
Red Hat OpenStack Platform 17.1

Deploying a Distributed Compute Node (DCN)
architecture

Edge and storage configuration for Red Hat OpenStack Platform

Last Updated: 2024-06-05

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node
(DCN) architecture

Edge and storage configuration for Red Hat OpenStack Platform

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

You can deploy Red Hat OpenStack Platform (RHOSP) with a distributed compute node (DCN)
architecture for edge site operability with heat stack separation. Each site can have its own Ceph
storage back end for Image service (glance) multi store.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. UNDERSTANDING DCN
1.1. REQUIRED SOFTWARE FOR DISTRIBUTED COMPUTE NODE ARCHITECTURE
1.2. MULTISTACK DESIGN
1.3. DCN STORAGE
1.4. DCN EDGE

CHAPTER 2. PLANNING A DISTRIBUTED COMPUTE NODE (DCN) DEPLOYMENT
2.1. CONSIDERATIONS FOR STORAGE ON DCN ARCHITECTURE
2.2. CONSIDERATIONS FOR NETWORKING ON DCN ARCHITECTURE

CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD
3.1. CONFIGURING THE SPINE LEAF PROVISIONING NETWORKS
3.2. CONFIGURING A DHCP RELAY
3.3. DESIGNATING A ROLE FOR LEAF NODES
3.4. MAPPING BARE METAL NODE PORTS TO CONTROL PLANE NETWORK SEGMENTS
3.5. ADDING A NEW LEAF TO A SPINE-LEAF PROVISIONING NETWORK

CHAPTER 4. PREPARING OVERCLOUD TEMPLATES FOR DCN DEPLOYMENT
4.1. PREREQUISITES FOR USING SEPARATE HEAT STACKS
4.2. LIMITATIONS OF THE EXAMPLE SEPARATE HEAT STACKS DEPLOYMENT
4.3. DESIGNING YOUR SEPARATE HEAT STACKS DEPLOYMENT
4.4. MANAGING SEPARATE HEAT STACKS
4.5. RETRIEVING THE CONTAINER IMAGES
4.6. CREATING FAST DATAPATH ROLES FOR THE EDGE

CHAPTER 5. INSTALLING THE CENTRAL LOCATION
5.1. DEPLOYING THE CENTRAL CONTROLLERS WITHOUT EDGE STORAGE
5.2. DEPLOYING THE CENTRAL SITE WITH STORAGE
5.3. INTEGRATING EXTERNAL CEPH

CHAPTER 6. DEPLOY THE EDGE WITHOUT STORAGE
6.1. ARCHITECTURE OF A DCN EDGE SITE WITHOUT STORAGE
6.2. DEPLOYING EDGE NODES WITHOUT STORAGE
6.3. EXCLUDING SPECIFIC IMAGE TYPES AT THE EDGE

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE
7.1. ROLES FOR EDGE DEPLOYMENTS WITH STORAGE

7.1.1. Storage without hyperconverged nodes
7.1.2. Storage with hyperconverged nodes

7.2. ARCHITECTURE OF A DCN EDGE SITE WITH STORAGE
7.3. ARCHITECTURE OF A DCN EDGE SITE WITH HYPERCONVERGED STORAGE
7.4. DEPLOYING EDGE SITES WITH HYPERCONVERGED STORAGE
7.5. USING A PRE-INSTALLED RED HAT CEPH STORAGE CLUSTER AT THE EDGE
7.6. UPDATING THE CENTRAL LOCATION

7.6.1. Clearing residual data after interrupted Image service processes
7.7. DEPLOYING RED HAT CEPH STORAGE DASHBOARD ON DCN

CHAPTER 8. LOAD BALANCING NETWORK TRAFFIC AT THE EDGE
8.1. CREATING NETWORK RESOURCES FOR LOAD-BALANCING SERVICE AVAILABILITY ZONES
8.2. CREATING AVAILABILITY ZONES FOR THE LOAD-BALANCING SERVICE

4

5

6
6
7
7
7

8
8
8

11
11

12
15
17
18

20
20
20
20
21
21
22

24
24
26
29

34
34
35
37

39
39
39
40
40
41

42
45
47
49
49

52
52
54

Table of Contents

1

. .

. .

. .

. .

. .

. .

8.3. CREATING LOAD BALANCERS IN AVAILABILITY ZONES

CHAPTER 9. REPLACING DISTRIBUTEDCOMPUTEHCI NODES
9.1. REMOVING RED HAT CEPH STORAGE SERVICES
9.2. REMOVING THE IMAGE SERVICE (GLANCE) SERVICES
9.3. REMOVING THE BLOCK STORAGE (CINDER) SERVICES
9.4. DELETE THE DISTRIBUTEDCOMPUTEHCI NODE
9.5. REPLACING A REMOVED DISTRIBUTEDCOMPUTEHCI NODE

9.5.1. Replacing a removed DistributedComputeHCI node
9.6. VERIFY THE FUNCTIONALITY OF A REPLACED DISTRIBUTEDCOMPUTEHCI NODE
9.7. TROUBLESHOOTING DISTRIBUTEDCOMPUTEHCI STATE DOWN

CHAPTER 10. DEPLOYING WITH KEY MANAGER
10.1. DEPLOYING EDGE SITES WITH KEY MANAGER

CHAPTER 11. PRECACHING GLANCE IMAGES INTO NOVA
11.1. RUNNING THE TRIPLEO_NOVA_IMAGE_CACHE.YML ANSIBLE PLAYBOOK
11.2. PERFORMANCE CONSIDERATIONS
11.3. OPTIMIZING THE IMAGE DISTRIBUTION TO DCN SITES
11.4. CONFIGURING THE NOVA-CACHE CLEANUP

CHAPTER 12. TLS-E FOR DCN
12.1. DEPLOYING DISTRIBUTED COMPUTE NODE ARCHITECTURE WITH TLS-E

CHAPTER 13. CREATING A CEPH KEY FOR EXTERNAL ACCESS
13.1. CREATING A CEPH KEY FOR EXTERNAL ACCESS
13.2. USING EXTERNAL CEPH KEYS

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS
A.1. VALIDATING EDGE STORAGE

A.1.1. Importing from a local file
A.1.2. Importing an image from a web server
A.1.3. Copying an image to a new site
A.1.4. Confirming that an instance at an edge site can boot with image based volumes
A.1.5. Confirming image snapshots can be created and copied between sites

A.2. MIGRATING TO A SPINE AND LEAF DEPLOYMENT
A.3. MIGRATING TO A MULTISTACK DEPLOYMENT
A.4. BACKING UP AND RESTORING ACROSS EDGE SITES
A.5. OVERCLOUD ADOPTION AND PREPARATION IN A DCN ENVIRONMENT

58

61
61

63
64
64
65
65
66
68

70
70

71
71
72
73
73

74
74

76
76
77

79
79
79
80
80
81

82
82
83
83
84

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

5

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. UNDERSTANDING DCN
Distributed compute node (DCN) architecture is for edge use cases allowing remote compute and
storage nodes to be deployed remotely while sharing a common centralised control plane. DCN
architecture allows you to position workloads strategically closer to your operational needs for higher
performance.

The central location can consist of any role, however at a minimum, requires three controllers. Compute
nodes can exist at the edge, as well as at the central location.

DCN architecture is a hub and spoke routed network deployment. DCN is comparable to a spine and
leaf deployment for routed provisioning and control plane networking with Red Hat OpenStack Platform
director.

The hub is the central site with core routers and a datacenter gateway (DC-GW).

The spoke is the remote edge, or leaf.

Edge locations do not have controllers, making them architecturally different from traditional
deployments of Red Hat OpenStack Platform:

Control plane services run remotely, at the central location.

Pacemaker is not installed.

The Block Storage service (cinder) runs in active/active mode.

Etcd is deployed as a distributed lock manager (DLM).

1.1. REQUIRED SOFTWARE FOR DISTRIBUTED COMPUTE NODE
ARCHITECTURE

The following table shows the software and minimum versions required to deploy Red Hat OpenStack
Platform in a distributed compute node (DCN) architecture:

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

6

Platform Version Optional

Red Hat Enterprise Linux 9.2 No

Red Hat OpenStack Platform 17.1 No

Red Hat Ceph Storage 5 Yes

1.2. MULTISTACK DESIGN

When you deploy Red Hat OpenStack Platform (RHOSP) with a DCN design, you use Red Hat director’s
capabilities for multiple stack deployment and management to deploy each site as a distinct stack.

Managing a DCN architecture as a single stack is unsupported, unless the deployment is an upgrade
from Red Hat OpenStack Platform 13. There are no supported methods to split an existing stack,
however you can add stacks to a pre-existing deployment. For more information, see Section A.3,
“Migrating to a multistack deployment”.

The central location is a traditional stack deployment of RHOSP, however you are not required to deploy
Compute nodes or Red Hat Ceph storage with the central stack.

With DCN, you deploy each location as a distinct availability zone (AZ).

1.3. DCN STORAGE

You can deploy each edge site, either without storage, or with Ceph on hyperconverged nodes. The
storage you deploy is dedicated to the site you deploy it on.

DCN architecture uses Glance multistore. For edge sites deployed without storage, additional tooling is
available so that you can cache and store images in the Compute service (nova) cache. Caching glance
images in nova provides the faster boot times for instances by avoiding the process of downloading
images across a WAN link. For more information, see Chapter 11, Precaching glance images into nova .

1.4. DCN EDGE

With Distributed Compute Node architecture, you deploy the control nodes at the central site, and use
these controllers to manage geographically dispersed edge sites. When you deploy an edge site, you
deploy only compute nodes, which makes edge sites architecturally different from traditional
deployments of Red Hat OpenStack Platform. When you launch an instance at an edge site, the
required image is copied to the local Image service (glance) store automatically. You can copy images
from the central Image store to edge sites by using glance multistore to save time during instance
launch. For more information, see Image service with multiple stores.

At edge sites:

Control plane services run remotely at the central location.

Pacemaker does not run at DCN sites.

The Block Storage service (cinder) runs in active/active mode.

Etcd is deployed as a distributed lock manager (DLM).

CHAPTER 1. UNDERSTANDING DCN

7

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_images/assembly_image-service-with-multiple-stores_glance-creating-images#doc-wrapper

CHAPTER 2. PLANNING A DISTRIBUTED COMPUTE NODE
(DCN) DEPLOYMENT

When you plan your DCN architecture, check that the technologies that you need are available and
supported.

2.1. CONSIDERATIONS FOR STORAGE ON DCN ARCHITECTURE

The following features are not currently supported for DCN architectures:

Copying a volume snapshot between edge sites. You can work around this by creating an image
from the volume and using glance to copy the image. After the image is copied, you can create a
volume from it.

Ceph Rados Gateway (RGW) at the edge.

CephFS at the edge.

Instance high availability (HA) at the edge sites.

RBD mirroring between sites.

Instance migration, live or cold, either between edge sites, or from the central location to edge
sites. You can still migrate instances within a site boundary. To move an image between sites,
you must snapshot the image, and use glance image-import. For more information see
Confirming image snapshots can be created and copied between sites .

Additionally, you must consider the following:

You must upload images to the central location before copying them to edge sites; a copy of
each image must exist in the Image service (glance) at the central location.

You must use the RBD storage driver for the Image, Compute and Block Storage services.

For each site, assign a unique availability zone, and use the same value for the
NovaComputeAvailabilityZone and CinderStorageAvailabilityZone parameters.

You can migrate an offline volume from an edge site to the central location, or vice versa. You
cannot migrate volumes directly between edge sites.

2.2. CONSIDERATIONS FOR NETWORKING ON DCN ARCHITECTURE

The following features are not currently supported for DCN architectures:

DHCP on DPDK nodes

Conntrack for TC Flower Hardware Offload

Conntrack for TC Flower Hardware Offload is available on DCN as a Technology Preview, and therefore
using these solutions together is not fully supported by Red Hat. This feature should only be used with
DCN for testing, and should not be deployed in a production environment. For more information about
Technology Preview features, see Scope of Coverage Details.

The following ML2/OVS technologies are fully supported:

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

8

OVS-DPDK without DHCP on the DPDK nodes

SR-IOV

TC flower hardware offload, without conntrack

Neutron availability zones (AZs) with networker nodes at the edge, with one AZ per site

Routed provider networks

The following ML2/OVN networking technologies are fully supported:

OVS-DPDK without DHCP on the DPDK nodes

SR-IOV (without DHCP)

TC flower hardware offload, without conntrack

Routed provider networks

OVN GW (networker node) with Neutron AZs supported

IMPORTANT

Ensure that all router gateway ports reside on the OpenStack Controller nodes
by setting OVNCMSOptions: 'enable-chassis-as-gw' and by providing one or
more AZ values for the OVNAvailabilityZone parameter. Performing these
actions prevent the routers from scheduling all chassis as potential hosts for the
router gateway ports. For more information, see Configuring Network service
availability zones with ML2/OVN in Configuring Red Hat OpenStack Platform
networking.

Additionally, you must consider the following:

Network latency: Balance the latency as measured in round-trip time (RTT), with the expected
number of concurrent API operations to maintain acceptable performance. Maximum TCP/IP
throughput is inversely proportional to RTT. You can mitigate some issues with high-latency
connections with high bandwidth by tuning kernel TCP parameters.Contact Red Hat support if a
cross-site communication exceeds 100 ms.

Network drop outs: If the edge site temporarily loses connection to the central site, then no
OpenStack control plane API or CLI operations can be executed at the impacted edge site for
the duration of the outage. For example, Compute nodes at the edge site are consequently
unable to create a snapshot of an instance, issue an auth token, or delete an image. General
OpenStack control plane API and CLI operations remain functional during this outage, and can
continue to serve any other edge sites that have a working connection. Image type: You must
use raw images when deploying a DCN architecture with Ceph storage.

Image sizing:

Overcloud node images - overcloud node images are downloaded from the central
undercloud node. These images are potentially large files that will be transferred across all
necessary networks from the central site to the edge site during provisioning.

Instance images: If there is no block storage at the edge, then the Image service images
traverse the WAN during first use. The images are copied or cached locally to the target
edge nodes for all subsequent use. There is no size limit for glance images. Transfer times

CHAPTER 2. PLANNING A DISTRIBUTED COMPUTE NODE (DCN) DEPLOYMENT

9

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/use-azs-make-network-nodes-ha_rhosp-network#config-network-service-azs-ovn_config_azs

vary with available bandwidth and network latency.
If there is block storage at the edge, then the image is copied over the WAN asynchronously
for faster boot times at the edge.

Provider networks: This is the recommended networking approach for DCN deployments. If you
use provider networks at remote sites, then you must consider that the Networking service
(neutron) does not place any limits or checks on where you can attach available networks. For
example, if you use a provider network only in edge site A, you must ensure that you do not try
to attach to the provider network in edge site B. This is because there are no validation checks
on the provider network when binding it to a Compute node.

Site-specific networks: A limitation in DCN networking arises if you use networks that are
specific to a certain site: When you deploy centralized neutron controllers with Compute nodes,
there are no triggers in neutron to identify a certain Compute node as a remote node.
Consequently, the Compute nodes receive a list of other Compute nodes and automatically
form tunnels between each other; the tunnels are formed from edge to edge through the
central site. If you use VXLAN or Geneve, every Compute node at every site forms a tunnel with
every other Compute node and Controller node, whether or not they are local or remote. This is
not an issue if you are using the same neutron networks everywhere. When you use VLANs,
neutron expects that all Compute nodes have the same bridge mappings, and that all VLANs
are available at every site.

Additional sites: If you need to expand from a central site to additional remote sites, you can use
the openstack CLI on Red Hat OpenStack Platform director to add new network segments and
subnets.

If edge servers are not pre-provisioned, you must configure DHCP relay for introspection and
provisioning on routed segments.

Routing must be configured either on the cloud or within the networking infrastructure that
connects each edge site to the hub. You should implement a networking design that allocates
an L3 subnet for each Red Hat OpenStack Platform cluster network (external, internal API, and
so on), unique to each site.

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

10

CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE
UNDERCLOUD

This section describes a use case about how to configure the undercloud to accommodate routed
spine-leaf with composable networks.

3.1. CONFIGURING THE SPINE LEAF PROVISIONING NETWORKS

To configure the provisioning networks for your spine leaf infrastructure, edit the undercloud.conf file
and set the relevant parameters included in the following procedure.

Procedure

1. Log in to the undercloud as the stack user.

2. If you do not already have an undercloud.conf file, copy the sample template file:

[stack@director ~]$ cp /usr/share/python-tripleoclient/undercloud.conf.sample
~/undercloud.conf

3. Edit the undercloud.conf file.

4. Set the following values in the [DEFAULT] section:

a. Set local_ip to the undercloud IP on leaf0:

local_ip = 192.168.10.1/24

b. Set undercloud_public_host to the externally facing IP address of the undercloud:

undercloud_public_host = 10.1.1.1

c. Set undercloud_admin_host to the administration IP address of the undercloud. This IP
address is usually on leaf0:

undercloud_admin_host = 192.168.10.2

d. Set local_interface to the interface to bridge for the local network:

local_interface = eth1

e. Set enable_routed_networks to true:

enable_routed_networks = true

f. Define your list of subnets using the subnets parameter. Define one subnet for each L2
segment in the routed spine and leaf:

subnets = leaf0,leaf1,leaf2

g. Specify the subnet associated with the physical L2 segment local to the undercloud using
the local_subnet parameter:

CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

11

local_subnet = leaf0

h. Set the value of undercloud_nameservers.

undercloud_nameservers = 10.11.5.19,10.11.5.20

TIP

You can find the current IP addresses of the DNS servers that are used for the undercloud
nameserver by looking in /etc/resolv.conf.

5. Create a new section for each subnet that you define in the subnets parameter:

[leaf0]
cidr = 192.168.10.0/24
dhcp_start = 192.168.10.10
dhcp_end = 192.168.10.90
inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1
masquerade = False

[leaf1]
cidr = 192.168.11.0/24
dhcp_start = 192.168.11.10
dhcp_end = 192.168.11.90
inspection_iprange = 192.168.11.100,192.168.11.190
gateway = 192.168.11.1
masquerade = False

[leaf2]
cidr = 192.168.12.0/24
dhcp_start = 192.168.12.10
dhcp_end = 192.168.12.90
inspection_iprange = 192.168.12.100,192.168.12.190
gateway = 192.168.12.1
masquerade = False

6. Save the undercloud.conf file.

7. Run the undercloud installation command:

[stack@director ~]$ openstack undercloud install

This configuration creates three subnets on the provisioning network or control plane. The overcloud
uses each network to provision systems within each respective leaf.

To ensure proper relay of DHCP requests to the undercloud, you might need to configure a DHCP relay.

3.2. CONFIGURING A DHCP RELAY

You run the DHCP relay service on a switch, router, or server that is connected to the remote network
segment you want to forward the requests from.

NOTE

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

12

NOTE

Do not run the DHCP relay service on the undercloud.

The undercloud uses two DHCP servers on the provisioning network:

An introspection DHCP server.

A provisioning DHCP server.

You must configure the DHCP relay to forward DHCP requests to both DHCP servers on the
undercloud.

You can use UDP broadcast with devices that support it to relay DHCP requests to the L2 network
segment where the undercloud provisioning network is connected. Alternatively, you can use UDP
unicast, which relays DHCP requests to specific IP addresses.

NOTE

Configuration of DHCP relay on specific device types is beyond the scope of this
document. As a reference, this document provides a DHCP relay configuration example
using the implementation in ISC DHCP software. For more information, see manual page
dhcrelay(8).

IMPORTANT

DHCP option 79 is required for some relays, particularly relays that serve DHCPv6
addresses, and relays that do not pass on the originating MAC address. For more
information, see RFC6939.

Broadcast DHCP relay

This method relays DHCP requests using UDP broadcast traffic onto the L2 network segment where the
DHCP server or servers reside. All devices on the network segment receive the broadcast traffic. When
using UDP broadcast, both DHCP servers on the undercloud receive the relayed DHCP request.
Depending on the implementation, you can configure this by specifying either the interface or IP
network address:

Interface

Specify an interface that is connected to the L2 network segment where the DHCP requests are
relayed.

IP network address

Specify the network address of the IP network where the DHCP requests are relayed.

Unicast DHCP relay

This method relays DHCP requests using UDP unicast traffic to specific DHCP servers. When you use
UDP unicast, you must configure the device that provides the DHCP relay to relay DHCP requests to
both the IP address that is assigned to the interface used for introspection on the undercloud and the
IP address of the network namespace that the OpenStack Networking (neutron) service creates to host
the DHCP service for the ctlplane network.

The interface used for introspection is the one defined as inspection_interface in the undercloud.conf
file. If you have not set this parameter, the default interface for the undercloud is br-ctlplane.

CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

13

https://www.rfc-editor.org/rfc/rfc6939

NOTE

It is common to use the br-ctlplane interface for introspection. The IP address that you
define as the local_ip in the undercloud.conf file is on the br-ctlplane interface.

The IP address allocated to the Neutron DHCP namespace is the first address available in the IP range
that you configure for the local_subnet in the undercloud.conf file. The first address in the IP range is
the one that you define as dhcp_start in the configuration. For example, 192.168.10.10 is the IP address
if you use the following configuration:

[DEFAULT]
local_subnet = leaf0
subnets = leaf0,leaf1,leaf2

[leaf0]
cidr = 192.168.10.0/24
dhcp_start = 192.168.10.10
dhcp_end = 192.168.10.90
inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1
masquerade = False

WARNING

The IP address for the DHCP namespace is automatically allocated. In most cases,
this address is the first address in the IP range. To verify that this is the case, run the
following commands on the undercloud:

$ openstack port list --device-owner network:dhcp -c "Fixed IP Addresses"
+--+
| Fixed IP Addresses |
+--+
| ip_address='192.168.10.10', subnet_id='7526fbe3-f52a-4b39-a828-
ec59f4ed12b2' |
+--+
$ openstack subnet show 7526fbe3-f52a-4b39-a828-ec59f4ed12b2 -c name
+-------+--------+
| Field | Value |
+-------+--------+
| name | leaf0 |
+-------+--------+

Example dhcrelay configuration

In the following examples, the dhcrelay command in the dhcp package uses the following configuration:

Interfaces to relay incoming DHCP request: eth1, eth2, and eth3.

