
Red Hat OpenStack Services on
OpenShift 18.0-beta

Deploying Red Hat OpenStack Services on
OpenShift

Deploying a Red Hat OpenStack Services on OpenShift (RHOSO) environment on a
Red Hat OpenShift Container Platform cluster

Last Updated: 2024-06-20

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat
OpenStack Services on OpenShift

Deploying a Red Hat OpenStack Services on OpenShift (RHOSO) environment on a Red Hat
OpenShift Container Platform cluster

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to install the Red Hat OpenStack Services on OpenShift (RHOSO) control plane on a
Red Hat OpenShift Container Platform (RHOCP) cluster, and use the OpenStack Operator to
deploy a RHOSP data plane.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INSTALLING AND PREPARING THE OPERATORS
1.1. PREREQUISITES
1.2. INSTALLING THE OPENSTACK OPERATOR

CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK
SERVICES ON OPENSHIFT

2.1. CONFIGURING RED HAT OPENSHIFT CONTAINER PLATFORM NODES FOR A RED HAT OPENSTACK
PLATFORM DEPLOYMENT
2.2. PROVIDING SECURE ACCESS TO THE RED HAT OPENSTACK SERVICES ON OPENSHIFT SERVICES
2.3. DEFAULT RED HAT OPENSTACK PLATFORM NETWORKS
2.4. PREPARING RHOCP FOR RHOSO NETWORK ISOLATION
2.5. CONFIGURING THE DATA PLANE NETWORK
2.6. CREATING A STORAGE CLASS

CHAPTER 3. CREATING THE CONTROL PLANE
3.1. PREREQUISITES
3.2. CREATING THE CONTROL PLANE
3.3. EXAMPLE OPENSTACKCONTROLPLANE CR FOR A CORE CONTROL PLANE
3.4. ADDING THE BARE METAL PROVISIONING SERVICE (IRONIC) TO THE CONTROL PLANE
3.5. ADDING COMPUTE CELLS TO THE CONTROL PLANE
3.6. ENABLING THE DASHBOARD SERVICE (HORIZON) INTERFACE
3.7. ADDITIONAL RESOURCES

CHAPTER 4. CREATING THE DATA PLANE
4.1. PREREQUISITES
4.2. CREATING THE SSH KEY SECRETS
4.3. CREATING A SET OF DATA PLANE NODES
4.4. DATA PLANE SERVICES

4.4.1. Creating a custom service
4.4.2. Configuring a node set for a Compute feature or workload
4.4.3. Building a custom ansible-runner image

4.5. DEPLOYING THE DATA PLANE
4.6. OPENSTACKDATAPLANENODESET CR PROPERTIES
4.7. EXAMPLE OPENSTACKDATAPLANENODESET CR FOR PRE-PROVISIONED NODES
4.8. EXAMPLE OPENSTACKDATAPLANENODESET CR FOR BARE-METAL NODES
4.9. DATA PLANE CONDITIONS AND STATES
4.10. PROVISIONING BARE-METAL DATA PLANE NODES
4.11. TROUBLESHOOTING DATA PLANE CREATION AND DEPLOYMENT

CHAPTER 5. CUSTOMIZING RED HAT OPENSTACK ON OPENSHIFT OBSERVABILITY
5.1. CONFIGURING RED HAT OPENSTACK ON OPENSHIFT OBSERVABILITY

CHAPTER 6. ADDING CUSTOM TLS CERTIFICATES FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

6.1. UPDATING THE CONTROL PLANE WITH CUSTOM CERTIFICATES FOR PUBLIC SERVICES

CHAPTER 7. ACCESSING THE RHOSO CLOUD
7.1. ACCESSING THE OPENSTACKCLIENT POD
7.2. ACCESSING THE DASHBOARD SERVICE (HORIZON) INTERFACE

CHAPTER 8. MONITORING HIGH AVAILBILITY SERVICES
8.1. RHOSO GALERA CLUSTERS

4

5
5
5

9

9
9
11

12
19
21

22
22
22
30
36
38
41

42

43
43
44
45
53
55
57
58
59
60
62
65
67
69
70

72
72

75
75

78
78
78

80
80

Table of Contents

1

. .

8.1.1. Monitoring Galera startup
8.2. RHOSO RABBITMQ CLUSTERS

8.2.1. Monitoring the RabbitMQ operator’s startup
8.3. RHOSO MEMCACHED CLUSTERS

8.3.1. Monitoring memached startup
8.4. LISTING RHOSO CONTROL PLANE SERVICES PODS
8.5. LISTING THE RHOSO HIGH AVAILABILITY OPERATORS
8.6. RETRIEVING INFORMATION ABOUT AN OPERATOR’S CUSTOM RESOURCE
8.7. RETRIEVING INFORMATION ABOUT AN OPERATOR’S STATEFULSET
8.8. RETRIEVING MORE INFORMATION ABOUT AN OPERATOR’S STATEFULSET

8.8.1. Basic information about a service’s statefulset
8.8.2. Information about actual container of a service’s statefulset
8.8.3. Information about the volumes of a service’s statefulset
8.8.4. Information about Event details of a service’s statefulset

8.9. CHECKING THE STATUS OF THE CONTROL PLANE
8.9.1. Checking the status of a pod

8.10. EXPOSURE OF EACH SERVICE THROUGH CLUSTERIP OR LOADBALANCER
8.11. TESTING THE RESILIENCE OF THE CONTROL PLANE

8.11.1. The Taint-Based Evictions feature

CHAPTER 9. COLLECTING DIAGNOSTIC INFORMATION FOR SUPPORT
9.1. COLLECTING DATA ON THE RHOSO CONTROL PLANE
9.2. COLLECTING DATA ON THE RHOSO DATA PLANE NODES

81
83
83
84
84
85
85
86
86
87
87
88
89
90
90
91
91

92
93

94
94
95

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

2

Table of Contents

3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Services on OpenShift Jira project, where you can track the progress of your
feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

IMPORTANT

This content in this guide is available in this release as a Technology Preview, and
therefore is not fully supported by Red Hat. It should only be used for testing, and
should not be deployed in a production environment. For more information, see
Technology Preview.

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

4

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://access.redhat.com/support/offerings/production/scope_moredetail#TechnologyPreview

CHAPTER 1. INSTALLING AND PREPARING THE OPERATORS
You install the Red Hat OpenStack Services on OpenShift (RHOSO) control plane on an operational
Red Hat Openshift Container Platform (RHOCP) cluster. You perform the control plane installation
tasks and all data plane creation tasks on a workstation that has access to the RHOCP cluster.

NOTE

Do not use the root user to interact with your RHOSO deployment. You must use the
dedicated user, stack, with passwordless sudo rights and only ssh-key login enabled.

1.1. PREREQUISITES

An operational Red Hat Openshift Container Platform (RHOCP) cluster, version 4.12 or later.

The RHOCP environment supports Multus CNI.

The oc command line tool is installed on your workstation.

The podman command line tool is installed on your workstation.

A private Red Hat Quay Container Registry account, https://quay.io/.

Access to a private repository in your registry. The RHOSO 18.0 Development Preview code
cannot be located on a public repository.

You are logged in to the RHOCP cluster as a user with cluster-admin privileges.

You have installed the Kubernetes NMState Operator, and started the Operator by creating an
nmstate instance. For more information, see Installing the Kubernetes NMState Operator in the
RHOCP Networking guide.

You have installed the MetalLB Operator, and started the Operator by creating a metallb
instance. For more information, see Installing the MetalLB Operator in the RHOCP Networking
guide.

You have installed the cert-manager Operator. For more information, see cert-manager
Operator for Red Hat OpenShift in the RHOCP Security and compliance guide.

You have configured the RHOCP storage backend and storage class. For more information, see
Storage and Post-installation storage configuration .

For installer-provisioned infrastructure, you must prepare an operating system image for use
with bare-metal provisioning. You can use the following image as the bare-metal image:
https://catalog.redhat.com/software/containers/rhel9/rhel-guest-
image/6197bdceb4dcabca7fe351d5?container-tabs=overview

1.2. INSTALLING THE OPENSTACK OPERATOR

To install the OpenStack Operator (openstack-operator), you must create the following projects:

openstack-operators: Create this project for the Red Hat OpenStack Services on OpenShift
(RHOSO) service Operators.

openstack: Create this project for the deployed RHOSO services.

CHAPTER 1. INSTALLING AND PREPARING THE OPERATORS

5

https://quay.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/networking/kubernetes-nmstate#installing-the-kubernetes-nmstate-operator-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/networking/load-balancing-with-metallb#metallb-operator-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/security_and_compliance/cert-manager-operator-for-red-hat-openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/storage/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/post-installation_configuration/post-install-storage-configuration#doc-wrapper
https://catalog.redhat.com/software/containers/rhel9/rhel-guest-image/6197bdceb4dcabca7fe351d5?container-tabs=overview

NOTE

Each project is a namespace with additional functionality to support multi-
tenancy.

You must also create the following custom resources (CRs) within the project:

A CatalogSource, which identifies the index image to use for the RHOSO catalog. For more
information on CatalogSource, see CatalogSource in the Operator Lifecycle Manager
documentation.

An OperatorGroup, which defines the Operator group for RHOSO and restricts RHOSO to a
target namespace. For more information on OperatorGroup, see OperatorGroup in the
Operator Lifecycle Manager documentation.

A Subscription, which tracks changes in the RHOSO catalog, and defines which version of the
Operator is installed and from which CatalogSource to install it. For more information on
Subscription, see Subscription in the Operator Lifecycle Manager documentation.

NOTE

Installing the OpenStack Operator also creates an OpenStackClient pod that you can
access through a remote shell (rsh) to run RHOSO commands.

$ oc rsh -n openstack openstackclient

Procedure

1. Create the openstack-operators project for the RHOSO operators:

$ oc new-project openstack-operators

2. Create the openstack project for the deployed RHOSO environment:

$ oc new-project openstack

3. Download the Operator Package Manager (opm) tool from
https://console.redhat.com/openshift/downloads.

4. Use the opm tool to create an index image:

$ opm index add -u podman --pull-tool podman --tag <your_registry>:<port>/rhoso-podified-
beta/openstack-operator-index:1.0.0 \
 --bundles "registry.redhat.io/rhoso-podified-beta/openstack-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/swift-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/glance-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/infra-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/ironic-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/keystone-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/ovn-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/placement-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/telemetry-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/heat-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/cinder-operator-

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

6

https://olm.operatorframework.io/docs/concepts/crds/catalogsource/
https://olm.operatorframework.io/docs/concepts/crds/operatorgroup/
https://olm.operatorframework.io/docs/concepts/crds/subscription/
https://console.redhat.com/openshift/downloads

bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/manila-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/neutron-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/nova-operator-
bundle:1.0.0,registry.redhat.io/rhoso-edpm-beta/openstack-ansibleee-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/mariadb-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/openstack-baremetal-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/rabbitmq-cluster-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/horizon-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/octavia-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/barbican-operator-
bundle:1.0.0,registry.redhat.io/rhoso-podified-beta/designate-operator-bundle:1.0.0" --mode
semver

Replace <your_registry> with your registry account details. If you are using quay.io or a
private Quay instance as your registry, then include your account in <your_registry>, for
example, quay.io/my_quay_account/.

5. Push the index image to your private registry:

$ podman push <your_registry>[:<port>]/rhoso-podified-beta/openstack-operator-index:1.0.0

Replace <your_registry> with your registry account details. If you are using a registry other
than quay.io or a private Quay instance, then include the registry <port>.

6. Create an environment file to configure the CatalogSource, OperatorGroup, and
Subscription CRs that are required to install the OpenStack Operator, for example,
openstack-operator.yaml.

7. To configure the CatalogSource CR, add the following configuration to openstack-
operator.yaml:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: openstack-operator-index
 namespace: openstack-operators
spec:
 sourceType: grpc
 image: <your_registry>[:<port>]/rhoso-podified-beta/openstack-operator-index:1.0.0

For information about how to apply the Quay authentication so that the Operator deployment
can pull the image, see Accessing images for Operators from private registries .

NOTE

You must create the secret that enables pull access to your container image
registry in the openstack-operators namespace.

8. To configure the OperatorGroup CR, add the following configuration to openstack-
operator.yaml:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup

CHAPTER 1. INSTALLING AND PREPARING THE OPERATORS

7

http://quay.io
http://quay.io
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/index#olm-accessing-images-private-registries_olm-managing-custom-catalogs

metadata:
 name: openstack
 namespace: openstack-operators

9. To configure the Subscription CR, add the following configuration to openstack-
operator.yaml:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openstack-operator
 namespace: openstack-operators
spec:
 name: openstack-operator
 channel: alpha
 source: openstack-operator-index
 sourceNamespace: openstack-operators

10. Create the new CatalogSource, OperatorGroup, and Subscription CRs within the openstack
namespace:

$ oc apply -f openstack-operator.yaml

11. Confirm that you have installed the Openstack Operator, openstack-operator.openstack-
operators:

$ oc get operators openstack-operator.openstack-operators
NAME AGE
openstack-operator.openstack-operators 5m

12. Confirm that the Openstack Operator is deployed by reviewing the pods in the openstack-
operators namespace:

$ oc get pods -n openstack-operators

The Openstack Operator is deployed when all the pods are either completed or running.

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

8

CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER
PLATFORM FOR RED HAT OPENSTACK SERVICES ON

OPENSHIFT
You install Red Hat OpenStack Services on OpenShift (RHOSO) on an operational Red Hat Openshift
Container Platform (RHOCP) cluster, version 4.12 or later. To prepare for installing and deploying your
RHOSO environment, you must configure the RHOCP worker nodes and the RHOCP networks on your
RHOCP cluster.

2.1. CONFIGURING RED HAT OPENSHIFT CONTAINER PLATFORM
NODES FOR A RED HAT OPENSTACK PLATFORM DEPLOYMENT

Red Hat OpenStack Services on OpenShift (RHOSO) services run on Red Hat OpenShift Container
Platform (RHOCP) worker nodes. By default, the OpenStack Operator deploys RHOSO services on any
worker node. You can use node labels in your OpenStackControlPlane custom resource (CR) to
specify which RHOCP nodes host the RHOSO services. By pinning some services to specific
infrastructure nodes rather than running the services on all of your RHOCP worker nodes, you optimize
the performance of your deployment. You can create labels for the RHOCP nodes, or you can use the
existing labels, and then specify those labels in the OpenStackControlPlane CR by using the
nodeSelector field.

For example, the Block Storage service (cinder) has different requirements for each of its services:

The cinder-scheduler service is a very light service with low memory, disk, network, and CPU
usage.

The cinder-api service has high network usage due to resource listing requests.

The cinder-volume service has high disk and network usage because many of its operations are
in the data path, such as offline volume migration, and creating a volume from an image.

The cinder-backup service has high memory, network, and CPU requirements.

Additional resources

Placing pods on specific nodes using node selectors

Post-installation machine configuration tasks

Node Feature Discovery Operator

2.2. PROVIDING SECURE ACCESS TO THE RED HAT OPENSTACK
SERVICES ON OPENSHIFT SERVICES

You must create a Secret custom resource (CR) to provide secure access to the Red Hat OpenStack
Services on OpenShift (RHOSO) service pods.

Procedure

1. Create a Secret CR file on your workstation, for example, openstack-service-secret.yaml.

2. Add the following initial configuration to openstack-service-secret.yaml:

CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

9

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/nodes/controlling-pod-placement-onto-nodes-scheduling#nodes-scheduler-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/post-installation_configuration/post-install-machine-configuration-tasks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/specialized_hardware_and_driver_enablement/node-feature-discovery-operator

apiVersion: v1
data:
 AdminPassword: <base64_password>
 AodhPassword: <base64_password>
 AodhDatabasePassword: <base64_password>
 BarbicanDatabasePassword: <base64_password>
 BarbicanPassword: <base64_password>
 BarbicanSimpleCryptoKEK: <base64_password>
 CeilometerPassword: <base64_password>
 CinderDatabasePassword: <base64_password>
 CinderPassword: <base64_password>
 DatabasePassword: <base64_password>
 DbRootPassword: <base64_password>
 DesignateDatabasePassword: <base64_password>
 DesignatePassword: <base64_password>
 GlanceDatabasePassword: <base64_password>
 GlancePassword: <base64_password>
 HeatAuthEncryptionKey: <base64_password_heat>
 HeatDatabasePassword: <base64_password>
 HeatPassword: <base64_password>
 IronicDatabasePassword: <base64_password>
 IronicInspectorDatabasePassword: <base64_password>
 IronicInspectorPassword: <base64_password>
 IronicPassword: <base64_password>
 KeystoneDatabasePassword: <base64_password>
 ManilaDatabasePassword: <base64_password>
 ManilaPassword: <base64_password>
 MetadataSecret: <base64_password>
 NeutronDatabasePassword: <base64_password>
 NeutronPassword: <base64_password>
 NovaAPIDatabasePassword: <base64_password>
 NovaAPIMessageBusPassword: <base64_password>
 NovaCell0DatabasePassword: <base64_password>
 NovaCell0MessageBusPassword: <base64_password>
 NovaCell1DatabasePassword: <base64_password>
 NovaCell1MessageBusPassword: <base64_password>
 NovaPassword: <base64_password>
 OctaviaDatabasePassword: <base64_password>
 OctaviaPassword: <base64_password>
 PlacementDatabasePassword: <base64_password>
 PlacementPassword: <base64_password>
 SwiftPassword: <base64_password>
kind: Secret
metadata:
 name: osp-secret
 namespace: openstack
type: Opaque

Replace <base64_password> with a base64 encoded string. Use the following command
to generate a base64 encoded password:

$ echo -n <password> | base64

Replace <base64_password_heat> with a base64 encoded password for Orchestration
service (heat) authentication that is at least 32 characters long.

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

10

3. Create the Secret CR in the cluster:

$ oc create -f openstack-service-secret.yaml

4. Verify that the Secret CR is created:

$ oc describe secret osp-secret -n openstack

2.3. DEFAULT RED HAT OPENSTACK PLATFORM NETWORKS

The following physical data center networks are typically implemented on the control plane:

Control plane network: This network is used by the DataPlane Operator for Ansible SSH access
to deploy and connect to the data plane nodes from the Red Hat OpenShift Container Platform
(RHOCP) environment.

External network: (Optional) You can configure an external network if one is required for your
environment. For example, you might create an external network for any of the following
purposes:

To provide virtual machine instances with Internet access.

To create flat provider networks that are separate from the control plane.

To configure VLAN provider networks on a separate bridge from the control plane.

To provide access to virtual machine instances with floating IPs on a network other than the
control plane network.

Internal API network: This network is used for internal communication between Red Hat
OpenStack Services on OpenShift (RHOSO) components.

