
role contains definitions of all of the services that comprise the role. Use the following example snippet
to understand the roles_data syntax:

- name: Controller
 description: |
 Controller role that has all the controller services loaded and handles
 Database, Messaging and Network functions.
 ServicesDefault:
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 ...
- name: Compute
 description: |
 Basic Compute Node role
 ServicesDefault:
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 ...

The core heat template collection contains a default roles_data file located at /usr/share/openstack-
tripleo-heat-templates/roles_data.yaml. The default file contains definitions of the following role
types:

Controller

Compute

CHAPTER 2. COMPOSABLE SERVICES AND CUSTOM ROLES

9

BlockStorage

ObjectStorage

CephStorage.

The openstack overcloud deploy command includes the default roles_data.yaml file during
deployment. However, you can use the -r argument to override this file with a custom roles_data file:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-custom.yaml

2.3. CREATING A ROLES_DATA FILE

Although you can create a custom roles_data file manually, you can also generate the file automatically
using individual role templates. Director provides the openstack overcloud role generate command to
join multiple predefined roles and automatically generate a custom roles_data file.

Procedure

1. List the default role templates:

$ openstack overcloud role list
BlockStorage
CephStorage
Compute
ComputeHCI
ComputeOvsDpdk
Controller
...

2. View the role definition:

$ openstack overcloud role show Compute

3. Generate a custom roles_data.yaml file that contains the Controller, Compute, and
Networker roles:

$ openstack overcloud roles \
 generate -o <custom_role_file> \
 Controller Compute Networker

Replace <custom_role_file> with the name and location of the new role file to generate,
for example, /home/stack/templates/roles_data.yaml.

NOTE

The Controller and Networker roles contain the same networking agents.
This means that the networking services scale from the Controller role to the
Networker role and the overcloud balances the load for networking services
between the Controller and Networker nodes.

To make this Networker role standalone, you can create your own custom Controller role,

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

10

To make this Networker role standalone, you can create your own custom Controller role,
as well as any other role that you require. This allows you to generate a roles_data.yaml file
from your own custom roles.

4. Copy the roles directory from the core heat template collection to the home directory of the
stack user:

$ cp -r /usr/share/openstack-tripleo-heat-templates/roles/. /home/stack/templates/roles/

5. Add or modify the custom role files in this directory. Use the --roles-path option with any of the
role sub-commands to use this directory as the source for your custom roles:

$ openstack overcloud role \
 generate -o my_roles_data.yaml \
 --roles-path /home/stack/templates/roles \
 Controller Compute Networker

This command generates a single my_roles_data.yaml file from the individual roles in the
~/roles directory.

NOTE

The default roles collection also contains the ControllerOpenstack role, which does not
include services for Networker, Messaging, and Database roles. You can use the
ControllerOpenstack in combination with the standalone Networker, Messaging, and
Database roles.

2.4. SUPPORTED CUSTOM ROLES

The following table contains information about the available custom roles. You can find custom role
templates in the /usr/share/openstack-tripleo-heat-templates/roles directory.

Role Description File

BlockStorage OpenStack Block Storage (cinder) node. BlockStorage.yaml

CephAll Full standalone Ceph Storage node. Includes OSD,
MON, Object Gateway (RGW), Object Operations
(MDS), Manager (MGR), and RBD Mirroring.

CephAll.yaml

CephFile Standalone scale-out Ceph Storage file role. Includes
OSD and Object Operations (MDS).

CephFile.yaml

CephObject Standalone scale-out Ceph Storage object role.
Includes OSD and Object Gateway (RGW).

CephObject.yaml

CephStorage Ceph Storage OSD node role. CephStorage.yaml

ComputeAlt Alternate Compute node role. ComputeAlt.yaml

ComputeDVR DVR enabled Compute node role. ComputeDVR.yaml

CHAPTER 2. COMPOSABLE SERVICES AND CUSTOM ROLES

11

ComputeHCI Compute node with hyper-converged infrastructure.
Includes Compute and Ceph OSD services.

ComputeHCI.yaml

ComputeInstanceHA Compute Instance HA node role. Use in conjunction
with the environments/compute-
instanceha.yaml` environment file.

ComputeInstanceHA
.yaml

ComputeLiquidio Compute node with Cavium Liquidio Smart NIC. ComputeLiquidio.ya
ml

ComputeOvsDpdkR
T

Compute OVS DPDK RealTime role. ComputeOvsDpdkR
T.yaml

ComputeOvsDpdk Compute OVS DPDK role. ComputeOvsDpdk.y
aml

ComputeRealTime Compute role optimized for real-time behaviour.
When using this role, it is mandatory that an
overcloud-realtime-compute image is available
and the role specific parameters IsolCpusList,
NovaComputeCpuDedicatedSet and
NovaComputeCpuSharedSet are set according
to the hardware of the real-time compute nodes.

ComputeRealTime.y
aml

ComputeSriovRT Compute SR-IOV RealTime role. ComputeSriovRT.ya
ml

ComputeSriov Compute SR-IOV role. ComputeSriov.yaml

Compute Standard Compute node role. Compute.yaml

ControllerAllNovaSta
ndalone

Controller role that does not contain the database,
messaging, networking, and OpenStack Compute
(nova) control components. Use in combination with
the Database, Messaging, Networker, and
Novacontrol roles.

ControllerAllNovaSta
ndalone.yaml

ControllerNoCeph Controller role with core Controller services loaded
but no Ceph Storage (MON) components. This role
handles database, messaging, and network functions
but not any Ceph Storage functions.

ControllerNoCeph.ya
ml

ControllerNovaStand
alone

Controller role that does not contain the OpenStack
Compute (nova) control component. Use in
combination with the Novacontrol role.

ControllerNovaStand
alone.yaml

Role Description File

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

12

ControllerOpenstack Controller role that does not contain the database,
messaging, and networking components. Use in
combination with the Database, Messaging, and
Networker roles.

ControllerOpenstack
.yaml

ControllerStorageNf
s

Controller role with all core services loaded and uses
Ceph NFS. This roles handles database, messaging,
and network functions.

ControllerStorageNf
s.yaml

Controller Controller role with all core services loaded. This roles
handles database, messaging, and network functions.

Controller.yaml

ControllerSriov
(ML2/OVN)

Same as the normal Controller role but with the OVN
Metadata agent deployed.

ControllerSriov.yaml

Database Standalone database role. Database managed as a
Galera cluster using Pacemaker.

Database.yaml

HciCephAll Compute node with hyper-converged infrastructure
and all Ceph Storage services. Includes OSD, MON,
Object Gateway (RGW), Object Operations (MDS),
Manager (MGR), and RBD Mirroring.

HciCephAll.yaml

HciCephFile Compute node with hyper-converged infrastructure
and Ceph Storage file services. Includes OSD and
Object Operations (MDS).

HciCephFile.yaml

HciCephMon Compute node with hyper-converged infrastructure
and Ceph Storage block services. Includes OSD,
MON, and Manager.

HciCephMon.yaml

HciCephObject Compute node with hyper-converged infrastructure
and Ceph Storage object services. Includes OSD and
Object Gateway (RGW).

HciCephObject.yaml

IronicConductor Ironic Conductor node role. IronicConductor.ya
ml

Messaging Standalone messaging role. RabbitMQ managed with
Pacemaker.

Messaging.yaml

Networker Standalone networking role. Runs OpenStack
networking (neutron) agents on their own. If your
deployment uses the ML2/OVN mechanism driver,
see additional steps in Deploying a Custom Role with
ML2/OVN.

Networker.yaml

Role Description File

CHAPTER 2. COMPOSABLE SERVICES AND CUSTOM ROLES

13

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#create-custom-network-role-ovn

NetworkerSriov Same as the normal Networker role but with the OVN
Metadata agent deployed. See additional steps in
Deploying a Custom Role with ML2/OVN.

NetworkerSriov.yaml

Novacontrol Standalone nova-control role to run OpenStack
Compute (nova) control agents on their own.

Novacontrol.yaml

ObjectStorage Swift Object Storage node role. ObjectStorage.yaml

Telemetry Telemetry role with all the metrics and alarming
services.

Telemetry.yaml

Role Description File

2.5. EXAMINING ROLE PARAMETERS

Each role contains the following parameters:

name

(Mandatory) The name of the role, which is a plain text name with no spaces or special characters.
Check that the chosen name does not cause conflicts with other resources. For example, use
Networker as a name instead of Network.

description

(Optional) A plain text description for the role.

tags

(Optional) A YAML list of tags that define role properties. Use this parameter to define the primary
role with both the controller and primary tags together:

- name: Controller
 ...
 tags:
 - primary
 - controller
 ...

IMPORTANT

If you do not tag the primary role, the first role that you define becomes the primary role.
Ensure that this role is the Controller role.

networks

A YAML list or dictionary of networks that you want to configure on the role. If you use a YAML list,
list each composable network:

 networks:
 - External
 - InternalApi

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

14

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#create-custom-network-role-ovn

 - Storage
 - StorageMgmt
 - Tenant

If you use a dictionary, map each network to a specific subnet in your composable networks.

 networks:
 External:
 subnet: external_subnet
 InternalApi:
 subnet: internal_api_subnet
 Storage:
 subnet: storage_subnet
 StorageMgmt:
 subnet: storage_mgmt_subnet
 Tenant:
 subnet: tenant_subnet

Default networks include External, InternalApi, Storage, StorageMgmt, Tenant, and Management.

CountDefault

(Optional) Defines the default number of nodes that you want to deploy for this role.

HostnameFormatDefault

(Optional) Defines the default hostname format for the role. The default naming convention uses
the following format:

[STACK NAME]-[ROLE NAME]-[NODE ID]

For example, the default Controller nodes are named:

overcloud-controller-0
overcloud-controller-1
overcloud-controller-2
...

disable_constraints

(Optional) Defines whether to disable OpenStack Compute (nova) and OpenStack Image Storage
(glance) constraints when deploying with director. Use this parameter when you deploy an overcloud
with pre-provisioned nodes. For more information, see Configuring a basic overcloud with pre-
provisioned nodes in the Director installation and usage guide.

update_serial

(Optional) Defines how many nodes to update simultaneously during the OpenStack update
options. In the default roles_data.yaml file:

The default is 1 for Controller, Object Storage, and Ceph Storage nodes.

The default is 25 for Compute and Block Storage nodes.

If you omit this parameter from a custom role, the default is 1.

ServicesDefault

(Optional) Defines the default list of services to include on the node. For more information, see

CHAPTER 2. COMPOSABLE SERVICES AND CUSTOM ROLES

15

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_configuring-a-basic-overcloud-with-pre-provisioned-nodes

(Optional) Defines the default list of services to include on the node. For more information, see
Section 2.10, “Examining composable service architecture” .

You can use these parameters to create new roles and also define which services to include in your roles.

The openstack overcloud deploy command integrates the parameters from the roles_data file into
some of the Jinja2-based templates. For example, at certain points, the overcloud.j2.yaml heat
template iterates over the list of roles from roles_data.yaml and creates parameters and resources
specific to each respective role.

For example, the following snippet contains the resource definition for each role in the
overcloud.j2.yaml heat template:

 {{role.name}}:
 type: OS::Heat::ResourceGroup
 depends_on: Networks
 properties:
 count: {get_param: {{role.name}}Count}
 removal_policies: {get_param: {{role.name}}RemovalPolicies}
 resource_def:
 type: OS::TripleO::{{role.name}}
 properties:
 CloudDomain: {get_param: CloudDomain}
 ServiceNetMap: {get_attr: [ServiceNetMap, service_net_map]}
 EndpointMap: {get_attr: [EndpointMap, endpoint_map]}
...

This snippet shows how the Jinja2-based template incorporates the {{role.name}} variable to define
the name of each role as an OS::Heat::ResourceGroup resource. This in turn uses each name
parameter from the roles_data file to name each respective OS::Heat::ResourceGroup resource.

2.6. CREATING A NEW ROLE

You can use the composable service architecture to assign roles to bare-metal nodes according to the
requirements of your deployment. For example, you might want to create a new Horizon role to host
only the OpenStack Dashboard (horizon).

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Copy the roles directory from the core heat template collection to the home directory of the
stack user:

$ cp -r /usr/share/openstack-tripleo-heat-templates/roles/. /home/stack/templates/roles/

4. Create a new file named Horizon.yaml in home/stack/templates/roles.

5. Add the following configuration to Horizon.yaml to create a new Horizon role that contains the
base and core OpenStack Dashboard services:

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

16

1

2

- name: Horizon 1
 CountDefault: 1 2
 HostnameFormatDefault: '%stackname%-horizon-%index%'
 ServicesDefault:
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Ntp
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Sshd
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::FluentdClient
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::Apache
 - OS::TripleO::Services::Horizon

Set the name parameter to the name of the custom role. Custom role names have a
maximum length of 47 characters.

Set the CountDefault parameter to 1 so that a default overcloud always includes the
Horizon node.

6. Optional: If you want to scale the services in an existing overcloud, retain the existing services on
the Controller role. If you want to create a new overcloud and you want the OpenStack
Dashboard to remain on the standalone role, remove the OpenStack Dashboard components
from the Controller role definition:

- name: Controller
 CountDefault: 1
 ServicesDefault:
 ...
 - OS::TripleO::Services::GnocchiMetricd
 - OS::TripleO::Services::GnocchiStatsd
 - OS::TripleO::Services::HAproxy
 - OS::TripleO::Services::HeatApi
 - OS::TripleO::Services::HeatApiCfn
 - OS::TripleO::Services::HeatApiCloudwatch
 - OS::TripleO::Services::HeatEngine
 # - OS::TripleO::Services::Horizon # Remove this service
 - OS::TripleO::Services::IronicApi
 - OS::TripleO::Services::IronicConductor
 - OS::TripleO::Services::Iscsid
 - OS::TripleO::Services::Keepalived
 ...

7. Generate a new roles data file named roles_data_horizon.yaml that includes the Controller,
Compute, and Horizon roles:

(undercloud)$ openstack overcloud roles \
 generate -o /home/stack/templates/roles_data_horizon.yaml \

CHAPTER 2. COMPOSABLE SERVICES AND CUSTOM ROLES

17

 --roles-path /home/stack/templates/roles \
 Controller Compute Horizon

8. Optional: Edit the overcloud-baremetal-deploy.yaml node definition file to configure the
placement of the Horizon node:

- name: Controller
 count: 3
 instances:
 - hostname: overcloud-controller-0
 name: node00
 ...
- name: Compute
 count: 3
 instances:
 - hostname: overcloud-novacompute-0
 name: node04
 ...
- name: Horizon
 count: 1
 instances:
 - hostname: overcloud-horizon-0
 name: node07

2.7. GUIDELINES AND LIMITATIONS

Note the following guidelines and limitations for the composable role architecture.

For services not managed by Pacemaker:

You can assign services to standalone custom roles.

You can create additional custom roles after the initial deployment and deploy them to scale
existing services.

For services managed by Pacemaker:

You can assign Pacemaker-managed services to standalone custom roles.

Pacemaker has a 16 node limit. If you assign the Pacemaker service
(OS::TripleO::Services::Pacemaker) to 16 nodes, subsequent nodes must use the Pacemaker
Remote service (OS::TripleO::Services::PacemakerRemote) instead. You cannot have the
Pacemaker service and Pacemaker Remote service on the same role.

Do not include the Pacemaker service (OS::TripleO::Services::Pacemaker) on roles that do
not contain Pacemaker-managed services.

You cannot scale up or scale down a custom role that contains
OS::TripleO::Services::Pacemaker or OS::TripleO::Services::PacemakerRemote services.

General limitations:

You cannot change custom roles and composable services during a major version upgrade.

You cannot modify the list of services for any role after deploying an overcloud. Modifying the

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

18

You cannot modify the list of services for any role after deploying an overcloud. Modifying the
service lists after Overcloud deployment can cause deployment errors and leave orphaned
services on nodes.

2.8. CONTAINERIZED SERVICE ARCHITECTURE

Director installs the core OpenStack Platform services as containers on the overcloud. The templates
for the containerized services are located in the /usr/share/openstack-tripleo-heat-
templates/deployment/.

You must enable the OS::TripleO::Services::Podman service in the role for all nodes that use
containerized services. When you create a roles_data.yaml file for your custom roles configuration,
include the OS::TripleO::Services::Podman service along with the base composable services. For
example, the IronicConductor role uses the following role definition:

- name: IronicConductor
 description: |
 Ironic Conductor node role
 networks:
 InternalApi:
 subnet: internal_api_subnet
 Storage:
 subnet: storage_subnet
 HostnameFormatDefault: '%stackname%-ironic-%index%'
 ServicesDefault:
 - OS::TripleO::Services::Aide
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::BootParams
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::Fluentd
 - OS::TripleO::Services::IpaClient
 - OS::TripleO::Services::Ipsec
 - OS::TripleO::Services::IronicConductor
 - OS::TripleO::Services::IronicPxe
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::LoginDefs
 - OS::TripleO::Services::MetricsQdr
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::Podman
 - OS::TripleO::Services::Rhsm
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Timesync
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::Tuned

2.9. CONTAINERIZED SERVICE PARAMETERS

Each containerized service template contains an outputs section that defines a data set passed to the

CHAPTER 2. COMPOSABLE SERVICES AND CUSTOM ROLES

19

Each containerized service template contains an outputs section that defines a data set passed to the
OpenStack Orchestration (heat) service. In addition to the standard composable service parameters,
the template contains a set of parameters specific to the container configuration.

puppet_config

Data to pass to Puppet when configuring the service. In the initial overcloud deployment steps,
director creates a set of containers used to configure the service before the actual containerized
service runs. This parameter includes the following sub-parameters:

config_volume - The mounted volume that stores the configuration.

puppet_tags - Tags to pass to Puppet during configuration. OpenStack uses these tags to
restrict the Puppet run to the configuration resource of a particular service. For example, the
OpenStack Identity (keystone) containerized service uses the keystone_config tag to
ensure that all require only the keystone_config Puppet resource run on the configuration
container.

step_config - The configuration data passed to Puppet. This is usually inherited from the
referenced composable service.

config_image - The container image used to configure the service.

kolla_config

A set of container-specific data that defines configuration file locations, directory permissions, and
the command to run on the container to launch the service.

docker_config

Tasks to run on the configuration container for the service. All tasks are grouped into the following
steps to help director perform a staged deployment:

Step 1 - Load balancer configuration

Step 2 - Core services (Database, Redis)

Step 3 - Initial configuration of OpenStack Platform service

Step 4 - General OpenStack Platform services configuration

Step 5 - Service activation

host_prep_tasks

Preparation tasks for the bare metal node to accommodate the containerized service.

2.10. EXAMINING COMPOSABLE SERVICE ARCHITECTURE

The core heat template collection contains two sets of composable service templates:

deployment contains the templates for key OpenStack services.

puppet/services contains legacy templates for configuring composable services. In some cases,
the composable services use templates from this directory for compatibility. In most cases, the
composable services use the templates in the deployment directory.

Each template contains a description that identifies its purpose. For example, the deployment/time/ntp-
baremetal-puppet.yaml service template contains the following description:

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

20

description: >
 NTP service deployment using puppet, this YAML file
 creates the interface between the HOT template
 and the puppet manifest that actually installs
 and configure NTP.

These service templates are registered as resources specific to a Red Hat OpenStack Platform
deployment. This means that you can call each resource using a unique heat resource namespace
defined in the overcloud-resource-registry-puppet.j2.yaml file. All services use the
OS::TripleO::Services namespace for their resource type.

Some resources use the base composable service templates directly:

resource_registry:
 ...
 OS::TripleO::Services::Ntp: deployment/time/ntp-baremetal-puppet.yaml
 ...

However, core services require containers and use the containerized service templates. For example, the
keystone containerized service uses the following resource:

resource_registry:
 ...
 OS::TripleO::Services::Keystone: deployment/keystone/keystone-container-puppet.yaml
 ...

These containerized templates usually reference other templates to include dependencies. For
example, the deployment/keystone/keystone-container-puppet.yaml template stores the output of
the base template in the ContainersCommon resource:

resources:
 ContainersCommon:
 type: ../containers-common.yaml

The containerized template can then incorporate functions and data from the containers-
common.yaml template.

The overcloud.j2.yaml heat template includes a section of Jinja2-based code to define a service list for
each custom role in the roles_data.yaml file:

{{role.name}}Services:
 description: A list of service resources (configured in the heat
 resource_registry) which represent nested stacks
 for each service that should get installed on the {{role.name}} role.
 type: comma_delimited_list
 default: {{role.ServicesDefault|default([])}}

For the default roles, this creates the following service list parameters: ControllerServices,
ComputeServices, BlockStorageServices, ObjectStorageServices, and CephStorageServices.

You define the default services for each custom role in the roles_data.yaml file. For example, the
default Controller role contains the following content:

- name: Controller

CHAPTER 2. COMPOSABLE SERVICES AND CUSTOM ROLES

21

 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephMon
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CephRgw
 - OS::TripleO::Services::CinderApi
 - OS::TripleO::Services::CinderBackup
 - OS::TripleO::Services::CinderScheduler
 - OS::TripleO::Services::CinderVolume
 - OS::TripleO::Services::Core
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Keystone
 - OS::TripleO::Services::GlanceApi
 - OS::TripleO::Services::GlanceRegistry
...

These services are then defined as the default list for the ControllerServices parameter.

NOTE

You can also use an environment file to override the default list for the service
parameters. For example, you can define ControllerServices as a parameter_default in
an environment file to override the services list from the roles_data.yaml file.

2.11. ADDING AND REMOVING SERVICES FROM ROLES

The basic method of adding or removing services involves creating a copy of the default service list for a
node role and then adding or removing services. For example, you might want to remove OpenStack
Orchestration (heat) from the Controller nodes.

Procedure

1. Create a custom copy of the default roles directory:

$ cp -r /usr/share/openstack-tripleo-heat-templates/roles ~/.

2. Edit the ~/roles/Controller.yaml file and modify the service list for the ServicesDefault
parameter. Scroll to the OpenStack Orchestration services and remove them:

 - OS::TripleO::Services::GlanceApi
 - OS::TripleO::Services::GlanceRegistry
 - OS::TripleO::Services::HeatApi # Remove this service
 - OS::TripleO::Services::HeatApiCfn # Remove this service
 - OS::TripleO::Services::HeatApiCloudwatch # Remove this service
 - OS::TripleO::Services::HeatEngine # Remove this service
 - OS::TripleO::Services::MySQL
 - OS::TripleO::Services::NeutronDhcpAgent

3. Generate the new roles_data file:

$ openstack overcloud roles generate -o roles_data-no_heat.yaml \
 --roles-path ~/roles \
 Controller Compute Networker

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

22

4. Include this new roles_data file when you run the openstack overcloud deploy command:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-no_heat.yaml

This command deploys an overcloud without OpenStack Orchestration services installed on the
Controller nodes.

NOTE

You can also disable services in the roles_data file using a custom environment file.
Redirect the services to disable to the OS::Heat::None resource. For example:

resource_registry:
 OS::TripleO::Services::HeatApi: OS::Heat::None
 OS::TripleO::Services::HeatApiCfn: OS::Heat::None
 OS::TripleO::Services::HeatApiCloudwatch: OS::Heat::None
 OS::TripleO::Services::HeatEngine: OS::Heat::None

2.12. ENABLING DISABLED SERVICES

Some services are disabled by default. These services are registered as null operations
(OS::Heat::None) in the overcloud-resource-registry-puppet.j2.yaml file. For example, the Block
Storage backup service (cinder-backup) is disabled:

 OS::TripleO::Services::CinderBackup: OS::Heat::None

To enable this service, include an environment file that links the resource to its respective heat
templates in the puppet/services directory. Some services have predefined environment files in the
environments directory. For example, the Block Storage backup service uses the
environments/cinder-backup.yaml file, which contains the following entry:

Procedure

1. Add an entry in an environment file that links the CinderBackup service to the heat template
that contains the cinder-backup configuration:

resource_registry:
 OS::TripleO::Services::CinderBackup: ../podman/services/pacemaker/cinder-backup.yaml
...

This entry overrides the default null operation resource and enables the service.

2. Include this environment file when you run the openstack overcloud deploy command:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/cinder-backup.yaml

CHAPTER 2. COMPOSABLE SERVICES AND CUSTOM ROLES

23

CHAPTER 3. USING THE VALIDATION FRAMEWORK
Red Hat OpenStack Platform (RHOSP) includes a validation framework that you can use to verify the
requirements and functionality of the undercloud and overcloud. The framework includes two types of
validations:

Manual Ansible-based validations, which you execute through the validation command set.

Automatic in-flight validations, which execute during the deployment process.

You must understand which validations you want to run, and skip validations that are not relevant to your
environment. For example, the pre-deployment validation includes a test for TLS-everywhere. If you do
not intend to configure your environment for TLS-everywhere, this test fails. Use the --validation
option in the validation run command to refine the validation according to your environment.

3.1. ANSIBLE-BASED VALIDATIONS

During the installation of Red Hat OpenStack Platform (RHOSP) director, director also installs a set of
playbooks from the openstack-tripleo-validations package. Each playbook contains tests for certain
system requirements and a set of groups that define when to run the test:

no-op

Validations that run a no-op (no operation) task to verify to workflow functions correctly. These
validations run on both the undercloud and overcloud.

prep

Validations that check the hardware configuration of the undercloud node. Run these validation
before you run the openstack undercloud install command.

openshift-on-openstack

Validations that check that the environment meets the requirements to be able to deploy OpenShift
on OpenStack.

pre-introspection

Validations to run before the nodes introspection using Ironic Inspector.

pre-deployment

Validations to run before the openstack overcloud deploy command.

post-deployment

Validations to run after the overcloud deployment has finished.

pre-update

Validations to validate your RHOSP deployment before an update.

post-update

Validations to validate your RHOSP deployment after an update.

pre-upgrade

Validations to validate your RHOSP deployment before an upgrade.

post-upgrade

Validations to validate your RHOSP deployment after an upgrade.

3.2. CHANGING THE VALIDATION CONFIGURATION FILE

The validation configuration file is a .ini file that you can edit to control every aspect of the validation

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

24

The validation configuration file is a .ini file that you can edit to control every aspect of the validation
execution and the communication between remote machines.

You can change the default configuration values in one of the following ways:

Edit the default /etc/validations.cfg file.

Make your own copy of the default /etc/validations.cfg file, edit the copy, and provide it
through the CLI with the --config argument. If you create your own copy of the configuration
file, point the CLI to this file on each execution with --config.

By default, the location of the validation configuration file is /etc/validation.cfg.

IMPORTANT

Ensure that you correctly edit the configuration file or your validation might fail with
errors, for example:

undetected validations

callbacks written to different locations

incorrectly-parsed logs

Prerequisites

You have a thorough understanding of how to validate your environment.

Procedure

1. Optional: Make a copy of the validation configuration file for editing:

a. Copy /etc/validation.cfg to your home directory.

b. Make the required edits to the new configuration file.

2. Run the validation command:

$ validation run --config <configuration-file>

Replace <configuration-file> with the file path to the configuration file that you want to use.

NOTE

When you run a validation, the Reasons column in the output is limited to 79
characters. To view the validation result in full, view the validation log files.

3.3. LISTING VALIDATIONS

Run the validation list command to list the different types of validations available.

Procedure

1. Source the stackrc file.

CHAPTER 3. USING THE VALIDATION FRAMEWORK

25

$ source ~/stackrc

2. Run the validation list command:

To list all validations, run the command without any options:

$ validation list

To list validations in a group, run the command with the --group option:

$ validation list --group prep

NOTE

For a full list of options, run validation list --help.

3.4. RUNNING VALIDATIONS

To run a validation or validation group, use the validation run command. To see a full list of options, use
the validation run --help command.

NOTE

When you run a validation, the Reasons column in the output is limited to 79 characters.
To view the validation result in full, view the validation log files.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Validate a static inventory file called tripleo-ansible-inventory.yaml.

$ validation run --group pre-introspection -i tripleo-ansible-inventory.yaml

NOTE

You can find the inventory file in the ~/tripleo-deploy/<stack> directory for a
standalone or undercloud deployment or in the ~/overcloud-deploy/<stack>
directory for an overcloud deployment.

3. Enter the validation run command:

To run a single validation, enter the command with the --validation option and the name of
the validation. For example, to check the memory requirements of each node, enter --
validation check-ram:

$ validation run --validation check-ram

To run multiple specific validations, use the --validation option with a comma-separated list

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

26

To run multiple specific validations, use the --validation option with a comma-separated list
of the validations that you want to run. For more information about viewing the list of
available validations, see Listing validations.

To run all validations in a group, enter the command with the --group option:

$ validation run --group prep

To view detailed output from a specific validation, run the validation history get --full
command against the UUID of the specific validation from the report:

$ validation history get --full <UUID>

3.5. CREATING A VALIDATION

You can create a validation with the validation init command. Execution of the command results in a
basic template for a new validation. You can edit the new validation role to suit your requirements.

IMPORTANT

Red Hat does not support user-created validations.

Prerequisites

You have a thorough understanding of how to validate your environment.

You have access rights to the directory where you run the command.

Procedure

1. Create your validation:

$ validation init <my-new-validation>

Replace <my-new-validation> with the name of your new validation.
The execution of this command results in the creation of the following directory and sub-
directories:

/home/stack/community-validations
├── library
├── lookup_plugins
├── playbooks
└── roles

NOTE

If you see the error message "The Community Validations are disabled by
default, ensure that the enable_community_validations parameter is set to
True in the validation configuration file. The default name and location of
this file is /etc/validation.cfg.

2. Edit the role to suit your requirements.

CHAPTER 3. USING THE VALIDATION FRAMEWORK

27

Additional resources

Section 3.2, “Changing the validation configuration file”.

3.6. VIEWING VALIDATION HISTORY

Director saves the results of each validation after you run a validation or group of validations. View past
validation results with the validation history list command.

Prerequisites

You have run a validation or group of validations.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. You can view a list of all validations or the most recent validations:

View a list of all validations:

$ validation history list

View history for a specific validation type by using the --validation option:

$ validation history get --validation <validation-type>

Replace <validation-type> with the type of validation, for example, ntp.