Interface the undercloud DHCP servers on the network segment are connected to: eth0.

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

14

The DHCP server used for introspection is listening on IP address: 192.168.10.1.

The DHCP server used for provisioning is listening on IP address 192.168.10.10.

This results in the following dhcrelay command:

dhcrelay version 4.2.x:

$ sudo dhcrelay -d --no-pid 192.168.10.10 192.168.10.1 \
 -i eth0 -i eth1 -i eth2 -i eth3

dhcrelay version 4.3.x and later:

$ sudo dhcrelay -d --no-pid 192.168.10.10 192.168.10.1 \
 -iu eth0 -id eth1 -id eth2 -id eth3

Example Cisco IOS routing switch configuration

This example uses the following Cisco IOS configuration to perform the following tasks:

Configure a VLAN to use for the provisioning network.

Add the IP address of the leaf.

Forward UDP and BOOTP requests to the introspection DHCP server that listens on IP
address: 192.168.10.1.

Forward UDP and BOOTP requests to the provisioning DHCP server that listens on IP address
192.168.10.10.

interface vlan 2
ip address 192.168.24.254 255.255.255.0
ip helper-address 192.168.10.1
ip helper-address 192.168.10.10
!

Now that you have configured the provisioning network, you can configure the remaining overcloud leaf
networks.

3.3. DESIGNATING A ROLE FOR LEAF NODES

Each role in each leaf network requires a flavor and role assignment so that you can tag nodes into their
respective leaf. Complete the following steps to create and assign each flavor to a role.

Procedure

1. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

2. Retrieve a list of your nodes to identify their UUIDs:

(undercloud)$ openstack baremetal node list

3. Assign each bare metal node that you want to designate for a role with a custom resource class

CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

15

3. Assign each bare metal node that you want to designate for a role with a custom resource class
that identifies its leaf network and role.

openstack baremetal node set \
 --resource-class baremetal.<ROLE> <node>

Replace <ROLE> with a name that identifies the role.

Replace <node> with the ID of the bare metal node.
For example, enter the following command to tag a node with UUID 58c3d07e-24f2-48a7-
bbb6-6843f0e8ee13 to the Compute role on Leaf2:

(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.COMPUTE-LEAF2 58c3d07e-24f2-48a7-bbb6-
6843f0e8ee13

4. Add each role to your overcloud-baremetal-deploy.yaml if it is not already defined.

5. Define the resource class that you want to assign to the nodes for the role:

- name: <role>
 count: 1
 defaults:
 resource_class: baremetal.<ROLE>

Replace <role> with the name of the role.

Replace <ROLE> with a name that identifies the role.

6. In a baremetal-deploy.yaml file, define the resource class that you want to assign to the nodes
for the role. Specify the role, profile, quantity, and associated networks that you are deploying:

- name: <role>
 count: 1
 hostname_format: <role>-%index%
 ansible_playbooks:
 - playbook: bm-deploy-playbook.yaml
 defaults:
 resource_class: baremetal.<ROLE>
 profile: control
 networks:
 - network: external
 subnet: external_subnet
 - network: internal_api
 subnet: internal_api_subnet01
 - network: storage
 subnet: storage_subnet01
 - network: storage_mgmt
 subnet: storage_mgmt_subnet01
 - network: tenant
 subnet: tenant_subnet01
 network_config:
 template: templates/multiple_nics/multiple_nics_dvr.j2
 default_route_network:
 - external

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

16

Replace <role> with the name of the role.

Replace <ROLE> with a name that identifies the role.

NOTE

You must create a baremetal-deploy.yaml environment file for every stack
you are deploying, in /home/stack/<stack>.

3.4. MAPPING BARE METAL NODE PORTS TO CONTROL PLANE
NETWORK SEGMENTS

To enable deployment on a L3 routed network, you must configure the physical_network field on the
bare metal ports. Each bare metal port is associated with a bare metal node in the OpenStack Bare
Metal (ironic) service. The physical network names are the names that you include in the subnets option
in the undercloud configuration.

NOTE

The physical network name of the subnet specified as local_subnet in the
undercloud.conf file is always named ctlplane.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Check the bare metal nodes:

$ openstack baremetal node list

3. Ensure that the bare metal nodes are either in enroll or manageable state. If the bare metal
node is not in one of these states, the command that sets the physical_network property on
the baremetal port fails. To set all nodes to manageable state, run the following command:

$ for node in $(openstack baremetal node list -f value -c Name); do openstack baremetal
node manage $node --wait; done

4. Check which baremetal ports are associated with which baremetal node:

$ openstack baremetal port list --node <node-uuid>

5. Set the physical-network parameter for the ports. In the example below, three subnets are
defined in the configuration: leaf0, leaf1, and leaf2. The local_subnet is leaf0. Because the
physical network for the local_subnet is always ctlplane, the baremetal port connected to
leaf0 uses ctlplane. The remaining ports use the other leaf names:

$ openstack baremetal port set --physical-network ctlplane <port-uuid>
$ openstack baremetal port set --physical-network leaf1 <port-uuid>
$ openstack baremetal port set --physical-network leaf2 <port-uuid>

CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

17

6. Introspect the nodes before you deploy the overcloud. Include the --all-manageable and --
provide options to set the nodes as available for deployment:

$ openstack overcloud node introspect --all-manageable --provide

3.5. ADDING A NEW LEAF TO A SPINE-LEAF PROVISIONING
NETWORK

When increasing network capacity which can include adding new physical sites, you might need to add a
new leaf and a corresponding subnet to your Red Hat OpenStack Platform spine-leaf provisioning
network. When provisioning a leaf on the overcloud, the corresponding undercloud leaf is used.

Prerequisites

Your RHOSP deployment uses a spine-leaf network topology.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. In the /home/stack/undercloud.conf file, do the following:

a. Locate the subnets parameter, and add a new subnet for the leaf that you are adding.
A subnet represents an L2 segment in the routed spine and leaf:

Example

In this example, a new subnet (leaf3) is added for the new leaf (leaf3):

subnets = leaf0,leaf1,leaf2,leaf3

b. Create a section for the subnet that you added.

Example

In this example, the section [leaf3] is added for the new subnet (leaf3):

[leaf0]
cidr = 192.168.10.0/24
dhcp_start = 192.168.10.10
dhcp_end = 192.168.10.90
inspection_iprange = 192.168.10.100,192.168.10.190
gateway = 192.168.10.1
masquerade = False

[leaf1]
cidr = 192.168.11.0/24
dhcp_start = 192.168.11.10
dhcp_end = 192.168.11.90
inspection_iprange = 192.168.11.100,192.168.11.190

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

18

gateway = 192.168.11.1
masquerade = False

[leaf2]
cidr = 192.168.12.0/24
dhcp_start = 192.168.12.10
dhcp_end = 192.168.12.90
inspection_iprange = 192.168.12.100,192.168.12.190
gateway = 192.168.12.1
masquerade = False

[leaf3]
cidr = 192.168.13.0/24
dhcp_start = 192.168.13.10
dhcp_end = 192.168.13.90
inspection_iprange = 192.168.13.100,192.168.13.190
gateway = 192.168.13.1
masquerade = False

4. Save the undercloud.conf file.

5. Reinstall your undercloud:

$ openstack undercloud install

Additional resources

Adding a new leaf to a spine-leaf deployment

CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD

19

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_spine-leaf_networking/index#proc_add-new-leaf_spine-leaf

CHAPTER 4. PREPARING OVERCLOUD TEMPLATES FOR DCN
DEPLOYMENT

4.1. PREREQUISITES FOR USING SEPARATE HEAT STACKS

Your environment must meet the following prerequisites before you create a deployment using separate
heat stacks:

An installed instance of Red Hat OpenStack Platform director 17.1.

For Ceph Storage users: access to Red Hat Ceph Storage 5.

For the central location: three nodes that are capable of serving as central Controller nodes. All
three Controller nodes must be in the same heat stack. You cannot split Controller nodes, or
any of the control plane services, across separate heat stacks.

Ceph storage is a requirement at the central location if you plan to deploy Ceph storage at the
edge.

For each additional DCN site: three HCI compute nodes.

All nodes must be pre-provisioned or able to PXE boot from the central deployment network.
You can use a DHCP relay to enable this connectivity for DCNs.

All nodes have been introspected by ironic.

Red Hat recommends leaving the <role>HostnameFormat parameter as the default value:
%stackname%-<role>-%index%. If you do not include the %stackname% prefix, your overcloud
uses the same hostnames for distributed compute nodes in different stacks. Ensure that your
distributed compute nodes use the %stackname% prefix to distinguish nodes from different
edge sites. For example, if you deploy two edge sites named dcn0 and dcn1, the stack name
prefix helps you to distinguish between dcn0-distributedcompute-0 and dcn1-
distributedcompute-0 when you run the openstack server list command on the undercloud.

Source the centralrc authentication file to schedule workloads at edge sites as well as at the
central location. You do not require authentication files that are automatically generated for
edge sites.

4.2. LIMITATIONS OF THE EXAMPLE SEPARATE HEAT STACKS
DEPLOYMENT

This document provides an example deployment that uses separate heat stacks on Red Hat OpenStack
Platform. This example environment has the following limitations:

Spine/Leaf networking - The example in this guide does not demonstrate routing requirements,
which are required in distributed compute node (DCN) deployments.

Ironic DHCP Relay - This guide does not include how to configure Ironic with a DHCP relay.

4.3. DESIGNING YOUR SEPARATE HEAT STACKS DEPLOYMENT

To segment your deployment within separate heat stacks, you must first deploy a single overcloud with
the control plane. You can then create separate stacks for the distributed compute node (DCN) sites.
The following example shows separate stacks for different node types:

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

20

Controller nodes: A separate heat stack named central, for example, deploys the controllers.
When you create new heat stacks for the DCN sites, you must create them with data from the
central stack. The Controller nodes must be available for any instance management tasks.

DCN sites: You can have separate, uniquely named heat stacks, such as dcn0, dcn1, and so on.
Use a DHCP relay to extend the provisioning network to the remote site.

NOTE

You must create a separate availability zone (AZ) for each stack.

4.4. MANAGING SEPARATE HEAT STACKS

The procedures in this guide show how to organize the environment files for three heat stacks: central,
dcn0, and dcn1. Red Hat recommends that you store the templates for each heat stack in a separate
directory to keep the information about each deployment isolated.

Procedure

1. Define the central heat stack:

$ mkdir central
$ touch central/overrides.yaml

2. Extract data from the central heat stack into a common directory for all DCN sites:

$ mkdir dcn-common
$ touch dcn-common/overrides.yaml

3. Define the dcn0 site.

$ mkdir dcn0
$ touch dcn0/overrides.yaml

To deploy more DCN sites, create additional dcn directories by number.

NOTE

The touch is used to provide an example of file organization. Each file must contain the
appropriate content for successful deployments.

4.5. RETRIEVING THE CONTAINER IMAGES

Use the following procedure, and its example file contents, to retrieve the container images you need
for deployments with separate heat stacks. You must ensure the container images for optional or edge-
specific services are included by running the openstack container image prepare command with edge
site’s environment files.

For more information, see Preparing container images in the Installing and managing Red Hat
OpenStack Platform with director guide.

Procedure

CHAPTER 4. PREPARING OVERCLOUD TEMPLATES FOR DCN DEPLOYMENT

21

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-director-installation#proc_preparing-container-images_preparing-for-director-installation

1. Add your Registry Service Account credentials to containers.yaml.

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 ceph_namespace: registry.redhat.io/rhceph
 ceph_image: rhceph-6-rhel9
 ceph_tag: latest
 name_prefix: openstack-
 namespace: registry.redhat.io/rhosp17-rhel9
 tag: latest
 ContainerImageRegistryCredentials:
 # https://access.redhat.com/RegistryAuthentication
 registry.redhat.io:
 registry-service-account-username: registry-service-account-password

2. Generate the environment file as images-env.yaml:

sudo openstack tripleo container image prepare \
-e containers.yaml \
--output-env-file images-env.yaml

The resulting images-env.yaml file is included as part of the overcloud deployment procedure
for the stack for which it is generated.

4.6. CREATING FAST DATAPATH ROLES FOR THE EDGE

To use fast datapath services at the edge, you must create a custom role that defines both fast
datapath and edge services. When you create the roles file for deployment, you can include the newly
created role that defines services needed for both distributed compute node architecture and fast
datapath services such as DPDK or SR-IOV.

For example, create a custom role for distributedCompute with DPDK:

Prerequisites

A successful undercloud installation. For more information, see Installing the undercloud.

Procedure

1. Log in to the undercloud host as the stack user.

2. Copy the default roles directory:

cp -r /usr/share/openstack-tripleo-heat-templates/roles ~/.

3. Create a new file named DistributedComputeDpdk.yaml from the DistributedCompute.yaml
file:

cp roles/DistributedCompute.yaml roles/DistributedComputeDpdk.yaml

4. Add DPDK services to the new DistributedComputeDpdk.yaml file. You can identify the

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

22

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#installing-the-undercloud

4. Add DPDK services to the new DistributedComputeDpdk.yaml file. You can identify the
parameters that you need to add by identifying the parameters in the ComputeOvsDpdk.yaml
file that are not present in the DistributedComputeDpdk.yaml file.

diff -u roles/DistributedComputeDpdk.yaml roles/ComputeOvsDpdk.yaml

In the output, the parameters that are preceded by + are present in the ComputeOvsDpdk.yaml
file but are not present in the DistributedComputeDpdk.yaml file. Include these parameters in
the new DistributedComputeDpdk.yaml file.

5. Use the DistributedComputeDpdk.yaml to create a DistributedComputeDpdk roles file :

openstack overcloud roles generate --roles-path ~/roles/ -o ~/roles/roles-custom.yaml
DistributedComputeDpdk

You can use this same method to create fast datapath roles for SR-IOV, or a combination of SR-IOV
and DPDK for the edge to meet your requirements.

If you are planning to deploy edge sites without block storage, see the following:

Chapter 5, Installing the central location

Section 6.2, “Deploying edge nodes without storage”

If you plan to deploy edge sites with Red Hat Ceph Storage, see the following:

Chapter 5, Installing the central location

Section 7.4, “Deploying edge sites with hyperconverged storage”

CHAPTER 4. PREPARING OVERCLOUD TEMPLATES FOR DCN DEPLOYMENT

23

CHAPTER 5. INSTALLING THE CENTRAL LOCATION
When you deploy Red Hat OpenStack platform with a distributed compute node (DCN) architecture,
you must decide your storage strategy in advance. If you deploy Red Hat OpenStack Platform without
Red Hat Ceph Storage at the central location, you cannot deploy any of your edge sites with Red Hat
Ceph storage. Additionally, you do not have the option of adding Red Hat Ceph Storage to the central
location later by redeploying.

When you deploy the central location for distributed compute node (DCN) architecture, you can deploy
the cluster:

With or without Compute nodes

With or without Red Hat Ceph Storage

5.1. DEPLOYING THE CENTRAL CONTROLLERS WITHOUT EDGE
STORAGE

You can deploy a distributed compute node cluster without Block storage at edge sites if you use the
Object Storage service (swift) as a back end for the Image service (glance) at the central location. A site
deployed without block storage cannot be updated later to have block storage due to the differing role
and networking profiles for each architecture.

Important: The following procedure uses lvm as the backend for Cinder which is not supported for
production. You must deploy a certified block storage solution as a backend for Cinder.

Deploy the central controller cluster in a similar way to a typical overcloud deployment. This cluster does
not require any Compute nodes, so you can set the Compute count to 0 to override the default of 1.
The central controller has particular storage and Oslo configuration requirements. Use the following
procedure to address these requirements.

Prerequisites

You must create network_data.yaml and vip_data.yaml files specific to your environment. You
can find sample files in /usr/share/openstack-tripleo-heat-templates/network-data-samples.

You must create an overcloud-baremetal-deploy.yaml file specific to your environment. For
more information see Provisioning bare metal nodes for the overcloud .

Procedure

The following procedure outlines the steps for the initial deployment of the central location.

NOTE

The following steps detail the deployment commands and environment files associated
with an example DCN deployment without glance multistore. These steps do not include
unrelated, but necessary, aspects of configuration, such as networking.

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source /home/stack/stackrc

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

24

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

3. Generate an environment file:

sudo openstack tripleo container image prepare \
-e containers.yaml \
--output-env-file /home/stack/central/central-images-env.yaml

4. In the home directory, create directories for each stack that you plan to deploy. Move the
network_data.yaml, vip_data.yaml, and overcloud-baremetal-deploy.yaml templates for the
central location to /home/stack/central/.

mkdir /home/stack/central
mkdir /home/stack/dcn0
mkdir /home/stack/dcn1

mv network_data.yaml /home/stack/central
mv vip_data.yaml /home/stack/central
mv overcloud-baremetal-deploy.yaml /home/stack/central

5. Provision networks for the overcloud. This command takes a definition file for overcloud
networks as input. You must use the output file in your command to deploy the overcloud:

(undercloud)$ openstack overcloud network provision \
--output /home/stack/central/overcloud-networks-deployed.yaml \
/home/stack/central/network_data.yaml

6. Provision virtual IPs for the overcloud. This command takes a definition file for virtual IPs as
input. You must use the output file in your command to deploy the overcloud:

(undercloud)$ openstack overcloud network vip provision \
--stack central \
--output /home/stack/central/overcloud-vip-deployed.yaml \
/home/stack/central/vip_data.yaml

7. Provision bare metal instances. This command takes a definition file for bare metal nodes as
input. You must use the output file in your command to deploy the overcloud:

(undercloud)$ openstack overcloud node provision \
--stack central \
--network-config \
-o /home/stack/central/deployed_metal.yaml \
/home/stack/central/overcloud-baremetal-deploy.yaml

8. Create a file called central/overrides.yaml with settings similar to the following:

parameter_defaults:
 NtpServer:
 - 0.pool.ntp.org
 - 1.pool.ntp.org
 GlanceBackend: swift

ControllerCount: 3 specifies that three nodes will be deployed. These will use swift for
glance, lvm for cinder, and host the control-plane services for edge compute nodes.

ComputeCount: 0 is an optional parameter to prevent Compute nodes from being

CHAPTER 5. INSTALLING THE CENTRAL LOCATION

25

ComputeCount: 0 is an optional parameter to prevent Compute nodes from being
deployed with the central Controller nodes.

GlanceBackend: swift uses Object Storage (swift) as the Image Service (glance) back
end.
The resulting configuration interacts with the distributed compute nodes (DCNs) in the
following ways:

The Image service on the DCN creates a cached copy of the image it receives from the
central Object Storage back end. The Image service uses HTTP to copy the image from
Object Storage to the local disk cache.

NOTE

The central Controller node must be able to connect to the distributed
compute node (DCN) site. The central Controller node can use a routed
layer 3 connection.

9. Configure the naming conventions for your site in the site-name.yaml environment file. The
Nova availability zone, Cinder storage availability zone must match:

cat > /home/stack/central/site-name.yaml << EOF
parameter_defaults:
 NovaComputeAvailabilityZone: central
 ControllerExtraConfig:
 nova::availability_zone::default_schedule_zone: central
 NovaCrossAZAttach: false
EOF

10. Deploy the central Controller node. For example, you can use a deploy.sh file with the following
contents:

openstack overcloud deploy \
--deployed-server \
--stack central \
--templates /usr/share/openstack-tripleo-heat-templates/ \
-n /home/stack/central/network_data.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
-e /home/stack/central/overcloud-networks-deployed.yaml \
-e /home/stack/central/overcloud-vip-deployed.yaml \
-e /home/stack/central/deployed_metal.yaml

NOTE

You must include heat templates for the configuration of networking in your openstack
overcloud deploy command. Designing for edge architecture requires spine and leaf
networking. See Configure spine-leaf networking for more details.

5.2. DEPLOYING THE CENTRAL SITE WITH STORAGE

To deploy the Image service with multiple stores and Ceph Storage as the back end, complete the
following steps:

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

26

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_spine-leaf_networking/index

Prerequisites

You must create network_data.yaml and vip_data.yaml files specific to your environment. You
can find sample files in /usr/share/openstack-tripleo-heat-templates/network-data-samples.

You must create an overcloud-baremetal-deploy.yaml file specific to your environment. For
more information see Provisioning bare metal nodes for the overcloud .

You have hardware for a Ceph cluster at the central location and in each availability zone, or in
each geographic location where storage services are required.

You have hardware for three Image Service (glance) servers at a central location and in each
availability zone, or in each geographic location where storage services are required. At edge
locations, the Image service is deployed to the DistributedComputeHCI nodes.

Procedure

Deploy the Red Hat OpenStack Platform central location so that the Image service (glance) can be
used with multiple stores.

