
Red Hat OpenStack Services on
OpenShift 18.0-beta

Configuring storage

Configuring storage services for Red Hat OpenStack Services on OpenShift

Last Updated: 2024-06-06

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

Configuring storage services for Red Hat OpenStack Services on OpenShift

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide contains procedures for configuring persistent and ephemeral storage services for your
Red Hat OpenStack Services on OpenShift environment.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. CONFIGURING STORAGE IN RED HAT OPENSTACK SERVICES ON OPENSHIFT (RHOSO)

CHAPTER 2. INTEGRATING RED HAT CEPH STORAGE
2.1. CREATING RED HAT CEPH STORAGE POOLS
2.2. CREATING A RED HAT CEPH STORAGE SECRET
2.3. OBTAINING THE RED HAT CEPH STORAGE FILE SYSTEM IDENTIFIER
2.4. CONFIGURING THE CONTROL PLANE TO USE THE RED HAT CEPH STORAGE CLUSTER
2.5. CONFIGURING THE DATA PLANE TO USE THE RED HAT CEPH STORAGE CLUSTER
2.6. CONFIGURING THE OBJECT STORAGE SERVICE (SWIFT) WITH AN EXTERNAL CEPH OBJECT
GATEWAY BACK END

2.6.1. Configuring RGW authentication
2.6.2. Configuring and deploying the RGW service

CHAPTER 3. CONFIGURING A HYPERCONVERGED INFRASTRUCTURE ENVIRONMENT
3.1. DATA PLANE NODE SERVICES LIST
3.2. CONFIGURING THE DATA PLANE NODE NETWORKS

3.2.1. Red Hat Ceph Storage MTU settings
3.3. CONFIGURING AND DEPLOYING RED HAT CEPH STORAGE ON DATA PLANE NODES

3.3.1. The cephadm utility
3.3.2. Configuring and deploying Red Hat Ceph Storage

3.3.2.1. Collocating services in a HCI environment for NUMA nodes
3.3.3. Confirming Red Hat Ceph Storage deployment
3.3.4. Confirming Red Hat Ceph Storage tuning

3.4. CONFIGURING THE DATA PLANE TO USE THE COLLOCATED RED HAT CEPH STORAGE SERVER

CHAPTER 4. CONFIGURING THE BLOCK STORAGE SERVICE (CINDER)
4.1. CONFIGURING AN NFS BACK END

4.1.1. Creating the NFS server connection secret
4.1.2. Configuring the control plane to use the generic NFS driver

4.2. CONFIGURING AUTOMATIC DATABASE CLEANUP

CHAPTER 5. CONFIGURING THE IMAGE SERVICE (GLANCE)
5.1. CONFIGURING A CEPH RBD BACK END

Image conversion
5.2. CONFIGURING A BLOCK STORAGE BACK END
5.3. CONFIGURING AN OBJECT STORAGE BACK END
5.4. CONFIGURING AN NFS BACK END

CHAPTER 6. CONFIGURING THE OBJECT STORAGE SERVICE (SWIFT)
6.1. DEPLOYING THE OBJECT STORAGE SERVICE ON OPENSHIFT NODES BY USING
PERSISTENTVOLUMES
6.2. OBJECT STORAGE RINGS
6.3. RING PARTITION POWER
6.4. INCREASING RING PARTITION POWER

CHAPTER 7. CONFIGURING THE SHARED FILE SYSTEMS SERVICE (MANILA)
7.1. CONFIGURING A NATIVE CEPHFS BACK END
7.2. CONFIGURING A CEPHFS-NFS BACK END
7.3. CONFIGURING ALTERNATIVE BACK ENDS

7.3.1. Creating the server connection secret

4

5

6

7
7
9
9

10
14

16
17
18

20
20
20
25
26
26
26
27
28
28
28

32
32
32
33
34

35
35
36
36
37
38

41

41
42
42
43

45
45
47
48
49

Table of Contents

1

7.3.2. Configuring an alternative back end
7.3.3. Custom configuration files
7.3.4. Custom storage driver images

7.4. CONFIGURING MULTIPLE BACK ENDS
7.5. CONFIRMING DEPLOYMENT OF MULTIPLE BACK ENDS
7.6. CREATING AVAILABILITY ZONES FOR BACK ENDS
7.7. CHANGING THE ALLOWED NAS PROTOCOLS
7.8. VIEWING BACK-END STORAGE CAPACITY
7.9. CONFIGURING AUTOMATIC DATABASE CLEANUP

49
51
51
52
54
54
55
56
57

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Services on OpenShift Jira project, where you can track the progress of your
feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

5

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. CONFIGURING STORAGE IN RED HAT
OPENSTACK SERVICES ON OPENSHIFT (RHOSO)

When you deploy Red Hat OpenStack Services on OpenShift (RHOSO), you can configure your
deployment to use Red Hat Ceph Storage as the back end for storage. You can integrate an external
Red Hat Ceph Storage cluster with the Compute service (nova) and a combination of one or more
RHOSO storage services, and you can create a Hyperconverged Infrastructure (HCI) environment.

RHOSO provides the following storage services:

Block Storage service (cinder)

Image service (glance)

Object Storage service (swift)

Shared File Systems service (manila)

For information about integrating Red Hat Ceph Storage with your RHOSO deployment, see Integrating
Red Hat Ceph Storage. For information about creating a HCI environment, see Configuring a
Hyperconverged Infrastructure environment.

RHOSO supports the following storage solutions:

Configure the Block Storage service with a Ceph RBD back end, iSCSI, FC, or NVMe-TCP
storage protocols, or a generic NFS back end. For information about third-party back ends for
the Block Storage service, see OSP18 Cinder Alternative Storage .

Configure the Image service with a Ceph RBD, Block Storage, Object Storage, or NFS back end.

Configure the Object Storage service to use PersistentVolumes (PVs) on OpenShift nodes or
disks on external data plane nodes.

Configure the Shared File Systems service with a native CephFS, Ceph-NFS, or alternative back
end, such as NetApp or Pure Storage.

RHOSO recognizes two types of storage - ephemeral and persistent:

Ephemeral storage is associated with a specific Compute instance. When that instance is
terminated, so is the associated ephemeral storage. This type of storage is useful for runtime
requirements, such as storing the operating system of an instance.

Persistent storage is designed to survive (persist) independent of any running instance. This
storage is used for any data that needs to be reused, either by different instances or beyond the
life of a specific instance.

For information about planning the storage solution and related requirements for your RHOSO
deployment, for example, networking and security, see the Planning storage chapter in Planning your
deployment.

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

6

https://access.redhat.com/articles/7032701
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/18.0/html/planning-guide/index

CHAPTER 2. INTEGRATING RED HAT CEPH STORAGE
You can configure Red Hat OpenStack Services on OpenShift (RHOSO) to integrate with an external
Red Hat Ceph Storage cluster. This configuration connects the following services to a Red Hat Ceph
Storage cluster:

Block Storage service (cinder)

Image service (glance)

Object Storage service (swift)

Compute service (nova)

Shared File Systems service (manila)

If you want to deploy a Red Hat Ceph Storage Hyper Converged Infrastructure (HCI), see Configuring a
Hyperconverged Infrastructure environment.

To configure Red Hat Ceph Storage as the back end for RHOSO storage, complete the following tasks:

1. Create the Red Hat Ceph Storage pools on the Red Hat Ceph Storage cluster.

2. Create a Red Hat Ceph Storage secret on the Red Hat Ceph Storage cluster to provide RHOSO
services access to the Red Hat Ceph Storage cluster.

3. Obtain the Ceph File System Identifier.

4. Configure the OpenStackControlPlane CR to use the Red Hat Ceph Storage cluster as the back
end.

5. Configure the OpenStackDataPlane CR to use the Red Hat Ceph Storage cluster as the back
end.

Prerequisites

Access to a Red Hat Ceph Storage cluster. If you intend to host Red Hat Ceph Storage on data
plane nodes (HCI), then complete Configuring a Hyperconverged Infrastructure environment
first.

The RHOSO control plane is installed on an operational Red Hat OpenShift Platform cluster.

2.1. CREATING RED HAT CEPH STORAGE POOLS

Create pools on the Red Hat Ceph Storage cluster server for each RHOSO service that uses the cluster.

Procedure

1. Create pools for the Compute service (vms), the Block Storage service (volumes), and the
Image service (images):

$ for P in vms volumes images; do
 cephadm shell -- ceph osd pool create $P;
 cephadm shell -- ceph osd pool application enable $P rbd;
done

CHAPTER 2. INTEGRATING RED HAT CEPH STORAGE

7

2. Optional: Create the cephfs volume if the Shared File Systems service (manila) is enabled in the
control plane. This automatically enables the CephFS Metadata service (MDS) and creates the
necessary data and metadata pools on the Ceph cluster:

$ cephadm shell -- ceph fs volume create cephfs

3. Optional: Deploy an NFS service on the Red Hat Ceph Storage cluster to use CephFS with NFS:

$ cephadm shell -- ceph nfs cluster create cephfs \
--ingress --virtual-ip=<vip> \
--ingress-mode=haproxy-protocol

Replace <vip> with the IP address assigned to the NFS service. The NFS service should be
isolated on a network that can be shared with all Red Hat OpenStack users. See NFS cluster
and export management, for more information about customizing the NFS service.

IMPORTANT

When you deploy an NFS service for the Shared File Systems service, do not
select a custom port to expose NFS. Only the default NFS port of 2049 is
supported. You must enable the Red Hat Ceph Storage ingress service and
set the ingress-mode to haproxy-protocol. Otherwise, you cannot use IP-
based access rules with the Shared File Systems service. For security in
production environments, Red Hat does not recommend providing access to
0.0.0.0/0 on shares to mount them on client machines.

4. Create a cephx key for RHOSO to use to access pools:

$ cephadm shell -- \
 ceph auth add client.openstack \
 mgr 'allow *' \
 mon 'allow r' \
 osd 'allow class-read object_prefix rbd_children, allow rwx pool=vms, allow rwx
pool=volumes, allow rwx pool=images'

IMPORTANT

If the Shared File Systems service is enabled in the control plane, replace osd
caps with the following:

osd 'allow class-read object_prefix rbd_children, allow rwx pool=vms, allow
rwx pool=volumes, allow rwx pool=images, allow rwx
pool=cephfs.cephfs.data'

5. Export the cephx key:

$ cephadm shell -- ceph auth get client.openstack > /etc/ceph/ceph.client.openstack.keyring

6. Export the configuration file:

$ cephadm shell -- ceph config generate-minimal-conf > /etc/ceph/ceph.conf

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

8

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/6/html/file_system_guide/nfs-cluster-and-export-management

2.2. CREATING A RED HAT CEPH STORAGE SECRET

Create a secret so that services can access the Red Hat Ceph Storage cluster.

Procedure

1. Transfer the cephx key and configuration file created in the Creating Red Hat Ceph Storage
pools procedure to a host that can create resources in the openstack namespace.