4. View the log for a specific validation UUID:

$ validation show run --full 7380fed4-2ea1-44a1-ab71-aab561b44395

Additional resources

assembly_using-the-validation-framework[Using the validation framework]

3.7. VALIDATION FRAMEWORK LOG FORMAT

After you run a validation or group of validations, director saves a JSON-formatted log from each
validation in the /var/logs/validations directory. You can view the file manually or use the validation
history get --full command to display the log for a specific validation UUID.

Each validation log file follows a specific format:

<UUID>_<Name>_<Time>

UUID

The Ansible UUID for the validation.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

28

Name

The Ansible name for the validation.

Time

The start date and time for when you ran the validation.

Each validation log contains three main parts:

plays

stats

validation_output

plays

The plays section contains information about the tasks that the director performed as part of the
validation:

play

A play is a group of tasks. Each play section contains information about that particular group of
tasks, including the start and end times, the duration, the host groups for the play, and the validation
ID and path.

tasks

The individual Ansible tasks that director runs to perform the validation. Each tasks section contains
a hosts section, which contains the action that occurred on each individual host and the results from
the execution of the actions. The tasks section also contains a task section, which contains the
duration of the task.

stats

The stats section contains a basic summary of the outcome of all tasks on each host, such as the tasks
that succeeded and failed.

validation_output

If any tasks failed or caused a warning message during a validation, the validation_output contains the
output of that failure or warning.

3.8. VALIDATION FRAMEWORK LOG OUTPUT FORMATS

The default behaviour of the validation framework is to save validation logs in JSON format. You can
change the output of the logs with the ANSIBLE_STDOUT_CALLBACK environment variable.

To change the validation output log format, run a validation and include the --extra-env-vars
ANSIBLE_STDOUT_CALLBACK=<callback> option:

$ validation run --extra-env-vars ANSIBLE_STDOUT_CALLBACK=<callback> --validation check-ram

Replace <callback> with an Ansible output callback. To view a list of the standard Ansible
output callbacks, run the following command:

$ ansible-doc -t callback -l

The validation framework includes the following additional callbacks:

CHAPTER 3. USING THE VALIDATION FRAMEWORK

29

validation_json

The framework saves JSON-formatted validation results as a log file in /var/logs/validations. This is
the default callback for the validation framework.

validation_stdout

The framework displays JSON-formatted validation results on screen.

http_json

The framework sends JSON-formatted validation results to an external logging server. You must also
include additional environment variables for this callback:

HTTP_JSON_SERVER

The URL for the external server.

HTTP_JSON_PORT

The port for the API entry point of the external server. The default port in 8989.

Set these environment variables with additional --extra-env-vars options:

$ validation run --extra-env-vars ANSIBLE_STDOUT_CALLBACK=http_json \
 --extra-env-vars HTTP_JSON_SERVER=http://logserver.example.com \
 --extra-env-vars HTTP_JSON_PORT=8989 \
 --validation check-ram

IMPORTANT

Before you use the http_json callback, you must add http_json to the
callback_whitelist parameter in your ansible.cfg file:

callback_whitelist = http_json

3.9. IN-FLIGHT VALIDATIONS

Red Hat OpenStack Platform (RHOSP) includes in-flight validations in the templates of composable
services. In-flight validations verify the operational status of services at key steps of the overcloud
deployment process.

In-flight validations run automatically as part of the deployment process. Some in-flight validations also
use the roles from the openstack-tripleo-validations package.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

30

CHAPTER 4. ADDITIONAL INTROSPECTION OPERATIONS
In some situations, you might want to perform introspection outside of the standard overcloud
deployment workflow. For example, you might want to introspect new nodes or refresh introspection
data after replacing hardware on existing unused nodes.

4.1. PERFORMING INDIVIDUAL NODE INTROSPECTION

To perform a single introspection on an available node, set the node to management mode and perform
the introspection.

Procedure

1. Set all nodes to a manageable state:

(undercloud) $ openstack baremetal node manage [NODE UUID]

2. Perform the introspection:

(undercloud) $ openstack overcloud node introspect [NODE UUID] --provide

After the introspection completes, the node changes to an available state.

4.2. PERFORMING NODE INTROSPECTION AFTER INITIAL
INTROSPECTION

After an initial introspection, all nodes enter an available state due to the --provide option. To perform
introspection on all nodes after the initial introspection, set the node to management mode and
perform the introspection.

Procedure

1. Set all nodes to a manageable state

(undercloud) $ for node in $(openstack baremetal node list --fields uuid -f value) ; do
openstack baremetal node manage $node ; done

2. Run the bulk introspection command:

(undercloud) $ openstack overcloud node introspect --all-manageable --provide

After the introspection completes, all nodes change to an available state.

4.3. PERFORMING NETWORK INTROSPECTION FOR INTERFACE
INFORMATION

Network introspection retrieves link layer discovery protocol (LLDP) data from network switches. The
following commands show a subset of LLDP information for all interfaces on a node, or full information
for a particular node and interface. This can be useful for troubleshooting. Director enables LLDP data
collection by default.

CHAPTER 4. ADDITIONAL INTROSPECTION OPERATIONS

31

Procedure

1. To get a list of interfaces on a node, run the following command:

(undercloud) $ openstack baremetal introspection interface list [NODE UUID]

For example:

(undercloud) $ openstack baremetal introspection interface list c89397b7-a326-41a0-907d-
79f8b86c7cd9
+-----------+-------------------+------------------------+-------------------+----------------+
| Interface | MAC Address | Switch Port VLAN IDs | Switch Chassis ID | Switch Port ID |
+-----------+-------------------+------------------------+-------------------+----------------+
p2p2	00:0a:f7:79:93:19	[103, 102, 18, 20, 42]	64:64:9b:31:12:00	510
p2p1	00:0a:f7:79:93:18	[101]	64:64:9b:31:12:00	507
em1	c8:1f:66:c7:e8:2f	[162]	08:81:f4:a6:b3:80	515
em2	c8:1f:66:c7:e8:30	[182, 183]	08:81:f4:a6:b3:80	559
+-----------+-------------------+------------------------+-------------------+----------------+

2. To view interface data and switch port information, run the following command:

(undercloud) $ openstack baremetal introspection interface show [NODE UUID]
[INTERFACE]

For example:

(undercloud) $ openstack baremetal introspection interface show c89397b7-a326-41a0-
907d-79f8b86c7cd9 p2p1
+--------------------------------------+--
--+
| Field | Value
|
+--------------------------------------+--
--+
| interface | p2p1
|
| mac | 00:0a:f7:79:93:18
|
| node_ident | c89397b7-a326-41a0-907d-79f8b86c7cd9
|
| switch_capabilities_enabled | [u'Bridge', u'Router']
|
| switch_capabilities_support | [u'Bridge', u'Router']
|
| switch_chassis_id | 64:64:9b:31:12:00
|
| switch_port_autonegotiation_enabled | True
|
| switch_port_autonegotiation_support | True
|
| switch_port_description | ge-0/0/2.0
|
| switch_port_id | 507
|
| switch_port_link_aggregation_enabled | False

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

32

|
| switch_port_link_aggregation_id | 0
|
| switch_port_link_aggregation_support | True
|
| switch_port_management_vlan_id | None
|
| switch_port_mau_type | Unknown
|
| switch_port_mtu | 1514
|
| switch_port_physical_capabilities | [u'1000BASE-T fdx', u'100BASE-TX fdx', u'100BASE-
TX hdx', u'10BASE-T fdx', u'10BASE-T hdx', u'Asym and Sym PAUSE fdx'] |
| switch_port_protocol_vlan_enabled | None
|
| switch_port_protocol_vlan_ids | None
|
| switch_port_protocol_vlan_support | None
|
| switch_port_untagged_vlan_id | 101
|
| switch_port_vlan_ids | [101]
|
| switch_port_vlans | [{u'name': u'RHOS13-PXE', u'id': 101}]
|
| switch_protocol_identities | None
|
| switch_system_name | rhos-compute-node-sw1
|
+--------------------------------------+--
--+

4.4. RETRIEVING HARDWARE INTROSPECTION DETAILS

The Bare Metal service hardware-inspection-extras feature is enabled by default, and you can use it to
retrieve hardware details for overcloud configuration. For more information about the
inspection_extras parameter in the undercloud.conf file, see Director configuration parameters.

For example, the numa_topology collector is part of the hardware-inspection extras and includes the
following information for each NUMA node:

RAM (in kilobytes)

Physical CPU cores and their sibling threads

NICs associated with the NUMA node

Procedure

To retrieve the information listed above, substitute <UUID> with the UUID of the bare-metal
node to complete the following command:

openstack baremetal introspection data save <UUID> | jq .numa_topology

The following example shows the retrieved NUMA information for a bare-metal node:

CHAPTER 4. ADDITIONAL INTROSPECTION OPERATIONS

33

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-the-undercloud#ref_director-configuration-parameters_installing-director-on-the-undercloud

{
 "cpus": [
 {
 "cpu": 1,
 "thread_siblings": [
 1,
 17
],
 "numa_node": 0
 },
 {
 "cpu": 2,
 "thread_siblings": [
 10,
 26
],
 "numa_node": 1
 },
 {
 "cpu": 0,
 "thread_siblings": [
 0,
 16
],
 "numa_node": 0
 },
 {
 "cpu": 5,
 "thread_siblings": [
 13,
 29
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 15,
 31
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 7,
 23
],
 "numa_node": 0
 },
 {
 "cpu": 1,
 "thread_siblings": [
 9,
 25
],

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

34

 "numa_node": 1
 },
 {
 "cpu": 6,
 "thread_siblings": [
 6,
 22
],
 "numa_node": 0
 },
 {
 "cpu": 3,
 "thread_siblings": [
 11,
 27
],
 "numa_node": 1
 },
 {
 "cpu": 5,
 "thread_siblings": [
 5,
 21
],
 "numa_node": 0
 },
 {
 "cpu": 4,
 "thread_siblings": [
 12,
 28
],
 "numa_node": 1
 },
 {
 "cpu": 4,
 "thread_siblings": [
 4,
 20
],
 "numa_node": 0
 },
 {
 "cpu": 0,
 "thread_siblings": [
 8,
 24
],
 "numa_node": 1
 },
 {
 "cpu": 6,
 "thread_siblings": [
 14,
 30
],

CHAPTER 4. ADDITIONAL INTROSPECTION OPERATIONS

35

 "numa_node": 1
 },
 {
 "cpu": 3,
 "thread_siblings": [
 3,
 19
],
 "numa_node": 0
 },
 {
 "cpu": 2,
 "thread_siblings": [
 2,
 18
],
 "numa_node": 0
 }
],
 "ram": [
 {
 "size_kb": 66980172,
 "numa_node": 0
 },
 {
 "size_kb": 67108864,
 "numa_node": 1
 }
],
 "nics": [
 {
 "name": "ens3f1",
 "numa_node": 1
 },
 {
 "name": "ens3f0",
 "numa_node": 1
 },
 {
 "name": "ens2f0",
 "numa_node": 0
 },
 {
 "name": "ens2f1",
 "numa_node": 0
 },
 {
 "name": "ens1f1",
 "numa_node": 0
 },
 {
 "name": "ens1f0",
 "numa_node": 0
 },
 {
 "name": "eno4",

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

36

 "numa_node": 0
 },
 {
 "name": "eno1",
 "numa_node": 0
 },
 {
 "name": "eno3",
 "numa_node": 0
 },
 {
 "name": "eno2",
 "numa_node": 0
 }
]
}

CHAPTER 4. ADDITIONAL INTROSPECTION OPERATIONS

37

CHAPTER 5. AUTOMATICALLY DISCOVERING BARE METAL
NODES

You can use auto-discovery to register overcloud nodes and generate their metadata, without the need
to create an instackenv.json file. This improvement can help to reduce the time it takes to collect
information about a node. For example, if you use auto-discovery, you do not to collate the IPMI IP
addresses and subsequently create the instackenv.json.

5.1. ENABLING AUTO-DISCOVERY

Enable and configure Bare Metal auto-discovery to automatically discover and import nodes that join
your provisioning network when booting with PXE.

Procedure

1. Enable Bare Metal auto-discovery in the undercloud.conf file:

enable_node_discovery = True
discovery_default_driver = ipmi

enable_node_discovery - When enabled, any node that boots the introspection ramdisk
using PXE is enrolled in the Bare Metal service (ironic) automatically.

discovery_default_driver - Sets the driver to use for discovered nodes. For example, ipmi.

2. Add your IPMI credentials to ironic:

a. Add your IPMI credentials to a file named ipmi-credentials.json. Replace the
SampleUsername, RedactedSecurePassword, and bmc_address values in this example
to suit your environment:

[
 {
 "description": "Set default IPMI credentials",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true}
],
 "actions": [
 {"action": "set-attribute", "path": "driver_info/ipmi_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path": "driver_info/ipmi_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path": "driver_info/ipmi_address",
 "value": "{data[inventory][bmc_address]}"}
]
 }
]

3. Import the IPMI credentials file into ironic:

$ openstack baremetal introspection rule import ipmi-credentials.json

5.2. TESTING AUTO-DISCOVERY

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

38

PXE boot a node that is connected to your provisioning network to test the Bare Metal auto-discovery
feature.

Procedure

1. Power on the required nodes.

2. Run the openstack baremetal node list command. You should see the new nodes listed in an
enrolled state:

$ openstack baremetal node list
+--------------------------------------+------+---------------+-------------+--------------------+------------
-+
| UUID | Name | Instance UUID | Power State | Provisioning State |
Maintenance |
+--------------------------------------+------+---------------+-------------+--------------------+------------
-+
| c6e63aec-e5ba-4d63-8d37-bd57628258e8 | None | None | power off | enroll |
False |
| 0362b7b2-5b9c-4113-92e1-0b34a2535d9b | None | None | power off | enroll |
False |
+--------------------------------------+------+---------------+-------------+--------------------+------------
-+

3. Set the resource class for each node:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do openstack baremetal
node set $NODE --resource-class baremetal ; done

4. Configure the kernel and ramdisk for each node:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do openstack baremetal
node manage $NODE ; done
$ openstack overcloud node configure --all-manageable

5. Set all nodes to available:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do openstack baremetal
node provide $NODE ; done

5.3. USING RULES TO DISCOVER DIFFERENT VENDOR HARDWARE

If you have a heterogeneous hardware environment, you can use introspection rules to assign
credentials and remote management credentials. For example, you might want a separate discovery rule
to handle your Dell nodes that use DRAC.

Procedure

1. Create a file named dell-drac-rules.json with the following contents:

[
 {
 "description": "Set default IPMI credentials",

CHAPTER 5. AUTOMATICALLY DISCOVERING BARE METAL NODES

39

 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true},
 {"op": "ne", "field": "data://inventory.system_vendor.manufacturer",
 "value": "Dell Inc."}
],
 "actions": [
 {"action": "set-attribute", "path": "driver_info/ipmi_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path": "driver_info/ipmi_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path": "driver_info/ipmi_address",
 "value": "{data[inventory][bmc_address]}"}
]
 },
 {
 "description": "Set the vendor driver for Dell hardware",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true},
 {"op": "eq", "field": "data://inventory.system_vendor.manufacturer",
 "value": "Dell Inc."}
],
 "actions": [
 {"action": "set-attribute", "path": "driver", "value": "idrac"},
 {"action": "set-attribute", "path": "driver_info/drac_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path": "driver_info/drac_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path": "driver_info/drac_address",
 "value": "{data[inventory][bmc_address]}"}
]
 }
]

Replace the user name and password values in this example to suit your environment:

2. Import the rule into ironic:

$ openstack baremetal introspection rule import dell-drac-rules.json

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

40

CHAPTER 6. CONFIGURING AUTOMATIC PROFILE TAGGING
The introspection process performs a series of benchmark tests. Director saves the data from these
tests. You can create a set of policies that use this data in various ways:

The policies can identify under-performing or unstable nodes and isolate these nodes from use
in the overcloud.

The policies can define whether to tag nodes into specific profiles automatically.

6.1. POLICY FILE SYNTAX

Policy files use a JSON format that contains a set of rules. Each rule defines a description, a condition,
and an action. A description is a plain text description of the rule, a condition defines an evaluation using
a key-value pattern, and an action is the performance of the condition.

Description

A description is a plain text description of the rule.

Example:

"description": "A new rule for my node tagging policy"

Conditions

A condition defines an evaluation using the following key-value pattern:

field

Defines the field to evaluate:

memory_mb - The amount of memory for the node in MB.

cpus - The total number of threads for the node CPU.

cpu_arch - The architecture of the node CPU.

local_gb - The total storage space of the node root disk.

op

Defines the operation to use for the evaluation. This includes the following attributes:

eq - Equal to

ne - Not equal to

lt - Less than

gt - Greater than

le - Less than or equal to

ge - Greater than or equal to

in-net - Checks that an IP address is in a given network

CHAPTER 6. CONFIGURING AUTOMATIC PROFILE TAGGING

41

matches - Requires a full match against a given regular expression

contains - Requires a value to contain a given regular expression

is-empty - Checks that field is empty

invert

Boolean value to define whether to invert the result of the evaluation.

multiple

Defines the evaluation to use if multiple results exist. This parameter includes the following
attributes:

any - Requires any result to match

all - Requires all results to match

first - Requires the first result to match

value

Defines the value in the evaluation. If the field and operation result in the value, the condition return a
true result. Otherwise, the condition returns a false result.

Example:

"conditions": [
 {
 "field": "local_gb",
 "op": "ge",
 "value": 1024
 }
],

Actions

If a condition is true, the policy performs an action. The action uses the action key and additional keys
depending on the value of action:

fail - Fails the introspection. Requires a message parameter for the failure message.

set-attribute - Sets an attribute on an ironic node. Requires a path field, which is the path to an
ironic attribute (for example, /driver_info/ipmi_address), and a value to set.

set-capability - Sets a capability on an ironic node. Requires name and value fields, which are
the name and the value for a new capability. This replaces the existing value for this capability.
For example, use this to define node profiles.

extend-attribute - The same as set-attribute but treats the existing value as a list and appends
value to it. If the optional unique parameter is set to True, nothing is added if the given value is
already in a list.

Example:

"actions": [
 {
 "action": "set-capability",

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

42

 "name": "profile",
 "value": "swift-storage"
 }
]

6.2. POLICY FILE EXAMPLE

The following is an example JSON file (rules.json) that contains introspection rules:

[
 {
 "description": "Fail introspection for unexpected nodes",
 "conditions": [
 {
 "op": "lt",
 "field": "memory_mb",
 "value": 4096
 }
],
 "actions": [
 {
 "action": "fail",
 "message": "Memory too low, expected at least 4 GiB"
 }
]
 },
 {
 "description": "Assign profile for object storage",
 "conditions": [
 {
 "op": "ge",
 "field": "local_gb",
 "value": 1024
 }
],
 "actions": [
 {
 "action": "set-capability",
 "name": "profile",
 "value": "swift-storage"
 }
]
 },
 {
 "description": "Assign possible profiles for compute and controller",
 "conditions": [
 {
 "op": "lt",
 "field": "local_gb",
 "value": 1024
 },
 {
 "op": "ge",
 "field": "local_gb",
 "value": 40

CHAPTER 6. CONFIGURING AUTOMATIC PROFILE TAGGING

43

 }
],
 "actions": [
 {
 "action": "set-capability",
 "name": "compute_profile",
 "value": "1"
 },
 {
 "action": "set-capability",
 "name": "control_profile",
 "value": "1"
 },
 {
 "action": "set-capability",
 "name": "profile",
 "value": null
 }
]
 }
]

This example consists of three rules:

Fail introspection if memory is lower than 4096 MiB. You can apply these types of rules if you
want to exclude certain nodes from your cloud.

Nodes with a hard drive size 1 TiB and bigger are assigned the swift-storage profile
unconditionally.

Nodes with a hard drive less than 1 TiB but more than 40 GiB can be either Compute or
Controller nodes. You can assign two capabilities (compute_profile and control_profile) so
that the openstack overcloud profiles match command can later make the final choice. For
this process to succeed, you must remove the existing profile capability, otherwise the existing
profile capability has priority.

The profile matching rules do not change any other nodes.

NOTE

Using introspection rules to assign the profile capability always overrides the existing
value. However, [PROFILE]_profile capabilities are ignored for nodes that already have a
profile capability.

6.3. IMPORTING POLICY FILES INTO DIRECTOR

To apply the policy rules you defined in your policy JSON file, you must import the policy file into
director.

Procedure

1. Import the policy file into director:

$ openstack baremetal introspection rule import <policy_file>

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

44

Replace <policy_file> with the name of your policy rule file, for example, rules.json.

2. Run the introspection process:

$ openstack overcloud node introspect --all-manageable

3. Retrieve the UUIDs of the nodes that the policy rules are applied to:

$ openstack baremetal node list

4. Confirm that the nodes have been assigned the profiles defined in your policy rule file:

$ openstack baremetal node show <node_uuid>

5. If you made a mistake in introspection rules, then delete all rules:

$ openstack baremetal introspection rule purge

CHAPTER 6. CONFIGURING AUTOMATIC PROFILE TAGGING

45

CHAPTER 7. CUSTOMIZING CONTAINER IMAGES
Red Hat OpenStack Platform (RHOSP) services run in containers, therefore to deploy the RHOSP
services you must obtain the container images. You can generate and customize the environment file
that prepares the container images for your RHOSP deployment.

7.1. PREPARING CONTAINER IMAGES FOR DIRECTOR INSTALLATION

Red Hat supports the following methods for managing container images for your overcloud:

Pulling container images from the Red Hat Container Catalog to the image-serve registry on
the undercloud and then pulling the images from the image-serve registry. When you pull
images to the undercloud first, you avoid multiple overcloud nodes simultaneously pulling
container images over an external connection.

Pulling container images from your Satellite 6 server. You can pull these images directly from
the Satellite because the network traffic is internal.

The undercloud installation requires an environment file to determine where to obtain container images
and how to store them. You generate a default container image preparation file when preparing for
director installation. You can customize the default container image preparation file.

7.1.1. Container image preparation parameters

The default file for preparing your containers (containers-prepare-parameter.yaml) contains the
ContainerImagePrepare heat parameter. This parameter defines a list of strategies for preparing a set
of images:

parameter_defaults:
 ContainerImagePrepare:
 - (strategy one)
 - (strategy two)
 - (strategy three)
 ...

Each strategy accepts a set of sub-parameters that defines which images to use and what to do with the
images. The following table contains information about the sub-parameters that you can use with each
ContainerImagePrepare strategy:

Parameter Description

excludes List of regular expressions to exclude image names
from a strategy.

includes List of regular expressions to include in a strategy. At
least one image name must match an existing image.
All excludes are ignored if includes is specified.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

46

modify_append_tag String to append to the tag for the destination image.
For example, if you pull an image with the tag 17.1.0-
5.161 and set the modify_append_tag to -hotfix,
the director tags the final image as 17.1.0-5.161-
hotfix.

modify_only_with_labels A dictionary of image labels that filter the images
that you want to modify. If an image matches the
labels defined, the director includes the image in the
modification process.

modify_role String of ansible role names to run during upload but
before pushing the image to the destination registry.

modify_vars Dictionary of variables to pass to modify_role.

push_destination Defines the namespace of the registry that you want
to push images to during the upload process.

If set to true, the push_destination is set
to the undercloud registry namespace using
the hostname, which is the recommended
method.

If set to false, the push to a local registry
does not occur and nodes pull images
directly from the source.

If set to a custom value, director pushes
images to an external local registry.

If you set this parameter to false in production
environments while pulling images directly from Red
Hat Container Catalog, all overcloud nodes will
simultaneously pull the images from the Red Hat
Container Catalog over your external connection,
which can cause bandwidth issues. Only use false to
pull directly from a Red Hat Satellite Server hosting
the container images.

If the push_destination parameter is set to false
or is not defined and the remote registry requires
authentication, set the
ContainerImageRegistryLogin parameter to
true and include the credentials with the
ContainerImageRegistryCredentials
parameter.

pull_source The source registry from where to pull the original
container images.

Parameter Description

CHAPTER 7. CUSTOMIZING CONTAINER IMAGES

47

set A dictionary of key: value definitions that define
where to obtain the initial images.

tag_from_label Use the value of specified container image metadata
labels to create a tag for every image and pull that
tagged image. For example, if you set
tag_from_label: {version}-{release}, director
uses the version and release labels to construct a
new tag. For one container, version might be set to
17.1.0 and release might be set to 5.161, which
results in the tag 17.1.0-5.161. Director uses this
parameter only if you have not defined tag in the set
dictionary.

Parameter Description

IMPORTANT

When you push images to the undercloud, use push_destination: true instead of
push_destination: UNDERCLOUD_IP:PORT. The push_destination: true method
provides a level of consistency across both IPv4 and IPv6 addresses.

The set parameter accepts a set of key: value definitions:

Key Description

ceph_image The name of the Ceph Storage container image.

ceph_namespace The namespace of the Ceph Storage container
image.

ceph_tag The tag of the Ceph Storage container image.

ceph_alertmanager_image

ceph_alertmanager_namespace

ceph_alertmanager_tag

The name, namespace, and tag of the Ceph Storage
Alert Manager container image.

ceph_grafana_image

ceph_grafana_namespace

ceph_grafana_tag

The name, namespace, and tag of the Ceph Storage
Grafana container image.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

48

ceph_node_exporter_image

ceph_node_exporter_namespace

ceph_node_exporter_tag

The name, namespace, and tag of the Ceph Storage
Node Exporter container image.

ceph_prometheus_image

ceph_prometheus_namespace

ceph_prometheus_tag

The name, namespace, and tag of the Ceph Storage
Prometheus container image.

name_prefix A prefix for each OpenStack service image.

name_suffix A suffix for each OpenStack service image.

namespace The namespace for each OpenStack service image.

neutron_driver The driver to use to determine which OpenStack
Networking (neutron) container to use. Use a null
value to set to the standard neutron-server
container. Set to ovn to use OVN-based containers.

tag Sets a specific tag for all images from the source. If
not defined, director uses the Red Hat OpenStack
Platform version number as the default value. This
parameter takes precedence over the
tag_from_label value.

Key Description

NOTE

The container images use multi-stream tags based on the Red Hat OpenStack Platform
version. This means that there is no longer a latest tag.

7.1.2. Guidelines for container image tagging

The Red Hat Container Registry uses a specific version format to tag all Red Hat OpenStack Platform
container images. This format follows the label metadata for each container, which is version-release.

version

Corresponds to a major and minor version of Red Hat OpenStack Platform. These versions act as
streams that contain one or more releases.

release

Corresponds to a release of a specific container image version within a version stream.

For example, if the latest version of Red Hat OpenStack Platform is 17.1.0 and the release for the
container image is 5.161, then the resulting tag for the container image is 17.1.0-5.161.

The Red Hat Container Registry also uses a set of major and minor version tags that link to the latest

CHAPTER 7. CUSTOMIZING CONTAINER IMAGES

49

release for that container image version. For example, both 17.1 and 17.1.0 link to the latest release in the
17.1.0 container stream. If a new minor release of 17.1 occurs, the 17.1 tag links to the latest release for the
new minor release stream while the 17.1.0 tag continues to link to the latest release within the 17.1.0
stream.

The ContainerImagePrepare parameter contains two sub-parameters that you can use to determine
which container image to download. These sub-parameters are the tag parameter within the set
dictionary, and the tag_from_label parameter. Use the following guidelines to determine whether to use
tag or tag_from_label.

The default value for tag is the major version for your OpenStack Platform version. For this
version it is 17.1. This always corresponds to the latest minor version and release.

parameter_defaults:
 ContainerImagePrepare:
 - set:
 ...
 tag: 17.1
 ...

To change to a specific minor version for OpenStack Platform container images, set the tag to a
minor version. For example, to change to 17.1.2, set tag to 17.1.2.

parameter_defaults:
 ContainerImagePrepare:
 - set:
 ...
 tag: 17.1.2
 ...

When you set tag, director always downloads the latest container image release for the version
set in tag during installation and updates.

If you do not set tag, director uses the value of tag_from_label in conjunction with the latest
major version.

parameter_defaults:
 ContainerImagePrepare:
 - set:
 ...
 # tag: 17.1
 ...
 tag_from_label: '{version}-{release}'

The tag_from_label parameter generates the tag from the label metadata of the latest
container image release it inspects from the Red Hat Container Registry. For example, the labels
for a certain container might use the following version and release metadata:

 "Labels": {
 "release": "5.161",
 "version": "17.1.0",
 ...
 }

The default value for tag_from_label is {version}-{release}, which corresponds to the version

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

50

and release metadata labels for each container image. For example, if a container image has
17.1.0 set for version and 5.161 set for release, the resulting tag for the container image is
17.1.0-5.161.

The tag parameter always takes precedence over the tag_from_label parameter. To use
tag_from_label, omit the tag parameter from your container preparation configuration.

A key difference between tag and tag_from_label is that director uses tag to pull an image only
based on major or minor version tags, which the Red Hat Container Registry links to the latest
image release within a version stream, while director uses tag_from_label to perform a
metadata inspection of each container image so that director generates a tag and pulls the
corresponding image.

7.1.3. Excluding Ceph Storage container images

The default overcloud role configuration uses the default Controller, Compute, and Ceph Storage roles.
However, if you use the default role configuration to deploy an overcloud without Ceph Storage nodes,
director still pulls the Ceph Storage container images from the Red Hat Container Registry because the
images are included as a part of the default configuration.

If your overcloud does not require Ceph Storage containers, you can configure director to not pull the
Ceph Storage containers images from the Red Hat Container Registry.