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source /home/stack/stackrc

3. Generate an environment file /home/stack/central/central-images-env.yaml

sudo openstack tripleo container image prepare \
-e containers.yaml \
--output-env-file /home/stack/central/central-images-env.yaml

4. Generate roles for the central location using roles appropriate for your environment:

openstack overcloud roles generate Compute Controller CephStorage \
-o /home/stack/central/central_roles.yaml

5. In the home directory, create directories for each stack that you plan to deploy. Move the
network_data.yaml, vip_data.yaml, and overcloud-baremetal-deploy.yaml templates for the
central location to /home/stack/central/.

mkdir /home/stack/central
mkdir /home/stack/dcn0
mkdir /home/stack/dcn1

mv network_data.yaml /home/stack/central
mv vip_data.yaml /home/stack/central
mv overcloud-baremetal-deploy.yaml /home/stack/central

6. Provision networks for the overcloud. This command takes a definition file for overcloud
networks as input. You must use the output file in your command to deploy the overcloud:

openstack overcloud network provision \
--output /home/stack/central/overcloud-networks-deployed.yaml \
/home/stack/central/network_data.yaml

CHAPTER 5. INSTALLING THE CENTRAL LOCATION

27

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

1

7. Provision virtual IPs for the overcloud. This command takes a definition file for virtual IPs as
input. You must use the output file in your command to deploy the overcloud:

openstack overcloud network vip provision \
--stack central \
--output /home/stack/central/overcloud-vip-deployed.yaml \
/home/stack/central/vip_data.yaml

8. Provision bare metal instances. This command takes a definition file for bare metal nodes as
input. You must use the output file in your command to deploy the overcloud:

openstack overcloud node provision \
--stack central \
--network-config \
-o /home/stack/central/deployed_metal.yaml \
/home/stack/central/overcloud-baremetal-deploy.yaml

9. If you are deploying the central location with hyperconverged storage, you must create an
initial-ceph.conf configuration file using the following parameters. For more information see
Configuring the Red Hat Ceph Storage cluster for HCI :

[osd]
osd_memory_target_autotune = true
osd_numa_auto_affinity = true
[mgr]
mgr/cephadm/autotune_memory_target_ratio = 0.2

10. Use the deployed_metal.yaml file as input to the openstack overcloud ceph deploy
command. The openstack overcloud ceph deploy command outputs a yaml file that
describes the deployed Ceph cluster:

openstack overcloud ceph deploy \
--stack central \
/home/stack/central/deployed_metal.yaml \
--config /home/stack/central/initial-ceph.conf \ 1
--output /home/stack/central/deployed_ceph.yaml \
--container-image-prepare /home/stack/containers.yaml \
--network-data /home/stack/network-data.yaml \
--cluster central \
--roles-data /home/stack/central/central_roles.yaml

Include initial-ceph.com only when deploying hyperconverged infrastructure.

11. Verify a functional Ceph deployment before continuing. Use ssh to connect to a server running
the ceph-mon service. In an HCI deployment, this is a controller node. Run the following
command:

cephadm shell --config /etc/ceph/central.conf \
--keyring /etc/ceph/central.client.admin.keyring

NOTE

You must use the --config and --keyring parameters.

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

28

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_a_hyperconverged_infrastructure/assembly_deployed_hci_ceph_storage_cluster_hci#con_ceph_deployment_prereqs_assembly_deployed_hci_ceph_storage_cluster

12. Configure the naming conventions for your site in the site-name.yaml environment file. The
Nova availability zone and the Cinder storage availability zone must match:

parameter_defaults:
 NovaComputeAvailabilityZone: central
 ControllerExtraConfig:
 nova::availability_zone::default_schedule_zone: central
 NovaCrossAZAttach: false
 CinderStorageAvailabilityZone: central
 GlanceBackendID: central

13. Configure a glance.yaml template with contents similar to the following:

parameter_defaults:
 GlanceEnabledImportMethods: web-download,copy-image
 GlanceBackend: rbd
 GlanceStoreDescription: 'central rbd glance store'
 GlanceBackendID: central
 CephClusterName: central

14. Deploy the stack for the central location:

openstack overcloud deploy \
--deployed-server \
--stack central \
--templates /usr/share/openstack-tripleo-heat-templates/ \
-r /home/stack/central/central_roles.yaml \
-n ~/network-data.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/cephadm/cephadm.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
-e /home/stack/central/overcloud-networks-deployed.yaml \
-e /home/stack/central/overcloud-vip-deployed.yaml \
-e /home/stack/central/deployed_metal.yaml \
-e /home/stack/central/deployed_ceph.yaml \
-e ~/central/glance.yaml

15. After you have deployed the overcloud for the central location, data that is needed as input for
additional stack deployments for edge sites is exported and placed in the
/home/stack/overcloud-deploy directory. Ensure that the central-export.yaml file is present:

stat /home/stack/overcloud-deploy/central/central-export.yaml

16. Export Ceph specific data:

openstack overcloud export ceph \
--stack central \
--output-file /home/stack/dcn-common/central_ceph_external.yaml

5.3. INTEGRATING EXTERNAL CEPH

You can deploy the central location of a distributed compute node (DCN) architecture and integrate a
pre-deployed Red Hat Ceph Storage solution. When you deploy Red Hat Ceph Storage without

CHAPTER 5. INSTALLING THE CENTRAL LOCATION

29

director, director does not have information about the Red Hat Ceph storage in your environment. You
cannot run the openstack overcloud export ceph command, and must create the
central_ceph_external.yaml manually.

Prerequisites

You must create network_data.yaml and vip_data.yaml files specific to your environment. You
can find sample files in /usr/share/openstack-tripleo-heat-templates/network-data-samples.

You must create an overcloud-baremetal-deploy.yaml file specific to your environment. For
more information see Provisioning bare metal nodes for the overcloud .

Hardware for a Ceph cluster at the central location and in each availability zone, or in each
geographic location where storage services are required.

The following is an example deployment of two or more stacks:

One stack at the central location called central.

One stack at an edge site called dcn0.

Additional stacks deployed similarly to dcn0, such as dcn1, dcn2, and so on.

Procedure

You can install the central location so that it is integrated with a pre-existing Red Hat Ceph Storage
solution by following the process documented in Integrating with an existing Red Hat Ceph Storage
cluster. There are no special requirements for integrating Red Hat Ceph Storage with the central site of
a DCN deployment, however you must still complete DCN specific steps before deploying the
overcloud:

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Generate an environment file ~/central/central-images-env.yaml

sudo openstack tripleo container image prepare \
-e containers.yaml \
--output-env-file ~/central/central-images-env.yaml

4. In the home directory, create directories for each stack that you plan to deploy. Use this to

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

30

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/integrating_the_overcloud_with_an_existing_red_hat_ceph_storage_cluster/assembly-integrate-with-an-existing-ceph-storage-cluster_existing-ceph

4. In the home directory, create directories for each stack that you plan to deploy. Use this to
separate templates designed for their respective sites. Move the network_data.yaml,
vip_data.yaml, and overcloud-baremetal-deploy.yaml templates for the central location to
/home/stack/central/.

mkdir /home/stack/central
mkdir /home/stack/dcn0
mkdir /home/stack/dcn1

mv network_data.yaml /home/stack/central
mv vip_data.yaml /home/stack/central
mv overcloud-baremetal-deploy.yaml /home/stack/central

5. Provision networks for the overcloud. This command takes a definition file for overcloud
networks as input. You must use the output file in your command to deploy the overcloud:

openstack overcloud network provision \
--output /home/stack/central/overcloud-networks-deployed.yaml \
/home/stack/central/network_data.yaml

6. Provision virtual IPs for the overcloud. This command takes a definition file for virtual IPs as
input. You must use the output file in your command to deploy the overcloud:

openstack overcloud network vip provision \
--stack central \
--output /home/stack/central/overcloud-vip-deployed.yaml \
/home/stack/central/vip_data.yaml

7. Provision bare metal instances. This command takes a definition file for bare metal nodes as
input. You must use the output file in your command to deploy the overcloud:

openstack overcloud node provision \
--stack central \
--network-config \
-o /home/stack/central/deployed_metal.yaml \
/home/stack/central/overcloud-baremetal-deploy.yaml

8. Configure the naming conventions for your site in the site-name.yaml environment file. The
Compute (nova) availability zone and the Block Storage (cinder) availability zone must match:

cat > /home/stack/central/site-name.yaml << EOF
parameter_defaults:
 NovaComputeAvailabilityZone: central
 ControllerExtraConfig:
 nova::availability_zone::default_schedule_zone: central
 NovaCrossAZAttach: false
 CinderStorageAvailabilityZone: central
 GlanceBackendID: central
EOF

9. Configure an external-ceph.yaml template with contents similar to the following:

parameter_defaults:
 CinderEnableIscsiBackend: false

CHAPTER 5. INSTALLING THE CENTRAL LOCATION

31

 CinderEnableRbdBackend: true
 CinderEnableNfsBackend: false
 NovaEnableRbdBackend: true
 GlanceBackend: rbd
 GlanceBackendID: central
 GlanceEnabledImportMethods: web-download,copy-image
 GlanceStoreDescription: 'central rbd glance store'
 CinderRbdPoolName: "openstack-cinder"
 NovaRbdPoolName: "openstack-nova"
 GlanceRbdPoolName: "openstack-images"
 CinderBackupRbdPoolName: "automation-backups"
 GnocchiRbdPoolName: "automation-metrics"
 CephClusterFSID: 38dd387e-837a-437c-891c-7fc69e17a3c
 CephClusterName: central
 CephExternalMonHost: 10.9.0.1,10.9.0.2,10.9.0.3
 CephClientKey: "AQAKtECeLemfiBBdQp7cjNYQRGW9y8GnhhFZg=="
 CephClientUserName: "openstack

10. Deploy the central location:

openstack overcloud deploy \
--stack central \
--templates /usr/share/openstack-tripleo-heat-templates/ \
-n /home/stack/central/network-data.yaml \
...
-e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/external-ceph.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
-e /home/stack/central/overcloud-networks-deployed.yaml \
-e /home/stack/central/overcloud-vip-deployed.yaml \
-e /home/stack/central/deployed_metal.yaml \
-e /home/stack/central/external-ceph.yaml \
-e /home/stack/central/overcloud-networks-deployed.yaml \
-e /home/stack/central/central_roles.yaml

11. After you have deployed the overcloud for the central location, data that is needed as input for
additional stack deployments for edge sites is exported and placed in the
/home/stack/overcloud-deploy directory. Ensure that this control-plane-export.yaml file is
present:

stat ~/overcloud-deploy/control-plane/control-plane-export.yaml

12. Create an environment file called central_ceph_external.yaml with details about the Red Hat
Ceph Storage deployment. This file can be passed to additional stack deployments for edge
sites.

parameter_defaults:
 CephExternalMultiConfig:
 - cluster: "central"
 fsid: "3161a3b4-e5ff-42a0-9f53-860403b29a33"
 external_cluster_mon_ips: "172.16.11.84, 172.16.11.87, 172.16.11.92"
 keys:
 - name: "client.openstack"
 caps:
 mgr: "allow *"

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

32

 mon: "profile rbd"
 osd: "profile rbd pool=vms, profile rbd pool=volumes, profile rbd pool=images"
 key: "AQD29WteAAAAABAAphgOjFD7nyjdYe8Lz0mQ5Q=="
 mode: "0600"
 dashboard_enabled: false
 ceph_conf_overrides:
 client:
 keyring: /etc/ceph/central.client.openstack.keyring

The fsid parameter is the file system ID of your Ceph Storage cluster: This value is specified
in the cluster configuration file in the [global] section:

[global]
fsid = 4b5c8c0a-ff60-454b-a1b4-9747aa737d19
...

The key parameter is the ceph client key for the openstack account:

[root@ceph ~]# ceph auth list
...
[client.openstack]
 key = AQC+vYNXgDAgAhAAc8UoYt+OTz5uhV7ItLdwUw==
 caps mgr = "allow *"
 caps mon = "profile rbd"
 caps osd = "profile rbd pool=volumes, profile rbd pool=vms, profile rbd pool=images,
profile rbd pool=backups, profile rbd pool=metrics"
...

For more information about the parameters shown in the sample
central_ceph_external.yaml file, see Creating a custom environment file .

Additional resources

Verifying external Ceph Storage cluster integration

CHAPTER 5. INSTALLING THE CENTRAL LOCATION

33

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/integrating_the_overcloud_with_an_existing_red_hat_ceph_storage_cluster/assembly-integrate-with-an-existing-ceph-storage-cluster_existing-ceph#proc-creating-a-custom-environment-file_integrate-with-existing-cs-cluster
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/integrating_the_overcloud_with_an_existing_red_hat_ceph_storage_cluster/assembly-verify-external-ceph-storage-cluster-integration_existing-ceph

CHAPTER 6. DEPLOY THE EDGE WITHOUT STORAGE
You can deploy a distributed compute node (DCN) cluster without block storage at edge sites if you
use the Object Storage service (swift) as a back end for the Image service (glance) at the central
location. If you deploy a site without block storage, you cannot update it later to have block storage.

Use the compute role when deploying the edge site without storage.

IMPORTANT

The following procedure uses lvm as the back end for the Block Storage service (cinder),
which is not supported for production. You must deploy a certified block storage solution
as a back end for the Block Storage service.

6.1. ARCHITECTURE OF A DCN EDGE SITE WITHOUT STORAGE

To deploy this architecture, use the Compute role.

Without block storage at the edge

The Object Storage (swift) service at the control plane is used as an Image (glance) service
backend.

Multi-backend image service is not available.

Images are cached locally at edge sites in Nova. For more information see Chapter 11,
Precaching glance images into nova .

The instances are stored locally on the Compute nodes.

Volume services such as Block Storage (cinder) are not available at edge sites.

IMPORTANT

If you do not deploy the central location with Red Hat Ceph storage, you will
not have the option of deploying an edge site with storage at a later time.

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

34

For more information about deploying without block storage at the edge, see Section 6.2,
“Deploying edge nodes without storage”.

6.2. DEPLOYING EDGE NODES WITHOUT STORAGE

When you deploy Compute nodes at an edge site, you use the central location as the control plane. You
can add a new DCN stack to your deployment and reuse the configuration files from the central location
to create new environment files.

Prerequisites

You must create the network_data.yaml file specific to your environment. You can find sample
files in /usr/share/openstack-tripleo-heat-templates/network-data-samples.

You must create an overcloud-baremetal-deploy.yaml file specific to your environment. For
more information see Provisioning bare metal nodes for the overcloud .

You must upload images to the central location before copying them to edge sites; a copy of
each image must exist in the Image service (glance) at the central location.

You must use the RBD storage driver for the Image, Compute, and Block Storage services.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Generate an environment file ~/dcn0/dcn0-images-env.yaml[d]:

sudo[e] openstack tripleo container image prepare \
-e containers.yaml \
--output-env-file ~/dcn0/dcn0-images-env.yaml

4. Generate a roles file for the edge location. Generate roles for the edge location using roles
appropriate for your environment:

(undercloud)$ openstack overcloud roles \
 generate Compute \
 -o /home/stack/dcn0/dcn0_roles.yaml

5. If you are using ML2/OVS for networking overlay, you must edit the Compute role include the
NeutronDhcpAgent and NeutronMetadataAgent services:

a. Create a role file for the Compute role:

openstack overcloud roles \
generate Compute \
-o /home/stack/dcn0/dcn0_roles.yaml

b. Edit the /home/stack/dcn0/dcn0_roles.yaml file to include the NeutronDhcpAgent and

CHAPTER 6. DEPLOY THE EDGE WITHOUT STORAGE

35

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

b. Edit the /home/stack/dcn0/dcn0_roles.yaml file to include the NeutronDhcpAgent and
NeutronMetadataAgent services:

...
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::NeutronBgpVpnBagpipe
+ - OS::TripleO::Services::NeutronDhcpAgent
+ - OS::TripleO::Services::NeutronMetadataAgent
 - OS::TripleO::Services::NeutronLinuxbridgeAgent
 - OS::TripleO::Services::NeutronVppAgent
 - OS::TripleO::Services::NovaAZConfig
 - OS::TripleO::Services::NovaCompute
...

For more information, see Preparing for a routed provider network .

6. Provision networks for the overcloud. This command takes a definition file for overcloud
networks as input. You must use the output file in your command to deploy the overcloud:

(undercloud)$ openstack overcloud network provision \
--output /home/stack/dcn0/overcloud-networks-deployed.yaml \
/home/stack/dcn0/network_data.yaml

IMPORTANT

If your network_data.yaml template includes additional networks which were not
included when you provisioned networks for the central location, then you must
re-run the network provisioning command on the central location:

(undercloud)$ openstack overcloud network provision \
--output /home/stack/central/overcloud-networks-deployed.yaml \
/home/stack/central/network_data.yaml

7. Provision bare metal instances. This command takes a definition file for bare metal nodes as
input. You must use the output file in your command to deploy the overcloud:

(undercloud)$ openstack overcloud node provision \
--stack dcn0 \
--network-config \
-o /home/stack/dcn0/deployed_metal.yaml \
~/overcloud-baremetal-deploy.yaml

8. Configure the naming conventions for your site in the site-name.yaml environment file.

parameter_defaults:
 NovaComputeAvailabilityZone: dcn0
 ControllerExtraConfig:
 nova::availability_zone::default_schedule_zone: dcn0
 NovaCrossAZAttach: false

9. Deploy the stack for the dcn0 edge site:

openstack overcloud deploy \

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

36

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/deploy-routed-prov-networks_rhosp-network#prepare-routed-prov-network_deploy-routed-prov-networks

--deployed-server \
--stack dcn0 \
--templates /usr/share/openstack-tripleo-heat-templates/ \
-r /home/stack/dcn0/dcn0_roles.yaml \
-n /home/stack/network_data.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
-e /home/stack/overcloud-deploy/central/central-export.yaml \
-e /home/stack/dcn0/overcloud-networks-deployed.yaml \
-e /home/stack/dcn0/overcloud-vip-deployed.yaml \
-e /home/stack/dcn0/deployed_metal.yaml

6.3. EXCLUDING SPECIFIC IMAGE TYPES AT THE EDGE

By default, Compute nodes advertise all image formats that they support. If your Compute nodes do not
use Ceph storage, you can exclude RAW images from the image format advertisement. The RAW image
format consumes more network bandwidth and local storage than QCOW2 images and is inefficient
when used at edge sites without Ceph storage. Use the NovaImageTypeExcludeList parameter to
exclude specific image formats:

IMPORTANT

Do not use this parameter at edge sites with Ceph, because Ceph requires RAW images.

NOTE

Compute nodes that do not advertise RAW images cannot host instances created from
RAW images. This can affect snapshot-redeploy and shelving.

Prerequisites

Red Hat OpenStack Platform director is installed

The central location is installed

Compute nodes are available for a DCN deployment

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc credentials file:

$ source ~/stackrc

3. Include the NovaImageTypeExcludeList parameter in one of your custom environment files:

parameter_defaults:
 NovaImageTypeExcludeList:
 - raw

4. Include the environment file that contains the NovaImageTypeExcludeList parameter in the

CHAPTER 6. DEPLOY THE EDGE WITHOUT STORAGE

37

4. Include the environment file that contains the NovaImageTypeExcludeList parameter in the
overcloud deployment command, along with any other environment files relevant to your
deployment:

openstack overcloud deploy --templates \
-n network_data.yaml \
-r roles_data.yaml \
-e <environment_files> \
-e <new_environment_file>

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

38

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE
You can leverage Red Hat OpenStack Platform director to extend distributed compute node
deployments to include distributed image management and persistent storage at the edge with the
benefits of using Red Hat OpenStack Platform and Ceph Storage.

7.1. ROLES FOR EDGE DEPLOYMENTS WITH STORAGE

The following roles are available for edge deployments with storage. Select the appropriate roles for
your environment based on your chosen configuration.

7.1.1. Storage without hyperconverged nodes

When you deploy edge with storage, and are not deploying hyperconverged nodes, use one of the
following four roles.

DistributedCompute

The DistributedCompute role is used for the first three compute nodes in storage deployments.
The DistributedCompute role includes the GlanceApiEdge service, which ensures that Image
services are consumed at the local edge site rather than at the central hub location. For any
additional nodes use the DistributedComputeScaleOut role.

DistributedComputeScaleOut

The DistributedComputeScaleOut role includes the HAproxyEdge service, which enables instances
created on the DistributedComputeScaleOut role to proxy requests for Image services to nodes that
provide that service at the edge site. After you deploy three nodes with a role of
DistributedCompute, you can use the DistributedComputeScaleOut role to scale compute
resources. There is no minimum number of hosts required to deploy with the
DistrubutedComputeScaleOut role.

CephAll

The CephAll role includes the Ceph OSD, Ceph mon, and Ceph Mgr services. You can deploy up to
three nodes using the CephAll role. For any additional storage capacity use the CephStorage role.

CephStorage

The CephStorage role includes the Ceph OSD service. If three CephAll nodes do not provide
enough storage capacity, then add as many CephStorage nodes as needed.

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

39

7.1.2. Storage with hyperconverged nodes

When you are deploying edge with storage, and you plan to have hyperconverged nodes that combine
compute and storage, use one of the following two roles.

DistributedComputeHCI

The DistributedComputeHCI role enables a hyperconverged deployment at the edge by including
Ceph Management and OSD services. You must use exactly three nodes when using the
DistributedComputeHCI role.

DistributedComputeHCIScaleOut

The DistributedComputeHCIScaleOut role includes the Ceph OSD service, which allows storage
capacity to be scaled with compute when more nodes are added to the edge. This role also includes
the HAproxyEdge service to redirect image download requests to the GlanceAPIEdge nodes at the
edge site. This role enables a hyperconverged deployment at the edge. You must use exactly three
nodes when using the DistributedComputeHCI role.