Storage network: This network is used for block storage, RBD, NFS, FC, and iSCSI.

Tenant (project) network: This network is used for data communication between virtual machine
instances within the cloud deployment.

Storage Management network: (Optional) This network is used by storage components. For
example, Red Hat Ceph Storage uses the Storage Management network in a hyperconverged
infrastructure (HCI) environment as the cluster_network to replicate data.

NOTE

For more information on Red Hat Ceph Storage network configuration, see Ceph
network configuration in the Red Hat Ceph Storage Configuration Guide .

The following table details the default networks used in a RHOSO deployment. If required, you can
update the networks for your environment.

NOTE

CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

11

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html/configuration_guide/ceph-network-configuration

NOTE

By default, the control plane and external networks do not use VLANs. Networks that do
not use VLANs must be placed on separate NICs. You can use a VLAN for the control
plane network on new RHOSO deployments. You can also use the Native VLAN on a
trunked interface as the non-VLAN network. For example, you can have the control plane
and the internal API on one NIC, and the external network with no VLAN on a separate
NIC.

Table 2.1. Default RHOSO networks

Network
name

VLAN CIDR NetConfig
allocationR
ange

MetalLB
IPAddress
Pool range

nad ipam
range

OCP worker
nncp range

ctlplane n/a 192.168.122.0
/24

192.168.122.10
0 -
192.168.122.25
0

192.168.122.8
0 -
192.168.122.9
0

192.168.122.3
0 -
192.168.122.7
0

192.168.122.10
-
192.168.122.2
0

external n/a 10.0.0.0/24 10.0.0.100 -
10.0.0.250

n/a n/a

internalapi 20 172.17.0.0/24 172.17.0.100 -
172.17.0.250

172.17.0.80 -
172.17.0.90

172.17.0.30 -
172.17.0.70

172.17.0.10 -
172.17.0.20

storage 21 172.18.0.0/24 172.18.0.100
-
172.18.0.250

n/a 172.18.0.30 -
172.18.0.70

172.18.0.10 -
172.18.0.20

tenant 22 172.19.0.0/24 172.19.0.100
-
172.19.0.250

n/a 172.19.0.30 -
172.19.0.70

172.19.0.10 -
172.19.0.20

storageMg
mt

23 172.20.0.0/2
4

172.20.0.100
-
172.20.0.250

n/a 172.20.0.30 -
172.20.0.70

172.20.0.10 -
172.20.0.20

2.4. PREPARING RHOCP FOR RHOSO NETWORK ISOLATION

The Red Hat OpenStack Services on OpenShift (RHOSO) services run as a Red Hat OpenShift
Container Platform (RHOCP) workload. You use the NMState Operator to connect the worker nodes to
the required isolated networks. You create a NetworkAttachmentDefinition (nad) custom resource
(CR) for each isolated network to attach service pods to the isolated networks, where needed. You use
the MetalLB Operator to expose internal service endpoints on the isolated networks. By default, the
public service endpoints are exposed as RHOCP routes.

You must also create a L2Advertisement resource to define how the VIPs are announced, and an
IpAddressPool resource to configure which IPs can be used as VIPs. In layer 2 mode, one node assumes
the responsibility of advertising a service to the local network.

Procedure

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

12

1. Create a NodeNetworkConfigurationPolicy (nncp) CR file on your workstation, for example,
openstack-nncp.yaml.

2. Retrieve the names of the worker nodes in the RHOCP cluster:

$ oc get nodes -l node-role.kubernetes.io/worker -o jsonpath="{.items[*].metadata.name}"

3. Discover the network configuration:

$ oc get nns/<worker_node> -o yaml | more

Replace <worker_node> with the name of a worker node retrieved in step 2, for example,
worker-1. Repeat this step for each worker node.

4. In the nncp CR file, configure the interfaces for each isolated network on each worker node in
the RHOCP cluster. For information about the default physical data center networks that must
be configured with network isolation, see Default Red Hat OpenStack Platform networks .
In the following example, the nncp CR configures the enp6s0 interface for worker node 1, osp-
enp6s0-worker-1, to use VLANs for network isolation:

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: osp-enp6s0-worker-1
spec:
 desiredState:
 interfaces:
 - description: internalapi vlan interface
 ipv4:
 address:
 - ip: 172.17.0.10
 prefix-length: 24
 enabled: true
 dhcp: false
 ipv6:
 enabled: false
 name: enp6s0.20
 state: up
 type: vlan
 vlan:
 base-iface: enp6s0
 id: 20
 - description: storage vlan interface
 ipv4:
 address:
 - ip: 172.18.0.10
 prefix-length: 24
 enabled: true
 dhcp: false
 ipv6:
 enabled: false
 name: enp6s0.21
 state: up
 type: vlan
 vlan:

CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

13

 base-iface: enp6s0
 id: 21
 - description: tenant vlan interface
 ipv4:
 address:
 - ip: 172.19.0.10
 prefix-length: 24
 enabled: true
 dhcp: false
 ipv6:
 enabled: false
 name: enp6s0.22
 state: up
 type: vlan
 vlan:
 base-iface: enp6s0
 id: 22
 - description: Configuring enp6s0
 ipv4:
 address:
 - ip: 192.168.122.10
 prefix-length: 24
 enabled: true
 dhcp: false
 ipv6:
 enabled: false
 mtu: 1500
 name: enp6s0
 state: up
 type: ethernet
 nodeSelector:
 kubernetes.io/hostname: worker-10
 node-role.kubernetes.io/worker: ""

5. Create the nncp CR in the cluster:

$ oc apply -f openstack-nncp.yaml

6. Verify that the nncp CR is created:

$ oc get nncp -w
NAME STATUS REASON
osp-enp6s0-worker-1 Progressing ConfigurationProgressing
osp-enp6s0-worker-1 Progressing ConfigurationProgressing
osp-enp6s0-worker-1 Available SuccessfullyConfigured

7. Create a NetworkAttachmentDefinition (nad) CR file on your workstation, for example,
openstack-nad.yaml.

8. In the nad CR file, configure a nad resource for each isolated network to attach a service
deployment pod to the network. The following examples create a nad resource for the
internalapi, storage, ctlplane, and tenant networks of type macvlan:

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

14

metadata:
 name: internalapi
 namespace: openstack 1
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "internalapi",
 "type": "macvlan",
 "master": "enp6s0.20", 2
 "ipam": { 3
 "type": "whereabouts",
 "range": "172.17.0.0/24",
 "range_start": "172.17.0.30", 4
 "range_end": "172.17.0.70"
 }
 }

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 labels:
 osp/net: ctlplane
 name: ctlplane
 namespace: openstack
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "ctlplane",
 "type": "macvlan",
 "master": "enp6s0",
 "ipam": {
 "type": "whereabouts",
 "range": "192.168.122.0/24",
 "range_start": "192.168.122.30",
 "range_end": "192.168.122.70"
 }
 }

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: storage
 namespace: openstack
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "storage",
 "type": "macvlan",
 "master": "enp6s0.21",
 "ipam": {
 "type": "whereabouts",
 "range": "172.18.0.0/24",
 "range_start": "172.18.0.30",

CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

15

1

2

3

4

 "range_end": "172.18.0.70"
 }
 }

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 labels:
 osp/net: tenant
 name: tenant
 namespace: openstack
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "tenant",
 "type": "macvlan",
 "master": "enp6s0.22",
 "ipam": {
 "type": "whereabouts",
 "range": "172.19.0.0/24",
 "range_start": "172.19.0.30",
 "range_end": "172.19.0.70"
 }
 }

The namespace where the services are deployed.

The worker node interface to use for the VLAN.

The whereabouts CNI IPAM plugin to assign IPs to the created pods from the range ``.30
- .70`.

The IP address pool range must not overlap with the MetalLB IPAddressPool range and
the NetConfig allocationRange.

9. Create the nad CR in the cluster:

$ oc apply -f openstack-nad.yaml

10. Verify that the nad CR is created:

$ oc get network-attachment-definitions -n openstack

11. Create an IPAddressPool CR file on your workstation, for example, openstack-
ipaddresspools.yaml.

12. In the IPAddressPool CR file, configure an IPAddressPool resource on the isolated network to
specify the IP address ranges over which MetalLB has authority:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: internalapi

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

16

1

 namespace: metallb-system
spec:
 addresses:
 - 172.17.0.80-172.17.0.90 1
 autoAssign: true
 avoidBuggyIPs: false

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: ctlplane
spec:
 addresses:
 - 192.168.122.80-192.168.122.90
 autoAssign: true
 avoidBuggyIPs: false

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: storage
spec:
 addresses:
 - 172.18.0.80-172.18.0.90
 autoAssign: true
 avoidBuggyIPs: false

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: tenant
spec:
 addresses:
 - 172.19.0.80-172.19.0.90
 autoAssign: true
 avoidBuggyIPs: false

The IPAddressPool range must not overlap with the whereabouts IPAM range and the
NetConfig allocationRange.

For information about how to configure the other IPAddressPool resource parameters, see
Configuring MetalLB address pools .

13. Create the IPAddressPool CR in the cluster:

$ oc apply -f openstack-ipaddresspools.yaml

14. Verify that the IPAddressPool CR is created:

$ oc describe -n metallb-system IPAddressPool

15. Create a L2Advertisement CR file on your workstation, for example, openstack-

CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/networking/load-balancing-with-metallb#metallb-configure-address-pools

1

15. Create a L2Advertisement CR file on your workstation, for example, openstack-
l2advertisement.yaml.

16. In the L2Advertisement CR file, configure a L2Advertisement resource to define which node
advertises a service to the local network. Create one L2Advertisement resource for each
network.
In the following example, the L2Advertisement CR specifies that the VIPs requested from the
internalapi address pool are announced on the interface that is attached to the internalapi
VLAN:

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: l2advertisement
 namespace: metallb-system
spec:
 ipAddressPools:
 - internalapi
 interfaces:
 - enp6s0.20 1

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: ctlplane
 namespace: metallb-system
spec:
 ipAddressPools:
 - ctlplane
 interfaces:
 - enp6s0

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: storage
 namespace: metallb-system
spec:
 ipAddressPools:
 - storage
 interfaces:
 - enp6s0.21

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: tenant
 namespace: metallb-system
spec:
 ipAddressPools:
 - tenant
 interfaces:
 - enp6s0.22

The interface that the VIPs requested from the VLAN address pool are announced on.

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

18

17. Create the L2Advertisement CR in the cluster:

$ oc apply -f openstack-l2advertisement.yaml

18. Verify that the L2Advertisement CR is created:

$ oc describe -n metallb-system L2Advertisement l2advertisement

19. If your cluster is RHOCP 4.14 or later and it has OVNKubernetes as the network back end, then
you must enable global forwarding so that MetalLB can work on a secondary network interface.

a. Check the network back end used by your cluster:

$ oc get network.operator cluster --output=jsonpath='{.spec.defaultNetwork.type}'

b. If the back end is OVNKubernetes, then run the following command to enable global IP
forwarding:

$ oc patch network.operator cluster -p '{"spec":{"defaultNetwork":
{"ovnKubernetesConfig":{"gatewayConfig":{"ipForwarding": "Global"}}}}}' --type=merge

2.5. CONFIGURING THE DATA PLANE NETWORK

To create the data plane network, you define a NetConfig custom resource (CR) and specify all the
subnets for the data plane networks. You must define at least one control plane network for your data
plane. You can also define VLAN networks to create network isolation for composable networks, such as
InternalAPI, Storage, and External. Each network definition must include the IP address assignment.

TIP

Use the following commands to view the NetConfig CRD definition and specification schema:

$ oc describe crd netconfig

$ oc explain netconfig.spec

Procedure

1. Create a file named openstacknetconfig.yaml on your workstation.

2. Add the following configuration to openstacknetconfig.yaml to create the NetConfig CR:

apiVersion: network.openstack.org/v1beta1
kind: NetConfig
metadata:
 name: openstacknetconfig
 namespace: openstack

3. In the openstacknetconfig.yaml file, define the topology for each data plane network. To use
the default RHOSO networks, you must define a specification for each network. For information
about the default RHOSO networks, see Default Red Hat OpenStack Platform networks . The
following example creates isolated networks for the data plane:

CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

19

spec:
 networks:
 - name: CtlPlane 1
 dnsDomain: ctlplane.example.com
 subnets: 2
 - name: subnet1 3
 allocationRanges: 4
 - end: 192.168.122.120
 start: 192.168.122.100
 - end: 192.168.122.200
 start: 192.168.122.150
 cidr: 192.168.122.0/24
 gateway: 192.168.122.1
 - name: InternalApi
 dnsDomain: internalapi.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 172.17.0.250
 start: 172.17.0.100
 excludeAddresses:
 - 172.17.0.10
 - 172.17.0.12
 cidr: 172.17.0.0/24
 vlan: 20 5
 - name: External
 dnsDomain: external.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 10.0.0.250
 start: 10.0.0.100
 cidr: 10.0.0.0/24
 gateway: 10.0.0.1
 - name: Storage
 dnsDomain: storage.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 172.18.0.250
 start: 172.18.0.100
 cidr: 172.18.0.0/24
 vlan: 21
 - name: StorageMgmt
 dnsDomain: storagemgmt.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 172.20.0.250
 start: 172.20.0.100
 cidr: 172.20.0.0/24
 vlan: 23
 - name: Tenant
 dnsDomain: tenant.example.com
 subnets:

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

20

1

2

3

4

5

 - name: subnet1
 allocationRanges:
 - end: 172.19.0.250
 start: 172.19.0.100
 cidr: 172.19.0.0/24
 vlan: 22

The name of the network, for example, CtlPlane.

The IPv4 subnet specification.

The name of the subnet, for example, subnet1.

The NetConfig allocationRange. The allocationRange must not overlap with the
MetalLB IpAddressPool range and the IP address pool range.

The network VLAN. For information about the default RHOSO networks, see Default Red
Hat OpenStack Platform networks.

4. Save the openstacknetconfig.yaml definition file.

5. Create the data plane network:

$ oc create -f openstacknetconfig.yaml

6. To verify that the dataplane network is created, view the openstacknetconfig resource:

$ oc get netconfig/openstacknetconfig -n openstack

7. View the NetConfig API and child resources:

$ oc get netconfig/openstacknetconfig

If you see errors, check the underlying network-attach-definition and node network
configuration policies:

$ oc get network-attachment-definitions -n openstack
$ oc get nncp

2.6. CREATING A STORAGE CLASS

You must create a storage class for your Red Hat OpenShift Container Platform (RHOCP) cluster
storage back end, to provide persistent volumes to Red Hat OpenStack Services on OpenShift
(RHOSO) pods. Red Hat recommends that you use the Logical Volume Manager Storage (LVMS)
storage class with RHOSO, although you can use other implementations, such as Container Storage
Interface (CSI) or OpenShift Data Foundation (ODF). You specify this storage class as the cluster
storage back end for the RHOSO deployment.

For more information about how to configure the LVMS storage class, see Persistent storage using
Logical Volume Manager Storage in Configuring and managing storage in OpenShift Container Platform .

CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/storage/configuring-persistent-storage#persistent-storage-using-lvms

CHAPTER 3. CREATING THE CONTROL PLANE
The Red Hat OpenStack Services on OpenShift (RHOSO) control plane contains the RHOSO services
that manage the cloud. The RHOSO services run as a Red Hat OpenShift Container Platform (RHOCP)
workload.

3.1. PREREQUISITES

The RHOCP cluster is prepared for RHOSO network isolation. For more information, see
Preparing RHOCP for RHOSO network isolation .

The OpenStack Operator (openstack-operator) is installed. For more information, see
Installing and preparing the Operators.

You are logged on to a workstation that has access to the RHOCP cluster, as a user with
cluster-admin privileges.

3.2. CREATING THE CONTROL PLANE

Define an OpenStackControlPlane custom resource (CR) to perform the following tasks:

Create the control plane.

Enable the core, mandatory Red Hat OpenStack Services on OpenShift (RHOSO) services.

TIP

Use the following commands to view the OpenStackControlPlane CRD definition and specification
schema:

$ oc describe crd openstackcontrolplane

$ oc explain openstackcontrolplane.spec

Procedure

1. Create a file on your workstation named openstack_control_plane.yaml to define the
OpenStackControlPlane CR:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-control-plane

2. Specify the Secret CR you created to provide secure access to the RHOSO service pods in
Providing secure access to the Red Hat OpenStack Services on OpenShift services :

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-control-plane
spec:
 secret: osp-secret

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

22

3. Specify the storageClass you created for your Red Hat OpenShift Container Platform
(RHOCP) cluster storage back end:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-control-plane
spec:
 secret: osp-secret
 storageClass: your-RHOCP-storage-class

NOTE

For information about storage classes, see Creating a storage class .

4. Add configuration for the following core, mandatory services:

Block Storage service (cinder):

 cinder:
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 secret: osp-secret
 cinderAPI:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 cinderScheduler:
 replicas: 1
 cinderBackup:
 networkAttachments:
 - storage
 replicas: 0 # backend needs to be configured
 cinderVolumes:
 volume1:
 networkAttachments:
 - storage
 replicas: 0 # backend needs to be configured

Compute service (nova):

 nova:
 apiOverride:
 route: {}
 template:

CHAPTER 3. CREATING THE CONTROL PLANE

23

 apiServiceTemplate:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 metadataServiceTemplate:
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 secret: osp-secret

NOTE

A full set of Compute services (nova) are deployed by default for each of the
default cells, cell0 and cell1: nova-api, nova-metadata, nova-scheduler,
and nova-conductor. The novncproxy service is also enabled for cell1 by
default.

A Galera cluster for use by all RHOSO services (openstack), and a Galera cluster for use by
the Compute service for cell1 (openstack-cell1):

 galera:
 templates:
 openstack:
 storageRequest: 5000M
 secret: osp-secret
 replicas: 3
 openstack-cell1:
 storageRequest: 5000M
 secret: osp-secret
 replicas: 3

Identity service (keystone)

 keystone:
 apiOverride:
 route: {}
 template:
 override:
 service:
 internal:
 metadata:

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

24

 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret

Image service (glance):

 glance:
 apiOverrides:
 default:
 route: {}
 template:
 databaseInstance: openstack
 storageClass: ""
 storageRequest: 10G
 secret: osp-secret
 keystoneEndpoint: default
 glanceAPIs:
 default:
 type: single
 replicas: 1
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 networkAttachments:
 - storage

NOTE

You must configure a back end for the Image service. If you do not configure
a back end for the Image service, then the service is deployed but not
activated (replicas: 0). For information about configuring a back end for the
Image service, see the Configuring storage guide.