Procedure

1. Edit the containers-prepare-parameter.yaml file and add the ceph_images: false parameter.
The following is an example of this file with the parameter bolded:

parameter_defaults:
 ContainerImagePrepare:
 - tag_from_label: {version}-{release}
 set:
 name_prefix: rhosp17-openstack-
 name_suffix: ''
 tag: 17.1_20231214.1
 rhel_containers: false
 neutron_driver: ovn
 ceph_images: false
 push_destination: true

2. Save the containers-prepare-parameter.yaml file.

3. Create a new container images file for use in the overcloud deployment:
sudo openstack tripleo container image prepare -e containers-prepare-parameter.yaml --
output-env-file <new_container_images_file>

Replace <new_container_images_file> with the output file that contains the new
parameter.

4. Add the new container images file to the list of overcloud deployment environment files.

7.1.4. Modifying images during preparation

It is possible to modify images during image preparation, and then immediately deploy the overcloud
with modified images.

NOTE

CHAPTER 7. CUSTOMIZING CONTAINER IMAGES

51

NOTE

Red Hat OpenStack Platform (RHOSP) director supports modifying images during
preparation for RHOSP containers, not for Ceph containers.

Scenarios for modifying images include:

As part of a continuous integration pipeline where images are modified with the changes being
tested before deployment.

As part of a development workflow where local changes must be deployed for testing and
development.

When changes must be deployed but are not available through an image build pipeline. For
example, adding proprietary add-ons or emergency fixes.

To modify an image during preparation, invoke an Ansible role on each image that you want to modify.
The role takes a source image, makes the requested changes, and tags the result. The prepare
command can push the image to the destination registry and set the heat parameters to refer to the
modified image.

The Ansible role tripleo-modify-image conforms with the required role interface and provides the
behaviour necessary for the modify use cases. Control the modification with the modify-specific keys in
the ContainerImagePrepare parameter:

modify_role specifies the Ansible role to invoke for each image to modify.

modify_append_tag appends a string to the end of the source image tag. This makes it obvious
that the resulting image has been modified. Use this parameter to skip modification if the
push_destination registry already contains the modified image. Change modify_append_tag
whenever you modify the image.

modify_vars is a dictionary of Ansible variables to pass to the role.

To select a use case that the tripleo-modify-image role handles, set the tasks_from variable to the
required file in that role.

While developing and testing the ContainerImagePrepare entries that modify images, run the image
prepare command without any additional options to confirm that the image is modified as you expect:

sudo openstack tripleo container image prepare \
 -e ~/containers-prepare-parameter.yaml

IMPORTANT

To use the openstack tripleo container image prepare command, your undercloud
must contain a running image-serve registry. As a result, you cannot run this command
before a new undercloud installation because the image-serve registry will not be
installed. You can run this command after a successful undercloud installation.

7.1.5. Updating existing packages on container images

You can update the existing packages on the container images for Red Hat OpenStack Platform
(RHOSP) containers.

NOTE

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

52

NOTE

Red Hat OpenStack Platform (RHOSP) director supports updating existing packages on
container images for RHOSP containers, not for Ceph containers.

Procedure

1. Download the RPM packages for installation on the container images.

2. Edit the containers-prepare-parameter.yaml file to update all packages on the container
images:

ContainerImagePrepare:
- push_destination: true
 ...
 modify_role: tripleo-modify-image
 modify_append_tag: "-updated"
 modify_vars:
 tasks_from: yum_update.yml
 compare_host_packages: true
 yum_repos_dir_path: /etc/yum.repos.d
 ...

3. Save the containers-prepare-parameter.yaml file.

4. Include the containers-prepare-parameter.yaml file when you run the openstack overcloud
deploy command.

7.1.6. Installing additional RPM files to container images

You can install a directory of RPM files in your container images. This is useful for installing hotfixes,
local package builds, or any package that is not available through a package repository.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports installing additional RPM files
to container images for RHOSP containers, not for Ceph containers.

NOTE

When you modify container images in existing deployments, you must then perform a
minor update to apply the changes to your overcloud. For more information, see
Performing a minor update of Red Hat OpenStack Platform .

Procedure

The following example ContainerImagePrepare entry installs some hotfix packages on only the
nova-compute image:

ContainerImagePrepare:
- push_destination: true
 ...
 includes:
 - nova-compute

CHAPTER 7. CUSTOMIZING CONTAINER IMAGES

53

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/performing_a_minor_update_of_red_hat_openstack_platform/index

 modify_role: tripleo-modify-image
 modify_append_tag: "-hotfix"
 modify_vars:
 tasks_from: rpm_install.yml
 rpms_path: /home/stack/nova-hotfix-pkgs
 ...

7.1.7. Modifying container images with a custom Dockerfile

You can specify a directory that contains a Dockerfile to make the required changes. When you invoke
the tripleo-modify-image role, the role generates a Dockerfile.modified file that changes the FROM
directive and adds extra LABEL directives.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports modifying container images
with a custom Dockerfile for RHOSP containers, not for Ceph containers.

Procedure

1. The following example runs the custom Dockerfile on the nova-compute image:

ContainerImagePrepare:
- push_destination: true
 ...
 includes:
 - nova-compute
 modify_role: tripleo-modify-image
 modify_append_tag: "-hotfix"
 modify_vars:
 tasks_from: modify_image.yml
 modify_dir_path: /home/stack/nova-custom
 ...

2. The following example shows the /home/stack/nova-custom/Dockerfile file. After you run any
USER root directives, you must switch back to the original image default user:

FROM registry.redhat.io/rhosp-rhel9/openstack-nova-compute:latest

USER "root"

COPY customize.sh /tmp/
RUN /tmp/customize.sh

USER "nova"

7.1.8. Preparing a Satellite server for container images

Red Hat Satellite 6 offers registry synchronization capabilities. This provides a method to pull multiple
images into a Satellite server and manage them as part of an application life cycle. The Satellite also acts
as a registry for other container-enabled systems to use. For more information about managing
container images, see Managing Container Images in the Red Hat Satellite 6 Content Management
Guide.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

54

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html/content_management_guide/managing_container_images

The examples in this procedure use the hammer command line tool for Red Hat Satellite 6 and an
example organization called ACME. Substitute this organization for your own Satellite 6 organization.

NOTE

This procedure requires authentication credentials to access container images from
registry.redhat.io. Instead of using your individual user credentials, Red Hat
recommends creating a registry service account and using those credentials to access
registry.redhat.io content. For more information, see "Red Hat Container Registry
Authentication".

Procedure

1. Create a list of all container images:

$ sudo podman search --limit 1000 "registry.redhat.io/rhosp-rhel9" --format="{{ .Name }}" |
sort > satellite_images
$ sudo podman search --limit 1000 "registry.redhat.io/rhceph" | grep
<ceph_dashboard_image_file>
$ sudo podman search --limit 1000 "registry.redhat.io/rhceph" | grep <ceph_image_file>
$ sudo podman search --limit 1000 "registry.redhat.io/openshift4" | grep ose-prometheus

Replace <ceph_dashboard_image_file> with the name of the image file for the version of
Red Hat Ceph Storage that your deployment uses:

Red Hat Ceph Storage 5: rhceph-5-dashboard-rhel8

Red Hat Ceph Storage 6: rhceph-6-dashboard-rhel9

Replace <ceph_image_file> with the name of the image file for the version of Red Hat
Ceph Storage that your deployment uses:

Red Hat Ceph Storage 5: rhceph-5-rhel8

Red Hat Ceph Storage 6: rhceph-6-rhel9

NOTE

The openstack-ovn-bgp-agent image is located at
registry.redhat.io/rhosp-rhel9/openstack-ovn-bgp-agent-rhel9:17.1.

If you plan to install Ceph and enable the Ceph Dashboard, you need the following ose-
prometheus containers:

registry.redhat.io/openshift4/ose-prometheus-node-exporter:v4.12
registry.redhat.io/openshift4/ose-prometheus:v4.12
registry.redhat.io/openshift4/ose-prometheus-alertmanager:v4.12

2. Copy the satellite_images file to a system that contains the Satellite 6 hammer tool.
Alternatively, use the instructions in the Hammer CLI Guide to install the hammer tool to the
undercloud.

3. Run the following hammer command to create a new product (OSP Containers) in your
Satellite organization:

CHAPTER 7. CUSTOMIZING CONTAINER IMAGES

55

https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html-single/hammer_cli_guide/index

$ hammer product create \
 --organization "ACME" \
 --name "OSP Containers"

This custom product will contain your images.

4. Add the overcloud container images from the satellite_images file:

$ while read IMAGE; do \
 IMAGE_NAME=$(echo $IMAGE | cut -d"/" -f3 | sed "s/openstack-//g") ; \
 IMAGE_NOURL=$(echo $IMAGE | sed "s/registry.redhat.io\///g") ; \
 hammer repository create \
 --organization "ACME" \
 --product "OSP Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name $IMAGE_NOURL \
 --upstream-username USERNAME \
 --upstream-password PASSWORD \
 --name $IMAGE_NAME ; done < satellite_images

5. Add the Ceph Storage container image:

$ hammer repository create \
 --organization "ACME" \
 --product "OSP Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name rhceph/<ceph_image_name> \
 --upstream-username USERNAME \
 --upstream-password PASSWORD \
 --name <ceph_image_name>

Replace <ceph_image_file> with the name of the image file for the version of Red Hat
Ceph Storage that your deployment uses:

Red Hat Ceph Storage 5: rhceph-5-rhel8

Red Hat Ceph Storage 6: rhceph-6-rhel9

NOTE

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

56

NOTE

If you want to install the Ceph dashboard, include --name
<ceph_dashboard_image_name> in the hammer repository create
command:

$ hammer repository create \
 --organization "ACME" \
 --product "OSP Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name rhceph/<ceph_dashboard_image_name> \
 --upstream-username USERNAME \
 --upstream-password PASSWORD \
 --name <ceph_dashboard_image_name>

Replace <ceph_dashboard_image_file> with the name of the
image file for the version of Red Hat Ceph Storage that your
deployment uses:

Red Hat Ceph Storage 5: rhceph-5-dashboard-rhel8

Red Hat Ceph Storage 6: rhceph-6-dashboard-rhel9

6. Synchronize the container images:

$ hammer product synchronize \
 --organization "ACME" \
 --name "OSP Containers"

Wait for the Satellite server to complete synchronization.

NOTE

Depending on your configuration, hammer might ask for your Satellite server
username and password. You can configure hammer to automatically login using
a configuration file. For more information, see the Authentication section in the
Hammer CLI Guide .

7. If your Satellite 6 server uses content views, create a new content view version to incorporate
the images and promote it along environments in your application life cycle. This largely
depends on how you structure your application lifecycle. For example, if you have an
environment called production in your lifecycle and you want the container images to be
available in that environment, create a content view that includes the container images and
promote that content view to the production environment. For more information, see
Managing Content Views.

8. Check the available tags for the base image:

$ hammer docker tag list --repository "base" \
 --organization "ACME" \
 --lifecycle-environment "production" \
 --product "OSP Containers"

CHAPTER 7. CUSTOMIZING CONTAINER IMAGES

57

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html-single/hammer_cli_guide/index#sect-CLI_Guide-Authentication
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html-single/content_management_guide/index#Managing_Content_Views

This command displays tags for the OpenStack Platform container images within a content view
for a particular environment.

9. Return to the undercloud and generate a default environment file that prepares images using
your Satellite server as a source. Run the following example command to generate the
environment file:

$ sudo openstack tripleo container image prepare default \
 --output-env-file containers-prepare-parameter.yaml

--output-env-file is an environment file name. The contents of this file include the
parameters for preparing your container images for the undercloud. In this case, the name
of the file is containers-prepare-parameter.yaml.

10. Edit the containers-prepare-parameter.yaml file and modify the following parameters:

push_destination - Set this to true or false depending on your chosen container image
management strategy. If you set this parameter to false, the overcloud nodes pull images
directly from the Satellite. If you set this parameter to true, the director pulls the images
from the Satellite to the undercloud registry and the overcloud pulls the images from the
undercloud registry.

namespace - The URL of the registry on the Satellite server.

name_prefix - The prefix is based on a Satellite 6 convention. This differs depending on
whether you use content views:

If you use content views, the structure is [org]-[environment]-[content view]-
[product]-. For example: acme-production-myosp17-osp_containers-.

If you do not use content views, the structure is [org]-[product]-. For example: acme-
osp_containers-.

ceph_namespace, ceph_image, ceph_tag - If you use Ceph Storage, include these
additional parameters to define the Ceph Storage container image location. Note that
ceph_image now includes a Satellite-specific prefix. This prefix is the same value as the
name_prefix option.

The following example environment file contains Satellite-specific parameters:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: false
 set:
 ceph_image: acme-production-myosp17_1-osp_containers-rhceph-6
 ceph_namespace: satellite.example.com:443
 ceph_tag: latest
 name_prefix: acme-production-myosp17_1-osp_containers-
 name_suffix: ''
 namespace: satellite.example.com:5000
 neutron_driver: null
 tag: '17.1'
 ...

NOTE

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

58

NOTE

To use a specific container image version stored on your Red Hat Satellite Server, set the
tag key-value pair to the specific version in the set dictionary. For example, to use the
17.1.2 image stream, set tag: 17.1.2 in the set dictionary.

You must define the containers-prepare-parameter.yaml environment file in the undercloud.conf
configuration file, otherwise the undercloud uses the default values:

container_images_file = /home/stack/containers-prepare-parameter.yaml

7.1.9. Deploying a vendor plugin

To use some third-party hardware as a Block Storage back end, you must deploy a vendor plugin. The
following example demonstrates how to deploy a vendor plugin to use Dell EMC hardware as a Block
Storage back end.

Procedure

1. Create a new container images file for your overcloud:

$ sudo openstack tripleo container image prepare default \
 --local-push-destination \
 --output-env-file containers-prepare-parameter-dellemc.yaml

2. Edit the containers-prepare-parameter-dellemc.yaml file.

3. Add an exclude parameter to the strategy for the main Red Hat OpenStack Platform container
images. Use this parameter to exclude the container image that the vendor container image will
replace. In the example, the container image is the cinder-volume image:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 excludes:
 - cinder-volume
 set:
 namespace: registry.redhat.io/rhosp-rhel9
 name_prefix: openstack-
 name_suffix: ''
 tag: 17.1
 ...
 tag_from_label: "{version}-{release}"

4. Add a new strategy to the ContainerImagePrepare parameter that includes the replacement
container image for the vendor plugin:

parameter_defaults:
 ContainerImagePrepare:
 ...
 - push_destination: true
 includes:
 - cinder-volume
 set:

CHAPTER 7. CUSTOMIZING CONTAINER IMAGES

59

 namespace: registry.connect.redhat.com/dellemc
 name_prefix: openstack-
 name_suffix: -dellemc-rhosp16
 tag: 16.2-2
 ...

5. Add the authentication details for the registry.connect.redhat.com registry to the
ContainerImageRegistryCredentials parameter:

parameter_defaults:
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 [service account username]: [service account password]
 registry.connect.redhat.com:
 [service account username]: [service account password]

6. Save the containers-prepare-parameter-dellemc.yaml file.

7. Include the containers-prepare-parameter-dellemc.yaml file with any deployment commands,
such as as openstack overcloud deploy:

$ openstack overcloud deploy --templates
 ...
 -e containers-prepare-parameter-dellemc.yaml
 ...

When director deploys the overcloud, the overcloud uses the vendor container image instead of
the standard container image.

IMPORTANT

The containers-prepare-parameter-dellemc.yaml file replaces the standard containers-
prepare-parameter.yaml file in your overcloud deployment. Do not include the standard
containers-prepare-parameter.yaml file in your overcloud deployment. Retain the standard
containers-prepare-parameter.yaml file for your undercloud installation and updates.

7.2. PERFORMING ADVANCED CONTAINER IMAGE MANAGEMENT

The default container image configuration suits most environments. In some situations, your container
image configuration might require some customization, such as version pinning.

7.2.1. Pinning container images for the undercloud

In certain circumstances, you might require a set of specific container image versions for your
undercloud. In this situation, you must pin the images to a specific version. To pin your images, you must
generate and modify a container configuration file, and then combine the undercloud roles data with the
container configuration file to generate an environment file that contains a mapping of services to
container images. Then include this environment file in the custom_env_files parameter in the
undercloud.conf file.

Procedure

1. Log in to the undercloud host as the stack user.

2. Run the openstack tripleo container image prepare default command with the --output-env-

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

60

2. Run the openstack tripleo container image prepare default command with the --output-env-
file option to generate a file that contains the default image configuration:

$ sudo openstack tripleo container image prepare default \
--output-env-file undercloud-container-image-prepare.yaml

3. Modify the undercloud-container-image-prepare.yaml file according to the requirements of
your environment.

a. Remove the tag: parameter so that director can use the tag_from_label: parameter.
Director uses this parameter to identify the latest version of each container image, pull each
image, and tag each image on the container registry in director.

b. Remove the Ceph labels for the undercloud.

c. Ensure that the neutron_driver: parameter is empty. Do not set this parameter to OVN
because OVN is not supported on the undercloud.

d. Include your container image registry credentials:

ContainerImageRegistryCredentials:
 registry.redhat.io:
 myser: 'p@55w0rd!'

NOTE

You cannot push container images to the undercloud registry on new
underclouds because the image-serve registry is not installed yet. You must
set the push_destination value to false, or use a custom value, to pull
images directly from source. For more information, see Container image
preparation parameters.

4. Generate a new container image configuration file that uses the undercloud roles file combined
with your custom undercloud-container-image-prepare.yaml file:

$ sudo openstack tripleo container image prepare \
-r /usr/share/openstack-tripleo-heat-templates/roles_data_undercloud.yaml \
-e undercloud-container-image-prepare.yaml \
--output-env-file undercloud-container-images.yaml

The undercloud-container-images.yaml file is an environment file that contains a mapping of
service parameters to container images. For example, OpenStack Identity (keystone) uses the
ContainerKeystoneImage parameter to define its container image:

ContainerKeystoneImage: undercloud.ctlplane.localdomain:8787/rhosp-rhel9/openstack-
keystone:17.1

Note that the container image tag matches the {version}-{release} format.

5. Include the undercloud-container-images.yaml file in the custom_env_files parameter in the
undercloud.conf file. When you run the undercloud installation, the undercloud services use the
pinned container image mapping from this file.

7.2.2. Pinning container images for the overcloud

CHAPTER 7. CUSTOMIZING CONTAINER IMAGES

61

In certain circumstances, you might require a set of specific container image versions for your overcloud.
In this situation, you must pin the images to a specific version. To pin your images, you must create the
containers-prepare-parameter.yaml file, use this file to pull your container images to the undercloud
registry, and generate an environment file that contains a pinned image list.

For example, your containers-prepare-parameter.yaml file might contain the following content:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 name_prefix: openstack-
 name_suffix: ''
 namespace: registry.redhat.io/rhosp-rhel9
 neutron_driver: ovn
 tag_from_label: '{version}-{release}'

 ContainerImageRegistryCredentials:
 registry.redhat.io:
 myuser: 'p@55w0rd!'

The ContainerImagePrepare parameter contains a single rule set. This rule set must not include the
tag parameter and must rely on the tag_from_label parameter to identify the latest version and release
of each container image. Director uses this rule set to identify the latest version of each container
image, pull each image, and tag each image on the container registry in director.

Procedure

1. Run the openstack tripleo container image prepare command, which pulls all images from the
source defined in the containers-prepare-parameter.yaml file. Include the --output-env-file to
specify the output file that will contain the list of pinned container images:

$ sudo openstack tripleo container image prepare -e /home/stack/templates/containers-
prepare-parameter.yaml --output-env-file overcloud-images.yaml

The overcloud-images.yaml file is an environment file that contains a mapping of service
parameters to container images. For example, OpenStack Identity (keystone) uses the
ContainerKeystoneImage parameter to define its container image:

ContainerKeystoneImage: undercloud.ctlplane.localdomain:8787/rhosp-rhel9/openstack-
keystone:17.1

Note that the container image tag matches the {version}-{release} format.

2. Include the containers-prepare-parameter.yaml and overcloud-images.yaml files in that
specific order with your environment file collection when you run the openstack overcloud
deploy command:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/containers-prepare-parameter.yaml \
 -e /home/stack/overcloud-images.yaml \
 ...

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

62

The overcloud services use the pinned images listed in the overcloud-images.yaml file.

CHAPTER 7. CUSTOMIZING CONTAINER IMAGES

63

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT
OPENSTACK PLATFORM ENVIRONMENT

You can customizing the undercloud and overcloud physical networks for your Red Hat OpenStack
Platform (RHOSP)environment.

8.1. CUSTOMIZING UNDERCLOUD NETWORKS

You can customize the undercloud network configuration to install the undercloud with specific
networking functionality. You can also configure the undercloud and the provisioning network to use
IPv6 instead of IPv4 if you have IPv6 nodes and infrastructure.

8.1.1. Configuring undercloud network interfaces

Include custom network configuration in the undercloud.conf file to install the undercloud with specific
networking functionality. For example, some interfaces might not have DHCP. In this case, you must
disable DHCP for these interfaces in the undercloud.conf file so that os-net-config can apply the
configuration during the undercloud installation process.

Procedure

1. Log in to the undercloud host.

2. Create a new file undercloud-os-net-config.yaml and include the network configuration that
you require.
In the addresses section, include the local_ip, such as 172.20.0.1/26. If TLS is enabled in the
undercloud, you must also include the undercloud_public_host, such as 172.20.0.2/32, and the
undercloud_admin_host, such as 172.20.0.3/32.

Here is an example:

network_config:
- name: br-ctlplane
 type: ovs_bridge
 use_dhcp: false
 dns_servers:
 - 192.168.122.1
 domain: lab.example.com
 ovs_extra:
 - "br-set-external-id br-ctlplane bridge-id br-ctlplane"
 addresses:
 - ip_netmask: 172.20.0.1/26
 - ip_netmask: 172.20.0.2/32
 - ip_netmask: 172.20.0.3/32
 members:
 - type: interface
 name: nic2

To create a network bond for a specific interface, use the following sample:

network_config:
- name: br-ctlplane
 type: ovs_bridge

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

64

 use_dhcp: false
 dns_servers:
 - 192.168.122.1
 domain: lab.example.com
 ovs_extra:
 - "br-set-external-id br-ctlplane bridge-id br-ctlplane"
 addresses:
 - ip_netmask: 172.20.0.1/26
 - ip_netmask: 172.20.0.2/32
 - ip_netmask: 172.20.0.3/32
 members:
 - name: bond-ctlplane
 type: linux_bond
 use_dhcp: false
 bonding_options: "mode=active-backup"
 mtu: 1500
 members:
 - type: interface
 name: nic2
 - type: interface
 name: nic3

3. Include the path to the undercloud-os-net-config.yaml file in the net_config_override
parameter in the undercloud.conf file:

[DEFAULT]
...
net_config_override=undercloud-os-net-config.yaml
...

NOTE

Director uses the file that you include in the net_config_override parameter as
the template to generate the /etc/os-net-config/config.yaml file. os-net-config
manages the interfaces that you define in the template, so you must perform all
undercloud network interface customization in this file.

4. Install the undercloud.

Verification

After the undercloud installation completes successfully, verify that the /etc/os-net-
config/config.yaml file contains the relevant configuration:

network_config:
- name: br-ctlplane
 type: ovs_bridge
 use_dhcp: false
 dns_servers:
 - 192.168.122.1
 domain: lab.example.com
 ovs_extra:
 - "br-set-external-id br-ctlplane bridge-id br-ctlplane"
 addresses:

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

65

 - ip_netmask: 172.20.0.1/26
 - ip_netmask: 172.20.0.2/32
 - ip_netmask: 172.20.0.3/32
 members:
 - type: interface
 name: nic2

8.1.2. Configuring the undercloud for bare metal provisioning over IPv6

If you have IPv6 nodes and infrastructure, you can configure the undercloud and the provisioning
network to use IPv6 instead of IPv4 so that director can provision and deploy Red Hat OpenStack
Platform onto IPv6 nodes. However, there are some considerations:

Dual stack IPv4/6 is not available.

Tempest validations might not perform correctly.

IPv4 to IPv6 migration is not available during upgrades.

Modify the undercloud.conf file to enable IPv6 provisioning in Red Hat OpenStack Platform.

Prerequisites

An IPv6 address on the undercloud. For more information, see Configuring an IPv6 address on
the undercloud in the IPv6 networking for the overcloud guide.

Procedure

1. Open your undercloud.conf file.

2. Specify the IPv6 address mode as either stateless or stateful:

[DEFAULT]
ipv6_address_mode = <address_mode>
...

Replace <address_mode> with dhcpv6-stateless or dhcpv6-stateful, based on the mode
that your NIC supports.

NOTE

When you use the stateful address mode, the firmware, chain loaders, and
operating systems might use different algorithms to generate an ID that the
DHCP server tracks. DHCPv6 does not track addresses by MAC, and does not
provide the same address back if the identifier value from the requester changes
but the MAC address remains the same. Therefore, when you use stateful
DHCPv6 you must also complete the next step to configure the network
interface.

3. If you configured your undercloud to use stateful DHCPv6, specify the network interface to use
for bare metal nodes:

[DEFAULT]
ipv6_address_mode = dhcpv6-stateful

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

66

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_ipv6_networking_for_the_overcloud/index#sect-pre-Configuring_an_IPv6_on_the_Undercloud

ironic_enabled_network_interfaces = neutron,flat
...

4. Set the default network interface for bare metal nodes:

[DEFAULT]
...
ironic_default_network_interface = neutron
...

5. Specify whether or not the undercloud should create a router on the provisioning network:

[DEFAULT]
...
enable_routed_networks: <true/false>
...

Replace <true/false> with true to enable routed networks and prevent the undercloud
creating a router on the provisioning network. When true, the data center router must
provide router advertisements.

Replace <true/false> with false to disable routed networks and create a router on the
provisioning network.

6. Configure the local IP address, and the IP address for the director Admin API and Public API
endpoints over SSL/TLS:

[DEFAULT]
...
local_ip = <ipv6_address>
undercloud_admin_host = <ipv6_address>
undercloud_public_host = <ipv6_address>
...

Replace <ipv6_address> with the IPv6 address of the undercloud.

7. Optional: Configure the provisioning network that director uses to manage instances:

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
...

Replace <ipv6_address> with the IPv6 address of the network to use for managing
instances when not using the default provisioning network.

Replace <ipv6_prefix> with the IP address prefix of the network to use for managing
instances when not using the default provisioning network.

8. Configure the DHCP allocation range for provisioning nodes:

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
dhcp_start = <ipv6_address_dhcp_start>
dhcp_end = <ipv6_address_dhcp_end>
...

Replace <ipv6_address_dhcp_start> with the IPv6 address of the start of the network

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

67

Replace <ipv6_address_dhcp_start> with the IPv6 address of the start of the network
range to use for the overcloud nodes.

Replace <ipv6_address_dhcp_end> with the IPv6 address of the end of the network
range to use for the overcloud nodes.

9. Optional: Configure the gateway for forwarding traffic to the external network:

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
dhcp_start = <ipv6_address_dhcp_start>
dhcp_end = <ipv6_address_dhcp_end>
gateway = <ipv6_gateway_address>
...

Replace <ipv6_gateway_address> with the IPv6 address of the gateway when not using
the default gateway.

10. Configure the DHCP range to use during the inspection process:

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
dhcp_start = <ipv6_address_dhcp_start>
dhcp_end = <ipv6_address_dhcp_end>
gateway = <ipv6_gateway_address>
inspection_iprange = <ipv6_address_inspection_start>,<ipv6_address_inspection_end>
...

Replace <ipv6_address_inspection_start> with the IPv6 address of the start of the
network range to use during the inspection process.

Replace <ipv6_address_inspection_end> with the IPv6 address of the end of the network
range to use during the inspection process.

NOTE

This range must not overlap with the range defined by dhcp_start and
dhcp_end, but must be in the same IP subnet.

11. Configure an IPv6 nameserver for the subnet:

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
dhcp_start = <ipv6_address_dhcp_start>
dhcp_end = <ipv6_address_dhcp_end>
gateway = <ipv6_gateway_address>
inspection_iprange = <ipv6_address_inspection_start>,<ipv6_address_inspection_end>
dns_nameservers = <ipv6_dns>

Replace <ipv6_dns> with the DNS nameservers specific to the subnet.

12. Use the virt-customize tool to modify the overcloud image to disable the cloud-init network
configuration. For more information, see the Red Hat Knowledgebase solution Modifying the
Red Hat Linux OpenStack Platform Overcloud Image with virt-customize.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

68

https://access.redhat.com/articles/1556833

8.2. CUSTOMIZING OVERCLOUD NETWORKS

You can customize the configuration of the physical network for your overcloud. For example, you can
create configuration files for the network interface controllers (NICs) by using the NIC template file in
Jinja2 ansible format, j2.

8.2.1. Defining custom network interface templates

You can create a set of custom network interface templates to define the NIC layout for each node in
your overcloud environment. The overcloud core template collection contains a set of default NIC
layouts for different use cases. You can create a custom NIC template by using a Jinja2 format file with a
.j2.yaml extension. Director converts the Jinja2 files to YAML format during deployment.

You can then set the network_config property in the overcloud-baremetal-deploy.yaml node
definition file to your custom NIC template to provision the networks for a specific node. For more
information, see Provisioning bare metal nodes for the overcloud .

8.2.1.1. Creating a custom NIC template

Create a NIC template to customise the NIC layout for each node in your overcloud environment.

Procedure

1. Copy the sample network configuration template you require from
/usr/share/ansible/roles/tripleo_network_config/templates/ to your environment file
directory:

$ cp /usr/share/ansible/roles/tripleo_network_config/templates/<sample_NIC_template>
/home/stack/templates/<NIC_template>

Replace <sample_NIC_template> with the name of the sample NIC template that you want
to copy, for example, single_nic_vlans/single_nic_vlans.j2.

Replace <NIC_template> with the name of your custom NIC template file, for example,
single_nic_vlans.j2.

2. Update the network configuration in your custom NIC template to match the requirements for
your overcloud network environment. For information about the properties you can use to
configure your NIC template, see Network interface configuration options . For an example NIC
template, see Example custom network interfaces.

