
Red Hat OpenStack Services on
OpenShift 18.0-beta

Adopting a Red Hat OpenStack Platform 17.1
deployment

Adopt a Red Hat OpenStack Platform 17.1 overcloud to a Red Hat OpenStack
Services on OpenShift 18.0 data plane

Last Updated: 2024-06-25

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat
OpenStack Platform 17.1 deployment

Adopt a Red Hat OpenStack Platform 17.1 overcloud to a Red Hat OpenStack Services on OpenShift
18.0 data plane

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

You can migrate your existing Red Hat OpenStack Platform 17.1 overcloud to a Red Hat OpenStack
Services on OpenShift 18.0 data plane.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. PLANNING THE NEW DEPLOYMENT
1.1. SERVICE CONFIGURATIONS
1.2. ABOUT NODE ROLES
1.3. ABOUT NODE SELECTOR
1.4. ABOUT MACHINE CONFIGS
1.5. KEY MANAGER SERVICE SUPPORT FOR CRYPTO PLUG-INS
1.6. CONFIGURING THE NETWORK FOR THE RHOSO DEPLOYMENT

1.6.1. Retrieving the network configuration from your existing deployment
1.6.2. Planning your IPAM configuration

1.6.2.1. Scenario 1: Using new subnet ranges
1.6.2.2. Scenario 2: Reusing existing subnet ranges

1.6.3. Configuring isolated networks
1.6.3.1. Configuring Red Hat OpenShift Container Platform worker nodes
1.6.3.2. Configuring the networking for control plane services
1.6.3.3. Configuring data plane nodes

1.7. STORAGE REQUIREMENTS
1.7.1. Storage driver certification
1.7.2. Block Storage service requirements

1.8. COMPARING CONFIGURATION FILES BETWEEN DEPLOYMENTS

CHAPTER 2. MIGRATING TLS-E TO THE RHOSO DEPLOYMENT

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE
3.1. RETRIEVING TOPOLOGY-SPECIFIC SERVICE CONFIGURATION
3.2. DEPLOYING BACKEND SERVICES
3.3. CONFIGURING A CEPH BACKEND
3.4. CREATING A NFS GANESHA CLUSTER
3.5. STOPPING RED HAT OPENSTACK PLATFORM SERVICES
3.6. MIGRATING DATABASES TO MARIADB INSTANCES
3.7. MIGRATING OVN DATA

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES
4.1. ADOPTING THE IDENTITY SERVICE
4.2. ADOPTING THE KEY MANAGER SERVICE
4.3. ADOPTING THE NETWORKING SERVICE
4.4. ADOPTING THE OBJECT STORAGE SERVICE
4.5. ADOPTING THE IMAGE SERVICE

4.5.1. Adopting the Image service that is deployed with a Object Storage service backend
4.5.2. Adopting the Image service that is deployed with a Block Storage service backend
4.5.3. Adopting the Image service that is deployed with an NFS Ganesha backend
4.5.4. Adopting the Image service that is deployed with a Red Hat Ceph Storage backend
4.5.5. Verifying the Image service adoption

4.6. ADOPTING THE PLACEMENT SERVICE
4.7. ADOPTING THE COMPUTE SERVICE
4.8. ADOPTING THE BLOCK STORAGE SERVICE

4.8.1. Limitations for adopting the Block Storage service
4.8.2. Red Hat OpenShift Container Platform preparation for Block Storage service adoption
4.8.3. Preparing the Block Storage service configurations for adoption

4.8.3.1. Preparing the Block Storage service configuration
4.8.4. Deploying the Block Storage services

4.9. ADOPTING THE DASHBOARD SERVICE
4.10. ADOPTING THE SHARED FILE SYSTEMS SERVICE

4
4
5
6
7
8
8
9

10
11

13
14
14
16
17
19
19
19
19

22

25
25
27
32
34
36
40
45

51
51
52
54
55
57
58
59
61

64
66
67
68
71
72
72
76
78
80
83
84

Table of Contents

1

. .

. .

. .

. .

. .

. .

4.10.1. Changes to CephFS through NFS
4.10.2. Deploying the Shared File Systems service control plane
4.10.3. Decommissioning the Red Hat OpenStack Platform standalone Ceph NFS service

4.11. ADOPTING THE BARE METAL PROVISIONING SERVICE
4.11.1. Bare Metal Provisioning service configurations
4.11.2. Deploying the Bare Metal Provisioning service

4.12. ADOPTING THE ORCHESTRATION SERVICE
4.13. ADOPTING TELEMETRY SERVICES
4.14. ADOPTING AUTOSCALING
4.15. REVIEWING THE RED HAT OPENSTACK PLATFORM CONTROL PLANE CONFIGURATION

4.15.1. Pulling the configuration from a director deployment
4.16. ROLLING BACK THE CONTROL PLANE ADOPTION

CHAPTER 5. ADOPTING THE DATA PLANE
5.1. STOPPING INFRASTRUCTURE MANAGEMENT AND COMPUTE SERVICES
5.2. ADOPTING COMPUTE SERVICES TO THE RHOSO DATA PLANE
5.3. PERFORMING A FAST-FORWARD UPGRADE ON COMPUTE SERVICES

CHAPTER 6. MIGRATING RED HAT CEPH STORAGE RBD TO EXTERNAL RHEL NODES
6.1. MIGRATING CEPH MONITOR AND CEPH MANAGER DAEMONS TO RED HAT CEPH STORAGE NODES

CHAPTER 7. MIGRATING RED HAT CEPH STORAGE RGW TO EXTERNAL RHEL NODES
7.1. RED HAT CEPH STORAGE DAEMON CARDINALITY
7.2. COMPLETING PREREQUISITES FOR MIGRATING RED HAT CEPH STORAGE RGW
7.3. MIGRATING THE RED HAT CEPH STORAGE RGW BACKENDS
7.4. DEPLOYING A RED HAT CEPH STORAGE INGRESS DAEMON
7.5. UPDATING THE OBJECT-STORE ENDPOINTS

CHAPTER 8. MIGRATING RED HAT CEPH STORAGE MDS TO NEW NODES WITHIN THE EXISTING CLUSTER

CHAPTER 9. MIGRATING THE MONITORING STACK COMPONENT TO NEW NODES WITHIN AN EXISTING
RED HAT CEPH STORAGE CLUSTER

9.1. COMPLETING PREREQUISITES FOR A RED HAT CEPH STORAGE CLUSTER WITH MONITORING STACK
COMPONENTS
9.2. MIGRATING THE MONITORING STACK TO THE TARGET NODES

9.2.1. Scenario 1: Migrating the existing daemons to the target nodes

CHAPTER 10. MIGRATING THE OBJECT STORAGE SERVICE (SWIFT) TO RED HAT OPENSTACK SERVICES
ON OPENSHIFT (RHOSO) NODES

10.1. MIGRATING THE OBJECT STORAGE SERVICE (SWIFT) DATA FROM RHOSP TO RED HAT OPENSTACK
SERVICES ON OPENSHIFT (RHOSO) NODES
10.2. TROUBLESHOOTING THE OBJECT STORAGE SERVICE (SWIFT) MIGRATION

84
85
91

92
93
94
98
101
102
104
104
107

111
111

112
123

126

126

134
134
135
138
141

143

146

151

151
153
153

157

157
160

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

2

Table of Contents

3

CHAPTER 1. PLANNING THE NEW DEPLOYMENT
Just like you did back when you installed your director-deployed Red Hat OpenStack Platform, the
upgrade/migration to the control plane requires planning various aspects of the environment such as
node roles, planning your network topology, and storage.

This document covers some of this planning, but it is recommended to read the whole adoption guide
before actually starting the process to be sure that there is a global understanding of the whole process.

1.1. SERVICE CONFIGURATIONS

There is a fundamental difference between the director and operator deployments regarding the
configuration of the services.

In director deployments many of the service configurations are abstracted by director-specific
configuration options. A single director option may trigger changes for multiple services and support for
drivers, for example, the Block Storage service (cinder), that require patches to the director code base.

In operator deployments this approach has changed: reduce the installer specific knowledge and
leverage Red Hat OpenShift Container Platform (RHOCP) and Red Hat OpenStack Platform (RHOSP)
service specific knowledge whenever possible.

To this effect RHOSP services will have sensible defaults for RHOCP deployments and human
operators will provide configuration snippets to provide necessary configuration, such as the Block
Storage service backend configuration, or to override the defaults.

This shortens the distance between a service specific configuration file (such as cinder.conf) and what
the human operator provides in the manifests.

These configuration snippets are passed to the operators in the different customServiceConfig
sections available in the manifests, and then they are layered in the services available in the following
levels. To illustrate this, if you were to set a configuration at the top Block Storage service level (spec:
cinder: template:) then it would be applied to all the Block Storage services; for example to enable
debug in all the Block Storage services you would do:

If you only want to set it for one of the Block Storage services, for example the scheduler, then you use
the cinderScheduler section instead:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack
spec:
 cinder:
 template:
 customServiceConfig: |
 [DEFAULT]
 debug = True
< . . . >

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack
spec:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

4

In Red Hat OpenShift Container Platform it is not recommended to store sensitive information like the
credentials to the Block Storage service storage array in the CRs, so most RHOSP operators have a
mechanism to use the Red Hat OpenShift Container Platform Secrets for sensitive configuration
parameters of the services and then use them by reference in the customServiceConfigSecrets
section which is analogous to the customServiceConfig.

The contents of the Secret references passed in the customServiceConfigSecrets will have the same
format as customServiceConfig: a snippet with the section/s and configuration options.

When there are sensitive information in the service configuration then it becomes a matter of personal
preference whether to store all the configuration in the Secret or only the sensitive parts. However, if
you split the configuration between Secret and customServiceConfig you still need the section header
(eg: [DEFAULT]) to be present in both places.

Attention should be paid to each service’s adoption process as they may have some particularities
regarding their configuration.

1.2. ABOUT NODE ROLES

In director deployments you had 4 different standard roles for the nodes: Controller, Compute, Ceph
Storage, Swift Storage, but in the control plane you make a distinction based on where things are
running, in Red Hat OpenShift Container Platform (RHOCP) or external to it.

When adopting a director Red Hat OpenStack Platform (RHOSP) your Compute nodes will directly
become external nodes, so there should not be much additional planning needed there.

In many deployments being adopted the Controller nodes will require some thought because you have
many RHOCP nodes where the Controller services could run, and you have to decide which ones you
want to use, how you are going to use them, and make sure those nodes are ready to run the services.

In most deployments running RHOSP services on master nodes can have a seriously adverse impact on
the RHOCP cluster, so it is recommended that you place RHOSP services on non master nodes.

By default RHOSP Operators deploy RHOSP services on any worker node, but that is not necessarily
what’s best for all deployments, and there may be even services that won’t even work deployed like that.

When planing a deployment it’s good to remember that not all the services on an RHOSP deployments
are the same as they have very different requirements.

Looking at the Block Storage service (cinder) component you can clearly see different requirements for
its services: the cinder-scheduler is a very light service with low memory, disk, network, and CPU usage;
cinder-api service has a higher network usage due to resource listing requests; the cinder-volume
service will have a high disk and network usage since many of its operations are in the data path (offline
volume migration, create volume from image, etc.), and then you have the cinder-backup service which
has high memory, network, and CPU (to compress data) requirements.

The Image Service (glance) and Object Storage service (swift) components are in the data path, as well
as RabbitMQ and Galera services.

 cinder:
 template:
 cinderScheduler:
 customServiceConfig: |
 [DEFAULT]
 debug = True
< . . . >

CHAPTER 1. PLANNING THE NEW DEPLOYMENT

5

Given these requirements it may be preferable not to let these services wander all over your RHOCP
worker nodes with the possibility of impacting other workloads, or maybe you don’t mind the light
services wandering around but you want to pin down the heavy ones to a set of infrastructure nodes.

There are also hardware restrictions to take into consideration, because if you are using a Fibre Channel
(FC) Block Storage service backend you need the cinder-volume, cinder-backup, and maybe even the
Image Service (glance) (if it’s using the Block Storage service as a backend) services to run on a RHOCP
host that has an HBA.

The RHOSP Operators allow a great deal of flexibility on where to run the RHOSP services, as you can
use node labels to define which RHOCP nodes are eligible to run the different RHOSP services. Refer to
the About node selector to learn more about using labels to define placement of the RHOSP services.

1.3. ABOUT NODE SELECTOR

There are a variety of reasons why you might want to restrict the nodes where Red Hat OpenStack
Platform (RHOSP) services can be placed:

Hardware requirements: System memory, Disk space, Cores, HBAs

Limit the impact of the RHOSP services on other Red Hat OpenShift Container Platform
workloads.

Avoid collocating RHOSP services.

The mechanism provided by the RHOSP operators to achieve this is through the use of labels.

You either label the RHOCP nodes or use existing labels, and then use those labels in the RHOSP
manifests in the nodeSelector field.

The nodeSelector field in the RHOSP manifests follows the standard RHOCP nodeSelector field. For
more information, see About node selectors in OpenShift Container Platform 4.15 Documentation .

This field is present at all the different levels of the RHOSP manifests:

Deployment: The OpenStackControlPlane object.

Component: For example the cinder element in the OpenStackControlPlane.

Service: For example the cinderVolume element within the cinder element in the
OpenStackControlPlane.

This allows a fine grained control of the placement of the RHOSP services with minimal repetition.

Values of the nodeSelector are propagated to the next levels unless they are overwritten. This means
that a nodeSelector value at the deployment level will affect all the RHOSP services.

For example, you can add label type: openstack to any 3 RHOCP nodes:

$ oc label nodes worker0 type=openstack
$ oc label nodes worker1 type=openstack
$ oc label nodes worker2 type=openstack

And then in our OpenStackControlPlane you can use the label to place all the services in those 3
nodes:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

6

https://docs.openshift.com/container-platform/4.15/nodes/scheduling/nodes-scheduler-node-selectors.html

You can use the selector for specific services. For example, you might want to place your the Block
Storage service (cinder) volume and backup services on certain nodes if you are using FC and only have
HBAs on a subset of nodes. The following example assumes that you have the label fc_card: true:

The Block Storage service operator does not currently have the possibility of defining the nodeSelector
in cinderVolumes, so you need to specify it on each of the backends.

It is possible to leverage labels added by the Node Feature Discovery (NFD) Operator to place RHOSP
services. For more information, see Node Feature Discovery Operator in OpenShift Container Platform
4.15 Documentation.

1.4. ABOUT MACHINE CONFIGS

Some services require you to have services or kernel modules running on the hosts where they run, for
example iscsid or multipathd daemons, or the nvme-fabrics kernel module.

For those cases you use MachineConfig manifests, and if you are restricting the nodes that you are
placing the Red Hat OpenStack Platform services on using the nodeSelector then you also want to limit
where the MachineConfig is applied.

To define where the MachineConfig can be applied, you need to use a MachineConfigPool that links

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack
spec:
 secret: osp-secret
 storageClass: local-storage
 nodeSelector:
 type: openstack
< . . . >

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack
spec:
 secret: osp-secret
 storageClass: local-storage
 cinder:
 template:
 cinderVolumes:
 pure_fc:
 nodeSelector:
 fc_card: true
< . . . >
 lvm-iscsi:
 nodeSelector:
 fc_card: true
< . . . >
 cinderBackup:
 nodeSelector:
 fc_card: true
< . . . >

CHAPTER 1. PLANNING THE NEW DEPLOYMENT

7

https://docs.openshift.com/container-platform/4.13/hardware_enablement/psap-node-feature-discovery-operator.html

To define where the MachineConfig can be applied, you need to use a MachineConfigPool that links
the MachineConfig to the nodes.

For example to be able to limit MachineConfig to the 3 Red Hat OpenShift Container Platform
(RHOCP) nodes that you marked with the type: openstack label, you create the MachineConfigPool
like this:

And then you use it in the MachineConfig:

Refer to the Postinstallation machine configuration tasks in OpenShift Container Platform 4.15
Documentation.

WARNING

Applying a MachineConfig to an RHOCP node makes the node reboot.

1.5. KEY MANAGER SERVICE SUPPORT FOR CRYPTO PLUG-INS

The Key Manager service (barbican) does not yet support all of the crypto plug-ins available in director.

1.6. CONFIGURING THE NETWORK FOR THE RHOSO DEPLOYMENT

With Red Hat OpenShift Container Platform (RHOCP), the network is a very important aspect of the
deployment, and it is important to plan it carefully. The general network requirements for the Red Hat
OpenStack Platform (RHOSP) services are not much different from the ones in a director deployment,
but the way you handle them is.

NOTE

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: openstack
spec:
 machineConfigSelector:
 matchLabels:
 machineconfiguration.openshift.io/role: openstack
 nodeSelector:
 matchLabels:
 type: openstack

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: openstack
< . . . >

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

8

https://docs.openshift.com/container-platform/4.15/post_installation_configuration/machine-configuration-tasks.html

NOTE

For more information about the network architecture and configuration, see Deploying
Red Hat OpenStack Platform 18.0 Development Preview 3 on Red Hat OpenShift
Container Platform and About networking in OpenShift Container Platform 4.15
Documentation. This document will address concerns specific to adoption.

When adopting a new RHOSP deployment, it is important to align the network configuration with the
adopted cluster to maintain connectivity for existing workloads.

The following logical configuration steps will incorporate the existing network configuration:

configure RHOCP worker nodes to align VLAN tags and IPAM configuration with the existing
deployment.

configure Control Plane services to use compatible IP ranges for service and load balancing
IPs.

configure Data Plane nodes to use corresponding compatible configuration for VLAN tags and
IPAM.

Specifically,

IPAM configuration will either be reused from the existing deployment or, depending on IP
address availability in the existing allocation pools, new ranges will be defined to be used for the
new control plane services. If so, IP routing will be configured between the old and new ranges.
For more information, see Planning your IPAM configuration .

VLAN tags will be reused from the existing deployment.

1.6.1. Retrieving the network configuration from your existing deployment

Let’s first determine which isolated networks are defined in the existing deployment. You can find the
network configuration in the network_data.yaml file. For example,

- name: InternalApi
 mtu: 1500
 vip: true
 vlan: 20
 name_lower: internal_api
 dns_domain: internal.mydomain.tld.
 service_net_map_replace: internal
 subnets:
 internal_api_subnet:
 ip_subnet: '172.17.0.0/24'
 allocation_pools: [{'start': '172.17.0.4', 'end': '172.17.0.250'}]

You should make a note of the VLAN tag used (vlan key) and the IP range (ip_subnet key) for each
isolated network. The IP range will later be split into separate pools for control plane services and load
balancer IP addresses.

You should also determine the list of IP addresses already consumed in the adopted environment.
Consult tripleo-ansible-inventory.yaml file to find this information. In the file, for each listed host, note
IP and VIP addresses consumed by the node.

For example,

CHAPTER 1. PLANNING THE NEW DEPLOYMENT

9

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/18.0-dev-preview/html/deploying_red_hat_openstack_platform_18.0_development_preview_3_on_red_hat_openshift_container_platform/assembly_preparing-rhocp-for-rhosp
https://docs.openshift.com/container-platform/4.15/networking/about-networking.html

Standalone:
 hosts:
 standalone:
 ...
 internal_api_ip: 172.17.0.100
 ...
 ...
standalone:
 children:
 Standalone: {}
 vars:
 ...
 internal_api_vip: 172.17.0.2
 ...

In the example above, note that the 172.17.0.2 and 172.17.0.100 are consumed and won’t be available
for the new control plane services, at least until the adoption is complete.

Repeat the process for each isolated network and each host in the configuration.

At the end of this process, you should have the following information:

A list of isolated networks used in the existing deployment.

For each of the isolated networks, the VLAN tag and IP ranges used for dynamic address
allocation.

A list of existing IP address allocations used in the environment. You will later exclude these
addresses from allocation pools available for the new control plane services.

1.6.2. Planning your IPAM configuration

The new deployment model puts additional burden on the size of IP allocation pools available for
Red Hat OpenStack Platform (RHOSP) services. This is because each service deployed on Red Hat
OpenShift Container Platform (RHOCP) worker nodes will now require an IP address from the IPAM
pool (in the previous deployment model, all services hosted on a controller node shared the same IP
address.)

Since the new control plane deployment has different requirements as to the number of IP addresses
available for services, it may even be impossible to reuse the existing IP ranges used in adopted
environment, depending on its size. Prudent planning is required to determine which options are
available in your particular case.

The total number of IP addresses required for the new control plane services, in each isolated network, is
calculated as a sum of the following:

The number of RHOCP worker nodes. (Each node will require 1 IP address in
NodeNetworkConfigurationPolicy custom resources (CRs).)

The number of IP addresses required for the data plane nodes. (Each node will require an IP
address from NetConfig CRs.)

The number of IP addresses required for control plane services. (Each service will require an IP
address from NetworkAttachmentDefinition CRs.) This number depends on the number of
replicas for each service.

The number of IP addresses required for load balancer IP addresses. (Each service will require a

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

10

The number of IP addresses required for load balancer IP addresses. (Each service will require a
VIP address from IPAddressPool CRs.)

As of the time of writing, the simplest single worker node RHOCP deployment (CRC) has the following
IP ranges defined (for the internalapi network):

1 IP address for the single worker node;

1 IP address for the data plane node;

NetworkAttachmentDefinition CRs for control plane services: X.X.X.30-X.X.X.70 (41
addresses);

IPAllocationPool CRs for load balancer IPs: X.X.X.80-X.X.X.90 (11 addresses).

Which comes to a total of 54 IP addresses allocated to the internalapi allocation pools.

The exact requirements may differ depending on the list of RHOSP services to be deployed, their
replica numbers, as well as the number of RHOCP worker nodes and data plane nodes.

Additional IP addresses may be required in future RHOSP releases, so it is advised to plan for some
extra capacity, for each of the allocation pools used in the new environment.

Once you know the required IP pool size for the new deployment, you can choose one of the following
scenarios to handle IPAM allocation in the new environment.

The first listed scenario is more general and implies using new IP ranges, while the second scenario
implies reusing the existing ranges. The end state of the former scenario is using the new subnet ranges
for control plane services, but keeping the old ranges, with their node IP address allocations intact, for
data plane nodes.

Regardless of the IPAM scenario, the VLAN tags used in the existing deployment will be reused in the
new deployment. Depending on the scenario, the IP address ranges to be used for control plane services
will be either reused from the old deployment or defined anew. Adjust the configuration as described in
Configuring isolated networks .

1.6.2.1. Scenario 1: Using new subnet ranges

This scenario is compatible with any existing subnet configuration, and can be used even when the
existing cluster subnet ranges don’t have enough free IP addresses for the new control plane services.

The general idea here is to define new IP ranges for control plane services that belong to a different
subnet that was not used in the existing cluster. Then, configure link local IP routing between the old and
new subnets to allow old and new service deployments to communicate. This involves using director
mechanism on pre-adopted cluster to configure additional link local routes there. This will allow EDP
deployment to reach out to adopted nodes using their old subnet addresses.

The new subnet should be sized appropriately to accommodate the new control plane services, but
otherwise doesn’t have any specific requirements as to the existing deployment allocation pools already
consumed. Actually, the requirements as to the size of the new subnet are lower than in the second
scenario, as the old subnet ranges are kept for the adopted nodes, which means they don’t consume any
IP addresses from the new range.

In this scenario, you will configure NetworkAttachmentDefinition custom resources (CRs) to use a
different subnet from what will be configured in NetConfig CR for the same networks. The former range
will be used for control plane services, while the latter will be used to manage IPAM for data plane nodes.

During the process, you will need to make sure that adopted node IP addresses don’t change during the

CHAPTER 1. PLANNING THE NEW DEPLOYMENT

11

During the process, you will need to make sure that adopted node IP addresses don’t change during the
adoption process. This is achieved by listing the addresses in fixedIP fields in
OpenstackDataplaneNodeSet per-node section.

Before proceeding, configure host routes on the adopted nodes for the control plane subnets.

To achieve this, you will need to re-run tripleo deploy with additional routes entries added to
network_config. (This change should be applied for every adopted node configuration.) For example,
you may add the following to net_config.yaml:

Do the same for other networks that will need to use different subnets for the new and old parts of the
deployment.

Once done, run tripleo deploy to apply the new configuration.

Note that network configuration changes are not applied by default to avoid risk of network disruption.
You will have to enforce the changes by setting the StandaloneNetworkConfigUpdate: true in the
director configuration files.

Once tripleo deploy is complete, you should see new link local routes to the new subnet on each node.
For example,

The next step is to configure similar routes for the old subnet for control plane services attached to the
networks. This is done by adding routes entries to NodeNetworkConfigurationPolicy CRs for each
network. For example,

Once applied, you should eventually see the following route added to your Red Hat OpenShift
Container Platform (RHOCP) nodes.

At this point, you should be able to ping the adopted nodes from RHOCP nodes using their old subnet
addresses; and vice versa.

Finally, during the data plane adoption, you will have to take care of several aspects:

in network_config, add link local routes to the new subnets, for example:

network_config:
 - type: ovs_bridge
 name: br-ctlplane
 routes:
 - ip_netmask: 0.0.0.0/0
 next_hop: 192.168.1.1
 - ip_netmask: 172.31.0.0/24 # <- new ctlplane subnet
 next_hop: 192.168.1.100 # <- adopted node ctlplane IP address

ip route | grep 172
172.31.0.0/24 via 192.168.122.100 dev br-ctlplane

 - destination: 192.168.122.0/24
 next-hop-interface: ospbr

ip route | grep 192
192.168.122.0/24 dev ospbr proto static scope link

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

12

list the old IP addresses as ansibleHost and fixedIP, for example:

expand SSH range for the firewall configuration to include both subnets:

This is to allow SSH access from the new subnet to the adopted nodes as well as the old one.

Since you are applying new network configuration to the nodes, consider also setting
edpm_network_config_update: true to enforce the changes.

Note that the examples above are incomplete and should be incorporated into your general
configuration.

1.6.2.2. Scenario 2: Reusing existing subnet ranges

This scenario is only applicable when the existing subnet ranges have enough IP addresses for the new
control plane services. On the other hand, it allows to avoid additional routing configuration between the
old and new subnets, as in Scenario 1: Using new subnet ranges .

The general idea here is to instruct the new control plane services to use the same subnet as in the
adopted environment, but define allocation pools used by the new services in a way that would exclude
IP addresses that were already allocated to existing cluster nodes.

This scenario implies that the remaining IP addresses in the existing subnet is enough for the new
control plane services. If not, Scenario 1: Using new subnet ranges should be used instead. For more
information, see Planning your IPAM configuration .

 nodeTemplate:
 ansible:
 ansibleUser: root
 ansibleVars:
 additional_ctlplane_host_routes:
 - ip_netmask: 172.31.0.0/24
 next_hop: '{{ ctlplane_ip }}'
 edpm_network_config_template: |
 network_config:
 - type: ovs_bridge
 routes: {{ ctlplane_host_routes + additional_ctlplane_host_routes }}
 ...

 nodes:
 standalone:
 ansible:
 ansibleHost: 192.168.122.100
 ansibleUser: ""
 hostName: standalone
 networks:
 - defaultRoute: true
 fixedIP: 192.168.122.100
 name: ctlplane
 subnetName: subnet1

 edpm_sshd_allowed_ranges:
 - 192.168.122.0/24
 - 172.31.0.0/24

CHAPTER 1. PLANNING THE NEW DEPLOYMENT

13

No special routing configuration is required in this scenario; the only thing to pay attention to is to make
sure that already consumed IP addresses don’t overlap with the new allocation pools configured for
Red Hat OpenStack Platform control plane services.

If you are especially constrained by the size of the existing subnet, you may have to apply elaborate
exclusion rules when defining allocation pools for the new control plane services. For more information,
see

1.6.3. Configuring isolated networks

At this point, you should have a good idea about VLAN and IPAM configuration you would like to
replicate in the new environment.

Before proceeding, you should have a list of the following IP address allocations to be used for the new
control plane services:

1 IP address, per isolated network, per Red Hat OpenShift Container Platform worker node.
(These addresses configure openshift worker nodes to NodeNetworkConfigurationPolicy
custom resources (CRs).) For more information, see Configuring Red Hat OpenShift Container
Platform worker nodes.

IP range, per isolated network, for the data plane nodes. (These ranges will configure data plane
nodes to NetConfig CRs.) For more information, see Configuring data plane nodes .

IP range, per isolated network, for control plane services. (These ranges will enable pod
connectivity to isolated networks to NetworkAttachmentDefinition CRs.) For more
information, see Configuring the networking for control plane services .

IP range, per isolated network, for load balancer IP addresses. (These ranges will define load
balancer IP addresses to IPAddressPool CRs for MetalLB.) For more information, see
Configuring the networking for control plane services .

IMPORTANT

Make sure you have the information listed above before proceeding with the next steps.

NOTE

The exact list and configuration of isolated networks in the examples listed below should
reflect the actual adopted environment. The number of isolated networks may differ from
the example below. IPAM scheme may differ. Only relevant parts of the configuration are
shown. Examples are incomplete and should be incorporated into the general
configuration for the new deployment, as described in the general Red Hat OpenStack
Platform documentation.

1.6.3.1. Configuring Red Hat OpenShift Container Platform worker nodes

Red Hat OpenShift Container Platform worker nodes that run Red Hat OpenStack Platform services
need a way to connect the service pods to isolated networks. This requires physical network
configuration on the hypervisor.

This configuration is managed by the NMState operator, which uses the custom resources (CRs) to
define the desired network configuration for the nodes.

For each node, define a NodeNetworkConfigurationPolicy CR that describes the desired network

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

14

For each node, define a NodeNetworkConfigurationPolicy CR that describes the desired network
configuration. See the example below.

apiVersion: v1
items:
- apiVersion: nmstate.io/v1
 kind: NodeNetworkConfigurationPolicy
 spec:
 interfaces:
 - description: internalapi vlan interface
 ipv4:
 address:
 - ip: 172.17.0.10
 prefix-length: 24
 dhcp: false
 enabled: true
 ipv6:
 enabled: false
 name: enp6s0.20
 state: up
 type: vlan
 vlan:
 base-iface: enp6s0
 id: 20
 reorder-headers: true
 - description: storage vlan interface
 ipv4:
 address:
 - ip: 172.18.0.10
 prefix-length: 24
 dhcp: false
 enabled: true
 ipv6:
 enabled: false
 name: enp6s0.21
 state: up
 type: vlan
 vlan:
 base-iface: enp6s0
 id: 21
 reorder-headers: true
 - description: tenant vlan interface
 ipv4:
 address:
 - ip: 172.19.0.10
 prefix-length: 24
 dhcp: false
 enabled: true
 ipv6:
 enabled: false
 name: enp6s0.22
 state: up
 type: vlan
 vlan:
 base-iface: enp6s0
 id: 22

CHAPTER 1. PLANNING THE NEW DEPLOYMENT

15

 reorder-headers: true
 nodeSelector:
 kubernetes.io/hostname: ocp-worker-0
 node-role.kubernetes.io/worker: ""

1.6.3.2. Configuring the networking for control plane services

Once NMState operator created the desired hypervisor network configuration for isolated networks, we
need to configure Red Hat OpenStack Platform (RHOSP) services to use configured interfaces. This is
achieved by defining NetworkAttachmentDefinition custom resources (CRs) for each isolated network.
(In some clusters, these CRs are managed by the Cluster Network Operator in which case Network CRs
should be used instead. For more information, see Cluster Network Operator in OpenShift Container
Platform 4.15 Documentation.)

For example,

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "internalapi",
 "type": "macvlan",
 "master": "enp6s0.20",
 "ipam": {
 "type": "whereabouts",
 "range": "172.17.0.0/24",
 "range_start": "172.17.0.20",
 "range_end": "172.17.0.50"
 }
 }

Make sure that the interface name and IPAM range match the configuration used in
NodeNetworkConfigurationPolicy CRs.

When reusing existing IP ranges, you may exclude part of the range defined by range_start and
range_end that was already consumed in the existing deployment. Please use exclude as follows.

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "internalapi",
 "type": "macvlan",
 "master": "enp6s0.20",
 "ipam": {
 "type": "whereabouts",
 "range": "172.17.0.0/24",
 "range_start": "172.17.0.20",
 "range_end": "172.17.0.50",
 "exclude": [
 "172.17.0.24/32",

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

16

https://docs.openshift.com/container-platform/4.15/networking/cluster-network-operator.html

 "172.17.0.44/31"
]
 }
 }

The example above would exclude addresses 172.17.0.24 as well as 172.17.0.44 and 172.17.0.45 from
the allocation pool.

Some RHOSP services require load balancer IP addresses. These IP addresses belong to the same IP
range as the control plane services, and are managed by MetalLB. The IP address pool is defined by
IPAllocationPool CRs. This pool should also be aligned with the adopted configuration.

For example,

- apiVersion: metallb.io/v1beta1
 kind: IPAddressPool
 spec:
 addresses:
 - 172.17.0.60-172.17.0.70

Define IPAddressPool CRs for each isolated network that requires load balancer IP addresses.

When reusing existing IP ranges, you may exclude part of the range by listing multiple addresses
entries.

For example,

- apiVersion: metallb.io/v1beta1
 kind: IPAddressPool
 spec:
 addresses:
 - 172.17.0.60-172.17.0.64
 - 172.17.0.66-172.17.0.70

The example above would exclude the 172.17.0.65 address from the allocation pool.

1.6.3.3. Configuring data plane nodes

A complete Red Hat OpenStack Platform (RHOSP) cluster consists of Red Hat OpenShift Container
Platform (RHOCP) nodes and data plane nodes. The former use NodeNetworkConfigurationPolicy
custom resource (CR) to configure physical interfaces. Since data plane nodes are not RHOCP nodes, a
different approach to configure their network connectivity is used.

Instead, data plane nodes are configured by dataplane-operator and its CRs. The CRs define desired
network configuration for the nodes.

In case of adoption, the configuration should reflect the existing network setup. You should be able to
pull net_config.yaml files from each node and reuse it when defining OpenstackDataplaneNodeSet.
The format of the configuration hasn’t changed (os-net-config is still being used under the hood), so
you should be able to put network templates under edpm_network_config_template variables (either
common for all nodes, or per-node).

To make sure the latest network configuration is used during the data plane adoption, you should also
set edpm_network_config_update: true in the nodeTemplate.

You will proceed with the data plane adoption once the RHOCP control plane is deployed in the RHOCP

CHAPTER 1. PLANNING THE NEW DEPLOYMENT

17

You will proceed with the data plane adoption once the RHOCP control plane is deployed in the RHOCP
cluster. When doing so, you will configure NetConfig and OpenstackDataplaneNodeSet CRs, using the
same VLAN tags and IPAM configuration as determined in the previous steps.

For example,

apiVersion: network.openstack.org/v1beta1
kind: NetConfig
metadata:
 name: netconfig
spec:
 networks:
 - name: internalapi
 dnsDomain: internalapi.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 172.17.0.250
 start: 172.17.0.100
 cidr: 172.17.0.0/24
 vlan: 20
 - name: storage
 dnsDomain: storage.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 172.18.0.250
 start: 172.18.0.100
 cidr: 172.18.0.0/24
 vlan: 21
 - name: tenant
 dnsDomain: tenant.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 172.19.0.250
 start: 172.19.0.100
 cidr: 172.19.0.0/24
 vlan: 22

List multiple allocationRanges entries to exclude some of the IP addresses, e.g. to accommodate for
addresses already consumed by the adopted environment.

apiVersion: network.openstack.org/v1beta1
kind: NetConfig
metadata:
 name: netconfig
spec:
 networks:
 - name: internalapi
 dnsDomain: internalapi.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 172.17.0.199
 start: 172.17.0.100

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

18

 - end: 172.17.0.250
 start: 172.17.0.201
 cidr: 172.17.0.0/24
 vlan: 20

The example above would exclude the 172.17.0.200 address from the pool.

1.7. STORAGE REQUIREMENTS

When looking into the storage in an Red Hat OpenStack Platform (RHOSP) deployment you can
differentiate two kinds, the storage requirements of the services themselves and the storage used for
the RHOSP users that the services will manage.

These requirements may drive your Red Hat OpenShift Container Platform (RHOCP) node selection, as
mentioned above, and may require you to do some preparations on the RHOCP nodes before you can
deploy the services.

1.7.1. Storage driver certification

Before you adopt your Red Hat OpenStack Platform 17.1 deployment to a Red Hat OpenStack Services
on OpenShift (RHOSO) 18.0 deployment, confirm that your deployed storage drivers are certified for
use with RHOSO 18.0.

1.7.2. Block Storage service requirements

The Block Storage service (cinder) has both local storage used by the service and Red Hat OpenStack
Platform (RHOSP) user requirements.

Local storage is used for example when downloading a Image Service (glance) image for the create
volume from image operation, which can become considerable when having concurrent operations and
not using the Block Storage service volume cache.

In the Operator deployed RHOSP, there is a way to configure the location of the conversion directory to
be an NFS share (using the extra volumes feature), something that needed to be done manually before.

Even if it’s an adoption and it may seem that there’s nothing to consider regarding the Block Storage
service backends, because you are using the same ones that you are using in your current deployment,
you should still evaluate it, because it may not be so straightforward.

First you need to check the transport protocol the Block Storage service backends are using: RBD, iSCSI,
FC, NFS, NVMe-oF, etc.

Once you know all the transport protocols that you are using, you can make sure that you are taking
them into consideration when placing the Block Storage services (as mentioned above in the Node
Roles section) and the right storage transport related binaries are running on the Red Hat OpenShift
Container Platform nodes.

Detailed information about the specifics for each storage transport protocol can be found in the Red
Hat OpenShift Container Platform preparation for Block Storage service adoption.

1.8. COMPARING CONFIGURATION FILES BETWEEN DEPLOYMENTS

In order to help users to handle the configuration for the director and Red Hat OpenStack Platform
services the tool: https://github.com/openstack-k8s-operators/os-diff has been develop to compare
the configuration files between the director deployment and the Red Hat OpenStack Services on

CHAPTER 1. PLANNING THE NEW DEPLOYMENT

19

https://github.com/openstack-k8s-operators/os-diff

OpenShift (RHOSO) cloud. Make sure Golang is installed and configured on your environment:

dnf install -y golang-github-openstack-k8s-operators-os-diff

Then configure the /etc/os-diff/os-diff.cfg file and the /etc/os-diff/ssh.config file according to your
environment. To allow os-diff to connect to your clouds and pull files from the services that you describe
in the config.yaml file you need to properly set the option in the os-diff.cfg file:

Os-diff uses ssh_cmd to access your director host via SSH, or the host where your cloud is accessible
and the podman/docker binary is installed and allowed to interact with the running containers. This
option could have a different form:

ssh_cmd=ssh -F ssh.config standalone
director_host=

ssh_cmd=ssh -F ssh.config
director_host=standalone

or without an SSH config file:

ssh_cmd=ssh -i /home/user/.ssh/id_rsa stack@my.undercloud.local
director_host=

or

ssh_cmd=ssh -i /home/user/.ssh/id_rsa stack@
director_host=my.undercloud.local

Note that the result of using ssh_cmd and director_host should be a "successful ssh access".