7.2. ARCHITECTURE OF A DCN EDGE SITE WITH STORAGE

To deploy DCN with storage you must also deploy Red Hat Ceph Storage at the central location. You
must use the dcn-storage.yaml and cephadm.yaml environment files. For edge sites that include non-
hyperconverged Red Hat Ceph Storage nodes, use the DistributedCompute,
DistributedComputeScaleOut, CephAll, and CephStorage roles.

With block storage at the edge

Red Hat Ceph Block Devices (RBD) is used as an Image (glance) service backend.

Multi-backend Image service (glance) is available so that images may be copied between
the central and DCN sites.

The Block Storage (cinder) service is available at all sites and is accessed by using the Red
Hat Ceph Block Devices (RBD) driver.

The Block Storage (cinder) service runs on the Compute nodes, and Red Hat Ceph Storage
runs separately on dedicated storage nodes.

Nova ephemeral storage is backed by Ceph (RBD).

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

40

For more information, see Section 5.2, “Deploying the central site with storage” .

7.3. ARCHITECTURE OF A DCN EDGE SITE WITH HYPERCONVERGED
STORAGE

To deploy this configuration you must also deploy Red Hat Ceph Storage at the central location. You
need to configure the dcn-storage.yaml and cephadm.yaml environment files. Use the
DistributedComputeHCI, and DistributedComputeHCIScaleOut roles. You can also use the
DistributedComputeScaleOut role to add Compute nodes that do not participate in providing Red Hat
Ceph Storage services.

With hyperconverged storage at the edge

Red Hat Ceph Block Devices (RBD) is used as an Image (glance) service backend.

Multi-backend Image service (glance) is available so that images may be copied between
the central and DCN sites.

The Block Storage (cinder) service is available at all sites and is accessed by using the Red
Hat Ceph Block Devices (RBD) driver.

Both the Block Storage service and Red Hat Ceph Storage run on the Compute nodes.
For more information, see Section 7.4, “Deploying edge sites with hyperconverged storage” .

When you deploy Red Hat OpenStack Platform in a distributed compute architecture, you have the
option of deploying multiple storage topologies, with a unique configuration at each site. You must
deploy the central location with Red Hat Ceph storage to deploy any of the edge sites with storage.

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

41

7.4. DEPLOYING EDGE SITES WITH HYPERCONVERGED STORAGE

After you deploy the central site, build out the edge sites and ensure that each edge location connects
primarily to its own storage back end, as well as to the storage back end at the central location. A spine
and leaf networking configuration should be included with this configuration, with the addition of the
storage and storage_mgmt networks that ceph needs. For more information, see Spine Leaf
Networking. You must have connectivity between the storage network at the central location and the
storage network at each edge site so that you can move Image service (glance) images between sites.

Ensure that the central location can communicate with the mons and OSDs at each of the edge sites.
However, you should terminate the storage management network at site location boundaries because
the storage management network is used for OSD rebalancing.

Prerequisites

You must create the network_data.yaml file specific to your environment. You can find sample
files in /usr/share/openstack-tripleo-heat-templates/network-data-samples.

You must create an overcloud-baremetal-deploy.yaml file specific to your environment. For
more information see Provisioning bare metal nodes for the overcloud .

You have hardware for three Image Service (glance) servers at a central location and in each
availability zone, or in each geographic location where storage services are required. At edge
locations, the Image service is deployed to the DistributedComputeHCI nodes.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Generate an environment file ~/dcn0/dcn0-images-env.yaml:

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

42

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

sudo openstack tripleo container image prepare \
-e containers.yaml \
--output-env-file /home/stack/dcn0/dcn0-images-env.yaml

4. Generate the appropriate roles for the dcn0 edge location:

openstack overcloud roles generate DistributedComputeHCI
DistributedComputeHCIScaleOut \
-o ~/dcn0/dcn0_roles.yaml

5. Provision networks for the overcloud. This command takes a definition file for overcloud
networks as input. You must use the output file in your command to deploy the overcloud:

(undercloud)$ openstack overcloud network provision \
--output /home/stack/dcn0/overcloud-networks-deployed.yaml \
/home/stack/network_data.yaml

IMPORTANT

If your network_data.yaml template includes additional networks which were not
included when you provisioned networks for the central location, then you must
re-run the network provisioning command on the central location:

(undercloud)$ openstack overcloud network provision \
--output /home/stack/central/overcloud-networks-deployed.yaml \
/home/stack/central/network_data.yaml

6. Provision bare metal instances. This command takes a definition file for bare metal nodes as
input. You must use the output file in your command to deploy the overcloud:

(undercloud)$ openstack overcloud node provision \
--stack dcn0 \
--network-config \
-o /home/stack/dcn0/deployed_metal.yaml \
/home/stack/overcloud-baremetal-deploy.yaml

7. If you are deploying the edge site with hyperconverged storage, you must create an initial-
ceph.conf configuration file with the following parameters. For more information, see
Configuring the Red Hat Ceph Storage cluster for HCI :

[osd]
osd_memory_target_autotune = true
osd_numa_auto_affinity = true
[mgr]
mgr/cephadm/autotune_memory_target_ratio = 0.2

8. Use the deployed_metal.yaml file as input to the openstack overcloud ceph deploy
command. The openstack overcloud ceph deploy command outputs a yaml file that
describes the deployed Ceph cluster:

openstack overcloud ceph deploy \
/home/stack/dcn0/deployed_metal.yaml \

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

43

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_a_hyperconverged_infrastructure/assembly_deployed_hci_ceph_storage_cluster_hci#con_ceph_deployment_prereqs_assembly_deployed_hci_ceph_storage_cluster

1

--stack dcn0 \
--config ~/dcn0/initial-ceph.conf \ 1
--output ~/dcn0/deployed_ceph.yaml \
--container-image-prepare ~/containers.yaml \
--network-data ~/network-data.yaml \
--cluster dcn0 \
--roles-data dcn_roles.yaml

Include initial-ceph.conf only when deploying hyperconverged infrastructure.

9. Configure the naming conventions for your site in the site-name.yaml environment file. The
Nova availability zone and the Cinder storage availability zone must match:

parameter_defaults:
 NovaComputeAvailabilityZone: dcn0
 ControllerExtraConfig:
 nova::availability_zone::default_schedule_zone: dcn0
 NovaCrossAZAttach: false
 CinderStorageAvailabilityZone: dcn0
 CinderVolumeCluster: dcn0
 GlanceBackendID: dcn0

10. Configure a glance.yaml template with contents similar to the following:

parameter_defaults:
 GlanceEnabledImportMethods: web-download,copy-image
 GlanceBackend: rbd
 GlanceStoreDescription: 'dcn0 rbd glance store'
 GlanceBackendID: dcn0
 GlanceMultistoreConfig:
 central:
 GlanceBackend: rbd
 GlanceStoreDescription: 'central rbd glance store'
 CephClusterName: central

11. Deploy the stack for the dcn0 location:[d]

openstack overcloud deploy \
--deployed-server \
--stack dcn0 \
--templates /usr/share/openstack-tripleo-heat-templates/ \
-r ~/dcn0/dcn0_roles.yaml \
-n ~/dcn0/network-data.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/dcn-storage.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/cephadm/cephadm-rbd-
only.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
-e /home/stack/overcloud-deploy/central/central-export.yaml \
-e /home/stack/dcn0/deployed_ceph.yaml \
-e /home/stack/dcn-common/central_ceph_external.yaml \
-e /home/stack/dcn0/overcloud-vip-deployed.yaml \

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

44

-e /home/stack/dcn0/deployed_metal.yaml \
-e /home/stack/dcn0/overcloud-networks-deployed.yaml \
-e ~/control-plane/glance.yaml

7.5. USING A PRE-INSTALLED RED HAT CEPH STORAGE CLUSTER AT
THE EDGE

You can configure Red Hat OpenStack Platform to use a pre-existing Ceph cluster. This is called an
external Ceph deployment.

Prerequisites

You must have a preinstalled Ceph cluster that is local to your DCN site so that latency
requirements are not exceeded.

Procedure

1. Create the following pools in your Ceph cluster. If you are deploying at the central location,
include the backups and metrics pools:

[root@ceph ~]# ceph osd pool create volumes <_PGnum_>
[root@ceph ~]# ceph osd pool create images <_PGnum_>
[root@ceph ~]# ceph osd pool create vms <_PGnum_>
[root@ceph ~]# ceph osd pool create backups <_PGnum_>
[root@ceph ~]# ceph osd pool create metrics <_PGnum_>

Replace <_PGnum_> with the number of placement groups. You can use the Ceph Placement
Groups (PGs) per Pool Calculator to determine a suitable value.

2. Create the OpenStack client user in Ceph to provide the Red Hat OpenStack Platform
environment access to the appropriate pools:

ceph auth add client.openstack mon 'allow r' osd 'allow class-read object_prefix rbd_children,
allow rwx pool=volumes, allow rwx pool=vms, allow rwx pool=images'

Save the provided Ceph client key that is returned. Use this key as the value for the
CephClientKey parameter when you configure the undercloud.

NOTE

If you run this command at the central location and plan to use Cinder backup or
telemetry services, add allow rwx pool=backups, allow pool=metrics to the
command.

3. Save the file system ID of your Ceph Storage cluster. The value of the fsid parameter in the
[global] section of your Ceph configuration file is the file system ID:

[global]
fsid = 4b5c8c0a-ff60-454b-a1b4-9747aa737d19
...

Use this value as the value for the CephClusterFSID parameter when you configure the
undercloud.

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

45

https://access.redhat.com/labs/cephpgc/

4. On the undercloud, create an environment file to configure your nodes to connect to the
unmanaged Ceph cluster. Use a recognizable naming convention, such as ceph-external-
<SITE>.yaml where SITE is the location for your deployment, such as ceph-external-
central.yaml, ceph-external-dcn1.yaml, and so on.

 parameter_defaults:
 # The cluster FSID
 CephClusterFSID: '4b5c8c0a-ff60-454b-a1b4-9747aa737d19'
 # The CephX user auth key
 CephClientKey: 'AQDLOh1VgEp6FRAAFzT7Zw+Y9V6JJExQAsRnRQ=='
 # The list of IPs or hostnames of the Ceph monitors
 CephExternalMonHost: '172.16.1.7, 172.16.1.8, 172.16.1.9'
 # The desired name of the generated key and conf files
 CephClusterName: dcn1

a. Use the previously saved values for the CephClusterFSID and CephClientKey parameters.

b. Use a comma delimited list of ip addresses from the Ceph monitors as the value for the
CephExternalMonHost parameter.

c. You must select a unique value for the CephClusterName parameter amongst edge sites.
Reusing a name will result in the configuration file being overwritten.

5. If you deployed Red Hat Ceph storage using Red Hat OpenStack Platform director at the
central location, then you can export the ceph configuration to an environment file
central_ceph_external.yaml. This environment file connects DCN sites to the central hub
Ceph cluster, so the information is specific to the Ceph cluster deployed in the previous steps:

sudo -E openstack overcloud export ceph \
--stack central \
--output-file /home/stack/dcn-common/central_ceph_external.yaml

If the central location has Red Hat Ceph Storage deployed externally, then you cannot use the
openstack overcloud export ceph command to generate the central_ceph_external.yaml
file. You must create the central_ceph_external.yaml file manually instead:

parameter_defaults:
 CephExternalMultiConfig:
 - cluster: "central"
 fsid: "3161a3b4-e5ff-42a0-9f53-860403b29a33"
 external_cluster_mon_ips: "172.16.11.84, 172.16.11.87, 172.16.11.92"
 keys:
 - name: "client.openstack"
 caps:
 mgr: "allow *"
 mon: "profile rbd"
 osd: "profile rbd pool=vms, profile rbd pool=volumes, profile rbd pool=images"
 key: "AQD29WteAAAAABAAphgOjFD7nyjdYe8Lz0mQ5Q=="
 mode: "0600"
 dashboard_enabled: false
 ceph_conf_overrides:
 client:
 keyring: /etc/ceph/central.client.openstack.keyring

6. Create an environment file with similar details about each site with an unmanaged Red Hat

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

46

Ceph Storage cluster for the central location. The openstack overcloud export ceph
command does not work for sites with unmanaged Red Hat Ceph Storage clusters. When you
update the central location, this file will allow the central location the storage clusters at your
edge sites as secondary locations

parameter_defaults:
 CephExternalMultiConfig:
cluster: dcn1
…
cluster: dcn2
…

7. Use the external-ceph.yaml, ceph-external-<SITE>.yaml, and the central_ceph_external.yaml
environment files when deploying the overcloud:

openstack overcloud deploy \
 --stack dcn1 \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -r ~/dcn1/roles_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/external-ceph.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/dcn-storage.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
 -e /home/stack/dnc1/ceph-external-dcn1.yaml \

 -e /home/stack/overcloud-deploy/central/central-export.yaml \
 -e /home/stack/dcn-common/central_ceph_external.yaml \
 -e /home/stack/dcn1/dcn_ceph_keys.yaml \
 -e /home/stack/dcn1/role-counts.yaml \
 -e /home/stack/dcn1/ceph.yaml \
 -e /home/stack/dcn1/site-name.yaml \
 -e /home/stack/dcn1/tuning.yaml \
 -e /home/stack/dcn1/glance.yaml

8. Redeploy the central location after all edge locations have been deployed.

7.6. UPDATING THE CENTRAL LOCATION

After you configure and deploy all of the edge sites using the sample procedure, update the
configuration at the central location so that the central Image service can push images to the edge
sites.

WARNING

This procedure restarts the Image service (glance) and interrupts any long running
Image service process. For example, if an image is being copied from the central
Image service server to a DCN Image service server, that image copy is interrupted
and you must restart it. For more information, see Clearing residual data after
interrupted Image service processes.

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

47

Procedure

1. Create a ~/central/glance_update.yaml file similar to the following. This example includes a
configuration for two edge sites, dcn0 and dcn1:

 parameter_defaults:
 GlanceEnabledImportMethods: web-download,copy-image
 GlanceBackend: rbd
 GlanceStoreDescription: 'central rbd glance store'
 CephClusterName: central
 GlanceBackendID: central
 GlanceMultistoreConfig:
 dcn0:
 GlanceBackend: rbd
 GlanceStoreDescription: 'dcn0 rbd glance store'
 CephClientUserName: 'openstack'
 CephClusterName: dcn0
 GlanceBackendID: dcn0
 dcn1:
 GlanceBackend: rbd
 GlanceStoreDescription: 'dcn1 rbd glance store'
 CephClientUserName: 'openstack'
 CephClusterName: dcn1
 GlanceBackendID: dcn1

2. Create the dcn_ceph.yaml file. In the following example, this file configures the glance service
at the central site as a client of the Ceph clusters of the edge sites, dcn0 and dcn1.

openstack overcloud export ceph \
--stack dcn0,dcn1 \
--output-file ~/central/dcn_ceph.yaml

3. Redeploy the central site using the original templates and include the newly created
dcn_ceph.yaml and glance_update.yaml files.

NOTE

Include deployed_metal.yaml from other edge sites in your overcloud deploy
command, if their leaf networks were not initially provided while creating the
central stack.

openstack overcloud deploy \
--deployed-server \
--stack central \
--templates /usr/share/openstack-tripleo-heat-templates/ \
-r ~/central/central_roles.yaml \
-n ~/network-data.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/dcn-storage.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/cephadm/cephadm.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
-e /home/stack/central/overcloud-networks-deployed.yaml \
-e /home/stack/central/overcloud-vip-deployed.yaml \
-e /home/stack/central/deployed_metal.yaml \

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

48

-e /home/stack/central/deployed_ceph.yaml \
-e /home/stack/central/dcn_ceph.yaml \
-e /home/stack/central/glance_update.yaml

4. On a controller at the central location, restart the cinder-volume service. If you deployed the
central location with the cinder-backup service, then restart the cinder-backup service too:

ssh tripleo-admin@controller-0 sudo pcs resource restart openstack-cinder-volume
ssh tripleo-admin@controller-0 sudo pcs resource restart openstack-cinder-backup

7.6.1. Clearing residual data after interrupted Image service processes

When you restart the central location, any long-running Image service (glance) processes are
interrupted. Before you can restart these processes, you must first clean up residual data on the
Controller node that you rebooted, and in the Ceph and Image service databases.

Procedure

1. Check and clear residual data in the Controller node that was rebooted. Compare the files in the
glance-api.conf file for staging store with the corresponding images in the Image service
database, for example <image_ID>.raw.

If these corresponding images show importing status, you must recreate the image.

If the images show active status, you must delete the data from staging and restart the
copy import.

2. Check and clear residual data in Ceph stores. The images that you cleaned from the staging
area must have matching records in their stores property in the Ceph stores that contain the
image. The image name in Ceph is the image id in the Image service database.

3. Clear the Image service database. Clear any images that are in importing status from the import
jobs there were interrupted:

$ glance image-delete <image_id>

7.7. DEPLOYING RED HAT CEPH STORAGE DASHBOARD ON DCN

Procedure

To deploy the Red Hat Ceph Storage Dashboard to the central location, see Adding the Red Hat Ceph
Storage Dashboard to an overcloud deployment. These steps should be completed prior to deploying
the central location.

To deploy Red Hat Ceph Storage Dashboard to edge locations, complete the same steps that you
completed for central, however you must complete the following following:

You must deploy your own solution for load balancing in order to create a high availability virtual
IP. Edge sites do not deploy haproxy, nor pacemaker. When you deploy Red Hat Ceph Storage
Dashboard to edge locations, the deployment is exposed on the storage network. The
dashboard is installed on each of the three DistributedComputeHCI nodes with distinct IP
addresses without a load balancing solution.

You can create an additional network to host virtual IP where the Ceph dashboard can be exposed. You

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

49

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_red_hat_ceph_storage_and_red_hat_openstack_platform_together_with_director/assembly_adding-rhcs-dashboard-to-overcloud_deployingcontainerizedrhcs

You can create an additional network to host virtual IP where the Ceph dashboard can be exposed. You
must not be reusing network resources for multiple stacks. For more information on reusing network
resources, see Reusing network resources in multiple stacks .

To create this additional network resource, use the provided network_data_dashboard.yaml heat
template. The name of the created network is StorageDashboard.

Procedure

1. Log in to Red Hat OpenStack Platform Director as stack.

2. Generate the DistributedComputeHCIDashboard role and any other roles appropriate for your
environment:

openstack overcloud roles generate DistributedComputeHCIDashboard -o ~/dnc0/roles.yaml

3. Include the roles.yaml and the network_data_dashboard.yaml in the overcloud deploy
command:

$ openstack overcloud deploy --templates \
-r ~/<dcn>/<dcn_site_roles>.yaml \
-n /usr/share/openstack-tripleo-heat-templates/network_data_dashboard.yaml \
-e <overcloud_environment_files> \
...
-e /usr/share/openstack-tripleo-heat-templates/environments/cephadm/cephadm-rbd-
only.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/cephadm/ceph-dashboard.yaml
\

NOTE

The deployment provides the three ip addresses where the dashboard is enabled on the
storage network.

Verification

To confirm the dashboard is operational at the central location and that the data it displays from the
Ceph cluster is correct, see Accessing Ceph Dashboard .

You can confirm that the dashboard is operating at an edge location through similar steps, however,
there are exceptions as there is no load balancer at edge locations.

1. Retrieve dashboard admin login credentials specific to the selected stack:

grep grafana_admin /home/stack/config-download/<stack>/cephadm/cephadm-extra-vars-
heat.yml

2. Within the inventory specific to the selected stack, /home/stack/config-
download/<stack>/cephadm/inventory.yml, locate the DistributedComputeHCI role hosts list
and save all three of the storage_ip values. In the example below the first two dashboard IPs
are 172.16.11.84 and 172.16.11.87:

DistributedComputeHCI:
 hosts:

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

50

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_a_distributed_compute_node_dcn_architecture/preparing_overcloud_templates_for_dcn_deployment#proc_reusing-network-resources-in-multiple-stacks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_red_hat_ceph_storage_and_red_hat_openstack_platform_together_with_director/assembly_adding-rhcs-dashboard-to-overcloud_deployingcontainerizedrhcs#proc_accessing-ceph-dashboard_assembly_adding-rhcs-dashboard-to-overcloud

 dcn1-distributed-compute-hci-0:
 ansible_host: 192.168.24.16
...
storage_hostname: dcn1-distributed-compute-hci-0.storage.localdomain
storage_ip: 172.16.11.84
...
 dcn1-distributed-compute-hci-1:
ansible_host: 192.168.24.22
...
storage_hostname: dcn1-distributed-compute-hci-1.storage.localdomain
storage_ip: 172.16.11.87

3. You can check that the Ceph Dashboard is active at one of these IP addresses if they are
accessible to you. These IP addresses are on the storage network and are not routed. If these IP
addresses are not available, you must configure a load balancer for the three IP addresses that
you get from the inventory to obtain a virtual IP address for verification.

CHAPTER 7. DEPLOYING STORAGE AT THE EDGE

51

CHAPTER 8. LOAD BALANCING NETWORK TRAFFIC AT THE
EDGE

You can create load balancers at your edge sites to increase traffic throughput and reduce latency by
using the Red Hat OpenStack Platform (RHOSP) Load-balancing service (octavia).

The topics included in this section are:

Creating network resources for Load-balancing service availability zones

Creating Load-balancing service availability zones

Creating load balancers in availability zones

8.1. CREATING NETWORK RESOURCES FOR LOAD-BALANCING
SERVICE AVAILABILITY ZONES

Before you can create Red Hat OpenStack Platform (RHOSP) Load-balancing service (octavia)
availability zones (AZs), you must be a RHOSP administrator and run the Ansible playbook, octavia-dcn-
deployment.yaml.