3. Create or update an existing environment file to enable your custom NIC configuration
templates:

parameter_defaults:
 ControllerNetworkConfigTemplate: '/home/stack/templates/single_nic_vlans.j2'
 CephStorageNetworkConfigTemplate: '/home/stack/templates/single_nic_vlans_storage.j2'
 ComputeNetworkConfigTemplate: '/home/stack/templates/single_nic_vlans.j2'

4. If your overcloud uses the default internal load balancing, add the following configuration to
your environment file to assign predictable virtual IPs for Redis and OVNDBs:

parameter_defaults:
 RedisVirtualFixedIPs: [{'ip_address':'<vip_address>'}]
 OVNDBsVirtualFixedIPs: [{'ip_address':'<vip_address>'}]

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

69

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

Replace <vip_address> with an IP address from outside the allocation pool ranges.

8.2.1.2. Network interface configuration options

Use the following tables to understand the available options for configuring network interfaces.

interface

Defines a single network interface. The network interface name uses either the actual interface name
(eth0, eth1, enp0s25) or a set of numbered interfaces (nic1, nic2, nic3). The network interfaces of
hosts within a role do not have to be exactly the same when you use numbered interfaces such as nic1
and nic2, instead of named interfaces such as eth0 and eno2. For example, one host might have
interfaces em1 and em2, while another has eno1 and eno2, but you can refer to the NICs of both hosts
as nic1 and nic2.

The order of numbered interfaces corresponds to the order of named network interface types:

ethX interfaces, such as eth0, eth1, etc. These are usually onboard interfaces.

enoX interfaces, such as eno0, eno1, etc. These are usually onboard interfaces.

enX interfaces, sorted alpha numerically, such as enp3s0, enp3s1, ens3, etc. These are usually
add-on interfaces.

The numbered NIC scheme includes only live interfaces, for example, if the interfaces have a cable
attached to the switch. If you have some hosts with four interfaces and some with six interfaces, use
nic1 to nic4 and attach only four cables on each host.

 - type: interface
 name: nic2

Table 8.1. interface options

Option Default Description

name Name of the interface. The
network interface name uses
either the actual interface name
(eth0, eth1, enp0s25) or a set
of numbered interfaces (nic1,
nic2, nic3).

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the interface.

routes A list of routes assigned to the
interface. For more information,
see routes.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

70

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the interface as the
primary interface.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the interface.

ethtool_opts Set this option to "rx-flow-hash
udp4 sdfn" to improve
throughput when you use VXLAN
on certain NICs.

Option Default Description

vlan

Defines a VLAN. Use the VLAN ID and subnet passed from the parameters section.

For example:

 - type: vlan
 device: nic{{ loop.index + 1 }}
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars', networks_lower[network] ~
'_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}

Table 8.2. vlan options

Option Default Description

vlan_id The VLAN ID.

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

71

device The parent device to attach the
VLAN. Use this parameter when
the VLAN is not a member of an
OVS bridge. For example, use this
parameter to attach the VLAN to
a bonded interface device.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the VLAN.

routes A list of routes assigned to the
VLAN. For more information, see
routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the VLAN as the primary
interface.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the VLAN.

Option Default Description

ovs_bond

Defines a bond in Open vSwitch to join two or more interfaces together. This helps with redundancy
and increases bandwidth.

For example:

 members:
 - type: ovs_bond
 name: bond1
 mtu: {{ min_viable_mtu }}
 ovs_options: {{ bond_interface_ovs_options }}
 members:

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

72

 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu }}
 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu }}

Table 8.3. ovs_bond options

Option Default Description

name Name of the bond.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bond.

routes A list of routes assigned to the
bond. For more information, see
routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the interface as the
primary interface.

members A sequence of interface objects
that you want to use in the bond.

ovs_options A set of options to pass to OVS
when creating the bond.

ovs_extra A set of options to set as the
OVS_EXTRA parameter in the
network configuration file of the
bond.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

73

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bond.

Option Default Description

ovs_bridge

Defines a bridge in Open vSwitch, which connects multiple interface, ovs_bond, and vlan objects
together.

The network interface type, ovs_bridge, takes a parameter name.

NOTE

If you have multiple bridges, you must use distinct bridge names other than accepting the
default name of bridge_name. If you do not use distinct names, then during the converge
phase, two network bonds are placed on the same bridge.

If you are defining an OVS bridge for the external tripleo network, then retain the values bridge_name
and interface_name as your deployment framework automatically replaces these values with an external
bridge name and an external interface name, respectively.

For example:

 - type: ovs_bridge
 name: br-bond
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 members:
 - type: ovs_bond
 name: bond1
 mtu: {{ min_viable_mtu }}
 ovs_options: {{ bound_interface_ovs_options }}
 members:
 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu }}
 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu }}

NOTE

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

74

NOTE

The OVS bridge connects to the Networking service (neutron) server to obtain
configuration data. If the OpenStack control traffic, typically the Control Plane and
Internal API networks, is placed on an OVS bridge, then connectivity to the neutron
server is lost whenever you upgrade OVS, or the OVS bridge is restarted by the admin
user or process. This causes some downtime. If downtime is not acceptable in these
circumstances, then you must place the Control group networks on a separate interface
or bond rather than on an OVS bridge:

You can achieve a minimal setting when you put the Internal API network on a
VLAN on the provisioning interface and the OVS bridge on a second interface.

To implement bonding, you need at least two bonds (four network interfaces).
Place the control group on a Linux bond (Linux bridge). If the switch does not
support LACP fallback to a single interface for PXE boot, then this solution
requires at least five NICs.

Table 8.4. ovs_bridge options

Option Default Description

name Name of the bridge.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bridge.

routes A list of routes assigned to the
bridge. For more information, see
routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

members A sequence of interface, VLAN,
and bond objects that you want
to use in the bridge.

ovs_options A set of options to pass to OVS
when creating the bridge.

ovs_extra A set of options to to set as the
OVS_EXTRA parameter in the
network configuration file of the
bridge.

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

75

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bridge.

Option Default Description

linux_bond

Defines a Linux bond that joins two or more interfaces together. This helps with redundancy and
increases bandwidth. Ensure that you include the kernel-based bonding options in the
bonding_options parameter.

For example:

- type: linux_bond
 name: bond1
 mtu: {{ min_viable_mtu }}
 bonding_options: "mode=802.3ad lacp_rate=fast updelay=1000 miimon=100
xmit_hash_policy=layer3+4"
 members:
 type: interface
 name: ens1f0
 mtu: {{ min_viable_mtu }}
 primary: true
 type: interface
 name: ens1f1
 mtu: {{ min_viable_mtu }}

Table 8.5. linux_bond options

Option Default Description

name Name of the bond.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

76

addresses A list of IP addresses assigned to
the bond.

routes A list of routes assigned to the
bond. See routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the interface as the
primary interface.

members A sequence of interface objects
that you want to use in the bond.

bonding_options A set of options when creating
the bond.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bond.

Option Default Description

linux_bridge

Defines a Linux bridge, which connects multiple interface, linux_bond, and vlan objects together. The
external bridge also uses two special values for parameters:

bridge_name, which is replaced with the external bridge name.

interface_name, which is replaced with the external interface.

For example:

 - type: linux_bridge
 name: bridge_name
 mtu:
 get_attr: [MinViableMtu, value]
 use_dhcp: false

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

77

 dns_servers:
 get_param: DnsServers
 domain:
 get_param: DnsSearchDomains
 addresses:
 - ip_netmask:
 list_join:
 - /
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 list_concat_unique:
 - get_param: ControlPlaneStaticRoutes

Table 8.6. linux_bridge options

Option Default Description

name Name of the bridge.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bridge.

routes A list of routes assigned to the
bridge. For more information, see
routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

members A sequence of interface, VLAN,
and bond objects that you want
to use in the bridge.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

78

dns_servers None List of DNS servers that you want
to use for the bridge.

Option Default Description

routes

Defines a list of routes to apply to a network interface, VLAN, bridge, or bond.

For example:

 - type: linux_bridge
 name: bridge_name
 ...
 routes: {{ [ctlplane_host_routes] | flatten | unique }}

Option Default Description

ip_netmask None IP and netmask of the destination
network.

default False Sets this route to a default route.
Equivalent to setting
ip_netmask: 0.0.0.0/0.

next_hop None The IP address of the router used
to reach the destination network.

8.2.1.3. Example custom network interfaces

The following examples illustrate how to customize network interface templates.

Separate control group and OVS bridge example

The following example Controller node NIC template configures the control group separate from the
OVS bridge. The template uses five network interfaces and assigns a number of tagged VLAN devices
to the numbered interfaces. The template creates the OVS bridges on nic4 and nic5.

network_config:
- type: interface
 name: nic1
 mtu: {{ ctlplane_mtu }}
 use_dhcp: false
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 routes: {{ ctlplane_host_routes }}
- type: linux_bond
 name: bond_api
 mtu: {{ min_viable_mtu_ctlplane }}
 use_dhcp: false
 bonding_options: {{ bond_interface_ovs_options }}
 dns_servers: {{ ctlplane_dns_nameservers }}

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

79

 domain: {{ dns_search_domains }}
 members:
 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu_ctlplane }}
 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu_ctlplane }}
{% for network in role_networks if not network.startswith('Tenant') %}
- type: vlan
 device: bond_api
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask: {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
{% endfor %}
- type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 dns_servers: {{ ctlplane_dns_nameservers }}
 members:
 - type: linux_bond
 name: bond-data
 mtu: {{ min_viable_mtu_dataplane }}
 bonding_options: {{ bond_interface_ovs_options }}
 members:
 - type: interface
 name: nic4
 mtu: {{ min_viable_mtu_dataplane }}
 primary: true
 - type: interface
 name: nic5
 mtu: {{ min_viable_mtu_dataplane }}
{% for network in role_networks if network.startswith('Tenant') %}
 - type: vlan
 device: bond-data
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask: {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}

Multiple NICs example

The following example uses a second NIC to connect to an infrastructure network with DHCP addresses
and another NIC for the bond.

network_config:
 # Add a DHCP infrastructure network to nic2
 - type: interface
 name: nic2
 mtu: {{ tenant_mtu }}
 use_dhcp: true

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

80

 primary: true
 - type: vlan
 mtu: {{ tenant_mtu }}
 vlan_id: {{ tenant_vlan_id }}
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 routes: {{ [tenant_host_routes] | flatten | unique }}
 - type: ovs_bridge
 name: br-bond
 mtu: {{ external_mtu }}
 dns_servers: {{ ctlplane_dns_nameservers }}
 use_dhcp: false
 members:
 - type: interface
 name: nic10
 mtu: {{ external_mtu }}
 use_dhcp: false
 primary: true
 - type: vlan
 mtu: {{ external_mtu }}
 vlan_id: {{ external_vlan_id }}
 addresses:
 - ip_netmask: {{ external_ip }}/{{ external_cidr }}
 routes: {{ [external_host_routes, [{'default': True, 'next_hop': external_gateway_ip}]] | flatten |
unique }}

8.2.1.4. Customizing NIC mappings for pre-provisioned nodes

If you are using pre-provisioned nodes, you can specify the os-net-config mappings for specific nodes
by using one of the following methods:

Configure the NetConfigDataLookup heat parameter in an environment file, and run the
openstack overcloud node provision command without --network-config.

Configure the net_config_data_lookup property in your node definition file, overcloud-
baremetal-deploy.yaml, and run the openstack overcloud node provision command with --
network-config.

NOTE

If you are not using pre-provisioned nodes, you must configure the NIC mappings in your
node definition file. For more information on configuring the net_config_data_lookup
property, see Bare-metal node provisioning attributes.

You can assign aliases to the physical interfaces on each node to pre-determine which physical NIC
maps to specific aliases, such as nic1 or nic2, and you can map a MAC address to a specified alias. You
can map specific nodes by using the MAC address or DMI keyword, or you can map a group of nodes by
using a DMI keyword. The following examples configure three nodes and two node groups with aliases
to the physical interfaces. The resulting configuration is applied by os-net-config. On each node, you
can see the applied configuration in the interface_mapping section of the /etc/os-net-
config/mapping.yaml file.

Example 1: Configuring the NetConfigDataLookup parameter in os-net-config-mappings.yaml

NetConfigDataLookup:

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

81

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#ref_bare-metal-node-provisioning-attributes_ironic_provisioning

1

2

3

4

 node1: 1
 nic1: "00:c8:7c:e6:f0:2e"
 node2:
 nic1: "00:18:7d:99:0c:b6"
 node3: 2
 dmiString: "system-uuid" 3
 id: 'A8C85861-1B16-4803-8689-AFC62984F8F6'
 nic1: em3
 # Dell PowerEdge
 nodegroup1: 4
 dmiString: "system-product-name"
 id: "PowerEdge R630"
 nic1: em3
 nic2: em1
 nic3: em2
 # Cisco UCS B200-M4"
 nodegroup2:
 dmiString: "system-product-name"
 id: "UCSB-B200-M4"
 nic1: enp7s0
 nic2: enp6s0

Maps node1 to the specified MAC address, and assigns nic1 as the alias for the MAC address on
this node.

Maps node3 to the node with the system UUID "A8C85861-1B16-4803-8689-AFC62984F8F6",
and assigns nic1 as the alias for em3 interface on this node.

The dmiString parameter must be set to a valid string keyword. For a list of the valid string
keywords, see the DMIDECODE(8) man page.

Maps all the nodes in nodegroup1 to nodes with the product name "PowerEdge R630", and
assigns nic1, nic2, and nic3 as the alias for the named interfaces on these nodes.

NOTE

Normally, os-net-config registers only the interfaces that are already connected in an UP
state. However, if you hardcode interfaces with a custom mapping file, the interface is
registered even if it is in a DOWN state.

Example 2: Configuring the net_config_data_lookup property in overcloud-baremetal-
deploy.yaml - specific nodes

- name: Controller
 count: 3
 defaults:
 network_config:
 net_config_data_lookup:
 node1:
 nic1: "00:c8:7c:e6:f0:2e"
 node2:
 nic1: "00:18:7d:99:0c:b6"
 node3:

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

82

 dmiString: "system-uuid"
 id: 'A8C85861-1B16-4803-8689-AFC62984F8F6'
 nic1: em3
 # Dell PowerEdge
 nodegroup1:
 dmiString: "system-product-name"
 id: "PowerEdge R630"
 nic1: em3
 nic2: em1
 nic3: em2
 # Cisco UCS B200-M4"
 nodegroup2:
 dmiString: "system-product-name"
 id: "UCSB-B200-M4"
 nic1: enp7s0
 nic2: enp6s0

Example 3: Configuring the net_config_data_lookup property in overcloud-baremetal-
deploy.yaml - all nodes for a role

- name: Controller
 count: 3
 defaults:
 network_config:
 template: templates/net_config_bridge.j2
 default_route_network:
 - external
 instances:
 - hostname: overcloud-controller-0
 network_config:
 <name/groupname>:
 nic1: 'XX:XX:XX:XX:XX:XX'
 nic2: 'YY:YY:YY:YY:YY:YY'
 nic3: 'ens1f0'

8.2.2. Composable networks

You can create custom composable networks if you want to host specific network traffic on different
networks. Director provides a default network topology with network isolation enabled. You can find this
configuration in the /usr/share/openstack-tripleo-heat-templates/network-data-samples/default-
network-isolation.yaml.

The overcloud uses the following pre-defined set of network segments by default:

Internal API

Storage

Storage management

Tenant

External

You can use composable networks to add networks for various services. For example, if you have a

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

83

You can use composable networks to add networks for various services. For example, if you have a
network that is dedicated to NFS traffic, you can present it to multiple roles.

Director supports the creation of custom networks during the deployment and update phases. You can
use these additional networks for bare metal nodes, system management, or to create separate
networks for different roles. You can also use them to create multiple sets of networks for split
deployments where traffic is routed between networks.

8.2.2.1. Adding a composable network

Use composable networks to add networks for various services. For example, if you have a network that
is dedicated to storage backup traffic, you can present the network to multiple roles.

Procedure

1. List the available sample network configuration files:

$ ll /usr/share/openstack-tripleo-heat-templates/network-data-samples/
-rw-r--r--. 1 root root 1554 May 11 23:04 default-network-isolation-ipv6.yaml
-rw-r--r--. 1 root root 1181 May 11 23:04 default-network-isolation.yaml
-rw-r--r--. 1 root root 1126 May 11 23:04 ganesha-ipv6.yaml
-rw-r--r--. 1 root root 1100 May 11 23:04 ganesha.yaml
-rw-r--r--. 1 root root 3556 May 11 23:04 legacy-routed-networks-ipv6.yaml
-rw-r--r--. 1 root root 2929 May 11 23:04 legacy-routed-networks.yaml
-rw-r--r--. 1 root root 383 May 11 23:04 management-ipv6.yaml
-rw-r--r--. 1 root root 290 May 11 23:04 management.yaml
-rw-r--r--. 1 root root 136 May 11 23:04 no-networks.yaml
-rw-r--r--. 1 root root 2725 May 11 23:04 routed-networks-ipv6.yaml
-rw-r--r--. 1 root root 2033 May 11 23:04 routed-networks.yaml
-rw-r--r--. 1 root root 943 May 11 23:04 vip-data-default-network-isolation.yaml
-rw-r--r--. 1 root root 848 May 11 23:04 vip-data-fixed-ip.yaml
-rw-r--r--. 1 root root 1050 May 11 23:04 vip-data-routed-networks.yaml

2. Copy the sample network configuration file you require from /usr/share/openstack-tripleo-
heat-templates/network-data-samples to your environment file directory:

$ cp /usr/share/openstack-tripleo-heat-templates/network-data-samples/default-network-
isolation.yaml /home/stack/templates/network_data.yaml

3. Edit your network_data.yaml configuration file and add a section for your new network:

- name: StorageBackup
 vip: false
 name_lower: storage_backup
 subnets:
 storage_backup_subnet:
 ip_subnet: 172.16.6.0/24
 allocation_pools:
 - start: 172.16.6.4
 - end: 172.16.6.250
 gateway_ip: 172.16.6.1

Configure any other network attributes for your environment. For more information about the
properties you can use to configure network attributes, see
link:https://access.redhat.com/documentation/en-

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

84

us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-
overcloud-networking_installing-director-on-the-undercloud#ref_network-definition-file-
configuration-options_overcloud_networking [Network definition file configuration options].

4. When you add an extra composable network that contains a virtual IP, and want to map some
API services to this network, use the CloudName{network.name} definition to set the DNS
name for the API endpoint:

CloudName{{network.name}}

Here is an example:

parameter_defaults:
 ...
 CloudNameOcProvisioning: baremetal-vip.example.com

5. Copy the sample network VIP definition template you require from /usr/share/openstack-
tripleo-heat-templates/network-data-samples to your environment file directory. The
following example copies the vip-data-default-network-isolation.yaml to a local environment
file named vip_data.yaml:

$ cp /usr/share/openstack-tripleo-heat-templates/network-data-samples/vip-data-default-
network-isolation.yaml /home/stack/templates/vip_data.yaml

6. Edit your vip_data.yaml configuration file. The virtual IP data is a list of virtual IP address
definitions, each containing the name of the network where the IP address is allocated:

- network: storage_mgmt
 dns_name: overcloud
- network: internal_api
 dns_name: overcloud
- network: storage
 dns_name: overcloud
- network: external
 dns_name: overcloud
 ip_address: <vip_address>
- network: ctlplane
 dns_name: overcloud

Replace <vip_address> with the required virtual IP address.

For more information about the properties you can use to configure network VIP attributes in
your VIP definition file, see Network VIP attribute properties .

7. Copy a sample network configuration template. Jinja2 templates are used to define NIC
configuration templates. Browse the examples provided in the
/usr/share/ansible/roles/tripleo_network_config/templates/ directory, if one of the examples
matches your requirements, use it. If the examples do not match your requirements, copy a
sample configuration file, and modify it for your needs:

$ cp
/usr/share/ansible/roles/tripleo_network_config/templates/single_nic_vlans/single_nic_vlans.j2
/home/stack/templates/

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

85

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#ref_network-vip-attribute-properties_overcloud_networking

8. Edit your single_nic_vlans.j2 configuration file:

{% set mtu_list = [ctlplane_mtu] %}
{% for network in role_networks %}
{{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
{%- endfor %}
{% set min_viable_mtu = mtu_list | max %}
network_config:
- type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 routes: {{ ctlplane_host_routes }}
 members:
 - type: interface
 name: nic1
 mtu: {{ min_viable_mtu }}
 # force the MAC address of the bridge to this interface
 primary: true
{% for network in role_networks %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
{% endfor %}

9. Set the network_config template in overcloud-baremetal-deploy.yaml configuration file:

- name: CephStorage
 count: 3
 defaults:
 networks:
 - network: storage
 - network: storage_mgmt
 - network: storage_backup
 network_config:
 template: /home/stack/templates/single_nic_vlans.j2

10. Provision the overcloud networks. This action generates an output file which will be used an an
environment file when deploying the overcloud:

(undercloud)$ openstack overcloud network provision --output <deployment_file>
/home/stack/templates/<networks_definition_file>.yaml

Replace <networks_definition_file> with the name of your networks definition file, for
example, network_data.yaml.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

86

Replace <deployment_file> with the name of the heat environment file to generate for
inclusion in the deployment command, for example /home/stack/templates/overcloud-
networks-deployed.yaml.

11. Provision the network VIPs and generate the vip-deployed-environment.yaml file. You use this
file when you deploy the overcloud:

(overcloud)$ openstack overcloud network vip provision --stack <stack> --output
<deployment_file> /home/stack/templates/vip_data.yaml

Replace <stack> with the name of the stack for which the network VIPs are provisioned. If
not specified, the default is overcloud.

Replace <deployment_file> with the name of the heat environment file to generate for
inclusion in the deployment command, for example /home/stack/templates/overcloud-vip-
deployed.yaml.

8.2.2.2. Including a composable network in a role

You can assign composable networks to the overcloud roles defined in your environment. For example,
you might include a custom StorageBackup network with your Ceph Storage nodes.

Procedure

1. If you do not already have a custom roles_data.yaml file, copy the default to your home
directory:

$ cp /usr/share/openstack-tripleo-heat-templates/roles_data.yaml
/home/stack/templates/roles_data.yaml

2. Edit the custom roles_data.yaml file.

3. Include the network name in the networks list for the role that you want to add the network to.
For example, to add the StorageBackup network to the Ceph Storage role, use the following
example snippet:

- name: CephStorage
 description: |
 Ceph OSD Storage node role
 networks:
 Storage
 subnet: storage_subnet
 StorageMgmt
 subnet: storage_mgmt_subnet
 StorageBackup
 subnet: storage_backup_subnet

4. After you add custom networks to their respective roles, save the file.

When you run the openstack overcloud deploy command, include the custom roles_data.yaml file
using the -r option. Without the -r option, the deployment command uses the default set of roles with
their respective assigned networks.

8.2.2.3. Assigning OpenStack services to composable networks

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

87

Each OpenStack service is assigned to a default network type in the resource registry. These services
are bound to IP addresses within the network type’s assigned network. Although the OpenStack services
are divided among these networks, the number of actual physical networks can differ as defined in the
network environment file. You can reassign OpenStack services to different network types by defining a
new network map in an environment file, for example, /home/stack/templates/service-
reassignments.yaml. The ServiceNetMap parameter determines the network types that you want to
use for each service.

For example, you can reassign the Storage Management network services to the Storage Backup
Network by modifying the highlighted sections:

parameter_defaults:
 ServiceNetMap:
 SwiftStorageNetwork: storage_backup
 CephClusterNetwork: storage_backup

Changing these parameters to storage_backup places these services on the Storage Backup network
instead of the Storage Management network. This means that you must define a set of
parameter_defaults only for the Storage Backup network and not the Storage Management network.

Director merges your custom ServiceNetMap parameter definitions into a pre-defined list of defaults
that it obtains from ServiceNetMapDefaults and overrides the defaults. Director returns the full list,
including customizations, to ServiceNetMap, which is used to configure network assignments for
various services.

Service mappings apply to networks that use vip: true in the network_data.yaml file for nodes that use
Pacemaker. The overcloud load balancer redirects traffic from the VIPs to the specific service
endpoints.

NOTE

You can find a full list of default services in the ServiceNetMapDefaults parameter in the
/usr/share/openstack-tripleo-heat-templates/network/service_net_map.j2.yaml file.

8.2.2.4. Enabling custom composable networks

Use one of the default NIC templates to enable custom composable networks. In this example, use the
Single NIC with VLANs template, (custom_single_nic_vlans).

Procedure

1. Source the stackrc undercloud credentials file:

$ source ~/stackrc

2. Provision the overcloud networks:

$ openstack overcloud network provision \
 --output overcloud-networks-deployed.yaml \
 custom_network_data.yaml

3. Provision the network VIPs:

$ openstack overcloud network vip provision \

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

88

 --stack overcloud \
 --output overcloud-networks-vips-deployed.yaml \
 custom_vip_data.yaml

4. Provision the overcloud nodes:

$ openstack overcloud node provision \
 --stack overcloud \
 --output overcloud-baremetal-deployed.yaml \
 overcloud-baremetal-deploy.yaml

5. Construct your openstack overcloud deploy command, specifying the configuration files and
templates in the required order, for example:

$ openstack overcloud deploy --templates \
 --networks-file network_data_v2.yaml \
 -e overcloud-networks-deployed.yaml \
 -e overcloud-networks-vips-deployed.yaml \
 -e overcloud-baremetal-deployed.yaml
 -e custom-net-single-nic-with-vlans.yaml

This example command deploys the composable networks, including your additional custom networks,
across nodes in your overcloud.

8.2.2.5. Renaming the default networks

You can use the network_data.yaml file to modify the user-visible names of the default networks:

InternalApi

External

Storage

StorageMgmt

Tenant

To change these names, do not modify the name field. Instead, change the name_lower field to the
new name for the network and update the ServiceNetMap with the new name.

Procedure

1. In your network_data.yaml file, enter new names in the name_lower parameter for each
network that you want to rename:

- name: InternalApi
 name_lower: MyCustomInternalApi

2. Include the default value of the name_lower parameter in the service_net_map_replace
parameter:

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

89

- name: InternalApi
 name_lower: MyCustomInternalApi
 service_net_map_replace: internal_api

8.2.3. Additional overcloud network configuration

This chapter follows on from the concepts and procedures outlined in Section 8.2.1, “Defining custom
network interface templates” and provides some additional information to help configure parts of your
overcloud network.

8.2.3.1. Configuring routes and default routes

You can set the default route of a host in one of two ways. If the interface uses DHCP and the DHCP
server offers a gateway address, the system uses a default route for that gateway. Otherwise, you can
set a default route on an interface with a static IP.

Although the Linux kernel supports multiple default gateways, it uses only the gateway with the lowest
metric. If there are multiple DHCP interfaces, this can result in an unpredictable default gateway. In this
case, it is recommended to set defroute: false for interfaces other than the interface that uses the
default route.

For example, you might want a DHCP interface (nic3) to be the default route. Use the following YAML
snippet to disable the default route on another DHCP interface (nic2):

No default route on this DHCP interface
- type: interface
 name: nic2
 use_dhcp: true
 defroute: false
Instead use this DHCP interface as the default route
- type: interface
 name: nic3
 use_dhcp: true

NOTE

The defroute parameter applies only to routes obtained through DHCP.

To set a static route on an interface with a static IP, specify a route to the subnet. For example, you can
set a route to the 10.1.2.0/24 subnet through the gateway at 172.17.0.1 on the Internal API network:

 - type: vlan
 device: bond1
 vlan_id: 9
 addresses:
 - ip_netmask: 172.17.0.100/16
 routes:
 - ip_netmask: 10.1.2.0/24
 next_hop: 172.17.0.1

8.2.3.2. Configuring policy-based routing

To configure unlimited access from different networks on Controller nodes, configure policy-based

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

90

routing. Policy-based routing uses route tables where, on a host with multiple interfaces, you can send
traffic through a particular interface depending on the source address. You can route packets that come
from different sources to different networks, even if the destinations are the same.

For example, you can configure a route to send traffic to the Internal API network, based on the source
address of the packet, even when the default route is for the External network. You can also define
specific route rules for each interface.

Red Hat OpenStack Platform uses the os-net-config tool to configure network properties for your
overcloud nodes. The os-net-config tool manages the following network routing on Controller nodes:

Routing tables in the /etc/iproute2/rt_tables file

IPv4 rules in the /etc/sysconfig/network-scripts/rule-{ifname} file

IPv6 rules in the /etc/sysconfig/network-scripts/rule6-{ifname} file

Routing table specific routes in the /etc/sysconfig/network-scripts/route-{ifname}

Prerequisites

You have installed the undercloud successfully. For more information, see Installing director on
the undercloud in the Installing and managing Red Hat OpenStack Platform with director guide.

Procedure

1. Create the interface entries in a custom NIC template from the
/home/stack/templates/custom-nics directory, define a route for the interface, and define
rules that are relevant to your deployment:

 network_config:
 - type: interface
 name: em1
 use_dhcp: false
 addresses:
 - ip_netmask: {{ external_ip }}/{{ external_cidr}}
 routes:
 - default: true
 next_hop: {{ external_gateway_ip }}
 - ip_netmask: {{ external_ip }}/{{ external_cidr}}
 next_hop: {{ external_gateway_ip }}
 table: 2
 route_options: metric 100
 rules:
 - rule: "iif em1 table 200"
 comment: "Route incoming traffic to em1 with table 200"
 - rule: "from 192.0.2.0/24 table 200"
 comment: "Route all traffic from 192.0.2.0/24 with table 200"
 - rule: "add blackhole from 172.19.40.0/24 table 200"
 - rule: "add unreachable iif em1 from 192.168.1.0/24"

2. Include your custom NIC configuration and network environment files in the deployment
command, along with any other environment files relevant to your deployment:

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

91

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-the-undercloud

$ openstack overcloud deploy --templates \
-e /home/stack/templates/<custom-nic-template>
-e <OTHER_ENVIRONMENT_FILES>

Verification

Enter the following commands on a Controller node to verify that the routing configuration is
functioning correctly:

$ cat /etc/iproute2/rt_tables
$ ip route
$ ip rule

8.2.3.3. Configuring jumbo frames

The Maximum Transmission Unit (MTU) setting determines the maximum amount of data transmitted
with a single Ethernet frame. Using a larger value results in less overhead because each frame adds data
in the form of a header. The default value is 1500 and using a higher value requires the configuration of
the switch port to support jumbo frames. Most switches support an MTU of at least 9000, but many are
configured for 1500 by default.