Configure or generate the ssh.config file from inventory or hosts file, for example:

[Default]

local_config_dir=/tmp/
service_config_file=config.yaml

[Tripleo]

ssh_cmd=ssh -F ssh.config
director_host=standalone
container_engine=podman
connection=ssh
remote_config_path=/tmp/tripleo
local_config_path=/tmp/

[Openshift]

ocp_local_config_path=/tmp/ocp
connection=local
ssh_cmd=""

Host *

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

20

Os-diff can use an ssh.config file for getting access to your Red Hat OpenStack Platform environment.
The following command can help you generate this SSH config file from your Ansible inventory, for
example, tripleo-ansible-inventory.yaml file:

os-diff configure -i tripleo-ansible-inventory.yaml -o ssh.config --yaml

NOTE

You must set the IdentityFile key in the file to get full working access:

Host standalone
 HostName standalone
 User root
 IdentityFile ~/.ssh/id_rsa
 StrictHostKeyChecking no
 UserKnownHostsFile /dev/null

Host undercloud
 HostName undercloud
 User root
 IdentityFile ~/.ssh/id_rsa
 StrictHostKeyChecking no
 UserKnownHostsFile /dev/null

And test your connection:

ssh -F ssh.config standalone

 IdentitiesOnly yes

Host virthost
 Hostname virthost
 IdentityFile ~/.ssh/id_rsa
 User root
 StrictHostKeyChecking no
 UserKnownHostsFile=/dev/null

Host standalone
 Hostname standalone
 IdentityFile <path to SSH key>
 User root
 StrictHostKeyChecking no
 UserKnownHostsFile=/dev/null

Host crc
 Hostname crc
 IdentityFile ~/.ssh/id_rsa
 User stack
 StrictHostKeyChecking no
 UserKnownHostsFile=/dev/null

CHAPTER 1. PLANNING THE NEW DEPLOYMENT

21

CHAPTER 2. MIGRATING TLS-E TO THE RHOSO
DEPLOYMENT

The Red Hat OpenStack Services on OpenShift (RHOSO) deployment adopts the settings from the
Red Hat OpenStack Platform (RHOSP) 17.1 deployment. If TLS everywhere (TLS-e) is disabled in the
RHOSP deployment, it is not enabled in the RHOSO deployment.

If the director deployment was deployed with TLS-e, FreeIPA (IdM) is used to issue certificates for the
RHOSP services. Certmonger, a client process which is installed on all hosts, interacts with FreeIPA
(IdM) to request, install, track and renew these certificates.

The RHOSO Operator-based deployment uses the cert-manager operator to issue, track, and renew
the certificates.

Because the same root certificate authority (CA) is used to generate new certificates, you do not have
to modify the currently used chain of trust. Disclaimer: the below steps were reproduced on a FreeIPA
4.10.1 server. The location of files and directories may slightly change on different versions.

These instructions explain how to extract the CA signing certificate from the FreeIPA instance that is
used to provide the certificates in the source environment and import it into certmanager for use in the
target environment. In this way, disruption on the Compute nodes can be minimized because a new
chain of trust need not be installed.

It is expected that the old FreeIPA node is then decommissioned and no longer used to issue
certificates. This might not be possible if the IPA server is used to issue certificates for non-RHOSP
systems.

This procedure will also need to be modified if the signing keys are stored in an hardware security module
(HSM) instead of an NSS shared database (NSSDB). In that case, if the key is retrievable, special HSM
utilities might be required.

Prerequisites

Your RHOSP deployment is using TLS-e.

Make sure the previous Adoption steps (if any) have been performed successfully.

Make sure the backend services on the new deployment are not started yet.

Define the following shell variables. The values that are used are examples and refer to a single
node standalone director deployment. Replace these example values with values that are
correct for your environment:

IPA_SSH="ssh -i <path_to_ssh_key> root@<freeipa-server-ip-address>"

Procedure

1. To locate the CA certificate and key, list all the certificates inside your NSSDB:

$IPA_SSH certutil -L -d /etc/pki/pki-tomcat/alias

The -L option lists all certificates, and -d specifies where they are stored. This will produce some
output like this:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

22

Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

caSigningCert cert-pki-ca CTu,Cu,Cu
ocspSigningCert cert-pki-ca u,u,u
Server-Cert cert-pki-ca u,u,u
subsystemCert cert-pki-ca u,u,u
auditSigningCert cert-pki-ca u,u,Pu

The item you need to consider is the first one: caSigningCert cert-pki-ca.

2. Export the certificate and key from the /etc/pki/pki-tomcat/alias directory:

$IPA_SSH pk12util -o /tmp/freeipa.p12 -n 'caSigningCert\ cert-pki-ca' -d /etc/pki/pki-
tomcat/alias -k /etc/pki/pki-tomcat/alias/pwdfile.txt -w /etc/pki/pki-tomcat/alias/pwdfile.txt

The command generates a P12 file with both the certificate and the key. The /etc/pki/pki-
tomcat/alias/pwdfile.txt file contains the password that protects the key. You can use it to both
extract the key and generate the new file, /tmp/freeipa.p12. You can also choose another
password. If you choose to apply a different password for the new file, replace the parameter of
the -w option, or use the -W (capital W) option followed by the password (in clear text).

With that file, you can also separately get the certificate and the key by using the openssl
pkcs12 command.

3. Create the secret that contains the root CA:

oc create secret generic rootca-internal -n openstack

4. Import the certificate and the key from FreeIPA:

oc patch secret rootca-internal -n openstack -p="{\"data\":{\"ca.crt\": \"`$IPA_SSH openssl
pkcs12 -in /tmp/freeipa.p12 -passin file:/etc/pki/pki-tomcat/alias/pwdfile.txt -nokeys | openssl
x509 | base64 -w 0`\"}}"

oc patch secret rootca-internal -n openstack -p="{\"data\":{\"tls.crt\": \"`$IPA_SSH openssl
pkcs12 -in /tmp/freeipa.p12 -passin file:/etc/pki/pki-tomcat/alias/pwdfile.txt -nokeys | openssl
x509 | base64 -w 0`\"}}"

oc patch secret rootca-internal -n openstack -p="{\"data\":{\"tls.key\": \"`$IPA_SSH openssl
pkcs12 -in /tmp/freeipa.p12 -passin file:/etc/pki/pki-tomcat/alias/pwdfile.txt -nocerts -noenc |
openssl rsa | base64 -w 0`\"}}"

5. Create the cert-manager Issuer and reference the created secret:

oc apply -f - <<EOF
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
 name: rootca-internal
 namespace: openstack
 labels:
 osp-rootca-issuer-public: ""
 osp-rootca-issuer-internal: ""
 osp-rootca-issuer-libvirt: ""

CHAPTER 2. MIGRATING TLS-E TO THE RHOSO DEPLOYMENT

23

6. Delete the previously created p12 files:

$IPA_SSH rm /tmp/freeipa.p12

7. Verify that the necessary resources were created by using the following commands:

oc get issuers -n openstack

oc get secret rootca-internal -n openstack -o yaml

NOTE

After the adoption procedure is finished, the cert-manager operator is responsible for
issuing and refreshing new certificates when they expire. However, since Compute
services are not restarted during adoption, you need to restart the data plane (Compute)
nodes before the certificates expire. Check the expiration dates of all certificates and
plan accordingly.

 osp-rootca-issuer-ovn: ""
spec:
 ca:
 secretName: rootca-internal
EOF

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

24

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL
PLANE

To begin creating the control plane, enable backend services and import the databases from your
original Red Hat OpenStack Platform 17.1 deployment.

3.1. RETRIEVING TOPOLOGY-SPECIFIC SERVICE CONFIGURATION

Prerequisites

Define the following shell variables. The values that are used are examples. Replace these
example values with values that are correct for your environment:

CONTROLLER_SSH="ssh -F ~/director_standalone/vagrant_ssh_config
vagrant@standalone"
MARIADB_IMAGE=registry.redhat.io/rhosp-dev-preview/openstack-mariadb-rhel9:18.0
SOURCE_MARIADB_IP=172.17.0.2
SOURCE_DB_ROOT_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep '
MysqlRootPassword:' | awk -F ': ' '{ print $2; }')
MARIADB_CLIENT_ANNOTATIONS='--annotations=k8s.v1.cni.cncf.io/networks=internalapi'

Procedure

1. Export shell variables for the following outputs to compare it with post-adoption values later on:
Test connection to the original database:

export PULL_OPENSTACK_CONFIGURATION_DATABASES=$(oc run mariadb-client
${MARIADB_CLIENT_ANNOTATIONS} -q --image ${MARIADB_IMAGE} -i --rm --
restart=Never -- \
 mysql -rsh "$SOURCE_MARIADB_IP" -uroot -p"$SOURCE_DB_ROOT_PASSWORD" -e
'SHOW databases;')
echo "$PULL_OPENSTACK_CONFIGURATION_DATABASES"

Note that the nova, nova_api, nova_cell0 databases reside in the same DB host.

2. Run mysqlcheck on the original database to look for inaccuracies:

export PULL_OPENSTACK_CONFIGURATION_MYSQLCHECK_NOK=$(oc run mariadb-
client ${MARIADB_CLIENT_ANNOTATIONS} -q --image ${MARIADB_IMAGE} -i --rm --
restart=Never -- \
 mysqlcheck --all-databases -h $SOURCE_MARIADB_IP -u root -
p"$SOURCE_DB_ROOT_PASSWORD" | grep -v OK)
echo "$PULL_OPENSTACK_CONFIGURATION_MYSQLCHECK_NOK"

3. Get the Compute service (nova) cells mappings from the database:

export PULL_OPENSTACK_CONFIGURATION_NOVADB_MAPPED_CELLS=$(oc run
mariadb-client ${MARIADB_CLIENT_ANNOTATIONS} -q --image ${MARIADB_IMAGE} -i --
rm --restart=Never -- \
 mysql -rsh "${SOURCE_MARIADB_IP}" -uroot -p"${SOURCE_DB_ROOT_PASSWORD}"
nova_api -e \
 'select uuid,name,transport_url,database_connection,disabled from cell_mappings;')
echo "$PULL_OPENSTACK_CONFIGURATION_NOVADB_MAPPED_CELLS"

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE

25

4. Get the host names of the registered Compute services:

export PULL_OPENSTACK_CONFIGURATION_NOVA_COMPUTE_HOSTNAMES=$(oc
run mariadb-client ${MARIADB_CLIENT_ANNOTATIONS} -q --image ${MARIADB_IMAGE}
-i --rm --restart=Never -- \
 mysql -rsh "$SOURCE_MARIADB_IP" -uroot -p"$SOURCE_DB_ROOT_PASSWORD"
nova_api -e \
 "select host from nova.services where services.binary='nova-compute';")
echo "$PULL_OPENSTACK_CONFIGURATION_NOVA_COMPUTE_HOSTNAMES"

5. Get the list of mapped the Compute service cells:

export
PULL_OPENSTACK_CONFIGURATION_NOVAMANAGE_CELL_MAPPINGS=$($CONTRO
LLER_SSH sudo podman exec -it nova_api nova-manage cell_v2 list_cells)
echo "$PULL_OPENSTACK_CONFIGURATION_NOVAMANAGE_CELL_MAPPINGS"

After the source control plane services shutdown, if either of the exported values lost, it could be
no longer evaluated again. Preserving the exported values in an environment file should protect
you from such a situation.

6. Store exported variables for future use:

cat > ~/.source_cloud_exported_variables << EOF
PULL_OPENSTACK_CONFIGURATION_DATABASES="$(oc run mariadb-client
${MARIADB_CLIENT_ANNOTATIONS} -q --image ${MARIADB_IMAGE} -i --rm --
restart=Never -- \
 mysql -rsh $SOURCE_MARIADB_IP -uroot -p$SOURCE_DB_ROOT_PASSWORD -e
'SHOW databases;')"
PULL_OPENSTACK_CONFIGURATION_MYSQLCHECK_NOK="$(oc run mariadb-client
${MARIADB_CLIENT_ANNOTATIONS} -q --image ${MARIADB_IMAGE} -i --rm --
restart=Never -- \
 mysqlcheck --all-databases -h $SOURCE_MARIADB_IP -u root -
p$SOURCE_DB_ROOT_PASSWORD | grep -v OK)"
PULL_OPENSTACK_CONFIGURATION_NOVADB_MAPPED_CELLS="$(oc run mariadb-
client ${MARIADB_CLIENT_ANNOTATIONS} -q --image ${MARIADB_IMAGE} -i --rm --
restart=Never -- \
 mysql -rsh $SOURCE_MARIADB_IP -uroot -p$SOURCE_DB_ROOT_PASSWORD
nova_api -e \
 'select uuid,name,transport_url,database_connection,disabled from cell_mappings;')"
PULL_OPENSTACK_CONFIGURATION_NOVA_COMPUTE_HOSTNAMES="$(oc run
mariadb-client ${MARIADB_CLIENT_ANNOTATIONS} -q --image ${MARIADB_IMAGE} -i --
rm --restart=Never -- \
 mysql -rsh $SOURCE_MARIADB_IP -uroot -p$SOURCE_DB_ROOT_PASSWORD
nova_api -e \
 "select host from nova.services where services.binary='nova-compute';")"
PULL_OPENSTACK_CONFIGURATION_NOVAMANAGE_CELL_MAPPINGS="$($CONTR
OLLER_SSH sudo podman exec -it nova_api nova-manage cell_v2 list_cells)"
EOF
chmod 0600 ~/.source_cloud_exported_variables

7. Optional: If there are neutron-sriov-nic-agent agents running in the deployment, get its
configuration:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

26

podman run -i --rm --userns=keep-id -u $UID $MARIADB_IMAGE mysql \
 -rsh "$SOURCE_MARIADB_IP" -uroot -p"$SOURCE_DB_ROOT_PASSWORD"
ovs_neutron -e \
 "select host, configurations from agents where agents.binary='neutron-sriov-nic-agent';"

This configuration will be required later, during the data plane adoption.

3.2. DEPLOYING BACKEND SERVICES

Create the OpenStackControlPlane custom resource (CR) with basic backend services deployed, and
all the Red Hat OpenStack Platform (RHOSP) services disabled. This will be the foundation of the
control plane.

In subsequent steps, you import the original databases and then add RHOSP control plane services.

Prerequisites

The cloud that you want to adopt is up and running, and it is on the RHOSP 17.1 release.

All control plane and data plane hosts of the source cloud are up and running, and continue to
run throughout the adoption procedure.

The openstack-operator is deployed, but OpenStackControlPlane is not deployed. For
production environments, the deployment method will likely be different.

If TLS Everywhere is enabled on the source environment, the tls root CA from the source
environment must be copied over to the rootca-internal issuer.

There are free PVs available to be claimed (for MariaDB and RabbitMQ).

Set the desired admin password for the control plane deployment. This can be the original
deployment’s admin password or something else.

ADMIN_PASSWORD=SomePassword

To use the existing RHOSP deployment password:

ADMIN_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep ' AdminPassword:' |
awk -F ': ' '{ print $2; }')

Set service password variables to match the original deployment. Database passwords can
differ in the control plane environment, but synchronizing the service account passwords is a
required step.
For example, in developer environments with director Standalone, the passwords can be
extracted like this:

AODH_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep ' AodhPassword:' |
awk -F ': ' '{ print $2; }')
BARBICAN_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep '
BarbicanPassword:' | awk -F ': ' '{ print $2; }')
CEILOMETER_METERING_SECRET=$(cat ~/tripleo-standalone-passwords.yaml | grep '
CeilometerMeteringSecret:' | awk -F ': ' '{ print $2; }')
CEILOMETER_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep '
CeilometerPassword:' | awk -F ': ' '{ print $2; }')

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE

27

CINDER_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep ' CinderPassword:'
| awk -F ': ' '{ print $2; }')
GLANCE_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep '
GlancePassword:' | awk -F ': ' '{ print $2; }')
HEAT_AUTH_ENCRYPTION_KEY=$(cat ~/tripleo-standalone-passwords.yaml | grep '
HeatAuthEncryptionKey:' | awk -F ': ' '{ print $2; }')
HEAT_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep ' HeatPassword:' |
awk -F ': ' '{ print $2; }')
IRONIC_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep ' IronicPassword:' |
awk -F ': ' '{ print $2; }')
MANILA_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep ' ManilaPassword:'
| awk -F ': ' '{ print $2; }')
NEUTRON_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep '
NeutronPassword:' | awk -F ': ' '{ print $2; }')
NOVA_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep ' NovaPassword:' |
awk -F ': ' '{ print $2; }')
OCTAVIA_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep '
OctaviaPassword:' | awk -F ': ' '{ print $2; }')
PLACEMENT_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep '
PlacementPassword:' | awk -F ': ' '{ print $2; }')
SWIFT_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep ' SwiftPassword:' |
awk -F ': ' '{ print $2; }')

Procedure

1. Make sure you are using the Red Hat OpenShift Container Platform namespace where you want
the control plane deployed:

oc project openstack

2. Create OSP secret.

3. If the $ADMIN_PASSWORD is different than the already set password in osp-secret, amend
the AdminPassword key in the osp-secret correspondingly:

oc set data secret/osp-secret "AdminPassword=$ADMIN_PASSWORD"

4. Set service account passwords in osp-secret to match the service account passwords from the
original deployment:

oc set data secret/osp-secret "AodhPassword=$AODH_PASSWORD"
oc set data secret/osp-secret "BarbicanPassword=$BARBICAN_PASSWORD"
oc set data secret/osp-secret
"CeilometerMeteringSecret=$CEILOMETER_METERING_SECRET"
oc set data secret/osp-secret "CeilometerPassword=$CEILOMETER_PASSWORD"
oc set data secret/osp-secret "CinderPassword=$CINDER_PASSWORD"
oc set data secret/osp-secret "GlancePassword=$GLANCE_PASSWORD"
oc set data secret/osp-secret "HeatAuthEncryptionKey=$HEAT_AUTH_ENCRYPTION_KEY"
oc set data secret/osp-secret "HeatPassword=$HEAT_PASSWORD"
oc set data secret/osp-secret "IronicPassword=$IRONIC_PASSWORD"
oc set data secret/osp-secret "IronicInspectorPassword=$IRONIC_PASSWORD"
oc set data secret/osp-secret "ManilaPassword=$MANILA_PASSWORD"
oc set data secret/osp-secret "NeutronPassword=$NEUTRON_PASSWORD"
oc set data secret/osp-secret "NovaPassword=$NOVA_PASSWORD"

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

28

oc set data secret/osp-secret "OctaviaPassword=$OCTAVIA_PASSWORD"
oc set data secret/osp-secret "PlacementPassword=$PLACEMENT_PASSWORD"
oc set data secret/osp-secret "SwiftPassword=$SWIFT_PASSWORD"

5. Deploy OpenStackControlPlane. Make sure to only enable DNS, MariaDB, Memcached, and
RabbitMQ services. All other services must be disabled.

6. If the source environment enables TLS Everywhere, modify spec:tls section with the following
override before applying it:

7. If the source environment does not enable TLS Everywhere, modify spec:tls section with the
following override before applying it:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack
spec:
 tls:
 podLevel:
 enabled: true
 internal:
 ca:
 customIssuer: rootca-internal
 libvirt:
 ca:
 customIssuer: rootca-internal
 ovn:
 ca:
 customIssuer: rootca-internal
 ingress:
 ca:
 customIssuer: rootca-internal
 enabled: true

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack
spec:
 tls:
 podLevel:
 enabled: false

oc apply -f - <<EOF
apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack
spec:
 secret: osp-secret
 storageClass: local-storage

 barbican:
 enabled: false

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE

29

 template:
 barbicanAPI: {}
 barbicanWorker: {}
 barbicanKeystoneListener: {}

 cinder:
 enabled: false
 template:
 cinderAPI: {}
 cinderScheduler: {}
 cinderBackup: {}
 cinderVolumes: {}

 dns:
 template:
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: ctlplane
 metallb.universe.tf/allow-shared-ip: ctlplane
 metallb.universe.tf/loadBalancerIPs: 192.168.122.80
 spec:
 type: LoadBalancer
 options:
 - key: server
 values:
 - 192.168.122.1
 replicas: 1

 glance:
 enabled: false
 template:
 glanceAPIs: {}

 heat:
 enabled: false
 template: {}

 horizon:
 enabled: false
 template: {}

 ironic:
 enabled: false
 template:
 ironicConductors: []

 keystone:
 enabled: false
 template: {}

 manila:
 enabled: false
 template:
 manilaAPI: {}

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

30

 manilaScheduler: {}
 manilaShares: {}

 mariadb:
 enabled: false
 templates: {}

 galera:
 enabled: true
 templates:
 openstack:
 secret: osp-secret
 replicas: 1
 storageRequest: 500M
 openstack-cell1:
 secret: osp-secret
 replicas: 1
 storageRequest: 500M

 memcached:
 enabled: true
 templates:
 memcached:
 replicas: 1

 neutron:
 enabled: false
 template: {}

 nova:
 enabled: false
 template: {}

 ovn:
 enabled: false
 template:
 ovnController:
 networkAttachment: tenant
 nodeSelector:
 node: non-existing-node-name
 ovnNorthd:
 replicas: 0
 ovnDBCluster:
 ovndbcluster-nb:
 dbType: NB
 networkAttachment: internalapi
 ovndbcluster-sb:
 dbType: SB
 networkAttachment: internalapi

 placement:
 enabled: false
 template: {}

 rabbitmq:
 templates:

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE

31

Verification

Check that MariaDB is running.

oc get pod openstack-galera-0 -o jsonpath='{.status.phase}{"\n"}'
oc get pod openstack-cell1-galera-0 -o jsonpath='{.status.phase}{"\n"}'

3.3. CONFIGURING A CEPH BACKEND

If the original deployment uses a Ceph storage backend for any service (e.g. Image Service (glance),
Block Storage service (cinder), Compute service (nova), Shared File Systems service (manila)), the
same backend must be used in the adopted deployment and custom resources (CRs) must be
configured accordingly.

If you use Shared File Systems service (manila), on director environments, the CephFS driver in Shared
File Systems service is configured to use its own keypair. For convenience, modify the openstack user
so that you can use it across all Red Hat OpenStack Platform services.

Using the same user across the services serves two purposes:

The capabilities of the user required to interact with Shared File Systems service became far

 rabbitmq:
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.85
 spec:
 type: LoadBalancer
 rabbitmq-cell1:
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.86
 spec:
 type: LoadBalancer

 telemetry:
 enabled: false
 template: {}

 swift:
 enabled: false
 template:
 swiftRing:
 ringReplicas: 1
 swiftStorage:
 replicas: 0
 swiftProxy:
 replicas: 1
EOF

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

32

The capabilities of the user required to interact with Shared File Systems service became far
simpler and hence, more became more secure with RHOSO 18.0.

It is simpler to create a common ceph secret (keyring and ceph config file) and propagate the
secret to all services that need it.

TIP

To run ceph commands, you must use SSH to connect to a Ceph storage node and run sudo cephadm
shell. This brings up a ceph orchestrator container that allows you to run administrative commands
against the ceph cluster. If you deployed the ceph cluster by using director, you may launch the
cephadm shell from an RHOSP controller node.

ceph auth caps client.openstack \
 mgr 'allow *' \
 mon 'allow r, profile rbd' \
 osd 'profile rbd pool=vms, profile rbd pool=volumes, profile rbd pool=images, allow rw pool
manila_data'

Prerequisites

The OpenStackControlPlane custom resource (CR) must already exist.

Define the following shell variables. The values that are used are examples. Replace these
example values with values that are correct for your environment:

CEPH_SSH="ssh -i <path to SSH key> root@<node IP>"
CEPH_KEY=$($CEPH_SSH "cat /etc/ceph/ceph.client.openstack.keyring | base64 -w 0")
CEPH_CONF=$($CEPH_SSH "cat /etc/ceph/ceph.conf | base64 -w 0")

Procedure

1. Create the ceph-conf-files secret, containing Ceph configuration:

oc apply -f - <<EOF
apiVersion: v1
data:
 ceph.client.openstack.keyring: $CEPH_KEY
 ceph.conf: $CEPH_CONF
kind: Secret
metadata:
 name: ceph-conf-files
 namespace: openstack
type: Opaque
EOF

The content of the file should look something like this:

apiVersion: v1
kind: Secret
metadata:
 name: ceph-conf-files
 namespace: openstack

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE

33

2. Configure extraMounts within the OpenStackControlPlane CR:

3.4. CREATING A NFS GANESHA CLUSTER

If you use the Ceph via NFS backend with Shared File Systems service (manila), prior to adoption, you
must create a new clustered NFS service on the Ceph cluster. This service will replace the standalone,
pacemaker-controlled ceph-nfs service that was used on Red Hat OpenStack Platform 17.1.

Procedure

1. You must identify the ceph nodes to deploy the new clustered NFS service.This service must be
deployed on the StorageNFS isolated network so that it is easier for clients to mount their
existing shares through the new NFS export locations.

2. You must propagate the StorageNFS network to the target nodes where the ceph-nfs service
will be deployed. The following steps will be relevant if the Ceph Storage nodes were deployed
via director.

stringData:
 ceph.client.openstack.keyring: |
 [client.openstack]
 key = <secret key>
 caps mgr = "allow *"
 caps mon = "allow r, profile rbd"
 caps osd = "pool=vms, profile rbd pool=volumes, profile rbd pool=images, allow rw pool
manila_data'
 ceph.conf: |
 [global]
 fsid = 7a1719e8-9c59-49e2-ae2b-d7eb08c695d4
 mon_host = 10.1.1.2,10.1.1.3,10.1.1.4

oc patch openstackcontrolplane openstack --type=merge --patch '
spec:
 extraMounts:
 - name: v1
 region: r1
 extraVol:
 - propagation:
 - CinderVolume
 - CinderBackup
 - GlanceAPI
 - ManilaShare
 extraVolType: Ceph
 volumes:
 - name: ceph
 projected:
 sources:
 - secret:
 name: ceph-conf-files
 mounts:
 - name: ceph
 mountPath: "/etc/ceph"
 readOnly: true
'

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

34

a. Identify the node definition file used in the environment. This is the input file associated
with the openstack overcloud node provision command. For example, this file may be
called overcloud-baremetal-deploy.yaml

b. Edit the networks associated with the Red Hat Ceph Storage nodes to include the
StorageNFS network:

c. Edit the network configuration template file for the Red Hat Ceph Storage nodes to include
an interface connecting to the StorageNFS network. In the example above, the path to the
network configuration template file is /home/stack/network/nic-configs/ceph-storage.j2.
This file is modified to include the following NIC template:

d. Re-run the openstack overcloud node provision command to update the Red Hat Ceph
Storage nodes.

openstack overcloud node provision \
 --stack overcloud \
 --network-config -y \
 -o overcloud-baremetal-deployed-storage_nfs.yaml \
 --concurrency 2 \
 /home/stack/network/baremetal_deployment.yaml

When the update is complete, ensure that the Red Hat Ceph Storage nodes have a new
interface created and tagged with the appropriate VLAN associated with StorageNFS.

3. Identify an IP address from the StorageNFS network to use as the Virtual IP address for the

- name: CephStorage
 count: 3
 hostname_format: cephstorage-%index%
 instances:
 - hostname: cephstorage-0
 name: ceph-0
 - hostname: cephstorage-1
 name: ceph-1
 - hostname: cephstorage-2
 name: ceph-2
 defaults:
 profile: ceph-storage
 network_config:
 template: /home/stack/network/nic-configs/ceph-storage.j2
 network_config_update: true
 networks:
 - network: ctlplane
 vif: true
 - network: storage
 - network: storage_mgmt
 - network: storage_nfs

- type: vlan
 device: nic2
 vlan_id: {{ storage_nfs_vlan_id }}
 addresses:
 - ip_netmask: {{ storage_nfs_ip }}/{{ storage_nfs_cidr }}
 routes: {{ storage_nfs_host_routes }}

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE

35

3. Identify an IP address from the StorageNFS network to use as the Virtual IP address for the
Ceph NFS service. This IP address must be provided in place of the {{ VIP }} in the example
below. You can query used IP addresses with:

openstack port list -c "Fixed IP Addresses" --network storage_nfs

Pick an appropriate size for the NFS cluster. The NFS service provides active/active high
availability when the cluster size is more than one node. It is recommended that the ``{{
cluster_size }}`` is at least one less than the number of hosts identified. This solution has
been well tested with a 3-node NFS cluster.

The ingress-mode argument must be set to ``haproxy-protocol``. No other ingress-mode
will be supported. This ingress mode will allow enforcing client restrictions through Shared
File Systems service. For more information on deploying the clustered Ceph NFS service,
see the Management of NFS-Ganesha gateway using the Ceph Orchestrator (Limited
Availability) in Red Hat Ceph Storage 7 Operations Guide .

The following commands are run inside a cephadm shell to create a clustered Ceph NFS
service.

wait for shell to come up, then execute:
ceph orch host ls

Identify the hosts that can host the NFS service.
Repeat the following command to label each host identified:
ceph orch host label add <HOST> nfs

Set the appropriate {{ cluster_size }} and {{ VIP }}:
ceph nfs cluster create cephfs \
 "{{ cluster_size }} label:nfs" \
 --ingress \
 --virtual-ip={{ VIP }}
 --ingress-mode=haproxy-protocol
}}

Check the status of the nfs cluster with these commands
ceph nfs cluster ls
ceph nfs cluster info cephfs

3.5. STOPPING RED HAT OPENSTACK PLATFORM SERVICES

Before you start the adoption, you must stop the Red Hat OpenStack Platform (RHOSP) services.

This is an important step to avoid inconsistencies in the data migrated for the data-plane adoption
procedure caused by resource changes after the DB has been copied to the new deployment.

Some services are easy to stop because they only perform short asynchronous operations, but other
services are a bit more complex to gracefully stop because they perform synchronous or long running
operations that you might want to complete instead of aborting them.

Since gracefully stopping all services is non-trivial and beyond the scope of this guide, the following
procedure uses the force method and presents recommendations on how to check some things in the
services.

Note that you should not stop the infrastructure management services yet, such as:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

36

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html-single/operations_guide/index#management-of-nfs-ganesha-gateway-using-the-ceph-orchestrator

database

RabbitMQ

HAProxy Load Balancer

ceph-nfs

Compute service

containerized modular libvirt daemons

Object Storage service (swift) backend services

Prerequisites

Confirm that there no long-running operations that require the services you plan to stop.

Ensure that there are no ongoing instance live migrations, volume migrations (online or offline),
volume creation, backup restore, attaching, detaching, and so on.

openstack server list --all-projects -c ID -c Status |grep -E '\| .+ing \|'
openstack volume list --all-projects -c ID -c Status |grep -E '\| .+ing \|'| grep -vi error
openstack volume backup list --all-projects -c ID -c Status |grep -E '\| .+ing \|' | grep -vi error
openstack share list --all-projects -c ID -c Status |grep -E '\| .+ing \|'| grep -vi error
openstack image list -c ID -c Status |grep -E '\| .+ing \|'

Collect the services topology-specific configuration before stopping services required to
gather it live. The topology-specific configuration is necessary for migrating the databases. For
more information, see Retrieving topology-specific service configuration .

Define the following shell variables. The values that are used are examples and refer to a single
node standalone director deployment. Replace these example values with values that are
correct for your environment:

CONTROLLER1_SSH="ssh -i <path to SSH key> root@<node IP>"
CONTROLLER2_SSH=""
CONTROLLER3_SSH=""

Procedure

You can stop RHOSP services at any moment, but you might leave your environment in an undesired
state. You should confirm that there are no ongoing operations.

1. Connect to all the controller nodes.

2. Remove any constraints between infrastructure and RHOSP control plane services.

3. Stop the control plane services.

4. Verify the control plane services are stopped.

The cinder-backup service on RHOSP 17.1 could be running as Active-Passive under pacemaker or as
Active-Active, so you must check how it is running and stop it.

If the deployment enables CephFS through NFS as a backend for Shared File Systems service (manila),

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE

37

there are pacemaker ordering and co-location constraints that govern the Virtual IP address assigned to
the ceph-nfs service, the ceph-nfs service itself and manila-share service. These constraints must be
removed:

check the co-location and ordering constraints concerning "manila-share"
sudo pcs constraint list --full

remove these constraints
sudo pcs constraint remove colocation-openstack-manila-share-ceph-nfs-INFINITY
sudo pcs constraint remove order-ceph-nfs-openstack-manila-share-Optional

The following steps to disable RHOSP control plane services can be automated with a simple script that
relies on the previously defined environmental variables and function:

Update the services list to be stopped
ServicesToStop=("tripleo_horizon.service"
 "tripleo_keystone.service"
 "tripleo_barbican_api.service"
 "tripleo_barbican_worker.service"
 "tripleo_barbican_keystone_listener.service"
 "tripleo_cinder_api.service"
 "tripleo_cinder_api_cron.service"
 "tripleo_cinder_scheduler.service"
 "tripleo_cinder_volume.service"
 "tripleo_cinder_backup.service"
 "tripleo_glance_api.service"
 "tripleo_manila_api.service"
 "tripleo_manila_api_cron.service"
 "tripleo_manila_scheduler.service"
 "tripleo_neutron_api.service"
 "tripleo_placement_api.service"
 "tripleo_nova_api_cron.service"
 "tripleo_nova_api.service"
 "tripleo_nova_conductor.service"
 "tripleo_nova_metadata.service"
 "tripleo_nova_scheduler.service"
 "tripleo_nova_vnc_proxy.service"
 "tripleo_aodh_api.service"
 "tripleo_aodh_api_cron.service"
 "tripleo_aodh_evaluator.service"
 "tripleo_aodh_listener.service"
 "tripleo_aodh_notifier.service"
 "tripleo_ceilometer_agent_central.service"
 "tripleo_ceilometer_agent_compute.service"
 "tripleo_ceilometer_agent_ipmi.service"
 "tripleo_ceilometer_agent_notification.service"
 "tripleo_ovn_cluster_northd.service"
 "tripleo_ironic_neutron_agent.service"
 "tripleo_ironic_api.service"
 "tripleo_ironic_inspector.service"
 "tripleo_ironic_conductor.service")

PacemakerResourcesToStop=("openstack-cinder-volume"
 "openstack-cinder-backup"
 "openstack-manila-share")

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

38

echo "Stopping systemd OpenStack services"
for service in ${ServicesToStop[*]}; do
 for i in {1..3}; do
 SSH_CMD=CONTROLLER${i}_SSH
 if [! -z "${!SSH_CMD}"]; then
 echo "Stopping the $service in controller $i"
 if ${!SSH_CMD} sudo systemctl is-active $service; then
 ${!SSH_CMD} sudo systemctl stop $service
 fi
 fi
 done
done

echo "Checking systemd OpenStack services"
for service in ${ServicesToStop[*]}; do
 for i in {1..3}; do
 SSH_CMD=CONTROLLER${i}_SSH
 if [! -z "${!SSH_CMD}"]; then
 if ! ${!SSH_CMD} systemctl show $service | grep ActiveState=inactive >/dev/null; then
 echo "ERROR: Service $service still running on controller $i"
 else
 echo "OK: Service $service is not running on controller $i"
 fi
 fi
 done
done

echo "Stopping pacemaker OpenStack services"
for i in {1..3}; do
 SSH_CMD=CONTROLLER${i}_SSH
 if [! -z "${!SSH_CMD}"]; then
 echo "Using controller $i to run pacemaker commands"
 for resource in ${PacemakerResourcesToStop[*]}; do
 if ${!SSH_CMD} sudo pcs resource config $resource &>/dev/null; then
 echo "Stopping $resource"
 ${!SSH_CMD} sudo pcs resource disable $resource
 else
 echo "Service $resource not present"
 fi
 done
 break
 fi
done

echo "Checking pacemaker OpenStack services"
for i in {1..3}; do
 SSH_CMD=CONTROLLER${i}_SSH
 if [! -z "${!SSH_CMD}"]; then
 echo "Using controller $i to run pacemaker commands"
 for resource in ${PacemakerResourcesToStop[*]}; do
 if ${!SSH_CMD} sudo pcs resource config $resource &>/dev/null; then
 if ! ${!SSH_CMD} sudo pcs resource status $resource | grep Started; then
 echo "OK: Service $resource is stopped"
 else
 echo "ERROR: Service $resource is started"

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE

39

 fi
 fi
 done
 break
 fi
done

3.6. MIGRATING DATABASES TO MARIADB INSTANCES

This document describes how to move the databases from the original Red Hat OpenStack Platform
(RHOSP) deployment to the MariaDB instances in the Red Hat OpenShift Container Platform cluster.

NOTE

This example scenario describes a simple single-cell setup. Real multi-stack topology
recommended for production use results in different cells DBs layout, and should be
using different naming schemes (not covered here this time).

Prerequisites

Make sure the previous Adoption steps have been performed successfully.

The OpenStackControlPlane resource must be already created.

The control plane MariaDB and RabbitMQ are running. No other control plane services are
running.

Required services specific topology. For more information, see Retrieving topology-specific
service configuration.

RHOSP services have been stopped. For more information, see Stopping Red Hat
OpenStack Platform services.

There must be network routability between the original MariaDB and the MariaDB for the
control plane.

Define the following shell variables. The values that are used are examples. Replace these
example values with values that are correct for your environment:

PODIFIED_MARIADB_IP=$(oc get svc --selector "mariadb/name=openstack" -
ojsonpath='{.items[0].spec.clusterIP}')
PODIFIED_CELL1_MARIADB_IP=$(oc get svc --selector "mariadb/name=openstack-cell1" -
ojsonpath='{.items[0].spec.clusterIP}')
PODIFIED_DB_ROOT_PASSWORD=$(oc get -o json secret/osp-secret | jq -r
.data.DbRootPassword | base64 -d)

The CHARACTER_SET and collation should match the source DB
if the do not then it will break foreign key relationships
for any tables that are created in the future as part of db sync
CHARACTER_SET=utf8
COLLATION=utf8_general_ci

STORAGE_CLASS=local-storage
MARIADB_IMAGE=registry.redhat.io/rhosp-dev-preview/openstack-mariadb-rhel9:18.0
Replace with your environment's MariaDB Galera cluster VIP and backend IPs:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

40

SOURCE_MARIADB_IP=172.17.0.2
declare -A SOURCE_GALERA_MEMBERS
SOURCE_GALERA_MEMBERS=(
 ["standalone.localdomain"]=172.17.0.100
 # ...
)
SOURCE_DB_ROOT_PASSWORD=$(cat ~/tripleo-standalone-passwords.yaml | grep '
MysqlRootPassword:' | awk -F ': ' '{ print $2; }')

Prepare MariaDB copy directory and the adoption helper pod

Create a temporary folder to store adoption helper pod (pick storage requests to fit MySQL
database size):

mkdir ~/adoption-db
cd ~/adoption-db

oc apply -f - <<EOF

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mariadb-data
spec:
 storageClassName: $STORAGE_CLASS
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

apiVersion: v1
kind: Pod
metadata:
 name: mariadb-copy-data
 annotations:
 openshift.io/scc: anyuid
 k8s.v1.cni.cncf.io/networks: internalapi
 labels:
 app: adoption
spec:
 containers:
 - image: $MARIADB_IMAGE
 command: ["sh", "-c", "sleep infinity"]
 name: adoption
 volumeMounts:
 - mountPath: /backup
 name: mariadb-data
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: ALL
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE

41

Wait for the pod to come up

oc wait --for condition=Ready pod/mariadb-copy-data --timeout=30s

Procedure

1. Check that the source Galera database cluster members are online and synced:

for i in "${!SOURCE_GALERA_MEMBERS[@]}"; do
 echo "Checking for the database node $i WSREP status Synced"
 oc rsh mariadb-copy-data mysql \
 -h "${SOURCE_GALERA_MEMBERS[$i]}" -uroot -
p"$SOURCE_DB_ROOT_PASSWORD" \
 -e "show global status like 'wsrep_local_state_comment'" | \
 grep -qE "\bSynced\b"
done

2. Get the count of not-OK source databases:

oc rsh mariadb-copy-data mysql -h "${SOURCE_MARIADB_IP}" -uroot -
p"${SOURCE_DB_ROOT_PASSWORD}" -e "SHOW databases;"

3. Run mysqlcheck on the original DB to look for things that are not OK:

. ~/.source_cloud_exported_variables
test -z "$PULL_OPENSTACK_CONFIGURATION_MYSQLCHECK_NOK" || [
"$PULL_OPENSTACK_CONFIGURATION_MYSQLCHECK_NOK" = " "]

4. Test connection to control plane DBs (show databases):

oc run mariadb-client --image $MARIADB_IMAGE -i --rm --restart=Never -- \
 mysql -rsh "$PODIFIED_MARIADB_IP" -uroot -p"$PODIFIED_DB_ROOT_PASSWORD" -
e 'SHOW databases;'
oc run mariadb-client --image $MARIADB_IMAGE -i --rm --restart=Never -- \
 mysql -rsh "$PODIFIED_CELL1_MARIADB_IP" -uroot -
p"$PODIFIED_DB_ROOT_PASSWORD" -e 'SHOW databases;'

NOTE

You need to transition Compute service (nova) services imported later on into a
superconductor architecture. For that, delete the old service records in cells DBs,
starting from the cell1. New records will be registered with different hostnames
provided by the Compute service service operator. All Compute service services,
except the compute agent, have no internal state, and its service records can be
safely deleted. You also need to rename the former default cell to cell1.