2. Base64 encode these files and store them in KEY and CONF environment variables:

$ KEY=$(cat /etc/ceph/ceph.client.openstack.keyring | base64 -w 0)
$ CONF=$(cat /etc/ceph/ceph.conf | base64 -w 0)

3. Create a YAML file to create the Secret resource.

4. Using the environment variables, add the Secret configuration to the YAML file:

apiVersion: v1
data:
 ceph.client.openstack.keyring: $KEY
 ceph.conf: $CONF
kind: Secret
metadata:
 name: ceph-conf-files
 namespace: openstack
type: Opaque

5. Save the YAML file.

6. Create the Secret resource:

$ oc create -f <secret_configuration_file>

Replace <secret_configuration_file> with the name of the YAML file you created.

NOTE

The examples in this section use openstack as the name of the Red Hat Ceph Storage
user. The file name in the Secret resource must match this user name.

For example, if the file name used is /etc/ceph/ceph.client.openstack2.keyring, then
the secret data line should be ceph.client.openstack2.keyring: $KEY.

2.3. OBTAINING THE RED HAT CEPH STORAGE FILE SYSTEM
IDENTIFIER

The Red Hat Ceph Storage File System Identifier (FSID) is a unique identifier for the cluster. The FSID is
used in configuration and verification of cluster interoperability with RHOSO.

Procedure

Extract the FSID from the Red Hat Ceph Storage secret:

CHAPTER 2. INTEGRATING RED HAT CEPH STORAGE

9

$ FSID=$(oc get secret ceph-conf-files -o json | jq -r '.data."ceph.conf"' | base64 -d | grep fsid
| sed -e 's/fsid = //')

2.4. CONFIGURING THE CONTROL PLANE TO USE THE RED HAT
CEPH STORAGE CLUSTER

You must configure the OpenStackControlPlane CR to use the Red Hat Ceph Storage cluster.
Configuration includes the following tasks:

1. Confirming the Red Hat Ceph Storage cluster and the associated services have the correct
network configuration.

2. Configuring the control plane to use the Red Hat Ceph Storage secret.

3. Configuring the Image service (glance) to use the Red Hat Ceph Storage cluster.

4. Configuring the Block Storage service (cinder) to use the Red Hat Ceph Storage cluster.

5. Optional: Configuring the Shared File Systems service (manila) to use native CephFS or
CephFS-NFS with the Red Hat Ceph Storage cluster.

NOTE

This example does not include configuring Block Storage backup service (cinder-
backup) with Red Hat Ceph Storage.

Procedure

1. Check the storage interface defined in your NodeNetworkConfigurationPolicy (nncp) custom
resource to confirm that it has the same network configuration as the public_network of the
Red Hat Ceph Storage cluster. This is required to enable access to the Red Hat Ceph Storage
cluster through the Storage network. The Storage network should have the same network
configuration as the public_network of the Red Hat Ceph Storage cluster.

NOTE

It is not necessary for RHOSO to access the cluster_network of the Red Hat
Ceph Storage cluster.

2. Check the networkAttachments for the default Image service instance in the
OpenStackControlPlane CR to confirm that the default Image service is configured to access
the Storage network:

glance:
 enabled: true
 template:
 databaseInstance: openstack
 storageClass: ""
 storageRequest: 10G
 glanceAPIs:
 default
 replicas: 3
 override:
 service:

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

10

 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 networkAttachments:
 - storage

3. Confirm the Block Storage service is configured to access the Storage network through
MetalLB.

4. Optional: Confirm the Shared File Systems service is configured to access the Storage network
through ManilaShare.

5. Confirm the Compute service (nova) is configured to access the Storage network.

6. Confirm the Red Hat Ceph Storage configuration file, /etc/ceph/ceph.conf, contains the IP
addresses of the Red Hat Ceph Storage cluster monitors. These IP addresses must be within
the Storage network IP address range.

7. Open your openstack_control_plane.yaml file to edit the OpenStackControlPlane CR.

8. Add the extraMounts parameter to define the services that require access to the Red Hat Ceph
Storage secret.
The following is an example of using the extraMounts parameter for this purpose. Only include
ManilaShare in the propagation list if you are using the Shared File Systems service (manila):

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 extraMounts:
 - name: v1
 region: r1
 extraVol:
 - propagation:
 - CinderVolume
 - GlanceAPI
 - ManilaShare
 extraVolType: Ceph
 volumes:
 - name: ceph
 projected:
 sources:
 - secret:
 name: <ceph-conf-files>
 mounts:
 - name: ceph
 mountPath: "/etc/ceph"
 readOnly: true

Replace <ceph-conf-files> with the name of your Secret CR created in Creating a Red Hat
Ceph Storage secret.

CHAPTER 2. INTEGRATING RED HAT CEPH STORAGE

11

9. Add the customServiceConfig parameter to the glance template to configure the Image
service to use the Red Hat Ceph Storage cluster:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 ...
 glance:
 enabled: true
 template:
 databaseInstance: openstack
 databaseUser: glance
 customServiceConfig: |
 [DEFAULT]
 enabled_backends = default_backend:rbd
 enabled_import_methods=[web-download,glance-direct]
 [glance_store]
 default_backend = default_backend
 [default_backend]
 rbd_store_ceph_conf = /etc/ceph/ceph.conf
 store_description = "RBD backend"
 rbd_store_pool = images
 rbd_store_user = openstack
 glanceAPIs:
 default:
 preserveJobs: false
 replicas: 1
 secret: osp-secret
 storageClass: ""
 storageRequest: 10G
 extraMounts:
 - name: v1
 region: r1
 extraVol:
 - propagation:
 - Glance
 extraVolType: Ceph
 volumes:
 - name: ceph
 projected:
 sources:
 - secret:
 name: ceph-conf-files
 mounts:
 - name: ceph
 mountPath: "/etc/ceph"
 readOnly: true

10. Add the customServiceConfig parameter to the cinder template to configure the Block
Storage service to use the Red Hat Ceph Storage cluster:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 extraMounts:
 ...

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

12

1

 cinder:
 template:
 cinderVolumes:
 ceph:
 customServiceConfig: |
 [DEFAULT]
 enabled_backends=ceph
 [ceph]
 volume_backend_name=ceph
 volume_driver=cinder.volume.drivers.rbd.RBDDriver
 rbd_ceph_conf=/etc/ceph/ceph.conf
 rbd_user=openstack
 rbd_pool=volumes
 rbd_flatten_volume_from_snapshot=False
 rbd_secret_uuid=$FSID 1

Replace with the actual FSID. The FSID itself does not need to be considered secret. For
more information, see Obtaining the Red Hat Ceph Storage FSID .

11. Optional: Add the customServiceConfig parameter to the manila template to configure the
Shared File Systems service to use native CephFS or CephFS-NFS with the Red Hat Ceph
Storage cluster. For more information, see Configuring the Shared File Systems service
(manila):
The following example exposes native CephFS:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 extraMounts:
 ...
 manila:
 template:
 manilaAPI:
 customServiceConfig: |
 [DEFAULT]
 enabled_share_protocols=cephfs
 manilaShares:
 share1:
 customServiceConfig: |
 [DEFAULT]
 enabled_share_backends=cephfs
 [cephfs]
 driver_handles_share_servers=False
 share_backend_name=cephfs
 share_driver=manila.share.drivers.cephfs.driver.CephFSDriver
 cephfs_conf_path=/etc/ceph/ceph.conf
 cephfs_auth_id=openstack
 cephfs_cluster_name=ceph
 cephfs_volume_mode=0755
 cephfs_protocol_helper_type=CEPHFS

The following example exposes CephFS with NFS:

apiVersion: core.openstack.org/v1beta1

CHAPTER 2. INTEGRATING RED HAT CEPH STORAGE

13

kind: OpenStackControlPlane
spec:
 extraMounts:
 ...
 manila:
 template:
 manilaAPI:
 customServiceConfig: |
 [DEFAULT]
 enabled_share_protocols=nfs
 manilaShares:
 share1:
 customServiceConfig: |
 [DEFAULT]
 enabled_share_backends=cephfsnfs
 [cephfsnfs]
 driver_handles_share_servers=False
 share_backend_name=cephfsnfs
 share_driver=manila.share.drivers.cephfs.driver.CephFSDriver
 cephfs_conf_path=/etc/ceph/ceph.conf
 cephfs_auth_id=openstack
 cephfs_cluster_name=ceph
 cephfs_volume_mode=0755
 cephfs_protocol_helper_type=NFS
 cephfs_nfs_cluster_id=cephfs

12. Apply the updates to the OpenStackControlPlane CR:

$ oc apply -f openstack_control_plane.yaml

2.5. CONFIGURING THE DATA PLANE TO USE THE RED HAT CEPH
STORAGE CLUSTER

Configure the data plane to use the Red Hat Ceph Storage cluster.

Procedure

1. Create a ConfigMap with additional content for the Compute service (nova) configuration file
/etc/nova/nova.conf.d/ inside the nova_compute container. This additional content directs the
Compute service to use Red Hat Ceph Storage RBD.

apiVersion: v1
kind: ConfigMap
metadata:
 name: ceph-nova
data:
 03-ceph-nova.conf: | 1
 [libvirt]
 images_type=rbd
 images_rbd_pool=vms
 images_rbd_ceph_conf=/etc/ceph/ceph.conf
 images_rbd_glance_store_name=default_backend
 images_rbd_glance_copy_poll_interval=15

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

14

1

2

1

 images_rbd_glance_copy_timeout=600
 rbd_user=openstack
 rbd_secret_uuid=$FSID 2

This file name must follow the naming convention of ##-<name>-nova.conf. Files are
evaluated by the Compute service alphabetically. A filename that starts with 01 will be
evaluated by the Compute service before a filename that starts with 02.

The $FSID value should contain the actual FSID as described in the Obtaining the Ceph
FSID section. The FSID itself does not need to be considered secret.

2. Create a custom version of the default nova operator to use the new ConfigMap, which in this
case is called ceph-nova.

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: nova-custom-ceph 1
spec:
 label: dataplane-deployment-nova-custom-ceph
 configMaps:
 - ceph-nova
 secrets:
 - nova-cell1-compute-config
 playbook: osp.edpm.nova

The custom service is named nova-custom-ceph. It cannot be named nova because nova
is an unchangeable default service. Any custom service that has the same name as a
default service name will be overwritten during reconciliation.

3. Apply the ConfigMap and custom service changes:

$ oc create -f ceph-nova.yaml

4. Update the OpenStackDataPlaneNodeSet services list to replace the nova service with the
new custom service (in this case called nova-custom-ceph), add the ceph-client service, and
use the extraMounts parameter to define access to the Ceph Storage secret.