The MTU of a VLAN cannot exceed the MTU of the physical interface. Ensure that you include the MTU
value on the bond or interface.

The Storage, Storage Management, Internal API, and Tenant networks can all benefit from jumbo
frames.

You can alter the value of the mtu in the jinja2 template or in the network_data.yaml file. If you set the
value in the network_data.yaml file it is rendered during deployment.

WARNING

Routers typically cannot forward jumbo frames across Layer 3 boundaries. To avoid
connectivity issues, do not change the default MTU for the Provisioning interface,
External interface, and any Floating IP interfaces.

{% set mtu_list = [ctlplane_mtu] %}
{% for network in role_networks %}
{{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
{%- endfor %}
{% set min_viable_mtu = mtu_list | max %}
network_config:
- type: ovs_bridge
 name: bridge_name
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

92

1

2

 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 routes: {{ [ctlplane_host_routes] | flatten | unique }}
 members:
 - type: interface
 name: nic1
 mtu: {{ min_viable_mtu }}
 primary: true
 - type: vlan
 mtu: 9000 1
 vlan_id: {{ storage_vlan_id }}
 addresses:
 - ip_netmask: {{ storage_ip }}/{{ storage_cidr }}
 routes: {{ [storage_host_routes] | flatten | unique }}
 - type: vlan
 mtu: {{ storage_mgmt_mtu }} 2
 vlan_id: {{ storage_mgmt_vlan_id }}
 addresses:
 - ip_netmask: {{ storage_mgmt_ip }}/{{ storage_mgmt_cidr }}
 routes: {{ [storage_mgmt_host_routes] | flatten | unique }}
 - type: vlan
 mtu: {{ internal_api_mtu }}
 vlan_id: {{ internal_api_vlan_id }}
 addresses:
 - ip_netmask: {{ internal_api_ip }}/{{ internal_api_cidr }}
 routes: {{ [internal_api_host_routes] | flatten | unique }}
 - type: vlan
 mtu: {{ tenant_mtu }}
 vlan_id: {{ tenant_vlan_id }}
 addresses:
 - ip_netmask: {{ tenant_ip }}/{{ tenant_cidr }}
 routes: {{ [tenant_host_routes] | flatten | unique }}
 - type: vlan
 mtu: {{ external_mtu }}
 vlan_id: {{ external_vlan_id }}
 addresses:
 - ip_netmask: {{ external_ip }}/{{ external_cidr }}
 routes: {{ [external_host_routes, [{'default': True, 'next_hop': external_gateway_ip}]] | flatten |
unique }}

mtu value updated directly in the jinja2 template.

mtu value is taken from the network_data.yaml file during deployment.

8.2.3.4. Configuring ML2/OVN northbound path MTU discovery for jumbo frame
fragmentation

If a VM on your internal network sends jumbo frames to an external network, and the maximum
transmission unit (MTU) of the internal network exceeds the MTU of the external network, a northbound
frame can easily exceed the capacity of the external network.

ML2/OVS automatically handles this oversized packet issue, and ML2/OVN handles it automatically for
TCP packets.

But to ensure proper handling of oversized northbound UDP packets in a deployment that uses the

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

93

But to ensure proper handling of oversized northbound UDP packets in a deployment that uses the
ML2/OVN mechanism driver, you need to perform additional configuration steps.

These steps configure ML2/OVN routers to return ICMP "fragmentation needed" packets to the
sending VM, where the sending application can break the payload into smaller packets.

NOTE

In east/west traffic, a RHOSP ML2/OVN deployment does not support fragmentation of
packets that are larger than the smallest MTU on the east/west path. For example:

VM1 is on Network1 with an MTU of 1300.

VM2 is on Network2 with an MTU of 1200.

A ping in either direction between VM1 and VM2 with a size of 1171 or less
succeeds. A ping with a size greater than 1171 results in 100 percent packet loss.
With no identified customer requirements for this type of fragmentation, Red
Hat has no plans to add support.

Procedure

1. Set the following value in the [ovn] section of ml2_conf.ini:

ovn_emit_need_to_frag = True

8.2.3.5. Configuring the native VLAN on a trunked interface

If a trunked interface or bond has a network on the native VLAN, the IP addresses are assigned directly
to the bridge and there is no VLAN interface.

The following example configures a bonded interface where the External network is on the native VLAN:

network_config:
- type: ovs_bridge
 name: br-ex
 addresses:
 - ip_netmask: {{ external_ip }}/{{ external_cidr }}
 routes: {{ external_host_routes }}
 members:
 - type: ovs_bond
 name: bond1
 ovs_options: {{ bond_interface_ovs_options }}
 members:
 - type: interface
 name: nic3
 primary: true
 - type: interface
 name: nic4

NOTE

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

94

NOTE

When you move the address or route statements onto the bridge, remove the
corresponding VLAN interface from the bridge. Make the changes to all applicable roles.
The External network is only on the controllers, so only the controller template requires a
change. The Storage network is attached to all roles, so if the Storage network is on the
default VLAN, all roles require modifications.

8.2.3.6. Increasing the maximum number of connections that netfilter tracks

The Red Hat OpenStack Platform (RHOSP) Networking service (neutron) uses netfilter connection
tracking to build stateful firewalls and to provide network address translation (NAT) on virtual networks.
There are some situations that can cause the kernel space to reach the maximum connection limit and
result in errors such as nf_conntrack: table full, dropping packet. You can increase the limit for
connection tracking (conntrack) and avoid these types of errors. You can increase the conntrack limit
for one or more roles, or across all the nodes, in your RHOSP deployment.

Prerequisites

A successful RHOSP undercloud installation.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

3. Create a custom YAML environment file.

Example

$ vi /home/stack/templates/custom-environment.yaml

4. Your environment file must contain the keywords parameter_defaults and
ExtraSysctlSettings. Enter a new value for the maximum number of connections that netfilter
can track in the variable, net.nf_conntrack_max.

Example

In this example, you can set the conntrack limit across all hosts in your RHOSP deployment:

parameter_defaults:
 ExtraSysctlSettings:
 net.nf_conntrack_max:
 value: 500000

Use the <role>Parameter parameter to set the conntrack limit for a specific role:

parameter_defaults:
 <role>Parameters:
 ExtraSysctlSettings:

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

95

 net.nf_conntrack_max:
 value: <simultaneous_connections>

Replace <role> with the name of the role.
For example, use ControllerParameters to set the conntrack limit for the Controller role, or
ComputeParameters to set the conntrack limit for the Compute role.

Replace <simultaneous_connections> with the quantity of simultaneous connections that
you want to allow.

Example

In this example, you can set the conntrack limit for only the Controller role in your RHOSP
deployment:

parameter_defaults:
 ControllerParameters:
 ExtraSysctlSettings:
 net.nf_conntrack_max:
 value: 500000

NOTE

The default value for net.nf_conntrack_max is 500000 connections. The
maximum value is: 4294967295.

5. Run the deployment command and include the core heat templates, environment files, and this
new custom environment file.

IMPORTANT

The order of the environment files is important as the parameters and resources
defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e /home/stack/templates/custom-environment.yaml

Additional resources

Environment files

Including environment files in overcloud creation

8.2.4. Network interface bonding

You can use various bonding options in your custom network configuration.

8.2.4.1. Network interface bonding for overcloud nodes

You can bundle multiple physical NICs together to form a single logical channel known as a bond. You
can configure bonds to provide redundancy for high availability systems or increased throughput.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

96

Red Hat OpenStack Platform supports Open vSwitch (OVS) kernel bonds, OVS-DPDK bonds, and
Linux kernel bonds.

Table 8.7. Supported interface bonding types

Bond type Type value Allowed bridge types Allowed members

OVS kernel bonds ovs_bond ovs_bridge interface

OVS-DPDK bonds ovs_dpdk_bond ovs_user_bridge ovs_dpdk_port

Linux kernel bonds linux_bond ovs_bridge or
linux_bridge

interface

IMPORTANT

Do not combine ovs_bridge and ovs_user_bridge on the same node.

8.2.4.2. Creating Open vSwitch (OVS) bonds

You create OVS bonds in your network interface templates. For example, you can create a bond as part
of an OVS user space bridge:

- type: ovs_user_bridge
 name: br-dpdk0
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond0
 rx_queue: {{ num_dpdk_interface_rx_queues }}
 members:
 - type: ovs_dpdk_port
 name: dpdk0
 members:
 - type: interface
 name: nic4
 - type: ovs_dpdk_port
 name: dpdk1
 members:
 - type: interface
 name: nic5

In this example, you create the bond from two DPDK ports.

The ovs_options parameter contains the bonding options. You can configure a bonding options in a
network environment file with the BondInterfaceOvsOptions parameter:

environment_parameters:
 BondInterfaceOvsOptions: "bond_mode=active_backup"

8.2.4.3. Open vSwitch (OVS) bonding options

You can set various Open vSwitch (OVS) bonding options with the ovs_options heat parameter in your

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

97

You can set various Open vSwitch (OVS) bonding options with the ovs_options heat parameter in your
NIC template files.

bond_mode=balance-slb

Source load balancing (slb) balances flows based on source MAC address and output VLAN, with
periodic rebalancing as traffic patterns change. When you configure a bond with the balance-slb
bonding option, there is no configuration required on the remote switch. The Networking service
(neutron) assigns each source MAC and VLAN pair to a link and transmits all packets from that MAC
and VLAN through that link. A simple hashing algorithm based on source MAC address and VLAN
number is used, with periodic rebalancing as traffic patterns change. The balance-slb mode is
similar to mode 2 bonds used by the Linux bonding driver. You can use this mode to provide load
balancing even when the switch is not configured to use LACP.

bond_mode=active-backup

When you configure a bond using active-backup bond mode, the Networking service keeps one NIC
in standby. The standby NIC resumes network operations when the active connection fails. Only one
MAC address is presented to the physical switch. This mode does not require switch configuration,
and works when the links are connected to separate switches. This mode does not provide load
balancing.

lacp=[active | passive | off]

Controls the Link Aggregation Control Protocol (LACP) behavior. Only certain switches support
LACP. If your switch does not support LACP, use bond_mode=balance-slb or bond_mode=active-
backup.

other-config:lacp-fallback-ab=true

Set active-backup as the bond mode if LACP fails.

other_config:lacp-time=[fast | slow]

Set the LACP heartbeat to one second (fast) or 30 seconds (slow). The default is slow.

other_config:bond-detect-mode=[miimon | carrier]

Set the link detection to use miimon heartbeats (miimon) or monitor carrier (carrier). The default is
carrier.

other_config:bond-miimon-interval=100

If using miimon, set the heartbeat interval (milliseconds).

bond_updelay=1000

Set the interval (milliseconds) that a link must be up to be activated to prevent flapping.

other_config:bond-rebalance-interval=10000

Set the interval (milliseconds) that flows are rebalancing between bond members. Set this value to
zero to disable flow rebalancing between bond members.

8.2.4.4. Using Link Aggregation Control Protocol (LACP) with Open vSwitch (OVS)
bonding modes

You can use bonds with the optional Link Aggregation Control Protocol (LACP). LACP is a negotiation
protocol that creates a dynamic bond for load balancing and fault tolerance.

Use the following table to understand support compatibility for OVS kernel and OVS-DPDK bonded
interfaces in conjunction with LACP options.

IMPORTANT

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

98

IMPORTANT

On control and storage networks, Red Hat recommends that you use Linux bonds with
VLAN and LACP, because OVS bonds carry the potential for control plane disruption
that can occur when OVS or the neutron agent is restarted for updates, hot fixes, and
other events. The Linux bond/LACP/VLAN configuration provides NIC management
without the OVS disruption potential.

Table 8.8. LACP options for OVS kernel and OVS-DPDK bond modes

Objective OVS bond mode Compatible LACP
options

Notes

High availability (active-
passive)

active-backup active, passive, or off

Increased throughput
(active-active)

balance-slb active, passive, or off
Performance is
affected by
extra parsing
per packet.

There is a
potential for
vhost-user lock
contention.

balance-tcp active or passive
As with
balance-slb,
performance is
affected by
extra parsing
per packet and
there is a
potential for
vhost-user lock
contention.

LACP must be
configured and
enabled.

Set lb-output-
action=true.
For example:

ovs-vsctl
set port
<bond
port>
other_confi
g:lb-
output-
action=true

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

99

8.2.4.5. Creating Linux bonds

You create Linux bonds in your network interface templates. For example, you can create a Linux bond
that bonds two interfaces:

- type: linux_bond
 name: bond_api
 mtu: {{ min_viable_mtu_ctlplane }}
 use_dhcp: false
 bonding_options: {{ bond_interface_ovs_options }}
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 members:
 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu_ctlplane }}
 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu_ctlplane }}

The bonding_options parameter sets the specific bonding options for the Linux bond.

mode

Sets the bonding mode, which in the example is 802.3ad or LACP mode. For more information about
Linux bonding modes, see "Upstream Switch Configuration Depending on the Bonding Modes" in
the Red Hat Enterprise Linux 9 Configuring and Managing Networking guide.

lacp_rate

Defines whether LACP packets are sent every 1 second, or every 30 seconds.

updelay

Defines the minimum amount of time that an interface must be active before it is used for traffic.
This minimum configuration helps to mitigate port flapping outages.

miimon

The interval in milliseconds that is used for monitoring the port state using the MIIMON functionality
of the driver.

Use the following additional examples as guides to configure your own Linux bonds:

Linux bond set to active-backup mode with one VLAN:

....

- type: linux_bond
 name: bond_api
 mtu: {{ min_viable_mtu_ctlplane }}
 use_dhcp: false
 bonding_options: "mode=active-backup"
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 members:
 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu_ctlplane }}

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

100

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_networking/configuring-network-bonding_configuring-and-managing-networking#upstream-switch-configuration-depending-on-the-bonding-modes_configuring-network-bonding

 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu_ctlplane }}
 - type: vlan
 mtu: {{ internal_api_mtu }}
 vlan_id: {{ internal_api_vlan_id }}
 addresses:
 - ip_netmask:
 {{ internal_api_ip }}/{{ internal_api_cidr }}
 routes:
 {{ internal_api_host_routes }}

Linux bond on OVS bridge. Bond set to 802.3ad LACP mode with one VLAN:

- type: linux_bond
 name: bond_tenant
 mtu: {{ min_viable_mtu_ctlplane }}
 bonding_options: "mode=802.3ad updelay=1000 miimon=100"
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameserver }}
 domain: {{ dns_search_domains }}
 members:
 - type: interface
 name: p1p1
 mtu: {{ min_viable_mtu_ctlplane }}
 - type: interface
 name: p1p2
 mtu: {{ min_viable_mtu_ctlplane }}
 - type: vlan
 mtu: {{ tenant_mtu }}
 vlan_id: {{ tenant_vlan_id }}
 addresses:
 - ip_netmask:
 {{ tenant_ip }}/{{ tenant_cidr }}
 routes:
 {{ tenant_host_routes }}

IMPORTANT

You must set up min_viable_mtu_ctlplane before you can use it. Copy
/usr/share/ansible/roles/tripleo_network_config/templates/2_linux_bonds_vl
ans.j2 to your templates directory and modify it for your needs. For more
information, see Composable networks, and refer to the steps that pertain to the
network configuration template.

8.2.5. Updating the format of your network configuration files

The format of the network configuration yaml files has changed in Red Hat OpenStack Platform
(RHOSP) 17.0. The structure of the network configuration file network_data.yaml has changed, and the
NIC template file format has changed from yaml file format to Jinja2 ansible format, j2.

You can convert your existing network configuration file in your current deployment to the RHOSP 17+
format by using the following conversion tools:

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

101

convert_v1_net_data.py

convert_heat_nic_config_to_ansible_j2.py

You can also manually convert your existing NIC template files.

The files you need to convert include the following:

network_data.yaml

Controller NIC templates

Compute NIC templates

Any other custom network files

8.2.5.1. Updating the format of your network configuration file

The format of the network configuration yaml file has changed in Red Hat OpenStack Platform
(RHOSP) 17.0. You can convert your existing network configuration file in your current deployment to
the RHOSP 17+ format by using the convert_v1_net_data.py conversion tool.

Procedure

1. Download the conversion tool:

/usr/share/openstack-tripleo-heat-templates/tools/convert_v1_net_data.py

2. Convert your RHOSP 16+ network configuration file to the RHOSP 17+ format:

$ python3 convert_v1_net_data.py <network_config>.yaml

Replace <network_config> with the name of the existing configuration file that you want to
convert, for example, network_data.yaml.

8.2.5.2. Automatically converting NIC templates to Jinja2 Ansible format

The NIC template file format has changed from yaml file format to Jinja2 Ansible format, j2, in Red Hat
OpenStack Platform (RHOSP) 17.0.

You can convert your existing NIC template files in your current deployment to the Jinja2 format by
using the convert_heat_nic_config_to_ansible_j2.py conversion tool.

You can also manually convert your existing NIC template files. For more information, see Manually
converting NIC templates to Jinja2 Ansible format.

The files you need to convert include the following:

Controller NIC templates

Compute NIC templates

Any other custom network files

Procedure

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

102

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Copy the conversion tool to your current directory on the undercloud:

$ cp /usr/share/openstack-tripleo-heat-
templates/tools/convert_heat_nic_config_to_ansible_j2.py .

4. Convert your Compute and Controller NIC template files, and any other custom network files, to
the Jinja2 Ansible format:

$ python3 convert_heat_nic_config_to_ansible_j2.py \
 [--stack <overcloud> | --standalone] --networks_file <network_config.yaml> \
 <network_template>.yaml

Replace <overcloud> with the name or UUID of the overcloud stack. If --stack is not
specified, the stack defaults to overcloud.

NOTE

You can use the --stack option only on your RHOSP 16 deployment because
it requires the Orchestration service (heat) to be running on the undercloud
node. Starting with RHOSP 17, RHOSP deployments use ephemeral heat,
which runs the Orchestration service in a container. If the Orchestration
service is not available, or you have no stack, then use the --standalone
option instead of --stack.

Replace <network_config.yaml> with the name of the configuration file that describes the
network deployment, for example, network_data.yaml.

Replace <network_template> with the name of the network configuration file you want to
convert.

Repeat this command until you have converted all your custom network configuration files. The
convert_heat_nic_config_to_ansible_j2.py script generates a .j2 file for each yaml file you
pass to it for conversion.

5. Inspect each generated .j2 file to ensure the configuration is correct and complete for your
environment, and manually address any comments generated by the tool that highlight where
the configuration could not be converted. For more information about manually converting the
NIC configuration to Jinja2 format, see Heat parameter to Ansible variable mappings .

6. Configure the *NetworkConfigTemplate parameters in your network-environment.yaml file
to point to the generated .j2 files:

parameter_defaults:
 ControllerNetworkConfigTemplate: '/home/stack/templates/custom-nics/controller.j2'
 ComputeNetworkConfigTemplate: '/home/stack/templates/custom-nics/compute.j2'

7. Delete the resource_registry mappings from your network-environment.yaml file for the old
network configuration files:

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

103

resource_registry:
 OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-
configs/controller.yaml

8.2.5.3. Manually converting NIC templates to Jinja2 Ansible format

The NIC template file format has changed from yaml file format to Jinja2 Ansible format, j2, in Red Hat
OpenStack Platform (RHOSP) 17.0.

You can manually convert your existing NIC template files.

You can also convert your existing NIC template files in your current deployment to the Jinja2 format by
using the convert_heat_nic_config_to_ansible_j2.py conversion tool. For more information, see
Automatically converting NIC templates to Jinja2 ansible format .

The files you need to convert include the following:

Controller NIC templates

Compute NIC templates

Any other custom network files

Procedure

1. Create a Jinja2 template. You can create a new template by copying an example template from
the /usr/share/ansible/roles/tripleo_network_config/templates/ directory on the undercloud
node.

2. Replace the heat intrinsic functions with Jinja2 filters. For example, use the following filter to
calculate the min_viable_mtu:

{% set mtu_list = [ctlplane_mtu] %}
{% for network in role_networks %}
{{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
{%- endfor %}
{% set min_viable_mtu = mtu_list | max %}

3. Use Ansible variables to configure the network properties for your deployment. You can
configure each individual network manually, or programatically configure each network by
iterating over role_networks:

To manually configure each network, replace each get_param function with the equivalent
Ansible variable. For example, if your current deployment configures vlan_id by using
get_param: InternalApiNetworkVlanID, then add the following configuration to your
template:

vlan_id: {{ internal_api_vlan_id }}

Table 8.9. Example network property mapping from heat parameters to Ansible vars

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

104

yaml file format Jinja2 ansible format, j2

- type: vlan
 device: nic2
 vlan_id:
 get_param:
InternalApiNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet

- type: vlan
 device: nic2
 vlan_id: {{ internal_api_vlan_id }}
 addresses:
 - ip_netmask: {{ internal_api_ip }}/{{
internal_api_cidr }}

To programatically configure each network, add a Jinja2 for-loop structure to your template
that retrieves the available networks by their role name by using role_networks.

Example

{% for network in role_networks %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask: {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
{%- endfor %}

For a full list of the mappings from the heat parameter to the Ansible vars equivalent, see Heat
parameter to Ansible variable mappings.

4. Configure the *NetworkConfigTemplate parameters in your network-environment.yaml file
to point to the generated .j2 files:

parameter_defaults:
 ControllerNetworkConfigTemplate: '/home/stack/templates/custom-nics/controller.j2'
 ComputeNetworkConfigTemplate: '/home/stack/templates/custom-nics/compute.j2'

5. Delete the resource_registry mappings from your network-environment.yaml file for the old
network configuration files:

resource_registry:
 OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-
configs/controller.yaml

8.2.5.4. Heat parameter to Ansible variable mappings

The NIC template file format has changed from yaml file format to Jinja2 ansible format, j2, in Red Hat
OpenStack Platform (RHOSP) 17.x.

To manually convert your existing NIC template files to Jinja2 ansible format, you can map your heat

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

105

To manually convert your existing NIC template files to Jinja2 ansible format, you can map your heat
parameters to Ansible variables to configure the network properties for pre-provisioned nodes in your
deployment. You can also map your heat parameters to Ansible variables if you run openstack
overcloud node provision without specifying the --network-config optional argument.

For example, if your current deployment configures vlan_id by using get_param:
InternalApiNetworkVlanID, then replace it with the following configuration in your new Jinja2 template:

vlan_id: {{ internal_api_vlan_id }}

NOTE

If you provision your nodes by running openstack overcloud node provision with the --
network-config optional argument, you must configure the network properties for your
deploying by using the parameters in overcloud-baremetal-deploy.yaml. For more
information, see Heat parameter to provisioning definition file mappings .

The following table lists the available mappings from the heat parameter to the Ansible vars equivalent.

Table 8.10. Mappings from heat parameters to Ansible vars

Heat parameter Ansible vars

BondInterfaceOvsOptions {{ bond_interface_ovs_options }}

ControlPlaneIp {{ ctlplane_ip }}

ControlPlaneDefaultRoute {{ ctlplane_gateway_ip }}

ControlPlaneMtu {{ ctlplane_mtu }}

ControlPlaneStaticRoutes {{ ctlplane_host_routes }}

ControlPlaneSubnetCidr {{ ctlplane_subnet_cidr }}

DnsSearchDomains {{ dns_search_domains }}

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

106

DnsServers {{ ctlplane_dns_nameservers }}

NOTE

This Ansible variable is populated with the IP
address configured in undercloud.conf for
DEFAULT/undercloud_nameservers and
%SUBNET_SECTION%/dns_nameserver
s. The configuration of
%SUBNET_SECTION%/dns_nameserver
s overrides the configuration of
DEFAULT/undercloud_nameservers, so
that you can use different DNS servers for the
undercloud and the overcloud, and different
DNS servers for nodes on different provisioning
subnets.

NumDpdkInterfaceRxQueues {{ num_dpdk_interface_rx_queues }}

Heat parameter Ansible vars

Configuring a heat parameter that is not listed in the table

To configure a heat parameter that is not listed in the table, you must configure the parameter as a
{{role.name}}ExtraGroupVars. After you have configured the parameter as a
{{role.name}}ExtraGroupVars parameter, you can then use it in your new template. For example, to
configure the StorageSupernet parameter, add the following configuration to your network
configuration file:

parameter_defaults:
 ControllerExtraGroupVars:
 storage_supernet: 172.16.0.0/16

You can then add {{ storage_supernet }} to your Jinja2 template.

WARNING

This process will not work if the --network-config option is used with node
provisioning. Users requiring custom vars should not use the --network-config
option. Instead, after creating the Heat stack, apply the node network configuration
to the config-download ansible run.

Converting the Ansible variable syntax to programmatically configure each network

When you use a Jinja2 for-loop structure to retrieve the available networks by their role name by
iterating over role_networks, you need to retrieve the lower case name for each network role to
prepend to each property. Use the following structure to convert the Ansible vars from the above table
to the required syntax:

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

107

{{ lookup(‘vars’, networks_lower[network] ~ ‘_<property>’) }}

Replace <property> with the property that you are setting, for example, ip, vlan_id, or mtu.

For example, to populate the value for each NetworkVlanID dynamically, replace {{
<network_name>_vlan_id }} with the following configuration:

{{ lookup(‘vars’, networks_lower[network] ~ ‘_vlan_id’) }}`

8.2.5.5. Heat parameter to provisioning definition file mappings

If you provision your nodes by running the openstack overcloud node provision command with the --
network-config optional argument, you must configure the network properties for your deployment by
using the parameters in the node definition file overcloud-baremetal-deploy.yaml.

If your deployment uses pre-provisioned nodes, you can map your heat parameters to Ansible variables
to configure the network properties. You can also map your heat parameters to Ansible variables if you
run openstack overcloud node provision without specifying the --network-config optional argument.
For more information about configuring network properties by using Ansible variables, see Heat
parameter to Ansible variable mappings.

The following table lists the available mappings from the heat parameter to the network_config
property equivalent in the node definition file overcloud-baremetal-deploy.yaml.

Table 8.11. Mappings from heat parameters to node definition file overcloud-baremetal-
deploy.yaml

Heat parameter network_config property

BondInterfaceOvsOptions bond_interface_ovs_options

DnsSearchDomains dns_search_domains

NetConfigDataLookup net_config_data_lookup

NeutronPhysicalBridge physical_bridge_name

NeutronPublicInterface public_interface_name

NumDpdkInterfaceRxQueues num_dpdk_interface_rx_queues

{{role.name}}NetworkConfigUpdate network_config_update

The following table lists the available mappings from the heat parameter to the property equivalent in
the networks definition file network_data.yaml.

Table 8.12. Mappings from heat parameters to networks definition file network_data.yaml

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

108

Heat parameter IPv4 network_data.yaml
property

IPv6 network_data.yaml
property

<network_name>IpSubne
t - name: <network_name>

 subnets:
 subnet01:
 ip_subnet: 172.16.1.0/24

- name: <network_name>
 subnets:
 subnet01:
 ipv6_subnet:
2001:db8:a::/64

<network_name>Network
VlanID - name: <network_name>

 subnets:
 subnet01:
 ...
 vlan: <vlan_id>

- name: <network_name>
 subnets:
 subnet01:
 ...
 vlan: <vlan_id>

<network_name>Mtu
- name: <network_name>
 mtu:

- name: <network_name>
 mtu:

<network_name>Interface
DefaultRoute - name: <network_name>

 subnets:
 subnet01:
 ip_subnet: 172.16.16.0/24
 gateway_ip: 172.16.16.1

- name: <network_name>
 subnets:
 subnet01:
 ipv6_subnet:
2001:db8:a::/64
 gateway_ipv6:
2001:db8:a::1

<network_name>Interface
Routes - name: <network_name>

 subnets:
 subnet01:
 ...
 routes:
 - destination:
172.18.0.0/24
 nexthop: 172.18.1.254

- name: <network_name>
 subnets:
 subnet01:
 ...
 routes_ipv6:
 - destination:
2001:db8:b::/64
 nexthop: 2001:db8:a::1

8.2.5.6. Changes to the network data schema

The network data schema was updated in Red Hat OpenStack Platform (RHOSP) 17. The main
differences between the network data schema used in RHOSP 16 and earlier, and network data schema
used in RHOSP 17 and later, are as follows:

The base subnet has been moved to the subnets map. This aligns the configuration for non-
routed and routed deployments, such as spine-leaf networking.

The enabled option is no longer used to ignore disabled networks. Instead, you must remove

CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT

109

The enabled option is no longer used to ignore disabled networks. Instead, you must remove
disabled networks from the configuration file.

The compat_name option is no longer required as the heat resource that used it has been
removed.

The following parameters are no longer valid at the network level: ip_subnet, gateway_ip,
allocation_pools, routes, ipv6_subnet, gateway_ipv6, ipv6_allocation_pools, and
routes_ipv6. These parameters are still used at the subnet level.

A new parameter, physical_network, has been introduced, that is used to create ironic ports in
metalsmith.

New parameters network_type and segmentation_id replace
{{network.name}}NetValueSpecs used to set the network type to vlan.

The following parameters have been deprecated in RHOSP 17:

{{network.name}}NetCidr

{{network.name}}SubnetName

{{network.name}}Network

{{network.name}}AllocationPools

{{network.name}}Routes

{{network.name}}SubnetCidr_{{subnet}}

{{network.name}}AllocationPools_{{subnet}}

{{network.name}}Routes_{{subnet}}

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

110

CHAPTER 9. CONFIGURING AND MANAGING RED HAT
OPENSTACK PLATFORM WITH ANSIBLE

You can use Ansible to configure and register the overcloud, and to manage containers.