5. Create a dump of the original databases:

 volumes:
 - name: mariadb-data
 persistentVolumeClaim:
 claimName: mariadb-data
EOF

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

42

oc rsh mariadb-copy-data << EOF
 mysql -h"${SOURCE_MARIADB_IP}" -uroot -p"${SOURCE_DB_ROOT_PASSWORD}" \
 -N -e "show databases" | grep -E -v "schema|mysql|gnocchi" | \
 while read dbname; do
 echo "Dumping \${dbname}";
 mysqldump -h"${SOURCE_MARIADB_IP}" -uroot -
p"${SOURCE_DB_ROOT_PASSWORD}" \
 --single-transaction --complete-insert --skip-lock-tables --lock-tables=0 \
 "\${dbname}" > /backup/"\${dbname}".sql;
 done
EOF

6. Restore the databases from .sql files into the control plane MariaDB:

oc rsh mariadb-copy-data << EOF
 # db schemas to rename on import
 declare -A db_name_map
 db_name_map['nova']='nova_cell1'
 db_name_map['ovs_neutron']='neutron'
 db_name_map['ironic-inspector']='ironic_inspector'

 # db servers to import into
 declare -A db_server_map
 db_server_map['default']=${PODIFIED_MARIADB_IP}
 db_server_map['nova_cell1']=${PODIFIED_CELL1_MARIADB_IP}

 # db server root password map
 declare -A db_server_password_map
 db_server_password_map['default']=${PODIFIED_DB_ROOT_PASSWORD}
 db_server_password_map['nova_cell1']=${PODIFIED_DB_ROOT_PASSWORD}

 cd /backup
 for db_file in \$(ls *.sql); do
 db_name=\$(echo \${db_file} | awk -F'.' '{ print \$1; }')
 if [[-v "db_name_map[\${db_name}]"]]; then
 echo "renaming \${db_name} to \${db_name_map[\${db_name}]}"
 db_name=\${db_name_map[\${db_name}]}
 fi
 db_server=\${db_server_map["default"]}
 if [[-v "db_server_map[\${db_name}]"]]; then
 db_server=\${db_server_map[\${db_name}]}
 fi
 db_password=\${db_server_password_map['default']}
 if [[-v "db_server_password_map[\${db_name}]"]]; then
 db_password=\${db_server_password_map[\${db_name}]}
 fi
 echo "creating \${db_name} in \${db_server}"
 mysql -h"\${db_server}" -uroot "-p\${db_password}" -e \
 "CREATE DATABASE IF NOT EXISTS \${db_name} DEFAULT \
 CHARACTER SET ${CHARACTER_SET} DEFAULT COLLATE ${COLLATION};"
 echo "importing \${db_name} into \${db_server}"
 mysql -h "\${db_server}" -uroot "-p\${db_password}" "\${db_name}" < "\${db_file}"
 done

 mysql -h "\${db_server_map['default']}" -uroot -p"\${db_server_password_map['default']}" -e

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE

43

\
 "update nova_api.cell_mappings set name='cell1' where name='default';"
 mysql -h "\${db_server_map['nova_cell1']}" -uroot -
p"\${db_server_password_map['nova_cell1']}" -e \
 "delete from nova_cell1.services where host not like '%nova-cell1-%' and services.binary
!= 'nova-compute';"
EOF

Verification

Compare the following outputs with the topology specific configuration. For more information, see
Retrieving topology-specific service configuration .

1. Check that the databases were imported correctly:

. ~/.source_cloud_exported_variables

use 'oc exec' and 'mysql -rs' to maintain formatting
dbs=$(oc exec openstack-galera-0 -c galera -- mysql -rs -uroot "-
p$PODIFIED_DB_ROOT_PASSWORD" -e 'SHOW databases;')
echo $dbs | grep -Eq '\bkeystone\b'

ensure neutron db is renamed from ovs_neutron
echo $dbs | grep -Eq '\bneutron\b'
echo $PULL_OPENSTACK_CONFIGURATION_DATABASES | grep -Eq '\bovs_neutron\b'

ensure nova cell1 db is extracted to a separate db server and renamed from nova to
nova_cell1
c1dbs=$(oc exec openstack-cell1-galera-0 -c galera -- mysql -rs -uroot "-
p$PODIFIED_DB_ROOT_PASSWORD" -e 'SHOW databases;')
echo $c1dbs | grep -Eq '\bnova_cell1\b'

ensure default cell renamed to cell1, and the cell UUIDs retained intact
novadb_mapped_cells=$(oc exec openstack-galera-0 -c galera -- mysql -rs -uroot "-
p$PODIFIED_DB_ROOT_PASSWORD" \
 nova_api -e 'select uuid,name,transport_url,database_connection,disabled from
cell_mappings;')
uuidf='\S{8,}-\S{4,}-\S{4,}-\S{4,}-\S{12,}'
left_behind=$(comm -23 \
 <(echo $PULL_OPENSTACK_CONFIGURATION_NOVADB_MAPPED_CELLS | grep -oE "
$uuidf \S+") \
 <(echo $novadb_mapped_cells | tr -s "| " " " | grep -oE " $uuidf \S+"))
changed=$(comm -13 \
 <(echo $PULL_OPENSTACK_CONFIGURATION_NOVADB_MAPPED_CELLS | grep -oE "
$uuidf \S+") \
 <(echo $novadb_mapped_cells | tr -s "| " " " | grep -oE " $uuidf \S+"))
test $(grep -Ec ' \S+$' <<<$left_behind) -eq 1
default=$(grep -E ' default$' <<<$left_behind)
test $(grep -Ec ' \S+$' <<<$changed) -eq 1
grep -qE " $(awk '{print $1}' <<<$default) cell1$" <<<$changed

ensure the registered Compute service name has not changed
novadb_svc_records=$(oc exec openstack-cell1-galera-0 -c galera -- mysql -rs -uroot "-
p$PODIFIED_DB_ROOT_PASSWORD" \
 nova_cell1 -e "select host from services where services.binary='nova-compute' order by

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

44

host asc;")
diff -Z <(echo $novadb_svc_records) <(echo
$PULL_OPENSTACK_CONFIGURATION_NOVA_COMPUTE_HOSTNAMES)

2. During the pre/post checks the pod mariadb-client might have returned a pod security warning
related to the restricted:latest security context constraint. This is due to default security
context constraints and will not prevent pod creation by the admission controller. You’ll see a
warning for the short-lived pod but it will not interfere with functionality.

3. Delete the mariadb-data pod and mariadb-copy-data persistent volume claim with databases
backup (consider making a snapshot of it, before deleting)

oc delete pod mariadb-copy-data
oc delete pvc mariadb-data

For more information, see About pod security standards and warnings .

3.7. MIGRATING OVN DATA

This document describes how to move OVN northbound and southbound databases from the original
Red Hat OpenStack Platform deployment to ovsdb-server instances running in the Red Hat OpenShift
Container Platform cluster. While it may be argued that the control plane Networking service (neutron)
ML2/OVN driver and OVN northd service will reconstruct the databases on startup, the reconstruction
may be time consuming on large existing clusters. The procedure below allows to speed up data
migration and avoid unnecessary data plane disruptions due to incomplete OpenFlow table contents.

Prerequisites

Make sure the previous Adoption steps have been performed successfully.

The OpenStackControlPlane resource must be already created at this point.

NetworkAttachmentDefinition custom resource definitions (CRDs) for the original cluster
are already defined. Specifically, openstack/internalapi network is defined.

Control plane MariaDB and RabbitMQ may already run. The Networking service and OVN
are not running yet.

Original OVN is older or equal to the control plane version.

Original Neutron Server and OVN northd services are stopped.

There must be network routability between:

The adoption host and the original OVN.

The adoption host and the control plane OVN.

Define the following shell variables. The values that are used are examples. Replace these
example values with values that are correct for your environment:

STORAGE_CLASS=local-storage
OVSDB_IMAGE=registry.redhat.io/rhosp-dev-preview/openstack-ovn-base-rhel9:18.0
SOURCE_OVSDB_IP=172.17.1.49

You can get the value to set SOURCE_OVSDB_IP by querying the puppet-generated

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE

45

https://learn.redhat.com/t5/DO280-Red-Hat-OpenShift/About-pod-security-standards-and-warnings/m-p/32502

You can get the value to set SOURCE_OVSDB_IP by querying the puppet-generated
configurations:

grep -rI 'ovn_[ns]b_conn' /var/lib/config-data/puppet-generated/

Procedure

1. Prepare the OVN DBs copy dir and the adoption helper pod (pick the storage requests to fit the
OVN databases sizes)

oc apply -f - <<EOF

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
 name: ovn-data-cert
 namespace: openstack
spec:
 commonName: ovn-data-cert
 secretName: ovn-data-cert
 issuerRef:
 name: rootca-internal

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: ovn-data
spec:
 storageClassName: $STORAGE_CLASS_NAME
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

apiVersion: v1
kind: Pod
metadata:
 name: ovn-copy-data
 annotations:
 openshift.io/scc: anyuid
 k8s.v1.cni.cncf.io/networks: internalapi
 labels:
 app: adoption
spec:
 containers:
 - image: $OVSDB_IMAGE
 command: ["sh", "-c", "sleep infinity"]
 name: adoption
 volumeMounts:
 - mountPath: /backup
 name: ovn-data
 - mountPath: /etc/pki/tls/misc
 name: ovn-data-cert
 readOnly: true

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

46

2. Wait for the pod to come up

oc wait --for=condition=Ready pod/ovn-copy-data --timeout=30s

3. Backup OVN databases on an environment without TLS everywhere.

oc exec ovn-copy-data -- bash -c "ovsdb-client backup tcp:$SOURCE_OVSDB_IP:6641 >
/backup/ovs-nb.db"
oc exec ovn-copy-data -- bash -c "ovsdb-client backup tcp:$SOURCE_OVSDB_IP:6642 >
/backup/ovs-sb.db"

4. Backup OVN databases on a TLS everywhere environment.

oc exec ovn-copy-data -- bash -c "ovsdb-client backup --ca-cert=/etc/pki/tls/misc/ca.crt --
private-key=/etc/pki/tls/misc/tls.key --certificate=/etc/pki/tls/misc/tls.crt
ssl:$SOURCE_OVSDB_IP:6641 > /backup/ovs-nb.db"
oc exec ovn-copy-data -- bash -c "ovsdb-client backup --ca-cert=/etc/pki/tls/misc/ca.crt --
private-key=/etc/pki/tls/misc/tls.key --certificate=/etc/pki/tls/misc/tls.crt
ssl:$SOURCE_OVSDB_IP:6642 > /backup/ovs-sb.db"

5. Start the control plane OVN database services prior to import, keeping northd/ovn-controller
stopped.

 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: ALL
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 volumes:
 - name: ovn-data
 persistentVolumeClaim:
 claimName: ovn-data
 - name: ovn-data-cert
 secret:
 secretName: ovn-data-cert
EOF

oc patch openstackcontrolplane openstack --type=merge --patch '
spec:
 ovn:
 enabled: true
 template:
 ovnDBCluster:
 ovndbcluster-nb:
 dbType: NB
 storageRequest: 10G
 networkAttachment: internalapi
 ovndbcluster-sb:
 dbType: SB
 storageRequest: 10G
 networkAttachment: internalapi
 ovnNorthd:

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE

47

6. Wait for the OVN DB pods reaching the running phase.

oc wait --for=jsonpath='{.status.phase}'=Running pod --selector=service=ovsdbserver-nb
oc wait --for=jsonpath='{.status.phase}'=Running pod --selector=service=ovsdbserver-sb

7. Fetch the control plane OVN IP addresses on the clusterIP service network.

PODIFIED_OVSDB_NB_IP=$(oc get svc --selector "statefulset.kubernetes.io/pod-
name=ovsdbserver-nb-0" -ojsonpath='{.items[0].spec.clusterIP}')
PODIFIED_OVSDB_SB_IP=$(oc get svc --selector "statefulset.kubernetes.io/pod-
name=ovsdbserver-sb-0" -ojsonpath='{.items[0].spec.clusterIP}')

8. Upgrade database schema for the backup files on an environment without TLS everywhere.

oc exec ovn-copy-data -- bash -c "ovsdb-client get-schema
tcp:$PODIFIED_OVSDB_NB_IP:6641 > /backup/ovs-nb.ovsschema && ovsdb-tool convert
/backup/ovs-nb.db /backup/ovs-nb.ovsschema"
oc exec ovn-copy-data -- bash -c "ovsdb-client get-schema
tcp:$PODIFIED_OVSDB_SB_IP:6642 > /backup/ovs-sb.ovsschema && ovsdb-tool convert
/backup/ovs-sb.db /backup/ovs-sb.ovsschema"

9. Upgrade database schema for the backup files on a TLS everywhere environment.

oc exec ovn-copy-data -- bash -c "ovsdb-client get-schema --ca-cert=/etc/pki/tls/misc/ca.crt --
private-key=/etc/pki/tls/misc/tls.key --certificate=/etc/pki/tls/misc/tls.crt
ssl:$PODIFIED_OVSDB_NB_IP:6641 > /backup/ovs-nb.ovsschema && ovsdb-tool convert
/backup/ovs-nb.db /backup/ovs-nb.ovsschema"
oc exec ovn-copy-data -- bash -c "ovsdb-client get-schema --ca-cert=/etc/pki/tls/misc/ca.crt --
private-key=/etc/pki/tls/misc/tls.key --certificate=/etc/pki/tls/misc/tls.crt
ssl:$PODIFIED_OVSDB_SB_IP:6642 > /backup/ovs-sb.ovsschema && ovsdb-tool convert
/backup/ovs-sb.db /backup/ovs-sb.ovsschema"

10. Restore database backup to the control plane OVN database servers on an environment
without TLS everywhere.

oc exec ovn-copy-data -- bash -c "ovsdb-client restore tcp:$PODIFIED_OVSDB_NB_IP:6641
< /backup/ovs-nb.db"
oc exec ovn-copy-data -- bash -c "ovsdb-client restore tcp:$PODIFIED_OVSDB_SB_IP:6642
< /backup/ovs-sb.db"

11. Restore database backup to control plane OVN database servers on a TLS everywhere
environment.

oc exec ovn-copy-data -- bash -c "ovsdb-client restore --ca-cert=/etc/pki/tls/misc/ca.crt --
private-key=/etc/pki/tls/misc/tls.key --certificate=/etc/pki/tls/misc/tls.crt
ssl:$PODIFIED_OVSDB_NB_IP:6641 < /backup/ovs-nb.db"

 replicas: 0
 ovnController:
 networkAttachment: tenant
 nodeSelector:
 node: non-existing-node-name
'

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

48

oc exec ovn-copy-data -- bash -c "ovsdb-client restore --ca-cert=/etc/pki/tls/misc/ca.crt --
private-key=/etc/pki/tls/misc/tls.key --certificate=/etc/pki/tls/misc/tls.crt
ssl:$PODIFIED_OVSDB_SB_IP:6642 < /backup/ovs-sb.db"

12. Check that the control plane OVN databases contain objects from backup, for example:

oc exec -it ovsdbserver-nb-0 -- ovn-nbctl show
oc exec -it ovsdbserver-sb-0 -- ovn-sbctl list Chassis

13. Finally, you can start ovn-northd service that will keep OVN northbound and southbound
databases in sync.

14. Also enable ovn-controller:

15. Delete the ovn-data pod and persistent volume claim with OVN databases backup (consider
making a snapshot of it, before deleting):

oc delete pod ovn-copy-data
oc delete pvc ovn-data

16. Stop old OVN database servers.

ServicesToStop=("tripleo_ovn_cluster_north_db_server.service"
 "tripleo_ovn_cluster_south_db_server.service")

echo "Stopping systemd OpenStack services"
for service in ${ServicesToStop[*]}; do
 for i in {1..3}; do
 SSH_CMD=CONTROLLER${i}_SSH
 if [! -z "${!SSH_CMD}"]; then
 echo "Stopping the $service in controller $i"
 if ${!SSH_CMD} sudo systemctl is-active $service; then
 ${!SSH_CMD} sudo systemctl stop $service
 fi
 fi
 done
done

echo "Checking systemd OpenStack services"
for service in ${ServicesToStop[*]}; do
 for i in {1..3}; do
 SSH_CMD=CONTROLLER${i}_SSH

oc patch openstackcontrolplane openstack --type=merge --patch '
spec:
 ovn:
 enabled: true
 template:
 ovnNorthd:
 replicas: 1
'

oc patch openstackcontrolplane openstack --type=json -p="[{'op': 'remove', 'path':
'/spec/ovn/template/ovnController/nodeSelector'}]"

CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE

49

 if [! -z "${!SSH_CMD}"]; then
 if ! ${!SSH_CMD} systemctl show $service | grep ActiveState=inactive >/dev/null; then
 echo "ERROR: Service $service still running on controller $i"
 else
 echo "OK: Service $service is not running on controller $i"
 fi
 fi
 done
done

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

50

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM
CONTROL PLANE SERVICES

Adopt your Red Hat OpenStack Platform 17.1 control plane services to deploy them in the Red Hat
OpenStack Services on OpenShift (RHOSO) 18.0 control plane.

4.1. ADOPTING THE IDENTITY SERVICE

Prerequisites

Previous Adoption steps completed. Notably, the Migrating databases to MariaDB instances
must already be imported into the control plane MariaDB.

Ensure that you copy the fernet keys. Create the keystone secret, containing fernet keys:

oc apply -f - <<EOF
apiVersion: v1
data:
 CredentialKeys0: $($CONTROLLER1_SSH sudo cat /var/lib/config-data/puppet-
generated/keystone/etc/keystone/credential-keys/0 | base64 -w 0)
 CredentialKeys1: $($CONTROLLER1_SSH sudo cat /var/lib/config-data/puppet-
generated/keystone/etc/keystone/credential-keys/1 | base64 -w 0)
 FernetKeys0: $($CONTROLLER1_SSH sudo cat /var/lib/config-data/puppet-
generated/keystone/etc/keystone/fernet-keys/0 | base64 -w 0)
 FernetKeys1: $($CONTROLLER1_SSH sudo cat /var/lib/config-data/puppet-
generated/keystone/etc/keystone/fernet-keys/1 | base64 -w 0)
kind: Secret
metadata:
 name: keystone
 namespace: openstack
type: Opaque
EOF

Procedure

1. Patch OpenStackControlPlane to deploy Identity service:

oc patch openstackcontrolplane openstack --type=merge --patch '
spec:
 keystone:
 enabled: true
 apiOverride:
 route: {}
 template:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

51

 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret
'

2. Create an alias to use openstack command in the adopted deployment:

$ alias openstack="oc exec -t openstackclient -- openstack"

3. Clean up old services and endpoints that still point to the old control plane, excluding the
Identity service and its endpoints:

$ openstack endpoint list | grep keystone | awk '/admin/{ print $2; }' | xargs
${BASH_ALIASES[openstack]} endpoint delete || true

for service in aodh heat heat-cfn barbican cinderv3 glance manila manilav2 neutron nova
placement swift ironic-inspector ironic; do
 openstack service list | awk "/ $service /{ print \$2; }" | xargs ${BASH_ALIASES[openstack]}
service delete || true
done

Verification

See that Identity service endpoints are defined and pointing to the control plane FQDNs:

$ openstack endpoint list | grep keystone

4.2. ADOPTING THE KEY MANAGER SERVICE

Adopting Key Manager service (barbican) means that an existing OpenStackControlPlane custom
resource (CR), where Key Manager service is initialy disabled, should be patched to start the service with
the configuration parameters provided by the source environment.

When the procedure is over, the expectation is to see the BarbicanAPI, BarbicanWorker,
BarbicanKeystoneListener services are up and running. Keystone endpoints should also be updated
and the same crypto plugin of the source Cloud will be available. If the conditions above are met, the
adoption is considered concluded.

NOTE

This procedure configures the Key Manager service to use the simple_crypto backend.
Additional backends are available, such as PKCS11 and DogTag, however they are not
supported in this release.

Prerequisites

Previous Adoption steps completed. Notably, MariaDB, RabbitMQ, and Identity service
(keystone). should be already adopted.

Procedure

1. Add the kek secret. In this case we are updating and using osp-secret, which contains other
service passwords:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

52

oc set data secret/osp-secret "BarbicanSimpleCryptoKEK=$($CONTROLLER1_SSH
"python3 -c \"import configparser; c = configparser.ConfigParser(); c.read('/var/lib/config-
data/puppet-generated/barbican/etc/barbican/barbican.conf'); print(c['simple_crypto_plugin']
['kek'])\"" | base64 -w 0)"

2. Patch OpenStackControlPlane to deploy the Key Manager service:

oc patch openstackcontrolplane openstack --type=merge --patch '
spec:
 barbican:
 enabled: true
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 databaseAccount: barbican
 databaseUser: barbican
 rabbitMqClusterName: rabbitmq
 secret: osp-secret
 simpleCryptoBackendSecret: osp-secret
 serviceAccount: barbican
 serviceUser: barbican
 passwordSelectors:
 database: BarbicanDatabasePassword
 service: BarbicanPassword
 simplecryptokek: BarbicanSimpleCryptoKEK
 barbicanAPI:
 replicas: 1
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 barbicanWorker:
 replicas: 1
 barbicanKeystoneListener:
 replicas: 1
'

Verification

Check that the Identity service (keystone) endpoints are defined and pointing to the control
plane FQDNs:

$ openstack endpoint list | grep key-manager

Check that Barbican API service is registered in Identity service:

$ openstack service list | grep key-manager

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

53

$ openstack endpoint list | grep key-manager

List secrets:

$ openstack secret list

4.3. ADOPTING THE NETWORKING SERVICE

Adopting Networking service (neutron) means that an existing OpenStackControlPlane custom
resource (CR), where the Networking service is supposed to be disabled, should be patched to start the
service with the configuration parameters provided by the source environment.

When the procedure is over, the expectation is to see the NeutronAPI service is running: the Identity
service (keystone) endpoints should be updated and the same backend of the source Cloud will be
available. If the conditions above are met, the adoption is considered concluded.

This guide also assumes that:

1. A director environment (the source Cloud) is running on one side;

2. A SNO / CodeReadyContainers is running on the other side.

Prerequisites

Previous Adoption steps completed. Notably, MariaDB,Identity service (keystone), and
Migrating OVN data should be already adopted.

Procedure

Patch OpenStackControlPlane to deploy Networking service:

oc patch openstackcontrolplane openstack --type=merge --patch '
spec:
 neutron:
 enabled: true
 apiOverride:
 route: {}
 template:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 databaseAccount: neutron
 secret: osp-secret
 networkAttachments:
 - internalapi
'

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

54

Verification

Inspect the resulting Networking service pods:

NEUTRON_API_POD=`oc get pods -l service=neutron | tail -n 1 | cut -f 1 -d' '`
oc exec -t $NEUTRON_API_POD -c neutron-api -- cat /etc/neutron/neutron.conf

Check that the Neutron API service is registered in the Identity service:

$ openstack service list | grep network

$ openstack endpoint list | grep network

| 6a805bd6c9f54658ad2f24e5a0ae0ab6 | regionOne | neutron | network | True |
public | http://neutron-public-openstack.apps-crc.testing |
| b943243e596847a9a317c8ce1800fa98 | regionOne | neutron | network | True |
internal | http://neutron-internal.openstack.svc:9696 |
| f97f2b8f7559476bb7a5eafe3d33cee7 | regionOne | neutron | network | True | admin
| http://192.168.122.99:9696 |

Create sample resources. You can test whether the user can create networks, subnets, ports, or
routers.

$ openstack network create net
$ openstack subnet create --network net --subnet-range 10.0.0.0/24 subnet
$ openstack router create router

4.4. ADOPTING THE OBJECT STORAGE SERVICE

This section only applies if you are using OpenStack Swift as Object Storage service (swift). If you are
using the Object Storage API of Ceph RGW this section can be skipped.

Prerequisites

Previous adoption steps completed.

The Object Storage service storage backend services must still be running.

Storage network has been properly configured on the Red Hat OpenShift Container Platform
cluster.

Procedure

1. Create the swift-conf secret, containing the Object Storage service hash path suffix and prefix:

oc apply -f - <<EOF
apiVersion: v1
kind: Secret
metadata:
 name: swift-conf
 namespace: openstack
type: Opaque
data:

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

55

2. Create the swift-ring-files configmap, containing the Object Storage service ring files:

3. Patch OpenStackControlPlane to deploy the Object Storage service:

 swift.conf: $($CONTROLLER1_SSH sudo cat /var/lib/config-data/puppet-
generated/swift/etc/swift/swift.conf | base64 -w0)
EOF

oc apply -f - <<EOF
apiVersion: v1
kind: ConfigMap
metadata:
 name: swift-ring-files
binaryData:
 swiftrings.tar.gz: $($CONTROLLER1_SSH "cd /var/lib/config-data/puppet-
generated/swift/etc/swift && tar cz *.builder *.ring.gz backups/ | base64 -w0")
 account.ring.gz: $($CONTROLLER1_SSH "base64 -w0 /var/lib/config-data/puppet-
generated/swift/etc/swift/account.ring.gz")
 container.ring.gz: $($CONTROLLER1_SSH "base64 -w0 /var/lib/config-data/puppet-
generated/swift/etc/swift/container.ring.gz")
 object.ring.gz: $($CONTROLLER1_SSH "base64 -w0 /var/lib/config-data/puppet-
generated/swift/etc/swift/object.ring.gz")
EOF

oc patch openstackcontrolplane openstack --type=merge --patch '
spec:
 swift:
 enabled: true
 template:
 memcachedInstance: memcached
 swiftRing:
 ringReplicas: 1
 swiftStorage:
 replicas: 0
 networkAttachments:
 - storage
 storageClass: local-storage
 storageRequest: 10Gi
 swiftProxy:
 secret: osp-secret
 replicas: 1
 passwordSelectors:
 service: SwiftPassword
 serviceUser: swift
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

56

Verification

Inspect the resulting Object Storage service service pods:

$ oc get pods -l component=swift-proxy

Check that the Object Storage service proxy service is registered in the Identity service:

$ openstack service list | grep swift
| b5b9b1d3c79241aa867fa2d05f2bbd52 | swift | object-store |

$ openstack endpoint list | grep swift
| 32ee4bd555414ab48f2dc90a19e1bcd5 | regionOne | swift | object-store | True |
public | https://swift-public-openstack.apps-crc.testing/v1/AUTH_%(tenant_id)s |
| db4b8547d3ae4e7999154b203c6a5bed | regionOne | swift | object-store | True |
internal | http://swift-internal.openstack.svc:8080/v1/AUTH_%(tenant_id)s |

Check that you are able to up- and download objects:

echo "Hello World!" > obj
openstack container create test
+---------------------------------------+-----------+------------------------------------+
| account | container | x-trans-id |
+---------------------------------------+-----------+------------------------------------+
| AUTH_4d9be0a9193e4577820d187acdd2714a | test | txe5f9a10ce21e4cddad473-
0065ce41b9 |
+---------------------------------------+-----------+------------------------------------+

openstack object create test obj
+--------+-----------+----------------------------------+
| object | container | etag |
+--------+-----------+----------------------------------+
| obj | test | d41d8cd98f00b204e9800998ecf8427e |
+--------+-----------+----------------------------------+

openstack object save test obj --file -
Hello World!

NOTE

At this point data is still stored on the previously existing nodes. For more information
about migrating the actual data from the old to the new deployment, see Migrating the
Object Storage service (swift) data from RHOSP to Red Hat OpenStack Services on
OpenShift (RHOSO) nodes.

4.5. ADOPTING THE IMAGE SERVICE

Adopting Image Service (glance) means that an existing OpenStackControlPlane custom resource

 networkAttachments:
 - storage
'

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

57

Adopting Image Service (glance) means that an existing OpenStackControlPlane custom resource
(CR), where Image service is supposed to be disabled, should be patched to start the service with the
configuration parameters provided by the source environment.

When the procedure is over, the expectation is to see the GlanceAPI service up and running: the
Identity service endpoints are updated and the same backend of the source Cloud is available. If the
conditions above are met, the adoption is considered concluded.

This guide also assumes that:

A director environment (the source Cloud) is running on one side.

A SNO / CodeReadyContainers is running on the other side.

(optional) An internal/external Ceph cluster is reachable by both crc and director.

4.5.1. Adopting the Image service that is deployed with a Object Storage service
backend

Adopt the Image Service (glance) that you deployed with an Object Storage service (swift) backend.
When Image service is deployed with Object Storage service (swift) as a backend in the Red Hat
OpenStack Platform environment based on director, the control plane glanceAPI instance is deployed
with the following configuration:

..
spec
 glance:
 ...
 customServiceConfig: |
 [DEFAULT]
 enabled_backends = default_backend:swift
 [glance_store]
 default_backend = default_backend
 [default_backend]
 swift_store_create_container_on_put = True
 swift_store_auth_version = 3
 swift_store_auth_address = {{ .KeystoneInternalURL }}
 swift_store_endpoint_type = internalURL
 swift_store_user = service:glance
 swift_store_key = {{ .ServicePassword }}

Prerequisites

Previous Adoption steps completed. Notably, MariaDB, Identity service (keystone) and Key
Manager service (barbican) should be already adopted.

Procedure

1. Write the patch manifest into a file, for example glance_swift.patch. For example:

spec:
 glance:
 enabled: true
 apiOverride:
 route: {}

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

58

 template:
 databaseInstance: openstack
 storageClass: "local-storage"
 storageRequest: 10G
 customServiceConfig: |
 [DEFAULT]
 enabled_backends = default_backend:swift
 [glance_store]
 default_backend = default_backend
 [default_backend]
 swift_store_create_container_on_put = True
 swift_store_auth_version = 3
 swift_store_auth_address = {{ .KeystoneInternalURL }}
 swift_store_endpoint_type = internalURL
 swift_store_user = service:glance
 swift_store_key = {{ .ServicePassword }}
 glanceAPIs:
 default:
 replicas: 1
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 networkAttachments:
 - storage

Having Object Storage service as a backend establishes a dependency between the two
services, and any deployed GlanceAPI instance would not work if Image service is configured
with Object Storage service that is still not available in the OpenStackControlPlane. Once
Object Storage service, and in particular SwiftProxy, has been adopted, it is possible to
proceed with the GlanceAPI adoption. For more information, see Adopting the Object Storage
service.

2. Verify that SwiftProxy is available:

$ oc get pod -l component=swift-proxy | grep Running
swift-proxy-75cb47f65-92rxq 3/3 Running 0

3. Patch the GlanceAPI service deployed in the control plane context:

$ oc patch openstackcontrolplane openstack --type=merge --patch-file=glance_swift.patch

4.5.2. Adopting the Image service that is deployed with a Block Storage service
backend

Adopt the Image Service (glance) that you deployed with an Block Storage service (cinder) backend.
When Image service is deployed with Block Storage service as a backend in the Red Hat OpenStack
Platform environment based on director, the control plane glanceAPI instance is deployed with the
following configuration:

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

59

..
spec
 glance:
 ...
 customServiceConfig: |
 [DEFAULT]
 enabled_backends = default_backend:cinder
 [glance_store]
 default_backend = default_backend
 [default_backend]
 rootwrap_config = /etc/glance/rootwrap.conf
 description = Default cinder backend
 cinder_store_auth_address = {{ .KeystoneInternalURL }}
 cinder_store_user_name = {{ .ServiceUser }}
 cinder_store_password = {{ .ServicePassword }}
 cinder_store_project_name = service
 cinder_catalog_info = volumev3::internalURL
 cinder_use_multipath = true

Prerequisites

Previous Adoption steps completed. Notably, MariaDB, Identity service (keystone) and Key
Manager service (barbican) should be already adopted.

Procedure

1. Write the patch manifest into a file, for example glance_cinder.patch. For example:

spec:
 glance:
 enabled: true
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 storageClass: "local-storage"
 storageRequest: 10G
 customServiceConfig: |
 [DEFAULT]
 enabled_backends = default_backend:cinder
 [glance_store]
 default_backend = default_backend
 [default_backend]
 rootwrap_config = /etc/glance/rootwrap.conf
 description = Default cinder backend
 cinder_store_auth_address = {{ .KeystoneInternalURL }}
 cinder_store_user_name = {{ .ServiceUser }}
 cinder_store_password = {{ .ServicePassword }}
 cinder_store_project_name = service
 cinder_catalog_info = volumev3::internalURL
 cinder_use_multipath = true
 glanceAPIs:
 default:
 replicas: 1
 override:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

60

 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 networkAttachments:
 - storage

Having Block Storage service as a backend establishes a dependency between the two services,
and any deployed GlanceAPI instance would not work if the Image service is configured with
Block Storage service that is still not available in the OpenStackControlPlane. Once Block
Storage service, and in particular CinderVolume, has been adopted, it is possible to proceed
with the GlanceAPI adoption.

2. Verify that CinderVolume is available:

$ oc get pod -l component=cinder-volume | grep Running
cinder-volume-75cb47f65-92rxq 3/3 Running 0

3. Patch the GlanceAPI service deployed in the control plane context:

oc patch openstackcontrolplane openstack --type=merge --patch-file=glance_cinder.patch

4.5.3. Adopting the Image service that is deployed with an NFS Ganesha backend

Adopt the Image Service (glance) that you deployed with an NFS Ganesha backend. The following steps
assume that:

1. The Storage network has been propagated to the RHOSP control plane.

2. The Image service is able to reach the Storage network and connect to the nfs-server through
the port 2049.

Prerequisites

Previous Adoption steps completed. Notably, MariaDB, Identity service (keystone) and Key
Manager service (barbican) should be already adopted.

In the source cloud, verify the NFS Ganesha parameters used by the overcloud to configure the
Image service backend. In particular, find among the director heat templates the following
variables that are usually an override of the default content provided by /usr/share/openstack-
tripleo-heat-templates/environments/storage/glance-nfs.yaml[glance-nfs.yaml]:

GlanceBackend: file

GlanceNfsEnabled: true

GlanceNfsShare: 192.168.24.1:/var/nfs

In the example above, as the first variable shows, the Image service has no notion of NFS
Ganesha backend: the File driver is used in this scenario, and behind the scenes, the

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

61

filesystem_store_datadir which usually points to /var/lib/glance/images/ is mapped to the
export value provided by the GlanceNfsShare variable. If the GlanceNfsShare is not exported
through a network that is supposed to be propagated to the adopted Red Hat OpenStack
Platform control plane, an extra action is required by the human administrator, who must stop
the nfs-server and remap the export to the storage network. This action usually happens when
the Image service is stopped in the source Controller nodes. In the control plane, the Image
service is attached to the Storage network, propagated via the associated
NetworkAttachmentsDefinition custom resource, and the resulting Pods have already the right
permissions to handle the Image service traffic through this network. In a deployed RHOSP
control plane, you can verify that the network mapping matches with what has been deployed in
the director-based environment by checking both the NodeNetworkConfigPolicy (nncp) and
the NetworkAttachmentDefinition (net-attach-def):

$ oc get nncp
NAME STATUS REASON
enp6s0-crc-8cf2w-master-0 Available SuccessfullyConfigured

$ oc get net-attach-def
NAME
ctlplane
internalapi
storage
tenant

$ oc get ipaddresspool -n metallb-system
NAME AUTO ASSIGN AVOID BUGGY IPS ADDRESSES
ctlplane true false ["192.168.122.80-192.168.122.90"]
internalapi true false ["172.17.0.80-172.17.0.90"]
storage true false ["172.18.0.80-172.18.0.90"]
tenant true false ["172.19.0.80-172.19.0.90"]

The above represents an example of the output that should be checked in the Red Hat
OpenShift Container Platform environment to make sure there are no issues with the
propagated networks.

Procedure

1. Adopt the Image service and create a new default GlanceAPI instance connected with the
existing NFS Ganesha share.

cat << EOF > glance_nfs_patch.yaml

spec:
 extraMounts:
 - extraVol:
 - extraVolType: Nfs
 mounts:
 - mountPath: /var/lib/glance/images
 name: nfs
 propagation:
 - Glance
 volumes:
 - name: nfs
 nfs:
 path: /var/nfs

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

62

 server: 172.17.3.20
 name: r1
 region: r1
 glance:
 enabled: true
 template:
 databaseInstance: openstack
 customServiceConfig: |
 [DEFAULT]
 enabled_backends = default_backend:file
 [glance_store]
 default_backend = default_backend
 [default_backend]
 filesystem_store_datadir = /var/lib/glance/images/
 storageClass: "local-storage"
 storageRequest: 10G
 glanceAPIs:
 default:
 replicas: 1
 type: single
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 networkAttachments:
 - storage
EOF

NOTE

Replace in glance_nfs_patch.yaml the nfs/server IP address with the IP used
to reach the nfs-server and make sure the nfs/path points to the exported path
in the nfs-server.