By running octavia-dcn-deployment.yaml you create networking resources like networks, subnets, and
routers, that are required for the Load-balancing service AZs. You supply the playbook with a
configuration input file, octavia-dcn-parameters.yaml, in which you have specified the AZ names and
the management networks that each AZ uses.

After you have run the playbook and created the necessary networking resources, you must create the
actual RHOSP Load-balancing service AZs, before project (tenant) users can create load balancers in
the AZs that are appropriate for their distributed compute node (DCN) locales.

This procedure demonstrates creating the required network resources for 3 Load-balancing service AZs
named: az-central, az-dcn1, and az-dcn2. These Load-balancing service AZ names match the names of
the Compute service AZs, and are also the names of the 3 DCNs that are used in this deployment.

Prerequisites

You must have one Compute service (nova) AZ for every Load-balancing service AZ that you
want to create.

You must also have one Networking service (neutron) AZ for every Load-balancing service AZ
that you want to create. These Networking service AZs must match the names of the Compute
service AZs.

Your Load-balancing service provider driver must be amphora. The OVN provider driver does
not support AZs.

You must be a RHOSP user with the admin role.

Procedure

1. Source your credentials file.

Example

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

52

$ source ~/centralrc

2. Create a file, octavia-dcn-parameters.yaml, and using the syntax shown below, add the Load-
balancing service AZs and their management networks for which you want the Ansible playbook
to create the required networking resources.
The value, octavia_controller_AZ_name, is the name of the AZ in which all of the Load-
balancer services run:

octavia_controller_availability_zone: <octavia_controller_AZ_name>
octavia_availability_zones:
 <octavia_controller_AZ_name>: # no cidr needed, it uses the already existing subnet
 <octavia_AZ_n>:
 lb_mgmt_subnet_cidr: <CIDR_address_n>
 <octavia_AZ_n2>:
 lb_mgmt_subnet_cidr: <CIDR_address_n2>

IMPORTANT

The names of the Load-balancing service AZs that you specify must match the
names of the pre-existing Compute service AZs. You can obtain the names of
the Compute service AZs by running openstack availability zone list --
compute.

The Ansible playbook creates a network, subnet, and router for each AZ, and names them using
the AZ names that you specify in octavia-dcn-parameters.yaml following this convention: lb-
mgmt-<AZ_name>-net, lb-mgmt-<AZ_name>-subnet, and lb-mgmt-<AZ_name>-router,
respectively. The exception is for the network resources for octavia_controller_AZ_name: the
playbook uses the existing load-balancing management network and subnet, lb-mgmt-net and
lb-mgmt-subnet, respectively, and creates an associated router that it names, lb-mgmt-router.

In this example, 3 AZs are specified: az-central, az-dcn1, and az-dcn2. The az-central AZ uses
the existing load-balancing management network, lb-mgmt-net. The other two AZs use
172.47.0.0/16 and 172.48.0.0/16, respectively:

Example

octavia_controller_availability_zone: az-central
octavia_availability_zones:
 az-central: # no cidr needed; it uses the existing subnet
 az-dcn1:
 lb_mgmt_subnet_cidr: 172.47.0.0/16
 az-dcn2:
 lb_mgmt_subnet_cidr: 172.48.0.0/16

3. Run the Ansible playbook, octavia-dcn-deployment.yaml, and include the AZ definitions that
you created in octavia-dcn-parameters.yaml:

Example

$ ansible-playbook -i overcloud-deploy/central/config-download/\
central/tripleo-ansible-inventory.yaml \
/usr/share/ansible/tripleo-playbooks/octavia-dcn-deployment.yaml \
-e @octavia-dcn-parameters.yaml -e stack=central -v

Verification

CHAPTER 8. LOAD BALANCING NETWORK TRAFFIC AT THE EDGE

53

Verification

1. Confirm that the required lb-mgmt-* subnets are present.

$ openstack subnet list -c Name -c Subnet

Sample output

+-------------------------+------------------+
| Name | Subnet |
+-------------------------+------------------+
lb-mgmt-az-dcn2-subnet	172.48.0.0/16
segment5	10.0.20.0/24
segment3	10.101.30.0/24
segment2	10.101.20.0/24
lb-mgmt-az-dcn1-subnet	172.47.0.0/16
heat_tempestconf_subnet	192.168.199.0/24
segment4	10.0.10.0/24
lb-mgmt-subnet	172.24.0.0/16
segment1	10.101.10.0/24
lb-mgmt-backbone-subnet	172.49.0.0/16
segment6	10.0.30.0/24
+-------------------------+------------------+

2. Confirm that the required virtual routers are present.

$ openstack router list -c Name -c Status

Sample output

+------------------------+--------+
| Name | Status |
+------------------------+--------+
lb-mgmt-az-dcn2-router	ACTIVE
lb-mgmt-az-dcn1-router	ACTIVE
lb-mgmt-router	ACTIVE
+------------------------+--------+

Next steps

Creating availability zones for the Load-balancing service

8.2. CREATING AVAILABILITY ZONES FOR THE LOAD-BALANCING
SERVICE

With the Red Hat OpenStack Platform (RHOSP) Load-balancing service (octavia), RHOSP
administrators can create availability zones (AZs) that enable project users to create load balancers in a
distributed compute node (DCN) environment to increase traffic throughput and reduce latency.

There are two steps required to create a Load-balancing service AZ: RHOSP administrators must first
create an AZ profile, and then use the profile to create a Load-balancing service AZ that is visible to
users.

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

54

An AZ profile must have the following:

The name of the Compute service (nova) AZ.

The management network to use.
There are multiple management networks, one unique network for each AZ. The central AZ uses
the existing load-balancing management network, lb-mgmt-net, and the additional AZs use
their respective network, lb-mgmt-<AZ_name>-net, for example, lb-mgmt-az-dcn1-net, lb-
mgmt-az-dcn2-net, and so on.

Prerequisites

You must have a DCN environment in which the required networking resources have been
created by running the octavia-dcn-deployment.yaml Ansible playbook.
For more information, see Creating network resources for Load-balancing service availability
zones.

Your Load-balancing service provider driver must be amphora. The OVN provider driver does
not support AZs.

You must be a RHOSP user with the admin role.

Procedure

1. Source your credentials file.

Example

$ source ~/centralrc

2. Gather the names of the Compute service AZs that you will use to name your Load-balancing
service AZs.

IMPORTANT

The names of the Load-balancing service AZ that you create must match the
names of your Compute service AZs.

$ openstack availability zone list --compute

Sample output

+------------+-------------+
| Zone Name | Zone Status |
+------------+-------------+
az-central	available
az-dcn1	available
az-dcn2	available
internal	available
+------------+-------------+

3. Gather the IDs for the management networks that you will use to create your Load-balancing
service AZs:

CHAPTER 8. LOAD BALANCING NETWORK TRAFFIC AT THE EDGE

55

$ openstack network list -c Name -c ID

Sample output

+--------------------------------------+--------------------------+
| ID | Name |
+--------------------------------------+--------------------------+
10458d6b-e7c9-436f-92d9-711677c9d9fd	lb-mgmt-az-dcn2-net
662a94f5-51eb-4a4c-86c4-52dcbf471ef9	lb-mgmt-net
6b97ef58-2a25-4ea5-931f-b7c07cd09474	lb-mgmt-backbone-net
99f4215b-fad8-432d-8444-1f894154dc30	heat_tempestconf_network
a2884aaf-846c-4936-9982-3083f6a71d9b	lb-mgmt-az-dcn1-net
d7f7de6c-0e84-49e2-9042-697fa85d2532	public
e887a9f9-15f7-4854-a797-033cedbfe5f3	public2
+--------------------------------------+--------------------------+

4. Create an AZ profile. Repeat this step to create an AZ profile for each Load-balancing service
AZ that you want to create:

$ openstack loadbalancer availabilityzoneprofile create \
--name <AZ_profile_name> --provider amphora --availability-zone-data '{"compute_zone": "
<compute_AZ_name>","management_network": "<lb_mgmt_AZ_net_UUID>"}'

Example - create profile for az-central

In this example, an AZ profile (az_profile_central) is created that uses the management
network (lb-mgmt-net) on a Compute node that runs in the Compute AZ (az-central):

$ openstack loadbalancer availabilityzoneprofile create \
--name az_profile_central --provider amphora --availability-zone-data \
'{"compute_zone": "az-central","management_network": \
"662a94f5-51eb-4a4c-86c4-52dcbf471ef9"}'

5. Repeat step 4 to create an AZ profile for each Load-balancing service AZ that you want to
create.

Example - create profile for az-dcn1

In this example, an AZ profile (az-profile-dcn1) is created that uses the management network
(lb-mgmt-az-dcn1-net) on a Compute node that runs in the Compute AZ (az-dcn1):

$ openstack loadbalancer availabilityzoneprofile create \
--name az-profile-dcn1 --provider amphora --availability-zone-data \
'{"compute-zone": "az-dcn1","management-network": \
"a2884aaf-846c-4936-9982-3083f6a71d9b"}'

Example - create profile for az-dcn2

In this example, an AZ profile (az-profile-dcn2) is created that uses the management network
(lb-mgmt-az-dcn2-net) on a Compute node that runs in the Compute AZ (az-dcn2):

$ openstack loadbalancer availabilityzoneprofile create \
--name az-profile-dcn2 --provider amphora --availability-zone-data \
'{"compute-zone": "az-dcn2","management-network": \

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

56

"10458d6b-e7c9-436f-92d9-711677c9d9fd"}'

6. Using the AZ profile, create a Load-balancing service AZ. Repeat this step for any additional
AZs, using the appropriate profile for each AZ.

Example - create AZ: az-central

In this example, a Load-balancing service AZ (az-central) is created by using the AZ profile (az-
profile-central):

$ openstack loadbalancer availabilityzone create --name az-central \
--availabilityzoneprofile az-profile-central \
--description "AZ for Headquarters" --enable

Example - create AZ: az-dcn1

In this example, a Load-balancing service AZ (az-dcn1) is created by using the AZ profile (az-
profile-az-dcn1):

$ openstack loadbalancer availabilityzone create --name az-dcn1 \
--availabilityzoneprofile az-profile-az-dcn1 \
--description "AZ for South Region" --enable

Example - create AZ: az-dcn2

In this example, a Load-balancing service AZ (az-dcn2) is created by using the AZ profile (az-
profile-az-dcn2):

$ openstack loadbalancer availabilityzone create --name az-dcn2 \
--availabilityzoneprofile az-profile-az-dcn2 \
--description "AZ for North Region" --enable

Verification

Confirm that the AZ (az-central) was created. Repeat this step for any additional AZs, using the
appropriate name for each AZ.

Example - verify az-central

$ openstack loadbalancer availabilityzone show az-central

Sample output

+------------------------------+--------------------------------------+
| Field | Value |
+------------------------------+--------------------------------------+
name	az-central
availability_zone_profile_id	5ed25d22-52a5-48ad-85ec-255910791623
enabled	True
description	AZ for Headquarters
+------------------------------+--------------------------------------+

Example - verify az-dcn1

CHAPTER 8. LOAD BALANCING NETWORK TRAFFIC AT THE EDGE

57

$ openstack loadbalancer availabilityzone show az-dcn1

Sample output

+------------------------------+--------------------------------------+
| Field | Value |
+------------------------------+--------------------------------------+
name	az-dcn1
availability_zone_profile_id	e0995a82-8e67-4cea-b32c-256cd61f9cf3
enabled	True
description	AZ for South Region
+------------------------------+--------------------------------------+

Example - verify az-dcn2

$ openstack loadbalancer availabilityzone show az-dcn2

Sample output

+------------------------------+--------------------------------------+
| Field | Value |
+------------------------------+--------------------------------------+
name	az-dcn2
availability_zone_profile_id	306a4725-7dac-4046-8f16-f2e668ee5a8d
enabled	True
description	AZ for North Region
+------------------------------+--------------------------------------+

Next steps

Creating load balancers in availability zones

Additional resources

loadbalancer availabilityzoneprofile create in the Command line interface reference

loadbalancer availabilityzone create in the Command line interface reference

8.3. CREATING LOAD BALANCERS IN AVAILABILITY ZONES

With the Red Hat OpenStack Platform (RHOSP) Load-balancing service (octavia), you can create load
balancers in availability zones (AZs) in a distributed compute node (DCN) environment to increase
traffic throughput and reduce latency.

Prerequisites

You must have a Load-balancing service AZ provided by your RHOSP administrator.

The virtual IP (VIP) network associated with the load balancer must be available in the AZ in
which your load balancer is a member.

Procedure

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

58

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/loadbalancer#loadbalancer_availabilityzoneprofile_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/loadbalancer#loadbalancer_availabilityzone_create

1. Source your credentials file.

Example

$ source ~/centralrc

2. To create a load balancer for a DCN environment, use the loadbalancer create command with
the --availability-zone option and specify the appropriate AZ.

Example

For example, to create a non-terminated HTTPS load balancer (lb1) on a public subnet
(public_subnet) on availability zone (az-central), you would enter the following command:

$ openstack loadbalancer create --name lb1 --vip-subnet-id \
public_subnet --availability-zone az-central

3. Continue to create your load balancer by adding a listener, pool, health monitor, and load
balancer members.
For more information, see the Configuring load balancing as a service guide.

Verification

Confirm that the load balancer (lb1) is a member of the availability zone (az-central).

Example

$ openstack loadbalancer show lb1

Sample output

+---------------------+--------------------------------------+
| Field | Value |
+---------------------+--------------------------------------+
admin_state_up	True
availability_zone	az-central
created_at	2023-07-12T16:35:05
description	
flavor_id	None
id	85c7e567-a0a7-4fcb-af89-a0bbc9abe3aa
listeners	
name	lb1
operating_status	ONLINE
pools	
project_id	d303d3bda9b34d73926dc46f4d0cb4bc
provider	amphora
provisioning_status	ACTIVE
updated_at	2023-07-12T16:36:45
vip_address	10.101.10.229
vip_network_id	d7f7de6c-0e84-49e2-9042-697fa85d2532
vip_port_id	7f916764-d171-4317-9c86-a1750a54b16e
vip_qos_policy_id	None

CHAPTER 8. LOAD BALANCING NETWORK TRAFFIC AT THE EDGE

59

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_load_balancing_as_a_service/index

| vip_subnet_id | a421cbcf-c5db-4323-b7ab-1df20ee6acab |
| tags | |
+---------------------+--------------------------------------+

Additional resources

Creating availability zones for the Load-balancing service

loadbalancer in the Command line interface reference

Configuring load balancing as a service guide

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

60

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/loadbalancer
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_load_balancing_as_a_service/index

CHAPTER 9. REPLACING DISTRIBUTEDCOMPUTEHCI NODES
During hardware maintenance you may need to scale down, scale up, or replace a
DistributedComputeHCI node at an edge site. To replace a DistributedComputeHCI node, remove
services from the node you are replacing, scale the number of nodes down, and then follow the
procedures for scaling those nodes back up.

9.1. REMOVING RED HAT CEPH STORAGE SERVICES

Before removing an HCI (hyperconverged) node from a cluster, you must remove Red Hat Ceph
Storage services. To remove the Red Hat Ceph services, you must disable and remove ceph-osd
service from the cluster services on the node you are removing, then stop and disable the mon, mgr,
and osd services.

Procedure

1. On the undercloud, use SSH to connect to the DistributedComputeHCI node that you want to
remove:

$ ssh tripleo-admin@<dcn-computehci-node>

2. Start a cephadm shell. Use the configuration file and keyring file for the site that the host being
removed is in:

$ sudo cephadm shell --config /etc/ceph/dcn2.conf \
--keyring /etc/ceph/dcn2.client.admin.keyring

3. Record the OSDs (object storage devices) associated with the DistributedComputeHCI node
you are removing for use reference in a later step:

[ceph: root@dcn2-computehci2-1 ~]# ceph osd tree -c /etc/ceph/dcn2.conf
…
-3 0.24399 host dcn2-computehci2-1
 1 hdd 0.04880 osd.1 up 1.00000 1.00000
 7 hdd 0.04880 osd.7 up 1.00000 1.00000
11 hdd 0.04880 osd.11 up 1.00000 1.00000
15 hdd 0.04880 osd.15 up 1.00000 1.00000
18 hdd 0.04880 osd.18 up 1.00000 1.00000
…

4. Use SSH to connect to another node in the same cluster and remove the monitor from the
cluster:

$ sudo cephadm shell --config /etc/ceph/dcn2.conf \
--keyring /etc/ceph/dcn2.client.admin.keyring

[ceph: root@dcn-computehci2-0]# ceph mon remove dcn2-computehci2-1 -c
/etc/ceph/dcn2.conf
removing mon.dcn2-computehci2-1 at [v2:172.23.3.153:3300/0,v1:172.23.3.153:6789/0],
there will be 2 monitors

5. Use SSH to log in again to the node that you are removing from the cluster.

CHAPTER 9. REPLACING DISTRIBUTEDCOMPUTEHCI NODES

61

1

6. Stop and disable the mgr service:

[tripleo-admin@dcn2-computehci2-1 ~]$ sudo systemctl --type=service | grep ceph
ceph-crash@dcn2-computehci2-1.service loaded active running Ceph crash dump
collector
ceph-mgr@dcn2-computehci2-1.service loaded active running Ceph Manager

[tripleo-admin@dcn2-computehci2-1 ~]$ sudo systemctl stop ceph-mgr@dcn2-computehci2-
1

[tripleo-admin@dcn2-computehci2-1 ~]$ sudo systemctl --type=service | grep ceph
ceph-crash@dcn2-computehci2-1.service loaded active running Ceph crash dump collector

[tripleo-admin@dcn2-computehci2-1 ~]$ sudo systemctl disable ceph-mgr@dcn2-
computehci2-1
Removed /etc/systemd/system/multi-user.target.wants/ceph-mgr@dcn2-computehci2-
1.service.

7. Start the cephadm shell:

$ sudo cephadm shell --config /etc/ceph/dcn2.conf \
--keyring /etc/ceph/dcn2.client.admin.keyring

8. Verify that the mgr service for the node is removed from the cluster:

[ceph: root@dcn2-computehci2-1 ~]# ceph -s

cluster:
 id: b9b53581-d590-41ac-8463-2f50aa985001
 health: HEALTH_WARN
 3 pools have too many placement groups
 mons are allowing insecure global_id reclaim

 services:
 mon: 2 daemons, quorum dcn2-computehci2-2,dcn2-computehci2-0 (age 2h)
 mgr: dcn2-computehci2-2(active, since 20h), standbys: dcn2-computehci2-0 1
 osd: 15 osds: 15 up (since 3h), 15 in (since 3h)

 data:
 pools: 3 pools, 384 pgs
 objects: 32 objects, 88 MiB
 usage: 16 GiB used, 734 GiB / 750 GiB avail
 pgs: 384 active+clean

The node that the mgr service is removed from is no longer listed when the mgr service is
successfully removed.

9. Export the Red Hat Ceph Storage specification:

[ceph: root@dcn2-computehci2-1 ~]# ceph orch ls --export > spec.yml

10. Edit the specifications in the spec.yaml file:

Remove all instances of the host <dcn-computehci-node> from spec.yml

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

62

Remove all instances of the <dcn-computehci-node> entry from the following:

service_type: osd

service_type: mon

service_type: host

11. Reapply the Red Hat Ceph Storage specification:

[ceph: root@dcn2-computehci2-1 /]# ceph orch apply -i spec.yml

12. Remove the OSDs that you identified using ceph osd tree:

[ceph: root@dcn2-computehci2-1 /]# ceph orch osd rm --zap 1 7 11 15 18
Scheduled OSD(s) for removal

13. Verify the status of the OSDs being removed. Do not continue until the following command
returns no output:

[ceph: root@dcn2-computehci2-1 /]# ceph orch osd rm status
OSD_ID HOST STATE PG_COUNT REPLACE FORCE
DRAIN_STARTED_AT
1 dcn2-computehci2-1 draining 27 False False 2021-04-23 21:35:51.215361
7 dcn2-computehci2-1 draining 8 False False 2021-04-23 21:35:49.111500
11 dcn2-computehci2-1 draining 14 False False 2021-04-23 21:35:50.243762

14. Verify that no daemons remain on the host you are removing:

[ceph: root@dcn2-computehci2-1 /]# ceph orch ps dcn2-computehci2-1

If daemons are still present, you can remove them with the following command:

[ceph: root@dcn2-computehci2-1 /]# ceph orch host drain dcn2-computehci2-1

15. Remove the <dcn-computehci-node> host from the Red Hat Ceph Storage cluster:

[ceph: root@dcn2-computehci2-1 /]# ceph orch host rm dcn2-computehci2-1
Removed host ‘dcn2-computehci2-1’

9.2. REMOVING THE IMAGE SERVICE (GLANCE) SERVICES

Remove image services from a node when you remove it from service.

Procedure

To disable the Image service services, disable them using systemctl on the node you are
removing:

[root@dcn2-computehci2-1 ~]# systemctl stop tripleo_glance_api.service
[root@dcn2-computehci2-1 ~]# systemctl stop tripleo_glance_api_tls_proxy.service

[root@dcn2-computehci2-1 ~]# systemctl disable tripleo_glance_api.service

CHAPTER 9. REPLACING DISTRIBUTEDCOMPUTEHCI NODES

63

Removed /etc/systemd/system/multi-user.target.wants/tripleo_glance_api.service.
[root@dcn2-computehci2-1 ~]# systemctl disable tripleo_glance_api_tls_proxy.service
Removed /etc/systemd/system/multi-user.target.wants/tripleo_glance_api_tls_proxy.service.

9.3. REMOVING THE BLOCK STORAGE (CINDER) SERVICES

You must remove the cinder-volume and etcd services from the DistributedComputeHCI node when
you remove it from service.