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
spec:
 ...
 roles:
 edpm-compute:
 ...
 services:
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - run-os
 - ceph-client
 - ovn

CHAPTER 2. INTEGRATING RED HAT CEPH STORAGE

15

 - libvirt
 - nova-custom-ceph
 - telemetry

 nodeTemplate:
 extraMounts:
 - extraVolType: Ceph
 volumes:
 - name: ceph
 secret:
 secretName: ceph-conf-files
 mounts:
 - name: ceph
 mountPath: "/etc/ceph"
 readOnly: true

NOTE

The ceph-client service must be added before the libvirt and nova-custom-
ceph services. The ceph-client service configures EDPM nodes as clients of a
Red Hat Ceph Storage server by distributing the Red Hat Ceph Storage client
files.

5. Save the changes to the services list.

6. Create an OpenStackDataPlaneDeployment CR:

$ oc create -f <dataplanedeployment_cr_file>

Replace <dataplanedeployment_cr_file> with the name of your file.

NOTE

An example of an OpenStackDataPlaneDeployment CR file is available
here: link:https://github.com/openstack-k8s-operators/dataplane-
operator/blob/main/config/samples/dataplane_v1beta1_openstackdataplanedeployment.yaml.

Result

When the nova-custom-ceph service Ansible job runs, the job copies overrides from the ConfigMaps
to the Compute service hosts. It will also use virsh secret-* commands so the libvirt service retrieves
the cephx secret by FSID.

Run the following command on an EDPM node after the job completes to confirm the job
results:

$ podman exec libvirt_virtsecretd virsh secret-get-value $FSID

2.6. CONFIGURING THE OBJECT STORAGE SERVICE (SWIFT) WITH
AN EXTERNAL CEPH OBJECT GATEWAY BACK END

You can configure an external Ceph Object Gateway (RGW) to act as an Object Storage service (swift)
back end, by completing the following high-level tasks:

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

16

1. Configure the RGW to verify users and their roles in the Identity service (keystone) to
authenticate with the external RGW service.

2. Deploy and configure a RGW service to handle object storage requests.

You use the openstack client tool to configure the Object Storage service.

2.6.1. Configuring RGW authentication

You must configure RGW to verify users and their roles in the Identity service (keystone) to
authenticate with the external RGW service.

Prerequisites

You have deployed an operational OpenStack control plane.

Procedure

1. Create the Object Storage service on the control plane:

$ openstack service create --name swift --description "OpenStack Object Storage" object-
store

2. Create a user called swift:

$ openstack user create --project service --password <swift_password> swift

Replace <swift_password> with the password to assign to the swift user.

3. Create roles for the swift user:

$ openstack role create swiftoperator
$ openstack role create ResellerAdmin

4. Add the swift user to system roles:

$ openstack role add --user swift --project service member
$ openstack role add --user swift --project service admin

5. Export the RGW endpoint IP addresses to variables and create control plane endpoints:

$ export RGW_ENDPOINT_STORAGE=<rgw_endpoint_ip_address_storage>
$ export RGW_ENDPOINT_EXTERNAL=<rgw_endpoint_ip_address_external>
$ openstack endpoint create --region regionOne object-store public
http://$RGW_ENDPOINT_EXTERNAL:8080/swift/v1/AUTH_%\(tenant_id\)s;
$ openstack endpoint create --region regionOne object-store internal
http://$RGW_ENDPOINT_STORAGE:8080/swift/v1/AUTH_%\(tenant_id\)s;

Replace <rgw_endpoint_ip_address_storage> with the IP address of the RGW endpoint
on the storage network. This is how internal services will access RGW.

Replace <rgw_endpoint_ip_address_external> with the IP address of the RGW endpoint
on the external network. This is how cloud users will write objects to RGW.

NOTE

CHAPTER 2. INTEGRATING RED HAT CEPH STORAGE

17

NOTE

Both endpoint IP addresses are the endpoints that represent the Virtual IP
addresses, owned by haproxy and keepalived, used to reach the RGW
backends that will be deployed in the Red Hat Ceph Storage cluster in the
procedure Configuring and Deploying the RGW service .

6. Add the swiftoperator role to the control plane admin group:

$ openstack role add --project admin --user admin swiftoperator

2.6.2. Configuring and deploying the RGW service

Configure and deploy a RGW service to handle object storage requests.

Procedure

1. Log in to a Red Hat Ceph Storage Controller node.

2. Create a file called /tmp/rgw_spec.yaml and add the RGW deployment parameters:

service_type: rgw
service_id: rgw
service_name: rgw.rgw
placement:
 hosts:
 - <host_1>
 - <host_2>
 ...
 - <host_n>
networks:
- <storage_network>
spec:
 rgw_frontend_port: 8082
 rgw_realm: default
 rgw_zone: default

service_type: ingress
service_id: rgw.default
service_name: ingress.rgw.default
placement:
 count: 1
spec:
 backend_service: rgw.rgw
 frontend_port: 8080
 monitor_port: 8999
 virtual_ips_list:
 - <storage_network_vip>
 - <external_network_vip>
 virtual_interface_networks:
 - <storage_network>

Replace <host_1>, <host_2>, …, <host_n> with the name of the Ceph nodes where the
RGW instances are deployed.

Replace <storage_network> with the network range used to resolve the interfaces where

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

18

Replace <storage_network> with the network range used to resolve the interfaces where
radosgw processes are bound.

Replace <storage_network_vip> with the virtual IP (VIP) used as the haproxy front end.
This is the same address configured as the Object Storage service endpoint
($RGW_ENDPOINT) in the Configuring RGW authentication procedure.

Optional: Replace <external_network_vip> with an additional VIP on an external network to
use as the haproxy front end. This address is used to connect to RGW from an external
network.

3. Save the file.

4. Enter the cephadm shell and mount the rgw_spec.yaml file.

$ cephadm shell -m /tmp/rgw_spec.yaml

5. Add RGW related configuration to the cluster:

$ ceph config set global rgw_keystone_url "https://<keystone_endpoint>"
$ ceph config set global rgw_keystone_verify_ssl false
$ ceph config set global rgw_keystone_api_version 3
$ ceph config set global rgw_keystone_accepted_roles "member, Member, admin"
$ ceph config set global rgw_keystone_accepted_admin_roles "ResellerAdmin, swiftoperator"
$ ceph config set global rgw_keystone_admin_domain default
$ ceph config set global rgw_keystone_admin_project service
$ ceph config set global rgw_keystone_admin_user swift
$ ceph config set global rgw_keystone_admin_password "$SWIFT_PASSWORD"
$ ceph config set global rgw_keystone_implicit_tenants true
$ ceph config set global rgw_s3_auth_use_keystone true
$ ceph config set global rgw_swift_versioning_enabled true
$ ceph config set global rgw_swift_enforce_content_length true
$ ceph config set global rgw_swift_account_in_url true
$ ceph config set global rgw_trust_forwarded_https true
$ ceph config set global rgw_max_attr_name_len 128
$ ceph config set global rgw_max_attrs_num_in_req 90
$ ceph config set global rgw_max_attr_size 1024

Replace <keystone_endpoint> with the Identity service internal endpoint. The EDPM
nodes are able to resolve the internal endpoint but not the public one. Do not omit the
URIScheme from the URL, it must be either http:// or https://.

Replace <swift_password> with the password assigned to the swift user in the previous
step.

6. Deploy the RGW configuration using the Orchestrator:

$ ceph orch apply -i /mnt/rgw_spec.yaml

CHAPTER 2. INTEGRATING RED HAT CEPH STORAGE

19

CHAPTER 3. CONFIGURING A HYPERCONVERGED
INFRASTRUCTURE ENVIRONMENT

This section describes how to deploy a Hyperconverged Infrastructure (HCI) environment. A HCI
environment contains data plane nodes that host both Ceph Storage and the Compute service.

Create an HCI environment, by completing the following high-level tasks:

1. Configuring the data plane node networking.

2. Installing Red Hat Ceph Storage on the data plane nodes.

3. Configuring Red Hat OpenStack Services on OpenShift (RHOSO) to use the Red Hat Ceph
Storage cluster.

3.1. DATA PLANE NODE SERVICES LIST

Create an OpenStackDataPlaneNodeSet CR to configure data plane nodes. The dataplane-operator
reconciles the OpenStackDataPlaneNodeSet CR when an OpenStackDataPlaneDeployment CR is
created.

These CRs have a service list similar to the following example:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
spec:
 ...
 services:
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - run-os
 - ovn
 - libvirt
 - nova

Only the services in the services list are configured.

Red Hat Ceph Storage must be deployed on the data plane node after the Storage network and NTP
are configured but before the Compute service is configured. This means you must edit the services list
and make other changes to the CR. Throughout this section, you edit the services list to complete the
configuration of the HCI environment.

3.2. CONFIGURING THE DATA PLANE NODE NETWORKS

You must configure the data plane node networks to accommodate the Red Hat Ceph Storage
networking requirements.

Prerequisites

Control plane deployment is complete but has not yet been modified to use Ceph Storage.

The data plane nodes have been provisioned with an operating system.

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

20

The data plane nodes are accessible through an SSH key that Ansible can use.

The data plane nodes have disks available to be used as Ceph OSDs.

There are a minimum of three available data plane nodes. Ceph Storage clusters must have a
minimum of three nodes to ensure redundancy.

Procedure

1. Create an OpenStackDataPlaneNodeSet CRD file to represent the data plane nodes.

NOTE

Do not create the CR in Red Hat OpenShift yet.

2. Add the ceph-hci-pre service to the list before the configure-os service and remove all other
service listings after run-os.
The following is an example of the edited list:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
spec:
 ...
 services:
 - download-cache
 - bootstrap
 - configure-network
 - validate-network
 - install-os
 - ceph-hci-pre
 - configure-os
 - ssh-known-hosts
 - run-os
 - reboot-os

NOTE

Note the services that you remove from the list. You add them back to the list
later.

3. (Optional) The ceph-hci-pre service prepares EDPM nodes to host Red Hat Ceph Storage
services after network configuration using the edpm_ceph_hci_pre edpm-ansible role. By
default, the edpm_ceph_hci_pre_enabled_services parameter of this role only contains RBD,
RGW, and NFS services. If other services, such as the Dashboard, are deployed with HCI nodes;
they must be added to the edpm_ceph_hci_pre_enabled_services parameter list. For more
information about this role, see edpm_ceph_hci_pre role.