2. Patch OpenStackControlPlane to deploy Image service with a NFS Ganesha backend:

$ oc patch openstackcontrolplane openstack --type=merge --patch-file
glance_nfs_patch.yaml

Verification

When GlanceAPI is active, you can see a single API instance:

$ oc get pods -l service=glance
NAME READY STATUS RESTARTS
glance-default-single-0 3/3 Running 0
```

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

63



and the description of the pod must report:

Mounts:
...
  nfs:
    Type:      NFS (an NFS mount that lasts the lifetime of a pod)
    Server:    {{ server ip address }}
    Path:      {{ nfs export path }}
    ReadOnly:  false
...

Check the mountpoint:

oc rsh -c glance-api glance-default-single-0

sh-5.1# mount
...
...
{{ ip address }}:/var/nfs on /var/lib/glance/images type nfs4 
(rw,relatime,vers=4.2,rsize=1048576,wsize=1048576,namlen=255,hard,proto=tcp,timeo=600,re
trans=2,sec=sys,clientaddr=172.18.0.5,local_lock=none,addr=172.18.0.5)
...
...

Confirm that the UUID has been created in the exported directory on the NFS Ganesha node.
For example:

$ oc rsh openstackclient
$ openstack image list

sh-5.1$  curl -L -o /tmp/cirros-0.5.2-x86_64-disk.img http://download.cirros-
cloud.net/0.5.2/cirros-0.5.2-x86_64-disk.img
...
...

sh-5.1$ openstack image create --container-format bare --disk-format raw --file /tmp/cirros-
0.5.2-x86_64-disk.img cirros
...
...

sh-5.1$ openstack image list
+--------------------------------------+--------+--------+
| ID                                   | Name   | Status |
+--------------------------------------+--------+--------+
| 634482ca-4002-4a6d-b1d5-64502ad02630 | cirros | active |
+--------------------------------------+--------+--------+

On the nfs-server node, the same uuid is in the exported /var/nfs:

$ ls /var/nfs/
634482ca-4002-4a6d-b1d5-64502ad02630

4.5.4. Adopting the Image service that is deployed with a Red Hat Ceph Storage
backend

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

64



Adopt the Image Service (glance) that you deployed with a Red Hat Ceph Storage backend. Use the 
customServiceConfig parameter to inject the right configuration to the GlanceAPI instance.

Prerequisites

Previous Adoption steps completed. Notably, MariaDB, Identity service (keystone) and Key
Manager service (barbican) should be already adopted.

Make sure the Ceph-related secret (ceph-conf-files) was created in the openstack namespace
and that the extraMounts property of the OpenStackControlPlane custom resource (CR) has
been configured properly. These tasks are described in an earlier Adoption step Configuring a
Ceph backend.

cat << EOF > glance_patch.yaml
spec:
  glance:
    enabled: true
    template:
      databaseInstance: openstack
      customServiceConfig: |
        [DEFAULT]
        enabled_backends=default_backend:rbd
        [glance_store]
        default_backend=default_backend
        [default_backend]
        rbd_store_ceph_conf=/etc/ceph/ceph.conf
        rbd_store_user=openstack
        rbd_store_pool=images
        store_description=Ceph glance store backend.
      storageClass: "local-storage"
      storageRequest: 10G
      glanceAPIs:
        default:
          replicas: 1
          override:
            service:
              internal:
                metadata:
                  annotations:
                    metallb.universe.tf/address-pool: internalapi
                    metallb.universe.tf/allow-shared-ip: internalapi
                    metallb.universe.tf/loadBalancerIPs: 172.17.0.80
              spec:
                type: LoadBalancer
          networkAttachments:
          - storage
EOF

NOTE

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

65



NOTE

If you have previously backed up your RHOSP services configuration file from the old
environment, you can use os-diff to compare and make sure the configuration is correct.
For more information, see Pulling the configuration from a director deployment .

os-diff diff /tmp/collect_tripleo_configs/glance/etc/glance/glance-api.conf 
glance_patch.yaml --crd

This produces the difference between both ini configuration files.

Procedure

Patch OpenStackControlPlane CR to deploy Image service with a Red Hat Ceph Storage
backend:

$ oc patch openstackcontrolplane openstack --type=merge --patch-file glance_patch.yaml

4.5.5. Verifying the Image service adoption

Verify that you successfully adopted your Image Service (glance) to the Red Hat OpenStack Services on
OpenShift (RHOSO) 18.0 deployment.

Procedure

1. Test the Image Service (glance) from the Red Hat OpenStack Platform CLI. You can compare
and make sure the configuration has been correctly applied to the Image service pods:

os-diff diff /etc/glance/glance.conf.d/02-config.conf glance_patch.yaml --frompod -p glance-
api

If no line appears, then the configuration is correctly done.

2. Inspect the resulting glance pods:

GLANCE_POD=`oc get pod |grep glance-default-external-0 | cut -f 1 -d' '`
oc exec -t $GLANCE_POD -c glance-api -- cat /etc/glance/glance.conf.d/02-config.conf

[DEFAULT]
enabled_backends=default_backend:rbd
[glance_store]
default_backend=default_backend
[default_backend]
rbd_store_ceph_conf=/etc/ceph/ceph.conf
rbd_store_user=openstack
rbd_store_pool=images
store_description=Ceph glance store backend.

3. If you use a Ceph backend, ensure that the Ceph secrets are properly mounted:

oc exec -t $GLANCE_POD -c glance-api -- ls /etc/ceph
ceph.client.openstack.keyring
ceph.conf

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

66



4. Check that the service is active and the endpoints are properly updated in the RHOSP CLI:

(openstack)$ service list | grep image

| fc52dbffef36434d906eeb99adfc6186 | glance    | image        |

(openstack)$ endpoint list | grep image

| 569ed81064f84d4a91e0d2d807e4c1f1 | regionOne | glance       | image        | True    | 
internal  | http://glance-internal-openstack.apps-crc.testing   |
| 5843fae70cba4e73b29d4aff3e8b616c | regionOne | glance       | image        | True    | public    
| http://glance-public-openstack.apps-crc.testing     |
| 709859219bc24ab9ac548eab74ad4dd5 | regionOne | glance       | image        | True    | 
admin     | http://glance-admin-openstack.apps-crc.testing      |

5. Check that the images that you previously listed in the source Cloud are available in the
adopted service:

(openstack)$ image list
+--------------------------------------+--------+--------+
| ID                                   | Name   | Status |
+--------------------------------------+--------+--------+
| c3158cad-d50b-452f-bec1-f250562f5c1f | cirros | active |
+--------------------------------------+--------+--------+

4.6. ADOPTING THE PLACEMENT SERVICE

Prerequisites

Previous Adoption steps completed. Notably,

the Migrating databases to MariaDB instances  must already be imported into the control
plane MariaDB.

the Adopting the Identity service  needs to be imported.

the Memcached operator needs to be deployed (nothing to import for it from the source
environment).

Procedure

Patch OpenStackControlPlane to deploy the Placement service:

oc patch openstackcontrolplane openstack --type=merge --patch '
spec:
  placement:
    enabled: true
    apiOverride:
      route: {}
    template:
      databaseInstance: openstack
      databaseAccount: placement
      secret: osp-secret
      override:

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

67



        service:
          internal:
            metadata:
              annotations:
                metallb.universe.tf/address-pool: internalapi
                metallb.universe.tf/allow-shared-ip: internalapi
                metallb.universe.tf/loadBalancerIPs: 172.17.0.80
            spec:
              type: LoadBalancer
'

Verification

Check that Placement endpoints are defined and pointing to the control plane FQDNs and that
Placement API responds:

alias openstack="oc exec -t openstackclient -- openstack"

openstack endpoint list | grep placement

# Without OpenStack CLI placement plugin installed:
PLACEMENT_PUBLIC_URL=$(openstack endpoint list -c 'Service Name' -c 'Service Type' -c 
URL | grep placement | grep public | awk '{ print $6; }')
oc exec -t openstackclient -- curl "$PLACEMENT_PUBLIC_URL"

# With OpenStack CLI placement plugin installed:
openstack resource class list

4.7. ADOPTING THE COMPUTE SERVICE

NOTE

This example scenario describes a simple single-cell setup. Real multi-stack topology
recommended for production use results in different cells DBs layout, and should be
using different naming schemes (not covered here this time).

Prerequisites

Previous Adoption steps completed. Notably,

the Migrating databases to MariaDB instances  must already be imported into the control
plane MariaDB;

the Adopting the Identity service  needs to be imported;

the Adopting the Key Manager service needs to be imported;

the Adopting the Placement service needs to be imported;

the Adopting the Image service needs to be imported;

the Migrating OVN data need to be imported;

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

68



the Adopting the Networking service  needs to be imported;

the Bare Metal Provisioning service needs to be imported;

Required topology-specific service configuration. For more information, see Retrieving
topology-specific service configuration.

Red Hat OpenStack Platform services have been stopped. For more information, see
Stopping Red Hat OpenStack Platform services .

Define the following shell variables. The values that are used are examples. Replace these
example values with values that are correct for your environment:

alias openstack="oc exec -t openstackclient -- openstack"

PROCEDURE

This procedure assumes that Compute service Metadata is deployed on the top level and
not on each cell level, so this example imports it the same way. If the source deployment
has a per cell metadata deployment, adjust the given below patch as needed. Metadata
service cannot be run in cell0.

1. Patch OpenStackControlPlane to deploy the Compute service:

oc patch openstackcontrolplane openstack -n openstack --type=merge --patch '
spec:
  nova:
    enabled: true
    apiOverride:
      route: {}
    template:
      secret: osp-secret
      apiServiceTemplate:
        override:
          service:
            internal:
              metadata:
                annotations:
                  metallb.universe.tf/address-pool: internalapi
                  metallb.universe.tf/allow-shared-ip: internalapi
                  metallb.universe.tf/loadBalancerIPs: 172.17.0.80
              spec:
                type: LoadBalancer
        customServiceConfig: |
          [workarounds]
          disable_compute_service_check_for_ffu=true
      metadataServiceTemplate:
        enabled: true # deploy single nova metadata on the top level
        override:
          service:
            metadata:
              annotations:
                metallb.universe.tf/address-pool: internalapi
                metallb.universe.tf/allow-shared-ip: internalapi
                metallb.universe.tf/loadBalancerIPs: 172.17.0.80

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

69



If adopting Compute service (nova) with the Baremetal service (ironic), append the
following novaComputeTemplates in the cell1 section of the Compute service CR patch:
NOTE: Set the [DEFAULT]host configuration option to match the hostname of the node
running the ironic compute driver in the source cloud.

2. Wait for Compute service control plane services' custom resources (CRs) to become ready:

oc wait --for condition=Ready --timeout=300s Nova/nova

The local Conductor services will be started for each cell, while the superconductor runs in cell0.

            spec:
              type: LoadBalancer
        customServiceConfig: |
          [workarounds]
          disable_compute_service_check_for_ffu=true
      schedulerServiceTemplate:
        customServiceConfig: |
          [workarounds]
          disable_compute_service_check_for_ffu=true
      cellTemplates:
        cell0:
          conductorServiceTemplate:
            customServiceConfig: |
              [workarounds]
              disable_compute_service_check_for_ffu=true
        cell1:
          metadataServiceTemplate:
            enabled: false # enable here to run it in a cell instead
            override:
                service:
                  metadata:
                    annotations:
                      metallb.universe.tf/address-pool: internalapi
                      metallb.universe.tf/allow-shared-ip: internalapi
                      metallb.universe.tf/loadBalancerIPs: 172.17.0.80
                  spec:
                    type: LoadBalancer
            customServiceConfig: |
              [workarounds]
              disable_compute_service_check_for_ffu=true
          conductorServiceTemplate:
            customServiceConfig: |
              [workarounds]
              disable_compute_service_check_for_ffu=true
'

        cell1:
          novaComputeTemplates:
            standalone:
              customServiceConfig: |
                [DEFAULT]
                host = standalone.localdomain
                [workarounds]
                disable_compute_service_check_for_ffu=true

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

70



Note that disable_compute_service_check_for_ffu is mandatory for all imported Nova
services, until the external data plane is imported, and until Nova Compute services fast-
forward upgraded. For more information, see Adopting Compute services to the RHOSO data
plane and Performing a fast-forward upgrade on Compute services .

Verification

Check that Compute service endpoints are defined and pointing to the control plane FQDNs
and that Nova API responds.

$ openstack endpoint list | grep nova
$ openstack server list

Compare the following outputs with the topology specific configuration in Retrieving topology-specific
service configuration.

Query the superconductor for cell1 existance and compare it to pre-adoption values:

. ~/.source_cloud_exported_variables
echo $PULL_OPENSTACK_CONFIGURATION_NOVAMANAGE_CELL_MAPPINGS
oc rsh nova-cell0-conductor-0 nova-manage cell_v2 list_cells | grep -F '| cell1 |'

The expected changes to happen:

cell1’s nova DB and user name become nova_cell1.

Default cell is renamed to cell1 (in a multi-cell setup, it should become indexed as the last
cell instead).

RabbitMQ transport URL no longer uses guest.

NOTE

At this point, the Compute service control plane services do not control the existing
Compute service Compute workloads. The control plane manages the data plane only
after the data adoption process is successfully completed. For more information, see
Adopting Compute services to the RHOSO data plane .

4.8. ADOPTING THE BLOCK STORAGE SERVICE

Adopting a director-deployed Block Storage service (cinder) service into Red Hat OpenStack Platform
usually entails:

Checking existing limitations.

Considering the placement of the Block Storage service services.

Preparing the Red Hat OpenShift Container Platform nodes where volume and backup services
will run.

Crafting the manifest based on the existing cinder.conf file.

Deploying Block Storage service.

Validating the new deployment.

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

71



This guide provides necessary knowledge to complete these steps in most situations, but it still requires
knowledge on how RHOSP services work and the structure of a Block Storage service configuration file.

4.8.1. Limitations for adopting the Block Storage service

There are currently limitations that are worth highlighting; some are related to this guideline while some
to the operator:

There is no global nodeSelector for all Block Storage service (cinder) volumes, so it needs to be
specified per backend.

There is no global customServiceConfig or customServiceConfigSecrets for all Block
Storage service volumes, so it needs to be specified per backend.

Adoption of LVM backends, where the volume data is stored in the compute nodes, is not
currently being documented in this process.

Support for Block Storage service backends that require kernel modules not included in RHEL
has not been tested in Operator deployed Red Hat OpenStack Platform.

Adoption of DCN/Edge deployment is not currently described in this guide.

4.8.2. Red Hat OpenShift Container Platform preparation for Block Storage service
adoption

Before deploying Red Hat OpenStack Platform (RHOSP) in Red Hat OpenShift Container Platform, you
must ensure that the networks are ready, that you have decided the node selection, and also make sure
any necessary changes to the RHOCP nodes have been made. For Block Storage service (cinder)
volume and backup services all these 3 must be carefully considered.

Node Selection

You might need, or want, to restrict the RHOCP nodes where Block Storage service volume and
backup services can run.
The best example of when you need to do node selection for a specific Block Storage service is when
you deploy the Block Storage service with the LVM driver. In that scenario, the LVM data where the
volumes are stored only exists in a specific host, so you need to pin the Block Storage-volume service
to that specific RHOCP node. Running the service on any other RHOCP node would not work. Since 
nodeSelector only works on labels, you cannot use the RHOCP host node name to restrict the LVM
backend and you need to identify it using a unique label, an existing label, or new label:

$ oc label nodes worker0 lvm=cinder-volumes

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
  name: openstack
spec:
  secret: osp-secret
  storageClass: local-storage
  cinder:
    enabled: true
    template:
      cinderVolumes:
        lvm-iscsi:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

72



As mentioned in the About node selector, an example where you need to use labels is when using FC
storage and you do not have HBA cards in all your RHOCP nodes. In this scenario you need to restrict
all the Block Storage service volume backends (not only the FC one) as well as the backup services.

Depending on the Block Storage service backends, their configuration, and the usage of Block
Storage service, you can have network intensive Block Storage service volume services with lots of
I/O as well as Block Storage service backup services that are not only network intensive but also
memory and CPU intensive. This may be a concern for the RHOCP human operators, and they may
want to use the nodeSelector to prevent these service from interfering with their other RHOCP
workloads. For more information about node selection, see About node selector.

When selecting the nodes where the Block Storage service volume is going to run remember that
Block Storage service-volume may also use local storage when downloading a Image Service
(glance) image for the create volume from image operation, and it can require a considerable
amount of space when having concurrent operations and not using Block Storage service volume
cache.

If you do not have nodes with enough local disk space for the temporary images, you can use a
remote NFS location for the images. You had to manually set this up in director deployments, but
with operators, you can do it automatically using the extra volumes feature ()extraMounts.

Transport protocols

Due to the specifics of the storage transport protocols some changes may be required on the
RHOCP side, and although this is something that must be documented by the Vendor here wer are
going to provide some generic instructions that can serve as a guide for the different transport
protocols.
Check the backend sections in your cinder.conf file that are listed in the enabled_backends
configuration option to figure out the transport storage protocol used by the backend.

Depending on the backend, you can find the transport protocol:

Looking at the volume_driver configuration option, as it may contain the protocol itself:
RBD, iSCSI, FC…

Looking at the target_protocol configuration option

WARNING

Any time a MachineConfig is used to make changes to RHOCP nodes
the node will reboot!! Act accordingly.

NFS

There is nothing to do for NFS. RHOCP can connect to NFS backends without any additional
changes.

RBD/Ceph

          nodeSelector:
            lvm: cinder-volumes
< . . . >



CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

73



There is nothing to do for RBD/Ceph in terms of preparing the nodes, RHOCP can connect to Ceph
backends without any additional changes. Credentials and configuration files will need to be
provided to the services though.

iSCSI

Connecting to iSCSI volumes requires that the iSCSI initiator is running on the RHOCP hosts where
volume and backup services are going to run, because the Linux Open iSCSI initiator does not
currently support network namespaces, so you must only run 1 instance of the service for the normal
RHOCP usage, plus the RHOCP CSI plugins, plus the RHOSP services.
If you are not already running iscsid on the RHOCP nodes, then you need to apply a MachineConfig
similar to this one:

If you are using labels to restrict the nodes where the Block Storage services are running you need to
use a MachineConfigPool as described in the About node selector to limit the effects of the 
MachineConfig to only the nodes where your services may run.

If you are using a single node deployment to test the process, replace worker with master in the 
MachineConfig.

FC

There is nothing to do for FC volumes to work, but the Block Storage service volume and Block
Storage service backup services need to run in an RHOCP host that has HBAs, so if there are nodes
that do not have HBAs then you need to use labels to restrict where these services can run, as
mentioned in About node selector.
This also means that for virtualized RHOCP clusters using FC you need to expose the host’s HBAs
inside the VM.

NVMe-oF

Connecting to NVMe-oF volumes requires that the nvme kernel modules are loaded on the RHOCP
hosts.
If you are not already loading the nvme-fabrics module on the RHOCP nodes where volume and
backup services are going to run then you need to apply a MachineConfig similar to this one:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker
    service: cinder
  name: 99-master-cinder-enable-iscsid
spec:
  config:
    ignition:
      version: 3.2.0
    systemd:
      units:
      - enabled: true
        name: iscsid.service

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

74



    machineconfiguration.openshift.io/role: worker
    service: cinder
  name: 99-master-cinder-load-nvme-fabrics
spec:
  config:
    ignition:
      version: 3.2.0
    storage:
      files:
        - path: /etc/modules-load.d/nvme_fabrics.conf
          overwrite: false
          # Mode must be decimal, this is 0644
          mode: 420
          user:
            name: root
          group:
            name: root
          contents:
            # Source can be a http, https, tftp, s3, gs, or data as defined in rfc2397.
            # This is the rfc2397 text/plain string format
            source: data:,nvme-fabrics

If you are using labels to restrict the nodes where Block Storage services are running, you need to use
a MachineConfigPool as described in the About node selector to limit the effects of the 
MachineConfig to only the nodes where your services may run.

If you are using a single node deployment to test the process,replace worker with master in the 
MachineConfig.

You are only loading the nvme-fabrics module because it takes care of loading the transport specific
modules (tcp, rdma, fc) as needed.

For production deployments using NVMe-oF volumes it is recommended that you use multipathing.
For NVMe-oF volumes RHOSP uses native multipathing, called ANA.

Once the RHOCP nodes have rebooted and are loading the nvme-fabrics module you can confirm
that the Operating System is configured and supports ANA by checking on the host:

cat /sys/module/nvme_core/parameters/multipath

IMPORTANT

ANA does not use the Linux Multipathing Device Mapper, but the current RHOSP
code requires multipathd on Compute nodes to be running for Compute service
(nova) to be able to use multipathing.

Multipathing

For iSCSI and FC protocols, using multipathing is recommended, which has 4 parts:

Prepare the RHOCP hosts

Configure the Block Storage services

Prepare the Compute service computes

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

75



Configure the Compute service service
To prepare the RHOCP hosts, you need to ensure that the Linux Multipath Device Mapper is
configured and running on the RHOCP hosts, and you do that using MachineConfig like this
one:

If you are using labels to restrict the nodes where Block Storage services are running you
need to use a MachineConfigPool as described in the About node selector to limit the
effects of the MachineConfig to only the nodes where your services may run.

If you are using a single node deployment to test the process, replace worker with master in
the MachineConfig.

To configure the Block Storage services to use multipathing, enable the 
use_multipath_for_image_xfer configuration option in all the backend sections and in the 
[DEFAULT] section for the backup service. This is the default in control plane deployments.
Multipathing works as long as the service is running on the RHOCP host. Do not override this
option by setting use_multipath_for_image_xfer = false.

4.8.3. Preparing the Block Storage service configurations for adoption

The Block Storage service (cinder) is configured using configuration snippets instead of using

# Includes the /etc/multipathd.conf contents and the systemd unit changes
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker
    service: cinder
  name: 99-master-cinder-enable-multipathd
spec:
  config:
    ignition:
      version: 3.2.0
    storage:
      files:
        - path: /etc/multipath.conf
          overwrite: false
          # Mode must be decimal, this is 0600
          mode: 384
          user:
            name: root
          group:
            name: root
          contents:
            # Source can be a http, https, tftp, s3, gs, or data as defined in rfc2397.
            # This is the rfc2397 text/plain string format
            source: 
data:,defaults%20%7B%0A%20%20user_friendly_names%20no%0A%20%20recheck_w
wid%20yes%0A%20%20skip_kpartx%20yes%0A%20%20find_multipaths%20yes%0A%7
D%0A%0Ablacklist%20%7B%0A%7D
    systemd:
      units:
      - enabled: true
        name: multipathd.service

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

76



The Block Storage service (cinder) is configured using configuration snippets instead of using
configuration parameters defined by the installer. For more information, see Service configurations.

The recommended way to deploy Block Storage service volume backends has changed to remove old
limitations, add flexibility, and improve operations.

When deploying with director you used to run a single Block Storage service volume service with all your
backends (each backend would run on its own process), and even though that way of deploying is still
supported, it is not recommended. It is recommended to use a volume service per backend since it is a
superior deployment model.

With an LVM and a Ceph backend you have 2 entries in cinderVolume and, as mentioned in the
limitations section, you cannot set global defaults for all volume services, so you have to define it for
each of them, like this:

Reminder that for volume backends that have sensitive information using Secret and the 
customServiceConfigSecrets key is the recommended way to go.

For adoption instead of using a whole deployment manifest you use a targeted patch, like you did with
other services, and in this patch you will enable the different Block Storage services with their specific
configurations.

WARNING

Check that all configuration options are still valid for the new Red Hat OpenStack
Platform version. Configuration options may have been deprecated, removed, or
added. This applies to both backend driver specific configuration options and other
generic options.

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
  name: openstack
spec:
  cinder:
    enabled: true
    template:
      cinderVolume:
        lvm:
          customServiceConfig: |
            [DEFAULT]
            debug = True
            [lvm]
< . . . >
        ceph:
          customServiceConfig: |
            [DEFAULT]
            debug = True
            [ceph]
< . . . >



CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

77



4.8.3.1. Preparing the Block Storage service configuration

Creating the Cinder configuration entails:

Procedure

1. Determine what part of the configuration is generic for all the Block Storage service (cinder)
services and remove anything that would change when deployed in Red Hat OpenShift
Container Platform, like the connection in the [dabase] section, the transport_url and log_dir
in [DEFAULT], the whole [coordination] and [barbican] sections. This configuration goes into
the customServiceConfig (or a Secret and then used in customServiceConfigSecrets) at the
cinder: template: level.

2. Determine if there’s any scheduler specific configuration and add it to the 
customServiceConfig section in cinder: template: cinderScheduler.

3. Determine if there’s any API specific configuration and add it to the customServiceConfig
section in cinder: template: cinderAPI.

4. If you have Block Storage service backup deployed, then you get the Block Storage service
backup relevant configuration options and add them to customServiceConfig (or a Secret and
then used in customServiceConfigSecrets) at the cinder: template: cinderBackup: level.
You should remove the host configuration in the [DEFAULT] section to facilitate supporting
multiple replicas in the future.

5. Determine the individual volume backend configuration for each of the drivers. The
configuration will not only be the specific driver section, it should also include the 
[backend_defaults] section and FC zoning sections is they are being used, because the Block
Storage service operator doesn’t support a customServiceConfig section global for all volume
services. Each backend would have its own section under cinder: template: cinderVolumes
and the configuration would go in customServiceConfig (or a Secret and then used in 
customServiceConfigSecrets).

6. Check if any of the Block Storage service volume drivers being used requires a custom vendor
image. If they do, find the location of the image in the vendor’s instruction available in the
Red Hat OpenStack Platform Block Storage service ecosystem page  and add it under the
specific’s driver section using the containerImage key. The following example shows a CRD for
a Pure Storage array with a certified driver:

7. External files: Block Storage services sometimes use external files, for example for a custom
policy, or to store credentials, or SSL CA bundles to connect to a storage array, and you need to
make those files available to the right containers. To achieve this, you use Secrets or 

spec:
  cinder:
    enabled: true
    template:
      cinderVolume:
        pure:
          containerImage: registry.connect.redhat.com/purestorage/openstack-cinder-volume-
pure-rhosp-18-0'
          customServiceConfigSecrets:
            - openstack-cinder-pure-cfg
< . . . >

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

78

https://catalog.redhat.com/software/search?target_platforms=Red Hat OpenStack Platform&p=1&functionalCategories=Data storage


ConfigMap to store the information in RHOCP and then the extraMounts key. For example, for
the Ceph credentials stored in a Secret called ceph-conf-files you patch the top level 
extraMounts in OpenstackControlPlane:

But for a service specific one, like the API policy, you do it directly on the service itself. In this
example, you include the Block Storage API configuration that references the policy you are
adding from a ConfigMap called my-cinder-conf that has a key policy with the contents of the
policy:

spec:
  extraMounts:
  - extraVol:
    - extraVolType: Ceph
      mounts:
      - mountPath: /etc/ceph
        name: ceph
        readOnly: true
      propagation:
      - CinderVolume
      - CinderBackup
      - Glance
      volumes:
      - name: ceph
        projected:
          sources:
          - secret:
              name: ceph-conf-files

spec:
  cinder:
    enabled: true
    template:
      cinderAPI:
        customServiceConfig: |
           [oslo_policy]
           policy_file=/etc/cinder/api/policy.yaml
      extraMounts:
      - extraVol:
        - extraVolType: Ceph
          mounts:
          - mountPath: /etc/cinder/api
            name: policy
            readOnly: true
          propagation:
          - CinderAPI
          volumes:
          - name: policy
            projected:
              sources:
              - configMap:
                  name: my-cinder-conf
                  items:
                    - key: policy
                      path: policy.yaml

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

79



4.8.4. Deploying the Block Storage services

Assuming you have already stopped Block Storage service (cinder) services, prepared the Red Hat
OpenShift Container Platform nodes, deployed the Red Hat OpenStack Platform (RHOSP) operators
and a bare RHOSP manifest, and migrated the database, and prepared the patch manifest with the
Block Storage service configuration, you must apply the patch and wait for the operator to apply the
changes and deploy the Block Storage services.

Prerequisites

Previous Adoption steps completed. Notably, Block Storage service must have been stopped
and the service databases must already be imported into the control plane MariaDB.

Identity service (keystone) and Key Manager service (barbican) should be already adopted.

Storage network has been properly configured on the RHOCP cluster.

You need the contents of cinder.conf file. Download the file so that you can access it locally:

$CONTROLLER1_SSH cat /var/lib/config-data/puppet-
generated/cinder/etc/cinder/cinder.conf > cinder.conf

Procedure

1. It is recommended to write the patch manifest into a file, for example cinder.patch and then
apply it with something like:

oc patch openstackcontrolplane openstack --type=merge --patch-file=cinder.patch

For example, for the RBD deployment from the Development Guide the cinder.patch would
look like this:

spec:
  extraMounts:
  - extraVol:
    - extraVolType: Ceph
      mounts:
      - mountPath: /etc/ceph
        name: ceph
        readOnly: true
      propagation:
      - CinderVolume
      - CinderBackup
      - Glance
      volumes:
      - name: ceph
        projected:
          sources:
          - secret:
              name: ceph-conf-files
  cinder:
    enabled: true
    apiOverride:
      route: {}
    template:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

80



2. Once the services have been deployed you need to clean up the old scheduler and backup
services which will appear as being down while you have others that appear as being up:

openstack volume service list

+------------------+------------------------+------+---------+-------+----------------------------+
| Binary           | Host                   | Zone | Status  | State | Updated At                 |
+------------------+------------------------+------+---------+-------+----------------------------+
| cinder-backup    | standalone.localdomain | nova | enabled | down  | 2023-06-
28T11:00:59.000000 |

      databaseInstance: openstack
      databaseAccount: cinder
      secret: osp-secret
      cinderAPI:
        override:
          service:
            internal:
              metadata:
                annotations:
                  metallb.universe.tf/address-pool: internalapi
                  metallb.universe.tf/allow-shared-ip: internalapi
                  metallb.universe.tf/loadBalancerIPs: 172.17.0.80
              spec:
                type: LoadBalancer
        replicas: 1
        customServiceConfig: |
          [DEFAULT]
          default_volume_type=tripleo
      cinderScheduler:
        replicas: 1
      cinderBackup:
        networkAttachments:
        - storage
        replicas: 1
        customServiceConfig: |
          [DEFAULT]
          backup_driver=cinder.backup.drivers.ceph.CephBackupDriver
          backup_ceph_conf=/etc/ceph/ceph.conf
          backup_ceph_user=openstack
          backup_ceph_pool=backups
      cinderVolumes:
        ceph:
          networkAttachments:
          - storage
          replicas: 1
          customServiceConfig: |
            [tripleo_ceph]
            backend_host=hostgroup
            volume_backend_name=tripleo_ceph
            volume_driver=cinder.volume.drivers.rbd.RBDDriver
            rbd_ceph_conf=/etc/ceph/ceph.conf
            rbd_user=openstack
            rbd_pool=volumes
            rbd_flatten_volume_from_snapshot=False
            report_discard_supported=True

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

81



| cinder-scheduler | standalone.localdomain | nova | enabled | down  | 2023-06-
28T11:00:29.000000 |
| cinder-volume    | hostgroup@tripleo_ceph | nova | enabled | up    | 2023-06-
28T17:00:03.000000 |
| cinder-scheduler | cinder-scheduler-0     | nova | enabled | up    | 2023-06-
28T17:00:02.000000 |
| cinder-backup    | cinder-backup-0        | nova | enabled | up    | 2023-06-
28T17:00:01.000000 |
+------------------+------------------------+------+---------+-------+----------------------------+

3. In this case you need to remove services for hosts standalone.localdomain

oc exec -it cinder-scheduler-0 -- cinder-manage service remove cinder-backup 
standalone.localdomain
oc exec -it cinder-scheduler-0 -- cinder-manage service remove cinder-scheduler 
standalone.localdomain

The reason why we haven’t preserved the name of the backup service is because we have taken
the opportunity to change its configuration to support Active-Active, even though we are not
doing so right now because we have 1 replica.

4. Now that the Block Storage services are running, the DB schema migration has been completed
and you can proceed to apply the DB data migrations. While it is not necessary to run these data
migrations at this precise moment, because you can run them right before the next upgrade, for
adoption it is best to run them now to make sure there are no issues before running production
workloads on the deployment.
The command to run the DB data migrations is:

oc exec -it cinder-scheduler-0 -- cinder-manage db online_data_migrations

Verification

Before you can run any checks you need to set the right cloud configuration for the openstack
command to be able to connect to your RHOCP control plane.

1. Ensure that the openstack alias is defined:

alias openstack="oc exec -t openstackclient -- openstack"

Now you can run a set of tests to confirm that the deployment is using your old database contents:

1. See that Block Storage service endpoints are defined and pointing to the control plane FQDNs:

openstack endpoint list --service cinderv3

2. Check that the Block Storage services are running and up. The API won’t show but if you get a
response you know it’s up as well:

openstack volume service list

3. Check that your old volume types, volumes, snapshots, and backups are there:

openstack volume type list
openstack volume list

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

82



openstack volume snapshot list
openstack volume backup list

To confirm that the configuration is working, the following basic operations are recommended:

1. Create a volume from an image to check that the connection to Image Service (glance) is
working.

openstack volume create --image cirros --bootable --size 1 disk_new

2. Backup the old attached volume to a new backup. Example:

openstack --os-volume-api-version 3.47 volume create --backup backup restored

NOTE

You do not boot a Compute service (nova) instance using the new volume from image or
try to detach the old volume because Compute service and the Block Storage service are
still not connected.

4.9. ADOPTING THE DASHBOARD SERVICE

Prerequisites

Previous Adoption steps completed. Notably, Memcached and Identity service (keystone)
should be already adopted.

Procedure

Patch OpenStackControlPlane to deploy the Dashboard service:

oc patch openstackcontrolplane openstack --type=merge --patch '
spec:
  horizon:
    enabled: true
    apiOverride:
      route: {}
    template:
      memcachedInstance: memcached
      secret: osp-secret
'

Verification

1. See that the Dashboard service instance is successfully deployed and ready

oc get horizon

2. Check that the Dashboard service is reachable and returns status code 200

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

83



PUBLIC_URL=$(oc get horizon horizon -o jsonpath='{.status.endpoint}')
curl --silent --output /dev/stderr --head --write-out "%{http_code}" 
"$PUBLIC_URL/dashboard/auth/login/?next=/dashboard/" -k | grep 200

4.10. ADOPTING THE SHARED FILE SYSTEMS SERVICE

The Shared File Systems service (manila) provides Red Hat OpenStack Platform (RHOSP) users with a
self-service API to create and manage file shares. File shares (or simply, "shares"), are built for
concurrent read/write access by any number of clients. This, coupled with the inherent elasticity of the
underlying storage makes the Shared File Systems service essential in cloud environments with require
RWX ("read write many") persistent storage.