Procedure

1. Identify and disable the cinder-volume service on the node you are removing:

(central) [stack@site-undercloud-0 ~]$ openstack volume service list --service cinder-volume
| cinder-volume | dcn2-computehci2-1@tripleo_ceph | az-dcn2 | enabled | up | 2022-03-
23T17:41:43.000000 |
(central) [stack@site-undercloud-0 ~]$ openstack volume service set --disable dcn2-
computehci2-1@tripleo_ceph cinder-volume

2. Log on to a different DistributedComputeHCI node in the stack:

$ ssh tripleo-admin@dcn2-computehci2-0

3. Remove the cinder-volume service associated with the node that you are removing:

[root@dcn2-computehci2-0 ~]# podman exec -it cinder_volume cinder-manage service
remove cinder-volume dcn2-computehci2-1@tripleo_ceph
Service cinder-volume on host dcn2-computehci2-1@tripleo_ceph removed.

4. Stop and disable the tripleo_cinder_volume service on the node that you are removing:

[root@dcn2-computehci2-1 ~]# systemctl stop tripleo_cinder_volume.service
[root@dcn2-computehci2-1 ~]# systemctl disable tripleo_cinder_volume.service
Removed /etc/systemd/system/multi-user.target.wants/tripleo_cinder_volume.service

9.4. DELETE THE DISTRIBUTEDCOMPUTEHCI NODE

Set the provisioned parameter to a value of false and remove the node from the stack. Disable the
nova-compute service and delete the relevant network agent.

Procedure

1. Copy the baremetal-deployment.yaml file:

cp /home/stack/dcn2/overcloud-baremetal-deploy.yaml \
/home/stack/dcn2/baremetal-deployment-scaledown.yaml

2. Edit the baremetal-deployement-scaledown.yaml file. Identify the host you want to remove
and set the provisioned parameter to have a value of false:

instances:
...

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

64

 - hostname: dcn2-computehci2-1
 provisioned: false

3. Remove the node from the stack:

openstack overcloud node delete --stack dcn2 --baremetal-deployment
/home/stack/dcn2/baremetal_deployment_scaledown.yaml

4. Optional: If you are going to reuse the node, use ironic to clean the disk. This is required if the
node will host Ceph OSDs:

openstack baremetal node manage $UUID
openstack baremetal node clean $UUID --clean-steps '[{"interface":"deploy", "step":
"erase_devices_metadata"}]'
openstack baremetal provide $UUID

5. Redeploy the central site. Include all templates that you used for the initial configuration:

openstack overcloud deploy \
--deployed-server \
--stack central \
--templates /usr/share/openstack-tripleo-heat-templates/ \
-r ~/control-plane/central_roles.yaml \
-n ~/network-data.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/dcn-storage.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/cephadm/cephadm.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
-e /home/stack/central/overcloud-networks-deployed.yaml \
-e /home/stack/central/overcloud-vip-deployed.yaml \
-e /home/stack/central/deployed_metal.yaml \
-e /home/stack/central/deployed_ceph.yaml \
-e /home/stack/central/dcn_ceph.yaml \
-e /home/stack/central/glance_update.yaml

9.5. REPLACING A REMOVED DISTRIBUTEDCOMPUTEHCI NODE

9.5.1. Replacing a removed DistributedComputeHCI node

To add new HCI nodes to your DCN deployment, you must redeploy the edge stack with the additional
node, perform a ceph export of that stack, and then perform a stack update for the central location. A
stack update of the central location adds configurations specific to edge-sites.

Prerequisites

The node counts are correct in the nodes_data.yaml file of the stack that you want to replace the node
in or add a new node to.

Procedure

1. You must set the EtcdIntialClusterState parameter to existing in one of the templates called
by your deploy script:

CHAPTER 9. REPLACING DISTRIBUTEDCOMPUTEHCI NODES

65

parameter_defaults:
 EtcdInitialClusterState: existing

2. Redeploy using the deployment script specific to the stack:

(undercloud) [stack@site-undercloud-0 ~]$./overcloud_deploy_dcn2.sh
…
Overcloud Deployed without error

3. Export the Red Hat Ceph Storage data from the stack:

(undercloud) [stack@site-undercloud-0 ~]$ sudo -E openstack overcloud export ceph --stack
dcn1,dcn2 --config-download-dir /var/lib/mistral --output-file
~/central/dcn2_scale_up_ceph_external.yaml

4. Replace dcn_ceph_external.yaml with the newly generated dcn2_scale_up_ceph_external.yaml
in the deploy script for the central location.

5. Perform a stack update at central:

(undercloud) [stack@site-undercloud-0 ~]$./overcloud_deploy.sh
...
Overcloud Deployed without error

9.6. VERIFY THE FUNCTIONALITY OF A REPLACED
DISTRIBUTEDCOMPUTEHCI NODE

1. Ensure the value of the status field is enabled, and that the value of the State field is up:

(central) [stack@site-undercloud-0 ~]$ openstack compute service list -c Binary -c Host -c
Zone -c Status -c State
+----------------+---+------------+---------+-------+
| Binary | Host | Zone | Status | State |
+----------------+---+------------+---------+-------+
...
nova-compute	dcn1-compute1-0.redhat.local	az-dcn1	enabled	up
nova-compute	dcn1-compute1-1.redhat.local	az-dcn1	enabled	up
nova-compute	dcn2-computehciscaleout2-0.redhat.local	az-dcn2	enabled	up
nova-compute	dcn2-computehci2-0.redhat.local	az-dcn2	enabled	up
nova-compute	dcn2-computescaleout2-0.redhat.local	az-dcn2	enabled	up
nova-compute	dcn2-computehci2-2.redhat.local	az-dcn2	enabled	up
...

2. Ensure that all network agents are in the up state:

(central) [stack@site-undercloud-0 ~]$ openstack network agent list -c "Agent Type" -c Host -
c Alive -c State
+--------------------+---+-------+-------+
| Agent Type | Host | Alive | State |
+--------------------+---+-------+-------+
DHCP agent	dcn3-compute3-1.redhat.local	:-)	UP
Open vSwitch agent	central-computehci0-1.redhat.local	:-)	UP
DHCP agent	dcn3-compute3-0.redhat.local	:-)	UP

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

66

DHCP agent	central-controller0-2.redhat.local	:-)	UP
Open vSwitch agent	dcn3-compute3-1.redhat.local	:-)	UP
Open vSwitch agent	dcn1-compute1-1.redhat.local	:-)	UP
Open vSwitch agent	central-computehci0-0.redhat.local	:-)	UP
DHCP agent	central-controller0-1.redhat.local	:-)	UP
L3 agent	central-controller0-2.redhat.local	:-)	UP
Metadata agent	central-controller0-1.redhat.local	:-)	UP
Open vSwitch agent	dcn2-computescaleout2-0.redhat.local	:-)	UP
Open vSwitch agent	dcn2-computehci2-5.redhat.local	:-)	UP
Open vSwitch agent	central-computehci0-2.redhat.local	:-)	UP
DHCP agent	central-controller0-0.redhat.local	:-)	UP
Open vSwitch agent	central-controller0-1.redhat.local	:-)	UP
Open vSwitch agent	dcn2-computehci2-0.redhat.local	:-)	UP
Open vSwitch agent	dcn1-compute1-0.redhat.local	:-)	UP
...

3. Verify the status of the Ceph Cluster:

a. Use SSH to connect to the new DistributedComputeHCI node and check the status of the
Ceph cluster:

[root@dcn2-computehci2-5 ~]# podman exec -it ceph-mon-dcn2-computehci2-5 \
ceph -s -c /etc/ceph/dcn2.conf

b. Verify that both the ceph mon and ceph mgr services exist for the new node:

services:
 mon: 3 daemons, quorum dcn2-computehci2-2,dcn2-computehci2-0,dcn2-
computehci2-5 (age 3d)
 mgr: dcn2-computehci2-2(active, since 3d), standbys: dcn2-computehci2-0, dcn2-
computehci2-5
 osd: 20 osds: 20 up (since 3d), 20 in (since 3d)

c. Verify the status of the ceph osds with ‘ceph osd tree’. Ensure all osds for our new node are
in STATUS up:

[root@dcn2-computehci2-5 ~]# podman exec -it ceph-mon-dcn2-computehci2-5 ceph
osd tree -c /etc/ceph/dcn2.conf
ID CLASS WEIGHT TYPE NAME STATUS REWEIGHT PRI-AFF
-1 0.97595 root default
-5 0.24399 host dcn2-computehci2-0
 0 hdd 0.04880 osd.0 up 1.00000 1.00000
 4 hdd 0.04880 osd.4 up 1.00000 1.00000
 8 hdd 0.04880 osd.8 up 1.00000 1.00000
13 hdd 0.04880 osd.13 up 1.00000 1.00000
17 hdd 0.04880 osd.17 up 1.00000 1.00000
-9 0.24399 host dcn2-computehci2-2
 3 hdd 0.04880 osd.3 up 1.00000 1.00000
 5 hdd 0.04880 osd.5 up 1.00000 1.00000
10 hdd 0.04880 osd.10 up 1.00000 1.00000
14 hdd 0.04880 osd.14 up 1.00000 1.00000
19 hdd 0.04880 osd.19 up 1.00000 1.00000
-3 0.24399 host dcn2-computehci2-5
 1 hdd 0.04880 osd.1 up 1.00000 1.00000
 7 hdd 0.04880 osd.7 up 1.00000 1.00000

CHAPTER 9. REPLACING DISTRIBUTEDCOMPUTEHCI NODES

67

11 hdd 0.04880 osd.11 up 1.00000 1.00000
15 hdd 0.04880 osd.15 up 1.00000 1.00000
18 hdd 0.04880 osd.18 up 1.00000 1.00000
-7 0.24399 host dcn2-computehciscaleout2-0
 2 hdd 0.04880 osd.2 up 1.00000 1.00000
 6 hdd 0.04880 osd.6 up 1.00000 1.00000
 9 hdd 0.04880 osd.9 up 1.00000 1.00000
12 hdd 0.04880 osd.12 up 1.00000 1.00000
16 hdd 0.04880 osd.16 up 1.00000 1.00000

4. Verify the cinder-volume service for the new DistributedComputeHCI node is in Status
‘enabled’ and in State ‘up’:

(central) [stack@site-undercloud-0 ~]$ openstack volume service list --service cinder-volume
-c Binary -c Host -c Zone -c Status -c State
+---------------+---------------------------------+------------+---------+-------+
| Binary | Host | Zone | Status | State |
+---------------+---------------------------------+------------+---------+-------+
cinder-volume	hostgroup@tripleo_ceph	az-central	enabled	up
cinder-volume	dcn1-compute1-1@tripleo_ceph	az-dcn1	enabled	up
cinder-volume	dcn1-compute1-0@tripleo_ceph	az-dcn1	enabled	up
cinder-volume	dcn2-computehci2-0@tripleo_ceph	az-dcn2	enabled	up
cinder-volume	dcn2-computehci2-2@tripleo_ceph	az-dcn2	enabled	up
cinder-volume	dcn2-computehci2-5@tripleo_ceph	az-dcn2	enabled	up
+---------------+---------------------------------+------------+---------+-------+

NOTE

If the State of the cinder-volume service is down, then the service has not been
started on the node.

5. Use ssh to connect to the new DistributedComputeHCI node and check the status of the
Glance services with ‘systemctl’:

[root@dcn2-computehci2-5 ~]# systemctl --type service | grep glance
 tripleo_glance_api.service loaded active running glance_api container
 tripleo_glance_api_healthcheck.service loaded activating start start glance_api
healthcheck
 tripleo_glance_api_tls_proxy.service loaded active running
glance_api_tls_proxy container

9.7. TROUBLESHOOTING DISTRIBUTEDCOMPUTEHCI STATE DOWN

If the replacement node was deployed without the EtcdInitialClusterState parameter value set to
existing, then the cinder-volume service of the replaced node shows down when you run openstack
volume service list.

Procedure

1. Log onto the replacement node and check logs for the etcd service. Check that the logs show
the etcd service is reporting a cluster ID mismatch in the /var/log/containers/stdouts/etcd.log
log file:

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

68

2022-04-06T18:00:11.834104130+00:00 stderr F 2022-04-06 18:00:11.834045 E | rafthttp:
request cluster ID mismatch (got 654f4cf0e2cfb9fd want 918b459b36fe2c0c)

2. Set the EtcdInitialClusterState parameter to the value of existing in your deployment
templates and rerun the deployment script.

3. Use SSH to connect to the replacement node and run the following commands as root:

[root@dcn2-computehci2-4 ~]# systemctl stop tripleo_etcd
[root@dcn2-computehci2-4 ~]# rm -rf /var/lib/etcd/*
[root@dcn2-computehci2-4 ~]# systemctl start tripleo_etcd

4. Recheck the /var/log/containers/stdouts/etcd.log log file to verify that the node successfully
joined the cluster:

2022-04-06T18:24:22.130059875+00:00 stderr F 2022-04-06 18:24:22.129395 I |
etcdserver/membership: added member 96f61470cd1839e5 [https://dcn2-computehci2-
4.internalapi.redhat.local:2380] to cluster 654f4cf0e2cfb9fd

5. Check the state of the cinder-volume service, and confirm it reads up on the replacement node
when you run openstack volume service list.

CHAPTER 9. REPLACING DISTRIBUTEDCOMPUTEHCI NODES

69

CHAPTER 10. DEPLOYING WITH KEY MANAGER
If you have deployed edge sites previous to the release of Red Hat OpenStack Platform 16.1.2, you will
need to regenerate roles.yaml to implement this feature: To implement the feature, regenerate the
roles.yaml file used for the DCN site’s deployment.

$ openstack overcloud roles generate DistributedComputeHCI DistributedComputeHCIScaleOut -o
~/dcn0/roles_data.yaml

10.1. DEPLOYING EDGE SITES WITH KEY MANAGER

If you want to include access to the Key Manager (barbican) service at edge sites, you must configure
barbican at the central location. For information on installing and configuring barbican, see Deploying
Barbican.

You can configure access to barbican from DCN sites by including the /usr/share/openstack-
tripleo-heat-templates/environments/services/barbican-edge.yaml.

openstack overcloud deploy \
 --stack dcn0 \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -r ~/dcn0/roles_data.yaml \

 -e /usr/share/openstack-tripleo-heat-templates/environments/services/barbican-edge.yaml

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

70

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/managing_secrets_with_the_key_manager_service/index#deploying_barbican

CHAPTER 11. PRECACHING GLANCE IMAGES INTO NOVA
When you configure OpenStack Compute to use local ephemeral storage, glance images are cached to
quicken the deployment of instances. If an image that is necessary for an instance is not already cached,
it is downloaded to the local disk of the Compute node when you create the instance.

The process of downloading a glance image takes a variable amount of time, depending on the image
size and network characteristics such as bandwidth and latency.

If you attempt to start an instance, and the image is not available on the on the Ceph cluster that is local,
launching an instance will fail with the following message:

Build of instance 3c04e982-c1d1-4364-b6bd-f876e399325b aborted: Image 20c5ff9d-5f54-4b74-830f-
88e78b9999ed is unacceptable: No image locations are accessible

You see the following in the Compute service log:

'Image %s is not on my ceph and [workarounds]/ never_download_image_if_on_rbd=True; refusing
to fetch and upload.',

The instance fails to start due to a parameter in the nova.conf configuration file called
never_download_image_if_on_rbd, which is set to true by default for DCN deployments. You can
control this value using the heat parameter NovaDisableImageDownloadToRbd which you can find in
the dcn-storage.yaml file.

If you set the value of NovaDisableImageDownloadToRbd to false prior to deploying the overcloud,
the following occurs:

The Compute service (nova) will automatically stream images available at the central location if
they are not available locally.

You will not be using a COW copy from glance images.

The Compute (nova) storage will potentially contain multiple copies of the same image,
depending on the number of instances using it.

You may saturate both the WAN link to the central location as well as the nova storage pool.

Red Hat recommends leaving this value set to true, and ensuring required images are available locally
prior to launching an instance. For more information on making images available to the edge, see
Section A.1.3, “Copying an image to a new site” .

For images that are local, you can speed up the creation of VMs by using the
tripleo_nova_image_cache.yml ansible playbook to pre-cache commonly used images or images that
are likely to be deployed in the near future.

11.1. RUNNING THE TRIPLEO_NOVA_IMAGE_CACHE.YML ANSIBLE PLAYBOOK

Prerequisites

Authentication credentials to the correct API in the shell environment.

Before the command provided in each step, you must ensure that the correct authentication file is
sourced.

CHAPTER 11. PRECACHING GLANCE IMAGES INTO NOVA

71

Procedure

1. Create an ansible inventory directory for your overcloud stacks:

$ mkdir inventories

$ find ~/overcloud-deploy/*/config-download \
 -name tripleo-ansible-inventory.yaml |\
 while read f; do cp $f inventories/$(basename $(dirname $f)).yaml; done

2. Create a list of image IDs that you want to pre-cache:

a. Retrieve a comprehensive list of available images:

$ source centralrc

$ openstack image list
+--------------------------------------+---------+--------+
| ID | Name | Status |
+--------------------------------------+---------+--------+
| 07bc2424-753b-4f65-9da5-5a99d8383fe6 | image_0 | active |
| d5187afa-c821-4f22-aa4b-4e76382bef86 | image_1 | active |
+--------------------------------------+---------+--------+

b. Create an ansible playbook argument file called nova_cache_args.yml, and add the IDs of
the images that you want to pre-cache:

tripleo_nova_image_cache_images:
 - id: 07bc2424-753b-4f65-9da5-5a99d8383fe6
 - id: d5187afa-c821-4f22-aa4b-4e76382bef86

3. Run the tripleo_nova_image_cache.yml ansible playbook:

$ source centralrc

$ ansible-playbook -i inventories \
--extra-vars "@nova_cache_args.yml" \
/usr/share/ansible/tripleo-playbooks/tripleo_nova_image_cache.yml

11.2. PERFORMANCE CONSIDERATIONS

You can specify the number of images that you want to download concurrently with the ansible forks
parameter, which defaults to a value of 5. You can reduce the time to distribute this image by increasing
the value of the forks parameter, however you must balance this with the increase in network and
glance-api load.

Use the --forks parameter to adjust concurrency as shown:

ansible-playbook -i inventory.yaml \
--forks 10 \
--extra-vars "@nova_cache_args.yml" \
/usr/share/ansible/tripleo-playbooks/tripleo_nova_image_cache.yml

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

72

11.3. OPTIMIZING THE IMAGE DISTRIBUTION TO DCN SITES

You can reduce WAN traffic by using a proxy for glance image distribution. When you configure a proxy:

Glance images are downloaded to a single Compute node that acts as the proxy.

The proxy redistributes the glance image to other Compute nodes in the inventory.

You can place the following parameters in the nova_cache_args.yml ansible argument file to configure
a proxy node.

Set the tripleo_nova_image_cache_use_proxy parameter to true to enable the image cache proxy.

The image proxy uses secure copy scp to distribute images to other nodes in the inventory. SCP is
inefficient over networks with high latency, such as a WAN between DCN sites. Red Hat recommends
that you limit the playbook target to a single DCN location, which correlates to a single stack.

Use the tripleo_nova_image_cache_proxy_hostname parameter to select the image cache proxy.
The default proxy is the first compute node in the ansible inventory file. Use the
tripleo_nova_image_cache_plan parameter to limit the playbook inventory to a single site:

tripleo_nova_image_cache_use_proxy: true
tripleo_nova_image_cache_proxy_hostname: dcn0-novacompute-1
tripleo_nova_image_cache_plan: dcn0

11.4. CONFIGURING THE NOVA-CACHE CLEANUP

A background process runs periodically to remove images from the nova cache when both of the
following conditions are true:

The image is not in use by an instance.

The age of the image is greater than the value for the nova parameter
remove_unused_original_minimum_age_seconds.

The default value for the remove_unused_original_minimum_age_seconds parameter is 86400. The
value is expressed in seconds and is equal to 24 hours. You can control this value with the
NovaImageCachTTL tripleo-heat-templates parameter during the initial deployment, or during a stack
update of your cloud:

parameter_defaults:
 NovaImageCacheTTL: 604800 # Default to 7 days for all compute roles
 Compute2Parameters:
 NovaImageCacheTTL: 1209600 # Override to 14 days for the Compute2 compute role

When you instruct the playbook to pre-cache an image that already exists on a Compute node, ansible
does not report a change, but the age of the image is reset to 0. Run the ansible play more frequently
than the value of the NovaImageCacheTTL parameter to maintain a cache of images.

CHAPTER 11. PRECACHING GLANCE IMAGES INTO NOVA

73

CHAPTER 12. TLS-E FOR DCN
You can enable TLS (transport layer security) on clouds designed for distributed compute node
infrastructure. You have the option of either enabling TLS for public access only, or enabling TLS on
every network with TLS-e, which allows for encryption on all internal and external dataflows.

You cannot enable public access on edge stacks as edge sites do not have public endpoints. For more
information on TLS for public access, see Enabling SSL/TLS on Overcloud Public Endpoints .

12.1. DEPLOYING DISTRIBUTED COMPUTE NODE ARCHITECTURE
WITH TLS-E

Prerequisites

When you configure TLS-e on Red Hat OpenStack Platform (RHOSP) distributed compute node
architecture with Red Hat Identity Manager (IdM), take the following actions based on the version of
Red Hat Enterprise Linux deployed for Red Hat Identity Manager.