Key Management service (barbican):

 barbican
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 secret: osp-secret
 barbicanAPI:

CHAPTER 3. CREATING THE CONTROL PLANE

25

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0-beta/html/configuring_storage/index

 replicas: 1
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 barbicanWorker:
 replicas: 1
 barbicanKeystoneListener:
 replicas: 1

Memcached:

 memcached:
 templates:
 memcached:
 replicas: 3

Networking service (neutron):

 neutron:
 apiOverride:
 route: {}
 template:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret
 networkAttachments:
 - internalapi

Object Storage service (swift):

 swift:
 enabled: true
 proxyOverride:
 route: {}
 template:
 swiftProxy:
 networkAttachments:
 - storage

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

26

 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 replicas: 2
 swiftRing:
 ringReplicas: 3
 swiftStorage:
 networkAttachments:
 - storage
 replicas: 3
 storageClass: local-storage
 storageRequest: 10Gi

OVN:

 ovn:
 template:
 ovnDBCluster:
 ovndbcluster-nb:
 replicas: 3
 dbType: NB
 storageRequest: 10G
 networkAttachment: internalapi
 ovndbcluster-sb:
 dbType: SB
 storageRequest: 10G
 networkAttachment: internalapi
 ovnNorthd:
 networkAttachment: internalapi
 ovnController:
 networkAttachment: tenant
 nicMappings:
 <network_name: nic_name>

Replace <network_name> with the name of the network your gateway is on.

Replace <nic_name> with the name of the NIC connecting to the gateway network.

Optional: Add additional <network_name>:<nic_name> pairs under nicMappings as
required.

Placement service (placement):

 placement:
 apiOverride:
 route: {}
 template:
 override:
 service:

CHAPTER 3. CREATING THE CONTROL PLANE

27

 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret

RabbitMQ:

 rabbitmq:
 templates:
 rabbitmq:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.85
 spec:
 type: LoadBalancer
 rabbitmq-cell1:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.86
 spec:
 type: LoadBalancer

Telemetry service (ceilometer, prometheus):

 telemetry:
 enabled: true
 template:
 metricStorage:
 enabled: true
 monitoringStack:
 alertingEnabled: true
 scrapeInterval: 30s
 storage:
 strategy: persistent
 retention: 24h
 persistent:
 pvcStorageRequest: 20G
 autoscaling:
 enabled: false
 aodh:
 passwordSelectors:

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

28

 databaseUser: aodh
 databaseInstance: openstack
 memcachedInstance: memcached
 secret: osp-secret
 heatInstance: heat
 ceilometer:
 enabled: true
 secret: osp-secret
 logging:
 enabled: false
 network: internalapi
 ipaddr: <ip_address>

Replace <ip_address> with the IP address for your environment.

5. Create the control plane:

$ oc create -f openstack_control_plane.yaml -n openstack

6. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack
NAME STATUS MESSAGE
openstack-galera-network-isolation Unknown Setup started

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

7. Optional: Confirm that the control plane is deployed by reviewing the pods in the openstack
namespace:

$ oc get pods -n openstack

The control plane is deployed when all the pods are either completed or running.

Verification

1. Open a remote shell connection to the OpenStackClient pod:

$ oc rsh -n openstack openstackclient

2. Confirm that the internal service endpoints are registered with each service:

$ openstack endpoint list -c 'Service Name' -c Interface -c URL --service glance
+--------------+-----------+---+
| Service Name | Interface | URL |
+--------------+-----------+---+
| glance | internal | http://glance-internal.openstack.svc:9292 |
| glance | public | http://glance-public-openstack.apps.ostest.test.metalkube.org |
+--------------+-----------+---+

CHAPTER 3. CREATING THE CONTROL PLANE

29

3. Exit the OpenStackClient pod:

$ exit

3.3. EXAMPLE OPENSTACKCONTROLPLANE CR FOR A CORE CONTROL
PLANE

The following example OpenStackControlPlane CR is a complete core control plane configuration that
includes all the key services that must always be enabled for a successful deployment.

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-control-plane
spec:
 secret: osp-secret
 storageClass: your-RHOCP-storage-class 1

 cinder: 2
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 secret: osp-secret
 cinderAPI:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 cinderScheduler:
 replicas: 1
 cinderBackup: 3
 networkAttachments:
 - storage
 replicas: 0 # backend needs to be configured
 cinderVolumes: 4
 volume1:
 networkAttachments: 5
 - storage
 replicas: 0 # backend needs to be configured
 nova: 6
 apiOverride: 7
 route: {}
 template:
 apiServiceTemplate:
 override:

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

30

 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi 8
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80 9
 spec:
 type: LoadBalancer
 metadataServiceTemplate:
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 secret: osp-secret
 galera:
 templates:
 openstack:
 storageRequest: 5000M
 secret: osp-secret
 replicas: 3
 openstack-cell1:
 storageRequest: 5000M
 secret: osp-secret
 replicas: 3
 keystone:
 apiOverride:
 route: {}
 template:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret
 glance:
 apiOverrides:
 default:
 route: {}
 template:
 databaseInstance: openstack
 storageClass: ""
 storageRequest: 10G
 secret: osp-secret
 keystoneEndpoint: default

CHAPTER 3. CREATING THE CONTROL PLANE

31

 glanceAPIs:
 default:
 type: single
 replicas: 1
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 networkAttachments:
 - storage
 barbican
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 secret: osp-secret
 barbicanAPI:
 replicas: 1
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 barbicanWorker:
 replicas: 1
 barbicanKeystoneListener:
 replicas: 1
 memcached:
 templates:
 memcached:
 replicas: 3
 neutron:
 apiOverride:
 route: {} 10
 template:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

32

 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret
 networkAttachments:
 - internalapi
 swift:
 enabled: true
 proxyOverride:
 route: {}
 template:
 swiftProxy:
 networkAttachments:
 - storage
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 replicas: 2
 swiftRing:
 ringReplicas: 3
 swiftStorage:
 networkAttachments:
 - storage
 replicas: 3
 storageClass: local-storage
 storageRequest: 10Gi
 ovn:
 template:
 ovnDBCluster:
 ovndbcluster-nb:
 replicas: 3
 dbType: NB
 storageRequest: 10G
 networkAttachment: internalapi
 ovndbcluster-sb:
 dbType: SB
 storageRequest: 10G
 networkAttachment: internalapi
 ovnNorthd:
 networkAttachment: internalapi
 ovnController:
 networkAttachment: tenant
 nicMappings:
 <network_name: nic_name>
 placement:
 apiOverride:
 route: {}
 template:
 override:
 service:

CHAPTER 3. CREATING THE CONTROL PLANE

33

 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret
 rabbitmq: 11
 templates:
 rabbitmq:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.85
 spec:
 type: LoadBalancer
 rabbitmq-cell1:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.86
 spec:
 type: LoadBalancer
 telemetry:
 enabled: true
 template:
 metricStorage:
 enabled: true
 monitoringStack:
 alertingEnabled: true
 scrapeInterval: 30s
 storage:
 strategy: persistent
 retention: 24h
 persistent:
 pvcStorageRequest: 20G
 autoscaling:
 enabled: false
 aodh:
 passwordSelectors:
 databaseUser: aodh
 databaseInstance: openstack
 memcachedInstance: memcached
 secret: osp-secret
 heatInstance: heat
 ceilometer:
 enabled: true

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

34

1

2

3

4

5

6

7

8

9

10

11

 secret: osp-secret
 logging:
 enabled: false
 network: internalapi
 ipaddr: <ip_address>

The storage class that you created for your Red Hat OpenShift Container Platform (RHOCP)
cluster storage back end.

Service-specific parameters for the Block Storage service (cinder).

The Block Storage service back end. For more information on configuring storage services, see the
Configuring storage guide.

The Block Storage service configuration. For more information on configuring storage services, see
the Configuring storage guide.

The list of networks that each service pod is directly attached to, specified by using the
NetworkAttachmentDefinition resource names. A NIC is configured for the service for each
specified network attachment.

NOTE

If you do not configure the isolated networks that each service pod is attached to,
then the default pod network is used. For example, the Block Storage service uses
the storage network to connect to a storage back end; the Identity service
(keystone) uses an LDAP or Active Directory (AD) network; the ovnDBCluster and
ovnNorthd services use the internalapi network; and the ovnController service
uses the tenant network.

Service-specific parameters for the Compute service (nova).

Service API route definition. You can customize the service route by using route-specific
annotations. For more information, see Route-specific annotations in the RHOCP Networking
guide. Set route: to {} to apply the default route template.

The internal service API endpoint registered as a MetalLB service with the IPAddressPool
internalapi.

The virtual IP (VIP) address for the service. The IP is shared with other services by default.

Customized service API route definition. For more information, see Route-specific annotations in
the RHOCP Networking guide.

The RabbitMQ instances exposed to an isolated network.

NOTE

Multiple RabbitMQ instances cannot share the same VIP as they use the same port.
If you need to expose multiple RabbitMQ instances to the same network, then you
must use distinct IP addresses.

3.4. ADDING THE BARE METAL PROVISIONING SERVICE (IRONIC) TO

CHAPTER 3. CREATING THE CONTROL PLANE

35

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0-beta/html/configuring_storage/index
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0-beta/html/configuring_storage/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/networking/configuring-routes#nw-route-specific-annotations_route-configuration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/networking/configuring-routes#nw-route-specific-annotations_route-configuration

1

3.4. ADDING THE BARE METAL PROVISIONING SERVICE (IRONIC) TO
THE CONTROL PLANE

If you want your cloud users to be able to launch bare-metal instances, you must configure the control
plane with the Bare Metal Provisioning service (ironic).

Procedure

1. Open your OpenStackControlPlane custom resource (CR) file,
openstack_control_plane.yaml, on your workstation.

2. Add the following cellTemplates configuration to the nova service configuration:

 nova:
 apiOverride:
 route: {}
 template:
 ...
 secret: osp-secret
 cellTemplates:
 cell0:
 cellDatabaseUser: nova_cell0
 hasAPIAccess: true
 cell1:
 cellDatabaseUser: nova_cell1
 cellDatabaseInstance: openstack-cell1
 cellMessageBusInstance: rabbitmq-cell1
 hasAPIAccess: true
 novaComputeTemplates:
 compute-ironic: 1
 computeDriver: ironic.IronicDriver

The name of the Compute service. The name has a limit of 20 characters, and must
contain only lowercase alphanumeric characters and the - symbol.

3. Create the network that the ironic service pod attaches to, for example, baremetal. For more
information about how to create an isolated network, see Preparing RHOCP for RHOSO
network isolation.

4. Enable and configure the ironic service:

spec:
 ...
 ironic:
 enabled: true
 template:
 rpcTransport: oslo
 databaseInstance: openstack
 ironicAPI:
 replicas: 1
 override:
 service:
 internal:
 metadata:

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

36

1

 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 ironicConductors:
 - replicas: 1
 storageRequest: 10G
 networkAttachments:
 - baremetal 1
 provisionNetwork: baremetal
 customServiceConfig: |
 [neutron]
 cleaning_network = provisioning
 provisioning_network = provisioning
 rescuing_network = provisioning
 ironicInspector:
 replicas: 0
 networkAttachments:
 - baremetal
 inspectionNetwork: baremetal
 ironicNeutronAgent:
 replicas: 1
 secret: osp-secret

The NetworkAttachmentDefinition CR for your baremetal network.

5. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

6. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack
NAME STATUS MESSAGE
openstack-network-isolation-ironic Unknown Setup started

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

7. Confirm that the control plane is deployed by reviewing the pods in the openstack namespace:

$ oc get pods -n openstack

The control plane is deployed when all the pods are either completed or running.

Verification

CHAPTER 3. CREATING THE CONTROL PLANE

37

1. Open a remote shell connection to the OpenStackClient pod:

$ oc rsh -n openstack openstackclient

2. Confirm that the internal service endpoints are registered with each service:

$ openstack endpoint list -c 'Service Name' -c Interface -c URL --service ironic
+--------------+-----------+---+
| Service Name | Interface | URL |
+--------------+-----------+---+
| ironic | internal | http://ironic-internal.openstack.svc:9292 |
| ironic | public | http://ironic-public-openstack.apps.ostest.test.metalkube.org |
+--------------+-----------+---+

3. Exit the openstackclient pod:

$ exit

3.5. ADDING COMPUTE CELLS TO THE CONTROL PLANE

You can use cells to divide Compute nodes in large deployments into groups. Each cell has a dedicated
message queue, runs standalone copies of the cell-specific Compute services and databases, and
stores instance metadata in a database dedicated to instances in that cell.

By default, the control plane creates two cells:

cell0: The controller cell that manages global components and services, such as the Compute
scheduler and the global conductor. This cell also contains a dedicated database to store
information about instances that failed to be scheduled to a Compute node. You cannot
connect Compute nodes to this cell.

cell1: The default cell that Compute nodes are connected to when you don’t create and
configure additional cells.

You can add cells to your Red Hat OpenStack Services on OpenShift (RHOSO) environment when you
create your control plane or at any time afterwards.

Procedure

1. Open your OpenStackControlPlane custom resource (CR) file,
openstack_control_plane.yaml, on your workstation.

2. Create a database server for each new cell that you want to add to your RHOSO environment:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-galera-network-isolation
spec:
 secret: osp-secret
 storageClass: local-storage
 ...
 galera:
 enabled: true

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

38

1

2

3

 templates:
 openstack: 1
 storageRequest: 5G
 secret: cell0-secret
 replicas: 1
 openstack-cell1: 2
 storageRequest: 5G
 secret: cell1-secret
 replicas: 1
 openstack-cell2: 3
 storageRequest: 5G
 secret: cell2-secret
 replicas: 1

The database used by most of the RHOSO services, including the Compute services nova-
api and nova-scheduler, and cell0.

The database to be used by cell1.

The database to be used by cell2.

3. Create a message bus with unique IPs for the load balancer for each new cell that you want to
add to your RHOSO environment:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-galera-network-isolation
spec:
 secret: osp-secret
 storageClass: local-storage
 ...
 rabbitmq:
 templates:
 rabbitmq: 1
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.85
 spec:
 type: LoadBalancer
 rabbitmq-cell1: 2
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.86
 spec:
 type: LoadBalancer
 rabbitmq-cell2: 3
 override:

CHAPTER 3. CREATING THE CONTROL PLANE

39

1

2

3

1

 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.87
 spec:
 type: LoadBalancer

The message bus used by most of the RHOSO services, including the Compute services
nova-api and nova-scheduler, and cell0.

The message bus to be used by cell1.

The message bus to be used by cell2.

4. Add the new cells to the cellTemplates configuration in the nova service configuration:

 nova:
 apiOverride:
 route: {}
 template:
 ...
 secret: osp-secret
 cellTemplates:
 cell0:
 cellDatabaseUser: nova_cell0
 hasAPIAccess: true
 cell1:
 cellDatabaseInstance: openstack-cell1
 cellDatabaseUser: nova_cell1
 cellMessageBusInstance: rabbitmq-cell1
 hasAPIAccess: true
 cell2: 1
 cellDatabaseInstance: openstack-cell2
 cellDatabaseUser: nova_cell1
 cellMessageBusInstance: rabbitmq-cell2
 hasAPIAccess: true

The name of the new Compute cell. The name has a limit of 20 characters, and must
contain only lowercase alphanumeric characters and the - symbol. For more information
about the properties you can configure for a cell, view the definition for the Nova CRD:

$ oc describe crd nova

5. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

6. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

40

$ oc get openstackcontrolplane -n openstack
NAME STATUS MESSAGE
openstack-galera-network-isolation Unknown Setup started

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

7. Optional: Confirm that the control plane is deployed by reviewing the pods in the openstack
namespace for each of the cells you created:

$ oc get pods -n openstack | grep cell2
nova-cell2-conductor-0 1/1 Running 2 5d20h
nova-cell2-novncproxy-0 1/1 Running 2 5d20h
openstack-cell2-galera-0 1/1 Running 2 5d20h
rabbitmq-cell2-server-0 1/1 Running 2 5d20h

The control plane is deployed when all the pods are either completed or running.

8. Optional: Confirm that the new cells are created:

$ oc exec -it nova-cell0-conductor-0 /bin/bash
nova-manage cell_v2 list_cells
+-------+--------------------------------------+---
-------------------+--+----------+| Name | UUID |
Transport URL | Database Connection | Disabled |+-------+--------------------------------------+--
--+-------------------------------
-----------------------------+----------+| cell0 | 00000000-0000-0000-0000-000000000000 |
rabbit: | mysql+pymysql://nova_cell0:****@openstack/nova_cell0 | False || cell1 | c5bf5e35-
6677-40aa-80d0-33a440cac14e | rabbit://default_user_CuUVnXz-
PvgzXvPxypU:****@rabbitmq-cell1.openstack.svc:5672 |
mysql+pymysql://nova_cell1:****@openstack-cell1/nova_cell1 | False || cell2 | c5bf5e35-
6677-40aa-80d0-33a440cac14e | rabbit://default_user_CuUVnXz-
PvgzXvPxypU:****@rabbitmq-cell2.openstack.svc:5672 |
mysql+pymysql://nova_cell2:****@openstack-cell2/nova_cell2| False |+-------+------------------
--------------------+--+--------
--+----------+

3.6. ENABLING THE DASHBOARD SERVICE (HORIZON) INTERFACE

You can enable the Dashboard service (horizon) interface for cloud user access to the cloud through a
web browser.

Procedure

1. Obtain the OpenStackControlPlane CR name:

$ oc get openstackcontrolplanes

2. Enable the Dashboard service in the OpenStackControlPlane CR:

CHAPTER 3. CREATING THE CONTROL PLANE

41

$ oc patch openstackcontrolplanes/<openstackcontrolplane_name> -p='[{"op": "replace",
"path": "/spec/horizon/enabled", "value": true}]' --type json

Replace <openstackcontrolplane_name> with the name of your OpenStackControlPlane
CR, for example, openstack-galera-network-isolation.

3. Retrieve the Dashboard service endpoint URL:

$ oc get horizons horizon -o jsonpath='{.status.endpoint}'

Use this URL to access the Horizon interface.