File shares in RHOSP are accessed directly over a network. Hence, it is essential to plan the networking
of the cloud to create a successful and sustainable orchestration layer for shared file systems.

The Shared File Systems service supports two levels of storage networking abstractions - one where
users can directly control the networking for their respective file shares; and another where the storage
networking is configured by the RHOSP administrator. It is important to ensure that the networking in
the RHOSP 17.1 environment matches the network plans for your new cloud after adoption. This ensures
that tenant workloads remain connected to storage through the adoption process, even as the control
plane suffers a minor interruption. The Shared File Systems service control plane services are not in the
data path; and shutting down the API, scheduler and share manager services will not impact access to
existing shared file systems.

Typically, storage and storage device management networks are separate. Shared File Systems services
only need access to the storage device management network. For example, if a Ceph cluster was used in
the deployment, the "storage" network refers to the Ceph cluster’s public network, and the Shared File
Systems service’s share manager service needs to be able to reach it.

4.10.1. Changes to CephFS through NFS

If the Red Hat OpenStack Platform (RHOSP) 17.1 deployment uses CephFS through NFS as a backend
for Shared File Systems service (manila), there’s a ceph-nfs service on the RHOSP controller nodes
deployed and managed by director. This service cannot be directly imported into Red Hat OpenStack
Services on OpenShift (RHOSO) 18.0. On RHOSO 18.0, the Shared File Systems service only supports
using a "clustered" NFS service that is directly managed on the Red Hat Ceph Storage cluster. So,
adoption with this service will involve a data path disruption to existing NFS clients. The timing of this
disruption can be controlled by the deployer independent of this adoption procedure.

On RHOSP 17.1, pacemaker controls the high availability of the ceph-nfs service. This service is assigned
a Virtual IP (VIP) address that is also managed by pacemaker. The VIP is typically created on an isolated 
StorageNFS network. There are ordering and collocation constraints established between this VIP, 
ceph-nfs and the Shared File Systems service’s share manager service on the controller nodes. Prior to
adopting Shared File Systems service, pacemaker’s ordering and collocation constraints must be
adjusted to separate the share manager service. This establishes ceph-nfs with its VIP as an isolated,
standalone NFS service that can be decommissioned at will after completing the RHOSP adoption.

Red Hat Ceph Storage 7.0 introduced a native clustered Ceph NFS service. This service has to be
deployed on the Red Hat Ceph Storage cluster using the Ceph orchestrator prior to adopting the
Shared File Systems service. This NFS service will eventually replace the standalone NFS service from
RHOSP 17.1 in your deployment. When the Shared File Systems service is adopted into the RHOSO 18.0
environment, it will establish all the existing exports and client restrictions on the new clustered Ceph
NFS service. Clients can continue to read and write data on their existing NFS shares, and are not
affected until the old standalone NFS service is decommissioned. This switchover window allows clients
to re-mount the same share from the new clustered Ceph NFS service during a scheduled downtime.

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

84



In order to ensure that existing clients can easily switchover to the new NFS service, it is necessary that
the clustered Ceph NFS service is assigned an IP address from the same isolated StorageNFS network.
Doing this will ensure that NFS users aren’t expected to make any networking changes to their existing
workloads. These users only need to discover and re-mount their shares using new export paths. When
the adoption procedure is complete, RHOSP users can query the Shared File Systems service API to list
the export locations on existing shares to identify the preferred paths to mount these shares. These 
preferred paths will correspond to the new clustered Ceph NFS service in contrast to other non-
preferred export paths that continue to be displayed until the old isolated, standalone NFS service is
decommissioned.

See Creating a NFS Ganesha cluster  for instructions on setting up a clustered NFS service.

4.10.2. Deploying the Shared File Systems service control plane

Copy the Shared File Systems service (manila) configuration from the Red Hat OpenStack Platform 17.1
deployment, and then deploy the Shared File Systems service on the control plane.

Prerequisites

Ensure that Shared File Systems service systemd services (api, cron, scheduler) are stopped.
For more information, see Stopping Red Hat OpenStack Platform services .

If the deployment uses CephFS through NFS as a storage backend, ensure that pacemaker
ordering and collocation constraints are adjusted. For more information, see Stopping Red Hat
OpenStack Platform services.

Ensure that the Shared File Systems service pacemaker service (openstack-manila-share) is
stopped. For more information, see Stopping Red Hat OpenStack Platform services .

Ensure that the database migration has completed. For more information, see Migrating
databases to MariaDB instances.

Ensure that Red Hat OpenShift Container Platform nodes where manila-share service will be
deployed can reach the management network that the storage system is in.

If the deployment uses CephFS through NFS as a storage backend, ensure that a new clustered
Ceph NFS service is deployed on the Ceph cluster with the help of Ceph orchestrator. For more
information, see Creating a Ceph NFS cluster .

Ensure that services such as Identity service (keystone) and memcached are available prior to
adopting the Shared File Systems services.

If tenant-driven networking was enabled (driver_handles_share_servers=True), ensure that
Networking service (neutron) has been deployed prior to adopting Shared File Systems
services.

Procedure

1. Define the CONTROLLER1_SSH environment variable, if it hasn’t been defined already. Then
copy the configuration file from RHOSP 17.1 for reference.

$CONTROLLER1_SSH cat /var/lib/config-data/puppet-
generated/manila/etc/manila/manila.conf | awk '!/^ *#/ && NF' > ~/manila.conf

2. Review this configuration alongside any configuration changes that were noted since RHOSP

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

85



2. Review this configuration alongside any configuration changes that were noted since RHOSP
17.1. Not all of it makes sense to bring into the new cloud environment:

The Shared File Systems service operator is capable of setting up database related
configuration ([database]), service authentication (auth_strategy, 
[keystone_authtoken]), message bus configuration ( transport_url, control_exchange),
the default paste config (api_paste_config) and inter-service communication
configuration ( [neutron], [nova], [cinder], [glance] [oslo_messaging_*]). So all of these
can be ignored.

Ignore the osapi_share_listen configuration. In Red Hat OpenStack Services on OpenShift
(RHOSO) 18.0, you rely on Red Hat OpenShift Container Platform routes and ingress.

Pay attention to policy overrides. In RHOSO 18.0, the Shared File Systems service ships with
a secure default RBAC, and overrides may not be necessary. If a custom policy is necessary,
you must provide it as a ConfigMap. The following sample spec illustrates how a 
ConfigMap called manila-policy can be set up with the contents of a file called 
policy.yaml.

You must preserve the value of the host option under the [DEFAULT] section as 
hostgroup.

The Shared File Systems service API service needs the enabled_share_protocols option to
be added in the customServiceConfig section in manila: template: manilaAPI.

If you had scheduler overrides, add them to the customServiceConfig section in manila: 
template: manilaScheduler.

If you had multiple storage backend drivers configured with RHOSP 17.1, you will need to

  spec:
    manila:
      enabled: true
      template:
        manilaAPI:
          customServiceConfig: |
             [oslo_policy]
             policy_file=/etc/manila/policy.yaml
        extraMounts:
        - extraVol:
          - extraVolType: Undefined
            mounts:
            - mountPath: /etc/manila/
              name: policy
              readOnly: true
            propagation:
            - ManilaAPI
            volumes:
            - name: policy
              projected:
                sources:
                - configMap:
                    name: manila-policy
                    items:
                      - key: policy
                        path: policy.yaml

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

86



If you had multiple storage backend drivers configured with RHOSP 17.1, you will need to
split them up when deploying RHOSO 18.0. Each storage backend driver needs to use its
own instance of the manila-share service.

If a storage backend driver needs a custom container image, find it on the RHOSP
Ecosystem Catalog and set manila: template: manilaShares: <custom name> : 
containerImage value. The following example illustrates multiple storage backend drivers,
using custom container images.

3. If providing sensitive information, such as passwords, hostnames and usernames, it is
recommended to use Red Hat OpenShift Container Platform secrets, and the 
customServiceConfigSecrets key. An example:

  spec:
    manila:
      enabled: true
      template:
        manilaAPI:
          customServiceConfig: |
            [DEFAULT]
            enabled_share_protocols = nfs
          replicas: 3
        manilaScheduler:
          replicas: 3
        manilaShares:
         netapp:
           customServiceConfig: |
             [DEFAULT]
             debug = true
             enabled_share_backends = netapp
             host = hostgroup
             [netapp]
             driver_handles_share_servers = False
             share_backend_name = netapp
             share_driver = manila.share.drivers.netapp.common.NetAppDriver
             netapp_storage_family = ontap_cluster
             netapp_transport_type = http
           replicas: 1
         pure:
            customServiceConfig: |
             [DEFAULT]
             debug = true
             enabled_share_backends=pure-1
             host = hostgroup
             [pure-1]
             driver_handles_share_servers = False
             share_backend_name = pure-1
             share_driver = 
manila.share.drivers.purestorage.flashblade.FlashBladeShareDriver
             flashblade_mgmt_vip = 203.0.113.15
             flashblade_data_vip = 203.0.10.14
            containerImage: registry.connect.redhat.com/purestorage/openstack-manila-
share-pure-rhosp-18-0
            replicas: 1

cat << __EOF__ > ~/netapp_secrets.conf

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

87

https://catalog.redhat.com/software/containers/search?gs&q=manila


oc create secret generic osp-secret-manila-netapp --from-file=~/netapp_secrets.conf -n 
openstack

customConfigSecrets can be used in any service, the following is a config example using
the secret you created above.

If you need to present extra files to any of the services, you can use extraMounts. For
example, when using ceph, you’d need the Shared File Systems service ceph user’s keyring
file as well as the ceph.conf configuration file available. These are mounted via 
extraMounts as done with the example below.

Ensure that the names of the backends (share_backend_name) remain as they did on
RHOSP 17.1.

It is recommended to set the replica count of the manilaAPI service and the 
manilaScheduler service to 3. You should ensure to set the replica count of the 
manilaShares service/s to 1.

Ensure that the appropriate storage management network is specified in the manilaShares
section. The example below connects the manilaShares instance with the CephFS
backend driver to the storage network.

Prior to adopting the manilaShares service for CephFS through NFS, ensure that you have

[netapp]
netapp_server_hostname = 203.0.113.10
netapp_login = fancy_netapp_user
netapp_password = secret_netapp_password
netapp_vserver = mydatavserver
__EOF__

  spec:
    manila:
      enabled: true
      template:
        < . . . >
        manilaShares:
         netapp:
           customServiceConfig: |
             [DEFAULT]
             debug = true
             enabled_share_backends = netapp
             host = hostgroup
             [netapp]
             driver_handles_share_servers = False
             share_backend_name = netapp
             share_driver = manila.share.drivers.netapp.common.NetAppDriver
             netapp_storage_family = ontap_cluster
             netapp_transport_type = http
           customServiceConfigSecrets:
             - osp-secret-manila-netapp
           replicas: 1
    < . . . >

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

88



Prior to adopting the manilaShares service for CephFS through NFS, ensure that you have
a clustered Ceph NFS service created. You will need to provide the name of the service as
``cephfs_nfs_cluster_id``.

4. Patch OpenStackControlPlane to deploy the Shared File Systems service; here’s an example
that uses Native CephFS:

Below is an example that uses CephFS through NFS. In this example:

cat << __EOF__ > ~/manila.patch
spec:
  manila:
    enabled: true
    apiOverride:
      route: {}
    template:
      databaseInstance: openstack
      databaseAccount: manila
      secret: osp-secret
      manilaAPI:
        replicas: 3
        customServiceConfig: |
          [DEFAULT]
          enabled_share_protocols = cephfs
        override:
          service:
            internal:
              metadata:
                annotations:
                  metallb.universe.tf/address-pool: internalapi
                  metallb.universe.tf/allow-shared-ip: internalapi
                  metallb.universe.tf/loadBalancerIPs: 172.17.0.80
              spec:
                type: LoadBalancer
      manilaScheduler:
        replicas: 3
      manilaShares:
        cephfs:
          replicas: 1
          customServiceConfig: |
            [DEFAULT]
            enabled_share_backends = tripleo_ceph
            host = hostgroup
            [cephfs]
            driver_handles_share_servers=False
            share_backend_name=cephfs
            share_driver=manila.share.drivers.cephfs.driver.CephFSDriver
            cephfs_conf_path=/etc/ceph/ceph.conf
            cephfs_auth_id=openstack
            cephfs_cluster_name=ceph
            cephfs_volume_mode=0755
            cephfs_protocol_helper_type=CEPHFS
          networkAttachments:
              - storage
__EOF__

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

89



The cephfs_ganesha_server_ip option is preserved from the configuration on the old
RHOSP 17.1 environment.

The cephfs_nfs_cluster_id option is set with the name of the NFS cluster created on
Ceph.

oc patch openstackcontrolplane openstack --type=merge --patch-file=~/manila.patch

cat << __EOF__ > ~/manila.patch
spec:
  manila:
    enabled: true
    apiOverride:
      route: {}
    template:
      databaseInstance: openstack
      secret: osp-secret
      manilaAPI:
        replicas: 3
        customServiceConfig: |
          [DEFAULT]
          enabled_share_protocols = cephfs
        override:
          service:
            internal:
              metadata:
                annotations:
                  metallb.universe.tf/address-pool: internalapi
                  metallb.universe.tf/allow-shared-ip: internalapi
                  metallb.universe.tf/loadBalancerIPs: 172.17.0.80
              spec:
                type: LoadBalancer
      manilaScheduler:
        replicas: 3
      manilaShares:
        cephfs:
          replicas: 1
          customServiceConfig: |
            [DEFAULT]
            enabled_share_backends = cephfs
            host = hostgroup
            [cephfs]
            driver_handles_share_servers=False
            share_backend_name=tripleo_ceph
            share_driver=manila.share.drivers.cephfs.driver.CephFSDriver
            cephfs_conf_path=/etc/ceph/ceph.conf
            cephfs_auth_id=openstack
            cephfs_cluster_name=ceph
            cephfs_protocol_helper_type=NFS
            cephfs_nfs_cluster_id=cephfs
            cephfs_ganesha_server_ip=172.17.5.47
          networkAttachments:
              - storage
__EOF__

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

90



Verification

1. Inspect the resulting Shared File Systems service pods:

oc get pods -l service=manila

2. Check that the Shared File Systems service API service is registered in Identity service
(keystone):

openstack service list | grep manila

openstack endpoint list | grep manila

| 1164c70045d34b959e889846f9959c0e | regionOne | manila       | share        | True    | 
internal  | http://manila-internal.openstack.svc:8786/v1/%(project_id)s        |
| 63e89296522d4b28a9af56586641590c | regionOne | manilav2     | sharev2      | True    | 
public    | https://manila-public-openstack.apps-crc.testing/v2                |
| af36c57adcdf4d50b10f484b616764cc | regionOne | manila       | share        | True    | public    
| https://manila-public-openstack.apps-crc.testing/v1/%(project_id)s |
| d655b4390d7544a29ce4ea356cc2b547 | regionOne | manilav2     | sharev2      | True    | 
internal  | http://manila-internal.openstack.svc:8786/v2                       |

3. Test the health of the service:

openstack share service list
openstack share pool list --detail

4. Check on existing workloads:

openstack share list
openstack share snapshot list

5. You can create further resources:

openstack share create cephfs 10 --snapshot mysharesnap --name myshareclone
openstack share create nfs 10 --name mynfsshare
openstack share export location list mynfsshare

4.10.3. Decommissioning the Red Hat OpenStack Platform standalone Ceph NFS
service

If the deployment uses CephFS through NFS, you must inform your Red Hat OpenStack
Platform(RHOSP) users that the old, standalone NFS service will be decommissioned. Users can
discover the new export locations for their pre-existing shares by querying the Shared File Systems
service API. To stop using the old NFS server, they need to unmount and remount their shared file
systems on each client. If users are consuming the Shared File Systems service shares via the Shared
File Systems service CSI plugin for Red Hat OpenShift Container Platform, this migration can be done
by scaling down the application pods and scaling them back up. Clients spawning new workloads must be
discouraged from using share exports via the old NFS service. The Shared File Systems service will no
longer communicate with the old NFS service, and so it cannot apply or alter any export rules on the old
NFS service.

Since the old NFS service will no longer be supported by future software upgrades, it is recommended

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

91



Since the old NFS service will no longer be supported by future software upgrades, it is recommended
that the decommissioning period is short.

Procedure

1. Once the old NFS service is no longer used, you can adjust the configuration for the manila-
share service to remove the cephfs_ganesha_server_ip option. Doing this will restart the 
manila-share process and remove the export locations that pertained to the old NFS service
from all the shares.

oc patch openstackcontrolplane openstack --type=merge --patch-file=~/manila.patch

2. To cleanup the standalone ceph nfs service from the RHOSP control plane nodes, you can
disable and delete the pacemaker resources associated with the service. Replace <VIP> in the
following commands with the IP address assigned to the ceph-nfs service in your environment.

sudo pcs resource disable ceph-nfs
sudo pcs resource disable ip-<VIP>
sudo pcs resource unmanage ceph-nfs
sudo pcs resource unmanage ip-<VIP>

4.11. ADOPTING THE BARE METAL PROVISIONING SERVICE

Review information about your Bare Metal Provisioning service (ironic) configuration and then adopt
your Bare Metal Provisioning service to the Red Hat OpenStack Services on OpenShift (RHOSO)
control plane.

cat << __EOF__ > ~/manila.patch
spec:
  manila:
    enabled: true
    apiOverride:
      route: {}
    template:
      manilaShares:
        cephfs:
          replicas: 1
          customServiceConfig: |
            [DEFAULT]
            enabled_share_backends = cephfs
            host = hostgroup
            [cephfs]
            driver_handles_share_servers=False
            share_backend_name=cephfs
            share_driver=manila.share.drivers.cephfs.driver.CephFSDriver
            cephfs_conf_path=/etc/ceph/ceph.conf
            cephfs_auth_id=openstack
            cephfs_cluster_name=ceph
            cephfs_protocol_helper_type=NFS
            cephfs_nfs_cluster_id=cephfs
          networkAttachments:
              - storage
__EOF__

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

92



4.11.1. Bare Metal Provisioning service configurations

The Bare Metal Provisioning service (ironic) is configured by using configuration snippets. For more
information about the configuration snippets, see Service configurations.

director generally took care to not override the defaults of the Bare Metal Provisioning service, however
as with any system of descreet configuration management attempting to provide a cross-version
compatability layer, some configuration was certainly defaulted in particular ways. For example, PXE
Loader file names were often overridden at intermediate layers, and you will thus want to pay particular
attention to the settings you choose to apply in your adopted deployment. The operator attempts to
apply reasonable working default configuration, but if you override them with prior configuration, your
experience may not be ideal or your new Bare Metal Provisioning service will fail to operate. Similarly,
additional configuration may be necessary, for example if your ironic.conf has additional hardware types
enabled and in use.

Furthermore, the model of reasonable defaults includes commonly used hardware-types and driver
interfaces. For example, if you previously needed to enable the redfish-virtual-media boot interface
and the ramdisk deploy interface, the good news is you don’t need to, they are enabled by default. One
aspect to be on the watch for after completing adoption is when adding new bare metal nodes, the
driver interface selection occurs based upon order of presidence in the configuration if not explicitly set
on the node creation request or as an established default in ironic.conf.

That being said, some configuration parameters are provided as either a convenience to the operator so
they don’t need to be set on an individual node level while also needing to know precise values, for
example, network UUID values, or it is centrally configured in ironic.conf as the setting controls behaivor
a security control.

The settings, if configured, and formatted as [section] and parameter name, are critical to be maintained
from the prior deployment to the new deployment as it will govern quite a bit of the underlying behavior
and values in the previous configuration, would have used specific values if set.

[neutron]cleaning_network

[neutron]provisioning_network

[neutron]rescuing_network

[neutron]inspection_network

[conductor]automated_clean

[deploy]erase_devices_priority

[deploy]erase_devices_metadata_priority

[conductor]force_power_state_during_sync

The following parameters can be set individually on a node, however, some operators choose to use
embedded configuration options to avoid the need to set it individually when creating/managing bare
metal nodes. We recommend you check your prior ironic.conf file for these parameters, and if set apply
as specific override configuration.

[conductor]bootloader

[conductor]rescue_ramdisk

[conductor]rescue_kernel

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

93



[conductor]deploy_kernel

[conductor]deploy_ramdisk

Finally, a parameter which may be important based upon your configuration and experience, are the
instances of kernel_append_params, formerly pxe_append_params in the [pxe] and [redfish]
configuration sections. Largely this parameter is used to appy boot time options like "console" for the
deployment ramdisk and as such often seeks to be changed.

As a warning, hardware types set via the ironic.conf enabled_hardware_types parameter and
hardware type driver interfaces starting with staging- are not available to be migrated into an adopted
configuration.

Furthermore, director-based deployments made architectural decisions based upon self-management
of services. When adopting deployments, you don’t necessarilly need multiple replicas of secondary
services such as the Introspection service. Should the host the container is running upon fail, Red Hat
OpenShift Container Platform will restart the container on another host. The short-term transitory loss

4.11.2. Deploying the Bare Metal Provisioning service

Applying the configuration to deploy the Bare Metal Provisioning service (ironic).

NOTE

By default, newer versions of the Bare Metal Provisioning service contain a more
restrictive access control model while also becoming multi-tenant aware. As a result, bare
metal nodes might be missing from a openstack baremetal node list command after
upgrade. Your nodes have not been deleted, but you must set the owner field on each
bare metal node due to the increased access restrictions in the role-based access control
(RBAC) model. Because this involves access controls and the model of use which can be
site specific, it is highly recommended that you identify the "project" to "own" the bare
metal nodes.

Prerequisites

Previous Adoption steps completed. Notably, the service databases must already be imported
into the control plane MariaDB, Identity service (keystone), Networking service (neutron), Image
Service (glance), and Block Storage service (cinder) should be in an operational state. Ideally,
Compute service (nova) has not been adopted yet if Bare Metal Provisioning service is
leveraged in a Bare Metal as a Service configuration.

Before deploying Red Hat OpenStack Platform in Red Hat OpenStack Services on OpenShift
(RHOSO), you must ensure that the networks are ready, that you have decided the node
selection, and also make sure any necessary changes to the RHOSO nodes have been made.
For Bare Metal Provisioning service conductor services, it is necessary that the services be able
to reach Baseboard Management Controllers of hardware which is configured to be managed by
Bare Metal Provisioning service. If this hardware is unreachable, the nodes may enter
"maintenance" state and be unable to be acted upon until connectivity is restored at a later
point in time.

You need the contents of ironic.conf file. Download the file so that you can access it locally:

$CONTROLLER1_SSH cat /var/lib/config-data/puppet-generated/ironic/etc/ironic/ironic.conf 
> ironic.conf

NOTE

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

94



NOTE

It is critical that this configuration file comes from one of the controllers and not
a director undercloud node. The director undercloud node specifically operated
with different configuration which would not be appropriate or applicable to apply
when adopting the Overcloud Ironic deployment.

If adopting the Ironic Inspector service you need the value of the IronicInspectorSubnets
director parameter. Use the same values to populate the dhcpRanges parameter in the target
environment.

Define the following shell variables. The values that are used are examples. Replace these
example values with values that are correct for your environment:

alias openstack="oc exec -t openstackclient -- openstack"

Procedure

1. Patch the OpenStackControlPlane to deploy the Bare Metal Provisioning service:

oc patch openstackcontrolplane openstack -n openstack --type=merge --patch '
spec:
  ironic:
    enabled: true
    template:
      rpcTransport: oslo
      databaseInstance: openstack
      ironicAPI:
        replicas: 1
        override:
          service:
            internal:
              metadata:
                annotations:
                  metallb.universe.tf/address-pool: internalapi
                  metallb.universe.tf/allow-shared-ip: internalapi
                  metallb.universe.tf/loadBalancerIPs: 172.17.0.80
              spec:
                type: LoadBalancer
      ironicConductors:
      - replicas: 1
        networkAttachments:
          - baremetal
        provisionNetwork: baremetal
        storageRequest: 10G
        customServiceConfig: |
          [neutron]
          cleaning_network=<cleaning network uuid>
          provisioning_network=<provisioning network uuid>
          rescuing_network=<rescuing network uuid>
          inspection_network=<introspection network uuid>
          [conductor]
          automated_clean=true
      ironicInspector:
        replicas: 1

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

95



The operator begins to apply the configuration and start the necessary Bare Metal Provisioning
services. Once the services have reached a running state, the Bare Metal Provisioning service
automatically begins polling the power state of bare metal nodes for which it is configured to
manage.

2. Wait for Bare Metal Provisioning control plane services' custom resources to become ready:

oc wait --for condition=Ready --timeout=300s ironics.ironic.openstack.org ironic
//kgilliga: Is "optionally verify the individual service" part of the code block, or is it a separate 
step?
# Optionally verify the individual services
oc wait --for condition=Ready --timeout=300s ironicapis.ironic.openstack.org ironic-api
oc wait --for condition=Ready --timeout=300s ironicconductors.ironic.openstack.org ironic-
conductor
oc wait --for condition=Ready --timeout=300s ironicinspectors.ironic.openstack.org ironic-
inspector
oc wait --for condition=Ready --timeout=300s ironicneutronagents.ironic.openstack.org 
ironic-ironic-neutron-agent

3. Update the DNS Nameservers on the provisoning/cleaning/rescue networks. For name
resolution to work for Bare Metal Provisioning service operations the DNS nameserver must be
set to use the internal DNS servers in the RHOSO control plane:

openstack subnet set --dns-nameserver 192.168.122.80 provisioning-subnet

4. Your Bare Metal Provisioning service nodes might be missing from a openstack baremetal 
node list command due to increased access restrictions in the role-based access control model.
To see the nodes again, temporarily disable the new role- based access control policy, which you
can then re-enable after setting the owner field on the nodes.

        inspectionNetwork: baremetal
        networkAttachments:
          - baremetal
        dhcpRanges:
          - name: inspector-0
            cidr: 172.20.1.0/24
            start: 172.20.1.190
            end: 172.20.1.199
            gateway: 172.20.1.1
        serviceUser: ironic-inspector
        databaseAccount: ironic-inspector
        passwordSelectors:
          database: IronicInspectorDatabasePassword
          service: IronicInspectorPassword
      ironicNeutronAgent:
        replicas: 1
        rabbitMqClusterName: rabbitmq
      secret: osp-secret
'

oc patch openstackcontrolplane openstack -n openstack --type=merge --patch '
spec:
  ironic:
    enabled: true
    template:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

96



5. Once this configuration has applied, the operator restarts the Ironic API service disabling the
new RBAC policy which is enabled by default. After which, you should be able to view bare metal
nodes without an owner field:

openstack baremetal node list -f uuid,provision_state,owner

6. Run the following command to assign all bare metal nodes with no owner to a new project, for
example, the "admin" project:

ADMIN_PROJECT_ID=$(openstack project show -c id -f value --domain default admin)
for node in $(openstack baremetal node list -f json -c UUID -c Owner | jq -r '.[] | select(.Owner 
== null) | .UUID'); do openstack baremetal node set --owner $ADMIN_PROJECT_ID $node; 
done

7. Re-apply the default access control policy:

Verification

After applying the configuration update to RHOSO, apply the configuration and start the related
services. The Bare Metal Provisioning service begins to poll power state of the bare metal
nodes:

openstack endpoint list |grep ironic
openstack baremetal node list

The time required for the Bare Metal Provisioning service to review and reconcile the power
state of bare metal nodes is dependent upon the number of operating conductors through the 
replicas parameter and which are present in the Bare Metal Provisioning service deployment
being adopted.

      databaseInstance: openstack
      ironicAPI:
        replicas: 1
        customServiceConfig: |
          [oslo_policy]
          enforce_scope=false
          enforce_new_defaults=false
'

oc patch openstackcontrolplane openstack -n openstack --type=merge --patch '
spec:
  ironic:
    enabled: true
    template:
      databaseInstance: openstack
      ironicAPI:
        replicas: 1
        customServiceConfig: |
          [oslo_policy]
          enforce_scope=true
          enforce_new_defaults=true
'

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

97



4.12. ADOPTING THE ORCHESTRATION SERVICE

Adopting the Orchestration service (heat) means that an existing OpenStackControlPlane custom
resource (CR), where Orchestration service is supposed to be disabled, should be patched to start the
service with the configuration parameters provided by the source environment.

After the adoption process has been completed, a user can expect that they will then have CRs for Heat,
HeatAPI, HeatEngine and HeatCFNAPI. Additionally, a user should have endpoints created within
Identity service (keystone) to facilitate the above mentioned servies.

This guide also assumes that:

1. A director environment (the source Cloud) is running on one side;

2. A Red Hat OpenShift Container Platform environment is running on the other side.

Prerequisites

Previous Adoption steps completed. Notably, MariaDB and Identity service should be already
adopted.

In addition, if your existing Orchestration service stacks contain resources from other services
such as Networking service (neutron), Compute service (nova), Object Storage service (swift),
etc. Those services should be adopted first before trying to adopt Orchestration service.

Procedure

1. Patch the osp-secret to update the HeatAuthEncryptionKey and HeatPassword. This needs
to match what you have configured in the existing director Orchestration service configuration.
You can retrieve and verify the existing auth_encryption_key and service passwords via:

[stack@rhosp17 ~]$ grep -E 'HeatPassword|HeatAuth' ~/overcloud-
deploy/overcloud/overcloud-passwords.yaml
  HeatAuthEncryptionKey: Q60Hj8PqbrDNu2dDCbyIQE2dibpQUPg2
  HeatPassword: dU2N0Vr2bdelYH7eQonAwPfI3

2. And verifying on one of the Controllers that this is indeed the value in use:

[stack@rhosp17 ~]$ ansible -i overcloud-deploy/overcloud/config-download/overcloud/tripleo-
ansible-inventory.yaml overcloud-controller-0 -m shell -a "grep auth_encryption_key 
/var/lib/config-data/puppet-generated/heat/etc/heat/heat.conf | grep -Ev '^#|^$'" -b
overcloud-controller-0 | CHANGED | rc=0 >>
auth_encryption_key=Q60Hj8PqbrDNu2dDCbyIQE2dibpQUPg2

3. This password needs to be base64 encoded and added to the osp-secret

❯ echo Q60Hj8PqbrDNu2dDCbyIQE2dibpQUPg2 | base64
UTYwSGo4UHFickROdTJkRENieUlRRTJkaWJwUVVQZzIK

❯ oc patch secret osp-secret --type='json' -p='[{"op" : "replace" ,"path" : 
"/data/HeatAuthEncryptionKey" ,"value" : 
"UTYwSGo4UHFickROdTJkRENieUlRRTJkaWJwUVVQZzIK"}]'
secret/osp-secret patched

4. Patch OpenStackControlPlane to deploy the Orchestration service:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

98



oc patch openstackcontrolplane openstack --type=merge --patch '
spec:
  heat:
    enabled: true
    apiOverride:
      route: {}
    template:
      databaseInstance: openstack
      databaseAccount: heat
      secret: osp-secret
      memcachedInstance: memcached
      passwordSelectors:
        authEncryptionKey: HeatAuthEncryptionKey
        database: HeatDatabasePassword
        service: HeatPassword
'

Verification

1. Ensure all of the CRs reach the "Setup Complete" state:

❯ oc get Heat,HeatAPI,HeatEngine,HeatCFNAPI
NAME                           STATUS   MESSAGE
heat.heat.openstack.org/heat   True     Setup complete

NAME                                  STATUS   MESSAGE
heatapi.heat.openstack.org/heat-api   True     Setup complete

NAME                                        STATUS   MESSAGE
heatengine.heat.openstack.org/heat-engine   True     Setup complete

NAME                                        STATUS   MESSAGE
heatcfnapi.heat.openstack.org/heat-cfnapi   True     Setup complete

2. Check that the Orchestration service is registered in Identity service:

 oc exec -it openstackclient -- openstack service list -c Name -c Type
+------------+----------------+
| Name       | Type           |
+------------+----------------+
| heat       | orchestration  |
| glance     | image          |
| heat-cfn   | cloudformation |
| ceilometer | Ceilometer     |
| keystone   | identity       |
| placement  | placement      |
| cinderv3   | volumev3       |
| nova       | compute        |
| neutron    | network        |
+------------+----------------+

❯ oc exec -it openstackclient -- openstack endpoint list --service=heat -f yaml
- Enabled: true
  ID: 1da7df5b25b94d1cae85e3ad736b25a5

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

99



  Interface: public
  Region: regionOne
  Service Name: heat
  Service Type: orchestration
  URL: http://heat-api-public-openstack-operators.apps.okd.bne-shift.net/v1/%(tenant_id)s
- Enabled: true
  ID: 414dd03d8e9d462988113ea0e3a330b0
  Interface: internal
  Region: regionOne
  Service Name: heat
  Service Type: orchestration
  URL: http://heat-api-internal.openstack-operators.svc:8004/v1/%(tenant_id)s

3. Check the Orchestration service engine services are up:

 oc exec -it openstackclient -- openstack orchestration service list -f yaml
- Binary: heat-engine
  Engine ID: b16ad899-815a-4b0c-9f2e-e6d9c74aa200
  Host: heat-engine-6d47856868-p7pzz
  Hostname: heat-engine-6d47856868-p7pzz
  Status: up
  Topic: engine
  Updated At: '2023-10-11T21:48:01.000000'
- Binary: heat-engine
  Engine ID: 887ed392-0799-4310-b95c-ac2d3e6f965f
  Host: heat-engine-6d47856868-p7pzz
  Hostname: heat-engine-6d47856868-p7pzz
  Status: up
  Topic: engine
  Updated At: '2023-10-11T21:48:00.000000'
- Binary: heat-engine
  Engine ID: 26ed9668-b3f2-48aa-92e8-2862252485ea
  Host: heat-engine-6d47856868-p7pzz
  Hostname: heat-engine-6d47856868-p7pzz
  Status: up
  Topic: engine
  Updated At: '2023-10-11T21:48:00.000000'
- Binary: heat-engine
  Engine ID: 1011943b-9fea-4f53-b543-d841297245fd
  Host: heat-engine-6d47856868-p7pzz
  Hostname: heat-engine-6d47856868-p7pzz
  Status: up
  Topic: engine
  Updated At: '2023-10-11T21:48:01.000000'

4. Verify you can now see your the Orchestration service stacks again. Test whether you can create
networks, subnets, ports, or routers:

❯ openstack stack list -f yaml
- Creation Time: '2023-10-11T22:03:20Z'
  ID: 20f95925-7443-49cb-9561-a1ab736749ba
  Project: 4eacd0d1cab04427bc315805c28e66c9
  Stack Name: test-networks
  Stack Status: CREATE_COMPLETE
  Updated Time: null

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

100



4.13. ADOPTING TELEMETRY SERVICES

Adopting Telemetry means that an existing OpenStackControlPlane custom resource (CR), where
Telemetry services are supposed to be disabled, should be patched to start the service with the
configuration parameters provided by the source environment.

This guide also assumes that:

1. A director environment (the source Cloud) is running on one side;

2. A SNO / CodeReadyContainers is running on the other side.

Prerequisites

Previous Adoption steps completed. MariaDB, the Identity service (keystone) and the data
plane should be already adopted.

Procedure

1. Patch the OpenStackControlPlane CR to deploy Ceilometer services:

cat << EOF > ceilometer_patch.yaml
spec:
  ceilometer:
    enabled: true
    template:
      centralImage: registry.redhat.io/rhosp-dev-preview/openstack-ceilometer-central-
rhel9:18.0
      computeImage: registry.redhat.io/rhosp-dev-preview/openstack-ceilometer-compute-
rhel9:18.0
      customServiceConfig: |
        [DEFAULT]
        debug=true
      ipmiImage: registry.redhat.io/rhosp-dev-preview/openstack-ceilometer-ipmi-rhel9:18.0
      nodeExporterImage: quay.io/prometheus/node-exporter:v1.5.0
      notificationImage: registry.redhat.io/rhosp-dev-preview/openstack-ceilometer-notification-
rhel9:18.0
      secret: osp-secret
      sgCoreImage: quay.io/infrawatch/sg-core:v5.1.1
EOF

2. Optional: If you previously backed up your RHOSP services configuration file from the old
environment, you can use os-diff to compare and make sure the configuration is correct. This
will produce the difference between both ini configuration files:

os-diff diff /tmp/collect_tripleo_configs/ceilometer/etc/ceilometer/ceilometer.conf 
ceilometer_patch.yaml --crd