4. Configure the Red Hat Ceph Storage cluster_network for storage management traffic
between OSDs. Modify the CR to set edpm-ansible variables so that the
edpm_network_config role configures a storage management network which Ceph uses as the
cluster_network.
The following example has 3 nodes. It assumes the storage management network range is
172.20.0.0/24 and that it is on VLAN23. The bolded lines are additions for the cluster_network:

CHAPTER 3. CONFIGURING A HYPERCONVERGED INFRASTRUCTURE ENVIRONMENT

21

https://openstack-k8s-operators.github.io/edpm-ansible/roles/role-edpm_ceph_hci_pre.html

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-edpm
 namespace: openstack
spec:
 env:
 - name: ANSIBLE_FORCE_COLOR
 value: "True"
 networkAttachments:
 - ctlplane
 nodeTemplate:
 ansible:
 ansiblePort: 22
 ansibleUser: cloud-admin
 ansibleVars:
 edpm_ceph_hci_pre_enabled_services:
 - ceph_mon
 - ceph_mgr
 - ceph_osd
 - ceph_rgw
 - ceph_nfs
 - ceph_rgw_frontend
 - ceph_nfs_frontend
 edpm_fips_mode: check
 edpm_iscsid_image: {{ registry_url }}/openstack-iscsid:{{ image_tag }}
 edpm_logrotate_crond_image: {{ registry_url }}/openstack-cron:{{ image_tag }}
 edpm_network_config_hide_sensitive_logs: false
 edpm_network_config_os_net_config_mappings:
 edpm-compute-0:
 nic1: 52:54:00:1e:af:6b
 nic2: 52:54:00:d9:cb:f4
 edpm-compute-1:
 nic1: 52:54:00:f2:bc:af
 nic2: 52:54:00:f1:c7:dd
 edpm-compute-2:
 nic1: 52:54:00:dd:33:14
 nic2: 52:54:00:50:fb:c3
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_cidr }}
 routes: {{ ctlplane_host_routes }}
 members:

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

22

 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu }}
 # force the MAC address of the bridge to this interface
 primary: true
 {% for network in nodeset_networks %}
 - type: vlan
 mtu: {{ lookup(vars, networks_lower[network] ~ _mtu) }}
 vlan_id: {{ lookup(vars, networks_lower[network] ~ _vlan_id) }}
 addresses:
 - ip_netmask:
 {{ lookup(vars, networks_lower[network] ~ _ip) }}/{{ lookup(vars,
networks_lower[network] ~ _cidr) }}
 routes: {{ lookup(vars, networks_lower[network] ~ _host_routes) }}
 {% endfor %}
 edpm_neutron_metadata_agent_image: {{ registry_url }}/openstack-neutron-metadata-
agent-ovn:{{ image_tag }}
 edpm_nodes_validation_validate_controllers_icmp: false
 edpm_nodes_validation_validate_gateway_icmp: false
 edpm_selinux_mode: enforcing
 edpm_sshd_allowed_ranges:
 - 192.168.122.0/24
 - 192.168.111.0/24
 edpm_sshd_configure_firewall: true
 enable_debug: false
 gather_facts: false
 image_tag: current-podified
 neutron_physical_bridge_name: br-ex
 neutron_public_interface_name: eth0
 service_net_map:
 nova_api_network: internalapi
 nova_libvirt_network: internalapi
 storage_mgmt_cidr: "24"
 storage_mgmt_host_routes: []
 storage_mgmt_mtu: 9000
 storage_mgmt_vlan_id: 23
 storage_mtu: 9000
 timesync_ntp_servers:
 - hostname: pool.ntp.org
 ansibleSSHPrivateKeySecret: dataplane-ansible-ssh-private-key-secret
 managementNetwork: ctlplane
 networks:
 - defaultRoute: true
 name: ctlplane
 subnetName: subnet1
 - name: internalapi
 subnetName: subnet1
 - name: storage
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1
 nodes:
 edpm-compute-0:
 ansible:
 host: 192.168.122.100
 hostName: compute-0

CHAPTER 3. CONFIGURING A HYPERCONVERGED INFRASTRUCTURE ENVIRONMENT

23

 networks:
 - defaultRoute: true
 fixedIP: 192.168.122.100
 name: ctlplane
 subnetName: subnet1
 - name: internalapi
 subnetName: subnet1
 - name: storage
 subnetName: subnet1
 - name: storagemgmt
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1
 edpm-compute-1:
 ansible:
 host: 192.168.122.101
 hostName: compute-1
 networks:
 - defaultRoute: true
 fixedIP: 192.168.122.101
 name: ctlplane
 subnetName: subnet1
 - name: internalapi
 subnetName: subnet1
 - name: storage
 subnetName: subnet1
 - name: storagemgmt
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1
 edpm-compute-2:
 ansible:
 host: 192.168.122.102
 hostName: compute-2
 networks:
 - defaultRoute: true
 fixedIP: 192.168.122.102
 name: ctlplane
 subnetName: subnet1
 - name: internalapi
 subnetName: subnet1
 - name: storage
 subnetName: subnet1
 - name: storagemgmt
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1
 preProvisioned: true
 services:
 - bootstrap
 - configure-network
 - validate-network
 - install-os
 - ceph-hci-pre
 - configure-os

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

24

 - ssh-known-hosts
 - run-os
 - reboot-os

NOTE

It is not necessary to add the storage management network to the
networkAttachments key.

5. Apply the CR:

$ oc apply -f <dataplane_cr_file>

Replace <dataplane_cr_file> with the name of your file.

NOTE

Ansible does not configure or validate the networks until the
OpenStackDataPlaneDeployment CRD is created.

6. Create an OpenStackDataPlaneDeployment CRD, as described in Deploying the data plane ,
which has the OpenStackDataPlaneNodeSet CRD file defined above to have Ansible configure
the services on the data plane nodes.

7. To confirm the network is configured, complete the following steps:

a. SSH into a data plane node.

b. Use the ip a command to display configured networks.

c. Confirm the storage networks are in the list of configured networks.

3.2.1. Red Hat Ceph Storage MTU settings

The example in this procedure changes the MTU of the storage and storage_mgmt networks from 1500
to 9000. An MTU of 9000 is known as a jumbo frame. Even though it is not mandatory to increase the
MTU, jumbo frames are used for improved storage performance. If jumbo frames are used, all network
switch ports in the data path must be configured to support jumbo frames. MTU changes must also be
made for services using the Storage network running on OpenShift.

To change the MTU for the OpenShift services connecting to the data plane nodes, update the Node
Network Configuration Policy (NNCP) for the base interface and the VLAN interface. It is not necessary
to update the Network Attachment Definition (NAD) if the main NAD interface already has the desired
MTU. If the MTU of the underlying interface is set to 9000, and it is not specified for the VLAN
interface on top of it, then it will default to the value from the underlying interface.

If the MTU values are not consistent, issues can occur on the application layer that can cause the Red
Hat Ceph Storage cluster to not reach quorum or not support authentication using the CephX protocol.
If the MTU is changed and you observe these types of problems, verify all hosts that use the network
using jumbo frames can communicate at the chosen MTU value with the ping command, for example:

$ ping -M do -s 8972 172.20.0.100

CHAPTER 3. CONFIGURING A HYPERCONVERGED INFRASTRUCTURE ENVIRONMENT

25

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/18.0/html/deployment-guide/assembly_creating-the-data-plane#proc_deploying-the-data-plane_dataplane

3.3. CONFIGURING AND DEPLOYING RED HAT CEPH STORAGE ON
DATA PLANE NODES

Use the cephadm utility to configure and deploy Red Hat Ceph Storage for an HCI environment.

3.3.1. The cephadm utility

Use the cephadm utility to configure and deploy Red Hat Ceph Storage on the data plane nodes. The
cephadm package must be deployed on at least one data plane node before proceeding; edpm-
ansible does not deploy Red Hat Ceph Storage.

For additional information and procedures for deploying Red Hat Ceph Storage, see Red Hat Ceph
Storage installation in the Red Hat Ceph Storage Installation Guide .

3.3.2. Configuring and deploying Red Hat Ceph Storage

Configure and deploy Red Hat Ceph Storage by editing the configuration file and using the cephadm
utility.

Procedure

1. Edit the Red Hat Ceph Storage configuration file.

2. Add the Storage and Storage Management network ranges. Red Hat Ceph Storage uses the
Storage network as the Red Hat Ceph Storage public_network and the Storage Management
network as the cluster_network.
The following example is for a configuration file entry where the Storage network range is
172.18.0.0/24 and the Storage Management network range is 172.20.0.0/24:

[global]
public_network = 172.18.0.0/24
cluster_network = 172.20.0.0/24

3. Add collocation boundaries between the Compute service and Ceph OSD services. Boundaries
should be set between collocated Compute service and Ceph OSD services to reduce CPU and
memory contention.
The following is an example for a Ceph configuration file entry with these boundaries set:

[osd]
osd_memory_target_autotune = true
osd_numa_auto_affinity = true
[mgr]
mgr/cephadm/autotune_memory_target_ratio = 0.2

In this example, the osd_memory_target_autotune parameter is set to true so that the OSD
daemons adjust memory consumption based on the osd_memory_target option. The
autotune_memory_target_ratio defaults to 0.7. This means 70 percent of the total RAM in the
system is the starting point from which any memory consumed by non-autotuned Ceph
daemons is subtracted. The remaining memory is divided between the OSDs; assuming all OSDs
have osd_memory_target_autotune set to true. For HCI deployments, you can set
mgr/cephadm/autotune_memory_target_ratio to 0.2 so that more memory is available for the
Compute service.

For additional information about service collocation, see Collocating services in a HCI

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

26

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/6/html/installation_guide/red-hat-ceph-storage-installation

For additional information about service collocation, see Collocating services in a HCI
environment for NUMA nodes.

NOTE

If these values need to be adjusted after the deployment, use the ceph config
set osd <key> <value> command.

4. Deploy Ceph Storage with the edited configuration file on a data plane node:
$ cephadm bootstrap --config <config_file> --mon-ip <data_plane_node_ip>

Replace <config_file> with the name of your Ceph configuration file.

Replace <data_plane_node_ip> with the Storage network IP address of the data plane
node on which Red Hat Ceph Storage will be installed.

5. After the Red Hat Ceph Storage cluster is bootstrapped on the first EDPM node, see Red Hat
Ceph Storage installation in the Red Hat Ceph Storage Installation Guide to add the other
EDPM nodes to the Ceph cluster.

3.3.2.1. Collocating services in a HCI environment for NUMA nodes

A two-NUMA node system can host a latency sensitive Compute service workload on one NUMA node
and a Ceph OSD workload on the other NUMA node. To configure Ceph OSDs to use a specific NUMA
node not being used by the the Compute service, use either of the following Ceph OSD configurations:

osd_numa_node sets affinity to a NUMA node (-1 for none).

osd_numa_auto_affinity automatically sets affinity to the NUMA node where storage and
network match.

If there are network interfaces on both NUMA nodes and the disk controllers are on NUMA node 0, do
the following:

1. Use a network interface on NUMA node 0 for the storage network

2. Host the Ceph OSD workload on NUMA node 0.

3. Host the Compute service workload on NUMA node 1 and have it use the network interfaces on
NUMA node 1.

Set osd_numa_auto_affinity to true, as in the initial Ceph configuration file. Alternatively, set the
osd_numa_node directly to 0 and clear the osd_numa_auto_affinity parameter so that it defaults to
false.