Red Hat Enterprise Linux 8.4

1. On the Red Hat Identity Management node, allowed trusted subnets to an ACL In the ipa-
ext.conf file:

 acl "trusted_network" {
 localnets;
 localhost;
 192.168.24.0/24;
 192.168.25.0/24;
 };

1. In the /etc/named/ipa-options-ext.conf file, allow recursion, and query cache:

allow-recursion { trusted_network; };
allow-query-cache { trusted_network; };

2. Restart the `named-pkcs11 service:

systemctl restart named-pkcs11

Red Hat Enterprise Linux 8.2

If you have Red Hat Identity Manager (IdM) on Red Hat Enterprise Linux (RHEL) 8.2, you must
upgrade Red Hat Enterprise Linux and then follow the directions for RHEL 8.4

Red Hat Enterprise Linux 7.x

If you have Red Hat Identity Manager (IdM) on Red Hat Enterprise Linux (RHEL) 7.x, you must add an
access control instruction (ACI) for your domain name manually. For example, if the domain name is
redhat.local, run the following commands on Red Hat Identity Manager to configure the ACI:

ADMIN_PASSWORD=redhat_01
DOMAIN_LEVEL_1=local
DOMAIN_LEVEL_2=redhat

cat << EOF | ldapmodify -x -D "cn=Directory Manager" -w ${ADMIN_PASSWORD}

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

74

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/hardening_red_hat_openstack_platform/assembly_enabling-ssl-tls-on-overcloud-public-endpoints

dn: cn=dns,dc=${DOMAIN_LEVEL_2},dc=${DOMAIN_LEVEL_1}
changetype: modify
add: aci
aci: (targetattr = "aaaarecord || arecord || cnamerecord || idnsname || objectclass || ptrrecord")
(targetfilter = "(&(objectclass=idnsrecord)(|(aaaarecord=)(arecord=)(cnamerecord=)(ptrrecord=)
(idnsZoneActive=TRUE)))")(version 3.0; acl "Allow hosts to read DNS A/AAA/CNAME/PTR records";
allow (read,search,compare) userdn =
"ldap:///fqdn=*,cn=computers,cn=accounts,dc=${DOMAIN_LEVEL_2},dc=${DOMAIN_LEVEL_1}";)
EOF

Due to differences in design between the central and edge locations, do not include the following files in
edge stacks:

tls-everywhere-endpoints-dns.yaml

This file is ignored at edge sites, the endpoints that it sets are overridden by the endpoints exported
from the central stack.

haproxy-public-tls-certmonger.yaml

This file causes a failed deployment as there are no public endpoints at the edge.

Additional information:

Implementing TLS-e with Ansible

CHAPTER 12. TLS-E FOR DCN

75

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/hardening_red_hat_openstack_platform/assembly_securing-rhos-with-tls-and-pki_security_and_hardening#proc_implementing-tls-e-with-ansible_encryption-and-key-management

CHAPTER 13. CREATING A CEPH KEY FOR EXTERNAL
ACCESS

WARNING

The content for this feature is available in this release as a Documentation Preview,
and therefore is not fully verified by Red Hat. Use it only for testing, and do not use
in a production environment.

External access to Ceph storage is access to Ceph from any site that is not local. Ceph storage at the
cental location is external for edge (DCN) sites, just as Ceph storage at the edge is external for the
central location.

When you deploy the central or DCN sites with Ceph storage, you have the option of using the default
openstack keyring for both local and external access. Altenatively, you can create a separate key for
access by non-local sites.

If you decide to use additional Ceph keys for access to your external sites, each key must have the same
name. The key name is external in the examples that follow.

If you use a separate key for access by non-local sites, you have the additional security benefit of being
able to revoke and re-issue the external key in response to a security event without interrupting local
access. However, using a separate key for external access will result in the loss of access to some
features, such as cross availability zone backups and offline volume migration. You must balance the
needs of your security posture against the desired feature set.

By default, the keys for the central and all DCN sites will be shared.

13.1. CREATING A CEPH KEY FOR EXTERNAL ACCESS

Complete the following steps to create an external key for non-local access.

Process

1. Create a Ceph key for external access. This key is sensitive. You can generate the key using the
following:

python3 -c 'import os,struct,time,base64; key = os.urandom(16) ; \
header = struct.pack("<hiih", 1, int(time.time()), 0, len(key)) ; \
print(base64.b64encode(header + key).decode())'

2. In the directory of the stack you are deploying, create a ceph_keys.yaml environment file with
contents like the following, using the output from the previous command for the key:

parameter_defaults:
 CephExtraKeys:
 - name: "client.external"
 caps:
 mgr: "allow *"

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

76

 mon: "profile rbd"
 osd: "profile rbd pool=vms, profile rbd pool=volumes, profile rbd pool=images"
 key: "AQD29WteAAAAABAAphgOjFD7nyjdYe8Lz0mQ5Q=="
 mode: "0600"

3. Include the ceph_keys.yaml environment file in the deployment of the site. For example, to
deploy the central site with with the ceph_keys.yaml environment file, run a command like the
following:

 overcloud deploy \
 --stack central \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 ….
 -e ~/central/ceph_keys.yaml

13.2. USING EXTERNAL CEPH KEYS

You can only use keys that have already been deployed. For information on deploying a site with an
external key, see Section 13.1, “Creating a Ceph key for external access” . This should be done for both
central and edge sites.

When you deploy an edge site that will use an external key provided by central, complete the
following:

1. Create dcn_ceph_external.yaml environment file for the edge site. You must include the
cephx-key-client-name option to specify the deployed key to include.

sudo -E openstack overcloud export ceph \
--stack central \
--cephx-key-client-name external \
--output-file ~/dcn-common/dcn_ceph_external.yaml

2. Include the dcn_ceph_external.yaml file so that the edge site can access the Ceph cluster
at the central site. Include the ceph_keys.yaml file to deploy an external key for the Ceph
cluster at the edge site.

When you update the central location after deploying your edge sites, ensure the central
location to use the dcn external keys:

1. Ensure that the CephClientUserName parameter matches the key being exported. If you
are using the name external as shown in these examples, create glance_update.yaml to be
similar to the following:

 parameter_defaults:
 GlanceEnabledImportMethods: web-download,copy-image
 GlanceBackend: rbd
 GlanceStoreDescription: 'central rbd glance store'
 CephClusterName: central
 GlanceBackendID: central
 GlanceMultistoreConfig:
 dcn0:
 GlanceBackend: rbd
 GlanceStoreDescription: 'dcn0 rbd glance store'
 CephClientUserName: 'external'
 CephClusterName: dcn0

CHAPTER 13. CREATING A CEPH KEY FOR EXTERNAL ACCESS

77

 GlanceBackendID: dcn0
 dcn1:
 GlanceBackend: rbd
 GlanceStoreDescription: 'dcn1 rbd glance store'
 CephClientUserName: 'external'
 CephClusterName: dcn1
 GlanceBackendID: dcn1

2. Use the openstack overcloud export ceph command to include the external keys for
DCN edge access from the central location. To do this you must provide a a comma-
delimited list of stacks for the --stack argument, and include the cephx-key-client-name
option:

sudo -E openstack overcloud export ceph \
--stack dcn0,dcn1,dcn2 \
--cephx-key-client-name external \
--output-file ~/central/dcn_ceph_external.yaml

3. Redeploy the central site using the original templates and include the newly created
dcn_ceph_external.yaml and glance_update.yaml files.

openstack overcloud deploy \
 --stack central \
 --templates /usr/share/openstack-tripleo-heat-templates/ \
 -r ~/central/central_roles.yaml \
 ...
 -e /usr/share/openstack-tripleo-heat-
templates/environments/cephadm/cephadm.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/nova-az-config.yaml \
 -e ~/central/central-images-env.yaml \
 -e ~/central/role-counts.yaml \
 -e ~/central/site-name.yaml
 -e ~/central/ceph.yaml \
 -e ~/central/ceph_keys.yaml \
 -e ~/central/glance.yaml \
 -e ~/central/dcn_ceph_external.yaml

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

78

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS
This section includes topics related validation of DCN storage, as well as migrating or changing
architectures.

A.1. VALIDATING EDGE STORAGE

Ensure that the deployment of central and edge sites are working by testing glance multi-store and
instance creation.

You can import images into glance that are available on the local filesystem or available on a web server.

NOTE

Always store an image copy in the central site, even if there are no instances using the
image at the central location.

Prerequisites

1. Check the stores that are available through the Image service by using the glance stores-info
command. In the following example, three stores are available: central, dcn1, and dcn2. These
correspond to glance stores at the central location and edge sites, respectively:

 $ glance stores-info
 +----------+--+
 | Property | Value |
 +----------+--+
stores	[{"default": "true", "id": "central", "description": "central rbd glance
	store"}, {"id": "dcn0", "description": "dcn0 rbd glance store"},
	{"id": "dcn1", "description": "dcn1 rbd glance store"}]
 +----------+--+

A.1.1. Importing from a local file

You must upload the image to the central location’s store first, then copy the image to remote sites.

1. Ensure that your image file is in RAW format. If the image is not in raw format, you must convert
the image before importing it into the Image service:

file cirros-0.5.1-x86_64-disk.img
cirros-0.5.1-x86_64-disk.img: QEMU QCOW2 Image (v3), 117440512 bytes

qemu-img convert -f qcow2 -O raw cirros-0.5.1-x86_64-disk.img cirros-0.5.1-x86_64-
disk.raw

Import the image into the default back end at the central site:

glance image-create \
--disk-format raw --container-format bare \
--name cirros --file cirros-0.5.1-x86_64-disk.raw \
--store central

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS

79

A.1.2. Importing an image from a web server

If the image is hosted on a web server, you can use the GlanceImageImportPlugins parameter to
upload the image to multiple stores.

This procedure assumes that the default image conversion plugin is enabled in glance. This feature
automatically converts QCOW2 file formats into RAW images, which are optimal for Ceph RBD. You can
confirm that a glance image is in RAW format by running the glance image-show ID | grep
disk_format.

Procedure

1. Use the image-create-via-import parameter of the glance command to import an image from a
web server. Use the --stores parameter.

glance image-create-via-import \
--disk-format qcow2 \
--container-format bare \
--name cirros \
--uri http://download.cirros-cloud.net/0.4.0/cirros-0.4.0-x86_64-disk.img \
--import-method web-download \
--stores central,dcn1

In this example, the qcow2 cirros image is downloaded from the official Cirros site, converted to
RAW by glance, and imported into the central site and edge site 1 as specified by the --stores
parameter.

Alternatively you can replace --stores with --all-stores True to upload the image to all of the stores.

A.1.3. Copying an image to a new site

You can copy existing images from the central location to edge sites, which gives you access to
previously created images at newly established locations.

1. Use the UUID of the glance image for the copy operation:

ID=$(openstack image show cirros -c id -f value)

glance image-import $ID --stores dcn0,dcn1 --import-method copy-image

NOTE

In this example, the --stores option specifies that the cirros image will be copied
from the central site to edge sites dcn1 and dcn2. Alternatively, you can use the --
all-stores True option, which uploads the image to all the stores that don’t
currently have the image.

2. Confirm a copy of the image is in each store. Note that the stores key, which is the last item in
the properties map, is set to central,dcn0,dcn1.:

 $ openstack image show $ID | grep properties
 | properties | direct_url=rbd://d25504ce-459f-432d-b6fa-
79854d786f2b/images/8083c7e7-32d8-4f7a-b1da-0ed7884f1076/snap, locations=[{u'url:
u'rbd://d25504ce-459f-432d-b6fa-79854d786f2b/images/8083c7e7-32d8-4f7a-b1da-

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

80

0ed7884f1076/snap', u'metadata': {u'store': u'central'}}, {u'url': u'rbd://0c10d6b5-a455-4c4d-
bd53-8f2b9357c3c7/images/8083c7e7-32d8-4f7a-b1da-0ed7884f1076/snap', u'metadata':
{u'store': u'dcn0'}}, {u'url': u'rbd://8649d6c3-dcb3-4aae-8c19-8c2fe5a853ac/images/8083c7e7-
32d8-4f7a-b1da-0ed7884f1076/snap', u'metadata': {u'store': u'dcn1'}}],
os_glance_failed_import=', os_glance_importing_to_stores=', os_hash_algo='sha512,
os_hash_value=b795f047a1b10ba0b7c95b43b2a481a59289dc4cf2e49845e60b194a911819d
3ada03767bbba4143b44c93fd7f66c96c5a621e28dff51d1196dae64974ce240e,
os_hidden=False, stores=central,dcn0,dcn1 |

NOTE

Always store an image copy in the central site even if there is no VM using it on that site.

A.1.4. Confirming that an instance at an edge site can boot with image based
volumes

You can use an image at the edge site to create a persistent root volume.

Procedure

1. Identify the ID of the image to create as a volume, and pass that ID to the openstack volume
create command:

IMG_ID=$(openstack image show cirros -c id -f value)
openstack volume create --size 8 --availability-zone dcn0 pet-volume-dcn0 --image $IMG_ID

2. Identify the volume ID of the newly created volume and pass it to the openstack server create
command:

VOL_ID=$(openstack volume show -f value -c id pet-volume-dcn0)
openstack server create --flavor tiny --key-name dcn0-key --network dcn0-network --security-
group basic --availability-zone dcn0 --volume $VOL_ID pet-server-dcn0

3. You can verify that the volume is based on the image by running the rbd command within a
ceph-mon container at the dcn0 edge site to list the volumes pool.

$ sudo podman exec ceph-mon-$HOSTNAME rbd --cluster dcn0 -p volumes ls -l
NAME SIZE PARENT FMT PROT LOCK
volume-28c6fc32-047b-4306-ad2d-de2be02716b7 8 GiB images/8083c7e7-32d8-4f7a-b1da-
0ed7884f1076@snap 2 excl
$

4. Confirm that you can create a cinder snapshot of the root volume of the instance. Ensure that
the server is stopped to quiesce data to create a clean snapshot. Use the --force option,
because the volume status remains in-use when the instance is off.

openstack server stop pet-server-dcn0
openstack volume snapshot create pet-volume-dcn0-snap --volume $VOL_ID --force
openstack server start pet-server-dcn0

5. List the contents of the volumes pool on the dcn0 Ceph cluster to show the newly created
snapshot.

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS

81

$ sudo podman exec ceph-mon-$HOSTNAME rbd --cluster dcn0 -p volumes ls -l
NAME SIZE PARENT
FMT PROT LOCK
volume-28c6fc32-047b-4306-ad2d-de2be02716b7 8 GiB
images/8083c7e7-32d8-4f7a-b1da-0ed7884f1076@snap 2 excl
volume-28c6fc32-047b-4306-ad2d-de2be02716b7@snapshot-a1ca8602-6819-45b4-a228-
b4cd3e5adf60 8 GiB images/8083c7e7-32d8-4f7a-b1da-0ed7884f1076@snap 2 yes

A.1.5. Confirming image snapshots can be created and copied between sites

1. Verify that you can create a new image at the dcn0 site. Ensure that the server is stopped to
quiesce data to create a clean snapshot:

NOVA_ID=$(openstack server show pet-server-dcn0 -f value -c id)
openstack server stop $NOVA_ID
openstack server image create --name cirros-snapshot $NOVA_ID
openstack server start $NOVA_ID

2. Copy the image from the dcn0 edge site back to the hub location, which is the default back end
for glance:

IMAGE_ID=$(openstack image show cirros-snapshot -f value -c id)
glance image-import $IMAGE_ID --stores central --import-method copy-image

For more information on glance multistore operations, see Image service with multiple stores.

A.2. MIGRATING TO A SPINE AND LEAF DEPLOYMENT

It is possible to migrate an existing cloud with a pre-existing network configuration to one with a spine
leaf architecture. For this, the following conditions are needed:

All bare metal ports must have their physical-network property value set to ctlplane.

The parameter enable_routed_networks is added and set to true in undercloud.conf, followed
by a re-run of the undercloud installation command, openstack undercloud install.

Once the undercloud is re-deployed, the overcloud is considered a spine leaf, with a single leaf leaf0.
You can add additional provisioning leaves to the deployment through the following steps.

1. Add the desired subnets to undercloud.conf as shown in Configuring routed spine-leaf in the
undercloud.

2. Re-run the undercloud installation command, openstack undercloud install.

3. Add the desired additional networks and roles to the overcloud templates, network_data.yaml
and roles_data.yaml respectively.

NOTE

If you are using the {{network.name}}InterfaceRoutes parameter in the network
configuration file, then you’ll need to ensure that the
NetworkDeploymentActions parameter includes the value UPDATE.

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

82

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/creating_and_managing_images/index#using-image-service-with-mulitple-stores
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_spine-leaf_networking/index#configuring-routed-spine-leaf-in-the-undercloud

 NetworkDeploymentActions: ['CREATE','UPDATE'])

4. Finally, re-run the overcloud installation script that includes all relevant heat templates for your
cloud deployment.

A.3. MIGRATING TO A MULTISTACK DEPLOYMENT

You can migrate from a single stack deployment to a multistack deployment by treating the existing
deployment as the central site, and adding additional edge sites.

You cannot split the existing stack. You can scale down the existing stack to remove compute nodes if
needed. These compute nodes can then be added to edge sites.

NOTE

This action creates workload interruptions if all compute nodes are removed.

A.4. BACKING UP AND RESTORING ACROSS EDGE SITES

You can back up and restore Block Storage service (cinder) volumes across distributed compute node
(DCN) architectures in edge site and availability zones. The cinder-backup service runs in the central
availability zone (AZ), and backups are stored in the central AZ. The Block Storage service does not
store backups at DCN sites.

Prerequisites

Deploy the optional Block Storage backup service. For more information, see Block Storage
backup service deployment in Backing up Block Storage volumes .

Block Storage (cinder) REST API microversion 3.51 or later.

All sites must use a common openstack cephx client name. For more information, see Creating
a Ceph key for external access in Deploying a Distributed Compute Node (DCN) architecture .

Procedure

1. Create a backup of a volume in the first DCN site:

$ cinder --os-volume-api-version 3.51 backup-create --name <volume_backup> --availability-
zone <az_central> <edge_volume>

Replace <volume_backup> with a name for the volume backup.

Replace <az_central> with the name of the central availability zone that hosts the cinder-
backup service.

Replace <edge_volume> with the name of the volume that you want to back up.

NOTE

If you experience issues with Ceph keyrings, you might need to restart the
cinder-backup container so that the keyrings copy from the host to the
container successfully.

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS

83

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/backing_up_block_storage_volumes/index#assembly_backup-deploy
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_a_distributed_compute_node_dcn_architecture/index#external-option

2. Restore the backup to a new volume in the second DCN site:

$ cinder --os-volume-api-version 3.51 create --availability-zone <az_2> --name
<new_volume> --backup-id <volume_backup> <volume_size>

Replace <az_2> with the name of the availability zone where you want to restore the
backup.

Replace <new_volume> with a name for the new volume.

Replace <volume_backup> with the name of the volume backup that you created in the
previous step.

Replace <volume_size> with a value in GB equal to or greater than the size of the original
volume.

A.5. OVERCLOUD ADOPTION AND PREPARATION IN A DCN
ENVIRONMENT

You must perform the following tasks for overcloud adoption:

Each site is fully upgraded separately, one by one, starting with the central location.

Adopt the network and host provisioning configuration exports into the overcloud, for central
location stack.```suggestion:-0+0

Define new containers and additional compatibility configuration.

After adoption, you must run the upgrade preparation script, which performs the following tasks:

Updates the overcloud plan to OpenStack Platform 17.1

Prepares the nodes for the upgrade

For information about the duration and impact of this upgrade procedure, see Upgrade duration and
impact.

Prerequisites

All nodes are in the ACTIVE state:

$ openstack baremetal node list

If any nodes are in the MAINTENANCE state, set them to ACTIVE:

$ openstack baremetal node maintenance unset <node_uuid>

Replace <node_uuid> with the UUID of the node.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

84

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/framework_for_upgrades_16.2_to_17.1/assembly_about-the-red-hat-openstack-platform-framework-for-upgrades_about-upgrades#upgrade-durations-and-impact_about-upgrades

$ source ~/stackrc

3. Verify that the following files that were exported during the undercloud upgrade contain the
expected configuration for the overcloud upgrade. You can find the following files in the
~/overcloud-deploy directory:

tripleo-<stack>-passwords.yaml

tripleo-<stack>-network-data.yaml

tripleo-<stack>-virtual-ips.yaml

tripleo-<stack>-baremetal-deployment.yaml

NOTE

If the files were not generated after the undercloud upgrade, contact Red
Hat Support.

IMPORTANT

If you have a multi-cell environment, review Overcloud adoption for multi-
cell environments for an example of copying the files to each cell stack.

4. On the main stack, copy the passwords.yaml file to the ~/overcloud-deploy/$(<stack>)
directory. Repeat this step on each stack in your environment:

$ cp ~/overcloud-deploy/<stack>/tripleo-<stack>-passwords.yaml ~/overcloud-
deploy/<stack>/<stack>-passwords.yaml

Replace <stack> with the name of your stack.

5. If you are performing the preparation and adoption at the central location, copy the network-
data.yaml file to the stack user’s home directory and deploy the networks. Do this only for the
central location:

$ cp /home/stack/overcloud-deploy/central/tripleo-central-network-data.yaml ~/
$ mkdir /home/stack/overcloud_adopt
$ openstack overcloud network provision --debug \
--output /home/stack/overcloud_adopt/generated-networks-deployed.yaml tripleo-central-
network-data.yaml

For more information, see Provisioning and deploying your overcloud in Installing and managing
Red Hat OpenStack Platform with director.