For more information, see Reviewing the Red Hat OpenStack Platform control plane
configuration.

3. Patch the OpenStackControlPlane CR to deploy Ceilometer services:

oc patch openstackcontrolplane openstack --type=merge --patch-file ceilometer_patch.yaml

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

101



Verification

1. Inspect the resulting Ceilometer pods:

CEILOMETETR_POD=`oc get pods -l service=ceilometer | tail -n 1 | cut -f 1 -d' '`
oc exec -t $CEILOMETETR_POD -c ceilometer-central-agent -- cat 
/etc/ceilometer/ceilometer.conf

2. Inspect the resulting Ceilometer IPMI agent pod on data plane nodes:

podman ps | grep ceilometer-ipmi

3. Inspect enabled pollsters:

oc get secret ceilometer-config-data -o jsonpath="{.data['polling\.yaml']}"  | base64 -d

4. Enable pollsters according to requirements:

cat << EOF > polling.yaml
---
sources:
    - name: pollsters
      interval: 300
      meters:
        - volume.size
        - image.size
        - cpu
        - memory
EOF

oc patch secret ceilometer-config-data  --patch="{\"data\": { \"polling.yaml\": \"$(base64 -w0 
polling.yaml)\"}}"

4.14. ADOPTING AUTOSCALING

Adopting autoscaling means that an existing OpenStackControlPlane custom resource (CR), where
Aodh services are supposed to be disabled, should be patched to start the service with the configuration
parameters provided by the source environment.

This guide also assumes that:

1. A director environment (the source Cloud) is running on one side;

2. A SNO / CodeReadyContainers is running on the other side.

Prerequisites

Previous Adoption steps completed. MariaDB, the Identity service (keystone), the
Orchestration service (heat), and Telemetry should be already adopted.

Procedure

1. Patch the OpenStackControlPlane CR to deploy autoscaling services:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

102



cat << EOF > aodh_patch.yaml
spec:
  autoscaling:
    enabled: true
    prometheus:
      deployPrometheus: false
    aodh:
      customServiceConfig: |
        [DEFAULT]
        debug=true
      secret: osp-secret
      apiImage: "registry.redhat.io/rhosp-dev-preview/openstack-aodh-api-rhel9:18.0"
      evaluatorImage: "registry.redhat.io/rhosp-dev-preview/openstack-aodh-evaluator-
rhel9:18.0"
      notifierImage: "registry.redhat.io/rhosp-dev-preview/openstack-aodh-notifier-rhel9:18.0"
      listenerImage: "registry.redhat.io/rhosp-dev-preview/openstack-aodh-listener-rhel9:18.0"
      passwordSelectors:
      databaseUser: aodh
      databaseInstance: openstack
      memcachedInstance: memcached
EOF

2. Optional: If you have previously backed up your RHOSP services configuration file from the old
environment, you can use os-diff to compare and make sure the configuration is correct. This
will producre the difference between both ini configuration files:

os-diff diff /tmp/collect_tripleo_configs/aodh/etc/aodh/aodh.conf aodh_patch.yaml --crd

For more information, see Reviewing the Red Hat OpenStack Platform control plane
configuration.

3. Patch the OpenStackControlPlane CR to deploy Aodh services:

oc patch openstackcontrolplane openstack --type=merge --patch-file aodh_patch.yaml

Verification

1. If autoscaling services are enabled, inspect Aodh pods:

AODH_POD=`oc get pods -l service=aodh | tail -n 1 | cut -f 1 -d' '`
oc exec -t $AODH_POD -c aodh-api -- cat /etc/aodh/aodh.conf

2. Check whether Aodh API service is registered in Identity service:

openstack endpoint list | grep aodh
| 6a805bd6c9f54658ad2f24e5a0ae0ab6 | regionOne | aodh      | network      | True    | public    
| http://aodh-public-openstack.apps-crc.testing  |
| b943243e596847a9a317c8ce1800fa98 | regionOne | aodh      | network      | True    | 
internal  | http://aodh-internal.openstack.svc:9696        |
| f97f2b8f7559476bb7a5eafe3d33cee7 | regionOne | aodh      | network      | True    | admin     
| http://192.168.122.99:9696                     |

3. Create sample resources. You can test whether you can create alarms:

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

103



openstack alarm create \
--name low_alarm \
--type gnocchi_resources_threshold \
--metric cpu \
--resource-id b7ac84e4-b5ca-4f9e-a15c-ece7aaf68987 \
--threshold 35000000000 \
--comparison-operator lt \
--aggregation-method rate:mean \
--granularity 300 \
--evaluation-periods 3 \
--alarm-action 'log:\\' \
--ok-action 'log:\\' \
--resource-type instance

4.15. REVIEWING THE RED HAT OPENSTACK PLATFORM CONTROL
PLANE CONFIGURATION

Before starting the adoption workflow, pull the configuration from the Red Hat OpenStack Platform
services and director on your file system to back up the configuration files. You can then use the files
later, during the configuration of the adopted services, and for the record to compare and make sure
nothing has been missed or misconfigured.

Make sure you installed and configured the os-diff tool. For more information, see Comparing
configuration files between deployments.

4.15.1. Pulling the configuration from a director deployment

You can pull configuration from your Red Hat OpenStack Platform (RHOSP) services.

All the services are describes in a yaml file:

service config parameters

Procedure

1. Update your ssh parameters according to your environment in the os-diff.cfg. Os-diff uses
those parameters to connect to your director node, query and download the configuration files:

ssh_cmd=ssh -F ssh.config standalone
container_engine=podman
connection=ssh
remote_config_path=/tmp/tripleo

Make sure the ssh command you provide in ssh_cmd parameter is correct and with key
authentication.

2. Enable or disable the services that you want in the /etc/os-diff/config.yaml file. Make sure that
you have the correct rights to edit the file, for example:

chown ospng:ospng /etc/os-diff/config.yaml

Example with default Identity service (keystone):

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

104

https://github.com/openstack-k8s-operators/os-diff/blob/main/config.yaml


Repeat this step for each RHOSP service that you want to disable or enable.

1. If you are using non-containerized services, such as the ovs-external-ids, os-diff can pull
configuration or command output:

services:
  ovs_external_ids:
    hosts:
      - standalone
    service_command: "ovs-vsctl list Open_vSwitch . | grep external_ids | awk -F ': ' '{ print $2; 
}'"
    cat_output: true
    path:
      - ovs_external_ids.json
    config_mapping:
      ovn-bridge-mappings: edpm_ovn_bridge_mappings
      ovn-bridge: edpm_ovn_bridge
      ovn-encap-type: edpm_ovn_encap_type
      ovn-match-northd-version: ovn_match_northd_version
      ovn-monitor-all: ovn_monitor_all
      ovn-remote-probe-interval: edpm_ovn_remote_probe_interval
      ovn-ofctrl-wait-before-clear: edpm_ovn_ofctrl_wait_before_clear

This service is not an Red Hat OpenStack Platform service executed in a container, so the
description and the behavior is different. It is important to correctly configure an SSH config file
or equivalent for non-standard services such as OVS. The ovs_external_ids does not run in a
container, and the ovs data is stored on each host of our cloud: controller_1/controller_2/…

With the hosts key, os-diff loops on each host and runs the command in the 

# service name and file location
services:
  # Service name
  keystone:
    # Bool to enable/disable a service (not implemented yet)
    enable: true
    # Pod name, in both OCP and podman context.
    # It could be strict match or will only just grep the podman_name
    # and work with all the pods which matched with pod_name.
    # To enable/disable use strict_pod_name_match: true/false
    podman_name: keystone
    pod_name: keystone
    container_name: keystone-api
    # pod options
    # strict match for getting pod id in TripleO and podman context
    strict_pod_name_match: false
    # Path of the config files you want to analyze.
    # It could be whatever path you want:
    # /etc/<service_name> or /etc or /usr/share/<something> or even /
    # @TODO: need to implement loop over path to support multiple paths such as:
    # - /etc
    # - /usr/share
    path:
      - /etc/
      - /etc/keystone
      - /etc/keystone/keystone.conf
      - /etc/keystone/logging.conf

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

105



With the hosts key, os-diff loops on each host and runs the command in the 
service_command key:

    ovs_external_ids:
        path:
            - ovs_external_ids.json
        hosts:
            - standalone

The service_command provides the required information. It could be a simple cat from a config
file. If you want os-diff to get the output of the command and store the output in a file specified
by the key path, set cat_output to true. Then you can provide a mapping between in this case
the EDPM CRD, and the ovs-vsctl output with config_mapping:

        service_command: 'ovs-vsctl list Open_vSwitch . | grep external_ids | awk -F '': '' ''{ print 
$2; }'''
        cat_output: true
        config_mapping:
            ovn-bridge: edpm_ovn_bridge
            ovn-bridge-mappings: edpm_ovn_bridge_mappings
            ovn-encap-type: edpm_ovn_encap_type
            ovn-match-northd-version: ovn_match_northd_version
            ovn-monitor-all: ovn_monitor_all
            ovn-ofctrl-wait-before-clear: edpm_ovn_ofctrl_wait_before_clear
            ovn-remote-probe-interval: edpm_ovn_remote_probe_interval

Then you can use the following command to compare the values:

os-diff diff ovs_external_ids.json edpm.crd --crd --service ovs_external_ids

For example, to check the /etc/yum.conf on every host, you must put the following statement in
the config.yaml file. The following example uses a file called yum_config:

services:
  yum_config:
    hosts:
      - undercloud
      - controller_1
      - compute_1
      - compute_2
    service_command: "cat /etc/yum.conf"
    cat_output: true
    path:
      - yum.conf

2. Pull the configuration:
This command will pull all the configuration files that are described in the /etc/os-
diff/config.yaml file. Os-diff can update this file automatically according to your running
environment with the command --update or --update-only. This option sets the podman
information into the config.yaml for all running containers. It can be useful later, when all the
Red Hat OpenStack Platform services are turned off.

Note that when the config.yaml file is populated automatically you must provide the configuration
paths manually for each service.

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

106



# will only update the /etc/os-diff/config.yaml
os-diff pull --update-only

# will update the /etc/os-diff/config.yaml and pull configuration
os-diff pull --update

# will update the /etc/os-diff/config.yaml and pull configuration
os-diff pull

The configuration will be pulled and stored by default:

/tmp/tripleo/

Verification

You should have into your local path a directory per services such as:

  ▾ tmp/
    ▾ tripleo/
      ▾ glance/
      ▾ keystone/

4.16. ROLLING BACK THE CONTROL PLANE ADOPTION

If you encountered a problem during the adoption of the Red Hat OpenStack Platform (RHOSP) control
plane services that prevents you from completing the adoption procedure, you can roll back the control
plane adoption.

IMPORTANT

The roll back operation is only possible during the control plane parts of the adoption
procedure. If you altered the data plane nodes in any way during the procedure, the roll
back is not possible.

During the control plane adoption, services on the source cloud’s control plane are stopped but not
removed. The databases on the source control plane are not edited by the adoption procedure. The
destination control plane received a copy of the original control plane databases. The roll back
procedure assumes that the data plane has not yet been touched by the adoption procedure and it is
still connected to the source control plane.

The rollback procedure consists of the following steps:

Restoring the functionality of the source control plane.

Removing the partially or fully deployed destination control plane.

Procedure

1. To restore the source cloud to a working state, start the RHOSP control plane services that you
previously stopped during the adoption procedure:

ServicesToStart=("tripleo_horizon.service"

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

107



                 "tripleo_keystone.service"
                 "tripleo_barbican_api.service"
                 "tripleo_barbican_worker.service"
                 "tripleo_barbican_keystone_listener.service"
                 "tripleo_cinder_api.service"
                 "tripleo_cinder_api_cron.service"
                 "tripleo_cinder_scheduler.service"
                 "tripleo_cinder_volume.service"
                 "tripleo_cinder_backup.service"
                 "tripleo_glance_api.service"
                 "tripleo_manila_api.service"
                 "tripleo_manila_api_cron.service"
                 "tripleo_manila_scheduler.service"
                 "tripleo_neutron_api.service"
                 "tripleo_placement_api.service"
                 "tripleo_nova_api_cron.service"
                 "tripleo_nova_api.service"
                 "tripleo_nova_conductor.service"
                 "tripleo_nova_metadata.service"
                 "tripleo_nova_scheduler.service"
                 "tripleo_nova_vnc_proxy.service"
                 "tripleo_aodh_api.service"
                 "tripleo_aodh_api_cron.service"
                 "tripleo_aodh_evaluator.service"
                 "tripleo_aodh_listener.service"
                 "tripleo_aodh_notifier.service"
                 "tripleo_ceilometer_agent_central.service"
                 "tripleo_ceilometer_agent_compute.service"
                 "tripleo_ceilometer_agent_ipmi.service"
                 "tripleo_ceilometer_agent_notification.service"
                 "tripleo_ovn_cluster_north_db_server.service"
                 "tripleo_ovn_cluster_south_db_server.service"
                 "tripleo_ovn_cluster_northd.service")

PacemakerResourcesToStart=("galera-bundle"
                           "haproxy-bundle"
                           "rabbitmq-bundle"
                           "openstack-cinder-volume"
                           "openstack-cinder-backup"
                           "openstack-manila-share")

echo "Starting systemd OpenStack services"
for service in ${ServicesToStart[*]}; do
    for i in {1..3}; do
        SSH_CMD=CONTROLLER${i}_SSH
        if [ ! -z "${!SSH_CMD}" ]; then
            if ${!SSH_CMD} sudo systemctl is-enabled $service &> /dev/null; then
                echo "Starting the $service in controller $i"
                ${!SSH_CMD} sudo systemctl start $service
            fi
        fi
    done
done

echo "Checking systemd OpenStack services"
for service in ${ServicesToStart[*]}; do

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

108



    for i in {1..3}; do
        SSH_CMD=CONTROLLER${i}_SSH
        if [ ! -z "${!SSH_CMD}" ]; then
            if ${!SSH_CMD} sudo systemctl is-enabled $service &> /dev/null; then
                if ! ${!SSH_CMD} systemctl show $service | grep ActiveState=active >/dev/null; 
then
                    echo "ERROR: Service $service is not running on controller $i"
                else
                    echo "OK: Service $service is running in controller $i"
                fi
            fi
        fi
    done
done

echo "Starting pacemaker OpenStack services"
for i in {1..3}; do
    SSH_CMD=CONTROLLER${i}_SSH
    if [ ! -z "${!SSH_CMD}" ]; then
        echo "Using controller $i to run pacemaker commands"
        for resource in ${PacemakerResourcesToStart[*]}; do
            if ${!SSH_CMD} sudo pcs resource config $resource &>/dev/null; then
                echo "Starting $resource"
                ${!SSH_CMD} sudo pcs resource enable $resource
            else
                echo "Service $resource not present"
            fi
        done
        break
    fi
done

echo "Checking pacemaker OpenStack services"
for i in {1..3}; do
    SSH_CMD=CONTROLLER${i}_SSH
    if [ ! -z "${!SSH_CMD}" ]; then
        echo "Using controller $i to run pacemaker commands"
        for resource in ${PacemakerResourcesToStop[*]}; do
            if ${!SSH_CMD} sudo pcs resource config $resource &>/dev/null; then
                if ${!SSH_CMD} sudo pcs resource status $resource | grep Started >/dev/null; then
                    echo "OK: Service $resource is started"
                else
                    echo "ERROR: Service $resource is stopped"
                fi
            fi
        done
        break
    fi
done

2. If the Ceph NFS service is running on the deployment as a Shared File Systems service (manila)
backend, you must restore the pacemaker ordering and colocation constraints involving the
"openstack-manila-share" service:

sudo pcs constraint order start ceph-nfs then openstack-manila-share kind=Optional 
id=order-ceph-nfs-openstack-manila-share-Optional

CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES

109



sudo pcs constraint colocation add openstack-manila-share with ceph-nfs score=INFINITY 
id=colocation-openstack-manila-share-ceph-nfs-INFINITY

3. Verify that the source cloud is operational again, e.g. by running openstack CLI commands or
using the Dashboard service (horizon).

4. Remove the partially or fully deployed control plane so that another adoption attempt can be
made later:

oc delete --ignore-not-found=true --wait=false openstackcontrolplane/openstack
oc patch openstackcontrolplane openstack --type=merge --patch '
metadata:
  finalizers: []
' || true

while oc get pod | grep rabbitmq-server-0; do
    sleep 2
done
while oc get pod | grep openstack-galera-0; do
    sleep 2
done

oc delete --ignore-not-found=true --wait=false pod mariadb-copy-data
oc delete --ignore-not-found=true --wait=false pvc mariadb-data
oc delete --ignore-not-found=true --wait=false pod ovn-copy-data
oc delete --ignore-not-found=true secret osp-secret

NOTE

Since restoring the source control plane services, their internal state may have changed.
Before retrying the adoption procedure, it is important to verify that the control plane
resources have been removed and there are no leftovers which could affect the following
adoption procedure attempt. Notably, the previously created copies of the database
contents must not be used in another adoption attempt, and new copies must be made
according to the adoption procedure documentation.

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

110



CHAPTER 5. ADOPTING THE DATA PLANE
Adopting the Red Hat OpenStack Services on OpenShift (RHOSO) data plane involves the following
steps:

1. Stopping any remaining services on the Red Hat OpenStack Platform (RHOSP) control plane.

2. Deploying the required custom resources.

3. If applicable, performing a fast-forward upgrade on Compute services from RHOSP 17.1 to
RHOSO 18.0.

WARNING

After the RHOSO control plane is managing the newly deployed data plane, you
must not re-enable services on the RHOSP 17.1 control plane and data plane. Re-
enabling services causes workloads to be managed by two control planes or two
data planes, resulting in data corruption, loss of control of existing workloads,
inability to start new workloads, or other issues.

5.1. STOPPING INFRASTRUCTURE MANAGEMENT AND COMPUTE
SERVICES

The source cloud’s control plane can be decomissioned, which is taking down only cloud controllers,
database and messaging nodes. Nodes that must remain functional are those running the Compute,
storage, or networker roles (in terms of composable roles covered by director Heat Templates).

Prerequisites

Define the following shell variables. The values that are used are examples and refer to a single
node standalone director deployment. Replace these example values with values that are
correct for your environment:

EDPM_PRIVATEKEY_PATH="<path to SSH key>"
declare -A computes
computes=(
  ["standalone.localdomain"]="192.168.122.100"
  # ...
)

Replace ["standalone.localdomain"]="192.168.122.100" with the name of the Compute
node and its IP address.

These ssh variables with the ssh commands are used instead of ansible to create
instructions that are independent of where they are running. But ansible commands could be
used to achieve the same result if you are in the right host, for example to stop a service:

. stackrc
ansible -i $(which tripleo-ansible-inventory) Compute -m shell -a "sudo systemctl stop 
tripleo_virtqemud.service" -b



CHAPTER 5. ADOPTING THE DATA PLANE

111



Procedure

Run the following script to remove the conflicting repositories and packages (in case of a
devsetup that uses Standalone director) from all Compute hosts. That is required to install
libvirt packages, when these hosts become adopted as data plane nodes, where modular libvirt
daemons are no longer running in podman containers:

PacemakerResourcesToStop=(
                "galera-bundle"
                "haproxy-bundle"
                "rabbitmq-bundle")

echo "Stopping pacemaker services"
for i in {1..3}; do
    SSH_CMD=CONTROLLER${i}_SSH
    if [ ! -z "${!SSH_CMD}" ]; then
        echo "Using controller $i to run pacemaker commands"
        for resource in ${PacemakerResourcesToStop[*]}; do
            if ${!SSH_CMD} sudo pcs resource config $resource; then
                ${!SSH_CMD} sudo pcs resource disable $resource
            fi
        done
        break
    fi
done

5.2. ADOPTING COMPUTE SERVICES TO THE RHOSO DATA PLANE

Prerequisites

Remaining source cloud Stopping infrastructure management and Compute services  on
Compute hosts.

Ceph backend for Nova/Libvirt is configured Configuring a Ceph backend .

Make sure the IPAM is configured

oc apply -f - <<EOF
apiVersion: network.openstack.org/v1beta1
kind: NetConfig
metadata:
  name: netconfig
spec:
  networks:
  - name: ctlplane
    dnsDomain: ctlplane.example.com
    subnets:
    - name: subnet1
      allocationRanges:
      - end: 192.168.122.120
        start: 192.168.122.100
      - end: 192.168.122.200
        start: 192.168.122.150

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

112



      cidr: 192.168.122.0/24
      gateway: 192.168.122.1
  - name: internalapi
    dnsDomain: internalapi.example.com
    subnets:
    - name: subnet1
      allocationRanges:
      - end: 172.17.0.250
        start: 172.17.0.100
      cidr: 172.17.0.0/24
      vlan: 20
  - name: External
    dnsDomain: external.example.com
    subnets:
    - name: subnet1
      allocationRanges:
      - end: 10.0.0.250
        start: 10.0.0.100
      cidr: 10.0.0.0/24
      gateway: 10.0.0.1
  - name: storage
    dnsDomain: storage.example.com
    subnets:
    - name: subnet1
      allocationRanges:
      - end: 172.18.0.250
        start: 172.18.0.100
      cidr: 172.18.0.0/24
      vlan: 21
  - name: storagemgmt
    dnsDomain: storagemgmt.example.com
    subnets:
    - name: subnet1
      allocationRanges:
      - end: 172.20.0.250
        start: 172.20.0.100
      cidr: 172.20.0.0/24
      vlan: 23
  - name: tenant
    dnsDomain: tenant.example.com
    subnets:
    - name: subnet1
      allocationRanges:
      - end: 172.19.0.250
        start: 172.19.0.100
      cidr: 172.19.0.0/24
      vlan: 22
EOF

When neutron-sriov-nic-agent is running on the existing Compute nodes, check the physical
device mappings and ensure that they match the values that are defined in the 
OpenStackDataPlaneNodeSet custom resource (CR). For more information, see Pulling the
configuration from a director deployment.

Define the shell variables necessary to run the script that runs the fast-forward upgrade. Omit
setting CEPH_FSID, if the local storage backend is going to be configured by Nova for Libvirt.

CHAPTER 5. ADOPTING THE DATA PLANE

113



The storage backend cannot be changed during adoption, and must match the one used on the
source cloud:

PODIFIED_DB_ROOT_PASSWORD=$(oc get -o json secret/osp-secret | jq -r 
.data.DbRootPassword | base64 -d)
CEPH_FSID=$(oc get secret ceph-conf-files -o json | jq -r '.data."ceph.conf"' | base64 -d | grep fsid | 
sed -e 's/fsid = //'

alias openstack="oc exec -t openstackclient -- openstack"
declare -A computes
export computes=(
  ["standalone.localdomain"]="192.168.122.100"
  # ...
)

Replace ["standalone.localdomain"]="192.168.122.100" with the name of the Compute node
and its IP address.

Procedure

1. Create a ssh authentication secret for the data plane nodes:

oc apply -f - <<EOF
apiVersion: v1
kind: Secret
metadata:
    name: dataplane-adoption-secret
    namespace: openstack
data:
    ssh-privatekey: |
$(cat <path to SSH key> | base64 | sed 's/^/        /')
EOF

2. Generate an ssh key-pair nova-migration-ssh-key secret:

cd "$(mktemp -d)"
ssh-keygen -f ./id -t ecdsa-sha2-nistp521 -N ''
oc get secret nova-migration-ssh-key || oc create secret generic nova-migration-ssh-key \
  -n openstack \
  --from-file=ssh-privatekey=id \
  --from-file=ssh-publickey=id.pub \
  --type kubernetes.io/ssh-auth
rm -f id*
cd -

3. Create a nova-compute-extra-config service (with local storage backend for lbivrt):

4. If TLS Everywhere is enabled, append the following to the OpenStackDataPlaneService spec:

  tlsCert:
    contents:
      - dnsnames
      - ips
    networks:
      - ctlplane

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

114



The secret nova-cell<X>-compute-config is auto-generated for each cell<X>. You must
specify nova-cell<X>-compute-config and nova-migration-ssh-key for each custom 
OpenStackDataPlaneService related to the Compute service.

That service removes pre-FFU workarounds and configures Compute services for local storage
backend.

Or, create a nova-compute-extra-config service (with Ceph backend for libvirt):

That service removes pre-FFU workarounds and configures Compute services for Ceph storage
backend. Provided above resources should contain a cell-specific configurations. For multi-cell,
config maps and Red Hat OpenStack Platform data plane services should be named like nova-
custom-ceph-cellX and nova-compute-extraconfig-cellX.

1. Create a secret for the subscription manager and a secret for the Red Hat registry:

    issuer: osp-rootca-issuer-internal
  caCerts: combined-ca-bundle
  edpmServiceType: nova

oc apply -f - <<EOF
apiVersion: v1
kind: ConfigMap
metadata:
  name: nova-extra-config
  namespace: openstack
data:
  19-nova-compute-cell1-workarounds.conf: |
    [workarounds]
    disable_compute_service_check_for_ffu=true
EOF

oc apply -f - <<EOF
apiVersion: v1
kind: ConfigMap
metadata:
  name: nova-extra-config
  namespace: openstack
data:
  19-nova-compute-cell1-workarounds.conf: |
    [workarounds]
    disable_compute_service_check_for_ffu=true
  03-ceph-nova.conf: |
    [libvirt]
    images_type=rbd
    images_rbd_pool=vms
    images_rbd_ceph_conf=/etc/ceph/ceph.conf
    images_rbd_glance_store_name=default_backend
    images_rbd_glance_copy_poll_interval=15
    images_rbd_glance_copy_timeout=600
    rbd_user=openstack
    rbd_secret_uuid=$CEPH_FSID
EOF

oc apply -f - <<EOF

CHAPTER 5. ADOPTING THE DATA PLANE

115



2. Deploy the OpenStackDataPlaneNodeSet CR:

3. If TLS Everywhere is enabled, change spec:tlsEnabled to true

4. If using a custom DNS Domain, modify the spec:nodes:[NODE NAME]:hostName to use
fqdn for the node

apiVersion: v1
kind: Secret
metadata:
  name: subscription-manager
data:
  username: <base64 encoded subscription-manager username>
  password: <base64 encoded subscription-manager password>
---
apiVersion: v1
kind: Secret
metadata:
  name: redhat-registry
data:
  username: <base64 encoded registry username>
  password: <base64 encoded registry password>
EOF

oc apply -f - <<EOF
apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
  name: openstack
spec:
  tlsEnabled: false
  networkAttachments:
      - ctlplane
  preProvisioned: true
  services:
    - bootstrap
    - download-cache
    - configure-network
    - validate-network
    - install-os
    - configure-os
    - ssh-known-hosts
    - run-os
    - install-certs
    - libvirt
    - nova
    - ovn
    - neutron-metadata
  env:
    - name: ANSIBLE_CALLBACKS_ENABLED
      value: "profile_tasks"
    - name: ANSIBLE_FORCE_COLOR
      value: "True"
  nodes:
    standalone:
      hostName: standalone

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

116



      ansible:
        ansibleHost: ${computes[standalone.localdomain]}
      networks:
      - defaultRoute: true
        fixedIP: ${computes[standalone.localdomain]}
        name: ctlplane
        subnetName: subnet1
      - name: internalapi
        subnetName: subnet1
      - name: storage
        subnetName: subnet1
      - name: tenant
        subnetName: subnet1
  nodeTemplate:
    ansibleSSHPrivateKeySecret: dataplane-adoption-secret
    ansible:
      ansibleUser: root
      ansibleVarsFrom:
      - prefix: subscription_manager_
        secretRef:
          name: subscription-manager
      - prefix: registry_
        secretRef:
          name: redhat-registry
      ansibleVars:
        edpm_bootstrap_release_version_package: []
        service_net_map:
          nova_api_network: internalapi
          nova_libvirt_network: internalapi

        # edpm_network_config
        # Default nic config template for a EDPM compute node
        # These vars are edpm_network_config role vars
        edpm_network_config_template: |
           ---
           {% set mtu_list = [ctlplane_mtu] %}
           {% for network in nodeset_networks %}
           {{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
           {%- endfor %}
           {% set min_viable_mtu = mtu_list | max %}
           network_config:
           - type: ovs_bridge
             name: {{ neutron_physical_bridge_name }}
             mtu: {{ min_viable_mtu }}
             use_dhcp: false
             dns_servers: {{ ctlplane_dns_nameservers }}
             domain: {{ dns_search_domains }}
             addresses:
             - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_cidr }}
             routes: {{ ctlplane_host_routes }}
             members:
             - type: interface
               name: nic1
               mtu: {{ min_viable_mtu }}
               # force the MAC address of the bridge to this interface
               primary: true

CHAPTER 5. ADOPTING THE DATA PLANE

117



           {% for network in nodeset_networks %}
             - type: vlan
               mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
               vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
               addresses:
               - ip_netmask:
                   {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars', 
networks_lower[network] ~ '_cidr') }}
               routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
           {% endfor %}

        edpm_network_config_hide_sensitive_logs: false
        #
        # These vars are for the network config templates themselves and are
        # considered EDPM network defaults.
        neutron_physical_bridge_name: br-ctlplane
        neutron_public_interface_name: eth0

        # edpm_nodes_validation
        edpm_nodes_validation_validate_controllers_icmp: false
        edpm_nodes_validation_validate_gateway_icmp: false

        # edpm ovn-controller configuration
        edpm_ovn_bridge_mappings: <bridge_mappings>
        edpm_ovn_bridge: br-int
        edpm_ovn_encap_type: geneve
        ovn_match_northd_version: false
        ovn_monitor_all: true
        edpm_ovn_remote_probe_interval: 60000
        edpm_ovn_ofctrl_wait_before_clear: 8000

        timesync_ntp_servers:
        - hostname: clock.redhat.com
        - hostname: clock2.redhat.com

        edpm_bootstrap_command: |
          subscription-manager register --username {{ subscription_manager_username }} --
password {{ subscription_manager_password }}
          subscription-manager release --set=9.2
          subscription-manager repos --disable=*
          subscription-manager repos --enable=rhel-9-for-x86_64-baseos-eus-rpms --
enable=rhel-9-for-x86_64-appstream-eus-rpms --enable=rhel-9-for-x86_64-
highavailability-eus-rpms --enable=openstack-17.1-for-rhel-9-x86_64-rpms --enable=fast-
datapath-for-rhel-9-x86_64-rpms --enable=openstack-dev-preview-for-rhel-9-x86_64-
rpms
          # FIXME: perform dnf upgrade for other packages in EDPM ansible
          # here we only ensuring that decontainerized libvirt can start
          dnf -y upgrade openstack-selinux
          rm -f /run/virtlogd.pid
          podman login -u {{ registry_username }} -p {{ registry_password }} registry.redhat.io

        gather_facts: false
        enable_debug: false
        # edpm firewall, change the allowed CIDR if needed
        edpm_sshd_configure_firewall: true
        edpm_sshd_allowed_ranges: ['192.168.122.0/24']

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

118



Prepare adopted EDPM workloads to use Ceph backend for Block Storage service (cinder), if
configured so

Replace <bridge_mappings> with the value of the bridge mappings in your configuration, for
example, "datacentre:br-ctlplane".

1. Ensure that the ovn-controller settings that are configured in the 
OpenStackDataPlaneNodeSet CR are the same as were set in the Compute nodes before
adoption. This configuration is stored in the external_ids` column in the Open_vSwitch
table in the Open vSwitch database:

ovs-vsctl list Open .
...
external_ids        : {hostname=standalone.localdomain, ovn-bridge=br-int, ovn-bridge-
mappings=<bridge_mappings>, ovn-chassis-mac-
mappings="datacentre:1e:0a:bb:e6:7c:ad", ovn-encap-ip="172.19.0.100", ovn-encap-
tos="0", ovn-encap-type=geneve, ovn-match-northd-version=False, ovn-monitor-
all=True, ovn-ofctrl-wait-before-clear="8000", ovn-openflow-probe-interval="60", ovn-

        # SELinux module
        edpm_selinux_mode: enforcing

        # Do not attempt OVS major upgrades here
        edpm_ovs_packages:
        - openvswitch3.1
EOF

oc patch osdpns/openstack --type=merge --patch "
spec:
  services:
    - repo-setup
    - download-cache
    - bootstrap
    - configure-network
    - validate-network
    - install-os
    - configure-os
    - run-os
    - install-certs
    - ceph-client
    - libvirt
    - nova
    - ovn
    - neutron-metadata
  nodeTemplate:
    extraMounts:
    - extraVolType: Ceph
      volumes:
      - name: ceph
        secret:
          secretName: ceph-conf-files
      mounts:
      - name: ceph
        mountPath: "/etc/ceph"
        readOnly: true
"

CHAPTER 5. ADOPTING THE DATA PLANE

119



remote="tcp:ovsdbserver-sb.openstack.svc:6642", ovn-remote-probe-interval="60000", 
rundir="/var/run/openvswitch", system-id="2eec68e6-aa21-4c95-a868-31aeafc11736"}
...

Note that you should retain the original OpenStackDataPlaneNodeSet services composition, except
the inserted ceph-client service.

+ * Replace <bridge_mappings> with the value of the bridge mappings in your configuration, for
example, "datacentre:br-ctlplane".

1. Optional: Enable neutron-sriov-nic-agent in the OpenStackDataPlaneNodeSet CR:

2. Optional: Enable neutron-dhcp in the OpenStackDataPlaneNodeSet CR:

3. Run pre-adoption validation:

a. Create the validation service:

oc patch openstackdataplanenodeset openstack --type='json' --patch='[
  {
    "op": "add",
    "path": "/spec/services/-",
    "value": "neutron-sriov"
  }, {
    "op": "add",
    "path": 
"/spec/nodeTemplate/ansible/ansibleVars/edpm_neutron_sriov_agent_SRIOV_NIC_physical_d
evice_mappings",
    "value": "dummy_sriov_net:dummy-dev"
  }, {
    "op": "add",
    "path": 
"/spec/nodeTemplate/ansible/ansibleVars/edpm_neutron_sriov_agent_SRIOV_NIC_resource_
provider_bandwidths",
    "value": "dummy-dev:40000000:40000000"
  }, {
    "op": "add",
    "path": 
"/spec/nodeTemplate/ansible/ansibleVars/edpm_neutron_sriov_agent_SRIOV_NIC_resource_
provider_hypervisors",
    "value": "dummy-dev:standalone.localdomain"
  }
]'

oc patch openstackdataplanenodeset openstack --type='json' --patch='[
  {
    "op": "add",
    "path": "/spec/services/-",
    "value": "neutron-dhcp"
  }]'

oc apply -f - <<EOF
apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

120



b. Create a OpenStackDataPlaneDeployment CR that runs the validation only:

Wait for the validation to finish.

c. Confirm that all the Ansible EE pods reach a Completed status:

# watching the pods
watch oc get pod -l app=openstackansibleee

# following the ansible logs with:
oc logs -l app=openstackansibleee -f --max-log-requests 20

d. Wait for the deployment to reach the Ready status:

oc wait --for condition=Ready openstackdataplanedeployment/openstack-pre-adoption --
timeout=10m

4. If any openstack-pre-adoption validations fail, you must first determine which ones were
unsuccessful based on the ansible logs and then follow the instructions below for each case:

if the hostname validation failed then check that the hostname of the EDPM node is
correctly listed in the OpenStackDataPlaneNodeSet

if the kernel argument check failed then make sure that the OpenStackDataPlaneNodeSet
has the same kernel argument configuration in edpm_kernel_args and 
edpm_kernel_hugepages variables than what is used in the 17 node.

if the tuned profile check failed then make sure that the edpm_tuned_profile variable in
the OpenStackDataPlaneNodeSet is configured to use the same profile as set on the
(source) OSP 17 node.

5. Remove leftover director services

a. Create cleanup data plane service

  name: pre-adoption-validation
spec:
  playbook: osp.edpm.pre_adoption_validation
EOF

oc apply -f - <<EOF
apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
  name: openstack-pre-adoption
spec:
  nodeSets:
  - openstack
  servicesOverride:
  - pre-adoption-validation
EOF

---
oc apply -f - <<EOF
apiVersion: dataplane.openstack.org/v1beta1

CHAPTER 5. ADOPTING THE DATA PLANE

121



b. Create OpenStackDataPlaneDeployment to run cleanup

c. Wait for the removal to finish.

6. Deploy the OpenStackDataPlaneDeployment CR:

Verification

1. Confirm that all the Ansible EE pods reach a Completed status:

# watching the pods
watch oc get pod -l app=openstackansibleee

# following the ansible logs with:
oc logs -l app=openstackansibleee -f --max-log-requests 20

2. Wait for the data plane node set to reach the Ready status:

oc wait --for condition=Ready osdpns/openstack --timeout=30m

3. Verify that Networking service (neutron) agents are alive:

kind: OpenStackDataPlaneService
metadata:
  name: tripleo-cleanup
spec:
  playbook: osp.edpm.tripleo_cleanup
EOF
---

---
oc apply -f - <<EOF
apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
  name: tripleo-cleanup
spec:
  nodeSets:
  - openstack
  servicesOverride:
  - tripleo-cleanup
EOF
---

oc apply -f - <<EOF
apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
  name: openstack
spec:
  nodeSets:
  - openstack
EOF

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

122



oc exec openstackclient -- openstack network agent list
+--------------------------------------+------------------------------+------------------------+---------------
----+-------+-------+----------------------------+
| ID                                   | Agent Type                   | Host                   | Availability Zone | Alive | 
State | Binary                     |
+--------------------------------------+------------------------------+------------------------+---------------
----+-------+-------+----------------------------+
| 174fc099-5cc9-4348-b8fc-59ed44fcfb0e | DHCP agent                   | standalone.localdomain 
| nova              | :-)   | UP    | neutron-dhcp-agent         |
| 10482583-2130-5b0d-958f-3430da21b929 | OVN Metadata agent           | 
standalone.localdomain |                   | :-)   | UP    | neutron-ovn-metadata-agent |
| a4f1b584-16f1-4937-b2b0-28102a3f6eaa | OVN Controller agent         | 
standalone.localdomain |                   | :-)   | UP    | ovn-controller             |
+--------------------------------------+------------------------------+------------------------+---------------
----+-------+-------+----------------------------+

5.3. PERFORMING A FAST-FORWARD UPGRADE ON COMPUTE
SERVICES

Compute services rolling upgrade cannot be done during adoption, there is in a lock-step with Compute
control plane services, because those are managed independently by data plane ansible and Kubernetes
Operators. Compute service operator and Dataplane Operator ensure upgrading is done independently
of each other, by configuring [upgrade_levels]compute=auto for Compute services. Compute control
plane services apply the change right after custom resource (CR) is patched. Compute data plane
services will catch up the same config change with ansible deployment later on.

Procedure

1. Wait for cell1 Compute data plane services version updated (it may take some time):

oc exec openstack-cell1-galera-0 -c galera -- mysql -rs -uroot -
p$PODIFIED_DB_ROOT_PASSWORD \
    -e "select a.version from nova_cell1.services a join nova_cell1.services b where 
a.version!=b.version and a.binary='nova-compute';"

The above query should return an empty result as a completion criterion.

2. Remove pre-fast-forward upgrade workarounds for Compute control plane services:

oc patch openstackcontrolplane openstack -n openstack --type=merge --patch '
spec:
  nova:
    template:
      cellTemplates:
        cell0:
          conductorServiceTemplate:
            customServiceConfig: |
              [workarounds]
              disable_compute_service_check_for_ffu=false
        cell1:
          metadataServiceTemplate:
            customServiceConfig: |