When a hyperconverged cluster backfills as a result of an OSD going offline, the backfill process can be
slowed down. In exchange for a slower recovery, the backfill activity has less of an impact on the
collocated Compute service (nova) workload. Red Hat Ceph Storage has the following defaults to
control the rate of backfill activity.

osd_recovery_op_priority = 3

osd_max_backfills = 1

osd_recovery_max_active_hdd = 3

CHAPTER 3. CONFIGURING A HYPERCONVERGED INFRASTRUCTURE ENVIRONMENT

27

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/6/html/installation_guide/red-hat-ceph-storage-installation
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/6/html/installation_guide/index

osd_recovery_max_active_ssd = 10

3.3.3. Confirming Red Hat Ceph Storage deployment

Confirm Red Hat Ceph Storage is deployed before proceeding.

Procedure

1. Connect to a data plane node by using SSH.

2. View the status of the Red Hat Ceph Storage cluster:

$ cephadm shell -- ceph -s

3.3.4. Confirming Red Hat Ceph Storage tuning

Ensure that Red Hat Ceph Storage is properly tuned before proceeding.

Procedure

1. Connect to a data plane node by using SSH.

2. Verify overall Red Hat Ceph Storage tuning with the following commands:

$ ceph config dump | grep numa
$ ceph config dump | grep autotune
$ ceph config dump | get mgr

3. Verify the tuning of an OSD with the following commands:

$ ceph config get <osd_number> osd_memory_target
$ ceph config get <osd_number> osd_memory_target_autotune
$ ceph config get <osd_number> osd_numa_auto_affinity

Replace <osd_number> with the number of an OSD. For example, to refer to OSD 11, use
osd.11.

4. Verify the default backfill values of an OSD with the following commands:

$ ceph config get <osd_number> osd_recovery_op_priority
$ ceph config get <osd_number> osd_max_backfills
$ ceph config get <osd_number> osd_recovery_max_active_hdd
$ ceph config get <osd_number> osd_recovery_max_active_ssd

Replace <osd_number> with the number of an OSD. For example, to refer to OSD 11, use
osd.11.

3.4. CONFIGURING THE DATA PLANE TO USE THE COLLOCATED RED
HAT CEPH STORAGE SERVER

Although the Red Hat Ceph Storage cluster is physically collocated with the Compute services on the
data plane nodes, it is treated as logically separated. Red Hat Ceph Storage must be configured as the
storage solution before the data plane nodes can use it.

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

28

Prerequisites

Complete the procedures in the section Integrating Red Hat Ceph Storage .

Procedure

1. Edit the OpenStackDataPlaneNodeSet CR.

2. To define the cephx key and configuration file for the Compute service (nova), use the
extraMounts parameter.
The following is an example of using the extraMounts parameter for this purpose:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlane
spec:
 roles:
 edpm-compute:
 nodeTemplate:
 extraMounts:
 - extraVolType: Ceph
 volumes:
 - name: ceph
 secret:
 secretName: ceph-conf-files
 mounts:
 - name: ceph
 mountPath: "/etc/ceph"
 readOnly: true

3. Locate the services list in the CR.

4. Edit the services list to restore all of the services removed in Configuring the data plane node
networks. Restoring the full services list allows the remaining jobs to be run that complete the
configuration of the HCI environment.
The following is an example of a full services list with the additional services in bold:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
spec:
 ...
 services:
 - bootstrap
 - configure-network
 - validate-network
 - install-os
 - ceph-hci-pre
 - configure-os
 - ssh-known-hosts
 - run-os
 - reboot-os
 - install-certs
 - ceph-client
 - ovn

CHAPTER 3. CONFIGURING A HYPERCONVERGED INFRASTRUCTURE ENVIRONMENT

29

 - neutron-metadata
 - libvirt
 - nova-custom-ceph

NOTE

In addition to restoring the default service list, the ceph-client `service is added
after the run-os service. The `ceph-client service configures EDPM nodes as
clients of a Red Hat Ceph Storage server. This service distributes the files
necessary for the clients to connect to the Red Hat Ceph Storage server.

5. Create a ConfigMap to set the reserved_host_memory_mb parameter to a value appropriate
for your configuration.
The following is an example of a ConfigMap used for this purpose:

apiVersion: v1
kind: ConfigMap
metadata:
 name: reserved-memory-nova
data:
 04-reserved-memory-nova.conf: |
 [DEFAULT]
 reserved_host_memory_mb=75000

NOTE

The value for the reserved_host_memory_mb parameter may be set so that
the Compute service scheduler does not give memory to a virtual machine that a
Ceph OSD on the same server needs. The example reserves 5 GB per OSD for 10
OSDs per host in addition to the default reserved memory for the hypervisor. In
an IOPS-optimized cluster, you can improve performance by reserving more
memory for each OSD. The 5 GB number is provided as a starting point which can
be further tuned if necessary.

6. Add reserved-memory-nova to the configMaps list by editing the
OpenStackDataPlaneService/nova-custom-ceph file:

kind: OpenStackDataPlaneService
<...>
spec:
 configMaps:
 - ceph-nova
 - reserved-memory-nova

7. Apply the CR changes.

$ oc apply -f <dataplane_cr_file>

Replace <dataplane_cr_file> with the name of your file.

NOTE

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

30

NOTE

Ansible does not configure or validate the networks until the
OpenStackDataPlaneDeployment CRD is created.

8. Create an OpenStackDataPlaneDeployment CRD, as described in Deploying the data plane ,
which has the OpenStackDataPlaneNodeSet CRD file defined above to have Ansible configure
the services on the data plane nodes.

CHAPTER 3. CONFIGURING A HYPERCONVERGED INFRASTRUCTURE ENVIRONMENT

31

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/18.0/html/deployment-guide/assembly_creating-the-data-plane#proc_deploying-the-data-plane_dataplane

CHAPTER 4. CONFIGURING THE BLOCK STORAGE SERVICE
(CINDER)

You can configure the following back ends for the Block Storage service (cinder):

Ceph RBD.

iSCSI, FC, or NVMe-TCP storage protocols. For information about configuring a third-party
back end for the Block Storage service, see OSP18 Cinder Alternative Storage .

NFS.

4.1. CONFIGURING AN NFS BACK END

You can configure the Block Storage service (cinder) with a generic NFS back end to provide an
alternative storage solution by completing the following high level tasks:

1. To ensure network connectivity between the NFS server, the Red Hat OpenShift cluster, and
the Compute nodes, complete the following tasks:

a. Confirm all Block Storage services are operational.

b. Create a test volume from an Image service (glance) image.

c. Boot a VM from the test volume or attach a VM to the test volume.

2. Create a secret containing NFS server connection information.

3. Configure the OpenStackControlPlane custom resource (CR) to use the NFS storage as the
back end for the Block Storage service.

NOTE

When using Red Hat OpenStack in a production environment, use a certified third-party
NFS driver. The generic NFS driver is not recommended for a production environment.

4.1.1. Creating the NFS server connection secret

Create a server connection secret to prevent placing server connection information directly in the
OpenStackControlPlane CRD.

Procedure

1. Create a configuration file that contains NFS server connection information.
The following is an example of the contents of a configuration file:

[nfs]
nas_host=192.168.130.1
nas_share_path=/var/nfs/cinder

2. Save the configuration file.

3. Create the secret based on the configuration file:
$ oc create secret generic <secret_name> --from-file=<configuration_file_name>

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

32

https://access.redhat.com/articles/7032701

1

Replace <secret_name> with the name you wish to assign to the secret.

Replace <configuration_file_name> with the name of the configuration file you created.

4. Delete the configuration file.

4.1.2. Configuring the control plane to use the generic NFS driver

Configure the Block Storage service (cinder) in the OpenStackControlPlane CR to use NFS storage.

NOTE

Use a certified third-party NFS driver when using Red Hat OpenStack Services on
OpenShift (RHOSO) in a production environment. The generic NFS driver is not
recommended for a production environment.

Procedure

1. Edit the OpenStackControlPlane CR.

2. Add the customServiceConfig parameter to the cinder template to configure the Block
Storage service.
The following is an example of using the customServiceConfig parameter to configure the
Block Storage service:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack
spec:
 cinder:
 template:
 cinderVolumes:
 nfs:
 replicas: 1
 networkAttachments:
 - storage
 customServiceConfig: |
 [nfs]
 volume_backend_name=nfs
 volume_driver=cinder.volume.drivers.nfs.NfsDriver
 nfs_snapshot_support=true
 nas_secure_file_operations=false
 nas_secure_file_permissions=false
 customServiceConfigSecrets:
 - <nfs_secret_name> 1

The name of your secret created in Creating the NFS server connection secret .

3. Apply the CR changes:

$ oc apply -f <control_plane_file>

Replace <control_plane_file> with the name of your OpenStackControlPlane CR file.

CHAPTER 4. CONFIGURING THE BLOCK STORAGE SERVICE (CINDER)

33

1

2

4.2. CONFIGURING AUTOMATIC DATABASE CLEANUP

The Block Storage (cinder) and Shared File Systems (manila) services automatically purge database
entries marked for deletion for a set number of days. By default, records are marked for deletion for 30
days. You can configure a different record age and schedule for purge jobs.

NOTE

The Image service (glance) also purges database entries automatically but this
functionality is not currently user configurable.

Procedure

1. Open your openstack_control_plane.yaml file to edit the OpenStackControlPlane CR.

2. Add the dbPurge parameter to the cinder or manila template to configure database cleanup
depending on the service you want to configure.
The following is an example of using the dbPurge parameter to configure the Block Storage
service:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack
spec:
 cinder:
 template:
 dbPurge:
 age: 20 1
 schedule: 1 0 * * 0 2

The number of days a record has been marked for deletion before it is purged. The default
value is 30 days. The minimum value is 1 day.

The schedule of when to run the job in a crontab format. The default value is 1 0 * * *. This
default value is equivalent to 00:01 daily.

3. Update the control plane:

$ oc apply -f openstack_control_plane.yaml

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

34

CHAPTER 5. CONFIGURING THE IMAGE SERVICE (GLANCE)
The Image service (glance) provides discovery, registration, and delivery services for disk and server
images. It provides the ability to copy or snapshot a server image, and immediately store it. You can use
stored images as templates to commission new servers quickly and more consistently than installing a
server operating system and individually configuring services.

You can configure the following back ends (stores) for the Image service:

RADOS Block Device (RBD) is the default back end when you use Red Hat Ceph Storage.

Block Storage (cinder).

Object Storage (swift).

NFS.

5.1. CONFIGURING A CEPH RBD BACK END

You can configure the Image service (glance) with Red Hat Ceph Storage RADOS Block Device (RBD)
as the storage back end.

Prerequisites

Ensure network connectivity between the storage back end, the Red Hat OpenShift cluster, and
the Compute nodes.