9.1. ANSIBLE-BASED OVERCLOUD REGISTRATION

Director uses Ansible-based methods to register overcloud nodes to the Red Hat Customer Portal or to
a Red Hat Satellite Server.

I:f you used the rhel-registration method from previous Red Hat OpenStack Platform versions, you
must disable it and switch to the Ansible-based method. For more information, see Section 9.1.6,
“Switching to the rhsm composable service” and Section 9.1.7, “rhel-registration to rhsm mappings” .

In addition to the director-based registration method, you can also manually register after deployment.
For more information, see Section 9.1.9, “Running Ansible-based registration manually”

9.1.1. Red Hat Subscription Manager (RHSM) composable service

You can use the rhsm composable service to register overcloud nodes through Ansible. Each role in the
default roles_data file contains a OS::TripleO::Services::Rhsm resource, which is disabled by default.
To enable the service, register the resource to the rhsm composable service file:

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-templates/deployment/rhsm/rhsm-
baremetal-ansible.yaml

The rhsm composable service accepts a RhsmVars parameter, which you can use to define multiple
sub-parameters relevant to your registration:

parameter_defaults:
 RhsmVars:
 rhsm_repos:
 - rhel-9-for-x86_64-baseos-eus-rpms
 - rhel-9-for-x86_64-appstream-eus-rpms
 - rhel-9-for-x86_64-highavailability-eus-rpms
 …
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_release: 9.2

You can also use the RhsmVars parameter in combination with role-specific parameters, for example,
ControllerParameters, to provide flexibility when enabling specific repositories for different nodes
types.

RhsmVars sub-parameters

Use the following sub-parameters as part of the RhsmVars parameter when you configure the rhsm
composable service. For more information about the Ansible parameters that are available, see the role
documentation.

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

111

https://github.com/openstack/ansible-role-redhat-subscription/

rhsm Description

rhsm_method Choose the registration method. Either portal, satellite, or disable.

rhsm_org_id The organization that you want to use for registration. To locate this ID, run
sudo subscription-manager orgs from the undercloud node. Enter your
Red Hat credentials at the prompt, and use the resulting Key value. For more
information on your organization ID, see Understanding the Red Hat
Subscription Management Organization ID.

rhsm_pool_ids The subscription pool ID that you want to use. Use this parameter if you do
not want to auto-attach subscriptions. To locate this ID, run sudo
subscription-manager list --available --all --matches="*Red Hat
OpenStack*" from the undercloud node, and use the resulting Pool ID
value.

rhsm_activation_key The activation key that you want to use for registration.

rhsm_autosubscribe Use this parameter to attach compatible subscriptions to this system
automatically. Set the value to true to enable this feature.

rhsm_baseurl The base URL for obtaining content. The default URL is the Red Hat Content
Delivery Network. If you use a Satellite server, change this value to the base
URL of your Satellite server content repositories.

rhsm_server_hostname The hostname of the subscription management service for registration. The
default is the Red Hat Subscription Management hostname. If you use a
Satellite server, change this value to your Satellite server hostname.

rhsm_repos A list of repositories that you want to enable.

rhsm_username The username for registration. If possible, use activation keys for registration.

rhsm_password The password for registration. If possible, use activation keys for registration.

rhsm_release Red Hat Enterprise Linux release for pinning the repositories. This is set to
9.2 for Red Hat OpenStack Platform

rhsm_rhsm_proxy_host
name

The hostname for the HTTP proxy. For example: proxy.example.com.

rhsm_rhsm_proxy_port The port for HTTP proxy communication. For example: 8080.

rhsm_rhsm_proxy_user The username to access the HTTP proxy.

rhsm_rhsm_proxy_pass
word

The password to access the HTTP proxy.

IMPORTANT

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

112

https://access.redhat.com/articles/3047431

IMPORTANT

You can use rhsm_activation_key and rhsm_repos together only if rhsm_method is
set to portal. If rhsm_method is set to satellite, you can only use either
rhsm_activation_key or rhsm_repos.

9.1.2. RhsmVars sub-parameters

Use the following sub-parameters as part of the RhsmVars parameter when you configure the rhsm
composable service. For more information about the Ansible parameters that are available, see the role
documentation.

rhsm Description

rhsm_method Choose the registration method. Either portal, satellite, or disable.

rhsm_org_id The organization that you want to use for registration. To locate this ID, run
sudo subscription-manager orgs from the undercloud node. Enter your
Red Hat credentials at the prompt, and use the resulting Key value. For more
information on your organization ID, see Understanding the Red Hat
Subscription Management Organization ID.

rhsm_pool_ids The subscription pool ID that you want to use. Use this parameter if you do
not want to auto-attach subscriptions. To locate this ID, run sudo
subscription-manager list --available --all --matches="*Red Hat
OpenStack*" from the undercloud node, and use the resulting Pool ID
value.

rhsm_activation_key The activation key that you want to use for registration.

rhsm_autosubscribe Use this parameter to attach compatible subscriptions to this system
automatically. Set the value to true to enable this feature.

rhsm_baseurl The base URL for obtaining content. The default URL is the Red Hat Content
Delivery Network. If you use a Satellite server, change this value to the base
URL of your Satellite server content repositories.

rhsm_server_hostname The hostname of the subscription management service for registration. The
default is the Red Hat Subscription Management hostname. If you use a
Satellite server, change this value to your Satellite server hostname.

rhsm_repos A list of repositories that you want to enable.

rhsm_username The username for registration. If possible, use activation keys for registration.

rhsm_password The password for registration. If possible, use activation keys for registration.

rhsm_release Red Hat Enterprise Linux release for pinning the repositories. This is set to
9.2 for Red Hat OpenStack Platform

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

113

https://github.com/openstack/ansible-role-redhat-subscription/
https://access.redhat.com/articles/3047431

rhsm_rhsm_proxy_host
name

The hostname for the HTTP proxy. For example: proxy.example.com.

rhsm_rhsm_proxy_port The port for HTTP proxy communication. For example: 8080.

rhsm_rhsm_proxy_user The username to access the HTTP proxy.

rhsm_rhsm_proxy_pass
word

The password to access the HTTP proxy.

rhsm Description

IMPORTANT

You can use rhsm_activation_key and rhsm_repos together only if rhsm_method is
set to portal. If rhsm_method is set to satellite, you can only use either
rhsm_activation_key or rhsm_repos.

9.1.3. Registering the overcloud with the rhsm composable service

Create an environment file that enables and configures the rhsm composable service. Director uses this
environment file to register and subscribe your nodes.

Procedure

1. Create an environment file named templates/rhsm.yml to store the configuration.

2. Include your configuration in the environment file. For example:

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-
templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
parameter_defaults:
 RhsmVars:
 rhsm_repos:
 - rhel-9-for-x86_64-baseos-eus-rpms
 - rhel-9-for-x86_64-appstream-eus-rpms
 - rhel-9-for-x86_64-highavailability-eus-rpms
 …
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "1a85f9223e3d5e43013e3d6e8ff506fd"
 rhsm_method: "portal"
 rhsm_release: 9.2

The resource_registry section associates the rhsm composable service with the
OS::TripleO::Services::Rhsm resource, which is available on each role.

The RhsmVars variable passes parameters to Ansible for configuring your Red Hat
registration.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

114

3. To apply the rhsm composable service on a per-role basis, include your configuration in the
environment file. For example, you can apply different sets of configurations to Controller
nodes, Compute nodes, and Ceph Storage nodes:

parameter_defaults:
 ControllerParameters:
 RhsmVars:
 rhsm_repos:
 - rhel-9-for-x86_64-baseos-eus-rpms
 - rhel-9-for-x86_64-appstream-eus-rpms
 - rhel-9-for-x86_64-highavailability-eus-rpms
 - openstack-17.1-for-rhel-9-x86_64-rpms
 - fast-datapath-for-rhel-9-x86_64-rpms
 - rhceph-6-tools-for-rhel-9-x86_64-rpms
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "55d251f1490556f3e75aa37e89e10ce5"
 rhsm_method: "portal"
 rhsm_release: 9.2
 ComputeParameters:
 RhsmVars:
 rhsm_repos:
 - rhel-9-for-x86_64-baseos-eus-rpms
 - rhel-9-for-x86_64-appstream-eus-rpms
 - rhel-9-for-x86_64-highavailability-eus-rpms
 - openstack-17.1-for-rhel-9-x86_64-rpms
 - rhceph-6-tools-for-rhel-9-x86_64-rpms
 - fast-datapath-for-rhel-9-x86_64-rpms
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "55d251f1490556f3e75aa37e89e10ce5"
 rhsm_method: "portal"
 rhsm_release: 9.2
 CephStorageParameters:
 RhsmVars:
 rhsm_repos:
 - rhel-9-for-x86_64-baseos-rpms
 - rhel-9-for-x86_64-appstream-rpms
 - rhel-9-for-x86_64-highavailability-rpms
 - openstack-17.1-deployment-tools-for-rhel-9-x86_64-rpms
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "68790a7aa2dc9dc50a9bc39fabc55e0d"
 rhsm_method: "portal"
 rhsm_release: 9.2

The ControllerParameters, ComputeParameters, and CephStorageParameters parameters
each use a separate RhsmVars parameter to pass subscription details to their respective roles.

NOTE

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

115

NOTE

Set the RhsmVars parameter within the CephStorageParameters parameter to
use a Red Hat Ceph Storage subscription and repositories specific to Ceph
Storage. Ensure the rhsm_repos parameter contains the standard Red Hat
Enterprise Linux repositories instead of the Extended Update Support (EUS)
repositories that Controller and Compute nodes require.

4. Save the environment file.

9.1.4. Applying the rhsm composable service to different roles

You can apply the rhsm composable service on a per-role basis. For example, you can apply different
sets of configurations to Controller nodes, Compute nodes, and Ceph Storage nodes.

Procedure

1. Create an environment file named templates/rhsm.yml to store the configuration.

2. Include your configuration in the environment file. For example:

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-
templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
parameter_defaults:
 ControllerParameters:
 RhsmVars:
 rhsm_repos:
 - rhel-9-for-x86_64-baseos-eus-rpms
 - rhel-9-for-x86_64-appstream-eus-rpms
 - rhel-9-for-x86_64-highavailability-eus-rpms
 - openstack-17.1-for-rhel-9-x86_64-rpms
 - fast-datapath-for-rhel-9-x86_64-rpms
 - rhceph-6-tools-for-rhel-9-x86_64-rpms
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "55d251f1490556f3e75aa37e89e10ce5"
 rhsm_method: "portal"
 rhsm_release: 9.2
 ComputeParameters:
 RhsmVars:
 rhsm_repos:
 - rhel-9-for-x86_64-baseos-eus-rpms
 - rhel-9-for-x86_64-appstream-eus-rpms
 - rhel-9-for-x86_64-highavailability-eus-rpms
 - openstack-17.1-for-rhel-9-x86_64-rpms
 - rhceph-6-tools-for-rhel-9-x86_64-rpms
 - fast-datapath-for-rhel-9-x86_64-rpms
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "55d251f1490556f3e75aa37e89e10ce5"
 rhsm_method: "portal"
 rhsm_release: 9.2

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

116

 CephStorageParameters:
 RhsmVars:
 rhsm_repos:
 - rhel-9-for-x86_64-baseos-rpms
 - rhel-9-for-x86_64-appstream-rpms
 - rhel-9-for-x86_64-highavailability-rpms
 - openstack-17.1-deployment-tools-for-rhel-9-x86_64-rpms
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "68790a7aa2dc9dc50a9bc39fabc55e0d"
 rhsm_method: "portal"
 rhsm_release: 9.2

The resource_registry associates the rhsm composable service with the
OS::TripleO::Services::Rhsm resource, which is available on each role.

The ControllerParameters, ComputeParameters, and CephStorageParameters parameters
each use a separate RhsmVars parameter to pass subscription details to their respective roles.

NOTE

Set the RhsmVars parameter within the CephStorageParameters parameter to
use a Red Hat Ceph Storage subscription and repositories specific to Ceph
Storage. Ensure the rhsm_repos parameter contains the standard Red Hat
Enterprise Linux repositories instead of the Extended Update Support (EUS)
repositories that Controller and Compute nodes require.

3. Save the environment file.

9.1.5. Registering the overcloud to Red Hat Satellite Server

Create an environment file that enables and configures the rhsm composable service to register nodes
to Red Hat Satellite instead of the Red Hat Customer Portal.

Procedure

1. Create an environment file named templates/rhsm.yml to store the configuration.

2. Include your configuration in the environment file. For example:

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-
templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
parameter_defaults:
 RhsmVars:
 rhsm_activation_key: "myactivationkey"
 rhsm_method: "satellite"
 rhsm_org_id: "ACME"
 rhsm_server_hostname: "satellite.example.com"
 rhsm_baseurl: "https://satellite.example.com/pulp/repos"
 rhsm_release: 9.2

The resource_registry associates the rhsm composable service with the
OS::TripleO::Services::Rhsm resource, which is available on each role.

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

117

The RhsmVars variable passes parameters to Ansible for configuring your Red Hat registration.

3. Save the environment file.

9.1.6. Switching to the rhsm composable service

The previous rhel-registration method runs a bash script to handle the overcloud registration. The
scripts and environment files for this method are located in the core heat template collection at
/usr/share/openstack-tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/.

Complete the following steps to switch from the rhel-registration method to the rhsm composable
service.

Procedure

1. Exclude the rhel-registration environment files from future deployments operations. In most
cases, exclude the following files:

rhel-registration/environment-rhel-registration.yaml

rhel-registration/rhel-registration-resource-registry.yaml

2. If you use a custom roles_data file, ensure that each role in your roles_data file contains the
OS::TripleO::Services::Rhsm composable service. For example:

- name: Controller
 description: |
 Controller role that has all the controller services loaded and handles
 Database, Messaging and Network functions.
 CountDefault: 1
 ...
 ServicesDefault:
 ...
 - OS::TripleO::Services::Rhsm
 ...

3. Add the environment file for rhsm composable service parameters to future deployment
operations.

This method replaces the rhel-registration parameters with the rhsm service parameters and changes
the heat resource that enables the service from:

resource_registry:
 OS::TripleO::NodeExtraConfig: rhel-registration.yaml

To:

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-templates/deployment/rhsm/rhsm-
baremetal-ansible.yaml

You can also include the /usr/share/openstack-tripleo-heat-templates/environments/rhsm.yaml
environment file with your deployment to enable the service.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

118

9.1.7. rhel-registration to rhsm mappings

To help transition your details from the rhel-registration method to the rhsm method, use the following
table to map your parameters and values.

rhel-registration rhsm / RhsmVars

rhel_reg_method rhsm_method

rhel_reg_org rhsm_org_id

rhel_reg_pool_id rhsm_pool_ids

rhel_reg_activation_key rhsm_activation_key

rhel_reg_auto_attach rhsm_autosubscribe

rhel_reg_sat_url rhsm_satellite_url

rhel_reg_repos rhsm_repos

rhel_reg_user rhsm_username

rhel_reg_password rhsm_password

rhel_reg_release rhsm_release

rhel_reg_http_proxy_host rhsm_rhsm_proxy_hostname

rhel_reg_http_proxy_port rhsm_rhsm_proxy_port

rhel_reg_http_proxy_username rhsm_rhsm_proxy_user

rhel_reg_http_proxy_password rhsm_rhsm_proxy_password

9.1.8. Deploying the overcloud with the rhsm composable service

Deploy the overcloud with the rhsm composable service so that Ansible controls the registration
process for your overcloud nodes.

Procedure

1. Include rhsm.yml environment file with the openstack overcloud deploy command:

openstack overcloud deploy \
 <other cli args> \
 -e ~/templates/rhsm.yaml

This enables the Ansible configuration of the overcloud and the Ansible-based registration.

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

119

2. Wait until the overcloud deployment completes.

3. Check the subscription details on your overcloud nodes. For example, log in to a Controller node
and run the following commands:

$ sudo subscription-manager status
$ sudo subscription-manager list --consumed

9.1.9. Running Ansible-based registration manually

You can perform manual Ansible-based registration on a deployed overcloud with the dynamic
inventory script on the director node. Use this script to define node roles as host groups and then run a
playbook against them with ansible-playbook. Use the following example playbook to register
Controller nodes manually.

Procedure

1. Create a playbook that uses the redhat_subscription modules to register your nodes. For
example, the following playbook applies to Controller nodes:

- name: Register Controller nodes
 hosts: Controller
 become: yes
 vars:
 repos:
 - rhel-9-for-x86_64-baseos-eus-rpms
 - rhel-9-for-x86_64-appstream-eus-rpms
 - rhel-9-for-x86_64-highavailability-eus-rpms
 - openstack-17.1-for-rhel-9-x86_64-rpms
 - fast-datapath-for-rhel-9-x86_64-rpms
 tasks:
 - name: Register system
 redhat_subscription:
 username: myusername
 password: p@55w0rd!
 org_id: 1234567
 release: 9.2
 pool_ids: 1a85f9223e3d5e43013e3d6e8ff506fd
 - name: Disable all repos
 command: "subscription-manager repos --disable *"
 - name: Enable Controller node repos
 command: "subscription-manager repos --enable {{ item }}"
 with_items: "{{ repos }}"

This play contains three tasks:

Register the node.

Disable any auto-enabled repositories.

Enable only the repositories relevant to the Controller node. The repositories are listed
with the repos variable.

2. After you deploy the overcloud, you can run the following command so that Ansible executes

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

120

2. After you deploy the overcloud, you can run the following command so that Ansible executes
the playbook (ansible-osp-registration.yml) against your overcloud:

$ ansible-playbook -i /usr/bin/tripleo-ansible-inventory ansible-osp-registration.yml

This command performs the following actions:

Runs the dynamic inventory script to get a list of host and their groups.

Applies the playbook tasks to the nodes in the group defined in the hosts parameter of the
playbook, which in this case is the Controller group.

9.2. CONFIGURING THE OVERCLOUD WITH ANSIBLE

Ansible is the main method to apply the overcloud configuration. This chapter provides information
about how to interact with the overcloud Ansible configuration.

Although director generates the Ansible playbooks automatically, it is a good idea to familiarize yourself
with Ansible syntax. For more information about using Ansible, see https://docs.ansible.com/.

NOTE

Ansible also uses the concept of roles, which are different to OpenStack Platform
director roles. Ansible roles form reusable components of playbooks, whereas director
roles contain mappings of OpenStack services to node types.

9.2.1. Ansible-based overcloud configuration (config-download)

The config-download feature is the method that director uses to configure the overcloud. Director
uses config-download in conjunction with OpenStack Orchestration (heat) to generate the software
configuration and apply the configuration to each overcloud node. Although heat creates all deployment
data from SoftwareDeployment resources to perform the overcloud installation and configuration,
heat does not apply any of the configuration. Heat only provides the configuration data through the
heat API.

As a result, when you run the openstack overcloud deploy command, the following process occurs:

Director creates a new deployment plan based on openstack-tripleo-heat-templates and
includes any environment files and parameters to customize the plan.

Director uses heat to interpret the deployment plan and create the overcloud stack and all
descendant resources. This includes provisioning nodes with the OpenStack Bare Metal service
(ironic).

Heat also creates the software configuration from the deployment plan. Director compiles the
Ansible playbooks from this software configuration.

Director generates a temporary user (tripleo-admin) on the overcloud nodes specifically for
Ansible SSH access.

Director downloads the heat software configuration and generates a set of Ansible playbooks
using heat outputs.

Director applies the Ansible playbooks to the overcloud nodes using ansible-playbook.

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

121

https://docs.ansible.com/

9.2.2. config-download working directory

The ansible-playbook command creates an Ansible project directory, default name ~/config-
download/overcloud. This project directory stores downloaded software configuration from heat. It
includes all Ansible-related files which you need to run ansible-playbook to configure the overcloud.

The contents of the directory include:

tripleo-ansible-inventory.yaml - Ansible inventory file containing hosts and vars for all the
overcloud nodes.

ansible.log - Log file from the most recent run of ansible-playbook.

ansible.cfg - Configuration file used when running ansible-playbook.

ansible-playbook-command.sh - Executable script used to rerun ansible-playbook.

ssh_private_key - Private ssh key used to access the overcloud nodes.

1. Reproducing ansible-playbook

After the project directory is created, run the ansible-playbook-command.sh command to reproduce
the deployment.

$./ansible-playbook-command.sh

You can run the script with additional arguments, such as check mode --check, limiting hosts --limit, and
overriding variables -e.

$./ansible-playbook-command.sh --check

9.2.3. Checking config-download log

During the config-download process, Ansible creates a log file, named ansible.log, in the /home/stack
directory on the undercloud.

Procedure

1. View the log with the less command:

$ less ~/ansible.log

9.2.4. Performing Git operations on the working directory

The config-download working directory is a local Git repository. Every time a deployment operation
runs, director adds a Git commit to the working directory with the relevant changes. You can perform
Git operations to view configuration for the deployment at different stages and compare the
configuration with different deployments.

Be aware of the limitations of the working directory. For example, if you use Git to revert to a previous
version of the config-download working directory, this action affects only the configuration in the
working directory. It does not affect the following configurations:

The overcloud data schema: Applying a previous version of the working directory software
configuration does not undo data migration and schema changes.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

122

The hardware layout of the overcloud: Reverting to previous software configuration does not
undo changes related to overcloud hardware, such as scaling up or down.

The heat stack: Reverting to earlier revisions of the working directory has no effect on the
configuration stored in the heat stack. The heat stack creates a new version of the software
configuration that applies to the overcloud. To make permanent changes to the overcloud,
modify the environment files applied to the overcloud stack before you rerun the openstack
overcloud deploy command.

Complete the following steps to compare different commits of the config-download working directory.

Procedure

1. Change to the config-download working directory for your overcloud, usually named
overcloud:

$ cd ~/config-download/overcloud

2. Run the git log command to list the commits in your working directory. You can also format the
log output to show the date:

$ git log --format=format:"%h%x09%cd%x09"
a7e9063 Mon Oct 8 21:17:52 2018 +1000
dfb9d12 Fri Oct 5 20:23:44 2018 +1000
d0a910b Wed Oct 3 19:30:16 2018 +1000
...

By default, the most recent commit appears first.

3. Run the git diff command against two commit hashes to see all changes between the
deployments:

$ git diff a7e9063 dfb9d12

9.2.5. Deployment methods that use config-download

There are four main methods that use config-download in the context of an overcloud deployment:

Standard deployment

Run the openstack overcloud deploy command to automatically run the configuration stage after
the provisioning stage. This is the default method when you run the openstack overcloud deploy
command.

Separate provisioning and configuration

Run the openstack overcloud deploy command with specific options to separate the provisioning
and configuration stages.

Run the ansible-playbook-command.sh script after a deployment

Run the openstack overcloud deploy command with combined or separate provisioning and
configuration stages, then run the ansible-playbook-command.sh script supplied in the config-
download working directory to re-apply the configuration stage.

Provision nodes, manually create config-download, and run Ansible

Run the openstack overcloud deploy command with a specific option to provision nodes, then run
the ansible-playbook command with the deploy_steps_playbook.yaml playbook.

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

123

9.2.6. Running config-download on a standard deployment

The default method for executing config-download is to run the openstack overcloud deploy
command. This method suits most environments.

Prerequisites

A successful undercloud installation.

Overcloud nodes ready for deployment.

Heat environment files that are relevant to your specific overcloud customization.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Run the deployment command. Include any environment files that you require for your
overcloud:

$ openstack overcloud deploy \
 --templates \
 -e environment-file1.yaml \
 -e environment-file2.yaml \
 ...

4. Wait until the deployment process completes.

During the deployment process, director generates the config-download files in a ~/config-
download/overcloud working directory. After the deployment process finishes, view the Ansible
playbooks in the working directory to see the tasks director executed to configure the overcloud.

9.2.7. Running config-download with separate provisioning and configuration

The openstack overcloud deploy command runs the heat-based provisioning process and then the
config-download configuration process. You can also run the deployment command to execute each
process individually. Use this method to provision your overcloud nodes as a distinct process so that you
can perform any manual pre-configuration tasks on the nodes before you run the overcloud
configuration process.

Prerequisites

A successful undercloud installation.

Overcloud nodes ready for deployment.

Heat environment files that are relevant to your specific overcloud customization.

Procedure

1. Log in to the undercloud host as the stack user.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

124

2. Source the stackrc file:

$ source ~/stackrc

3. Run the deployment command with the --stack-only option. Include any environment files you
require for your overcloud:

$ openstack overcloud deploy \
 --templates \
 -e environment-file1.yaml \
 -e environment-file2.yaml \
 ...
 --stack-only

4. Wait until the provisioning process completes.

5. Enable SSH access from the undercloud to the overcloud for the tripleo-admin user. The
config-download process uses the tripleo-admin user to perform the Ansible-based
configuration:

$ openstack overcloud admin authorize

6. Perform any manual pre-configuration tasks on nodes. If you use Ansible for configuration, use
the tripleo-admin user to access the nodes.

7. Run the deployment command with the --config-download-only option. Include any
environment files required for your overcloud:

$ openstack overcloud deploy \
 --templates \
 -e environment-file1.yaml \
 -e environment-file2.yaml \
 ...
 --config-download-only

8. Wait until the configuration process completes.

During the configuration stage, director generates the config-download files in a ~/config-
download/overcloud working directory. After the deployment process finishes, view the Ansible
playbooks in the working directory to see the tasks director executed to configure the overcloud.

9.2.8. Running config-download with the ansible-playbook-command.sh script

When you deploy the overcloud, either with the standard method or a separate provisioning and
configuration process, director generates a working directory in ~/config-download/overcloud. This
directory contains the playbooks and scripts necessary to run the configuration process again.

Prerequisites

An overcloud deployed with the one of the following methods:

Standard method that combines provisioning and configuration process.

Separate provisioning and configuration processes.

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

125

Procedure

1. Log in to the undercloud host as the stack user.

2. Run the ansible-playbook-command.sh script.
You can pass additional Ansible arguments to this script, which are then passed unchanged to
the ansible-playbook command. This makes it possible to take advantage of Ansible features,
such as check mode (--check), limiting hosts (--limit), or overriding variables (-e). For example:

$./ansible-playbook-command.sh --limit Controller

WARNING

When --limit is used to deploy at scale, only hosts included in the execution
are added to the SSH known_hosts file across the nodes. Therefore, some
operations, such as live migration, may not work across nodes that are not in
the known_hosts file.

NOTE

To ensure that the /etc/hosts file, on all nodes, is up-to-date, run the following
command as the stack user:

(undercloud)$ cd /home/stack/overcloud-deploy/overcloud/config-
download/overcloud
(undercloud)$ ANSIBLE_REMOTE_USER="tripleo-admin" ansible
allovercloud \
 -i /home/stack/overcloud-deploy/overcloud/tripleo-ansible-inventory.yaml \
 -m include_role \
 -a name=tripleo_hosts_entries \
 -e @global_vars.yaml

3. Wait until the configuration process completes.

Additional information

The working directory contains a playbook called deploy_steps_playbook.yaml, which
manages the overcloud configuration tasks. To view this playbook, run the following
command:

$ less deploy_steps_playbook.yaml

The playbook uses various task files contained in the working directory. Some task files are
common to all OpenStack Platform roles and some are specific to certain OpenStack
Platform roles and servers.

The working directory also contains sub-directories that correspond to each role that you
define in your overcloud roles_data file. For example:

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

126

$ ls Controller/

Each OpenStack Platform role directory also contains sub-directories for individual servers
of that role type. The directories use the composable role hostname format:

$ ls Controller/overcloud-controller-0

The Ansible tasks in deploy_steps_playbook.yaml are tagged. To see the full list of tags,
use the CLI option --list-tags with ansible-playbook:

$ ansible-playbook -i tripleo-ansible-inventory.yaml --list-tags
deploy_steps_playbook.yaml

Then apply tagged configuration using the --tags, --skip-tags, or --start-at-task with the
ansible-playbook-command.sh script:

$./ansible-playbook-command.sh --tags overcloud

4. When you run the config-download playbooks against the overcloud, you might receive a
message regarding the SSH fingerprint for each host. To avoid these messages, include --ssh-
common-args="-o StrictHostKeyChecking=no" when you run the ansible-playbook-
command.sh script:

$./ansible-playbook-command.sh --tags overcloud --ssh-common-args="-o
StrictHostKeyChecking=no"

9.2.9. Running config-download with manually created playbooks

You can create your own config-download files outside of the standard workflow. For example, you can
run the openstack overcloud deploy command with the --stack-only option to provision the nodes,
and then manually apply the Ansible configuration separately.

Prerequisites

A successful undercloud installation.

Overcloud nodes ready for deployment.

Heat environment files that are relevant to your specific overcloud customization.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Run the deployment command with the --stack-only option. Include any environment files
required for your overcloud:

$ openstack overcloud deploy \
 --templates \

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

127

 -e environment-file1.yaml \
 -e environment-file2.yaml \
 ...
 --stack-only

4. Wait until the provisioning process completes.

5. Enable SSH access from the undercloud to the overcloud for the tripleo-admin user. The
config-download process uses the tripleo-admin user to perform the Ansible-based
configuration:

$ openstack overcloud admin authorize

6. Generate the config-download files:

$ openstack overcloud deploy \
 --stack overcloud --stack-only \
 --config-dir ~/overcloud-deploy/overcloud/config-download/overcloud/

--stack specifies the name of the overcloud.

--stack-only ensures that the command only deploys the heat stack and skips any software
configuration.

--config-dir specifies the location of the config-download files.

7. Change to the directory that contains your config-download files:

$ cd ~/config-download

8. Generate a static inventory file:

$ tripleo-ansible-inventory \
 --stack <overcloud> \
 --ansible_ssh_user tripleo-admin \
 --static-yaml-inventory inventory.yaml

Replace <overcloud> with the name of your overcloud.