              [workarounds]
              disable_compute_service_check_for_ffu=false

CHAPTER 5. ADOPTING THE DATA PLANE

123



3. Wait for Compute control plane services' CRs to be ready:

oc wait --for condition=Ready --timeout=300s Nova/nova

4. Remove pre-fast-forward upgrade workarounds for Compute data plane services:

5. Wait for Compute data plane service to be ready:

oc wait --for condition=Ready openstackdataplanedeployment/openstack-nova-compute-ffu -
-timeout=5m

6. Run Compute database online migrations to complete the fast-forward upgrade:

          conductorServiceTemplate:
            customServiceConfig: |
              [workarounds]
              disable_compute_service_check_for_ffu=false
      apiServiceTemplate:
        customServiceConfig: |
          [workarounds]
          disable_compute_service_check_for_ffu=false
      metadataServiceTemplate:
        customServiceConfig: |
          [workarounds]
          disable_compute_service_check_for_ffu=false
      schedulerServiceTemplate:
        customServiceConfig: |
          [workarounds]
          disable_compute_service_check_for_ffu=false
'

oc apply -f - <<EOF
apiVersion: v1
kind: ConfigMap
metadata:
  name: nova-extra-config
  namespace: openstack
data:
  20-nova-compute-cell1-workarounds.conf: |
    [workarounds]
    disable_compute_service_check_for_ffu=false
---
apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
  name: openstack-nova-compute-ffu
  namespace: openstack
spec:
  nodeSets:
    - openstack
  servicesOverride:
    - nova
EOF

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

124



oc exec -it nova-cell0-conductor-0 -- nova-manage db online_data_migrations
oc exec -it nova-cell1-conductor-0 -- nova-manage db online_data_migrations

7. Discover Compute hosts in the cell:

oc rsh nova-cell0-conductor-0 nova-manage cell_v2 discover_hosts --verbose

8. Verify if Compute services can stop the existing test VM instance:

${BASH_ALIASES[openstack]} server list | grep -qF '| test | ACTIVE |' && 
${BASH_ALIASES[openstack]} server stop test || echo PASS
${BASH_ALIASES[openstack]} server list | grep -qF '| test | SHUTOFF |' || echo FAIL
${BASH_ALIASES[openstack]} server --os-compute-api-version 2.48 show --diagnostics test 
2>&1 || echo PASS

9. Verify if Compute services can start the existing test VM instance:

${BASH_ALIASES[openstack]} server list | grep -qF '| test | SHUTOFF |' && 
${BASH_ALIASES[openstack]} server start test || echo PASS
${BASH_ALIASES[openstack]} server list | grep -F '| test | ACTIVE |' && \
  ${BASH_ALIASES[openstack]} server --os-compute-api-version 2.48 show --diagnostics 
test --fit-width -f json | jq -r '.state' | grep running || echo FAIL

NOTE

After the data plane adoption, the hosts continue to run Red Hat Enterprise Linux (RHEL)
9.2. To take advantage of RHEL 9.4, perform a minor update procedure after finishing
the adoption procedure.

CHAPTER 5. ADOPTING THE DATA PLANE

125



CHAPTER 6. MIGRATING RED HAT CEPH STORAGE RBD TO
EXTERNAL RHEL NODES

For hyperconverged infrastructure (HCI) or dedicated Storage nodes that are running Red Hat Ceph
Storage version 6 or later, you must migrate the daemons that are included in the Red Hat OpenStack
Platform control plane into the existing external Red Hat Enterprise Linux (RHEL) nodes. The external
RHEL nodes typically include the Compute nodes for an HCI environment or dedicated storage nodes.

To migrate Red Hat Ceph Storage Rados Block Device (RBD), your environment must meet the
following requirements:

Red Hat Ceph Storage is running version 6 or later and is managed by cephadm/orchestrator.

NFS (ganesha) is migrated from a director-based deployment to cephadm. For more
information, see Creating a NFS Ganesha cluster .

Both the Red Hat Ceph Storage public and cluster networks are propagated, with director, to
the target nodes.

Ceph Monitors need to keep their IPs to avoid cold migration.

6.1. MIGRATING CEPH MONITOR AND CEPH MANAGER DAEMONS TO
RED HAT CEPH STORAGE NODES

Migrate your Ceph Monitor daemons, Ceph Manager daemons, and object storage daemons (OSDs)
from your Red Hat OpenStack Platform Controller nodes to existing Red Hat Ceph Storage nodes.
During the migration, ensure that you can do the following actions:

Keep the mon IP addresses by moving them to the Red Hat Ceph Storage nodes.

Drain the existing Controller nodes and shut them down.

Deploy additional monitors to the existing nodes, and promote them as _admin nodes that
administrators can use to manage the Red Hat Ceph Storage cluster and perform day 2
operations against it.

Keep the Red Hat Ceph Storage cluster operational during the migration.

The following procedure shows an example migration from a Controller node (oc0-controller-1) and a
Red Hat Ceph Storage node (oc0-ceph-0). Use the names of the nodes in your environment.

Prerequisites

Configure the Storage nodes to have both storage and storage_mgmt network to ensure that
you can use both Red Hat Ceph Storage public and cluster networks. This step requires you to
interact with director. From Red Hat OpenStack Platform 17.1 and later you do not have to run a
stack update. However, there are commands that you must perform to run os-net-config on the
bare metal node and configure additional networks.

a. Ensure that the network is defined in the metalsmith.yaml for the CephStorageNodes:

  - name: CephStorage
    count: 2
    instances:
      - hostname: oc0-ceph-0

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

126



b. Run the following command:

openstack overcloud node provision \
  -o overcloud-baremetal-deployed-0.yaml --stack overcloud-0 \
  --network-config -y --concurrency 2 /home/stack/metalsmith-0.yam

c. Verify that the storage network is running on the node:

(undercloud) [CentOS-9 - stack@undercloud ~]$ ssh heat-admin@192.168.24.14 ip -o -
4 a
Warning: Permanently added '192.168.24.14' (ED25519) to the list of known hosts.
1: lo    inet 127.0.0.1/8 scope host lo\       valid_lft forever preferred_lft forever
5: br-storage    inet 192.168.24.14/24 brd 192.168.24.255 scope global br-storage\       
valid_lft forever preferred_lft forever
6: vlan1    inet 192.168.24.14/24 brd 192.168.24.255 scope global vlan1\       valid_lft 
forever preferred_lft forever
7: vlan11    inet 172.16.11.172/24 brd 172.16.11.255 scope global vlan11\       valid_lft 
forever preferred_lft forever
8: vlan12    inet 172.16.12.46/24 brd 172.16.12.255 scope global vlan12\       valid_lft 
forever preferred_lft forever

Procedure

1. To migrate mon(s) and mgr(s) on the two existing Red Hat Ceph Storage nodes, create a Red
Hat Ceph Storage spec based on the default roles with the mon/mgr on the controller nodes.

openstack overcloud ceph spec -o ceph_spec.yaml -y  \
   --stack overcloud-0     overcloud-baremetal-deployed-0.yaml

2. Deploy the Red Hat Ceph Storage cluster:

 openstack overcloud ceph deploy overcloud-baremetal-deployed-0.yaml \
    --stack overcloud-0 -o deployed_ceph.yaml \
    --network-data ~/oc0-network-data.yaml \
    --ceph-spec ~/ceph_spec.yaml

NOTE

        name: oc0-ceph-0
      - hostname: oc0-ceph-1
        name: oc0-ceph-1
    defaults:
      networks:
        - network: ctlplane
          vif: true
        - network: storage_cloud_0
            subnet: storage_cloud_0_subnet
        - network: storage_mgmt_cloud_0
            subnet: storage_mgmt_cloud_0_subnet
      network_config:
        template: templates/single_nic_vlans/single_nic_vlans_storage.j2

CHAPTER 6. MIGRATING RED HAT CEPH STORAGE RBD TO EXTERNAL RHEL NODES

127



NOTE

The ceph_spec.yaml, which is the OSP-generated description of the Red Hat
Ceph Storage cluster, will be used, later in the process, as the basic template
required by cephadm to update the status/info of the daemons.

3. Check the status of the Red Hat Ceph Storage cluster:

[ceph: root@oc0-controller-0 /]# ceph -s
  cluster:
    id:     f6ec3ebe-26f7-56c8-985d-eb974e8e08e3
    health: HEALTH_OK

  services:
    mon: 3 daemons, quorum oc0-controller-0,oc0-controller-1,oc0-controller-2 (age 19m)
    mgr: oc0-controller-0.xzgtvo(active, since 32m), standbys: oc0-controller-1.mtxohd, oc0-
controller-2.ahrgsk
    osd: 8 osds: 8 up (since 12m), 8 in (since 18m); 1 remapped pgs

  data:
    pools:   1 pools, 1 pgs
    objects: 0 objects, 0 B
    usage:   43 MiB used, 400 GiB / 400 GiB avail
    pgs:     1 active+clean

[ceph: root@oc0-controller-0 /]# ceph orch host ls
HOST              ADDR           LABELS          STATUS
oc0-ceph-0        192.168.24.14  osd
oc0-ceph-1        192.168.24.7   osd
oc0-controller-0  192.168.24.15  _admin mgr mon
oc0-controller-1  192.168.24.23  _admin mgr mon
oc0-controller-2  192.168.24.13  _admin mgr mon

4. Log in to the controller-0 node, then

cephadm shell -v /home/ceph-admin/specs:/specs

5. Log in to the ceph-0 node, then

sudo “watch podman ps”  # watch the new mon/mgr being deployed here

6. Optional: If mgr is active in the source node, then:

ceph mgr fail <mgr instance>

7. From the cephadm shell, remove the labels on oc0-controller-1:

    for label in mon mgr _admin; do
           ceph orch host rm label oc0-controller-1 $label;
    done

8. Add the missing labels to oc0-ceph-0:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

128



[ceph: root@oc0-controller-0 /]#
> for label in mon mgr _admin; do ceph orch host label add oc0-ceph-0 $label; done
Added label mon to host oc0-ceph-0
Added label mgr to host oc0-ceph-0
Added label _admin to host oc0-ceph-0

9. Drain and force-remove the oc0-controller-1 node:

[ceph: root@oc0-controller-0 /]# ceph orch host drain oc0-controller-1
Scheduled to remove the following daemons from host 'oc0-controller-1'
type                 id
-------------------- ---------------
mon                  oc0-controller-1
mgr                  oc0-controller-1.mtxohd
crash                oc0-controller-1

[ceph: root@oc0-controller-0 /]# ceph orch host rm oc0-controller-1 --force
Removed  host 'oc0-controller-1'

[ceph: root@oc0-controller-0 /]# ceph orch host ls
HOST              ADDR           LABELS          STATUS
oc0-ceph-0        192.168.24.14  osd
oc0-ceph-1        192.168.24.7   osd
oc0-controller-0  192.168.24.15  mgr mon _admin
oc0-controller-2  192.168.24.13  _admin mgr mon

10. If you have only 3 mon nodes, and the drain of the node doesn’t work as expected (the
containers are still there), then log in to controller-1 and force-purge the containers in the node:

[root@oc0-controller-1 ~]# sudo podman ps
CONTAINER ID  IMAGE                                                                                        COMMAND               
CREATED         STATUS             PORTS       NAMES
5c1ad36472bc  
registry.redhat.io/ceph/rhceph@sha256:320c364dcc8fc8120e2a42f54eb39ecdba12401a25467
63b7bef15b02ce93bc4  -n mon.oc0-contro...  35 minutes ago  Up 35 minutes ago              
ceph-f6ec3ebe-26f7-56c8-985d-eb974e8e08e3-mon-oc0-controller-1
3b14cc7bf4dd  
registry.redhat.io/ceph/rhceph@sha256:320c364dcc8fc8120e2a42f54eb39ecdba12401a25467
63b7bef15b02ce93bc4  -n mgr.oc0-contro...  35 minutes ago  Up 35 minutes ago              
ceph-f6ec3ebe-26f7-56c8-985d-eb974e8e08e3-mgr-oc0-controller-1-mtxohd

[root@oc0-controller-1 ~]# cephadm rm-cluster --fsid f6ec3ebe-26f7-56c8-985d-
eb974e8e08e3 --force

[root@oc0-controller-1 ~]# sudo podman ps
CONTAINER ID  IMAGE       COMMAND     CREATED     STATUS      PORTS       NAMES

NOTE

Cephadm rm-cluster on a node that is not part of the cluster anymore has the
effect of removing all the containers and doing some cleanup on the filesystem.

11. Before shutting the oc0-controller-1 down, move the IP address (on the same network) to the

CHAPTER 6. MIGRATING RED HAT CEPH STORAGE RBD TO EXTERNAL RHEL NODES

129



11. Before shutting the oc0-controller-1 down, move the IP address (on the same network) to the
oc0-ceph-0 node:

mon_host = [v2:172.16.11.54:3300/0,v1:172.16.11.54:6789/0] 
[v2:172.16.11.121:3300/0,v1:172.16.11.121:6789/0] 
[v2:172.16.11.205:3300/0,v1:172.16.11.205:6789/0]

[root@oc0-controller-1 ~]# ip -o -4 a
1: lo    inet 127.0.0.1/8 scope host lo\       valid_lft forever preferred_lft forever
5: br-ex    inet 192.168.24.23/24 brd 192.168.24.255 scope global br-ex\       valid_lft forever 
preferred_lft forever
6: vlan100    inet 192.168.100.96/24 brd 192.168.100.255 scope global vlan100\       valid_lft 
forever preferred_lft forever
7: vlan12    inet 172.16.12.154/24 brd 172.16.12.255 scope global vlan12\       valid_lft forever 
preferred_lft forever
8: vlan11    inet 172.16.11.121/24 brd 172.16.11.255 scope global vlan11\       valid_lft forever 
preferred_lft forever
9: vlan13    inet 172.16.13.178/24 brd 172.16.13.255 scope global vlan13\       valid_lft forever 
preferred_lft forever
10: vlan70    inet 172.17.0.23/20 brd 172.17.15.255 scope global vlan70\       valid_lft forever 
preferred_lft forever
11: vlan1    inet 192.168.24.23/24 brd 192.168.24.255 scope global vlan1\       valid_lft forever 
preferred_lft forever
12: vlan14    inet 172.16.14.223/24 brd 172.16.14.255 scope global vlan14\       valid_lft 
forever preferred_lft forever

12. On the oc0-ceph-0, add the IP address of the mon that has been deleted from controller-0,
and verify that the IP address has been assigned and can be reached:

$ sudo ip a add 172.16.11.121 dev vlan11
$ ip -o -4 a

[heat-admin@oc0-ceph-0 ~]$ ip -o -4 a
1: lo    inet 127.0.0.1/8 scope host lo\       valid_lft forever preferred_lft forever
5: br-storage    inet 192.168.24.14/24 brd 192.168.24.255 scope global br-storage\       
valid_lft forever preferred_lft forever
6: vlan1    inet 192.168.24.14/24 brd 192.168.24.255 scope global vlan1\       valid_lft forever 
preferred_lft forever
7: vlan11    inet 172.16.11.172/24 brd 172.16.11.255 scope global vlan11\       valid_lft forever 
preferred_lft forever
8: vlan12    inet 172.16.12.46/24 brd 172.16.12.255 scope global vlan12\       valid_lft forever 
preferred_lft forever
[heat-admin@oc0-ceph-0 ~]$ sudo ip a add 172.16.11.121 dev vlan11
[heat-admin@oc0-ceph-0 ~]$ ip -o -4 a
1: lo    inet 127.0.0.1/8 scope host lo\       valid_lft forever preferred_lft forever
5: br-storage    inet 192.168.24.14/24 brd 192.168.24.255 scope global br-storage\       
valid_lft forever preferred_lft forever
6: vlan1    inet 192.168.24.14/24 brd 192.168.24.255 scope global vlan1\       valid_lft forever 
preferred_lft forever
7: vlan11    inet 172.16.11.172/24 brd 172.16.11.255 scope global vlan11\       valid_lft forever 
preferred_lft forever
7: vlan11    inet 172.16.11.121/32 scope global vlan11\       valid_lft forever preferred_lft 
forever
8: vlan12    inet 172.16.12.46/24 brd 172.16.12.255 scope global vlan12\       valid_lft forever 
preferred_lft forever

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

130



13. Optional: Power off oc0-controller-1.

14. Add the new mon on oc0-ceph-0 using the old IP address:

[ceph: root@oc0-controller-0 /]# ceph orch daemon add mon oc0-ceph-0:172.16.11.121
Deployed mon.oc0-ceph-0 on host 'oc0-ceph-0'

15. Check the new container in the oc0-ceph-0 node:

b581dc8bbb78  
registry.redhat.io/ceph/rhceph@sha256:320c364dcc8fc8120e2a42f54eb39ecdba12401a25467
63b7bef15b02ce93bc4  -n mon.oc0-ceph-0...  24 seconds ago  Up 24 seconds ago              
ceph-f6ec3ebe-26f7-56c8-985d-eb974e8e08e3-mon-oc0-ceph-0

16. On the cephadm shell, backup the existing ceph_spec.yaml, edit the spec removing any oc0-
controller-1 entry, and replacing it with oc0-ceph-0:

cp ceph_spec.yaml ceph_spec.yaml.bkp # backup the ceph_spec.yaml file

[ceph: root@oc0-controller-0 specs]# diff -u ceph_spec.yaml.bkp ceph_spec.yaml

--- ceph_spec.yaml.bkp  2022-07-29 15:41:34.516329643 +0000
+++ ceph_spec.yaml      2022-07-29 15:28:26.455329643 +0000
@@ -7,14 +7,6 @@
 - mgr
 service_type: host
 ---
-addr: 192.168.24.12
-hostname: oc0-controller-1
-labels:
-- _admin
-- mon
-- mgr
-service_type: host
 ----
 addr: 192.168.24.19
 hostname: oc0-controller-2
 labels:
@@ -38,7 +30,7 @@
 placement:
   hosts:
   - oc0-controller-0
-  - oc0-controller-1
+  - oc0-ceph-0
   - oc0-controller-2
 service_id: mon
 service_name: mon
@@ -47,8 +39,8 @@
 placement:
   hosts:
   - oc0-controller-0
-  - oc0-controller-1
   - oc0-controller-2
+  - oc0-ceph-0

CHAPTER 6. MIGRATING RED HAT CEPH STORAGE RBD TO EXTERNAL RHEL NODES

131



 service_id: mgr
 service_name: mgr
 service_type: mgr

17. Apply the resulting spec:

ceph orch apply -i ceph_spec.yaml

 The result of 12 is having a new mgr deployed on the oc0-ceph-0 node, and the spec 
reconciled within cephadm

[ceph: root@oc0-controller-0 specs]# ceph orch ls
NAME                     PORTS  RUNNING  REFRESHED  AGE  PLACEMENT
crash                               4/4  5m ago     61m  *
mgr                                 3/3  5m ago     69s  oc0-controller-0;oc0-ceph-0;oc0-controller-2
mon                                 3/3  5m ago     70s  oc0-controller-0;oc0-ceph-0;oc0-controller-2
osd.default_drive_group               8  2m ago     69s  oc0-ceph-0;oc0-ceph-1

[ceph: root@oc0-controller-0 specs]# ceph -s
  cluster:
    id:     f6ec3ebe-26f7-56c8-985d-eb974e8e08e3
    health: HEALTH_WARN
            1 stray host(s) with 1 daemon(s) not managed by cephadm

  services:
    mon: 3 daemons, quorum oc0-controller-0,oc0-controller-2,oc0-ceph-0 (age 5m)
    mgr: oc0-controller-0.xzgtvo(active, since 62m), standbys: oc0-controller-2.ahrgsk, oc0-
ceph-0.hccsbb
    osd: 8 osds: 8 up (since 42m), 8 in (since 49m); 1 remapped pgs

  data:
    pools:   1 pools, 1 pgs
    objects: 0 objects, 0 B
    usage:   43 MiB used, 400 GiB / 400 GiB avail
    pgs:     1 active+clean

18. Fix the warning by refreshing the mgr:

ceph mgr fail oc0-controller-0.xzgtvo

At this point the Red Hat Ceph Storage cluster is clean:

[ceph: root@oc0-controller-0 specs]# ceph -s
  cluster:
    id:     f6ec3ebe-26f7-56c8-985d-eb974e8e08e3
    health: HEALTH_OK

  services:
    mon: 3 daemons, quorum oc0-controller-0,oc0-controller-2,oc0-ceph-0 (age 7m)
    mgr: oc0-controller-2.ahrgsk(active, since 25s), standbys: oc0-controller-0.xzgtvo, oc0-
ceph-0.hccsbb
    osd: 8 osds: 8 up (since 44m), 8 in (since 50m); 1 remapped pgs

  data:
    pools:   1 pools, 1 pgs

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

132



    objects: 0 objects, 0 B
    usage:   43 MiB used, 400 GiB / 400 GiB avail
    pgs:     1 active+clean

The oc0-controller-1 is removed and powered off without leaving traces on the Red Hat Ceph
Storage cluster.

19. Repeat this procedure for additional Controller nodes in your environment until you have
migrated all the Ceph Mon and Ceph Manager daemons to the target nodes.

CHAPTER 6. MIGRATING RED HAT CEPH STORAGE RBD TO EXTERNAL RHEL NODES

133



CHAPTER 7. MIGRATING RED HAT CEPH STORAGE RGW TO
EXTERNAL RHEL NODES

For hyperconverged infrastructure (HCI) or dedicated Storage nodes that are running Red Hat Ceph
Storage version 6 or later, you must migrate the RGW daemons that are included in the Red Hat
OpenStack Platform Controller nodes into the existing external Red Hat Enterprise Linux (RHEL) nodes.
The existing external RHEL nodes typically include the Compute nodes for an HCI environment or Red
Hat Ceph Storage nodes.

To migrate Ceph Object Gateway (RGW), your environment must meet the following requirements:

Red Hat Ceph Storage is running version 6 or later and is managed by cephadm/orchestrator.

An undercloud is still available, and the nodes and networks are managed by director.

7.1. RED HAT CEPH STORAGE DAEMON CARDINALITY

Red Hat Ceph Storage 6 and later applies strict constraints in the way daemons can be colocated within
the same node. For more information, see Red Hat Ceph Storage: Supported configurations . The
resulting topology depends on the available hardware, as well as the amount of Red Hat Ceph Storage
services present in the Controller nodes which are going to be retired. For more information about the
procedure that is required to migrate the RGW component and keep an HA model using the Ceph
ingress daemon, see High availability for the Ceph Object Gateway  in Object Gateway Guide . As a
general rule, the number of services that can be migrated depends on the number of available nodes in
the cluster. The following diagrams cover the distribution of the Red Hat Ceph Storage daemons on the
Red Hat Ceph Storage nodes where at least three nodes are required in a scenario that sees only RGW
and RBD, without the Dashboard service (horizon):

|    |                     |             |
|----|---------------------|-------------|
| osd | mon/mgr/crash      | rgw/ingress |
| osd | mon/mgr/crash      | rgw/ingress |
| osd | mon/mgr/crash      | rgw/ingress |

With the Dashboard service, and without Shared File Systems service (manila) at least four nodes are
required. The Dashboard service has no failover:

|     |                     |             |
|-----|---------------------|-------------|
| osd | mon/mgr/crash | rgw/ingress       |
| osd | mon/mgr/crash | rgw/ingress       |
| osd | mon/mgr/crash | dashboard/grafana |
| osd | rgw/ingress   | (free)            |

With the Dashboard service and the Shared File Systems service, 5 nodes minimum are required, and
the Dashboard service has no failover:

|     |                     |                         |
|-----|---------------------|-------------------------|
| osd | mon/mgr/crash       | rgw/ingress             |
| osd | mon/mgr/crash       | rgw/ingress             |
| osd | mon/mgr/crash       | mds/ganesha/ingress     |
| osd | rgw/ingress         | mds/ganesha/ingress     |
| osd | mds/ganesha/ingress | dashboard/grafana       |

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

134

https://access.redhat.com/articles/1548993
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html/object_gateway_guide/index#high-availability-for-the-ceph-object-gateway


7.2. COMPLETING PREREQUISITES FOR MIGRATING RED HAT CEPH
STORAGE RGW

You must complete the following prerequisites before you begin the Red Hat Ceph Storage RGW
migration.

Procedure

1. Check the current status of the Red Hat Ceph Storage nodes:

(undercloud) [stack@undercloud-0 ~]$ metalsmith list

    +------------------------+    +----------------+
    | IP Addresses           |    |  Hostname      |
    +------------------------+    +----------------+
    | ctlplane=192.168.24.25 |    | cephstorage-0  |
    | ctlplane=192.168.24.10 |    | cephstorage-1  |
    | ctlplane=192.168.24.32 |    | cephstorage-2  |
    | ctlplane=192.168.24.28 |    | compute-0      |
    | ctlplane=192.168.24.26 |    | compute-1      |
    | ctlplane=192.168.24.43 |    | controller-0   |
    | ctlplane=192.168.24.7  |    | controller-1   |
    | ctlplane=192.168.24.41 |    | controller-2   |
    +------------------------+    +----------------+

2. Log in to controller-0 and check the pacemaker status to help you identify the information that
you need before you start the RGW migration.

Full List of Resources:
  * ip-192.168.24.46 (ocf:heartbeat:IPaddr2):      Started controller-0
  * ip-10.0.0.103    (ocf:heartbeat:IPaddr2):      Started controller-1
  * ip-172.17.1.129  (ocf:heartbeat:IPaddr2):      Started controller-2
  * ip-172.17.3.68   (ocf:heartbeat:IPaddr2):      Started controller-0
  * ip-172.17.4.37   (ocf:heartbeat:IPaddr2):      Started controller-1
  * Container bundle set: haproxy-bundle

[undercloud-0.ctlplane.redhat.local:8787/rh-osbs/rhosp17-openstack-haproxy:pcmklatest]:
    * haproxy-bundle-podman-0   (ocf:heartbeat:podman):  Started controller-2
    * haproxy-bundle-podman-1   (ocf:heartbeat:podman):  Started controller-0
    * haproxy-bundle-podman-2   (ocf:heartbeat:podman):  Started controller-1

3. Use the ip command to identify the ranges of the storage networks.

[heat-admin@controller-0 ~]$ ip -o -4 a

1: lo inet 127.0.0.1/8 scope host lo\    valid_lft forever preferred_lft forever
2: enp1s0 inet 192.168.24.45/24 brd 192.168.24.255 scope global enp1s0\    valid_lft forever 
preferred_lft forever
2: enp1s0 inet 192.168.24.46/32 brd 192.168.24.255 scope global enp1s0\    valid_lft forever 
preferred_lft forever
7: br-ex inet 10.0.0.122/24 brd 10.0.0.255 scope global br-ex\    valid_lft forever preferred_lft 
forever

CHAPTER 7. MIGRATING RED HAT CEPH STORAGE RGW TO EXTERNAL RHEL NODES

135



8: vlan70 inet 172.17.5.22/24 brd 172.17.5.255 scope global vlan70\    valid_lft forever 
preferred_lft forever
8: vlan70 inet 172.17.5.94/32 brd 172.17.5.255 scope global vlan70\    valid_lft forever 
preferred_lft forever
9: vlan50 inet 172.17.2.140/24 brd 172.17.2.255 scope global vlan50\    valid_lft forever 
preferred_lft forever
10: vlan30 inet 172.17.3.73/24 brd 172.17.3.255 scope global vlan30\    valid_lft forever 
preferred_lft forever
10: vlan30 inet 172.17.3.68/32 brd 172.17.3.255 scope global vlan30\    valid_lft forever 
preferred_lft forever
11: vlan20 inet 172.17.1.88/24 brd 172.17.1.255 scope global vlan20\    valid_lft forever 
preferred_lft forever
12: vlan40 inet 172.17.4.24/24 brd 172.17.4.255 scope global vlan40\    valid_lft forever 
preferred_lft forever

vlan30 represents the Storage Network, where the new RGW instances should be started on
the Red Hat Ceph Storage nodes.

br-ex represents the External Network, which is where in the current environment, haproxy
has the frontend Virtual IP (VIP) assigned.

4. Identify the network that you previously had in haproxy and propagate it through director to the
Red Hat Ceph Storage nodes. This network is used to reserve a new VIP that is owned by Red
Hat Ceph Storage and used as the entry point for the RGW service.

a. Log into controller-0 and check the current HAProxy configuration until you find ceph_rgw
section:

$ less /var/lib/config-data/puppet-generated/haproxy/etc/haproxy/haproxy.cfg

...

...
listen ceph_rgw
  bind 10.0.0.103:8080 transparent
  bind 172.17.3.68:8080 transparent
  mode http
  balance leastconn
  http-request set-header X-Forwarded-Proto https if { ssl_fc }
  http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
  http-request set-header X-Forwarded-Port %[dst_port]
  option httpchk GET /swift/healthcheck
  option httplog
  option forwardfor
  server controller-0.storage.redhat.local 172.17.3.73:8080 check fall 5 inter 2000 rise 2
  server controller-1.storage.redhat.local 172.17.3.146:8080 check fall 5 inter 2000 rise 2
  server controller-2.storage.redhat.local 172.17.3.156:8080 check fall 5 inter 2000 rise 2

b. Confirm that the network is used as an HAProxy frontend:

[controller-0]$ ip -o -4 a

...
7: br-ex inet 10.0.0.106/24 brd 10.0.0.255 scope global br-ex\    valid_lft forever 
preferred_lft forever
...

This example shows that controller-0 is exposing the services by using the external network,

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

136



This example shows that controller-0 is exposing the services by using the external network,
which is not present in the Red Hat Ceph Storage nodes, and you need to propagate it
through director.

5. Propagate the HAProxy frontend network to Red Hat Ceph Storage nodes.

a. Change the NIC template used to define the ceph-storage network interfaces and add the
new config section:

b. In addition, add the External Network to the baremetal.yaml file used by metalsmith:

---
network_config:
- type: interface
  name: nic1
  use_dhcp: false
  dns_servers: {{ ctlplane_dns_nameservers }}
  addresses:
  - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_cidr }}
  routes: {{ ctlplane_host_routes }}
- type: vlan
  vlan_id: {{ storage_mgmt_vlan_id }}
  device: nic1
  addresses:
  - ip_netmask: {{ storage_mgmt_ip }}/{{ storage_mgmt_cidr }}
  routes: {{ storage_mgmt_host_routes }}
- type: interface
  name: nic2
  use_dhcp: false
  defroute: false
- type: vlan
  vlan_id: {{ storage_vlan_id }}
  device: nic2
  addresses:
  - ip_netmask: {{ storage_ip }}/{{ storage_cidr }}
  routes: {{ storage_host_routes }}
- type: ovs_bridge
  name: {{ neutron_physical_bridge_name }}
  dns_servers: {{ ctlplane_dns_nameservers }}
  domain: {{ dns_search_domains }}
  use_dhcp: false
  addresses:
  - ip_netmask: {{ external_ip }}/{{ external_cidr }}
  routes: {{ external_host_routes }}
  members:
  - type: interface
    name: nic3
    primary: true

- name: CephStorage
  count: 3
  hostname_format: cephstorage-%index%
  instances:
  - hostname: cephstorage-0
  name: ceph-0
  - hostname: cephstorage-1

CHAPTER 7. MIGRATING RED HAT CEPH STORAGE RGW TO EXTERNAL RHEL NODES

137



c. Run the overcloud node provision command passing the --network-config option:

(undercloud) [stack@undercloud-0]$

openstack overcloud node provision
   -o overcloud-baremetal-deployed-0.yaml
   --stack overcloud
   --network-config -y
  $PWD/network/baremetal_deployment.yaml

d. Check the new network on the Red Hat Ceph Storage nodes:

[root@cephstorage-0 ~]# ip -o -4 a

1: lo inet 127.0.0.1/8 scope host lo\    valid_lft forever preferred_lft forever
2: enp1s0 inet 192.168.24.54/24 brd 192.168.24.255 scope global enp1s0\    valid_lft 
forever preferred_lft forever
11: vlan40 inet 172.17.4.43/24 brd 172.17.4.255 scope global vlan40\    valid_lft forever 
preferred_lft forever
12: vlan30 inet 172.17.3.23/24 brd 172.17.3.255 scope global vlan30\    valid_lft forever 
preferred_lft forever
14: br-ex inet 10.0.0.133/24 brd 10.0.0.255 scope global br-ex\    valid_lft forever 
preferred_lft forever

7.3. MIGRATING THE RED HAT CEPH STORAGE RGW BACKENDS

To match the cardinality diagram, you use cephadm labels to refer to a group of nodes where a given
daemon type should be deployed. For more information about the cardinality diagram, see Red Hat
Ceph Storage daemon cardinality.

Procedure

1. Add the RGW label to the Red Hat Ceph Storage nodes:

for i in 0 1 2; {
    ceph orch host label add cephstorage-$i rgw;
}

[ceph: root@controller-0 /]#

  name: ceph-1
  - hostname: cephstorage-2
  name: ceph-2
  defaults:
  profile: ceph-storage
  network_config:
      template: /home/stack/composable_roles/network/nic-configs/ceph-storage.j2
  networks:
  - network: ctlplane
      vif: true
  - network: storage
  - network: storage_mgmt
  - network: external

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

138



for i in 0 1 2; {
    ceph orch host label add cephstorage-$i rgw;
}

Added label rgw to host cephstorage-0
Added label rgw to host cephstorage-1
Added label rgw to host cephstorage-2

[ceph: root@controller-0 /]# ceph orch host ls

HOST        ADDR        LABELS       STATUS
cephstorage-0  192.168.24.54  osd rgw
cephstorage-1  192.168.24.44  osd rgw
cephstorage-2  192.168.24.30  osd rgw
controller-0   192.168.24.45  _admin mon mgr
controller-1   192.168.24.11  _admin mon mgr
controller-2   192.168.24.38  _admin mon mgr

6 hosts in cluster

2. During the overcloud deployment, RGW is applied at step 2 (external_deployment_steps), and a
cephadm compatible spec is generated in /home/ceph-admin/specs/rgw from director. Find
the RGW spec:

[root@controller-0 heat-admin]# cat rgw

networks:
- 172.17.3.0/24
placement:
  hosts:
  - controller-0
  - controller-1
  - controller-2
service_id: rgw
service_name: rgw.rgw
service_type: rgw
spec:
  rgw_frontend_port: 8080
  rgw_realm: default
  rgw_zone: default

3. In the placement section, replace the following values:

Replace the controller nodes with the label: rgw label.

Change the ` rgw_frontend_port` value to 8090 to avoid conflicts with the Ceph ingress
daemon.

---
networks:
- 172.17.3.0/24
placement:
  label: rgw
service_id: rgw
service_name: rgw.rgw
service_type: rgw

CHAPTER 7. MIGRATING RED HAT CEPH STORAGE RGW TO EXTERNAL RHEL NODES

139



spec:
  rgw_frontend_port: 8090
  rgw_realm: default
  rgw_zone: default

4. Apply the new RGW spec by using the orchestrator CLI:

$ cephadm shell -m /home/ceph-admin/specs/rgw
$ cephadm shell -- ceph orch apply -i /mnt/rgw

This command triggers the redeploy:

...
osd.9                      cephstorage-2
rgw.rgw.cephstorage-0.wsjlgx  cephstorage-0  172.17.3.23:8090   starting
rgw.rgw.cephstorage-1.qynkan  cephstorage-1  172.17.3.26:8090   starting
rgw.rgw.cephstorage-2.krycit  cephstorage-2  172.17.3.81:8090   starting
rgw.rgw.controller-1.eyvrzw   controller-1   172.17.3.146:8080  running (5h)
rgw.rgw.controller-2.navbxa   controller-2   172.17.3.66:8080   running (5h)

...
osd.9                      cephstorage-2
rgw.rgw.cephstorage-0.wsjlgx  cephstorage-0  172.17.3.23:8090  running (19s)
rgw.rgw.cephstorage-1.qynkan  cephstorage-1  172.17.3.26:8090  running (16s)
rgw.rgw.cephstorage-2.krycit  cephstorage-2  172.17.3.81:8090  running (13s)

5. Ensure that the new RGW backends are reachable on the new ports, because you are going to
enable an IngressDaemon on port 8080 later in the process. For this reason, log in to each RGW
node (the Red Hat Ceph Storage nodes) and add the iptables rule to allow connections to both
8080 and 8090 ports in the Red Hat Ceph Storage nodes.

iptables -I INPUT -p tcp -m tcp --dport 8080 -m conntrack --ctstate NEW -m comment --
comment "ceph rgw ingress" -j ACCEPT

iptables -I INPUT -p tcp -m tcp --dport 8090 -m conntrack --ctstate NEW -m comment --
comment "ceph rgw backends" -j ACCEPT

for port in 8080 8090; {
    for i in 25 10 32; {
       ssh heat-admin@192.168.24.$i sudo iptables -I INPUT \
       -p tcp -m tcp --dport $port -m conntrack --ctstate NEW \
       -j ACCEPT;
   }
}

6. From a Controller node (e.g. controller-0) try to reach (curl) the RGW backends:

for i in 26 23 81; do {
    echo "---"
    curl 172.17.3.$i:8090;
    echo "---"
    echo
done

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

140



You should observe the following output:

---
Query 172.17.3.23
<?xml version="1.0" encoding="UTF-8"?><ListAllMyBucketsResult 
xmlns="http://s3.amazonaws.com/doc/2006-03-01/"><Owner><ID>anonymous</ID>
<DisplayName></DisplayName></Owner><Buckets></Buckets></ListAllMyBucketsResult>
---

---
Query 172.17.3.26
<?xml version="1.0" encoding="UTF-8"?><ListAllMyBucketsResult 
xmlns="http://s3.amazonaws.com/doc/2006-03-01/"><Owner><ID>anonymous</ID>
<DisplayName></DisplayName></Owner><Buckets></Buckets></ListAllMyBucketsResult>
---

---
Query 172.17.3.81
<?xml version="1.0" encoding="UTF-8"?><ListAllMyBucketsResult 
xmlns="http://s3.amazonaws.com/doc/2006-03-01/"><Owner><ID>anonymous</ID>
<DisplayName></DisplayName></Owner><Buckets></Buckets></ListAllMyBucketsResult>
---

7. If RGW backends are migrated in the Red Hat Ceph Storage nodes, there is no "internalAPI"
network(this is not true in the case of HCI). Reconfigure the RGW keystone endpoint, pointing
to the external network that has been propagated. For more information about propagating the
external network, see Completing prerequisites for migrating Red Hat Ceph Storage RGW .

[ceph: root@controller-0 /]# ceph config dump | grep keystone
global   basic rgw_keystone_url  http://172.16.1.111:5000

[ceph: root@controller-0 /]# ceph config set global rgw_keystone_url http://10.0.0.103:5000

7.4. DEPLOYING A RED HAT CEPH STORAGE INGRESS DAEMON

To match the cardinality diagram, you use cephadm labels to refer to a group of nodes where a given
daemon type should be deployed. For more information about the cardinality diagram, see Red Hat
Ceph Storage daemon cardinality. HAProxy is managed by director through Pacemaker: the three
running instances at this point will point to the old RGW backends, resulting in a broken configuration.
Since you are going to deploy the Ceph ingress daemon, the first thing to do is remove the existing 
ceph_rgw config, clean up the config created by director and restart the service to make sure other
services are not affected by this change. After you complete this procedure, you can reach the RGW
backend from the ingress daemon and use RGW through the Object Storage service command line
interface (CLI).

Procedure

1. Log in to each Controller node and remove the following configuration from the /var/lib/config-
data/puppet-generated/haproxy/etc/haproxy/haproxy.cfg file:

listen ceph_rgw
  bind 10.0.0.103:8080 transparent
  mode http
  balance leastconn

CHAPTER 7. MIGRATING RED HAT CEPH STORAGE RGW TO EXTERNAL RHEL NODES

141



  http-request set-header X-Forwarded-Proto https if { ssl_fc }
  http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
  http-request set-header X-Forwarded-Port %[dst_port]
  option httpchk GET /swift/healthcheck
  option httplog
  option forwardfor
   server controller-0.storage.redhat.local 172.17.3.73:8080 check fall 5 inter 2000 rise 2
  server controller-1.storage.redhat.local 172.17.3.146:8080 check fall 5 inter 2000 rise 2
  server controller-2.storage.redhat.local 172.17.3.156:8080 check fall 5 inter 2000 rise 2

2. Restart haproxy-bundle and ensure it is started:

[root@controller-0 ~]# sudo pcs resource restart haproxy-bundle
haproxy-bundle successfully restarted

[root@controller-0 ~]# sudo pcs status | grep haproxy

  * Container bundle set: haproxy-bundle [undercloud-0.ctlplane.redhat.local:8787/rh-
osbs/rhosp17-openstack-haproxy:pcmklatest]:
    * haproxy-bundle-podman-0   (ocf:heartbeat:podman):  Started controller-0
    * haproxy-bundle-podman-1   (ocf:heartbeat:podman):  Started controller-1
    * haproxy-bundle-podman-2   (ocf:heartbeat:podman):  Started controller-2

3. Confirm that no process is bound to 8080:

[root@controller-0 ~]# ss -antop | grep 8080
[root@controller-0 ~]#

The Object Storage service (swift) CLI fails at this point:

(overcloud) [root@cephstorage-0 ~]# swift list

HTTPConnectionPool(host='10.0.0.103', port=8080): Max retries exceeded with url: 
/swift/v1/AUTH_852f24425bb54fa896476af48cbe35d3?format=json (Caused by 
NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7fc41beb0430>: 
Failed to establish a new connection: [Errno 111] Connection refused'))

4. Set the required images for both HAProxy and Keepalived:

[ceph: root@controller-0 /]# ceph config set mgr mgr/cephadm/container_image_haproxy 
registry.redhat.io/rhceph/rhceph-haproxy-rhel9:latest
[ceph: root@controller-0 /]# ceph config set mgr mgr/cephadm/container_image_keepalived 
registry.redhat.io/rhceph/keepalived-rhel9:latest

5. Create a file called rgw_ingress in the /home/ceph-admin/specs/ directory in controller-0:

$ sudo vim /home/ceph-admin/specs/rgw_ingress

6. Paste the following content in to the rgw_ingress file:

---
service_type: ingress
service_id: rgw.rgw

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

142



Replace <external_network> with your external network, for example, 10.0.0.0/24. For
more information, see Completing prerequisites for migrating Red Hat Ceph Storage RGW .

7. Apply the rgw_ingress spec by using the Ceph orchestrator CLI:

$ cephadm shell -m /home/ceph-admin/specs/rgw_ingress
$ cephadm shell -- ceph orch apply -i /mnt/rgw_ingress

8. Wait until the ingress is deployed and query the resulting endpoint:

[ceph: root@controller-0 /]# ceph orch ls

NAME                  PORTS             RUNNING  REFRESHED  AGE  PLACEMENT
crash                                          6/6  6m ago  3d   *
ingress.rgw.rgw       10.0.0.89:8080,8898   6/6  37s ago 60s  label:rgw
mds.mds                   3/3  6m ago  3d   controller-0;controller-1;controller-2
mgr                       3/3  6m ago  3d   controller-0;controller-1;controller-2
mon                       3/3  6m ago  3d   controller-0;controller-1;controller-2
osd.default_drive_group   15  37s ago 3d   cephstorage-0;cephstorage-1;cephstorage-2
rgw.rgw   ?:8090          3/3  37s ago 4m   label:rgw

[ceph: root@controller-0 /]# curl  10.0.0.89:8080

---
<?xml version="1.0" encoding="UTF-8"?><ListAllMyBucketsResult 
xmlns="http://s3.amazonaws.com/doc/2006-03-01/"><Owner><ID>anonymous</ID>
<DisplayName></DisplayName></Owner><Buckets></Buckets></ListAllMyBucketsResult>
[ceph: root@controller-0 /]#
—

7.5. UPDATING THE OBJECT-STORE ENDPOINTS

The object-storage endpoints still point to the original virtual IP address (VIP) that is owned by
pacemaker. You must update the object-store endpoints because other services stll use the original
VIP, and you reserved a new VIP on the same network.

Procedure

1. List the current endpoints:

(overcloud) [stack@undercloud-0 ~]$ openstack endpoint list | grep object

| 1326241fb6b6494282a86768311f48d1 | regionOne | swift     | object-store   | True | internal  
| http://172.17.3.68:8080/swift/v1/AUTH_%(project_id)s |

placement:
  label: rgw
spec:
  backend_service: rgw.rgw
  virtual_ip: 10.0.0.89/24
  frontend_port: 8080
  monitor_port: 8898
  virtual_interface_networks:
    - <external_network>

CHAPTER 7. MIGRATING RED HAT CEPH STORAGE RGW TO EXTERNAL RHEL NODES

143



| 8a34817a9d3443e2af55e108d63bb02b | regionOne | swift     | object-store   | True | public | 
http://10.0.0.103:8080/swift/v1/AUTH_%(project_id)s  |
| fa72f8b8b24e448a8d4d1caaeaa7ac58 | regionOne | swift     | object-store   | True | admin  | 
http://172.17.3.68:8080/swift/v1/AUTH_%(project_id)s |

2. Update the endpoints that are pointing to the Ingress VIP:

(overcloud) [stack@undercloud-0 ~]$ openstack endpoint set --url 
"http://10.0.0.89:8080/swift/v1/AUTH_%(project_id)s" 95596a2d92c74c15b83325a11a4f07a3

(overcloud) [stack@undercloud-0 ~]$ openstack endpoint list | grep object-store
| 6c7244cc8928448d88ebfad864fdd5ca | regionOne | swift     | object-store   | True | internal  
| http://172.17.3.79:8080/swift/v1/AUTH_%(project_id)s |
| 95596a2d92c74c15b83325a11a4f07a3 | regionOne | swift     | object-store   | True | public | 
http://10.0.0.89:8080/swift/v1/AUTH_%(project_id)s   |
| e6d0599c5bf24a0fb1ddf6ecac00de2d | regionOne | swift     | object-store   | True | admin  | 