Verification

1. To log in as the admin user, obtain the admin password from the AdminPassword parameter in
the osp-secret secret:

$ oc get secret osp-secret -o jsonpath='{.data.AdminPassword}' | base64 -d

2. Open a web browser.

3. Enter the Dashboard endpoint URL.

4. Log in to the dashboard with your username and password.

3.7. ADDITIONAL RESOURCES

Kubernetes NMState Operator

The Kubernetes NMState project

Load balancing with MetalLB

MetalLB documentation

MetalLB in layer 2 mode

Specify network interfaces that LB IP can be announced from

Multiple networks

Using the Multus CNI in OpenShift

macvlan plugin

whereabouts IPAM CNI plugin - Extended configuration

About advertising for the IP address pools

Dynamic provisioning

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/index#kubernetes-nmstate
https://nmstate.io/kubernetes-nmstate/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/index#kubernetes-nmstate
https://metallb.universe.tf/
https://metallb.universe.tf/concepts/layer2/
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#specify-network-interfaces-that-lb-ip-can-be-announced-from
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/index#multiple-networks
https://cloud.redhat.com/blog/using-the-multus-cni-in-openshift
https://www.cni.dev/plugins/current/main/macvlan/
https://github.com/k8snetworkplumbingwg/whereabouts/blob/master/doc/extended-configuration.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/networking/load-balancing-with-metallb#about-advertise-for-ipaddress-pools
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/storage/dynamic-provisioning

CHAPTER 4. CREATING THE DATA PLANE
The Red Hat OpenStack Services on OpenShift (RHOSO) data plane consists of RHEL 9.4 nodes. Use
the OpenStackDataPlaneNodeSet custom resource definition (CRD) to create the custom resources
(CRs) that define the nodes and the layout of the data plane. You can use pre-provisioned nodes, or
provision bare-metal nodes as part of the data plane creation and deployment process.

To create and deploy a data plane, you must perform the following tasks:

1. Create a Secret CR for Ansible to use to execute commands on the data plane nodes.

2. Create the OpenStackDataPlaneNodeSet CRs that define the nodes and layout of the data
plane.

3. Create the OpenStackDataPlaneDeployment CRs that trigger the Ansible execution to deploy
and configure software.

4.1. PREREQUISITES

A functional control plane, created with the OpenStack Operator. For more information, see
Creating the control plane .

Pre-provisioned nodes must be configured with an SSH public key in the
$HOME/.ssh/authorized_keys file for a user with passwordless sudo privileges.

For bare-metal nodes that are provisioned when creating the OpenStackDataPlaneNodeSet
resource:

Cluster Baremetal Operator (CBO) is installed and configured for provisioning. For more
information, see Provisioning bare-metal data plane nodes .

A BareMetalHost CR is registered and inspected for each bare-metal data plane node.
Each bare-metal node must be in the Available state after inspection. For more
information about configuring bare-metal nodes, see Bare metal configuration in the
RHOCP Postinstallation configuration guide.

Update the edpm-hardened-uefi-rhel9:18.0.0 image in the operator bundles from the
default version 10 to version 9:

$ oc edit csv openstack-operator.v0.1.3
apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
...
value: registry.redhat.io/rhoso-beta/edpm-hardened-uefi-rhel9:18.0.0-9
value: edpm-hardened-uefi.qcow2
...

$ oc edit csv openstack-baremetal-operator.v0.1.3
apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
...
value: registry.redhat.io/rhoso-beta/edpm-hardened-uefi-rhel9:18.0.0-9
value: edpm-hardened-uefi.qcow2
...

You are logged on to a workstation that has access to the RHOCP cluster as a user with

CHAPTER 4. CREATING THE DATA PLANE

43

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/postinstallation_configuration/post-install-bare-metal-configuration

You are logged on to a workstation that has access to the RHOCP cluster as a user with
cluster-admin privileges.

4.2. CREATING THE SSH KEY SECRETS

You must generate SSH keys and create an SSH key Secret custom resource (CR) for each key to
enable the following functionality:

You must generate an SSH key to enable Ansible to manage the RHEL nodes on the data plane.
Ansible executes commands with this user and key.

You must generate an SSH key to enable migration of instances between Compute nodes.

The Secret CRs are used by the data plane nodes to enable secure access between nodes.

Procedure

1. Create the SSH key pair for Ansible:

$ KEY_FILE_NAME=<key_file_name>
$ ssh-keygen -f $KEY_FILE_NAME -N "" -t rsa -b 4096

Replace <key_file_name> with the name to use for the key pair.

2. Create the Secret CR for Ansible and apply it to the cluster:

$ SECRET_NAME=<secret_name>
$ oc create secret generic $SECRET_NAME \
--save-config \
--dry-run=client \
[--from-file=authorized_keys=$KEY_FILE_NAME.pub \]
--from-file=ssh-privatekey=$KEY_FILE_NAME \
--from-file=ssh-publickey=$KEY_FILE_NAME.pub \
-n openstack \
-o yaml | oc apply -f-

Replace <secret_name> with the name you want to use for the Secret resource.

Include the --from-file=authorized_keys option for bare-metal nodes that must be
provisioned when creating the data plane.

3. Create the SSH key pair for instance migration:

$ ssh-keygen -f ./id -t ecdsa-sha2-nistp521 -N ''

4. Create the Secret CR for migration and apply it to the cluster:

$ oc create secret generic nova-migration-ssh-key \
--from-file=ssh-privatekey=id \
--from-file=ssh-publickey=id.pub \
-n openstack \
-o yaml | oc apply -f-

5. Verify that the Secret CRs are created:

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

44

$ oc describe secret $SECRET_NAME

4.3. CREATING A SET OF DATA PLANE NODES

You use the OpenStackDataPlaneNodeSet CRD to define the data plane and the data plane nodes. An
OpenStackDataPlaneNodeSet custom resource (CR) represents a set of nodes of the same type that
have similar configuration, comparable to the concept of a "role" in a director-deployed Red Hat
OpenStack Services on OpenShift (RHOSO) environment.

Create an OpenStackDataPlaneNodeSet CR for each logical grouping of nodes in your data plane, for
example, nodes grouped by hardware, location, or networking. You can define as many node sets as
necessary for your deployment. Each node can be included in only one OpenStackDataPlaneNodeSet
CR. Each node set can be connected to only one Compute cell. By default, node sets are connected to
cell1. If your control plane includes additional Compute cells, you must specify the cell to which the node
set is connected.

Procedure

1. Copy the sample OpenStackDataPlaneNodeSet CR and save it to a file named openstack-
edpm.yaml on your workstation:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-edpm
spec:
 tlsEnabled: true
 env:
 - name: ANSIBLE_FORCE_COLOR
 value: "True"
 services:
 - bootstrap
 - download-cache
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - ssh-known-hosts
 - run-os
 - reboot-os
 - install-certs
 - ovn
 - neutron-metadata
 - libvirt
 - nova
 - telemetry
 preProvisioned: true
 networkAttachments:
 - ctlplane
 nodes:
 edpm-compute-0:
 hostName: edpm-compute-0
 ansible:
 ansibleHost: 192.168.122.100
 networks:

CHAPTER 4. CREATING THE DATA PLANE

45

 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.100
 - name: internalapi
 subnetName: subnet1
 - name: storage
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1
 nodeTemplate:
 ansibleSSHPrivateKeySecret: dataplane-ansible-ssh-private-key-secret
 ansible:
 ansibleVarsFrom:
 - prefix: edpm_
 configMapRef:
 name: network-config-template
 - prefix: neutron_
 configMapRef:
 name: neutron-edpm
 # CHANGEME -- see https://access.redhat.com/solutions/253273
 # - prefix: subscription_manager_
 # secretRef:
 # name: subscription-manager
 # - prefix: registry_
 # secretRef:
 # name: redhat-registry
 ansibleVars:
 # CHANGEME -- see https://access.redhat.com/solutions/253273
 # edpm_bootstrap_command: |
 # subscription-manager register --username {{ subscription_manager_username }} -
-password {{ subscription_manager_password }}
 # podman login -u {{ registry_username }} -p {{ registry_password }}
registry.redhat.io
 edpm_nodes_validation_validate_controllers_icmp: false
 edpm_nodes_validation_validate_gateway_icmp: false
 gather_facts: false
 enable_debug: false
 # edpm firewall, change the allowed CIDR if needed
 edpm_sshd_allowed_ranges: ['192.168.122.0/24']

2. The sample OpenStackDataPlaneNodeSet CR is connected to cell1 by default. If you added
additional Compute cells to the control plane and you want to connect the node set to one of
the other cells, then you must create a custom service for the node set that includes the Secret
CR for the cell:

a. Create a custom nova service that includes the Secret CR for the cell to connect to:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: nova-cell-custom
 spec:
 label: dataplane-deployment-custom-service
 playbook: osp.edpm.nova

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

46

1

 ...
 secrets:
 - nova-cell2-compute-config 1

The Secret CR generated by the control plane for the cell.

For information about how to create a custom service, see Creating a custom service .

b. Replace the nova service in your OpenStackDataPlaneNodeSet CR with your custom
nova service:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-edpm-ipam
spec:
 services:
 - download-cache
 - bootstrap
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - run-os
 - ovn
 - neutron-metadata
 - libvirt
 - nova-cell-custom
 - telemetry

NOTE

Do not change the order of the default services.

c. If you are deploying multiple nodesets, ensure that you add the ssh-known-hosts service
to exactly one node set of the deployment because this service is deployed globally:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-edpm-ipam
spec:
 services:
 - download-cache
 - bootstrap
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - ssh-known-hosts
 - run-os
 - ovn
 - neutron-metadata

CHAPTER 4. CREATING THE DATA PLANE

47

 - libvirt
 - nova-cell-custom
 - telemetry

3. Update the Secret to the SSH key secret that you created to enable Ansible to connect to the
data plane nodes:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-edpm-ipam
spec:
 nodeTemplate:
 ansibleSSHPrivateKeySecret: <secret-key>

Replace <secret-key> with the name of the SSH key Secret CR you created in Creating
the SSH key secrets, for example, dataplane-ansible-ssh-private-key-secret.

4. Optional: Configure the node set for a Compute feature or workload. For more information, see
Configuring a node set for a Compute feature or workload .

5. Optional: The sample OpenStackDataPlaneNodeSet CR that you copied includes the minimum
common configuration required for a set of nodes in this group under the nodeTemplate
section. Each node in this OpenStackDataPlaneNodeSet inherits this configuration. You can
edit the configured values as required, and you can add additional configuration.
For information about the properties you can use to configure common node attributes, see
OpenStackDataPlaneNodeSet CR properties.

For example OpenStackDataPlaneNodeSet CR nodeTemplate definitions, see Example
OpenStackDataPlaneNodeSet CR for pre-provisioned nodes or Example
OpenStackDataPlaneNodeSet CR for bare-metal nodes .

6. Optional: The sample OpenStackDataPlaneNodeSet CR you copied applies the single NIC
VLANs network configuration by default to the data plane nodes. You can edit the template
that is applied. For example, to configure the data plane for multiple NICS, copy the contents of
the roles/edpm_network_config/templates/multiple_nics/multiple_nics.j2 file and add it to
your openstack-edpm.yaml file:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-edpm-ipam
spec:
 ...
 nodeTemplate:
 ...
 ansible:
 ansibleVars:
 edpm_network_config_template: |

 network_config:
 - type: interface
 name: nic1
 mtu: {{ ctlplane_mtu }}
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

48

 routes: {{ ctlplane_host_routes }}
 use_dhcp: false
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 {% for network in networks_all if network not in networks_skip_config %}
 {% if network not in ["External", "Tenant"] and network in role_networks %}
 - type: interface
 name: nic{{ loop.index +1 }}
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 use_dhcp: false
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
 {% elif network in role_networks or 'external_bridge' in role_tags %}
 - type: ovs_bridge
 {% if network == 'External' %}
 name: {{ neutron_physical_bridge_name }}
 {% else %}
 name: {{ 'br-' ~ networks_lower[network] }}
 {% endif %}
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 dns_servers: {{ ctlplane_dns_nameservers }}
 use_dhcp: false
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
 members:
 - type: interface
 name: nic{{loop.index + 1}}
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 use_dhcp: false
 primary: true
 {% endif %}
 {% endfor %}

You can copy a sample template from https://github.com/openstack-k8s-
operators/dataplane-operator/tree/main/config/samples/nic-config-samples.

7. Register the operating system of the nodes that are not registered to the Red Hat Customer
Portal, and enable repositories for your nodes:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-edpm-ipam
spec:
 preProvisioned: True
 ...
 nodeTemplate:
 ansible:
 ...
 ansibleVars:

CHAPTER 4. CREATING THE DATA PLANE

49

https://github.com/openstack-k8s-operators/dataplane-operator/tree/main/config/samples/nic-config-samples

1

2

 edpm_bootstrap_command: |
 subscription-manager register --username <subscription_manager_username> --
password <subscription_manager_password>
 subscription-manager release --set=9.4
 subscription-manager repos --disable=*
 subscription-manager repos --enable=rhel-9-for-x86_64-baseos-eus-rpms --
enable=rhel-9-for-x86_64-appstream-eus-rpms --enable=rhel-9-for-x86_64-highavailability-
eus-rpms --enable=fast-datapath-for-rhel-9-x86_64-rpms --enable=rhoso-18-beta-for-rhel-9-
x86_64-rpms --enable=rhceph-7-tools-for-rhel-9-x86_64-rpms
 podman login -u <registry_username> -p <registry_password> registry.redhat.io

Replace <subscription_manager_username> with the applicable user name.

Replace <subscription_manager_password> with the applicable password.

Replace <registry_username> with the applicable user name.

Replace <registry_password> with the applicable password.

For a complete list of the Red Hat Customer Portal registration commands, see
https://access.redhat.com/solutions/253273. For information about how to log into
registry.redhat.io, see https://access.redhat.com/RegistryAuthentication#creating-registry-
service-accounts-6.

8. If your nodes are not pre-provisioned, you must configure the bare-metal template:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-edpm-ipam
spec:
 preProvisioned: false
 baremetalSetTemplate:
 deploymentSSHSecret: dataplane-ansible-ssh-private-key-secret
 bmhNameSpace: openshift-machine-api 1
 cloudUserName: <ansible_ssh_user>
 bmhLabelSelector:
 app: openstack 2
 ctlplaneInterface: enp1s0
 dnsSearchDomains:
 - osptest.openstack.org

The namespace defined in the corresponding BareMetalHost CR for the node.

The label defined in the corresponding BareMetalHost CR for the node.

For more information about provisioning bare-metal nodes, see Provisioning bare-metal data
plane nodes.

NOTE

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

50

https://access.redhat.com/solutions/253273
https://access.redhat.com/RegistryAuthentication#creating-registry-service-accounts-6

NOTE

The BMO manages BareMetalHost CRs in the openshift-machine-api
namespace by default. If the BMO must also manage BareMetalHost CRs in
other namespaces, you must update the Provisioning CR to watch all
namespaces:

$ oc patch provisioning provisioning-configuration --type merge -p '{"spec":
{"watchAllNamespaces": true }}'

9. Optional: The sample OpenStackDataPlaneNodeSet CR that you copied includes default node
configurations in the nodes section. If necessary, you can add additional nodes and edit the
configured values. For example, to add node-specific Ansible variables that customize the node,
add the following configuration to your openstack-edpm.yaml file:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-edpm-ipam
spec:
 ...
 nodes:
 edpm-compute-0: 1
 hostName: edpm-compute-0
 networks: 2
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.100 3
 - name: internalapi
 subnetName: subnet1
 fixedIP: 172.17.0.100
 - name: storage
 subnetName: subnet1
 fixedIP: 172.18.0.100
 - name: tenant
 subnetName: subnet1
 fixedIP: 172.19.0.100
 ansible:
 ansibleHost: 192.168.122.100
 ansibleUser: cloud-admin
 ansibleVars: 4
 fqdn_internal_api: edpm-compute-0.example.com
 edpm-compute-1:
 hostName: edpm-compute-1
 networks:
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.101
 - name: internalapi
 subnetName: subnet1
 - name: storage
 subnetName: subnet1

CHAPTER 4. CREATING THE DATA PLANE

51

1

2

3

4

 - name: tenant
 subnetName: subnet1
 ansible:
 ansibleHost: 192.168.122.101
 ansibleUser: cloud-admin
 ansibleVars:
 fqdn_internal_api: edpm-compute-1.example.com

The node definition reference, for example, edpm-compute-0. Each node in the node set
must have a node definition.

Defines the IPAM and the DNS records for the node.

Defines the predictable IP addresses for each network.

Node-specific Ansible variables that customize the node.

NOTE

Nodes defined within the nodes section can configure the same Ansible
variables that are configured in the nodeTemplate section. Where an Ansible
variable is configured for both a specific node and within the nodeTemplate
section, the node-specific values override those from the nodeTemplate
section.

You do not need to replicate all the nodeTemplate Ansible variables for a
node to override the default and set some node-specific values. You only
need to configure the Ansible variables you want to override for the node.

For information about the properties you can use to configure node attributes, see
OpenStackDataPlaneNodeSet CR properties. For example OpenStackDataPlaneNodeSet CR
nodes definitions, see Example OpenStackDataPlaneNodeSet CR for pre-provisioned nodes
or Example OpenStackDataPlaneNodeSet CR for bare-metal nodes .

10. Optional: Customize the container images used by the edpm-ansible roles. The following
example shows the default images:

spec:
 ...
 nodeTemplate:
 ...
 ansible:
 ...
 ansibleVars:
 edpm_iscsid_image: "registry.redhat.io/rhoso-beta/openstack-iscsid-rhel9:18.0"
 edpm_logrotate_crond_image: "registry.redhat.io/rhoso-beta/openstack-cron-rhel9:18.0"
 edpm_ovn_controller_agent_image: "registry.redhat.io/rhoso-beta/openstack-frr-
rhel9:18.0"
 edpm_ovn_metadata_agent_image: "registry.redhat.io/rhoso-beta/openstack-neutron-
metadata-agent-ovn-rhel9:18.0"
 edpm_frr_image: "registry.redhat.io/rhoso-beta/openstack-frr-rhel9:18.0"
 edpm_ovn_bgp_agent_image: "registry.redhat.io/rhoso-beta/openstack-ovn-bgp-agent-
rhel9:18.0"
 telemetry_node_exporter_image: "redhat.registry.io/prometheus/node-exporter:v1.5.0
 edpm_libvirt_image: "registry.redhat.io/rhoso-beta/openstack-nova-libvirt-rhel9:18.0"

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

52

 edpm_nova_compute_image: "registry.redhat.io/rhoso-beta/openstack-nova-compute-
rhel9:18.0"
 edpm_neutron_sriov_image: "registry.redhat.io/rhoso-beta/openstack-neutron-sriov-
agent-rhel9:18.0"
 edpm_multipathd_image: "registry.redhat.io/rhoso-beta/openstack-multipathd-
rhel9:18.0"

11. Save the openstack-edpm.yaml definition file.

12. Create the data plane resources:

$ oc create -f openstack-edpm.yaml

13. Verify that the data plane resources have been created:

$ oc get openstackdataplanenodeset
NAME STATUS MESSAGE
openstack-edpm-ipam False Deployment not started

14. Verify that the Secret resource was created for the node set:

$ oc get secret | grep openstack-edpm-ipam
dataplanenodeset-openstack-edpm-ipam Opaque 1 3m50s

15. Verify the services were created:

$ oc get openstackdataplaneservice
NAME AGE
configure-network 6d7h
configure-os 6d6h
install-os 6d6h
run-os 6d6h
validate-network 6d6h
ovn 6d6h
libvirt 6d6h
nova 6d6h
telemetry 6d6h

4.4. DATA PLANE SERVICES

A data plane service is an Ansible execution that manages the installation, configuration, and execution
of a software deployment on data plane nodes. Each service is a resource instance of the
OpenStackDataPlaneService CRD.