Procedure

1. Open your OpenStackControlPlane CR file, openstack_control_plane.yaml, and add the
following parameters to the glance template to configure Ceph RBD as the back end:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 ...
 glance:
 template:
 databaseInstance: openstack
 databaseUser: glance
 customServiceConfig: |
 [DEFAULT]
 enabled_backends = default_backend:rbd
 enabled_import_methods=[web-download,glance-direct]
 [glance_store]
 default_backend = default_backend
 [default_backend]
 rbd_store_ceph_conf = /etc/ceph/ceph.conf
 store_description = "RBD backend"
 rbd_store_pool = images
 rbd_store_user = openstack
 rbd_thin_provisioning = True
...

2. Update the control plane:

CHAPTER 5. CONFIGURING THE IMAGE SERVICE (GLANCE)

35

$ oc apply -f openstack_control_plane.yaml -n openstack

3. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

Image conversion
When you use Red Hat Ceph Storage as a back end for the Image service, image-conversion is enabled
by default with a dedicated PersistentVolumeClaim (PVC), glance-conversion. The PVC is mounted to
the /var/lib/glance/os_glance_staging_store path. You can run the oc describe pod command to see
the glance-conversion PVC:

Example output:

...
 Mounts:
 /etc/ceph from ceph (ro)
 /etc/my.cnf from config-data (ro,path="my.cnf")
 /usr/local/bin/container-scripts from scripts (ro)
 /var/lib/config-data/default from config-data (ro)
 /var/lib/glance from glance (rw)
 /var/lib/glance/os_glance_staging_store from glance-conversion (rw)
 /var/lib/kolla/config_files/config.json from config-data (ro,path="glance-api-config.json")
 /var/log/glance from logs (rw)
...

The PVC is only created for an external instance to store the staging data of an uploaded image.

5.2. CONFIGURING A BLOCK STORAGE BACK END

You can configure the Image service (glance) with the Block Storage service (cinder) as the storage
back end.

Prerequisites

Ensure network connectivity between the storage back end, the Red Hat OpenShift cluster, and
the Compute nodes.

Procedure

1. Open your OpenStackControlPlane CR file, openstack_control_plane.yaml, and add the
following parameters to the glance template to configure the Block Storage service as the back
end:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

36

spec:
 ...
 glance:
 template:
 customServiceConfig: |
 [DEFAULT]
 enabled_backends = default_backend:cinder
 [glance_store]
 default_backend = default_backend
 [default_backend]
 rootwrap_config = /etc/glance/rootwrap.conf
 description = Default cinder backend
 cinder_store_user_name = {{ .ServiceUser }}
 cinder_store_password = {{ .ServicePassword }}
 cinder_store_project_name = servicecinder_catalog_info volumev3::publicURL
...

2. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

3. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

5.3. CONFIGURING AN OBJECT STORAGE BACK END

You can configure the Image service (glance) with the Object Storage service (swift) as the storage
back end.

Prerequisites

Ensure network connectivity between the storage back end, the Red Hat OpenShift cluster, and
the Compute nodes.

Procedure

1. Open your OpenStackControlPlane CR file, openstack_control_plane.yaml, and add the
following parameters to the glance template to configure the Object Storage service as the
back end:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack
spec:
 …

CHAPTER 5. CONFIGURING THE IMAGE SERVICE (GLANCE)

37

 glance:
 template:
 customServiceConfig: |
 [DEFAULT]
 enabled_backends = default_backend:swift
 [glance_store]
 default_backend = default_backend
 [default_backend]
 swift_store_create_container_on_put = True
 swift_store_auth_version = 3
 swift_store_auth_address = {{ .KeystoneInternalURL }}
 swift_store_key = {{ .ServicePassword }}
 swift_store_user = service:glance
 swift_store_endpoint_type = internalURL
...

2. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

3. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

5.4. CONFIGURING AN NFS BACK END

When you mount an NFS share on the Image service (glance), the Image service does not manage the
operation. The Image service writes data to the file system but is unaware that the back end is an NFS
share.

If you use NFS as an Image service back end, Red Hat recommends the following best practices to
mitigate risk:

Use a reliable production-grade NFS back end.

Make sure the network is propagated to the OpenShift control plane, where the Image service is
deployed, and the Image service has a NetworkAttachmentDefinition (NAD) that points to the
network. This configuration ensures that the Image service pods can reach the NFS server.

Set underlying file system permissions. Write permissions must be present in the shared file
system that you use as a store.

Ensure that the user and the group that the glance-api process runs on do not have write
permissions on the mount point at the local file system. This means that the process can detect
possible mount failure and put the store into read-only mode during a write attempt.

Limitations

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

38

In Red Hat OpenStack Services on OpenShift (RHOSO), you cannot set client-side NFS mount
options in a pod spec. You can set NFS mount options in one of the following ways:

Set server-side mount options.

Use /etc/nfsmount.conf.

Mount NFS volumes by using PersistentVolumes, which have mount options.

Procedure

1. Open your OpenStackControlPlane CR file, openstack_control_plane.yaml, and add the
extraMounts parameter in the spec section to add the export path and IP address of the NFS
share. The path is mapped to /var/lib/glance/images, where the Image service API stores and
retrieves images:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack
...
spec:
 extraMounts:
 - extraVol:
 - extraVolType: Nfs
 mounts:
 - mountPath: /var/lib/glance/images
 name: nfs
 propagation:
 - Glance
 volumes:
 - name: nfs
 nfs:
 path: {{ <nfs_export_path> }}
 server: {{ <nfs_ip_address> }}
 name: r1
 region: r1

Replace <nfs_export_path> with the export path of your NFS share.

Replace <nfs_ip_address> with the IP address of your NFS share. This IP address must be
part of the overlay network that is reachable by the Image service.

2. Add the following parameters to the glance template to configure NFS as the back end:

...
spec:
 extraMounts:
 ...
 glance:
 template:
 customServiceConfig: |
 [DEFAULT]
 enabled_backends = default_backend:file
 [glance_store]
 default_backend = default_backend

CHAPTER 5. CONFIGURING THE IMAGE SERVICE (GLANCE)

39

 [default_backend]
 filesystem_store_datadir = /var/lib/glance/images
 databaseInstance: openstack
 glanceAPIs:
...

3. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

4. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

40

CHAPTER 6. CONFIGURING THE OBJECT STORAGE SERVICE
(SWIFT)

You can configure the Object Storage service (swift) to use PersistentVolumes (PVs) on OpenShift
nodes or disks on external data plane nodes.

When you use PVs on OpenShift nodes, this configuration is limited to a single PV per node. The Object
Storage service requires multiple PVs. To maximize availability and data durability, you create these PVs
on different nodes, and only use one PV per node.

You can use external data plane nodes for more flexibility in larger storage deployments, where you can
use multiple disks per node to deploy a larger Object Storage cluster.

Prerequisites

You have the oc and podman command line tools installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

6.1. DEPLOYING THE OBJECT STORAGE SERVICE ON OPENSHIFT
NODES BY USING PERSISTENTVOLUMES

You use at least two swiftProxy replicas and three swiftStorage replicas in a default Object Storage
service (swift) deployment. You can increase these values to distribute storage across more nodes and
disks.

The ringReplicas value defines the number of object copies in the cluster. For example, if you set
ringReplicas: 3 and swiftStorage/replicas: 5, every object is stored on 3 different PersistentVolumes
(PVs), and there are 5 PVs in total.

Procedure

1. Open your OpenStackControlPlane CR file, openstack_control_plane.yaml, and add the
following parameters to the swift template:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-galera-network-isolation
 namespace: openstack
spec:
 ...
 swift:
 enabled: true
 template:
 swiftProxy:
 replicas: 2
 swiftRing:
 ringReplicas: 3
 swiftStorage:
 replicas: 3

CHAPTER 6. CONFIGURING THE OBJECT STORAGE SERVICE (SWIFT)

41

 storageClass: <swift-storage>
 storageRequest: 100Gi
...

Increase the swiftProxy/replicas: value to distribute proxy instances across more nodes.

Replace the ringReplicas: value to define the number of object copies you want in your
cluster.

Increase the swiftStorage/replicas: value to define the number of PVs in your cluster.

Replace <swift-storage> with the name of the storage class you want the Object Storage
service to use.

2. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

3. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

6.2. OBJECT STORAGE RINGS

The Object Storage service (swift) uses a data structure called the ring to distribute partition space
across the cluster. This partition space is core to the data durability engine in the Object Storage
service. With rings, the Object Storage service can quickly and easily synchronize each partition across
the cluster.

Rings contain information about Object Storage partitions and how partitions are distributed among the
different nodes and disks in your Red Hat OpenStack Services on OpenShift (RHOSO) deployment.
When any Object Storage component interacts with data, a quick lookup is performed locally in the ring
to determine the possible partitions for each object.

The Object Storage service has three rings to store the following types of data:

Account information

Containers, to facilitate organizing objects under an account

Object replicas

6.3. RING PARTITION POWER

The ring power determines the partition to which a resource, such as an account, container, or object, is
mapped. The partition is included in the path under which the resource is stored in a back-end file
system. Therefore, changing the partition power requires relocating resources to new paths in the back-

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

42

end file systems.

In a heavily populated cluster, a relocation process is time consuming. To avoid downtime, relocate
resources while the cluster is still operating. You must do this without temporarily losing access to data
or compromising the performance of processes, such as replication and auditing. For assistance with
increasing ring partition power, contact Red Hat Support.

When you use separate nodes for the Object Storage service (swift), use a higher partition power value.

The Object Storage service distributes data across disks and nodes using modified hash rings. There are
three rings by default: one for accounts, one for containers, and one for objects. Each ring uses a fixed
parameter called partition power . This parameter sets the maximum number of partitions that can be
created.

6.4. INCREASING RING PARTITION POWER

You can only change the partition power parameter for new containers and their objects, so you must
set this value before initial deployment.

The default partition power value is 10. Refer to the following table to select an appropriate partition
power if you use three replicas:

Table 6.1. Appropriate partition power values per number of available disks

Partition Power Maximum number of disks

10 ~ 35

11 ~ 75

12 ~ 150

13 ~ 250

14 ~ 500

IMPORTANT

Setting an excessively high partition power value (for example, 14 for only 40 disks)
negatively impacts replication times.

Procedure

1. Open your OpenStackControlPlane CR file, openstack_control_plane.yaml, and change the
value for partPower under the swiftRing parameter in the swift template:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-galera-network-isolation
 namespace: openstack
spec:

CHAPTER 6. CONFIGURING THE OBJECT STORAGE SERVICE (SWIFT)

43

 ...
 swift:
 enabled: true
 template:
 swiftProxy:
 replicas: 2
 swiftRing:
 partPower: 12
 ringReplicas: 3
...

Replace <12> with the value you want to set for partition power.

TIP

You can also configure an additional object server ring for new containers. This is useful if
you want to add more disks to an Object Storage service deployment that initially uses a low
partition power.

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

44

CHAPTER 7. CONFIGURING THE SHARED FILE SYSTEMS
SERVICE (MANILA)

When you deploy the Shared File Systems service (manila), you can choose one or more supported back
ends, such as native CephFS, CephFS-NFS, NetApp, and others.