http://172.17.3.79:8080/swift/v1/AUTH_%(project_id)s |

Repeat this step for both internal and admin endpoints.

3. Test the migrated service:

(overcloud) [stack@undercloud-0 ~]$ swift list --debug

DEBUG:swiftclient:Versionless auth_url - using http://10.0.0.115:5000/v3 as endpoint
DEBUG:keystoneclient.auth.identity.v3.base:Making authentication request to 
http://10.0.0.115:5000/v3/auth/tokens
DEBUG:urllib3.connectionpool:Starting new HTTP connection (1): 10.0.0.115:5000
DEBUG:urllib3.connectionpool:http://10.0.0.115:5000 "POST /v3/auth/tokens HTTP/1.1" 201 
7795
DEBUG:keystoneclient.auth.identity.v3.base:{"token": {"methods": ["password"], "user": 
{"domain": {"id": "default", "name": "Default"}, "id": "6f87c7ffdddf463bbc633980cfd02bb3", 
"name": "admin", "password_expires_at": null},

...

...

...

DEBUG:swiftclient:REQ: curl -i 
http://10.0.0.89:8080/swift/v1/AUTH_852f24425bb54fa896476af48cbe35d3?format=json -X 
GET -H "X-Auth-Token: 
gAAAAABj7KHdjZ95syP4c8v5a2zfXckPwxFQZYg0pgWR42JnUs83CcKhYGY6PFNF5Cg5g2W
uiYwMIXHm8xftyWf08zwTycJLLMeEwoxLkcByXPZr7kT92ApT-36wTfpi-
zbYXd1tI5R00xtAzDjO3RH1kmeLXDgIQEVp0jMRAxoVH4zb-DVHUos" -H "Accept-
Encoding: gzip"
DEBUG:swiftclient:RESP STATUS: 200 OK
DEBUG:swiftclient:RESP HEADERS: {'content-length': '2', 'x-timestamp': 
'1676452317.72866', 'x-account-container-count': '0', 'x-account-object-count': '0', 'x-account-
bytes-used': '0', 'x-account-bytes-used-actual': '0', 'x-account-storage-policy-default-
placement-container-count': '0', 'x-account-storage-policy-default-placement-object-count': '0', 
'x-account-storage-policy-default-placement-bytes-used': '0', 'x-account-storage-policy-
default-placement-bytes-used-actual': '0', 'x-trans-id': 'tx00000765c4b04f1130018-
0063eca1dd-1dcba-default', 'x-openstack-request-id': 'tx00000765c4b04f1130018-

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

144



0063eca1dd-1dcba-default', 'accept-ranges': 'bytes', 'content-type': 'application/json; 
charset=utf-8', 'date': 'Wed, 15 Feb 2023 09:11:57 GMT'}
DEBUG:swiftclient:RESP BODY: b'[]'

4. Run tempest tests against object-storage:

(overcloud) [stack@undercloud-0 tempest-dir]$  tempest run --regex 
tempest.api.object_storage
...
...
...
======
Totals
======
Ran: 141 tests in 606.5579 sec.
 - Passed: 128
 - Skipped: 13
 - Expected Fail: 0
 - Unexpected Success: 0
 - Failed: 0
Sum of execute time for each test: 657.5183 sec.

==============
Worker Balance
==============
 - Worker 0 (1 tests) => 0:10:03.400561
 - Worker 1 (2 tests) => 0:00:24.531916
 - Worker 2 (4 tests) => 0:00:10.249889
 - Worker 3 (30 tests) => 0:00:32.730095
 - Worker 4 (51 tests) => 0:00:26.246044
 - Worker 5 (6 tests) => 0:00:20.114803
 - Worker 6 (20 tests) => 0:00:16.290323
 - Worker 7 (27 tests) => 0:00:17.103827

CHAPTER 7. MIGRATING RED HAT CEPH STORAGE RGW TO EXTERNAL RHEL NODES

145



CHAPTER 8. MIGRATING RED HAT CEPH STORAGE MDS TO
NEW NODES WITHIN THE EXISTING CLUSTER

In the context of data plane adoption, where the Red Hat OpenStack Platform (RHOSP) services are
redeployed in Red Hat OpenShift Container Platform, a director-deployed Red Hat Ceph Storage
cluster will undergo a migration in a process we are calling “externalizing” the Red Hat Ceph Storage
cluster. There are two deployment topologies, broadly, that include an “internal” Red Hat Ceph Storage
cluster today: one is where RHOSP includes dedicated Red Hat Ceph Storage nodes to host object
storage daemons (OSDs), and the other is Hyperconverged Infrastructure (HCI) where Compute nodes
double up as Red Hat Ceph Storage nodes. In either scenario, there are some Red Hat Ceph Storage
processes that are deployed on RHOSP Controller nodes: Red Hat Ceph Storage monitors, Ceph Object
Gateway (RGW), Rados Block Device (RBD), Ceph Metadata Server (MDS), Ceph Dashboard, and NFS
Ganesha. This document describes how to migrate the MDS daemon in case Shared File Systems
service (manila) (deployed with either a cephfs-native or ceph-nfs backend) is part of the overcloud
deployment. The MDS migration is performed by cephadm, and as done for the other daemons, the
general idea is to move the daemons placement from a "hosts" based approach to a "label" based one.
This ensures that the human operator can easily visualize the status of the cluster and where daemons
are placed using the ceph orch host command, and have a general view of how the daemons are co-
located within a given host, according to the cardinality matrix.

For this procedure, we assume that we are beginning with a RHOSP based on 17.1 and a Red Hat Ceph
Storage 7 deployment managed by director. We assume that:

Red Hat Ceph Storage is upgraded to Red Hat Ceph Storage 7 and is managed by
cephadm/orchestrator.

Both the Red Hat Ceph Storage public and cluster networks are propagated, throughdirector,
to the target nodes.

Prerequisites

Verify that the Red Hat Ceph Storage cluster is healthy and check the MDS status:

[ceph: root@controller-0 /]# ceph fs ls
name: cephfs, metadata pool: manila_metadata, data pools: [manila_data ]

[ceph: root@controller-0 /]# ceph mds stat
cephfs:1 {0=mds.controller-2.oebubl=up:active} 2 up:standby

[ceph: root@controller-0 /]# ceph fs status cephfs

cephfs - 0 clients
======
RANK  STATE          MDS            ACTIVITY  DNS INOS   DIRS   CAPS
 0 active  mds.controller-2.oebubl  Reqs: 0 /s   696 196 173   0
   POOL      TYPE  USED  AVAIL
manila_metadata  metadata   152M   141G
  manila_data   data 3072M   141G
   STANDBY MDS
mds.controller-0.anwiwd
mds.controller-1.cwzhog
MDS version: ceph version 17.2.6-100.el9cp (ea4e3ef8df2cf26540aae06479df031dcfc80343) quincy 
(stable)

Retrieve more detailed information on the Ceph File System (CephFS) MDS status:

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

146

https://access.redhat.com/articles/1548993


[ceph: root@controller-0 /]# ceph fs dump

e8
enable_multiple, ever_enabled_multiple: 1,1
default compat: compat={},rocompat={},incompat={1=base v0.20,2=client writeable ranges,3=default 
file layouts on dirs,4=dir inode in separate object,5=mds uses versioned encoding,6=dirfrag is stored 
in omap,8=no anchor table,9=file layout v2,10=snaprealm v2}
legacy client fscid: 1

Filesystem 'cephfs' (1)
fs_name cephfs
epoch   5
flags   12 joinable allow_snaps allow_multimds_snaps
created 2024-01-18T19:04:01.633820+0000
modified     2024-01-18T19:04:05.393046+0000
tableserver  0
root 0
session_timeout 60
session_autoclose    300
max_file_size   1099511627776
required_client_features     {}
last_failure 0
last_failure_osd_epoch  0
compat  compat={},rocompat={},incompat={1=base v0.20,2=client writeable ranges,3=default file 
layouts on dirs,4=dir inode in separate object,5=mds uses versioned encoding,6=dirfrag is stored in 
omap,7=mds uses inline data,8=no anchor table,9=file layout v2,10=snaprealm v2}
max_mds 1
in   0
up   {0=24553}
failed
damaged
stopped
data_pools   [7]
metadata_pool   9
inline_data  disabled
balancer
standby_count_wanted 1
[mds.mds.controller-2.oebubl{0:24553} state up:active seq 2 addr 
[v2:172.17.3.114:6800/680266012,v1:172.17.3.114:6801/680266012] compat {c=[1],r=[1],i=[7ff]}]

Standby daemons:

[mds.mds.controller-0.anwiwd{-1:14715} state up:standby seq 1 addr 
[v2:172.17.3.20:6802/3969145800,v1:172.17.3.20:6803/3969145800] compat {c=[1],r=[1],i=[7ff]}]
[mds.mds.controller-1.cwzhog{-1:24566} state up:standby seq 1 addr 
[v2:172.17.3.43:6800/2227381308,v1:172.17.3.43:6801/2227381308] compat {c=[1],r=[1],i=[7ff]}]
dumped fsmap epoch 8

Check the OSD blocklist and clean up the client list:

[ceph: root@controller-0 /]# ceph osd blocklist ls
..
..

CHAPTER 8. MIGRATING RED HAT CEPH STORAGE MDS TO NEW NODES WITHIN THE EXISTING CLUSTER

147



for item in $(ceph osd blocklist ls | awk '{print $0}'); do
     ceph osd blocklist rm $item;
done

NOTE

When a file system client is unresponsive or misbehaving, it may happen that the access
to the file system is forcibly terminated. This process is called eviction. Evicting a CephFS
client prevents it from communicating further with MDS daemons and OSD daemons.
Ordinarily, a blocklisted client may not reconnect to the servers: it must be unmounted
and then remounted. However, in some situations it may be useful to permit a client that
was evicted to attempt to reconnect. Because CephFS uses the RADOS OSD blocklist to
control client eviction, CephFS clients can be permitted to reconnect by removing them
from the blocklist.

Procedure

1. Get the hosts that are currently part of the Red Hat Ceph Storage cluster:

[ceph: root@controller-0 /]# ceph orch host ls
HOST                        ADDR           LABELS          STATUS
cephstorage-0.redhat.local  192.168.24.25  osd mds
cephstorage-1.redhat.local  192.168.24.50  osd mds
cephstorage-2.redhat.local  192.168.24.47  osd mds
controller-0.redhat.local   192.168.24.24  _admin mgr mon
controller-1.redhat.local   192.168.24.42  mgr _admin mon
controller-2.redhat.local   192.168.24.37  mgr _admin mon
6 hosts in cluster

[ceph: root@controller-0 /]# ceph orch ls --export mds
service_type: mds
service_id: mds
service_name: mds.mds
placement:
  hosts:
  - controller-0.redhat.local
  - controller-1.redhat.local
  - controller-2.redhat.local

2. Extend the MDS labels to the target nodes:

for item in $(sudo cephadm shell --  ceph orch host ls --format json | jq -r '.[].hostname'); do
    sudo cephadm shell -- ceph orch host label add  $item mds;
done

3. Verify all the hosts have the MDS label:

[tripleo-admin@controller-0 ~]$ sudo cephadm shell -- ceph orch host ls

HOST                     ADDR           LABELS
cephstorage-0.redhat.local  192.168.24.11  osd mds
cephstorage-1.redhat.local  192.168.24.12  osd mds
cephstorage-2.redhat.local  192.168.24.47  osd mds

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

148



controller-0.redhat.local   192.168.24.35  _admin mon mgr mds
controller-1.redhat.local   192.168.24.53  mon _admin mgr mds
controller-2.redhat.local   192.168.24.10  mon _admin mgr mds

4. Dump the current MDS spec:

[ceph: root@controller-0 /]# ceph orch ls --export mds > mds.yaml

5. Edit the retrieved spec and replace the placement.hosts section with placement.label:

service_type: mds
service_id: mds
service_name: mds.mds
placement:
  label: mds

6. Use the ceph orchestrator to apply the new MDS spec: it results in an increased number of mds
daemons:

$ sudo cephadm shell -m mds.yaml -- ceph orch apply -i /mnt/mds.yaml
Scheduling new mds deployment …

7. Check the new standby daemons temporarily added to the cephfs fs:

$ ceph fs dump

Active

standby_count_wanted    1
[mds.mds.controller-0.awzplm{0:463158} state up:active seq 307 join_fscid=1 addr 
[v2:172.17.3.20:6802/51565420,v1:172.17.3.20:6803/51565420] compat {c=[1],r=[1],i=[7ff]}]

Standby daemons:

[mds.mds.cephstorage-1.jkvomp{-1:463800} state up:standby seq 1 join_fscid=1 addr 
[v2:172.17.3.135:6820/2075903648,v1:172.17.3.135:6821/2075903648] compat {c=[1],r=
[1],i=[7ff]}]
[mds.mds.controller-2.gfrqvc{-1:475945} state up:standby seq 1 addr 
[v2:172.17.3.114:6800/2452517189,v1:172.17.3.114:6801/2452517189] compat {c=[1],r=
[1],i=[7ff]}]
[mds.mds.cephstorage-0.fqcshx{-1:476503} state up:standby seq 1 join_fscid=1 addr 
[v2:172.17.3.92:6820/4120523799,v1:172.17.3.92:6821/4120523799] compat {c=[1],r=[1],i=
[7ff]}]
[mds.mds.cephstorage-2.gnfhfe{-1:499067} state up:standby seq 1 addr 
[v2:172.17.3.79:6820/2448613348,v1:172.17.3.79:6821/2448613348] compat {c=[1],r=[1],i=
[7ff]}]
[mds.mds.controller-1.tyiziq{-1:499136} state up:standby seq 1 addr 
[v2:172.17.3.43:6800/3615018301,v1:172.17.3.43:6801/3615018301] compat {c=[1],r=[1],i=
[7ff]}]

8. To migrate MDS to the right nodes, set the MDS affinity that manages the MDS failover:

ceph config set mds.mds.cephstorage-0.fqcshx mds_join_fs cephfs

CHAPTER 8. MIGRATING RED HAT CEPH STORAGE MDS TO NEW NODES WITHIN THE EXISTING CLUSTER

149



9. Remove the labels from Controller nodes and force the MDS failover to the target node:

$ for i in 0 1 2; do ceph orch host label rm "controller-$i.redhat.local" mds; done

Removed label mds from host controller-0.redhat.local
Removed label mds from host controller-1.redhat.local
Removed label mds from host controller-2.redhat.local

The switch happens behind the scenes, and the new active MDS is the one that you set through
the mds_join_fs command.

10. Check the result of the failover and the new deployed daemons:

$ ceph fs dump
…
…
standby_count_wanted    1
[mds.mds.cephstorage-0.fqcshx{0:476503} state up:active seq 168 join_fscid=1 addr 
[v2:172.17.3.92:6820/4120523799,v1:172.17.3.92:6821/4120523799] compat {c=[1],r=[1],i=
[7ff]}]

Standby daemons:

[mds.mds.cephstorage-2.gnfhfe{-1:499067} state up:standby seq 1 addr 
[v2:172.17.3.79:6820/2448613348,v1:172.17.3.79:6821/2448613348] compat {c=[1],r=[1],i=
[7ff]}]
[mds.mds.cephstorage-1.jkvomp{-1:499760} state up:standby seq 1 join_fscid=1 addr 
[v2:172.17.3.135:6820/452139733,v1:172.17.3.135:6821/452139733] compat {c=[1],r=[1],i=
[7ff]}]

$ ceph orch ls

NAME                     PORTS   RUNNING  REFRESHED  AGE  PLACEMENT
crash                                6/6  10m ago    10d  *
mds.mds                          3/3  10m ago    32m  label:mds

$ ceph orch ps | grep mds

mds.mds.cephstorage-0.fqcshx  cephstorage-0.redhat.local                     running (79m)     3m 
ago  79m    27.2M        -  17.2.6-100.el9cp  1af7b794f353  2a2dc5ba6d57
mds.mds.cephstorage-1.jkvomp  cephstorage-1.redhat.local                     running (79m)     
3m ago  79m    21.5M        -  17.2.6-100.el9cp  1af7b794f353  7198b87104c8
mds.mds.cephstorage-2.gnfhfe  cephstorage-2.redhat.local                     running (79m)     3m 
ago  79m    24.2M        -  17.2.6-100.el9cp  1af7b794f353  f3cb859e2a15

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

150



CHAPTER 9. MIGRATING THE MONITORING STACK
COMPONENT TO NEW NODES WITHIN AN EXISTING RED HAT

CEPH STORAGE CLUSTER
In the context of data plane adoption, where the Red Hat OpenStack Platform (RHOSP) services are
redeployed in Red Hat OpenShift Container Platform, a director-deployed Red Hat Ceph Storage
cluster will undergo a migration in a process we are calling “externalizing” the Red Hat Ceph Storage
cluster. There are two deployment topologies, broadly, that include an “internal” Red Hat Ceph Storage
cluster today: one is where RHOSP includes dedicated Red Hat Ceph Storage nodes to host object
storage daemons (OSDs), and the other is Hyperconverged Infrastructure (HCI) where Compute nodes
double up as Red Hat Ceph Storage nodes. In either scenario, there are some Red Hat Ceph Storage
processes that are deployed on RHOSP Controller nodes: Red Hat Ceph Storage monitors, Ceph Object
Gateway (RGW), Rados Block Device (RBD), Ceph Metadata Server (MDS), Ceph Dashboard, and NFS
Ganesha. The Ceph Dashboard module adds web-based monitoring and administration to the Ceph
Manager. With director-deployed Red Hat Ceph Storage this component is enabled as part of the
overcloud deploy and it’s composed by:

Ceph Manager module

Grafana

Prometheus

Alertmanager

Node exporter

The Ceph Dashboard containers are included through tripleo-container-image-prepare parameters
and the high availability relies on Haproxy and Pacemaker deployed on the RHOSP front. For an
external Red Hat Ceph Storage cluster, high availability is not supported. The goal of this procedure is
to migrate and relocate the Ceph Monitoring components to free Controller nodes.

For this procedure, we assume that we are beginning with a RHOSP based on 17.1 and a Red Hat Ceph
Storage 7 deployment managed by director. We assume that:

Red Hat Ceph Storage has been upgraded to 7 and is managed by cephadm/orchestrator

Both the Red Hat Ceph Storage public and cluster networks are propagated, throughdirector,
to the target nodes

9.1. COMPLETING PREREQUISITES FOR A RED HAT CEPH STORAGE
CLUSTER WITH MONITORING STACK COMPONENTS

You must complete the following prerequisites before you migrate a Red Hat Ceph Storage cluster with
monitoring stack components.

Procedure

1. Gather the current status of the monitoring stack. Verify that the hosts have no monitoring
label (or grafana, prometheus, alertmanager in case of a per daemons placement evaluation)
associated:

NOTE

CHAPTER 9. MIGRATING THE MONITORING STACK COMPONENT TO NEW NODES WITHIN AN EXISTING RED HAT CEPH STORAGE CLUSTER

151



NOTE

The entire relocation process is driven by cephadm and relies on labels to be
assigned to the target nodes, where the daemons are scheduled. Review the
cardinality matrix before assigning labels and choose carefully the nodes where
the monitoring stack components should be scheduled on.

[tripleo-admin@controller-0 ~]$ sudo cephadm shell -- ceph orch host ls

HOST                     ADDR        LABELS                  STATUS
cephstorage-0.redhat.local  192.168.24.11  osd mds
cephstorage-1.redhat.local  192.168.24.12  osd mds
cephstorage-2.redhat.local  192.168.24.47  osd mds
controller-0.redhat.local   192.168.24.35  _admin mon mgr
controller-1.redhat.local   192.168.24.53  mon _admin mgr
controller-2.redhat.local   192.168.24.10  mon _admin mgr
6 hosts in cluster

Confirm that the cluster is healthy and both ceph orch ls and ceph orch ps return the
expected number of deployed daemons.

2. Review and update the container image registry. If the Red Hat Ceph Storage externalization
procedure is executed after the Red Hat OpenStack Platform control plane has been migrated,
it’s important to consider updating the container images referenced in the Red Hat Ceph
Storage cluster config. The current container images point to the undercloud registry, and it
might be no longer available. As the undercloud won’t be available in the future, replace the
undercloud provided images with an alternative registry.

$ ceph config dump
...
...
mgr   advanced  mgr/cephadm/container_image_alertmanager    undercloud-
0.ctlplane.redhat.local:8787/rh-osbs/openshift-ose-prometheus-alertmanager:v4.10
mgr   advanced  mgr/cephadm/container_image_base            undercloud-
0.ctlplane.redhat.local:8787/rh-osbs/rhceph
mgr   advanced  mgr/cephadm/container_image_grafana         undercloud-
0.ctlplane.redhat.local:8787/rh-osbs/grafana:latest
mgr   advanced  mgr/cephadm/container_image_node_exporter   undercloud-
0.ctlplane.redhat.local:8787/rh-osbs/openshift-ose-prometheus-node-exporter:v4.10
mgr   advanced  mgr/cephadm/container_image_prometheus      undercloud-
0.ctlplane.redhat.local:8787/rh-osbs/openshift-ose-prometheus:v4.10

3. Remove the undercloud container images:

# remove the base image
cephadm shell -- ceph config rm mgr mgr/cephadm/container_image_base
# remove the undercloud images associated to the monitoring
# stack components
for i in prometheus grafana alertmanager node_exporter; do
    cephadm shell -- ceph config rm mgr mgr/cephadm/container_image_$i
done

NOTE

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

152

https://access.redhat.com/articles/1548993


NOTE

In the example above, in addition to the monitoring stack related container images, we
update the config entry related to the container_image_base. This has an impact on all
the Red Hat Ceph Storage daemons that rely on the undercloud images. New daemons
will be deployed using the new/default Red Hat Ceph Storage image.

9.2. MIGRATING THE MONITORING STACK TO THE TARGET NODES

The migration procedure relies on nodes re-labeling: this kind of action, combined with an update in the
existing spec, results in the daemons' relocation on the target nodes.

Before start this process, a few considerations are required:

There’s no need to migrate node exporters: these daemons are deployed across the nodes that
are part of the Red Hat Ceph Storage cluster (placement is ‘*’), and we’re going to lose metrics
as long as the Controller nodes are not part of the Red Hat Ceph Storage cluster anymore

Each monitoring stack component is bound to specific ports that director is supposed to open
beforehand; make sure to double check the firewall rules are in place and the ports are opened
for a given monitoring stack service

Depending on the target nodes and the number of deployed/active daemons, it is possible to either
relocate the existing containers to the target nodes, or select a subset of nodes that are supposed to
host the monitoring stack daemons. As we mentioned in the previous section, HA is not supported,
hence reducing the placement with count: 1 is a reasonable solution and allows to successfully migrate
the existing daemons in an HCI (or HW limited) scenario without impacting other services. However, it is
still possible to put in place a dedicated HA solution and realize a component that is consistent with the
director model to reach HA. Building and deployment such HA model is out of scope for this procedure.

9.2.1. Scenario 1: Migrating the existing daemons to the target nodes

Assuming we have 3 Red Hat Ceph Storage nodes or ComputeHCI, this scenario extends the
“monitoring” labels to all the Red Hat Ceph Storage (or ComputeHCI) nodes that are part of the cluster.
This means that we keep the count: 3 placements for the target nodes.

Procedure

1. Add the monitoring label to all the Red Hat Ceph Storage (or ComputeHCI) nodes in the
cluster:

for item in $(sudo cephadm shell --  ceph orch host ls --format json | jq -r '.[].hostname'); do
    sudo cephadm shell -- ceph orch host label add  $item monitoring;
done

2. Verify that all the (three) hosts have the monitoring label:

[tripleo-admin@controller-0 ~]$ sudo cephadm shell -- ceph orch host ls

HOST                        ADDR           LABELS
cephstorage-0.redhat.local  192.168.24.11  osd monitoring
cephstorage-1.redhat.local  192.168.24.12  osd monitoring
cephstorage-2.redhat.local  192.168.24.47  osd monitoring

CHAPTER 9. MIGRATING THE MONITORING STACK COMPONENT TO NEW NODES WITHIN AN EXISTING RED HAT CEPH STORAGE CLUSTER

153



controller-0.redhat.local   192.168.24.35  _admin mon mgr monitoring
controller-1.redhat.local   192.168.24.53  mon _admin mgr monitoring
controller-2.redhat.local   192.168.24.10  mon _admin mgr monitoring

3. Remove the labels from the Controller nodes:

$ for i in 0 1 2; do ceph orch host label rm "controller-$i.redhat.local" monitoring; done

Removed label monitoring from host controller-0.redhat.local
Removed label monitoring from host controller-1.redhat.local
Removed label monitoring from host controller-2.redhat.local

4. Dump the current monitoring stack spec:

function export_spec {
    local component="$1"
    local target_dir="$2"
    sudo cephadm shell -- ceph orch ls --export "$component" > "$target_dir/$component"
}

SPEC_DIR=${SPEC_DIR:-"$PWD/ceph_specs"}
for m in grafana prometheus alertmanager; do
    export_spec "$m" "$SPEC_DIR"
done

5. For each daemon, edit the current spec and replace the placement/hosts section with the
placement/label section, for example:

The same procedure applies to Prometheus and Alertmanager specs.

6. Apply the new monitoring spec to relocate the monitoring stack daemons:

SPEC_DIR=${SPEC_DIR:-"$PWD/ceph_specs"}
function migrate_daemon {
    local component="$1"
    local target_dir="$2"
    sudo cephadm shell -m "$target_dir" -- ceph orch apply -i /mnt/ceph_specs/$component
}
for m in grafana prometheus alertmanager; do
    migrate_daemon  "$m" "$SPEC_DIR"
done

7. Verify that the daemons are deployed on the expected nodes:

[ceph: root@controller-0 /]# ceph orch ps | grep -iE "(prome|alert|grafa)"

service_type: grafana
service_name: grafana
placement:
  label: monitoring
networks:
- 172.17.3.0/24
spec:
  port: 3100

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

154



alertmanager.cephstorage-2  cephstorage-2.redhat.local  172.17.3.144:9093,9094
grafana.cephstorage-0       cephstorage-0.redhat.local  172.17.3.83:3100
prometheus.cephstorage-1    cephstorage-1.redhat.local  172.17.3.53:9092

NOTE

After you migrate the monitoring stack, you lose High Availability: the monitoring
stack daemons have no VIP and HAproxy anymore; Node exporters are still
running on all the nodes: instead of using labels we keep the current approach as
we want to not reduce the monitoring space covered.

8. You must review the Red Hat Ceph Storageconfiguration to ensure that it is aligned with the
relocation you just made. In particular, focus on the following configuration entries:

[ceph: root@controller-0 /]# ceph config dump
...
mgr  advanced  mgr/dashboard/ALERTMANAGER_API_HOST  http://172.17.3.83:9093
mgr  advanced  mgr/dashboard/GRAFANA_API_URL        https://172.17.3.144:3100
mgr  advanced  mgr/dashboard/PROMETHEUS_API_HOST    http://172.17.3.83:9092
mgr  advanced  mgr/dashboard/controller-0.ycokob/server_addr  172.17.3.33
mgr  advanced  mgr/dashboard/controller-1.lmzpuc/server_addr  172.17.3.147
mgr  advanced  mgr/dashboard/controller-2.xpdgfl/server_addr  172.17.3.138

9. Verify that grafana, alertmanager and prometheus API_HOST/URL point to the IP addresses
(on the storage network) of the node where each daemon has been relocated. This should be
automatically addressed by cephadm and it shouldn’t require any manual action.

[ceph: root@controller-0 /]# ceph orch ps | grep -iE "(prome|alert|grafa)"
alertmanager.cephstorage-0  cephstorage-0.redhat.local  172.17.3.83:9093,9094
alertmanager.cephstorage-1  cephstorage-1.redhat.local  172.17.3.53:9093,9094
alertmanager.cephstorage-2  cephstorage-2.redhat.local  172.17.3.144:9093,9094
grafana.cephstorage-0       cephstorage-0.redhat.local  172.17.3.83:3100
grafana.cephstorage-1       cephstorage-1.redhat.local  172.17.3.53:3100
grafana.cephstorage-2       cephstorage-2.redhat.local  172.17.3.144:3100
prometheus.cephstorage-0    cephstorage-0.redhat.local  172.17.3.83:9092
prometheus.cephstorage-1    cephstorage-1.redhat.local  172.17.3.53:9092
prometheus.cephstorage-2    cephstorage-2.redhat.local  172.17.3.144:9092

[ceph: root@controller-0 /]# ceph config dump
...
...
mgr  advanced  mgr/dashboard/ALERTMANAGER_API_HOST   http://172.17.3.83:9093
mgr  advanced  mgr/dashboard/PROMETHEUS_API_HOST     http://172.17.3.83:9092
mgr  advanced  mgr/dashboard/GRAFANA_API_URL         https://172.17.3.144:3100

10. The Ceph Dashboard (mgr module plugin) has not been impacted at all by this relocation. The
service is provided by the Ceph Manager daemon, hence we might experience an impact when
the active mgr is migrated or is force-failed. However, having three replicas definition allows to
redirect requests to a different instance (it’s still an A/P model), hence the impact should be
limited.

a. When the RBD migration is over, the following Red Hat Ceph Storage config keys must be
regenerated to point to the right mgr container:

CHAPTER 9. MIGRATING THE MONITORING STACK COMPONENT TO NEW NODES WITHIN AN EXISTING RED HAT CEPH STORAGE CLUSTER

155



mgr    advanced  mgr/dashboard/controller-0.ycokob/server_addr  172.17.3.33
mgr    advanced  mgr/dashboard/controller-1.lmzpuc/server_addr  172.17.3.147
mgr    advanced  mgr/dashboard/controller-2.xpdgfl/server_addr  172.17.3.138

$ sudo cephadm shell
$ ceph orch ps | awk '/mgr./ {print $1}'

b. For each retrieved mgr, update the entry in the Red Hat Ceph Storage configuration:

$ ceph config set mgr mgr/dashboard/<>/server_addr/<ip addr>

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

156



CHAPTER 10. MIGRATING THE OBJECT STORAGE SERVICE
(SWIFT) TO RED HAT OPENSTACK SERVICES ON OPENSHIFT

(RHOSO) NODES
This section only applies if you are using Red Hat OpenStack Platform Object Storage service (swift) as
Object Storage service. If you are using the Object Storage API of Ceph Object Gateway (RGW), you
can skip this section.

Data migration to the new deployment might be a long running process that runs mostly in the
background. The Object Storage service replicators will take care of moving data from old to new
nodes, but depending on the amount of used storage this might take a very long time. You can still use
the old nodes as long as they are running and continue with adopting other services in the meantime,
reducing the amount of downtime. Note that performance might be decreased to the amount of
replication traffic in the network.

Migration of the data happens replica by replica. Assuming you start with 3 replicas, only 1 one them is
being moved at any time, ensuring the remaining 2 replicas are still available and the Object Storage
service is usable during the migration.

10.1. MIGRATING THE OBJECT STORAGE SERVICE (SWIFT) DATA
FROM RHOSP TO RED HAT OPENSTACK SERVICES ON OPENSHIFT
(RHOSO) NODES

To ensure availability during the Object Storage service (swift) migration, you perform the following
steps:

1. Add new nodes to the Object Storage service rings

2. Set weights of existing nodes to 0

3. Rebalance rings, moving one replica

4. Copy rings to old nodes and restart services

5. Check replication status and repeat previous two steps until old nodes are drained

6. Remove the old nodes from the rings

Prerequisites

Previous Object Storage service adoption steps are completed.

No new environmental variables need to be defined, though you use the CONTROLLER1_SSH
alias that was defined in a previous step.

For DNS servers, all existing nodes must be able to resolve host names of the Red Hat
OpenShift Container Platform pods, for example by using the external IP of the DNSMasq
service as name server in /etc/resolv.conf:

oc get service dnsmasq-dns -o jsonpath="{.status.loadBalancer.ingress[0].ip}" | 
CONTROLLER1_SSH tee /etc/resolv.conf

To track the current status of the replication a tool called swift-dispersion is used. It consists of

CHAPTER 10. MIGRATING THE OBJECT STORAGE SERVICE (SWIFT) TO RED HAT OPENSTACK SERVICES ON OPENSHIFT (RHOSO) NODES

157



two parts, a population tool to be run before changing the Object Storage service rings and a
report tool to run afterwards to gather the current status. Run the swift-dispersion-populate
command:

oc debug --keep-labels=true job/swift-ring-rebalance -- /bin/sh -c 'swift-ring-tool get && swift-
dispersion-populate'

The command might need a few minutes to complete. It creates 0-byte objects distributed
across the Object Storage service deployment, and its counter-part swift-dispersion-report
can be used afterwards to show the current replication status.

The output of the swift-dispersion-report command should look like the following:

oc debug --keep-labels=true job/swift-ring-rebalance -- /bin/sh -c 'swift-ring-tool get && swift-
dispersion-report'

Queried 1024 containers for dispersion reporting, 5s, 0 retries
100.00% of container copies found (3072 of 3072)
Sample represents 100.00% of the container partition space
Queried 1024 objects for dispersion reporting, 4s, 0 retries
There were 1024 partitions missing 0 copies.
100.00% of object copies found (3072 of 3072)
Sample represents 100.00% of the object partition space

Procedure

1. Add new nodes by scaling up the SwiftStorage resource from 0 to 3. In that case 3 storage
instances using PVCs are created, running on the Red Hat OpenShift Container Platform
cluster.

oc patch openstackcontrolplane openstack --type=merge -p='{"spec":{"swift":{"template":
{"swiftStorage":{"replicas": 3}}}}}'

2. Wait until all three pods are running:

oc wait pods --for condition=Ready -l component=swift-storage

3. Drain the existing nodes. Get the storage management IP addresses of the nodes to drain from
the current rings:

oc debug --keep-labels=true job/swift-ring-rebalance -- /bin/sh -c 'swift-ring-tool get && swift-
ring-builder object.builder' | tail -n +7 | awk '{print $4}' | sort -u

The output will look similar to the following:

172.20.0.100:6200
swift-storage-0.swift-storage.openstack.svc:6200
swift-storage-1.swift-storage.openstack.svc:6200
swift-storage-2.swift-storage.openstack.svc:6200

In this case the old node 172.20.0.100 is drained. Your nodes might be different, and depending
on the deployment there are likely more nodes to be included in the following commands.

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

158



oc debug --keep-labels=true job/swift-ring-rebalance -- /bin/sh -c '
swift-ring-tool get
swift-ring-tool drain 172.20.0.100
swift-ring-tool rebalance
swift-ring-tool push'

4. Copy and apply the updated rings need to the original nodes. Run the ssh commands for your
existing nodes storing Object Storage service data.

oc extract --confirm cm/swift-ring-files
CONTROLLER1_SSH "tar -C /var/lib/config-data/puppet-generated/swift/etc/swift/ -xzf -" < 
swiftrings.tar.gz
CONTROLLER1_SSH "systemctl restart tripleo_swift_*"

5. Track the replication progress by using the swift-dispersion-report tool:

oc debug --keep-labels=true job/swift-ring-rebalance -- /bin/sh -c "swift-ring-tool get && swift-
dispersion-report"

The output shows less than 100% of copies found. Repeat the above command until both the
container and all container and object copies are found:

Queried 1024 containers for dispersion reporting, 6s, 0 retries
There were 5 partitions missing 1 copy.
99.84% of container copies found (3067 of 3072)
Sample represents 100.00% of the container partition space
Queried 1024 objects for dispersion reporting, 7s, 0 retries
There were 739 partitions missing 1 copy.
There were 285 partitions missing 0 copies.
75.94% of object copies found (2333 of 3072)
Sample represents 100.00% of the object partition space

6. Move the next replica to the new nodes. To do so, rebalance and distribute the rings again:

oc debug --keep-labels=true job/swift-ring-rebalance -- /bin/sh -c '
swift-ring-tool get
swift-ring-tool rebalance
swift-ring-tool push'

oc extract --confirm cm/swift-ring-files
CONTROLLER1_SSH "tar -C /var/lib/config-data/puppet-generated/swift/etc/swift/ -xzf -" < 
swiftrings.tar.gz
CONTROLLER1_SSH "systemctl restart tripleo_swift_*"

Monitor the swift-dispersion-report output again, wait until all copies are found again and
repeat this step until all your replicas are moved to the new nodes.

7. After the nodes are drained, remove the nodes from the rings:

oc debug --keep-labels=true job/swift-ring-rebalance -- /bin/sh -c '
swift-ring-tool get
swift-ring-tool remove 172.20.0.100
swift-ring-tool rebalance
swift-ring-tool push'

CHAPTER 10. MIGRATING THE OBJECT STORAGE SERVICE (SWIFT) TO RED HAT OPENSTACK SERVICES ON OPENSHIFT (RHOSO) NODES

159



Verification

Even if all replicas are already on the the new nodes and the swift-dispersion-report command
reports 100% of the copies found, there might still be data on old nodes. This data is removed
by the replicators, but it might take some more time.
You can check the disk usage of all disks in the cluster:

oc debug --keep-labels=true job/swift-ring-rebalance -- /bin/sh -c 'swift-ring-tool get && swift-
recon -d'

Confirm that there are no more \*.db or *.data files in the directory /srv/node on these nodes:

CONTROLLER1_SSH "find /srv/node/ -type f -name '*.db' -o -name '*.data' | wc -l"

10.2. TROUBLESHOOTING THE OBJECT STORAGE SERVICE (SWIFT)
MIGRATION

You can troubleshoot issues with the Object Storage service (swift) migration.

The following command might be helpful to debug if the replication is not working and the 
swift-dispersion-report is not back to 100% availability.

CONTROLLER1_SSH tail /var/log/containers/swift/swift.log | grep object-server

This should show the replicator progress, for example:

Mar 14 06:05:30 standalone object-server[652216]: <f+++++++++ 
4e2/9cbea55c47e243994b0b10d8957184e2/1710395823.58025.data
Mar 14 06:05:30 standalone object-server[652216]: Successful rsync of 
/srv/node/vdd/objects/626/4e2 to swift-storage-1.swift-
storage.openstack.svc::object/d1/objects/626 (0.094)
Mar 14 06:05:30 standalone object-server[652216]: Removing partition: 
/srv/node/vdd/objects/626
Mar 14 06:05:31 standalone object-server[652216]: <f+++++++++ 
85f/cf53b5a048e5b19049e05a548cde185f/1710395796.70868.data
Mar 14 06:05:31 standalone object-server[652216]: Successful rsync of 
/srv/node/vdb/objects/829/85f to swift-storage-2.swift-
storage.openstack.svc::object/d1/objects/829 (0.095)
Mar 14 06:05:31 standalone object-server[652216]: Removing partition: 
/srv/node/vdb/objects/829

You can also check the ring consistency and replicator status:

oc debug --keep-labels=true job/swift-ring-rebalance -- /bin/sh -c 'swift-ring-tool get && swift-
recon -r --md5'

Note that the output might show a md5 mismatch until approx. 2 minutes after pushing new
rings. Eventually it looks similar to the following example:

[...]
Oldest completion was 2024-03-14 16:53:27 (3 minutes ago) by 172.20.0.100:6000.
Most recent completion was 2024-03-14 16:56:38 (12 seconds ago) by swift-storage-0.swift-
storage.openstack.svc:6200.

Red Hat OpenStack Services on OpenShift 18.0-beta Adopting a Red Hat OpenStack Platform 17.1 deployment

160



===========================================================================
====
[2024-03-14 16:56:50] Checking ring md5sums
4/4 hosts matched, 0 error[s] while checking hosts.
[...]

CHAPTER 10. MIGRATING THE OBJECT STORAGE SERVICE (SWIFT) TO RED HAT OPENSTACK SERVICES ON OPENSHIFT (RHOSO) NODES

161


	Table of Contents
	CHAPTER 1. PLANNING THE NEW DEPLOYMENT
	1.1. SERVICE CONFIGURATIONS
	1.2. ABOUT NODE ROLES
	1.3. ABOUT NODE SELECTOR
	1.4. ABOUT MACHINE CONFIGS
	1.5. KEY MANAGER SERVICE SUPPORT FOR CRYPTO PLUG-INS
	1.6. CONFIGURING THE NETWORK FOR THE RHOSO DEPLOYMENT
	1.6.1. Retrieving the network configuration from your existing deployment
	1.6.2. Planning your IPAM configuration
	1.6.2.1. Scenario 1: Using new subnet ranges
	1.6.2.2. Scenario 2: Reusing existing subnet ranges

	1.6.3. Configuring isolated networks
	1.6.3.1. Configuring Red Hat OpenShift Container Platform worker nodes
	1.6.3.2. Configuring the networking for control plane services
	1.6.3.3. Configuring data plane nodes


	1.7. STORAGE REQUIREMENTS
	1.7.1. Storage driver certification
	1.7.2. Block Storage service requirements

	1.8. COMPARING CONFIGURATION FILES BETWEEN DEPLOYMENTS

	CHAPTER 2. MIGRATING TLS-E TO THE RHOSO DEPLOYMENT
	CHAPTER 3. MIGRATING DATABASES TO THE CONTROL PLANE
	3.1. RETRIEVING TOPOLOGY-SPECIFIC SERVICE CONFIGURATION
	3.2. DEPLOYING BACKEND SERVICES
	3.3. CONFIGURING A CEPH BACKEND
	3.4. CREATING A NFS GANESHA CLUSTER
	3.5. STOPPING RED HAT OPENSTACK PLATFORM SERVICES
	3.6. MIGRATING DATABASES TO MARIADB INSTANCES
	3.7. MIGRATING OVN DATA

	CHAPTER 4. ADOPTING RED HAT OPENSTACK PLATFORM CONTROL PLANE SERVICES
	4.1. ADOPTING THE IDENTITY SERVICE
	4.2. ADOPTING THE KEY MANAGER SERVICE
	4.3. ADOPTING THE NETWORKING SERVICE
	4.4. ADOPTING THE OBJECT STORAGE SERVICE
	4.5. ADOPTING THE IMAGE SERVICE
	4.5.1. Adopting the Image service that is deployed with a Object Storage service backend
	4.5.2. Adopting the Image service that is deployed with a Block Storage service backend
	4.5.3. Adopting the Image service that is deployed with an NFS Ganesha backend
	4.5.4. Adopting the Image service that is deployed with a Red Hat Ceph Storage backend
	4.5.5. Verifying the Image service adoption

	4.6. ADOPTING THE PLACEMENT SERVICE
	4.7. ADOPTING THE COMPUTE SERVICE
	4.8. ADOPTING THE BLOCK STORAGE SERVICE
	4.8.1. Limitations for adopting the Block Storage service
	4.8.2. Red Hat OpenShift Container Platform preparation for Block Storage service adoption
	4.8.3. Preparing the Block Storage service configurations for adoption
	4.8.3.1. Preparing the Block Storage service configuration

	4.8.4. Deploying the Block Storage services

	4.9. ADOPTING THE DASHBOARD SERVICE
	4.10. ADOPTING THE SHARED FILE SYSTEMS SERVICE
	4.10.1. Changes to CephFS through NFS
	4.10.2. Deploying the Shared File Systems service control plane
	4.10.3. Decommissioning the Red Hat OpenStack Platform standalone Ceph NFS service

	4.11. ADOPTING THE BARE METAL PROVISIONING SERVICE
	4.11.1. Bare Metal Provisioning service configurations
	4.11.2. Deploying the Bare Metal Provisioning service

	4.12. ADOPTING THE ORCHESTRATION SERVICE
	4.13. ADOPTING TELEMETRY SERVICES
	4.14. ADOPTING AUTOSCALING
	4.15. REVIEWING THE RED HAT OPENSTACK PLATFORM CONTROL PLANE CONFIGURATION
	4.15.1. Pulling the configuration from a director deployment

	4.16. ROLLING BACK THE CONTROL PLANE ADOPTION

	CHAPTER 5. ADOPTING THE DATA PLANE
	5.1. STOPPING INFRASTRUCTURE MANAGEMENT AND COMPUTE SERVICES
	5.2. ADOPTING COMPUTE SERVICES TO THE RHOSO DATA PLANE
	5.3. PERFORMING A FAST-FORWARD UPGRADE ON COMPUTE SERVICES

	CHAPTER 6. MIGRATING RED HAT CEPH STORAGE RBD TO EXTERNAL RHEL NODES
	6.1. MIGRATING CEPH MONITOR AND CEPH MANAGER DAEMONS TO RED HAT CEPH STORAGE NODES

	CHAPTER 7. MIGRATING RED HAT CEPH STORAGE RGW TO EXTERNAL RHEL NODES
	7.1. RED HAT CEPH STORAGE DAEMON CARDINALITY
	7.2. COMPLETING PREREQUISITES FOR MIGRATING RED HAT CEPH STORAGE RGW
	7.3. MIGRATING THE RED HAT CEPH STORAGE RGW BACKENDS
	7.4. DEPLOYING A RED HAT CEPH STORAGE INGRESS DAEMON
	7.5. UPDATING THE OBJECT-STORE ENDPOINTS

	CHAPTER 8. MIGRATING RED HAT CEPH STORAGE MDS TO NEW NODES WITHIN THE EXISTING CLUSTER
	CHAPTER 9. MIGRATING THE MONITORING STACK COMPONENT TO NEW NODES WITHIN AN EXISTING RED HAT CEPH STORAGE CLUSTER
	9.1. COMPLETING PREREQUISITES FOR A RED HAT CEPH STORAGE CLUSTER WITH MONITORING STACK COMPONENTS
	9.2. MIGRATING THE MONITORING STACK TO THE TARGET NODES
	9.2.1. Scenario 1: Migrating the existing daemons to the target nodes


	CHAPTER 10. MIGRATING THE OBJECT STORAGE SERVICE (SWIFT) TO RED HAT OPENSTACK SERVICES ON OPENSHIFT (RHOSO) NODES
	10.1. MIGRATING THE OBJECT STORAGE SERVICE (SWIFT) DATA FROM RHOSP TO RED HAT OPENSTACK SERVICES ON OPENSHIFT (RHOSO) NODES
	10.2. TROUBLESHOOTING THE OBJECT STORAGE SERVICE (SWIFT) MIGRATION