6. If you are performing the preparation and adoption at the central location, copy the virtual-
ips.yaml file to the stack user’s home directory and provision the network VIPs. Do this only for
the central location:

$ cp /home/stack/overcloud-deploy/central/tripleo-central-virtual-ips.yaml ~/
$ openstack overcloud network vip provision --debug \
--stack <stack> --output \
/home/stack/overcloud_adopt/generated-vip-deployed.yaml tripleo-central-virtual-ips.yaml

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS

85

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/framework_for_upgrades_16.2_to_17.1/performing-the-overcloud-adoption_overcloud-adoption#overcloud-adoption-for-multi-cell-environments_overcloud-adoption
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud

7. On the main stack, copy the baremetal-deployment.yaml file to the stack user’s home
directory and provision the overcloud nodes. Repeat this step on each stack in your
environment:

$ cp ~/overcloud-deploy/<stack>/tripleo-<stack>-baremetal-deployment.yaml ~/
$ openstack overcloud node provision --debug --stack <stack> \
--output /home/stack/overcloud_adopt/baremetal-central-deployment.yaml \
tripleo-<stack>-baremetal-deployment.yaml

NOTE

This is the final step of the overcloud adoption. If your overcloud adoption takes
longer than 10 minutes to complete, contact Red Hat Support.

8. Complete the following steps to prepare the containers:

a. Back up the containers-prepare-parameter.yaml file that you used for the undercloud
upgrade:

$ cp containers-prepare-parameter.yaml \
containers-prepare-parameter.yaml.orig

b. Define the following environment variables before you run the script to update the
containers-prepare-parameter.yaml file:

NAMESPACE: The namespace for the UBI9 images. For example,
NAMESPACE='"namespace":"example.redhat.com:5002",'

EL8_NAMESPACE: The namespace for the UBI8 images.

NEUTRON_DRIVER: The driver to use and determine which OpenStack Networking
(neutron) container to use. Set to the type of containers you used to deploy the original
stack. For example, set to NEUTRON_DRIVER='"neutron_driver":"ovn",' to use
OVN-based containers.

EL8_TAGS: The tags of the UBI8 images, for example, EL8_TAGS='"tag":"17.1",'.

Replace "17.1", with the tag that you use in your content view.

EL9_TAGS: The tags of the UBI9 images, for example, EL9_TAGS='"tag":"17.1",'.

Replace "17.1", with the tag that you use in your content view.
For more information about the tag parameter, see Container image preparation
parameters in Customizing your Red Hat OpenStack Platform deployment .

CONTROL_PLANE_ROLES: The list of control plane roles using the --role option, for
example, --role ControllerOpenstack, --role Database, --role Messaging, --role
Networker, --role CephStorage. To view the list of control plane roles in your
environment, run the following command:

$ export STACK=<stack> \
$ sudo awk '/tripleo_role_name/ {print "--role " $2}' \
/var/lib/mistral/${STACK}/tripleo-ansible-inventory.yaml \
| grep -vi compute

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

86

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_customizing-container-images#ref_container-image-preparation-parameters_customize-container-images

Replace <stack> with the name of your stack.

COMPUTE_ROLES: The list of Compute roles using the --role option, for example, --
Compute-1. To view the list of Compute roles in your environment, run the following
command:

$ sudo awk '/tripleo_role_name/ {print "--role " $2}' \
/var/lib/mistral/${STACK}/tripleo-ansible-inventory.yaml \
| grep -i compute

CEPH_OVERRIDE: If you deployed Red Hat Ceph Storage, specify the Red Hat Ceph
Storage 5 container images. For example:
CEPH_OVERRIDE='"ceph_image":"rhceph-5-rhel8","ceph_tag":"<latest>",'

Replace <latest> with the latest ceph_tag version, for example, 5-499.
The following is an example of the containers-prepare-parameter.yaml file
configuration:

NAMESPACE='"namespace":"registry.redhat.io/rhosp-rhel9",'
EL8_NAMESPACE='"namespace":"registry.redhat.io/rhosp-rhel8",'
NEUTRON_DRIVER='"neutron_driver":"ovn",'
EL8_TAGS='"tag":"17.1",'
EL9_TAGS='"tag":"17.1",'
CONTROL_PLANE_ROLES="--role Controller"
COMPUTE_ROLES="--role Compute"
CEPH_TAGS='"ceph_tag":"5",'

c. Run the following script to to update the containers-prepare-parameter.yaml file:

WARNING

If you deployed Red Hat Ceph Storage, ensure that the
CEPH_OVERRIDE environment variable is set to the correct values
before executing the following command. Failure to do so results in
issues when upgrading Red Hat Ceph Storage.

$ python3 /usr/share/openstack-tripleo-heat-templates/tools/multi-rhel-container-image-
prepare.py \
 ${COMPUTE_ROLES} \
 ${CONTROL_PLANE_ROLES} \
 --enable-multi-rhel \
 --excludes collectd \
 --excludes nova-libvirt \
 --minor-override "
{${EL8_TAGS}${EL8_NAMESPACE}${CEPH_OVERRIDE}${NEUTRON_DRIVER}\"no_t
ag\":\"not_used\"}" \
 --major-override "
{${EL9_TAGS}${NAMESPACE}${CEPH_OVERRIDE}${NEUTRON_DRIVER}\"no_tag\":\

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS

87

"not_used\"}" \
 --output-env-file \
 /home/stack/containers-prepare-parameter.yaml

The multi-rhel-container-image-prepare.py script supports the following parameters:

--output-env-file

Writes the environment file that contains the default ContainerImagePrepare value.

--local-push-destination

Triggers an upload to a local registry.

--enable-registry-login

Enables the flag that allows the system to attempt to log in to a remote registry prior to
pulling the containers. Use this flag when --local-push-destination is not used and the
target systems have network connectivity to remote registries. Do not use this flag for
an overcloud that might not have network connectivity to a remote registry.

--enable-multi-rhel

Enables multi-rhel.

--excludes

Lists the services to exclude.

--major-override

Lists the override parameters for a major release.

--minor-override

Lists the override parameters for a minor release.

--role

The list of roles.

--role-file

The role_data.yaml file.

d. If you deployed Red Hat Ceph Storage, open the containers-prepare-parameter.yaml file
to confirm that the Red Hat Ceph Storage 5 container images are specified and that there
are no references to Red Hat Ceph Storage 6 container images.

9. If you have a director-deployed Red Hat Ceph Storage deployment, create a file called
ceph_params.yaml and include the following content:

parameter_defaults:
 CephSpecFqdn: true
 CephConfigPath: "/etc/ceph"
 CephAnsibleRepo: "rhceph-5-tools-for-rhel-8-x86_64-rpms"
 DeployedCeph: true

IMPORTANT

Do not remove the ceph_params.yaml file after the RHOSP upgrade is
complete. This file must be present in director-deployed Red Hat Ceph Storage
environments. Additionally, any time you run openstack overcloud deploy, you
must include the ceph_params.yaml file, for example, -e ceph_params.yaml.

NOTE

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

88

NOTE

If your Red Hat Ceph Storage deployment includes short names, you must set
the CephSpecFqdn parameter to false. If set to true, the inventory generates
with both the short names and domain names, causing the Red Hat Ceph
Storage upgrade to fail.

10. Create an environment file called upgrades-environment.yaml in your templates directory and
include the following content:

parameter_defaults:
 ExtraConfig:
 nova::workarounds::disable_compute_service_check_for_ffu: true
 DnsServers: ["<dns_servers>"]
 DockerInsecureRegistryAddress: <undercloud_FQDN>
 UpgradeInitCommand: |
 sudo subscription-manager repos --disable=*
 if $(grep -q 9.2 /etc/os-release)
 then
 sudo subscription-manager repos --enable=rhel-9-for-x86_64-baseos-eus-rpms --
enable=rhel-9-for-x86_64-appstream-eus-rpms --enable=rhel-9-for-x86_64-highavailability-
eus-rpms --enable=openstack-17.1-for-rhel-9-x86_64-rpms --enable=fast-datapath-for-rhel-9-
x86_64-rpms
 sudo podman ps | grep -q ceph && subscription-manager repos --enable=rhceph-5-
tools-for-rhel-9-x86_64-rpms
 sudo subscription-manager release --set=9.2
 else
 sudo subscription-manager repos --enable=rhel-8-for-x86_64-baseos-tus-rpms --
enable=rhel-8-for-x86_64-appstream-tus-rpms --enable=rhel-8-for-x86_64-highavailability-
tus-rpms --enable=openstack-17.1-for-rhel-8-x86_64-rpms --enable=fast-datapath-for-rhel-8-
x86_64-rpms
 sudo podman ps | grep -q ceph && subscription-manager repos --enable=rhceph-5-
tools-for-rhel-8-x86_64-rpms
 sudo subscription-manager release --set=8.4
 fi

 if $(sudo podman ps | grep -q ceph)
 then
 sudo dnf -y install cephadm
 fi

Replace <dns_servers> with a comma-separated list of your DNS server IP addresses, for
example, ["10.0.0.36", "10.0.0.37"].

Replace <undercloud_FQDN> with the fully qualified domain name (FQDN) of the
undercloud host, for example, "undercloud-0.ctlplane.redhat.local:8787".
For more information about the upgrade parameters that you can configure in the
environment file, see Upgrade parameters.

11. If you are performing the preparation and adoption at an edge location, set the
AuthCloudName parameter to the name of the central location:

parameter_defaults:
 AuthCloudName: central

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS

89

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/framework_for_upgrades_16.2_to_17.1/initial-steps-for-overcloud-preparation_preparing-overcloud#ref_upgrade-parameters_final-review

12. If multiple Image service (glance) stores are deployed, set the Image service API policy for
copy-image to allow all rules:

parameter_defaults:
 GlanceApiPolicies: {glance-copy_image: {key 'copy-image', value: ""}}

13. On the undercloud, create a file called overcloud_upgrade_prepare.sh in your templates
directory.

You must create this file for each stack in your environment. This file includes the original
content of your overcloud deploy file and the environment files that are relevant to your
environment.

If you are creating the overcloud_upgrade_prepare.sh for a DCN edge location, you must
include the following templates:

An environment template that contains exported central site parameters. You can find
this file in /home/stack/overcloud-deploy/centra/central-export.yaml.

generated-networks-deployed.yaml, the resulting file from running the openstack
overcloud network provision command at the central location.

generated-vip-deployed.yaml, the resulting file from running the openstack
overcloud network vip provision command at the central location. + For example:

#!/bin/bash
openstack overcloud upgrade prepare --yes \
 --timeout 460 \
 --templates /usr/share/openstack-tripleo-heat-templates \
 --ntp-server 192.168.24.1 \
 --stack <stack> \
 -r /home/stack/roles_data.yaml \
 -e /home/stack/templates/internal.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
ovs.yaml \
 -e /home/stack/templates/network/network-environment.yaml \
 -e /home/stack/templates/inject-trust-anchor.yaml \
 -e /home/stack/templates/hostnames.yml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ceph-ansible/ceph-
ansible.yaml \
 -e /home/stack/templates/nodes_data.yaml \
 -e /home/stack/templates/debug.yaml \
 -e /home/stack/templates/firstboot.yaml \
 -e /home/stack/templates/upgrades-environment.yaml \
 -e /home/stack/overcloud-params.yaml \
 -e /home/stack/overcloud-deploy/<stack>/overcloud-network-environment.yaml \
 -e /home/stack/overcloud-adopt/<stack>-passwords.yaml \
 -e /home/stack/overcloud_adopt/<stack>-baremetal-deployment.yaml \
 -e /home/stack/overcloud_adopt/generated-networks-deployed.yaml \
 -e /home/stack/overcloud_adopt/generated-vip-deployed.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/nova-hw-machine-
type-upgrade.yaml \
 -e /home/stack/skip_rhel_release.yaml \
 -e ~/containers-prepare-parameter.yaml

NOTE

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

90

NOTE

If you have a multi-cell environment, review Overcloud adoption for
multi-cell environments for an example of creating the
overcloud_upgrade_prepare.sh file for each cell stack.

a. In the original network-environment.yaml file
(/home/stack/templates/network/network-environment.yaml), remove all the
resource_registry resources that point to OS::TripleO::*::Net::SoftwareConfig.

b. In the overcloud_upgrade_prepare.sh file, include the following options relevant
to your environment:

The environment file (upgrades-environment.yaml) with the upgrade-specific
parameters (-e).

The environment file (containers-prepare-parameter.yaml) with your new container
image locations (-e). In most cases, this is the same environment file that the
undercloud uses.

The environment file (skip_rhel_release.yaml) with the release parameters (-e).

Any custom configuration environment files (-e) relevant to your deployment.

If applicable, your custom roles (roles_data) file by using --roles-file.

For Ceph deployments, the environment file (ceph_params.yaml) with the Ceph
parameters (-e).

The files that were generated during overcloud adoption (networks-deployed.yaml,
vip-deployed.yaml,baremetal-deployment.yaml) (-e).

If applicable, the environment file (ipa-environment.yaml) with your IPA service (-e).

If you are using composable networks, the (network_data) file by using --network-file.

NOTE

Do not include the network-isolation.yaml file in your overcloud deploy
file or the overcloud_upgrade_prepare.sh file. Network isolation is
defined in the network_data.yaml file.

If you use a custom stack name, pass the name with the --stack option.

NOTE

You must include the nova-hw-machine-type-upgrade.yaml file in your
templates until all of your RHEL 8 Compute nodes are upgraded to RHEL
9 in the environment. If this file is excluded, an error appears in the
nova_compute.log in the /var/log/containers/nova directory. After you
upgrade all of your RHEL 8 Compute nodes to RHEL 9, you can remove
this file from your configuration and update the stack.

a. In the director-deployed Red Hat Ceph Storage use case, if you enabled the Shared
File Systems service (manila) with CephFS through NFS on the deployment that

APPENDIX A. DEPLOYMENT MIGRATION OPTIONS

91

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/framework_for_upgrades_16.2_to_17.1/performing-the-overcloud-adoption_overcloud-adoption#overcloud-adoption-for-multi-cell-environments_overcloud-adoption

you are upgrading, you must specify an additional environment file at the end of the
overcloud_upgrade_prepare.sh script file. You must add the environment file at
the end of the script because it overrides another environment file that is specified
earlier in the script:

-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-
ansible/manila-cephfsganesha-config.yaml

b. In the external Red Hat Ceph Storage use case, if you enabled the Shared File
Systems service (manila) with CephFS through NFS on the deployment that you
are upgrading, you must check that the associated environment file in the
overcloud_upgrade_prepare.sh script points to the tripleo-based ceph-nfs role. If
present, remove the following environment file:

-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-
ansible/manila-cephfsganesha-config.yaml

And add the following environment file:

-e /usr/share/openstack-tripleo-heat-templates/environments/manila-
cephfsganesha-config.yaml

14. Run the upgrade preparation script for each stack in your environment:

$ source stackrc
$ chmod 755 /home/stack/overcloud_upgrade_prepare.sh
$ sh /home/stack/overcloud_upgrade_prepare.sh

NOTE

If you have a multi-cell environment, you must run the script for each
overcloud_upgrade_prepare.sh file that you created for each cell stack. For an
example, see Overcloud adoption for multi-cell environments .

15. Wait until the upgrade preparation completes.

16. Download the container images:

$ openstack overcloud external-upgrade run --stack <stack> --tags
container_image_prepare

Red Hat OpenStack Platform 17.1 Deploying a Distributed Compute Node (DCN) architecture

92

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/framework_for_upgrades_16.2_to_17.1/performing-the-overcloud-adoption_overcloud-adoption#overcloud-adoption-for-multi-cell-environments_overcloud-adoption

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. UNDERSTANDING DCN
	1.1. REQUIRED SOFTWARE FOR DISTRIBUTED COMPUTE NODE ARCHITECTURE
	1.2. MULTISTACK DESIGN
	1.3. DCN STORAGE
	1.4. DCN EDGE

	CHAPTER 2. PLANNING A DISTRIBUTED COMPUTE NODE (DCN) DEPLOYMENT
	2.1. CONSIDERATIONS FOR STORAGE ON DCN ARCHITECTURE
	2.2. CONSIDERATIONS FOR NETWORKING ON DCN ARCHITECTURE

	CHAPTER 3. CONFIGURING ROUTED SPINE-LEAF IN THE UNDERCLOUD
	3.1. CONFIGURING THE SPINE LEAF PROVISIONING NETWORKS
	3.2. CONFIGURING A DHCP RELAY
	3.3. DESIGNATING A ROLE FOR LEAF NODES
	3.4. MAPPING BARE METAL NODE PORTS TO CONTROL PLANE NETWORK SEGMENTS
	3.5. ADDING A NEW LEAF TO A SPINE-LEAF PROVISIONING NETWORK

	CHAPTER 4. PREPARING OVERCLOUD TEMPLATES FOR DCN DEPLOYMENT
	4.1. PREREQUISITES FOR USING SEPARATE HEAT STACKS
	4.2. LIMITATIONS OF THE EXAMPLE SEPARATE HEAT STACKS DEPLOYMENT
	4.3. DESIGNING YOUR SEPARATE HEAT STACKS DEPLOYMENT
	4.4. MANAGING SEPARATE HEAT STACKS
	4.5. RETRIEVING THE CONTAINER IMAGES
	4.6. CREATING FAST DATAPATH ROLES FOR THE EDGE

	CHAPTER 5. INSTALLING THE CENTRAL LOCATION
	5.1. DEPLOYING THE CENTRAL CONTROLLERS WITHOUT EDGE STORAGE
	5.2. DEPLOYING THE CENTRAL SITE WITH STORAGE
	5.3. INTEGRATING EXTERNAL CEPH

	CHAPTER 6. DEPLOY THE EDGE WITHOUT STORAGE
	6.1. ARCHITECTURE OF A DCN EDGE SITE WITHOUT STORAGE
	6.2. DEPLOYING EDGE NODES WITHOUT STORAGE
	6.3. EXCLUDING SPECIFIC IMAGE TYPES AT THE EDGE

	CHAPTER 7. DEPLOYING STORAGE AT THE EDGE
	7.1. ROLES FOR EDGE DEPLOYMENTS WITH STORAGE
	7.1.1. Storage without hyperconverged nodes
	7.1.2. Storage with hyperconverged nodes

	7.2. ARCHITECTURE OF A DCN EDGE SITE WITH STORAGE
	7.3. ARCHITECTURE OF A DCN EDGE SITE WITH HYPERCONVERGED STORAGE
	7.4. DEPLOYING EDGE SITES WITH HYPERCONVERGED STORAGE
	7.5. USING A PRE-INSTALLED RED HAT CEPH STORAGE CLUSTER AT THE EDGE
	7.6. UPDATING THE CENTRAL LOCATION
	7.6.1. Clearing residual data after interrupted Image service processes

	7.7. DEPLOYING RED HAT CEPH STORAGE DASHBOARD ON DCN

	CHAPTER 8. LOAD BALANCING NETWORK TRAFFIC AT THE EDGE
	8.1. CREATING NETWORK RESOURCES FOR LOAD-BALANCING SERVICE AVAILABILITY ZONES
	8.2. CREATING AVAILABILITY ZONES FOR THE LOAD-BALANCING SERVICE
	8.3. CREATING LOAD BALANCERS IN AVAILABILITY ZONES

	CHAPTER 9. REPLACING DISTRIBUTEDCOMPUTEHCI NODES
	9.1. REMOVING RED HAT CEPH STORAGE SERVICES
	9.2. REMOVING THE IMAGE SERVICE (GLANCE) SERVICES
	9.3. REMOVING THE BLOCK STORAGE (CINDER) SERVICES
	9.4. DELETE THE DISTRIBUTEDCOMPUTEHCI NODE
	9.5. REPLACING A REMOVED DISTRIBUTEDCOMPUTEHCI NODE
	9.5.1. Replacing a removed DistributedComputeHCI node

	9.6. VERIFY THE FUNCTIONALITY OF A REPLACED DISTRIBUTEDCOMPUTEHCI NODE
	9.7. TROUBLESHOOTING DISTRIBUTEDCOMPUTEHCI STATE DOWN

	CHAPTER 10. DEPLOYING WITH KEY MANAGER
	10.1. DEPLOYING EDGE SITES WITH KEY MANAGER

	CHAPTER 11. PRECACHING GLANCE IMAGES INTO NOVA
	11.1. RUNNING THE TRIPLEO_NOVA_IMAGE_CACHE.YML ANSIBLE PLAYBOOK
	11.2. PERFORMANCE CONSIDERATIONS
	11.3. OPTIMIZING THE IMAGE DISTRIBUTION TO DCN SITES
	11.4. CONFIGURING THE NOVA-CACHE CLEANUP

	CHAPTER 12. TLS-E FOR DCN
	12.1. DEPLOYING DISTRIBUTED COMPUTE NODE ARCHITECTURE WITH TLS-E

	CHAPTER 13. CREATING A CEPH KEY FOR EXTERNAL ACCESS
	13.1. CREATING A CEPH KEY FOR EXTERNAL ACCESS
	13.2. USING EXTERNAL CEPH KEYS

	APPENDIX A. DEPLOYMENT MIGRATION OPTIONS
	A.1. VALIDATING EDGE STORAGE
	A.1.1. Importing from a local file
	A.1.2. Importing an image from a web server
	A.1.3. Copying an image to a new site
	A.1.4. Confirming that an instance at an edge site can boot with image based volumes
	A.1.5. Confirming image snapshots can be created and copied between sites

	A.2. MIGRATING TO A SPINE AND LEAF DEPLOYMENT
	A.3. MIGRATING TO A MULTISTACK DEPLOYMENT
	A.4. BACKING UP AND RESTORING ACROSS EDGE SITES
	A.5. OVERCLOUD ADOPTION AND PREPARATION IN A DCN ENVIRONMENT