For a complete list of supported back-end appliances and drivers, see the Manila section of the Red Hat
Knowledge Article, Component, Plug-In, and Driver Support in Red Hat OpenStack Platform .

Prerequisites

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

For native CephFS or CephFS-NFS, a CephFS file system must exist on the Red Hat Ceph
Storage cluster. For more information, see Integrating Red Hat Ceph Storage .

For native CephFS or CephFS-NFS, a Ceph user must exist that has CephX capabilities (caps)
to perform operations on the CephFS file system. For more information, see Integrating Red
Hat Ceph Storage.

For CephFS-NFS only, a ceph nfs service must exist in the Ceph Storage cluster. For more
information, see Integrating Red Hat Ceph Storage .

For back ends where driver_handles_share_servers=false, you configure the networking in
advance rather than dynamically in the back end for the Shared File Systems service.

For a CephFS-NFS back end, you create an isolated StorageNFS network for NFS exports and
a corresponding StorageNFS shared provider network in the Networking service (neutron). The
StorageNFS shared provider network maps to the isolated StorageNFS network of the data
center.

Ensure that the NFS service is isolated on a network that you can share with all Red Hat
OpenStack Services on OpenShift (RHOSO) users. For more information about customizing the
NFS service, see NFS cluster and export management in the Red Hat Ceph Storage File
System Guide.

IMPORTANT

When you deploy an NFS service for the Shared File Systems service, do not
select a custom port to expose NFS. Only the default NFS port of 2049 is
supported. You must enable the Red Hat Ceph Storage ingress service and set
the ingress-mode to haproxy-protocol. Otherwise, you cannot use IP-based
access rules with the Shared File Systems service. For security in production
environments, Red Hat does not recommend providing access to 0.0.0.0/0 on
shares to mount them on client machines.

7.1. CONFIGURING A NATIVE CEPHFS BACK END

You can configure the Shared File Systems service (manila) with native CephFS as the storage back
end.

Limitations

CHAPTER 7. CONFIGURING THE SHARED FILE SYSTEMS SERVICE (MANILA)

45

https://access.redhat.com/articles/1535373#Manila
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/6/html/file_system_guide/nfs-cluster-and-export-management

You can expose a native CephFS back end to trusted users, but take the following security measures:

Configure the storage network as a provider network.

Apply role-based access control (RBAC) policies to secure the storage provider network.

Create a private share type.

Prerequisites

An isolated storage network.

Ensure network connectivity between the storage back end, the Red Hat OpenShift cluster, and
the Compute nodes.

You have created a Red Hat Ceph Storage secret. For more information, see Integrating Red
Hat Ceph Storage

Procedure

1. Open your OpenStackControlPlane CR file, openstack_control_plane.yaml, and add the
extraMounts parameter in the spec section to present the Ceph configuration files:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 extraMounts:
 - name: v1
 region: r1
 extraVol:
 - propagation:
 - ManilaShare
 extraVolType: Ceph
 volumes:
 - name: ceph
 projected:
 sources:
 - secret:
 name: <ceph-conf-files>
 mounts:
 - name: ceph
 mountPath: "/etc/ceph"
 readOnly: true

2. Add the following parameters to the manila template to configure the native CephFS back
end:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 ...
 manila:
 enabled: true
 template:
 manilaAPI:

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

46

 replicas: 3
 customServiceConfig: |
 [DEFAULT]
 debug = true
 enabled_share_protocols=cephfs
 manilaScheduler:
 replicas: 3
 manilaShares:
 cephfsnative:
 replicas: 1
 networkAttachments:
 - storage
 customServiceConfig: |
 [DEFAULT]
 enabled_share_backends=cephfs
 [cephfs]
 driver_handles_share_servers=False
 share_backend_name=cephfs
 share_driver=manila.share.drivers.cephfs.driver.CephFSDriver
 cephfs_conf_path=/etc/ceph/ceph.conf
 cephfs_auth_id=openstack
 cephfs_cluster_name=ceph
 cephfs_volume_mode=0755
 cephfs_protocol_helper_type=CEPHFS
...

3. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

4. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

7.2. CONFIGURING A CEPHFS-NFS BACK END

You can configure the Shared File Systems service (manila) with CephFS-NFS as the storage back end.

Prerequisites

The isolated storage network is configured on the share manager pod on OpenShift so that the
Shared File Systems service can communicate with the Red Hat Ceph Storage cluster.

For NFS traffic, Red Hat recommends using an isolated NFS network. This network does not
need to be available to the share manager pod for the Shared File Systems service on
OpenShift, but it must be available to Compute instances owned by end users.

Ensure network connectivity between the storage back end, the Red Hat OpenShift cluster, and

CHAPTER 7. CONFIGURING THE SHARED FILE SYSTEMS SERVICE (MANILA)

47

Ensure network connectivity between the storage back end, the Red Hat OpenShift cluster, and
the Compute nodes.

Procedure

1. Open your OpenStackControlPlane CR file, openstack_control_plane.yaml, and add the
following parameters to the manila template:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 ...
 manila:
 enabled: true
 template:
 manilaAPI:
 replicas: 3
 customServiceConfig: |
 [DEFAULT]
 debug = true
 enabled_share_protocols=nfs
 manilaScheduler:
 replicas: 3
 manilaShares:
 share1:
 customServiceConfig: |
 [DEFAULT]
 enabled_share_backends=cephfsnfs
 [cephfsnfs]
 driver_handles_share_servers=False
 share_backend_name=cephfs
 share_driver=manila.share.drivers.cephfs.driver.CephFSDriver
 cephfs_auth_id=openstack
 cephfs_cluster_name=ceph
 cephfs_nfs_cluster_id=cephfs
 cephfs_protocol_helper_type=NFS
...

2. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

3. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

7.3. CONFIGURING ALTERNATIVE BACK ENDS

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

48

To configure the Shared File Systems service (manila) with an alternative back end, for example,
NetApp or Pure Storage, complete the following high level tasks:

1. Create the server connection secret.

2. Configure the OpenStackControlPlane CR to use the alternative storage system as the back
end for the Shared File Systems service.

Prerequisites

You have prepared the alternative storage system for consumption by Red OpenStack Services
on OpenShift (RHOSO).

Network connectivity between the Red Hat OpenShift cluster, the Compute nodes, and the
alternative storage system.

7.3.1. Creating the server connection secret

Create a server connection secret for an alternative back end to prevent placing server connection
information directly in the OpenStackControlPlane CR.

Procedure

1. Create a configuration file that contains the server connection information for your alternative
back end. In this example, you are creating the secret for a NetApp back end.
The following is an example of the contents of a configuration file:

[netapp]
netapp_server_hostname = <netapp_ip>
netapp_login = <netapp_user>
netapp_password = <netapp_password>
netapp_vserver = <netappvserver>

Replace <netapp_ip> with the IP address of the server.

Replace <netapp_user> with the login user name.

Replace <netapp_password> with the login password.

Replace <netappvserver> with the vserver name. You do not need this option if configuring
the driver_handles_share_servers=True mode.

2. Save the configuration file.

3. Create the secret based on the configuration file:
$ oc create secret generic <secret_name> --from-file=<configuration_file_name>

Replace <secret_name> with the name you want to assign to the secret.

Replace <configuration_file_name> with the name of the configuration file you created.

4. Delete the configuration file.

7.3.2. Configuring an alternative back end

You can configure the Shared File Systems service (manila) with an alternative storage back end, for

CHAPTER 7. CONFIGURING THE SHARED FILE SYSTEMS SERVICE (MANILA)

49

You can configure the Shared File Systems service (manila) with an alternative storage back end, for
example, a NetApp back end.

Prerequisites

Ensure network connectivity between the storage back end, the Red Hat OpenShift cluster, and
the Compute nodes.

Procedure

1. Open your OpenStackControlPlane CR file, openstack_control_plane.yaml, and add the
following parameters to the manila template:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 ...
 manila:
 enabled: true
 template:
 manilaAPI:
 replicas: 3
 customServiceConfig: |
 [DEFAULT]
 debug = true
 enabled_share_protocols=cifs
 manilaScheduler:
 replicas: 3
 manilaShares:
 share1:
 networkAttachments:
 - storage
 customServiceConfigSecrets:
 - manila_netapp_secret
 customServiceConfig: |
 [DEFAULT]
 debug = true
 enabled_share_backends=netapp
 [netapp]
 driver_handles_share_servers=False
 share_backend_name=netapp
 share_driver=manila.share.drivers.netapp.common.NetAppDriver
 netapp_storage_family=ontap_cluster
...

2. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

3. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack

The OpenStackControlPlane resources are created when the status is "Setup complete".

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

50

TIP

Append the -w option to the end of the get command to track deployment progress.

7.3.3. Custom configuration files

When you configure an alternative back end for the Shared File Systems service (manila), you might
need to use additional configuration files. You can use the extraMounts parameter in your
OpenStackControlPlane CR file to present these configuration files as OpenShift configMap or secret
objects in the relevant share manager pod.

Example:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
...
 extraMounts:
 - name: v1
 region: r1
 extraVol:
 - propagation:
 - sharepod1
 extraVolType: Undefined
 volumes:
 - name: backendconfig
 projected:
 sources:
 - secret:
 name: manila-sharepod1-secrets
 mounts:
 - name: backendconfig
 mountPath: /etc/manila/drivers
 readOnly: true
...

7.3.4. Custom storage driver images

When you configure an alternative back end for the Shared File Systems service (manila), you might
need to use a custom manilaShares container image from the vendor on the Red Hat Ecosystem
Catalog. You can add the path to the container image to your OpenStackControlPlane CR file to use it
in the relevant share manager pod.

Example:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 manila:
 template:
 manilaShares:
 pure-storage:
 networkAttachments:
 - storage

CHAPTER 7. CONFIGURING THE SHARED FILE SYSTEMS SERVICE (MANILA)

51

https://catalog.redhat.com/software/containers/explore

 containerImage: image-registry.openshift-image-registry.svc:5000/openshift/manila-share-
pure:oso18
...

7.4. CONFIGURING MULTIPLE BACK ENDS

You can deploy multiple back ends for the Shared File Systems service (manila), for example, a
CephFS-NFS back end, a native CephFS back end, and a third-party back end. Add one back end only
per pod.

Prerequisites

When you use a back-end driver from a storage vendor that requires external software
components, you must override the standard container image for the Shared File Systems
service during deployment. You can find custom container images, for example, the Dell EMC
Unity container image for a Dell EMC Unity storage system, at Red Hat Ecosystem Catalog .

Ensure network connectivity between the storage back end, the Red Hat OpenShift cluster, and
the Compute nodes.

Procedure

1. Open your OpenStackControlPlane CR file, openstack_control_plane.yaml, and add the
following parameters to the manila template to configure the back ends. In this example, there
is a CephFS-NFS back end, a native CephFS back end, and a Pure Storage back end:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 ...
 manila:
 enabled: true
 template:
 manilaAPI:
 replicas: 3
 customServiceConfig: |
 [DEFAULT]
 debug = true
 enabled_share_protocols=nfs,cephfs,cifs
 manilaScheduler:
 replicas: 3
...