The DataPlane Operator provides core services that are deployed by default on data plane nodes. If the
services field is omitted from the OpenStackDataPlaneNodeSet specification, then the following
services are applied by default in the following order:

services:
 - configure-network
 - validate-network
 - install-os
 - configure-os

CHAPTER 4. CREATING THE DATA PLANE

53

 - run-os
 - ovn
 - libvirt
 - nova
 - telemetry

The DataPlane Operator also includes the following services that are not enabled by default:

Service Description

ceph-client Include this service to configure data plane nodes as clients of a
Red Hat Ceph Storage server. Include between the install-os
and configure-os services. The
OpenStackDataPlaneNodeSet CR must include the
following configuration to access the Red Hat Ceph Storage
secrets:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
spec:
 ...
 nodeTemplate:
 extraMounts:
 - extraVolType: Ceph
 volumes:
 - name: ceph
 secret:
 secretName: ceph-conf-files
 mounts:
 - name: ceph
 mountPath: "/etc/ceph"
 readOnly: true

ceph-hci-pre Include this service to prepare data plane nodes to host Red Hat
Ceph Storage in an HCI configuration. For more information, see
assembly_configuring-a-hyperconverged-infrastructure-
environment[Configuring a Hyperconverged Infrastructure
environment].

neutron-dhcp Include this service to run a Neutron DHCP agent on the data
plane nodes.

neutron-metadata Include this service to run the Neutron OVN Metadata agent on
the data plane nodes. This agent is required to provide metadata
services to the Compute nodes.

neutron-ovn Include this service to run the Neutron OVN agent on the data
plane nodes. This agent is required to provide QoS to hardware
offloaded ports on the Compute nodes.

neutron-sriov Include this service to run a Neutron SR-IOV NIC agent on the
data plane nodes.

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

54

For more information about the available default services, see https://github.com/openstack-k8s-
operators/dataplane-operator/tree/main/config/services.

You can enable and disable services for an OpenStackDataPlaneNodeSet resource.

NOTE

Do not change the order of the default service deployments.

You can use the OpenStackDataPlaneService CRD to create custom services that you can deploy on
your data plane nodes. You add your custom services to the default list of services where the service
must be executed. For more information, see Creating a custom service .

You can view the details of a service by viewing the YAML representation of the resource:

$ oc get openstackdataplaneservice configure-network -o yaml

4.4.1. Creating a custom service

You can use the OpenStackDataPlaneService CRD to create custom services to deploy on your data
plane nodes.

NOTE

Do not create a custom service with the same name as one of the default services. If a
custom service name matches a default service name, the default service values
overwrite the custom service values during OpenStackDataPlaneNodeSet reconciliation.

You specify the Ansible execution for your service with either an Ansible playbook or by including the
free-form play contents directly in the spec section of the service.

NOTE

You cannot use both an Ansible playbook and an Ansible play in the same service.

Procedure

1. Create an OpenStackDataPlaneService CR and save it to a YAML file on your workstation, for
example custom-service.yaml:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: custom-service
spec:
 label: dataplane-deployment-custom-service

2. Specify the Ansible commands to create the custom service, by referencing an Ansible playbook
or by including the Ansible play in the spec:

Specify the Ansible playbook to use:

apiVersion: dataplane.openstack.org/v1beta1

CHAPTER 4. CREATING THE DATA PLANE

55

https://github.com/openstack-k8s-operators/dataplane-operator/tree/main/config/services

kind: OpenStackDataPlaneService
metadata:
 name: custom-service
spec:
 label: dataplane-deployment-custom-service
 playbook: osp.edpm.configure_os

For information about how to create an Ansible playbook, see Creating a playbook .

Specify the Ansible play as a string that uses Ansible playbook syntax:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: custom-service
spec:
 label: dataplane-deployment-custom-service
 play: |
 - hosts: all
 tasks:
 - name: Hello World!
 shell: "echo Hello World!"
 register: output
 - name: Show output
 debug:
 msg: "{{ output.stdout }}"
 - name: Hello World role
 import_role: hello_world

3. Optional: To override the default container image used by the ansible-runner execution
environment with a custom image that uses additional Ansible content for a custom service,
build and include a custom ansible-runner image. For information, see Building a custom
ansible-runner image.

4. Optional: Designate and configure a node set for a Compute feature or workload. For more
information, see Configuring a node set for a Compute feature or workload .

5. Optional: Specify the names of Secret resources to use to pass secrets into the
OpenStackAnsibleEE job:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: custom-service
spec:
 ...
 play: |
 ...
 secrets:
 - hello-world-secret-0
 - hello-world-secret-1

A mount is created for each secret in the OpenStackAnsibleEE pod with a filename that
matches the secret value. The mounts are created under /var/lib/openstack/configs/<service
name>.

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

56

https://docs.ansible.com/ansible-core/devel/getting_started/get_started_playbook.html

6. Create the custom service:

$ oc apply -f custom-service.yaml

7. Verify that the custom service is created:

$ oc get openstackdataplaneservice <custom_service_name> -o yaml

4.4.2. Configuring a node set for a Compute feature or workload

You can designate a node set for a particular Compute feature or workload. To designate and configure
a node set for a feature, complete the following tasks:

1. Create a ConfigMap CR to configure the Compute nodes.

2. Create a custom nova service for the feature that runs the osp.edpm.nova playbook.

3. Include the ConfigMap CR in the custom nova service.

Procedure

1. Create ConfigMap CR to configure the Compute nodes. For example, to enable CPU pinning
on the Compute nodes, create the following ConfigMap object:

apiVersion: v1
kind: ConfigMap
metadata:
 name: nova-cpu-pinning-configmap
 namespace: openstack
data:
 25-nova-cpu-pinning.conf: |
 [compute]
 cpu_shared_set = 2,6
 cpu_dedicated_set = 1,3,5,7

When the service is deployed it adds the configuration to etc/nova/nova.conf.d/ in the
nova_compute container.

For more information on creating ConfigMap objects, see Creating and using config maps .

TIP

You can use a Secret to create the custom configuration instead if the configuration includes
sensitive information, such as passwords or certificates that are required for certification.

2. Create a custom nova service for the feature. For information about how to create a custom
service, see Creating a custom service .

3. Add the ConfigMap CR to the custom nova service:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: nova-cpu-pinning-service

CHAPTER 4. CREATING THE DATA PLANE

57

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html/nodes/working-with-pods#configmaps

spec:
 label: dataplane-deployment-custom-service
 playbook: osp.edpm.nova
 configMaps:
 - nova-cpu-pinning-configmap

4. Specify the Secret CR for the cell that the node set that runs this service connects to:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: nova-cpu-pinning-service
spec:
 label: dataplane-deployment-custom-service
 playbook: osp.edpm.nova
 configMaps:
 - nova-cpu-pinning-configmap
 secrets:
 - nova-migration-ssh-key
 - nova-cell1-compute-config

4.4.3. Building a custom ansible-runner image

You can override the default container image used by the ansible-runner execution environment with
your own custom image when you need additional Ansible content for a custom service.

Procedure

1. Create a Containerfile that adds the custom content to the default image:

FROM quay.io/openstack-k8s-operators/openstack-ansibleee-runner:latest
COPY my_custom_role /usr/share/ansible/roles/my_custom_role

2. Build and push the image to a container registry:

$ podman build -t quay.io/example_user/my_custom_image:latest .
$ podman push quay.io/example_user/my_custom_role:latest

3. Specify your new container image as the image that the ansible-runner execution environment
must use to add the additional Ansible content that your custom service requires, such as
Ansible roles or modules:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: custom-service
spec:
 label: dataplane-deployment-custom-service
 openStackAnsibleEERunnerImage: quay.io/openstack-k8s-operators/openstack-ansibleee-
runner:latest 1
 play: |

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

58

1 Your container image that the ansible-runner execution environment uses to execute
Ansible.

4.5. DEPLOYING THE DATA PLANE

You use the OpenStackDataPlaneDeployment CRD to configure the services on the data plane nodes
and deploy the data plane. Create an OpenStackDataPlaneDeployment custom resource (CR) that
deploys each of your OpenStackDataPlaneNodeSet CRs.

Procedure

1. Create a file called libvirt-secret.yaml and add contents similar to the following:

apiVersion: v1
data:
 LibvirtPassword: cGFzc3dvcmQ=
kind: Secret
metadata:
 name: libvirt-secret
 namespace: openstack
type: Opaque

2. Create the secret:

oc apply -f libvirt-secret.yaml

3. Copy the sample OpenStackDataPlaneDeployment CR from https://github.com/openstack-
k8s-operators/dataplane-
operator/blob/main/config/samples/dataplane_v1beta1_openstackdataplanedeployment.yaml
and save it to a file named openstack-edpm-deploy.yaml on your workstation.

4. Optional: Update nodeSets to include all the OpenStackDataPlaneNodeSet CRs that you want
to deploy:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: openstack-edpm-ipam
spec:
 nodeSets:
 - openstack-edpm-ipam
 - <nodeSet_name>
 - ...
 - <nodeSet_name>

Replace <nodeSet_name> with the names of the OpenStackDataPlaneNodeSet CRs that
you want to include in your data plane deployment.

5. Save the openstack-edpm-deploy.yaml deployment file.

6. Deploy the data plane:

$ oc create -f openstack-edpm-deploy.yaml

CHAPTER 4. CREATING THE DATA PLANE

59

https://github.com/openstack-k8s-operators/dataplane-operator/blob/main/config/samples/dataplane_v1beta1_openstackdataplanedeployment.yaml

You can view the Ansible logs while the deployment executes:

$ oc get pod -l app=openstackansibleee -w
$ oc logs -l app=openstackansibleee -f --max-log-requests 10

7. Verify that the data plane is deployed:

$ oc get openstackdataplanedeployment
NAME STATUS MESSAGE
openstack-edpm-ipam True Setup Complete

$ oc get openstackdataplanenodeset
NAME STATUS MESSAGE
openstack-edpm-ipam True NodeSet Ready

For information on the meaning of the returned status, see Data plane conditions and states .

If the status indicates that the data plane has not been deployed, then troubleshoot the
deployment. For information, see Troubleshooting the data plane creation and deployment .

8. Map the Compute nodes to the Compute cell that they are connected to:

$ oc rsh nova-cell0-conductor-0 nova-manage cell_v2 discover_hosts --verbose

If you did not create additional cells, this command maps the Compute nodes to cell1.

9. Access the remote shell for the openstackclient pod and verify that the deployed Compute
nodes are visible on the control plane:

$ oc rsh -n openstack openstackclient
$ openstack hypervisor list

4.6. OPENSTACKDATAPLANENODESET CR PROPERTIES

The following tables detail the OpenStackDataPlaneNodeSet CR properties you can configure.

Table 4.1. nodeTemplate properties

Properties Description

ansibleSSHPrivateKeySecret Name of the private SSH key secret that contains the private
SSH key for connecting to nodes.

Secret name format: Secret.data.ssh-privatekey

For more information, see Creating an SSH authentication
secret.

Default: dataplane-ansible-ssh-private-key-secret

managementNetwork Name of the network to use for management (SSH/Ansible).
Default: ctlplane

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

60

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/nodes/working-with-pods#nodes-pods-secrets-creating-ssh_nodes-pods-secrets

networks Network definitions for the OpenStackDataPlaneNodeSet.

ansible Ansible configuration options. For more information, see
ansible properties.

extraMounts The files to mount into an Ansible Execution Pod.

userData UserData configuration.

networkData NetworkData configuration for the
OpenStackDataPlaneNodeSet.

Properties Description

Table 4.2. nodes properties

Properties Description

ansible Ansible configuration options. For more information, see
ansible properties.

extraMounts The files to mount into an Ansible Execution Pod.

hostName The node name.

managementNetwork Name of the network to use for management (SSH/Ansible).

networkData NetworkData configuration for the node.

networks Instance networks.

userData Node-specific user data.

Table 4.3. ansible properties

Properties Description

ansibleUser The user associated with the secret you created in Creating the
SSH key secrets. Default: rhel-user

ansibleHost SSH host for the Ansible connection.

ansiblePort SSH port for the Ansible connection.

CHAPTER 4. CREATING THE DATA PLANE

61

ansibleVars The Ansible variables that customize the set of nodes. You can
use this property to configure any custom Ansible variable,
including the Ansible variables available for each edpm-ansible
role. For a complete list of Ansible variables by role, see the
edpm-ansible documentation.

NOTE

The ansibleVars parameters that you can
configure for an
OpenStackDataPlaneNodeSet CR are
determined by the services defined for the
OpenStackDataPlaneNodeSet. The
OpenStackDataPlaneService CRs call the
Ansible playbooks from the edpm-ansible
playbook collection, which include the roles that
are executed as part of the data plane service.

Properties Description

4.7. EXAMPLE OPENSTACKDATAPLANENODESET CR FOR PRE-PROVISIONED
NODES

The following example OpenStackDataPlaneNodeSet CR creates a set of generic Compute nodes with
some node-specific configuration.

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-edpm-ipam
spec:
 env: 1
 - name: ANSIBLE_FORCE_COLOR
 value: "True"
 preProvisioned: true 2
 services: 3
 - bootstrap
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - run-os
 - install-certs
 - ovn
 - neutron-metadata
 - libvirt
 - ssh-known-hosts
 - nova
 - telemetry
 nodes:
 edpm-compute-0: 4
 hostName: edpm-compute-0

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

62

https://openstack-k8s-operators.github.io/edpm-ansible/
https://github.com/openstack-k8s-operators/edpm-ansible/tree/main/playbooks

 ansible:
 ansibleHost: 192.168.122.100
 ansibleUser: cloud-admin
 networks:
 - name: CtlPlane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.100
 - name: InternalApi
 subnetName: subnet1
 - name: Storage
 subnetName: subnet1
 - name: Tenant
 subnetName: subnet1
 edpm-compute-1:
 hostName: edpm-compute-1
 ansible:
 ansibleHost: 192.168.122.101
 ansibleUser: cloud-admin
 networks:
 - name: CtlPlane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.101
 - name: InternalApi
 subnetName: subnet1
 - name: Storage
 subnetName: subnet1
 - name: Tenant
 subnetName: subnet1
 networkAttachments: 5
 - ctlplane
 nodeTemplate: 6
 ansibleSSHPrivateKeySecret: dataplane-ansible-ssh-private-key-secret 7
 managementNetwork: ctlplane
 ansible:
 ansibleUser: cloud-admin 8
 ansiblePort: 22
 ansibleVars: 9
 edpm_bootstrap_release_version_package: "rhoso-release"
 edpm_neutron_dhcp_image: “registry.redhat.io/rhoso-beta/openstack-neutron-dhcp-agent-
rhel9:18.0.0”
 service_net_map:
 nova_api_network: internal_api
 nova_libvirt_network: internal_api
 timesync_ntp_servers:
 - hostname: pool.ntp.org
 # edpm_network_config
 # Default nic config template for a EDPM compute node
 # These vars are edpm_network_config role vars
 edpm_network_config_template: | 10

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in role_networks %}
 {{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}

CHAPTER 4. CREATING THE DATA PLANE

63

1

2

3

4

5

 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 routes: {{ ctlplane_host_routes }}
 members:
 - type: interface
 name: nic1
 mtu: {{ min_viable_mtu }}
 # force the MAC address of the bridge to this interface
 primary: true
 {% for network in role_networks %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
 {% endfor %}
 edpm_network_config_hide_sensitive_logs: false
 # These vars are for the network config templates themselves and are
 # considered EDPM network defaults.
 neutron_physical_bridge_name: br-ex
 neutron_public_interface_name: eth0
 # edpm_nodes_validation
 edpm_nodes_validation_validate_controllers_icmp: false
 edpm_nodes_validation_validate_gateway_icmp: false
 gather_facts: false
 enable_debug: false
 # edpm firewall, change the allowed CIDR if needed
 edpm_sshd_configure_firewall: true
 edpm_sshd_allowed_ranges: ['192.168.122.0/24']
 # SELinux module
 edpm_selinux_mode: enforcing

Optional: A list of environment variables to pass to the pod.

Specify if the nodes in this set are pre-provisioned, or if they are provisioned when creating the
resource.

The services that are deployed on the data plane nodes in this OpenStackDataPlaneNodeSet CR.

The node definition reference, for example, edpm-compute-0. Each node in the node set must
have a node definition.

The networks the ansibleee-runner connects to, specified as a list of netattach resource names.

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

64

6

7

8

9

10

The common configuration to apply to all nodes in this set of nodes.

The name of the secret that you created in Creating the SSH key secrets .

The user associated with the secret you created in Creating the SSH key secrets .

The Ansible variables that customize the set of nodes. For a list of Ansible variables that you can
use, see https://openstack-k8s-operators.github.io/edpm-ansible/.

The network configuration template to apply to nodes in the set. For sample templates, see
https://github.com/openstack-k8s-operators/dataplane-
operator/tree/main/config/samples/nic-config-samples.

4.8. EXAMPLE OPENSTACKDATAPLANENODESET CR FOR BARE-METAL
NODES

The following example OpenStackDataPlaneNodeSet CR creates a set of generic Compute nodes with
some node-specific configuration.