9. Use the ~/overcloud-deploy/overcloud/config-download/overcloud files and the static
inventory file to perform a configuration. To execute the deployment playbook, run the
ansible-playbook command:

$ ansible-playbook \
 -i inventory.yaml \
 -e gather_facts=true \
 -e @global_vars.yaml \
 --private-key ~/.ssh/id_rsa \
 --become \
 ~/overcloud-deploy/overcloud/config-download/overcloud/deploy_steps_playbook.yaml

NOTE

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

128

NOTE

When you run the config-download/overcloud playbooks against the overcloud,
you might receive a message regarding the SSH fingerprint for each host. To
avoid these messages, include --ssh-common-args="-o
StrictHostKeyChecking=no" in your ansible-playbook command:

$ ansible-playbook \
 -i inventory.yaml \
 -e gather_facts=true \
 -e @global_vars.yaml \
 --private-key ~/.ssh/id_rsa \
 --ssh-common-args="-o StrictHostKeyChecking=no" \
 --become \
 --tags overcloud \
 ~/overcloud-deploy/overcloud/config-
download/overcloud/deploy_steps_playbook.yaml

10. Wait until the configuration process completes.

11. Generate an overcloudrc file manually from the ansible-based configuration:

$ openstack action execution run \
 --save-result \
 --run-sync \
 tripleo.deployment.overcloudrc \
 '{"container":"overcloud"}' \
 | jq -r '.["result"]["overcloudrc.v3"]' > overcloudrc.v3

12. Manually set the deployment status to success:

$ openstack workflow execution create
tripleo.deployment.v1.set_deployment_status_success '{"plan": "<overcloud>"}'

Replace <overcloud> with the name of your overcloud.

NOTE

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

129

NOTE

The ~/overcloud-deploy/overcloud/config-download/overcloud/ directory contains a
playbook called deploy_steps_playbook.yaml. The playbook uses various task files
contained in the working directory. Some task files are common to all Red Hat OpenStack
Platform (RHOSP) roles and some are specific to certain RHOSP roles and servers.

The ~/overcloud-deploy/overcloud/config-download/overcloud/ directory also
contains sub-directories that correspond to each role that you define in your overcloud
roles_data file. Each RHOSP role directory also contains sub-directories for individual
servers of that role type. The directories use the composable role hostname format, for
example Controller/overcloud-controller-0.

The Ansible tasks in deploy_steps_playbook.yaml are tagged. To see the full list of
tags, use the CLI option --list-tags with ansible-playbook:

$ ansible-playbook -i tripleo-ansible-inventory.yaml --list-tags
deploy_steps_playbook.yaml

You can apply tagged configuration using the --tags, --skip-tags, or --start-at-task with
the ansible-playbook-command.sh script:

$ ansible-playbook \
 -i inventory.yaml \
 -e gather_facts=true \
 -e @global_vars.yaml \
 --private-key ~/.ssh/id_rsa \
 --become \
 --tags overcloud \
 ~/overcloud-deploy/overcloud/config-
download/overcloud/deploy_steps_playbook.yaml

9.2.10. Limitations of config-download

The config-download feature has some limitations:

When you use ansible-playbook CLI arguments such as --tags, --skip-tags, or --start-at-task, do
not run or apply deployment configuration out of order. These CLI arguments are a convenient
way to rerun previously failed tasks or to iterate over an initial deployment. However, to
guarantee a consistent deployment, you must run all tasks from deploy_steps_playbook.yaml
in order.

You can not use the --start-at-task arguments for certain tasks that use a variable in the task
name. For example, the --start-at-task arguments does not work for the following Ansible task:

- name: Run puppet host configuration for step {{ step }}

If your overcloud deployment includes a director-deployed Ceph Storage cluster, you cannot
skip step1 tasks when you use the --check option unless you also skip external_deploy_steps
tasks.

You can set the number of parallel Ansible tasks with the --forks option. However, the
performance of config-download operations degrades after 25 parallel tasks. For this reason,
do not exceed 25 with the --forks option.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

130

9.2.11. config-download top level files

The following file are important top level files within a config-download working directory.

Ansible configuration and execution

The following files are specific to configuring and executing Ansible within the config-download
working directory.

ansible.cfg

Configuration file used when running ansible-playbook.

ansible.log

Log file from the last run of ansible-playbook.

ansible-errors.json

JSON structured file that contains any deployment errors.

ansible-playbook-command.sh

Executable script to rerun the ansible-playbook command from the last deployment operation.

ssh_private_key

Private SSH key that Ansible uses to access the overcloud nodes.

tripleo-ansible-inventory.yaml

Ansible inventory file that contains hosts and variables for all the overcloud nodes.

overcloud-config.tar.gz

Archive of the working directory.

Playbooks

The following files are playbooks within the config-download working directory.

deploy_steps_playbook.yaml

Main deployment steps. This playbook performs the main configuration operations for your
overcloud.

pre_upgrade_rolling_steps_playbook.yaml

Pre upgrade steps for major upgrade

upgrade_steps_playbook.yaml

Major upgrade steps.

post_upgrade_steps_playbook.yaml

Post upgrade steps for major upgrade.

update_steps_playbook.yaml

Minor update steps.

fast_forward_upgrade_playbook.yaml

Fast forward upgrade tasks. Use this playbook only when you want to upgrade from one long-life
version of Red Hat OpenStack Platform to the next.

9.2.12. config-download tags

The playbooks use tagged tasks to control the tasks that they apply to the overcloud. Use tags with the
ansible-playbook CLI arguments --tags or --skip-tags to control which tasks to execute. The following
list contains information about the tags that are enabled by default:

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

131

facts

Fact gathering operations.

common_roles

Ansible roles common to all nodes.

overcloud

All plays for overcloud deployment.

pre_deploy_steps

Deployments that happen before the deploy_steps operations.

host_prep_steps

Host preparation steps.

deploy_steps

Deployment steps.

post_deploy_steps

Steps that happen after the deploy_steps operations.

external

All external deployment tasks.

external_deploy_steps

External deployment tasks that run on the undercloud only.

9.2.13. config-download deployment steps

The deploy_steps_playbook.yaml playbook configures the overcloud. This playbook applies all
software configuration that is necessary to deploy a full overcloud based on the overcloud deployment
plan.

This section contains a summary of the different Ansible plays used within this playbook. The play names
in this section are the same names that are used within the playbook and that are displayed in the
ansible-playbook output. This section also contains information about the Ansible tags that are set on
each play.

Gather facts from undercloud

Fact gathering for the undercloud node.
Tags: facts

Gather facts from overcloud

Fact gathering for the overcloud nodes.
Tags: facts

Load global variables

Loads all variables from global_vars.yaml.
Tags: always

Common roles for TripleO servers

Applies common Ansible roles to all overcloud nodes, including tripleo-bootstrap for installing
bootstrap packages, and tripleo-ssh-known-hosts for configuring ssh known hosts.
Tags: common_roles

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

132

Overcloud deploy step tasks for step 0

Applies tasks from the deploy_steps_tasks template interface.
Tags: overcloud, deploy_steps

Server deployments

Applies server-specific heat deployments for configuration such as networking and hieradata.
Includes NetworkDeployment, <Role>Deployment, <Role>AllNodesDeployment, etc.
Tags: overcloud, pre_deploy_steps

Host prep steps

Applies tasks from the host_prep_steps template interface.
Tags: overcloud, host_prep_steps

External deployment step [1,2,3,4,5]

Applies tasks from the external_deploy_steps_tasks template interface. Ansible runs these tasks only
against the undercloud node.
Tags: external, external_deploy_steps

Overcloud deploy step tasks for [1,2,3,4,5]

Applies tasks from the deploy_steps_tasks template interface.
Tags: overcloud, deploy_steps

Overcloud common deploy step tasks [1,2,3,4,5]

Applies the common tasks performed at each step, including puppet host configuration, container-
puppet.py, and tripleo-container-manage (container configuration and management).
Tags: overcloud, deploy_steps

Server Post Deployments

Applies server specific heat deployments for configuration performed after the 5-step deployment
process.
Tags: overcloud, post_deploy_steps

External deployment Post Deploy tasks

Applies tasks from the external_post_deploy_steps_tasks template interface. Ansible runs these
tasks only against the undercloud node.
Tags: external, external_deploy_steps

9.3. MANAGING CONTAINERS WITH ANSIBLE

Red Hat OpenStack Platform 17.1 uses the tripleo_container_manage Ansible role to perform
management operations on containers. You can also write custom playbooks to perform specific
container management operations:

Collect the container configuration data that heat generates. The tripleo_container_manage
role uses this data to orchestrate container deployment.

Start containers.

Stop containers.

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

133

Update containers.

Delete containers.

Run a container with a specific configuration.

Although director performs container management automatically, you might want to customize a
container configuration, or apply a hotfix to a container without redeploying the overcloud.

NOTE

This role supports only Podman container management.

9.3.1. tripleo-container-manage role defaults and variables

The following excerpt shows the defaults and variables for the tripleo_container_manage Ansible role.

All variables intended for modification should place placed in this file.
tripleo_container_manage_hide_sensitive_logs: '{{ hide_sensitive_logs | default(true)
 }}'
tripleo_container_manage_debug: '{{ ((ansible_verbosity | int) >= 2) | bool }}'
tripleo_container_manage_clean_orphans: true

All variables within this role should have a prefix of "tripleo_container_manage"
tripleo_container_manage_check_puppet_config: false
tripleo_container_manage_cli: podman
tripleo_container_manage_concurrency: 1
tripleo_container_manage_config: /var/lib/tripleo-config/
tripleo_container_manage_config_id: tripleo
tripleo_container_manage_config_overrides: {}
tripleo_container_manage_config_patterns: '*.json'
Some containers where Puppet is run, can take up to 10 minutes to finish
in slow environments.
tripleo_container_manage_create_retries: 120
Default delay is 5s so 120 retries makes a timeout of 10 minutes which is
what we have observed a necessary value for nova and neutron db-sync execs.
tripleo_container_manage_exec_retries: 120
tripleo_container_manage_healthcheck_disabled: false
tripleo_container_manage_log_path: /var/log/containers/stdouts
tripleo_container_manage_systemd_teardown: true

9.3.2. tripleo-container-manage molecule scenarios

Molecule is used to test the tripleo_container_manage role. The following shows a molecule default
inventory:

hosts:
 all:
 hosts:
 instance:
 ansible_host: localhost
 ansible_connection: local
 ansible_distribution: centos8

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

134

Usage

Red Hat OpenStack 17.1 supports only Podman in this role. Docker support is on the roadmap.

The Molecule Ansible role performs the following tasks:

Collect container configuration data, generated by the TripleO Heat Templates. This data is
used as a source of truth. If a container is already managed by Molecule, no matter its present
state, the configuration data will reconfigure the container as needed.

Manage systemd shutdown files. It creates the TripleO Container systemd service, required
for service ordering when shutting down or starting a node. It also manages the netns-
placeholder service.

Delete containers that are nonger needed or that require reconfiguration. It uses a custom filter,
named needs_delete() which has a set of rules to determine if the container needs to be
deleted.

A container will not be deleted if, the container is not managed by tripleo_ansible or the
container config_id does not match the input ID.

A container will be deleted, if the container has no config_data or the container has
config_data which does not match data in input. Note that when a container is removed, the
role also disables and removes the systemd services and healtchecks.

Create containers in a specific order defined by start_order container config, where the default
is 0.

If the container is an exec, a dedicated playbook for execs is run, using async so multiple
execs can be run at the same time.

Otherwise, the podman_container is used, in async, to create the containers. If the
container has a restart policy, systemd service is configured. If the container has a
healthcheck script, systemd healthcheck service is configured.

NOTE

tripleo_container_manage_concurrency parameter is set to 1 by default, and putting a
value higher than 2 can expose issues with Podman locks.

Example of a playbook:

- name: Manage step_1 containers using tripleo-ansible
 block:
 - name: "Manage containers for step 1 with tripleo-ansible"
 include_role:
 name: tripleo_container_manage
 vars:
 tripleo_container_manage_config: "/var/lib/tripleo-config/container-startup-config/step_1"
 tripleo_container_manage_config_id: "tripleo_step1"

9.3.3. tripleo_container_manage role variables

The tripleo_container_manage Ansible role contains the following variables:

Table 9.1. Role variables

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

135

Name Default value Description

tripleo_container_manage_check_
puppet_config

false Use this variable if you want
Ansible to check Puppet container
configurations. Ansible can
identify updated container
configuration using the
configuration hash. If a container
has a new configuration from
Puppet, set this variable to true
so that Ansible can detect the
new configuration and add the
container to the list of containers
that Ansible must restart.

tripleo_container_manage_cli podman Use this variable to set the
command line interface that you
want to use to manage
containers. The
tripleo_container_manage
role supports only Podman.

tripleo_container_manage_concur
rency

1 Use this variable to set the
number of containers that you
want to manage concurrently.

tripleo_container_manage_config /var/lib/tripleo-config/ Use this variable to set the path to
the container configuration
directory.

tripleo_container_manage_config_
id

tripleo Use this variable to set the ID of a
specific configuration step. For
example, set this value to
tripleo_step2 to manage
containers for step two of the
deployment.

tripleo_container_manage_config_
patterns

*.json Use this variable to set the bash
regular expression that identifies
configuration files in the
container configuration directory.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

136

tripleo_container_manage_debug false Use this variable to enable or
disable debug mode. Run the
tripleo_container_manage
role in debug mode if you want to
run a container with a specific
one-time configuration, to output
the container commands that
manage the lifecycle of
containers, or to run no-op
container management
operations for testing and
verification purposes.

tripleo_container_manage_health
check_disable

false Use this variable to enable or
disable healthchecks.

tripleo_container_manage_log_pa
th

/var/log/containers/stdouts Use this variable to set the stdout
log path for containers.

tripleo_container_manage_system
d_order

false Use this variable to enable or
disable systemd shutdown
ordering with Ansible.

tripleo_container_manage_system
d_teardown

true Use this variable to trigger the
cleanup of obsolete containers.

tripleo_container_manage_config_
overrides

{} Use this variable to override any
container configuration. This
variable takes a dictionary of
values where each key is the
container name and the
parameters that you want to
override, for example, the
container image or user. This
variable does not write custom
overrides to the JSON container
configuration files and any new
container deployments, updates,
or upgrades revert to the content
of the JSON configuration file.

tripleo_container_manage_valid_e
xit_code

[] Use this variable to check if a
container returns an exit code.
This value must be a list, for
example, [0,3].

Name Default value Description

9.3.4. tripleo-container-manage healthchecks

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

137

Until Red Hat OpenStack 17.1, container healthcheck was implemented by a systemd timer which would
run podman exec to determine if a given container was healthy. Now, it uses the native healthcheck
interface in Podman which is easier to integrate and consume.

To check if a container (for example, keystone) is healthy, run the following command:

$ sudo podman healthcheck run keystone

The return code should be 0 and “healthy”.

"Healthcheck": {
 "Status": "healthy",
 "FailingStreak": 0,
 "Log": [
 {
 "Start": "2020-04-14T18:48:57.272180578Z",
 "End": "2020-04-14T18:48:57.806659104Z",
 "ExitCode": 0,
 "Output": ""
 },
 (...)
]
}

9.3.5. tripleo-container-manage debug

The tripleo_container_manage Ansible role allows you to perform specific actions on a given container.
This can be used to:

Run a container with a specific one-off configuration.

Output the container commands to manage containers lifecycle.

Output the changes made on containers by Ansible.

NOTE

To manage a single container, you need to know two things:

At which step during the overcloud deployment was the container deployed.

The name of the generated JSON file containing the container configuration.

The following is an example of a playbook to manage HAproxy container at step 1 which overrides the
image setting:

- hosts: localhost
 become: true
 tasks:
 - name: Manage step_1 containers using tripleo-ansible
 block:
 - name: "Manage HAproxy container at step 1 with tripleo-ansible"
 include_role:
 name: tripleo_container_manage

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

138

 vars:
 tripleo_container_manage_config_patterns: 'haproxy.json'
 tripleo_container_manage_config: "/var/lib/tripleo-config/container-startup-config/step_1"
 tripleo_container_manage_config_id: "tripleo_step1"
 tripleo_container_manage_clean_orphans: false
 tripleo_container_manage_config_overrides:
 haproxy:
 image: quay.io/tripleomastercentos9/centos-binary-haproxy:hotfix

If Ansible is run in check mode, no container is removed or created, however at the end of the playbook
run a list of commands is displayed to show the possible outcome of the playbook. This is useful for
debugging purposes.

$ ansible-playbook haproxy.yaml --check

Adding the diff mode will show the changes that would have been made on containers by Ansible.

$ ansible-playbook haproxy.yaml --check --diff

The tripleo_container_manage_clean_orphans parameter is optional. It can be set to false meaning
orphaned containers, with a specific config_id, will not be removed. It can be used to manage a single
container without impacting other running containers with same config_id.

The tripleo_container_manage_config_overrides parameter is optional and can be used to override a
specific container attribute, for example the image or the container user. The parameter creates
dictionary with container name and the parameters to override. These parameters have to exist and
they define the container configuration in TripleO Heat Templates.

Note the dictionary does not update the overrides in the JSON file so if an update or upgrade is
executed, the container will be re-configured with the configuration in the JSON file.

CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE

139

CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE
ORCHESTRATION SERVICE (HEAT)

You can use the Orchestration service (heat) to create custom overcloud configurations in heat
templates and environment files.

10.1. UNDERSTANDING HEAT TEMPLATES

The custom configurations in this guide use heat templates and environment files to define certain
aspects of the overcloud. This chapter provides a basic introduction to heat templates so that you can
understand the structure and format of these templates in the context of Red Hat OpenStack Platform
director.

10.1.1. heat templates

Director uses Heat Orchestration Templates (HOT) as the template format for the overcloud
deployment plan. Templates in HOT format are usually expressed in YAML format. The purpose of a
template is to define and create a stack, which is a collection of resources that OpenStack Orchestration
(heat) creates, and the configuration of the resources. Resources are objects in Red Hat OpenStack
Platform (RHOSP) and can include compute resources, network configuration, security groups, scaling
rules, and custom resources.

A heat template has three main sections:

parameters

These are settings passed to heat, which provide a way to customize a stack, and any default values
for parameters without passed values. These settings are defined in the parameters section of a
template.

resources

Use the resources section to define the resources, such as compute instances, networks, and
storage volumes, that you can create when you deploy a stack using this template. Red Hat
OpenStack Platform (RHOSP) contains a set of core resources that span across all components.
These are the specific objects to create and configure as part of a stack. RHOSP contains a set of
core resources that span across all components. These are defined in the resources section of a
template.

outputs

Use the outputs section to declare the output parameters that your cloud users can access after the
stack is created. Your cloud users can use these parameters to request details about the stack, such
as the IP addresses of deployed instances, or URLs of web applications deployed as part of the stack.

Example of a basic heat template:

heat_template_version: 2013-05-23

description: > A very basic Heat template.

parameters:
 key_name:
 type: string
 default: lars
 description: Name of an existing key pair to use for the instance
 flavor:

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

140

 type: string
 description: Instance type for the instance to be created
 default: m1.small
 image:
 type: string
 default: cirros
 description: ID or name of the image to use for the instance

resources:
 my_instance:
 type: OS::Nova::Server
 properties:
 name: My Cirros Instance
 image: { get_param: image }
 flavor: { get_param: flavor }
 key_name: { get_param: key_name }

output:
 instance_name:
 description: Get the instance's name
 value: { get_attr: [my_instance, name] }

This template uses the resource type type: OS::Nova::Server to create an instance called
my_instance with a particular flavor, image, and key that the cloud user specifies. The stack can return
the value of instance_name, which is called My Cirros Instance.

When heat processes a template, it creates a stack for the template and a set of child stacks for
resource templates. This creates a hierarchy of stacks that descend from the main stack that you define
with your template. You can view the stack hierarchy with the following command:

$ openstack stack list --nested

10.1.2. Environment files

An environment file is a special type of template that you can use to customize your heat templates. You
can include environment files in the deployment command, in addition to the core heat templates. An
environment file contains three main sections:

resource_registry

This section defines custom resource names, linked to other heat templates. This provides a method
to create custom resources that do not exist within the core resource collection.

parameters

These are common settings that you apply to the parameters of the top-level template. For
example, if you have a template that deploys nested stacks, such as resource registry mappings, the
parameters apply only to the top-level template and not to templates for the nested resources.

parameter_defaults

These parameters modify the default values for parameters in all templates. For example, if you have
a heat template that deploys nested stacks, such as resource registry mappings,the parameter
defaults apply to all templates.

IMPORTANT

CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE ORCHESTRATION SERVICE (HEAT)

141

IMPORTANT

Use parameter_defaults instead of parameters when you create custom environment
files for your overcloud, so that your parameters apply to all stack templates for the
overcloud.

Example of a basic environment file:

resource_registry:
 OS::Nova::Server::MyServer: myserver.yaml

parameter_defaults:
 NetworkName: my_network

parameters:
 MyIP: 192.168.0.1

This environment file (my_env.yaml) might be included when creating a stack from a certain heat
template (my_template.yaml). The my_env.yaml file creates a new resource type called
OS::Nova::Server::MyServer. The myserver.yaml file is a heat template file that provides an
implementation for this resource type that overrides any built-in ones. You can include the
OS::Nova::Server::MyServer resource in your my_template.yaml file.

MyIP applies a parameter only to the main heat template that deploys with this environment file. In this
example, MyIP applies only to the parameters in my_template.yaml.

NetworkName applies to both the main heat template, my_template.yaml, and the templates that are
associated with the resources that are included in the main template, such as the
OS::Nova::Server::MyServer resource and its myserver.yaml template in this example.

NOTE

For RHOSP to use the heat template file as a custom template resource, the file
extension must be either .yaml or .template.

10.1.3. Core overcloud heat templates

Director contains a core heat template collection and environment file collection for the overcloud. This
collection is stored in /usr/share/openstack-tripleo-heat-templates.

The main files and directories in this template collection are:

overcloud.j2.yaml

This is the main template file that director uses to create the overcloud environment. This file uses
Jinja2 syntax to iterate over certain sections in the template to create custom roles. The Jinja2
formatting is rendered into YAML during the overcloud deployment process.

overcloud-resource-registry-puppet.j2.yaml

This is the main environment file that director uses to create the overcloud environment. It provides a
set of configurations for Puppet modules stored on the overcloud image. After director writes the
overcloud image to each node, heat starts the Puppet configuration for each node by using the
resources registered in this environment file. This file uses Jinja2 syntax to iterate over certain
sections in the template to create custom roles. The Jinja2 formatting is rendered into YAML during
the overcloud deployment process.

roles_data.yaml

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

142

This file contains the definitions of the roles in an overcloud and maps services to each role.

network_data.yaml

This file contains the definitions of the networks in an overcloud and their properties such as subnets,
allocation pools, and VIP status. The default network_data.yaml file contains the default networks:
External, Internal Api, Storage, Storage Management, Tenant, and Management. You can create a
custom network_data.yaml file and add it to your openstack overcloud deploy command with the
-n option.

plan-environment.yaml

This file contains the definitions of the metadata for your overcloud plan. This includes the plan
name, main template to use, and environment files to apply to the overcloud.

capabilities-map.yaml

This file contains a mapping of environment files for an overcloud plan.

deployment

This directory contains heat templates. The overcloud-resource-registry-puppet.j2.yaml
environment file uses the files in this directory to drive the application of the Puppet configuration
on each node.

environments

This directory contains additional heat environment files that you can use for your overcloud
creation. These environment files enable extra functions for your resulting Red Hat OpenStack
Platform (RHOSP) environment. For example, the directory contains an environment file to enable
Cinder NetApp backend storage (cinder-netapp-config.yaml).

network

This directory contains a set of heat templates that you can use to create isolated networks and
ports.

puppet

This directory contains templates that control Puppet configuration. The overcloud-resource-
registry-puppet.j2.yaml environment file uses the files in this directory to drive the application of
the Puppet configuration on each node.

puppet/services

This directory contains legacy heat templates for all service configuration. The templates in the
deployment directory replace most of the templates in the puppet/services directory.

extraconfig

This directory contains templates that you can use to enable extra functionality.

10.1.4. Including environment files in overcloud creation

Include environment files in the deployment command with the -e option. You can include as many
environment files as necessary. However, the order of the environment files is important as the
parameters and resources that you define in subsequent environment files take precedence. For
example, you have two environment files that contain a common resource type
OS::TripleO::NodeExtraConfigPost, and a common parameter TimeZone:

environment-file-1.yaml

resource_registry:
 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/template-1.yaml

CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE ORCHESTRATION SERVICE (HEAT)

143

parameter_defaults:
 RabbitFDLimit: 65536
 TimeZone: 'Japan'

environment-file-2.yaml

resource_registry:
 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/template-2.yaml

parameter_defaults:
 TimeZone: 'Hongkong'

You include both environment files in the deployment command:

$ openstack overcloud deploy --templates -e environment-file-1.yaml -e environment-file-2.yaml

The openstack overcloud deploy command runs through the following process:

1. Loads the default configuration from the core heat template collection.

2. Applies the configuration from environment-file-1.yaml, which overrides any common settings
from the default configuration.

3. Applies the configuration from environment-file-2.yaml, which overrides any common settings
from the default configuration and environment-file-1.yaml.

This results in the following changes to the default configuration of the overcloud:

OS::TripleO::NodeExtraConfigPost resource is set to /home/stack/templates/template-
2.yaml, as defined in environment-file-2.yaml.

TimeZone parameter is set to Hongkong, as defined in environment-file-2.yaml.

RabbitFDLimit parameter is set to 65536, as defined in environment-file-1.yaml.
environment-file-2.yaml does not change this value.

You can use this mechanism to define custom configuration for your overcloud without values from
multiple environment files conflicting.

10.1.5. Using customized core heat templates

When creating the overcloud, director uses a core set of heat templates located in
/usr/share/openstack-tripleo-heat-templates. If you want to customize this core template collection,
use the following Git workflows to manage your custom template collection:

Procedure

Create an initial Git repository that contains the heat template collection:

a. Copy the template collection to the /home/stack/templates directory:

$ cd ~/templates
$ cp -r /usr/share/openstack-tripleo-heat-templates .

b. Change to the custom template directory and initialize a Git repository:

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

144

$ cd ~/templates/openstack-tripleo-heat-templates
$ git init .

c. Configure your Git user name and email address:

$ git config --global user.name "<USER_NAME>"
$ git config --global user.email "<EMAIL_ADDRESS>"

Replace <USER_NAME> with the user name that you want to use.

Replace <EMAIL_ADDRESS> with your email address.

a. Stage all templates for the initial commit:

$ git add *

b. Create an initial commit:

$ git commit -m "Initial creation of custom core heat templates"

This creates an initial master branch that contains the latest core template collection. Use
this branch as the basis for your custom branch and merge new template versions to this
branch.

Use a custom branch to store your changes to the core template collection. Use the following
procedure to create a my-customizations branch and add customizations:

a. Create the my-customizations branch and switch to it:

$ git checkout -b my-customizations

b. Edit the files in the custom branch.

c. Stage the changes in git:

$ git add [edited files]

d. Commit the changes to the custom branch:

$ git commit -m "[Commit message for custom changes]"

This adds your changes as commits to the my-customizations branch. When the master
branch updates, you can rebase my-customizations off master, which causes git to add
these commits on to the updated template collection. This helps track your customizations
and replay them on future template updates.

When you update the undercloud, the openstack-tripleo-heat-templates package might also
receive updates. When this occurs, you must also update your custom template collection:

a. Save the openstack-tripleo-heat-templates package version as an environment variable:

$ export PACKAGE=$(rpm -qv openstack-tripleo-heat-templates)

b. Change to your template collection directory and create a new branch for the updated

CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE ORCHESTRATION SERVICE (HEAT)

145

b. Change to your template collection directory and create a new branch for the updated
templates:

$ cd ~/templates/openstack-tripleo-heat-templates
$ git checkout -b $PACKAGE

c. Remove all files in the branch and replace them with the new versions:

$ git rm -rf *
$ cp -r /usr/share/openstack-tripleo-heat-templates/* .

d. Add all templates for the initial commit:

$ git add *

e. Create a commit for the package update:

$ git commit -m "Updates for $PACKAGE"

f. Merge the branch into master. If you use a Git management system (such as GitLab), use
the management workflow. If you use git locally, merge by switching to the master branch
and run the git merge command:

$ git checkout master
$ git merge $PACKAGE

The master branch now contains the latest version of the core template collection. You can now rebase
the my-customization branch from this updated collection.

Update the my-customization branch,:

a. Change to the my-customizations branch:

$ git checkout my-customizations

b. Rebase the branch off master:

$ git rebase master

This updates the my-customizations branch and replays the custom commits made to this
branch.

Resolve any conflicts that occur during the rebase:

a. Check which files contain the conflicts:

$ git status

b. Resolve the conflicts of the template files identified.

c. Add the resolved files:

$ git add [resolved files]

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

146

d. Continue the rebase:

$ git rebase --continue

Deploy the custom template collection:

a. Ensure that you have switched to the my-customization branch:

git checkout my-customizations

b. Run the openstack overcloud deploy command with the --templates option to specify
your local template directory:

$ openstack overcloud deploy --templates /home/stack/templates/openstack-tripleo-heat-
templates [OTHER OPTIONS]

NOTE

Director uses the default template directory (/usr/share/openstack-tripleo-heat-
templates) if you specify the --templates option without a directory.

IMPORTANT

Red Hat recommends using the methods in Section 10.3, “Configuration hooks” instead
of modifying the heat template collection.

10.1.6. Jinja2 rendering

The core heat templates in /usr/share/openstack-tripleo-heat-templates contain a number of files that
have the j2.yaml file extension. These files contain Jinja2 template syntax and director renders these
files to their static heat template equivalents that have the .yaml extension. For example, the main
overcloud.j2.yaml file renders into overcloud.yaml. Director uses the resulting overcloud.yaml file.