2. Add the configuration for each back end you want to use:

Add the configuration for the CephFS-NFS back end:

 ...
 customServiceConfig: |
 ...
 manilaShares:
 cephfsnfs:
 networkAttachments:
 - storage
 customServiceConfig: |

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

52

https://catalog.redhat.com/software/containers/explore

 [DEFAULT]
 enabled_share_backends=cephfsnfs
 [cephfsnfs]
 driver_handles_share_servers=False
 share_backend_name=cephfs
 share_driver=manila.share.drivers.cephfs.driver.CephFSDriver
 cephfs_auth_id=openstack
 cephfs_cluster_name=ceph
 cephfs_nfs_cluster_id=cephfs
 cephfs_protocol_helper_type=NFS
 replicas: 1
 ...

Add the configuration for the native CephFS back end:

 ...
 customServiceConfig: |
 ...
 manilaShares:
 cephfsnfs:
 ...
 cephfs:
 networkAttachments:
 - storage
 customServiceConfig: |
 [DEFAULT]
 enabled_share_backends=cephfs
 [cephfs]
 driver_handles_share_servers=False
 share_backend_name=cephfs
 share_driver=manila.share.drivers.cephfs.driver.CephFSDriver
 cephfs_conf_path=/etc/ceph/ceph.conf
 cephfs_auth_id=openstack
 cephfs_protocol_helper_type=CEPHFS
 replicas: 1
 ...

Add the configuration for the Pure Storage back end:

 ...
 customServiceConfig: |
 ...
 manilaShares:
 cephfsnfs:
 ...
 cephfs:
 ...
 pure:
 containerImage: image-registry.openshift-image-
registry.svc:5000/openshift/manila-share-pure:oso18
 networkAttachments:
 - storage
 customServiceConfigSecret: |
 - manila-pure-secret
 customServiceConfig: |

CHAPTER 7. CONFIGURING THE SHARED FILE SYSTEMS SERVICE (MANILA)

53

 [DEFAULT]
 debug = true
 enabled_share_backends=pure
 [pure]
 driver_handles_share_servers=False
 share_backend_name=pure

share_driver=manila.share.drivers.purestorage.flashblade.FlashBladeShareDriver
 ...

3. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

4. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

7.5. CONFIRMING DEPLOYMENT OF MULTIPLE BACK ENDS

Use the openstack share service list command to verify that the storage back ends for the Shared File
Systems service (manila) deployed successfully. If you use a health check on multiple back ends, a ping
test returns a response even if one of the back ends is unresponsive, so this is not a reliable way to verify
your deployment.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Confirm the list of Shared File Systems service back ends:

$ openstack share service list

The status of each successfully deployed back end shows as enabled and the state shows as
up.

3. Exit the openstackclient pod:

$ exit

7.6. CREATING AVAILABILITY ZONES FOR BACK ENDS

You can create availability zones (AZs) for Shared File Systems service back ends to group cloud

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

54

infrastructure and services logically for users. Map the AZs to failure domains and compute resources
for high availability, fault tolerance, and resource scheduling. For example, you can create an AZ of
Compute nodes that have specific hardware that users can specify when they create an instance that
requires that hardware.

Post deployment, use the availability_zones share type extra specification to limit share types to one
or more AZs. Users can create a share directly in an AZ as long as the share type does not restrict them.

Procedure

The following example deploys two back ends where CephFS is zone 1 and NetApp is zone 2.

1. Open your OpenStackControlPlane CR file, openstack_control_plane.yaml, and add the
following parameters to the manila template:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 ...
 manila:
 enabled: true
 template:
 manilaShares:
 cephfs:
 customServiceConfig: |
 [cephfs]
 backend_availability_zone = zone_1
 ...
 netapp:
 customServiceConfig: |
 [netapp]
 backend_availability_zone = zone_2
 ...

2. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

3. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

7.7. CHANGING THE ALLOWED NAS PROTOCOLS

You can use the Shared File Systems service (manila) to export shares in the NFS, CephFS, or CIFS
network attached storage (NAS) protocols. By default, the Shared File Systems service enables NFS
and CIFS, and this may not be supported by the back ends in your deployment.

CHAPTER 7. CONFIGURING THE SHARED FILE SYSTEMS SERVICE (MANILA)

55

You can change the enabled_share_protocols parameter and list only the protocols that you want to
allow in your cloud. For example, if back ends in your deployment support both NFS and CIFS, you can
change the default value and enable only one protocol. The NAS protocols that you assign must be
supported by the back ends in your Shared File Systems service deployment.

Not all storage back-end drivers support the CIFS protocol. For information about which certified
storage systems support CIFS, see the Red Hat Ecosystem Catalog .

Procedure

1. Open your OpenStackControlPlane CR file, openstack_control_plane.yaml, and add the
following parameters to the manila template. In this example, you enable the NFS protocol:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 ...
 manila:
 enabled: true
 template:
 manilaAPI:
 customServiceConfig: |
 [DEFAULT]
 enabled_share_protocols = NFS
 ...

2. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

3. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

7.8. VIEWING BACK-END STORAGE CAPACITY

The scheduler component of the Shared File Systems service (manila) makes intelligent placement
decisions based on several factors such as capacity, provisioning configuration, placement hints, and the
capabilities that the back-end storage system driver detects and exposes. You can use share types and
extra specifications to modify placement decisions.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

56

https://catalog.redhat.com/software/search?target_platforms=Red Hat OpenStack Platform&p=1&certified_plugin_types=File Storage (Manila)

1

2

2. Run the following command to view the available back-end storage capacity:

$ openstack share pool list --detail

3. Exit the openstackclient pod:

$ exit

7.9. CONFIGURING AUTOMATIC DATABASE CLEANUP

The Block Storage (cinder) and Shared File Systems (manila) services automatically purge database
entries marked for deletion for a set number of days. By default, records are marked for deletion for 30
days. You can configure a different record age and schedule for purge jobs.

NOTE

The Image service (glance) also purges database entries automatically but this
functionality is not currently user configurable.

Procedure

1. Open your openstack_control_plane.yaml file to edit the OpenStackControlPlane CR.

2. Add the dbPurge parameter to the cinder or manila template to configure database cleanup
depending on the service you want to configure.
The following is an example of using the dbPurge parameter to configure the Block Storage
service:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack
spec:
 cinder:
 template:
 dbPurge:
 age: 20 1
 schedule: 1 0 * * 0 2

The number of days a record has been marked for deletion before it is purged. The default
value is 30 days. The minimum value is 1 day.

The schedule of when to run the job in a crontab format. The default value is 1 0 * * *. This
default value is equivalent to 00:01 daily.

3. Update the control plane:

$ oc apply -f openstack_control_plane.yaml

CHAPTER 7. CONFIGURING THE SHARED FILE SYSTEMS SERVICE (MANILA)

57

Red Hat OpenStack Services on OpenShift 18.0-beta Configuring storage

58

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. CONFIGURING STORAGE IN RED HAT OPENSTACK SERVICES ON OPENSHIFT (RHOSO)
	CHAPTER 2. INTEGRATING RED HAT CEPH STORAGE
	2.1. CREATING RED HAT CEPH STORAGE POOLS
	2.2. CREATING A RED HAT CEPH STORAGE SECRET
	2.3. OBTAINING THE RED HAT CEPH STORAGE FILE SYSTEM IDENTIFIER
	2.4. CONFIGURING THE CONTROL PLANE TO USE THE RED HAT CEPH STORAGE CLUSTER
	2.5. CONFIGURING THE DATA PLANE TO USE THE RED HAT CEPH STORAGE CLUSTER
	2.6. CONFIGURING THE OBJECT STORAGE SERVICE (SWIFT) WITH AN EXTERNAL CEPH OBJECT GATEWAY BACK END
	2.6.1. Configuring RGW authentication
	2.6.2. Configuring and deploying the RGW service

	CHAPTER 3. CONFIGURING A HYPERCONVERGED INFRASTRUCTURE ENVIRONMENT
	3.1. DATA PLANE NODE SERVICES LIST
	3.2. CONFIGURING THE DATA PLANE NODE NETWORKS
	3.2.1. Red Hat Ceph Storage MTU settings

	3.3. CONFIGURING AND DEPLOYING RED HAT CEPH STORAGE ON DATA PLANE NODES
	3.3.1. The cephadm utility
	3.3.2. Configuring and deploying Red Hat Ceph Storage
	3.3.2.1. Collocating services in a HCI environment for NUMA nodes

	3.3.3. Confirming Red Hat Ceph Storage deployment
	3.3.4. Confirming Red Hat Ceph Storage tuning

	3.4. CONFIGURING THE DATA PLANE TO USE THE COLLOCATED RED HAT CEPH STORAGE SERVER

	CHAPTER 4. CONFIGURING THE BLOCK STORAGE SERVICE (CINDER)
	4.1. CONFIGURING AN NFS BACK END
	4.1.1. Creating the NFS server connection secret
	4.1.2. Configuring the control plane to use the generic NFS driver

	4.2. CONFIGURING AUTOMATIC DATABASE CLEANUP

	CHAPTER 5. CONFIGURING THE IMAGE SERVICE (GLANCE)
	5.1. CONFIGURING A CEPH RBD BACK END
	Image conversion

	5.2. CONFIGURING A BLOCK STORAGE BACK END
	5.3. CONFIGURING AN OBJECT STORAGE BACK END
	5.4. CONFIGURING AN NFS BACK END

	CHAPTER 6. CONFIGURING THE OBJECT STORAGE SERVICE (SWIFT)
	6.1. DEPLOYING THE OBJECT STORAGE SERVICE ON OPENSHIFT NODES BY USING PERSISTENTVOLUMES
	6.2. OBJECT STORAGE RINGS
	6.3. RING PARTITION POWER
	6.4. INCREASING RING PARTITION POWER

	CHAPTER 7. CONFIGURING THE SHARED FILE SYSTEMS SERVICE (MANILA)
	7.1. CONFIGURING A NATIVE CEPHFS BACK END
	7.2. CONFIGURING A CEPHFS-NFS BACK END
	7.3. CONFIGURING ALTERNATIVE BACK ENDS
	7.3.1. Creating the server connection secret
	7.3.2. Configuring an alternative back end
	7.3.3. Custom configuration files
	7.3.4. Custom storage driver images

	7.4. CONFIGURING MULTIPLE BACK ENDS
	7.5. CONFIRMING DEPLOYMENT OF MULTIPLE BACK ENDS
	7.6. CREATING AVAILABILITY ZONES FOR BACK ENDS
	7.7. CHANGING THE ALLOWED NAS PROTOCOLS
	7.8. VIEWING BACK-END STORAGE CAPACITY
	7.9. CONFIGURING AUTOMATIC DATABASE CLEANUP