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-edpm-ipam
spec:
 env: 1
 - name: ANSIBLE_FORCE_COLOR
 value: "True"
 services: 2
 - download-cache
 - bootstrap
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - run-os
 - install-certs
 - ovn
 - neutron-metadata
 - libvirt
 - ssh-known-hosts
 - nova
 - telemetry
 baremetalSetTemplate: 3
 bmhLabelSelector:
 app: openstack
 ctlplaneInterface: enp1s0
 cloudUserName: cloud-admin
 nodes:
 edpm-compute-0: 4
 hostName: edpm-compute-0
 networkAttachments: 5
 - ctlplane
 nodeTemplate: 6

CHAPTER 4. CREATING THE DATA PLANE

65

https://openstack-k8s-operators.github.io/edpm-ansible/
https://github.com/openstack-k8s-operators/dataplane-operator/tree/main/config/samples/nic-config-samples

 ansibleSSHPrivateKeySecret: dataplane-ansible-ssh-private-key-secret 7
 networks: 8
 - name: CtlPlane
 subnetName: subnet1
 defaultRoute: true
 - name: InternalApi
 subnetName: subnet1
 - name: Storage
 subnetName: subnet1
 - name: Tenant
 subnetName: subnet1
 managementNetwork: ctlplane
 ansible:
 ansibleVars: 9
 edpm_bootstrap_release_version_package: "rhoso-release"
 edpm_neutron_dhcp_image: “registry.redhat.io/rhoso-beta/openstack-neutron-dhcp-agent-
rhel9:18.0.0”
 edpm_network_config_template: | 10

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in role_networks %}
 {{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 routes: {{ ctlplane_host_routes }}
 members:
 - type: interface
 name: nic1
 mtu: {{ min_viable_mtu }}
 # force the MAC address of the bridge to this interface
 primary: true
 {% for network in role_networks %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
 {% endfor %}
 # These vars are for the network config templates themselves and are
 # considered EDPM network defaults.
 neutron_physical_bridge_name: br-ex
 neutron_public_interface_name: eth0
 # edpm_nodes_validation
 edpm_nodes_validation_validate_controllers_icmp: false

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

66

1

2

3

4

5

6

7

8

9

10

 edpm_nodes_validation_validate_gateway_icmp: false
 gather_facts: false
 enable_debug: false
 # edpm firewall, change the allowed CIDR if needed
 edpm_sshd_allowed_ranges: ['192.168.122.0/24']

Optional: A list of environment variables to pass to the pod.

The services that are deployed on the data plane nodes in this OpenStackDataPlaneNodeSet CR.

Configure the bare-metal template for bare-metal nodes that must be provisioned when creating
the resource.

The node definition reference, for example, edpm-compute-0. Each node in the node set must
have a node definition.

The networks the ansibleee-runner connects to, specified as a list of netattach resource names.

The common configuration to apply to all nodes in this set of nodes.

The name of the secret that you created in Creating the SSH key secrets .

Networks for the bare-metal nodes.

The Ansible variables that customize the set of nodes. For a list of Ansible variables that you can
use, see https://openstack-k8s-operators.github.io/edpm-ansible/.

The network configuration template to apply to nodes in the set. For sample templates, see
https://github.com/openstack-k8s-operators/edpm-
ansible/tree/main/roles/edpm_network_config/templates.

4.9. DATA PLANE CONDITIONS AND STATES

Each data plane resource has a series of conditions within their status subresource that indicates the
overall state of the resource, including its deployment progress.

For an OpenStackDataPlaneNodeSet, until an OpenStackDataPlaneDeployment has been started
and finished successfully, the Ready condition is False. When the deployment succeeds, the Ready
condition is set to True. A subsequent deployment sets the Ready condition to False until the
deployment succeeds, when the Ready condition is set to True.

Table 4.4. OpenStackDataPlaneNodeSet CR conditions

Condition Description

Ready
"True": The OpenStackDataPlaneNodeSet CR is
successfully deployed.

"False": The deployment is not yet requested or has
failed, or there are other failed conditions.

CHAPTER 4. CREATING THE DATA PLANE

67

https://openstack-k8s-operators.github.io/edpm-ansible/
https://github.com/openstack-k8s-operators/edpm-ansible/tree/main/roles/edpm_network_config/templates

SetupReady "True": All setup tasks for a resource are complete. Setup tasks
include verifying the SSH key secret, verifying other fields on the
resource, and creating the Ansible inventory for each resource.
Each service-specific condition is set to "True" when that service
completes deployment. You can check the service conditions to
see which services have completed their deployment, or which
services failed.

DeploymentReady "True": The NodeSet has been successfully deployed.

InputReady "True": The required inputs are available and ready.

NodeSetDNSDataReady "True": DNSData resources are ready.

NodeSetIPReservationReady "True": The IPSet resources are ready.

NodeSetBaremetalProvisionReady "True": Bare-metal nodes are provisioned and ready.

Condition Description

Table 4.5. OpenStackDataPlaneNodeSet status fields

Status field Description

Deployed
"True": The OpenStackDataPlaneNodeSet CR is
successfully deployed.

"False": The deployment is not yet requested or has
failed, or there are other failed conditions.

DNSClusterAddresses

CtlplaneSearchDomain

Table 4.6. OpenStackDataPlaneDeployment CR conditions

Condition Description

Ready
"True": The data plane is successfully deployed.

"False": The data plane deployment failed, or there are
other failed conditions.

DeploymentReady "True": The data plane is successfully deployed.

InputReady "True": The required inputs are available and ready.

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

68

<NodeSet> Deployment Ready "True": The deployment has succeeded for the named
NodeSet, indicating all services for the NodeSet have
succeeded.

<NodeSet> <Service> Deployment
Ready

"True": The deployment has succeeded for the named NodeSet
and Service. Each <NodeSet> <Service> Deployment
Ready specific condition is set to "True" as that service
completes successfully for the named NodeSet. Once all
services are complete for a NodeSet, the <NodeSet>
Deployment Ready condition is set to "True". The service
conditions indicate which services have completed their
deployment, or which services failed and for which NodeSets.

Condition Description

Table 4.7. OpenStackDataPlaneDeployment status fields

Status field Description

Deployed
"True": The data plane is successfully deployed. All
Services for all NodeSets have succeeded.

"False": The deployment is not yet requested or has
failed, or there are other failed conditions.

Table 4.8. OpenStackDataPlaneService CR conditions

Condition Description

Ready "True": The service has been created and is ready for use.
"False": The service has failed to be created.

4.10. PROVISIONING BARE-METAL DATA PLANE NODES

Provisioning bare-metal nodes on the data plane is supported with the Red Hat OpenShift Container
Platform (RHOCP) Cluster Baremetal Operator (CBO). The CBO deploys the components required to
provision bare-metal nodes within the RHOCP cluster, including the Bare Metal Operator (BMO) and
Ironic containers.

The BMO manages the available hosts on clusters and performs the following operations:

Inspects node hardware details and reports them to the corresponding BareMetalHost CR. This
includes information about CPUs, RAM, disks, and NICs.

Provisions nodes with a specific image.

Cleans node disk contents before and after provisioning.

The availability of the CBO depends on which of the following installation methods was used for the
RHOCP cluster:

CHAPTER 4. CREATING THE DATA PLANE

69

Assisted Installer

You can enable CBO on clusters installed with the Assisted Installer, and you can manually add the
provisioning network to the Assisted Installer cluster after installation.

Installer-provisioned infrastructure

CBO is enabled by default on RHOCP clusters that are installed with the bare-metal installer-
provisioned infrastructure. You can configure installer-provisioned clusters with a provisioning
network to enable both virtual media and network boot installations. Alternatively, you can configure
an installer-provisioned cluster without a provisioning network so that only virtual media provisioning
is available. For more information about installer-provisioned clusters on bare metal, see Deploying
installer-provisioned clusters on bare metal.

User-provisioned infrastructure

You can activate CBO on RHOCP clusters installed with user-provisioned infrastructure by creating
a Provisioning CR. You cannot add a provisioning network to a user-provisioned cluster. For more
information about how to create a Provisioning CR, see Scaling a user-provisioned cluster with the
Bare Metal Operator.

4.11. TROUBLESHOOTING DATA PLANE CREATION AND
DEPLOYMENT

Each data plane deployment in the environment has associated services. Each of these services have a
job condition message that matches to the current status of the AnsibleEE job executing for that
service. This information can be used to troubleshoot deployments when services are not deploying or
operating correctly.

Procedure

1. Determine the name and status of all deployments:

$ oc get openstackdataplanedeployment

The following example output shows two deployments currently in progress:

$ oc get openstackdataplanedeployment

NAME NODESETS STATUS MESSAGE
openstack-edpm-ipam1 ["openstack-edpm"] False Deployment in progress
openstack-edpm-ipam2 ["openstack-edpm"] False Deployment in progress

2. Determine the name and status of all services and their job condition:

$ oc get openstackansibleee

The following example output shows all services and their job condition for all current
deployments:

$ oc get openstackansibleee

NAME NETWORKATTACHMENTS STATUS MESSAGE
bootstrap-openstack-edpm ["ctlplane"] True AnsibleExecutionJob complete
download-cache-openstack-edpm ["ctlplane"] False AnsibleExecutionJob is running
repo-setup-openstack-edpm ["ctlplane"] True AnsibleExecutionJob complete
validate-network-another-osdpd ["ctlplane"] False AnsibleExecutionJob is running

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

70

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/installing/deploying-installer-provisioned-clusters-on-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/installing/installing-on-bare-metal#scaling-a-user-provisioned-cluster-with-the-bare-metal-operator

3. Filter for the name and service for a specific deployment:

$ oc get openstackansibleee -l osdpd=<deployment_name>

Replace <deployment_name> with the name of the deployment to use to filter the
services list.
The following example filters the list to only show services and their job condition for the
openstack-edpm-ipam1 deployment:

$ oc get openstackansibleee -l osdpd=openstack-edpm-ipam1

NAME NETWORKATTACHMENTS STATUS MESSAGE
bootstrap-openstack-edpm ["ctlplane"] True AnsibleExecutionJob complete
download-cache-openstack-edpm ["ctlplane"] False AnsibleExecutionJob is
running
repo-setup-openstack-edpm ["ctlplane"] True AnsibleExecutionJob complete

Job Condition Messages

AnsibleEE jobs have an associated condition message that indicates the current state of the service job.
This condition message is displayed in the MESSAGE field of the oc get openstackansibleee
command output. Jobs return one of the following conditions when queried:

AnsibleExecutionJob not started: The job has not started.

AnsibleExecutionJob not found: The job could not be found.

AnsibleExecutionJob is running: The job is currently running.

AnsibleExecutionJob complete: The job execution is complete.

AnsibleExecutionJob error occured <error_message>: The job stopped executed
unexpectedly. The <error_message> is replaced with a specific error message.

To further investigate a service displaying a particular job condition message, use the command oc logs
job/<service> to display the logs associated with that service. For example, to display the logs for the
repo-setup-openstack-edpm service, use the command oc logs job/repo-setup-openstack-edpm.

CHAPTER 4. CREATING THE DATA PLANE

71

CHAPTER 5. CUSTOMIZING RED HAT OPENSTACK ON
OPENSHIFT OBSERVABILITY

Use observability with Red Hat OpenStack Services on OpenShift (RHOSO) to get insight into the
metrics, logs, and alerts from your deployment.

The observability architecture in RHOSO is composed of services within OpenShift, as well as services on
your Compute nodes that expose metrics, logs and alerts.You can use the OpenShift observability
ecosystem for insight into the RHOSO environment. Additionally, you have access to the logging
infrastructure for collecting, storing, and searching through logs. RHOSO services such as ceilometer
and sg-core make metrics from your compute nodes and associated virtual infrastructure available to
the OpenShift Observability framework.

5.1. CONFIGURING RED HAT OPENSTACK ON OPENSHIFT
OBSERVABILITY

The Telemetry service (ceilometer, prometheus) is enabled by default in a Red Hat OpenStack Services
on OpenShift (RHOSO) deployment. You can configure observability by editing the
openstack_control_plane.yaml CR file.

Prerequisites

The Cluster Observability Operator is installed from OperatorHub. For more information, see
Installing the Cluster Observability Operator .

Optional: If you plan to enable logging, the Cluster Logging Operator is installed from
OperatorHub.

A LokiStack instance must be running. For more information, see Configuring the LokiStack
log store.

A ClusterLogging instance must be running. For more information, see Configuring the
logging collector.

The syslog receiver must be enabled. For more information, see Forwarding logs using the
syslog protocol.

NOTE

You do not need these Operators to expose and query OpenStack metrics in Prometheus
format. If you do not disable ceilometer, then a Prometheus metrics exporter is created
and exposed from inside the cluster at the following URL: http://ceilometer-
internal.openstack.svc:3000/metrics

Procedure

1. Use a text editor of your choice to open the openstack_control_plane.yaml file.

2. Create the telemetry section based on the needs of your environment:

 telemetry:
 enabled: true
 template:
 metricStorage:

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

72

https://docs.openshift.com/container-platform/4.15/observability/monitoring/cluster_observability_operator/installing-the-cluster-observability-operator.html
https://docs.openshift.com/container-platform/4.15/logging/log_storage/cluster-logging-loki.html
https://docs.openshift.com/container-platform/4.15/logging/log_collection_forwarding/cluster-logging-collector.html
https://docs.openshift.com/container-platform/4.15/logging/log_collection_forwarding/configuring-log-forwarding.html#cluster-logging-collector-log-forward-syslog_configuring-log-forwarding
http://ceilometer-internal.openstack.svc:3000/metrics

1

2

3

4

5

 enabled: true
 monitoringStack:
 dashboardsEnabled: true
 alertingEnabled: true
 scrapeInterval: 30s 1
 storage:
 strategy: persistent
 retention: 24h 2
 persistent:
 pvcStorageRequest: 20G 3
 autoscaling: 4
 enabled: false
 aodh:
 databaseUser: aodh
 databaseInstance: openstack
 secret: osp-secret
 heatInstance: heat
 ceilometer:
 enabled: true
 secret: osp-secret
 logging:
 enabled: false
 ipaddr: <ip_address> 5

Use the scrapeInterval field to control the amount of time that passes before new metrics
are gathered. Changing this parameter can affect performance.

Use the retention field to adjust the length of time telemetry metrics are stored. This field
affects the amount of storage required.

You can change the amount of storage to be allocated for the Prometheus time series
database.

You must have the autoscaling field present, even if you keep it disabled. For information
on enabling and configuring autoscaling, see <link>.

Replace <ip_address> with the IP address on the internal network you would like to
configure.

3. Update the control plane with the Telemetry configurations that you set in
openstack_control_plane.yaml:

$ oc apply -f openstack_control_plane.yaml -n openstack

Verification

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Confirm that you can query prometheus and that the scrape endpoints are active with the
following command:

CHAPTER 5. CUSTOMIZING RED HAT OPENSTACK ON OPENSHIFT OBSERVABILITY

73

$ openstack metric query up --disable-rbac -c container -c instance -c value

Example output:

+-----------------+------------------------+-------+
| container | instance | value |
+-----------------+------------------------+-------+
alertmanager	10.217.1.112:9093	1
prometheus	10.217.1.63:9090	0
proxy-httpd	10.217.1.52:3000	1
	192.168.122.100:9100	1
	192.168.122.101:9100	1
+-----------------+------------------------+-------+

NOTE

Each entry in the value field should be “1", except for the prometheus container.
The prometheus container reports a value of “0” due to TLS, which is enabled by
default.

Additional resource

Installing Logging

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

74

https://docs.openshift.com/container-platform/4.15/logging/cluster-logging-deploying.html

CHAPTER 6. ADDING CUSTOM TLS CERTIFICATES FOR RED
HAT OPENSTACK SERVICES ON OPENSHIFT

If you decide to apply trusted certificates from your own internal certificate authority (CA), you will need
the following information.

DNS names

For each service you apply your own custom certificate to, you will need its DNS hostname for the
process of generating the certificate. You can get a list of public hostnames using the following
command: oc get -n openstack routes

NOTE

To use a single certificate for two or more services, use a wildcard in the DNS name
field, or list multiple DNS names in the subject alt names field. If you do not use a
wildcard, then you must update the certificate in the event of a route hostname
change.

Duration

To update a service’s certificate in OpenShift, the service must be restarted. The duration for the
certificate is the longest amount of time a service can stay live without being restarted, subject to
your internal security policies.

Usages

You must include - key encipherment, digital signature, and server auth within the list of usages in
your certificate.

Updating TLS to use custom certificates requires edits to both the control plane and the data plane.

6.1. UPDATING THE CONTROL PLANE WITH CUSTOM CERTIFICATES
FOR PUBLIC SERVICES

When you deploy Red Hat OpenStack Services on OpenShift (RHOSO), most API connections are
protected by TLS.

NOTE

TLS is not currently available for the internal Alert Manager Web UI service endpoint.

You might be required to protect public APIs using your own internal certificate authority. In order to
replace the automatically generated certificates you must create a secret that contains your additional
ca certs, including all certificates in needed chains of trust.

Prerequisites

You have a service certificate for the public services

Procedure

1. Create a manifest file called myAdditionalCACerts.yaml that includes all CA certificates.
Include all certificates in chains of trust if applicable:

CHAPTER 6. ADDING CUSTOM TLS CERTIFICATES FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

75

apiVersion: v1
kind: Secret
metadata:
 name: myAdditionalCACerts
 namespace: openstack
type: Opaque
data:
 myBundleExample: <cat mybundle.pem | base64 -w0>
 CACertExample: <cat cacert.pem | base64 -w0>

2. Create the secret from the manifest file:

oc apply -f myAdditionalCACerts.yaml

3. Create a manifest file for each API certificate secret called
api_certificate_<service>_secret.yaml:

apiVersion: v1
kind: Secret
metadata:
 name: api_certificate_<service>_secret
 namespace: openstack
type: kubernetes.io/tls
data:
 tls.crt: <cat tlscrt.pem | base64 -w0>
 tls.key: <cat tlskey.pem | base64 -w0>
 ca.crt: <cat cacrt.pem | base64 -w0>

Replace <service> with the name of the service that this secret is for.

NOTE

You can use the same secret for multiple services.

4. Create the secret

oc apply -f api_certificate_<service>_secret.yaml

5. Edit the openstack_control_plane.yaml custom resource and add your bundle as the
parameter for caBundleSecretName:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: myctlplane
spec:
 tls:
 podLevel:
 enabled: true
 caBundleSecretName: myAdditionalCACerts

6. Apply the secret service certificates to each of the public services under the apiOverride field.
For example enter the following for the Identity service:

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

76

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: myctlplane
 namespace: openstack
spec:
 ...
 keystone:
 apiOverride:
 tls:
 secretName: api_certificate_keystone_secret

7. Apply the control plane changes

oc apply -f openstack_control_plane.yaml

CHAPTER 6. ADDING CUSTOM TLS CERTIFICATES FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

77

CHAPTER 7. ACCESSING THE RHOSO CLOUD
You can access your Red Hat OpenStack Services on OpenShift (RHOSO) cloud to perform actions on
your data plane by either accessing the OpenStackClient pod through a remote shell from your
workstation, or by using a web browser to access the Dashboard service (horizon) interface.

7.1. ACCESSING THE OPENSTACKCLIENT POD

You can execute Red Hat OpenStack Services on OpenShift (RHOSO) commands on the deployed
data plane by using the OpenStackClient pod through a remote shell from your workstation. The
OpenStack Operator created the OpenStackClient pod as a part of the OpenStackControlPlane
resource. The OpenStackClient pod contains the client tools and authentication details that you require
to perform actions on your data plane.