The Jinja2-enabled heat templates use Jinja2 syntax to create parameters and resources for iterative
values. For example, the overcloud.j2.yaml file contains the following snippet:

parameters:
...
{% for role in roles %}
 ...
 {{role.name}}Count:
 description: Number of {{role.name}} nodes to deploy
 type: number
 default: {{role.CountDefault|default(0)}}
 ...
{% endfor %}

When director renders the Jinja2 syntax, director iterates over the roles defined in the roles_data.yaml
file and populates the {{role.name}}Count parameter with the name of the role. The default
roles_data.yaml file contains five roles and results in the following parameters from our example:

ControllerCount

ComputeCount

CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE ORCHESTRATION SERVICE (HEAT)

147

BlockStorageCount

ObjectStorageCount

CephStorageCount

A example rendered version of the parameter looks like this:

parameters:
 ...
 ControllerCount:
 description: Number of Controller nodes to deploy
 type: number
 default: 1
 ...

Director renders Jinja2-enabled templates and environment files only from within the directory of your
core heat templates. The following use cases demonstrate the correct method to render the Jinja2
templates.

Use case 1: Default core templates

Template directory: /usr/share/openstack-tripleo-heat-templates/

Environment file: /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-internal-
tls.j2.yaml

Director uses the default core template location (--templates) and renders the enable-internal-
tls.j2.yaml file into enable-internal-tls.yaml. When you run the openstack overcloud deploy
command, use the -e option to include the name of the rendered enable-internal-tls.yaml file.

$ openstack overcloud deploy --templates \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml
 ...

Use case 2: Custom core templates

Template directory: /home/stack/tripleo-heat-installer-templates

Environment file: /home/stack/tripleo-heat-installer-templates/environments/ssl/enable-internal-
tls.j2.yaml

Director uses a custom core template location (--templates /home/stack/tripleo-heat-templates) and
director renders the enable-internal-tls.j2.yaml file within the custom core templates into enable-
internal-tls.yaml. When you run the openstack overcloud deploy command, use the -e option to
include the name of the rendered enable-internal-tls.yaml file.

$ openstack overcloud deploy --templates /home/stack/tripleo-heat-templates \
 -e /home/stack/tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml
 ...

Use case 3: Incorrect usage

Template directory: /usr/share/openstack-tripleo-heat-templates/

Environment file: /home/stack/tripleo-heat-installer-templates/environments/ssl/enable-internal-

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

148

Environment file: /home/stack/tripleo-heat-installer-templates/environments/ssl/enable-internal-
tls.j2.yaml

Director uses a custom core template location (--templates /home/stack/tripleo-heat-installer-
templates). However, the chosen enable-internal-tls.j2.yaml is not located within the custom core
templates, so it will not render into enable-internal-tls.yaml. This causes the deployment to fail.

Processing Jinja2 syntax into static templates

Use the process-templates.py script to render the Jinja2 syntax of the openstack-tripleo-heat-
templates into a set of static templates. To render a copy of the openstack-tripleo-heat-templates
collection with the process-templates.py script, change to the openstack-tripleo-heat-templates
directory:

$ cd /usr/share/openstack-tripleo-heat-templates

Run the process-templates.py script, which is located in the tools directory, along with the -o option to
define a custom directory to save the static copy:

$./tools/process-templates.py -o ~/openstack-tripleo-heat-templates-rendered

This converts all Jinja2 templates to their rendered YAML versions and saves the results to
~/openstack-tripleo-heat-templates-rendered.

10.2. HEAT PARAMETERS

Each heat template in the director template collection contains a parameters section. This section
contains definitions for all parameters specific to a particular overcloud service. This includes the
following:

overcloud.j2.yaml - Default base parameters

roles_data.yaml - Default parameters for composable roles

deployment/*.yaml - Default parameters for specific services

You can modify the values for these parameters using the following method:

1. Create an environment file for your custom parameters.

2. Include your custom parameters in the parameter_defaults section of the environment file.

3. Include the environment file with the openstack overcloud deploy command.

10.2.1. Example 1: Configuring the time zone

The Heat template for setting the timezone (puppet/services/time/timezone.yaml) contains a
TimeZone parameter. If you leave the TimeZone parameter blank, the overcloud sets the time to UTC
as a default.

To obtain lists of timezones run the timedatectl list-timezones command. The following example
command retrieves the timezones for Asia:

$ sudo timedatectl list-timezones|grep "Asia"

After you identify your timezone, set the TimeZone parameter in an environment file. The following

CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE ORCHESTRATION SERVICE (HEAT)

149

After you identify your timezone, set the TimeZone parameter in an environment file. The following
example environment file sets the value of TimeZone to Asia/Tokyo:

parameter_defaults:
 TimeZone: 'Asia/Tokyo'

10.2.2. Example 2: Configuring RabbitMQ file descriptor limit

For certain configurations, you might need to increase the file descriptor limit for the RabbitMQ server.
Use the deployment/rabbitmq/rabbitmq-container-puppet.yaml heat template to set a new limit in
the RabbitFDLimit parameter. Add the following entry to an environment file:

parameter_defaults:
 RabbitFDLimit: 65536

10.2.3. Example 3: Enabling and disabling parameters

You might need to initially set a parameter during a deployment, then disable the parameter for a future
deployment operation, such as updates or scaling operations. For example, to include a custom RPM
during the overcloud creation, include the following entry in an environment file:

parameter_defaults:
 DeployArtifactURLs: ["http://www.example.com/myfile.rpm"]

To disable this parameter from a future deployment, it is not sufficient to remove the parameter.
Instead, you must set the parameter to an empty value:

parameter_defaults:
 DeployArtifactURLs: []

This ensures the parameter is no longer set for subsequent deployments operations.

10.2.4. Example 4: Role-based parameters

Use the [ROLE]Parameters parameters, replacing [ROLE] with a composable role, to set parameters
for a specific role.

For example, director configures sshd on both Controller and Compute nodes. To set a different sshd
parameters for Controller and Compute nodes, create an environment file that contains both the
ControllerParameters and ComputeParameters parameter and set the sshd parameters for each
specific role:

parameter_defaults:
 ControllerParameters:
 BannerText: "This is a Controller node"
 ComputeParameters:
 BannerText: "This is a Compute node"

10.2.5. Identifying parameters that you want to modify

Red Hat OpenStack Platform director provides many parameters for configuration. In some cases, you
might experience difficulty identifying a certain option that you want to configure, and the

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

150

corresponding director parameter. If there is an option that you want to configure with director, use the
following workflow to identify and map the option to a specific overcloud parameter:

1. Identify the option that you want to configure. Make a note of the service that uses the option.

2. Check the corresponding Puppet module for this option. The Puppet modules for Red Hat
OpenStack Platform are located under /etc/puppet/modules on the director node. Each
module corresponds to a particular service. For example, the keystone module corresponds to
the OpenStack Identity (keystone).

If the Puppet module contains a variable that controls the chosen option, move to the next
step.

If the Puppet module does not contain a variable that controls the chosen option, no
hieradata exists for this option. If possible, you can set the option manually after the
overcloud completes deployment.

3. Check the core heat template collection for the Puppet variable in the form of hieradata. The
templates in deployment/* usually correspond to the Puppet modules of the same services. For
example, the deployment/keystone/keystone-container-puppet.yaml template provides
hieradata to the keystone module.

If the heat template sets hieradata for the Puppet variable, the template should also
disclose the director-based parameter that you can modify.

If the heat template does not set hieradata for the Puppet variable, use the configuration
hooks to pass the hieradata using an environment file. See Section 10.3.4, “Puppet:
Customizing hieradata for roles” for more information on customizing hieradata.

Procedure

1. To change the notification format for OpenStack Identity (keystone), use the workflow and
complete the following steps:

a. Identify the OpenStack parameter that you want to configure (notification_format).

b. Search the keystone Puppet module for the notification_format setting:

$ grep notification_format /etc/puppet/modules/keystone/manifests/*

In this case, the keystone module manages this option using the
keystone::notification_format variable.

c. Search the keystone service template for this variable:

$ grep "keystone::notification_format" /usr/share/openstack-tripleo-heat-
templates/deployment/keystone/keystone-container-puppet.yaml

The output shows that director uses the KeystoneNotificationFormat parameter to set
the keystone::notification_format hieradata.

The following table shows the eventual mapping:

CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE ORCHESTRATION SERVICE (HEAT)

151

Director parameter Puppet hieradata OpenStack Identity (keystone)
option

KeystoneNotificationFormat keystone::notification_forma
t

notification_format

You set the KeystoneNotificationFormat in an overcloud environment file, which then sets the
notification_format option in the keystone.conf file during the overcloud configuration.

10.3. CONFIGURATION HOOKS

Use configuration hooks to inject your own custom configuration functions into the overcloud
deployment process. You can create hooks to inject custom configuration before and after the main
overcloud services configuration, and hooks for modifying and including Puppet-based configuration.

10.3.1. Pre-configuration: customizing specific overcloud roles

The overcloud uses Puppet for the core configuration of OpenStack components. Director provides a
set of hooks that you can use to perform custom configuration for specific node roles before the core
configuration begins. These hooks include the following configurations:

IMPORTANT

Previous versions of this document used the OS::TripleO::Tasks::*PreConfig resources
to provide pre-configuration hooks on a per role basis. The heat template collection
requires dedicated use of these hooks, which means that you should not use them for
custom use. Instead, use the OS::TripleO::*ExtraConfigPre hooks outlined here.

OS::TripleO::ControllerExtraConfigPre

Additional configuration applied to Controller nodes before the core Puppet configuration.

OS::TripleO::ComputeExtraConfigPre

Additional configuration applied to Compute nodes before the core Puppet configuration.

OS::TripleO::CephStorageExtraConfigPre

Additional configuration applied to Ceph Storage nodes before the core Puppet configuration.

OS::TripleO::ObjectStorageExtraConfigPre

Additional configuration applied to Object Storage nodes before the core Puppet configuration.

OS::TripleO::BlockStorageExtraConfigPre

Additional configuration applied to Block Storage nodes before the core Puppet configuration.

OS::TripleO::[ROLE]ExtraConfigPre

Additional configuration applied to custom nodes before the core Puppet configuration. Replace
[ROLE] with the composable role name.

In this example, append the resolv.conf file on all nodes of a particular role with a variable nameserver:

Procedure

1. Create a basic heat template ~/templates/nameserver.yaml that runs a script to write a

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

152

1. Create a basic heat template ~/templates/nameserver.yaml that runs a script to write a
variable nameserver to the resolv.conf file of a node:

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

parameters:
 server:
 type: string
 nameserver_ip:
 type: string
 DeployIdentifier:
 type: string

resources:
 CustomExtraConfigPre:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |
 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" > /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 CustomExtraDeploymentPre:
 type: OS::Heat::SoftwareDeployment
 properties:
 server: {get_param: server}
 config: {get_resource: CustomExtraConfigPre}
 actions: ['CREATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

outputs:
 deploy_stdout:
 description: Deployment reference, used to trigger pre-deploy on changes
 value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

In this example, the resources section contains the following parameters:

CustomExtraConfigPre

This defines a software configuration. In this example, we define a Bash script and heat
replaces _NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeploymentPre

This executes a software configuration, which is the software configuration from the
CustomExtraConfigPre resource. Note the following:

The config parameter references the CustomExtraConfigPre resource so that heat
knows which configuration to apply.

CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE ORCHESTRATION SERVICE (HEAT)

153

The server parameter retrieves a map of the overcloud nodes. This parameter is
provided by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, you want to
apply the configuration when the overcloud is created. Possible actions include
CREATE, UPDATE, DELETE, SUSPEND, and RESUME.

input_values contains a parameter called deploy_identifier, which stores the
DeployIdentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update to ensure that the resource reapplies on
subsequent overcloud updates.

2. Create an environment file ~/templates/pre_config.yaml that registers your heat template to
the role-based resource type. For example, to apply the configuration only to Controller nodes,
use the ControllerExtraConfigPre hook:

resource_registry:
 OS::TripleO::ControllerExtraConfigPre: /home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

3. Add the environment file to the stack, along with your other environment files:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/pre_config.yaml \
 ...

This applies the configuration to all Controller nodes before the core configuration begins on
either the initial overcloud creation or subsequent updates.

IMPORTANT

You can register each resource to only one heat template per hook. Subsequent usage
overrides the heat template to use.

10.3.2. Pre-configuration: customizing all overcloud roles

The overcloud uses Puppet for the core configuration of OpenStack components. Director provides a
hook that you can use to configure all node types before the core configuration begins:

OS::TripleO::NodeExtraConfig

Additional configuration applied to all nodes roles before the core Puppet configuration.

In this example, append the resolv.conf file on each node with a variable nameserver:

Procedure

1. Create a basic heat template ~/templates/nameserver.yaml that runs a script to append the
resolv.conf file of each node with a variable nameserver:

heat_template_version: 2014-10-16

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

154

description: >
 Extra hostname configuration

parameters:
 server:
 type: string
 nameserver_ip:
 type: string
 DeployIdentifier:
 type: string

resources:
 CustomExtraConfigPre:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |
 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 CustomExtraDeploymentPre:
 type: OS::Heat::SoftwareDeployment
 properties:
 server: {get_param: server}
 config: {get_resource: CustomExtraConfigPre}
 actions: ['CREATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

outputs:
 deploy_stdout:
 description: Deployment reference, used to trigger pre-deploy on changes
 value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

In this example, the resources section contains the following parameters:

CustomExtraConfigPre

This parameter defines a software configuration. In this example, you define a Bash script
and heat replaces _NAMESERVER_IP_ with the value stored in the nameserver_ip
parameter.

CustomExtraDeploymentPre

This parameter executes a software configuration, which is the software configuration from
the CustomExtraConfigPre resource. Note the following:

The config parameter references the CustomExtraConfigPre resource so that heat
knows which configuration to apply.

The server parameter retrieves a map of the overcloud nodes. This parameter is
provided by the parent template and is mandatory in templates for this hook.

CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE ORCHESTRATION SERVICE (HEAT)

155

The actions parameter defines when to apply the configuration. In this case, you only
apply the configuration when the overcloud is created. Possible actions include
CREATE, UPDATE, DELETE, SUSPEND, and RESUME.

The input_values parameter contains a sub-parameter called deploy_identifier, which
stores the DeployIdentifier from the parent template. This parameter provides a
timestamp to the resource for each deployment update to ensure that the resource
reapplies on subsequent overcloud updates.

2. Create an environment file ~/templates/pre_config.yaml that registers your heat template as
the OS::TripleO::NodeExtraConfig resource type.

resource_registry:
 OS::TripleO::NodeExtraConfig: /home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

3. Add the environment file to the stack, along with your other environment files:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/pre_config.yaml \
 ...

This applies the configuration to all nodes before the core configuration begins on either the
initial overcloud creation or subsequent updates.

IMPORTANT

You can register the OS::TripleO::NodeExtraConfig to only one heat template.
Subsequent usage overrides the heat template to use.

10.3.3. Post-configuration: customizing all overcloud roles

IMPORTANT

Previous versions of this document used the OS::TripleO::Tasks::*PostConfig
resources to provide post-configuration hooks on a per role basis. The heat template
collection requires dedicated use of these hooks, which means that you should not use
them for custom use. Instead, use the OS::TripleO::NodeExtraConfigPost hook
outlined here.

A situation might occur where you have completed the creation of your overcloud but you want to add
additional configuration to all roles, either on initial creation or on a subsequent update of the overcloud.
In this case, use the following post-configuration hook:

OS::TripleO::NodeExtraConfigPost

Additional configuration applied to all nodes roles after the core Puppet configuration.

In this example, append the resolv.conf file on each node with a variable nameserver:

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

156

Procedure

1. Create a basic heat template ~/templates/nameserver.yaml that runs a script to append the
resolv.conf file of each node with a variable nameserver:

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

parameters:
 servers:
 type: json
 nameserver_ip:
 type: string
 DeployIdentifier:
 type: string
 EndpointMap:
 default: {}
 type: json

resources:
 CustomExtraConfig:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |
 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 CustomExtraDeployments:
 type: OS::Heat::SoftwareDeploymentGroup
 properties:
 servers: {get_param: servers}
 config: {get_resource: CustomExtraConfig}
 actions: ['CREATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

In this example, the resources section contains the following parameters:

CustomExtraConfig

This defines a software configuration. In this example, you define a Bash script and heat
replaces _NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeployments

This executes a software configuration, which is the software configuration from the
CustomExtraConfig resource. Note the following:

The config parameter references the CustomExtraConfig resource so that heat knows
which configuration to apply.

The servers parameter retrieves a map of the overcloud nodes. This parameter is

CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE ORCHESTRATION SERVICE (HEAT)

157

The servers parameter retrieves a map of the overcloud nodes. This parameter is
provided by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, you want
apply the configuration when the overcloud is created. Possible actions include
CREATE, UPDATE, DELETE, SUSPEND, and RESUME.

input_values contains a parameter called deploy_identifier, which stores the
DeployIdentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update to ensure that the resource reapplies on
subsequent overcloud updates.

2. Create an environment file ~/templates/post_config.yaml that registers your heat template as
the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

3. Add the environment file to the stack, along with your other environment files:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/post_config.yaml \
 ...

This applies the configuration to all nodes after the core configuration completes on either
initial overcloud creation or subsequent updates.

IMPORTANT

You can register the OS::TripleO::NodeExtraConfigPost to only one heat template.
Subsequent usage overrides the heat template to use.

10.3.4. Puppet: Customizing hieradata for roles

The heat template collection contains a set of parameters that you can use to pass extra configuration
to certain node types. These parameters save the configuration as hieradata for the Puppet
configuration on the node:

ControllerExtraConfig

Configuration to add to all Controller nodes.

ComputeExtraConfig

Configuration to add to all Compute nodes.

BlockStorageExtraConfig

Configuration to add to all Block Storage nodes.

ObjectStorageExtraConfig

Configuration to add to all Object Storage nodes.

CephStorageExtraConfig

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

158

Configuration to add to all Ceph Storage nodes.

[ROLE]ExtraConfig

Configuration to add to a composable role. Replace [ROLE] with the composable role name.

ExtraConfig

Configuration to add to all nodes.

Procedure

1. To add extra configuration to the post-deployment configuration process, create an
environment file that contains these parameters in the parameter_defaults section. For
example, to increase the reserved memory for Compute hosts to 1024 MB and set the VNC
keymap to Japanese, use the following entries in the ComputeExtraConfig parameter:

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::reserved_host_memory: 1024
 nova::compute::vnc_keymap: ja

2. Include this environment file in the openstack overcloud deploy command, along with any
other environment files relevant to your deployment.

IMPORTANT

You can define each parameter only once. Subsequent usage overrides previous values.

10.3.5. Puppet: Customizing hieradata for individual nodes

You can set Puppet hieradata for individual nodes using the heat template collection:

Procedure

1. Identify the system UUID from the introspection data for a node:

$ openstack baremetal introspection data save 9dcc87ae-4c6d-4ede-81a5-9b20d7dc4a14 |
jq .extra.system.product.uuid

This command returns a system UUID. For example:

"f5055c6c-477f-47fb-afe5-95c6928c407f"

2. Create an environment file to define node-specific hieradata and register the per_node.yaml
template to a pre-configuration hook. Include the system UUID of the node that you want to
configure in the NodeDataLookup parameter:

resource_registry:
 OS::TripleO::ComputeExtraConfigPre: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/pre_deploy/per_node.yaml
parameter_defaults:
 NodeDataLookup: '{"f5055c6c-477f-47fb-afe5-95c6928c407f":
{"nova::compute::vcpu_pin_set": ["2", "3"]}}'

3. Include this environment file in the openstack overcloud deploy command, along with any

CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE ORCHESTRATION SERVICE (HEAT)

159

3. Include this environment file in the openstack overcloud deploy command, along with any
other environment files relevant to your deployment.

The per_node.yaml template generates a set of hieradata files on nodes that correspond to each
system UUID and contains the hieradata that you define. If a UUID is not defined, the resulting hieradata
file is empty. In this example, the per_node.yaml template runs on all Compute nodes as defined by the
OS::TripleO::ComputeExtraConfigPre hook, but only the Compute node with system UUID f5055c6c-
477f-47fb-afe5-95c6928c407f receives hieradata.

You can use this mechanism to tailor each node according to specific requirements.

10.3.6. Puppet: Applying custom manifests

In certain circumstances, you might want to install and configure some additional components on your
overcloud nodes. You can achieve this with a custom Puppet manifest that applies to nodes after the
main configuration completes. As a basic example, you might want to install motd on each node

Procedure

1. Create a heat template ~/templates/custom_puppet_config.yaml that launches Puppet
configuration.

heat_template_version: 2014-10-16

description: >
 Run Puppet extra configuration to set new MOTD

parameters:
 servers:
 type: json
 DeployIdentifier:
 type: string
 EndpointMap:
 default: {}
 type: json

resources:
 ExtraPuppetConfig:
 type: OS::Heat::SoftwareConfig
 properties:
 config: {get_file: motd.pp}
 group: puppet
 options:
 enable_hiera: True
 enable_facter: False

 ExtraPuppetDeployments:
 type: OS::Heat::SoftwareDeploymentGroup
 properties:
 config: {get_resource: ExtraPuppetConfig}
 servers: {get_param: servers}

This example includes the /home/stack/templates/motd.pp within the template and passes it to
nodes for configuration. The motd.pp file contains the Puppet classes necessary to install and
configure motd.

Red Hat OpenStack Platform 17.1 Customizing your Red Hat OpenStack Platform deployment

160

2. Create an environment file ~templates/puppet_post_config.yaml that registers your heat
template as the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/custom_puppet_config.yaml

3. Include this environment file in the openstack overcloud deploy command, along with any
other environment files relevant to your deployment.

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/puppet_post_config.yaml \
 ...

This applies the configuration from motd.pp to all nodes in the overcloud.

CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE ORCHESTRATION SERVICE (HEAT)

161

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. PLANNING CUSTOM UNDERCLOUD FEATURES
	1.1. CHARACTER ENCODING CONFIGURATION
	1.2. CONSIDERATIONS WHEN RUNNING THE UNDERCLOUD WITH A PROXY

	CHAPTER 2. COMPOSABLE SERVICES AND CUSTOM ROLES
	2.1. SUPPORTED ROLE ARCHITECTURE
	2.2. EXAMINING THE ROLES_DATA FILE
	2.3. CREATING A ROLES_DATA FILE
	2.4. SUPPORTED CUSTOM ROLES
	2.5. EXAMINING ROLE PARAMETERS
	2.6. CREATING A NEW ROLE
	2.7. GUIDELINES AND LIMITATIONS
	2.8. CONTAINERIZED SERVICE ARCHITECTURE
	2.9. CONTAINERIZED SERVICE PARAMETERS
	2.10. EXAMINING COMPOSABLE SERVICE ARCHITECTURE
	2.11. ADDING AND REMOVING SERVICES FROM ROLES
	2.12. ENABLING DISABLED SERVICES

	CHAPTER 3. USING THE VALIDATION FRAMEWORK
	3.1. ANSIBLE-BASED VALIDATIONS
	3.2. CHANGING THE VALIDATION CONFIGURATION FILE
	3.3. LISTING VALIDATIONS
	3.4. RUNNING VALIDATIONS
	3.5. CREATING A VALIDATION
	3.6. VIEWING VALIDATION HISTORY
	3.7. VALIDATION FRAMEWORK LOG FORMAT
	3.8. VALIDATION FRAMEWORK LOG OUTPUT FORMATS
	3.9. IN-FLIGHT VALIDATIONS

	CHAPTER 4. ADDITIONAL INTROSPECTION OPERATIONS
	4.1. PERFORMING INDIVIDUAL NODE INTROSPECTION
	4.2. PERFORMING NODE INTROSPECTION AFTER INITIAL INTROSPECTION
	4.3. PERFORMING NETWORK INTROSPECTION FOR INTERFACE INFORMATION
	4.4. RETRIEVING HARDWARE INTROSPECTION DETAILS

	CHAPTER 5. AUTOMATICALLY DISCOVERING BARE METAL NODES
	5.1. ENABLING AUTO-DISCOVERY
	5.2. TESTING AUTO-DISCOVERY
	5.3. USING RULES TO DISCOVER DIFFERENT VENDOR HARDWARE

	CHAPTER 6. CONFIGURING AUTOMATIC PROFILE TAGGING
	6.1. POLICY FILE SYNTAX
	6.2. POLICY FILE EXAMPLE
	6.3. IMPORTING POLICY FILES INTO DIRECTOR

	CHAPTER 7. CUSTOMIZING CONTAINER IMAGES
	7.1. PREPARING CONTAINER IMAGES FOR DIRECTOR INSTALLATION
	7.1.1. Container image preparation parameters
	7.1.2. Guidelines for container image tagging
	7.1.3. Excluding Ceph Storage container images
	7.1.4. Modifying images during preparation
	7.1.5. Updating existing packages on container images
	7.1.6. Installing additional RPM files to container images
	7.1.7. Modifying container images with a custom Dockerfile
	7.1.8. Preparing a Satellite server for container images
	7.1.9. Deploying a vendor plugin

	7.2. PERFORMING ADVANCED CONTAINER IMAGE MANAGEMENT
	7.2.1. Pinning container images for the undercloud
	7.2.2. Pinning container images for the overcloud

	CHAPTER 8. CUSTOMIZING NETWORKS FOR THE RED HAT OPENSTACK PLATFORM ENVIRONMENT
	8.1. CUSTOMIZING UNDERCLOUD NETWORKS
	8.1.1. Configuring undercloud network interfaces
	8.1.2. Configuring the undercloud for bare metal provisioning over IPv6

	8.2. CUSTOMIZING OVERCLOUD NETWORKS
	8.2.1. Defining custom network interface templates
	8.2.1.1. Creating a custom NIC template
	8.2.1.2. Network interface configuration options
	8.2.1.3. Example custom network interfaces
	8.2.1.4. Customizing NIC mappings for pre-provisioned nodes

	8.2.2. Composable networks
	8.2.2.1. Adding a composable network
	8.2.2.2. Including a composable network in a role
	8.2.2.3. Assigning OpenStack services to composable networks
	8.2.2.4. Enabling custom composable networks
	8.2.2.5. Renaming the default networks

	8.2.3. Additional overcloud network configuration
	8.2.3.1. Configuring routes and default routes
	8.2.3.2. Configuring policy-based routing
	8.2.3.3. Configuring jumbo frames
	8.2.3.4. Configuring ML2/OVN northbound path MTU discovery for jumbo frame fragmentation
	8.2.3.5. Configuring the native VLAN on a trunked interface
	8.2.3.6. Increasing the maximum number of connections that netfilter tracks

	8.2.4. Network interface bonding
	8.2.4.1. Network interface bonding for overcloud nodes
	8.2.4.2. Creating Open vSwitch (OVS) bonds
	8.2.4.3. Open vSwitch (OVS) bonding options
	8.2.4.4. Using Link Aggregation Control Protocol (LACP) with Open vSwitch (OVS) bonding modes
	8.2.4.5. Creating Linux bonds

	8.2.5. Updating the format of your network configuration files
	8.2.5.1. Updating the format of your network configuration file
	8.2.5.2. Automatically converting NIC templates to Jinja2 Ansible format
	8.2.5.3. Manually converting NIC templates to Jinja2 Ansible format
	8.2.5.4. Heat parameter to Ansible variable mappings
	8.2.5.5. Heat parameter to provisioning definition file mappings
	8.2.5.6. Changes to the network data schema

	CHAPTER 9. CONFIGURING AND MANAGING RED HAT OPENSTACK PLATFORM WITH ANSIBLE
	9.1. ANSIBLE-BASED OVERCLOUD REGISTRATION
	9.1.1. Red Hat Subscription Manager (RHSM) composable service
	9.1.2. RhsmVars sub-parameters
	9.1.3. Registering the overcloud with the rhsm composable service
	9.1.4. Applying the rhsm composable service to different roles
	9.1.5. Registering the overcloud to Red Hat Satellite Server
	9.1.6. Switching to the rhsm composable service
	9.1.7. rhel-registration to rhsm mappings
	9.1.8. Deploying the overcloud with the rhsm composable service
	9.1.9. Running Ansible-based registration manually

	9.2. CONFIGURING THE OVERCLOUD WITH ANSIBLE
	9.2.1. Ansible-based overcloud configuration (config-download)
	9.2.2. config-download working directory
	9.2.3. Checking config-download log
	9.2.4. Performing Git operations on the working directory
	9.2.5. Deployment methods that use config-download
	9.2.6. Running config-download on a standard deployment
	9.2.7. Running config-download with separate provisioning and configuration
	9.2.8. Running config-download with the ansible-playbook-command.sh script
	9.2.9. Running config-download with manually created playbooks
	9.2.10. Limitations of config-download
	9.2.11. config-download top level files
	9.2.12. config-download tags
	9.2.13. config-download deployment steps

	9.3. MANAGING CONTAINERS WITH ANSIBLE
	9.3.1. tripleo-container-manage role defaults and variables
	9.3.2. tripleo-container-manage molecule scenarios
	9.3.3. tripleo_container_manage role variables
	9.3.4. tripleo-container-manage healthchecks
	9.3.5. tripleo-container-manage debug

	CHAPTER 10. CONFIGURING THE OVERCLOUD WITH THE ORCHESTRATION SERVICE (HEAT)
	10.1. UNDERSTANDING HEAT TEMPLATES
	10.1.1. heat templates
	10.1.2. Environment files
	10.1.3. Core overcloud heat templates
	10.1.4. Including environment files in overcloud creation
	10.1.5. Using customized core heat templates
	10.1.6. Jinja2 rendering

	10.2. HEAT PARAMETERS
	10.2.1. Example 1: Configuring the time zone
	10.2.2. Example 2: Configuring RabbitMQ file descriptor limit
	10.2.3. Example 3: Enabling and disabling parameters
	10.2.4. Example 4: Role-based parameters
	10.2.5. Identifying parameters that you want to modify

	10.3. CONFIGURATION HOOKS
	10.3.1. Pre-configuration: customizing specific overcloud roles
	10.3.2. Pre-configuration: customizing all overcloud roles
	10.3.3. Post-configuration: customizing all overcloud roles
	10.3.4. Puppet: Customizing hieradata for roles
	10.3.5. Puppet: Customizing hieradata for individual nodes
	10.3.6. Puppet: Applying custom manifests