Procedure

1. Access the remote shell for openstackclient:

$ oc rsh -n openstack openstackclient

2. Change to the cloud-admin home directory:

$ cd /home/cloud-admin

3. Run your openstack commands. For example, you can create a default network with the
following command:

$ openstack network create default

Additional resources

Creating and managing instances

Configuring Red Hat OpenStack Platform networking

7.2. ACCESSING THE DASHBOARD SERVICE (HORIZON) INTERFACE

You can access the Dashboard service (horizon) interface by using a web browser to access the virtual
IP address that is reserved by the control plane.

Procedure

1. To log in as the admin user, obtain the admin password from the AdminPassword parameter in
the osp-secret secret:

$ oc get secret osp-secret -o jsonpath='{.data.AdminPassword}' | base64 -d

2. Retrieve the Dashboard service endpoint URL:

$ oc get horizons horizon -o jsonpath='{.status.endpoint}'

3. Open a web browser.

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

78

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/18.0/html/creating_and_managing_instances/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/18.0/html/configuring_red_hat_openstack_platform_networking/index

4. Enter the Dashboard endpoint URL.

5. Log in to the dashboard with your username and password.

CHAPTER 7. ACCESSING THE RHOSO CLOUD

79

CHAPTER 8. MONITORING HIGH AVAILBILITY SERVICES
Red Hat OpenStack on OpenShift (RHOSO) high availability (HA) uses Red Hat OpenShift Container
Platform (RHOCP) operations to orchestrate failover and recovery deployment. When you plan your
deployment, ensure that you review the considerations for different aspects of the environment, such as
hardware assignments and network configuration.

The following shared control plane services are required to implement HA:

Galera Cluster

RabbitMQ

memcached

These services run as pods, and they are managed and monitored by RHOCP.

You can use the OpenShift client command line interface (“oc”) to interact with the platform and
retrieve information about the status of the OpenStack control plane services.

You can use the OpenShift Client (oc) to complete the following actions:

List the pods

Learn more about the pods' configuration

Retrieve information about the pods' runtime

8.1. RHOSO GALERA CLUSTERS

RHOSO deploys the two following Galera clusters:

openstack. This cluster hosts the databases for all OpenStack services.

openstack-cell1. This cluster hosts the databases specific to Nova cell.

Galera Custom Resources configures both clusters.

To retrieve more information about the Galera’s Custom Resources, use the oc get galera command as
shown in the following example:

$ oc get galera
NAME READY MESSAGE
openstack True Setup complete
openstack-cell1 True Setup complete

The Message and Ready columns show the startup state and the service availability of the Galera CR.
When the Ready condition is True, the pods are started and ready to accept traffic as shown in the
following example:

$ oc get pod -l galera/name=openstack
NAME READY STATUS RESTARTS AGE
openstack-galera-0 1/1 Running 0 4h22m
openstack-galera-1 1/1 Running 0 4h22m
openstack-galera-2 1/1 Running 0 4h22m

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

80

The mariadb operator performs the following Galera cluster operations:

Creates the pods that host the mysqld servers.

Runs the logic for bootstrapping a Galera cluster. For example, the mariadb operator starts the
cluster using the most recent copy of the Galera database.

Monitors the running Galera pods.

Restarts the pods when the pods fail the healthcheck.

To expose the database service, the mariadb operator creates an OpenShift service object called
openstack. The OpenStack service object components access the database through the IP provided by
the service:

$ oc get service -l mariadb/name=openstack
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
openstack ClusterIP 10.217.5.210 <none> 3306/TCP 7h

The incoming traffic is load-balanced to any available Galera pod. OpenShift marks a pod as available
based on its Readiness healthcheck. If a pod misbehaves or if a pod begins to stop, it is removed from
the service’s list of endpoints.

To view a list of available endpoints, use the following command:

NOTE

The mariadb operator creates a ‘headless’ service for the Galera pods. This service is a
DNS service between Galera pods for internal Galera cluster communication.

8.1.1. Monitoring Galera startup

To monitor the startup of the Galera pods, use the oc describe galera command.

Galera CR’s status records the status of a Galera cluster’s startup. The CR’s conditions report the status
of the prerequisites that Galera pods need to start as shown in the following example:

NOTE

The Ready condition is true only when all the other conditions are True.

Status:
 Conditions:
 Last Transition Time: 2024-04-22T07:32:06Z
 Message: Setup complete
 Reason: Ready
 Status: True
 Type: Ready
 Last Transition Time: 2024-04-22T07:31:49Z
 Message: Deployment completed
 Reason: Ready
 Status: True
 Type: DeploymentReady
 Last Transition Time: 2024-04-22T07:31:11Z

CHAPTER 8. MONITORING HIGH AVAILBILITY SERVICES

81

 Message: Exposing service completed
 Reason: Ready
 Status: True
 Type: ExposeServiceReady
 Last Transition Time: 2024-04-22T07:31:11Z
 Message: Input data complete
 Reason: Ready
 Status: True
 Type: InputReady
 Last Transition Time: 2024-04-22T07:31:11Z
 Message: RoleBinding created
 Reason: Ready
 Status: True
 Type: RoleBindingReady
 Last Transition Time: 2024-04-22T07:31:11Z
 Message: Role created
 Reason: Ready
 Status: True
 Type: RoleReady
 Last Transition Time: 2024-04-22T07:31:11Z
 Message: ServiceAccount created
 Reason: Ready
 Status: True
 Type: ServiceAccountReady
 Last Transition Time: 2024-04-22T07:31:11Z
 Message: Service config create completed
 Reason: Ready
 Status: True
 Type: ServiceConfigReady
 Last Transition Time: 2024-04-22T07:31:11Z
 Message: Input data complete
 Reason: Ready
 Status: True
 Type: TLSInputReady

When the mariadb operator bootstraps a Galera cluster, it gathers information from every database
replica, and then stores it in transient attributes. The transient attributes appear in the Galera CR’s
status if the cluster is being inspected while the Galera cluster is stopped and being restarted:

Status:
 Attributes:
 openstack-galera-0:
 Seqno: 1232
 openstack-galera-1:
 Container ID: cri-o://f56ec2389e878b462a54f5255dad83db29daf4d8e8cda338904bfd353b370165
 Gcomm: gcomm://
 Seqno: 1232
 openstack-galera-2:
 Seqno: 1231
 Bootstrapped: false

Before starting a Galera Cluster, the MariaDB operator starts all Galera pod replicas in a waiting state.
Even if you can see the pods using oc get pods command, they have not started mysqld servers yet.
The mariadb operator introspects the content of each pod’s database copy to extract the database
sequence number (Seqno). Once the mariadb operator retrieves all of the pods’ Seqno information, it
decides which pod holds the most recent version of the database and bootstraps a new Galera cluster

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

82

from this pod. This pod starts a mysqld server and a transient attribute Gcomm:// appears in the Galera
CR’s status. When the first mysqld server is ready to serve traffic, the attribute Bootstrapped becomes
true, and transient Attributes for this pod are removed from the Galera CR’s status.

8.2. RHOSO RABBITMQ CLUSTERS

RHOSO deploys the two following RabbitMQ clusters:

rabbitmq. This cluster is used for messaging between OpenStack services.

rabbitmq-cell1. This cluster is used by only Nova.

RabbitMQ Custom Resources configures both clusters.

To retrieve more information about the RabbitMQ operator, use the following command:

$ oc get rabbitmq --show-labels
NAME ALLREPLICASREADY RECONCILESUCCESS AGE LABELS
rabbitmq True True 25h <none>
rabbitmq-cell1 True True 25h <none>

The RabbitMQ-cluster operator completes the following tasks:

Creates the pods that run the rabbitmq servers.

Monitors the pods that run the rabbitmq servers.

Restarts the pods that run the rabbitmq servers when healthchecks fail.

8.2.1. Monitoring the RabbitMQ operator’s startup

The state and the service availability of the rabbitmq-cluster operator and the rabbitmq clusters are
exposed in the output of the Rabbitmq CR.

Procedure

To retrieve information about the state and service availability of the rabbitmq-cluster operator
and the rabbitmq clusters, use the following command:

NOTE

Each RabbitMQ replica runs in a dedicated pod.

$ oc get pods -l app.kubernetes.io/name=rabbitmq
NAME READY STATUS RESTARTS AGE
rabbitmq-server-0 1/1 Running 0 46h
rabbitmq-server-1 1/1 Running 0 46h
rabbitmq-server-2 1/1 Running 0 46h

The rabbitmq-cluster operator creates two Openstack service objects for a rabbitmq cluster. One
service provides a DNS name resolution to the rabbitmq servers for internal rabbitmq communication.
The RabbitMQ messaging service is exposed using an Openshift service managed by MetalLB:

CHAPTER 8. MONITORING HIGH AVAILBILITY SERVICES

83

$ oc get service -l app.kubernetes.io/name=rabbitmq
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
rabbitmq LoadBalancer 172.30.170.63 172.17.0.85
5671:31331/TCP,15671:31404/TCP,15691:31453/TCP 47h
rabbitmq-nodes ClusterIP None <none> 4369/TCP,25672/TCP 47h

For example, this MetalLB-managed service is called rabbitmq. This service acts as a load balancer
across the RabbitMQ pods. It has an IP address that listens to the internal API network so it is accessible
from the Openstack dataplane and controlplane. The MetalLB receives incoming traffic from the
internal API on 172.17.0.85, and forwards it to the service’s IP 172.30.170.63 which balances traffic to
rabbitmq pods:

$ oc describe service rabbitmq
Name: rabbitmq
Namespace: openstack
Labels: app.kubernetes.io/component=rabbitmq
 app.kubernetes.io/name=rabbitmq
 app.kubernetes.io/part-of=rabbitmq
Annotations: dnsmasq.network.openstack.org/hostname: rabbitmq.openstack.svc
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/ip-allocated-from-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.85
Selector: app.kubernetes.io/name=rabbitmq
Type: LoadBalancer
IP Family Policy: SingleStack
IP Families: IPv4
IP: 172.30.170.63
IPs: 172.30.170.63
LoadBalancer Ingress: 172.17.0.85
Port: amqps 5671/TCP
TargetPort: 5671/TCP
NodePort: amqps 31331/TCP
Endpoints: 192.168.16.69:5671,192.168.20.54:5671,192.168.24.45:5671

8.3. RHOSO MEMCACHED CLUSTERS

By default, all the OpenStack services in the control plane target a single memcached cluster that
contains three memcached servers. This cluster is configured using a single memcached resource
created by the openstack operator. The infra operator creates the pods that host the memcached
servers and the OpenShift service objects that expose the memcached service.

8.3.1. Monitoring memached startup

Procedure

To monitor the memcached startup, use the oc get memached command. You can view the the
startup state and service availability in the Message and Ready column:

$ oc get memcached
NAME READY MESSAGE
memcached True Setup complete

When a memached CR is marked as Ready, its associated pods are started and ready to accept traffic.

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

84

When a memached CR is marked as Ready, its associated pods are started and ready to accept traffic.
For example, here is a memcached cluster that is ready to accept traffic:

$ oc get pods -l memcached/name=memcached
NAME READY STATUS RESTARTS AGE
memcached-0 1/1 Running 0 2d4h
memcached-1 1/1 Running 0 15m
memcached-2 1/1 Running 0 15m

$ oc get service memcached
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
memcached ClusterIP None <none> 11211/TCP,11212/TCP 2d4h

The memcached pods are accessed directly by name through the Openstack components. The
memcached service is used only to maintain a list of DNS records for each memcached pod.

8.4. LISTING RHOSO CONTROL PLANE SERVICES PODS

You can list your control plane service pods to understand which pods are running on your control plane.

Procedure

Use the oc get pods command to list the pods:

$ oc get pods |egrep -e "galera|rabbit|memcache"
NAME READY STATUS RESTARTS AGE
memcached-0 1/1 Running 0 28m
memcached-1 1/1 Running 0 28m
memcached-2 1/1 Running 0 28m
openstack-cell1-galera-0 1/1 Running 0 28m
openstack-cell1-galera-1 1/1 Running 0 28m
openstack-cell1-galera-2 1/1 Running 0 28m
openstack-galera-0 1/1 Running 0 28m
openstack-galera-1 1/1 Running 0 28m
openstack-galera-2 1/1 Running 0 28m
rabbitmq-cell1-server-0 1/1 Running 0 28m
rabbitmq-cell1-server-1 1/1 Running 0 28m
rabbitmq-cell1-server-2 1/1 Running 0 28m
rabbitmq-server-0 1/1 Running 0 28m
rabbitmq-server-1 1/1 Running 0 28m
rabbitmq-server-2 1/1 Running 0 28m

8.5. LISTING THE RHOSO HIGH AVAILABILITY OPERATORS

You can view the operators that your environment currently uses.

Procedure

Use the following command to list these services:

$ oc get operators
NAME AGE
...

CHAPTER 8. MONITORING HIGH AVAILBILITY SERVICES

85

infra-operator.openstack-operators 9h
...
mariadb-operator.openstack-operators 9h
...
rabbitmq-cluster-operator.openstack-operators 9h

NOTE

The infra-operator is responsible for the Memcached service.

8.6. RETRIEVING INFORMATION ABOUT AN OPERATOR’S CUSTOM
RESOURCE

Procedure

1. Use the following command to view the custom resource definition that an operator
implements:

$ oc describe operator/infra-operator.openstack-operators |less
...
Status:
 Components:
...
 Kind: CustomResourceDefinition
 Name: memcacheds.memcached.openstack.org
...

2. Use the following command to retrieve information about a custom resource’s definition:

$ oc describe crd/galeras.mariadb.openstack.org
Name: galeras.mariadb.openstack.org
Namespace:
Labels: operators.coreos.com/mariadb-operator.openstack-operators=
Annotations: controller-gen.kubebuilder.io/version: v0.11.1
 operatorframework.io/installed-alongside-96a31840a95472ca: openstack-operators/mariadb-
operator.v0.0.1
API Version: apiextensions.k8s.io/v1
Kind: CustomResourceDefinition
Metadata:
 Creation Timestamp: 2024-03-21T22:08:06Z
 Generation: 1
 Resource Version: 64637
 UID: f68caee7-b4ec-4713-8095-c4ee9b1fd13e
Spec:
....

For more information about operators, see What are Operators?

8.7. RETRIEVING INFORMATION ABOUT AN OPERATOR’S
STATEFULSET

A statefulset manages the deployment and scaling of a set of pods. Each of the shared services

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

86

https://docs.openshift.com/container-platform/4.15/operators/understanding/olm-what-operators-are.html

A statefulset manages the deployment and scaling of a set of pods. Each of the shared services
Operators are responsible for creating and managing a statefulset.

Procedure

Use the oc get statefulset command to retrieve information about the Operators’ statefulset:

$ oc get statefulset |egrep -e "galera|rabbit|memcache"
NAME READY AGE
memcached 1/1 174m
openstack-cell1-galera 3/3 174m
openstack-galera 3/3 174m
rabbitmq-cell1-server 3/3 174m
rabbitmq-server 3/3 174m

8.8. RETRIEVING MORE INFORMATION ABOUT AN OPERATOR’S
STATEFULSET

You can retrieve the following information about the statefulset of each service:

Basic information about the service. For example, the number of the replicas

Actual container details. For example, environment variables

Volume details

Event details

Procedure

To retrieve more information about the Opertor’s statefulset, use the oc describe
statefulset/<operator_name>

Replace <opeartore_name> with the name of the operator you want to retrieve more information about.

8.8.1. Basic information about a service’s statefulset

The following example shows the basic information that you can retrieve about an operator:

Name: openstack-galera
Namespace: openstack
CreationTimestamp: Thu, 21 Mar 2024 08:39:59 -0400
Selector: app=galera,cr=galera-
openstack,galera/name=openstack,galera/namespace=openstack,galera/uid=1c93b3a3-1ac3-4f18-
984d-34e9ce9dc12f,owner=mariadb-operator
Labels: <none>
Annotations: <none>
Replicas: 3 desired | 3 total
Update Strategy: RollingUpdate
 Partition: 0
Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:
 Labels: app=galera
 cr=galera-openstack

CHAPTER 8. MONITORING HIGH AVAILBILITY SERVICES

87

 galera/name=openstack
 galera/namespace=openstack
 galera/uid=1c93b3a3-1ac3-4f18-984d-34e9ce9dc12f
 owner=mariadb-operator
 Service Account: galera-openstack
 Init Containers:
 mysql-bootstrap:
 Image: quay.io/podified-antelope-centos9/openstack-
mariadb@sha256:7fa37f7dcdd850fb6e401c4d5f76d16ad53ecdd14d6a130dbf61f02b819dcdf6
 Port: <none>
 Host Port: <none>
 Command:
 bash
 /var/lib/operator-scripts/mysql_bootstrap.sh
 Environment:
 KOLLA_BOOTSTRAP: True
 KOLLA_CONFIG_STRATEGY: COPY_ALWAYS
 DB_ROOT_PASSWORD: <set to the key 'DbRootPassword' in secret 'osp-secret'> Optional:
false
 Mounts:
 /var/lib/config-data/default from config-data-default (ro)
 /var/lib/config-data/generated from config-data-generated (rw)
 /var/lib/kolla/config_files from kolla-config (ro)
 /var/lib/mysql from mysql-db (rw)
 /var/lib/operator-scripts from operator-scripts (ro)
 /var/lib/secrets from secrets (ro)
... [cont]

8.8.2. Information about actual container of a service’s statefulset

The following example shows the information about the actual container that you can retrieve about an
operator:

 Containers:
 galera:
 Image: quay.io/podified-antelope-centos9/openstack-
mariadb@sha256:7fa37f7dcdd850fb6e401c4d5f76d16ad53ecdd14d6a130dbf61f02b819dcdf6
 Ports: 3306/TCP, 4567/TCP
 Host Ports: 0/TCP, 0/TCP
 Command:
 /usr/bin/dumb-init
 --
 /usr/local/bin/kolla_start
 Liveness: exec [/bin/bash /var/lib/operator-scripts/mysql_probe.sh liveness] delay=0s timeout=1s
period=10s #success=1 #failure=3
 Readiness: exec [/bin/bash /var/lib/operator-scripts/mysql_probe.sh readiness] delay=0s timeout=1s
period=10s #success=1 #failure=3
 Startup: exec [/bin/bash /var/lib/operator-scripts/mysql_probe.sh startup] delay=0s timeout=1s
period=10s #success=1 #failure=30
 Environment:
 CR_CONFIG_HASH:
n558hf6h557hcfh589h688h684hb6h687h679h659h554h64fh77h76h568h695h5b6h8fh79h5c8h648h67
4hdch556h56bh655h64bh655h66ch5h5c4q
 KOLLA_CONFIG_STRATEGY: COPY_ALWAYS
 DB_ROOT_PASSWORD: <set to the key 'DbRootPassword' in secret 'osp-secret'> Optional:

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

88

false
 Mounts:
 /etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem from combined-ca-bundle (ro,path="tls-ca-
bundle.pem")
 /var/lib/config-data/default from config-data-default (ro)
 /var/lib/config-data/generated from config-data-generated (rw)
 /var/lib/config-data/tls/certs/galera.crt from galera-tls-certs (ro,path="tls.crt")
 /var/lib/config-data/tls/private/galera.key from galera-tls-certs (ro,path="tls.key")
 /var/lib/kolla/config_files from kolla-config (ro)
 /var/lib/mysql from mysql-db (rw)
 /var/lib/operator-scripts from operator-scripts (ro)
 /var/lib/secrets from secrets (ro)
... [cont]

8.8.3. Information about the volumes of a service’s statefulset

The following example shows the information about the volumes of a service that you can retrieve about
an operator:

 Volumes:
 secrets:
 Type: Secret (a volume populated by a Secret)
 SecretName: osp-secret
 Optional: false
 kolla-config:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: openstack-config-data
 Optional: false
 config-data-generated:
 Type: EmptyDir (a temporary directory that shares a pod's lifetime)
 Medium:
 SizeLimit: <unset>
 config-data-default:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: openstack-config-data
 Optional: false
 operator-scripts:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: openstack-scripts
 Optional: false
 galera-tls-certs:
 Type: Secret (a volume populated by a Secret)
 SecretName: cert-galera-openstack-svc
 Optional: false
 combined-ca-bundle:
 Type: Secret (a volume populated by a Secret)
 SecretName: combined-ca-bundle
 Optional: false
Volume Claims:
 Name: mysql-db
 StorageClass: local-storage
 Labels: app=galera
 cr=galera-openstack
 galera/name=openstack
 galera/namespace=openstack

CHAPTER 8. MONITORING HIGH AVAILBILITY SERVICES

89

 galera/uid=1c93b3a3-1ac3-4f18-984d-34e9ce9dc12f
 owner=mariadb-operator
 Annotations: <none>
 Capacity: 5G
 Access Modes: [ReadWriteOnce]
... [cont]

8.8.4. Information about Event details of a service’s statefulset

The following example shows the Event details that you can retrieve about an operator:

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 179m statefulset-controller create Claim mysql-db-openstack-galera-0
Pod openstack-galera-0 in statefulset openstack-galera success
 Normal SuccessfulCreate 179m statefulset-controller create Pod openstack-galera-0 in
statefulset openstack-galera successful
 Normal SuccessfulCreate 179m statefulset-controller create Claim mysql-db-openstack-galera-1
Pod openstack-galera-1 in statefulset openstack-galera success
 Normal SuccessfulCreate 179m statefulset-controller create Claim mysql-db-openstack-galera-2
Pod openstack-galera-2 in statefulset openstack-galera success
 Normal SuccessfulCreate 179m statefulset-controller create Pod openstack-galera-1 in
statefulset openstack-galera successful
 Normal SuccessfulCreate 179m statefulset-controller create Pod openstack-galera-2 in
statefulset openstack-galera successful

8.9. CHECKING THE STATUS OF THE CONTROL PLANE

Each of the operators monitors the status of the pods that they manage. If necessary, they will take
appropriate actions with the target of keeping one replica with a status of “ready” and “running”.

Procedure

Use the oc get pods command to check the status of your control plane shared services:

oc get pods |egrep -e "galera|rabbit|memcache"
NAME READY STATUS RESTARTS AGE
memcached-0 1/1 Running 0 3h11m
memcached-1 1/1 Running 0 3h11m
memcached-2 1/1 Running 0 3h11m
openstack-cell1-galera-0 1/1 Running 0 3h11m
openstack-cell1-galera-1 1/1 Running 0 3h11m
openstack-cell1-galera-2 1/1 Running 0 3h11m
openstack-galera-0 1/1 Running 0 3h11m
openstack-galera-1 1/1 Running 0 3h11m
openstack-galera-2 1/1 Running 0 3h11m
rabbitmq-cell1-server-0 1/1 Running 0 3h11m
rabbitmq-cell1-server-1 1/1 Running 0 3h11m
rabbitmq-cell1-server-2 1/1 Running 0 3h11m
rabbitmq-server-0 1/1 Running 0 3h11m
rabbitmq-server-1 1/1 Running 0 3h11m
rabbitmq-server-2 1/1 Running 0 3h11m

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

90

8.9.1. Checking the status of a pod

Procedure

You can retrieve more information about a pod using the oc describe pod/<pod-name>
command.

NOTE

Replace <pod-name> with the name of the pod that you want to retrieve more
information about.

$ oc describe pod/rabbitmq-server-0
Name: rabbitmq-server-0
Namespace: openstack
Priority: 0
Service Account: rabbitmq-server
Node: master-2/192.168.111.22
Start Time: Thu, 21 Mar 2024 08:39:57 -0400
Labels: app.kubernetes.io/component=rabbitmq
 app.kubernetes.io/name=rabbitmq
 app.kubernetes.io/part-of=rabbitmq
 controller-revision-hash=rabbitmq-server-5c886b79b4
 statefulset.kubernetes.io/pod-name=rabbitmq-server-0
Annotations: k8s.ovn.org/pod-networks:
 {"default":{"ip_addresses":
["192.168.16.35/22"],"mac_address":"0a:58:c0:a8:10:23","gateway_ips":["192.168.16.1"],"routes":
[{"dest":"192.16...
 k8s.v1.cni.cncf.io/network-status:
 [{
 "name": "ovn-kubernetes",
 "interface": "eth0",
 "ips": [
 "192.168.16.35"
],
 "mac": "0a:58:c0:a8:10:23",
 "default": true,
 "dns": {}
 }]
 openshift.io/scc: restricted-v2
 seccomp.security.alpha.kubernetes.io/pod: runtime/default
Status: Running
...

8.10. EXPOSURE OF EACH SERVICE THROUGH CLUSTERIP OR
LOADBALANCER

The ClusterIP or the LoadBalancer exposes each service.

To retrieve more information about the clustertips of the loadbalancers that expose a service,
use the following command:

$ oc get svc |egrep -e "rabbit|galera|memcache"

CHAPTER 8. MONITORING HIGH AVAILBILITY SERVICES

91

memcached ClusterIP None <none> 11211/TCP openstack-cell1-galera
ClusterIP None <none> 3306/TCP
openstack-galera ClusterIP None <none> 3306/TCP
rabbitmq LoadBalancer 172.30.21.129 172.17.0.85
5672:31952/TCP,15672:30111/TCP,15692:30081/TCP
rabbitmq-cell1 LoadBalancer 172.30.97.190 172.17.0.86
5672:30043/TCP,15672:30645/TCP,15692:32654/TCP
rabbitmq-cell1-nodes ClusterIP None <none> 4369/TCP,25672/TCP
rabbitmq-nodes ClusterIP None <none> 4369/TCP,25672/TCP

For more information about the OpenShift capabilities that you can use to expose the services, see
About networking.

Use the following command to retrieve more information about a service:

$ oc describe svc/rabbitmq
Name: rabbitmq
Namespace: openstack
Labels: app.kubernetes.io/component=rabbitmq
 app.kubernetes.io/name=rabbitmq
 app.kubernetes.io/part-of=rabbitmq
Annotations: dnsmasq.network.openstack.org/hostname: rabbitmq.openstack.svc
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/ip-allocated-from-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.85
Selector: app.kubernetes.io/name=rabbitmq
Type: LoadBalancer
IP Family Policy: SingleStack
IP Families: IPv4
IP: 172.30.21.129
IPs: 172.30.21.129
LoadBalancer Ingress: 172.17.0.85
Port: amqp 5672/TCP
TargetPort: 5672/TCP
NodePort: amqp 31952/TCP
Endpoints: 192.168.16.43:5672,192.168.20.69:5672,192.168.24.53:5672
Port: management 15672/TCP
TargetPort: 15672/TCP
NodePort: management 30111/TCP
Endpoints: 192.168.16.43:15672,192.168.20.69:15672,192.168.24.53:15672
Port: prometheus 15692/TCP
TargetPort: 15692/TCP
NodePort: prometheus 30081/TCP
Endpoints: 192.168.16.43:15692,192.168.20.69:15692,192.168.24.53:15692
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

8.11. TESTING THE RESILIENCE OF THE CONTROL PLANE

To test that the control plane shared services are resilient to container failures, you can simulate a
failure.

Procedure

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

92

https://docs.openshift.com/container-platform/4.12/networking/about-networking.html

To simulate a failure, you can use the following command to delete one of the pods:

$ oc delete pod/rabbitmq-server-1
pod "rabbitmq-server-1" deleted

After you delete the pod, the “rabbitmq-server-1” pod is immediately rescheduled:

$ oc get pods |grep -rabbit
rabbitmq-cell1-server-0 1/1 Running 0 4h20m
rabbitmq-cell1-server-1 1/1 Running 0 4h20m
rabbitmq-cell1-server-2 1/1 Running 0 4h20m
rabbitmq-server-0 1/1 Running 0 4h20m
rabbitmq-server-1 0/1 Init:0/1 0 2s
rabbitmq-server-2 1/1 Running 0 4h20m

After a few seconds, the pod should have the status of running:

[zuul@controller-0 ~]$ oc get pods |grep rabbit
rabbitmq-cell1-server-0 1/1 Running 0 4h23m
rabbitmq-cell1-server-1 1/1 Running 0 4h23m
rabbitmq-cell1-server-2 1/1 Running 0 4h23m
rabbitmq-server-0 1/1 Running 0 4h23m
rabbitmq-server-1 1/1 Running 0 3m8s
rabbitmq-server-2 1/1 Running 0 4h23m

8.11.1. The Taint-Based Evictions feature

By default, The Taint-Based Evictions feature evicts pods from a node that experiences specific
conditions like not-ready and unreachable. When a node experiences one of these conditions, OCP
adds taints to the node, evicts the pods, and then reschedules the pods on different nodes.

Also, Taint-Based Evictions have a NoExecute effect. Any pod that does not tolerate the taint is evicted
immediately and any pod that does tolerate the taint will never be evicted, unless the pod uses the
tolerationSeconds parameter.

Use the tolerationSeconds parameter to specify how long a pod stays bound to a node that has a node
condition. If the condition still exists after the tolerationSeconds period, the taint remains on the node
and the pods with a matching toleration are evicted. If the condition clears before the tolerationSeconds
period, pods with matching tolerations are not removed.

OpenShift Container Platform adds a toleration for node.kubernetes.io/not-ready and
node.kubernetes.io/unreachable with tolerationSeconds=300, unless the Pod configuration specifies
either toleration.

IMPORTANT

RHOSO 18.0 operators do not modify the default tolerationSeconds values. Pods that
run on a faulty worker node take more than five minutes to be rescheduled.

For more information about Remediation, fencing, and maintenance, see Remediation, fencing, and
maintenance

CHAPTER 8. MONITORING HIGH AVAILBILITY SERVICES

93

https://access.redhat.com/documentation/en-us/workload_availability_for_red_hat_openshift/24.1/html/remediation_fencing_and_maintenance/index

1

2

CHAPTER 9. COLLECTING DIAGNOSTIC INFORMATION FOR
SUPPORT

Use the Red Hat OpenStack Services on OpenShift (RHOSO) must-gather tool to collect diagnostic
information about your Red Hat OpenShift Container Platform (RHOCP) cluster, including the RHOSO
control plane and the deployed RHOSO services. Use the RHOCP sosreport tool to collect diagnostic
information about your RHOSO data plane.

9.1. COLLECTING DATA ON THE RHOSO CONTROL PLANE

You can use the Red Hat OpenStack Services on OpenShift (RHOSO) must-gather tool to collect the
following information about your Red Hat OpenShift Container Platform (RHOCP) cluster to
troubleshoot service failures:

The RHOSO control plane service logs.

The configuration of RHOSO control plane services, such as the RHOCP Secrets and
ConfigMaps.

Status of the services that are deployed in the RHOSO control plane.

The RHOSO generated Custom Resource Definitions (CRDs).

The RHOSO control plane applied Custom Resources (CRs).

The openstack and openstack-operators namespaces.

RHOCP Events that are related to the RHOSO namespaces.

Prerequisites

Access to the cluster as a user with cluster-admin privileges.

Procedure

1. Navigate to the directory where you want to store the must-gather data.

2. Pass one or more images or image streams to the must-gather tool to specify the data to
collect. For example, the following command gathers both the default cluster data and the
information that is specific to the deployed RHOSO control plane:

$ oc adm must-gather \
 --image-stream=openshift/must-gather \ 1
 --image=registry.redhat.io/openstack-k8s-operators/openstack-must-gather 2

The default RHOCP must-gather image that is used to gather RHOCP cluster
information.

The RHOSO must-gather image.

This command creates a local directory that stores the logs, services configuration, and the
status of the RHOSO control plane services.

Red Hat OpenStack Services on OpenShift 18.0-beta Deploying Red Hat OpenStack Services on OpenShift

94

9.2. COLLECTING DATA ON THE RHOSO DATA PLANE NODES

The data plane nodes are RHEL nodes where the Compute service (nova) runs, and the Ceph daemons
in an HCI environment. The must-gather tool collects the Red Hat OpenShift Container Platform
(RHOCP) information that is generated in the control plane, but it does not gather the logs for the data
plane nodes. To diagnose and troubleshoot issues on the data plane, Red Hat Support requires regular
SOS reports to gather the data of the services that are deployed in the data plane nodes.

For information on how to use the SOS report tool, see Getting the most from your Support experience .

CHAPTER 9. COLLECTING DIAGNOSTIC INFORMATION FOR SUPPORT

95

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/getting_the_most_from_your_support_experience/index

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INSTALLING AND PREPARING THE OPERATORS
	1.1. PREREQUISITES
	1.2. INSTALLING THE OPENSTACK OPERATOR

	CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT
	2.1. CONFIGURING RED HAT OPENSHIFT CONTAINER PLATFORM NODES FOR A RED HAT OPENSTACK PLATFORM DEPLOYMENT
	2.2. PROVIDING SECURE ACCESS TO THE RED HAT OPENSTACK SERVICES ON OPENSHIFT SERVICES
	2.3. DEFAULT RED HAT OPENSTACK PLATFORM NETWORKS
	2.4. PREPARING RHOCP FOR RHOSO NETWORK ISOLATION
	2.5. CONFIGURING THE DATA PLANE NETWORK
	2.6. CREATING A STORAGE CLASS

	CHAPTER 3. CREATING THE CONTROL PLANE
	3.1. PREREQUISITES
	3.2. CREATING THE CONTROL PLANE
	3.3. EXAMPLE OPENSTACKCONTROLPLANE CR FOR A CORE CONTROL PLANE
	3.4. ADDING THE BARE METAL PROVISIONING SERVICE (IRONIC) TO THE CONTROL PLANE
	3.5. ADDING COMPUTE CELLS TO THE CONTROL PLANE
	3.6. ENABLING THE DASHBOARD SERVICE (HORIZON) INTERFACE
	3.7. ADDITIONAL RESOURCES

	CHAPTER 4. CREATING THE DATA PLANE
	4.1. PREREQUISITES
	4.2. CREATING THE SSH KEY SECRETS
	4.3. CREATING A SET OF DATA PLANE NODES
	4.4. DATA PLANE SERVICES
	4.4.1. Creating a custom service
	4.4.2. Configuring a node set for a Compute feature or workload
	4.4.3. Building a custom ansible-runner image

	4.5. DEPLOYING THE DATA PLANE
	4.6. OPENSTACKDATAPLANENODESET CR PROPERTIES
	4.7. EXAMPLE OPENSTACKDATAPLANENODESET CR FOR PRE-PROVISIONED NODES
	4.8. EXAMPLE OPENSTACKDATAPLANENODESET CR FOR BARE-METAL NODES
	4.9. DATA PLANE CONDITIONS AND STATES
	4.10. PROVISIONING BARE-METAL DATA PLANE NODES
	4.11. TROUBLESHOOTING DATA PLANE CREATION AND DEPLOYMENT

	CHAPTER 5. CUSTOMIZING RED HAT OPENSTACK ON OPENSHIFT OBSERVABILITY
	5.1. CONFIGURING RED HAT OPENSTACK ON OPENSHIFT OBSERVABILITY

	CHAPTER 6. ADDING CUSTOM TLS CERTIFICATES FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT
	6.1. UPDATING THE CONTROL PLANE WITH CUSTOM CERTIFICATES FOR PUBLIC SERVICES

	CHAPTER 7. ACCESSING THE RHOSO CLOUD
	7.1. ACCESSING THE OPENSTACKCLIENT POD
	7.2. ACCESSING THE DASHBOARD SERVICE (HORIZON) INTERFACE

	CHAPTER 8. MONITORING HIGH AVAILBILITY SERVICES
	8.1. RHOSO GALERA CLUSTERS
	8.1.1. Monitoring Galera startup

	8.2. RHOSO RABBITMQ CLUSTERS
	8.2.1. Monitoring the RabbitMQ operator’s startup

	8.3. RHOSO MEMCACHED CLUSTERS
	8.3.1. Monitoring memached startup

	8.4. LISTING RHOSO CONTROL PLANE SERVICES PODS
	8.5. LISTING THE RHOSO HIGH AVAILABILITY OPERATORS
	8.6. RETRIEVING INFORMATION ABOUT AN OPERATOR’S CUSTOM RESOURCE
	8.7. RETRIEVING INFORMATION ABOUT AN OPERATOR’S STATEFULSET
	8.8. RETRIEVING MORE INFORMATION ABOUT AN OPERATOR’S STATEFULSET
	8.8.1. Basic information about a service’s statefulset
	8.8.2. Information about actual container of a service’s statefulset
	8.8.3. Information about the volumes of a service’s statefulset
	8.8.4. Information about Event details of a service’s statefulset

	8.9. CHECKING THE STATUS OF THE CONTROL PLANE
	8.9.1. Checking the status of a pod

	8.10. EXPOSURE OF EACH SERVICE THROUGH CLUSTERIP OR LOADBALANCER
	8.11. TESTING THE RESILIENCE OF THE CONTROL PLANE
	8.11.1. The Taint-Based Evictions feature

	CHAPTER 9. COLLECTING DIAGNOSTIC INFORMATION FOR SUPPORT
	9.1. COLLECTING DATA ON THE RHOSO CONTROL PLANE
	9.2. COLLECTING DATA ON THE RHOSO DATA PLANE NODES

