
Red Hat OpenStack Services on
OpenShift 18.0

Configuring networking services

Configuring the Networking service (neutron) for managing networking traffic in a
Red Hat OpenStack Services on OpenShift environment

Last Updated: 2024-08-28

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking
services

Configuring the Networking service (neutron) for managing networking traffic in a Red Hat
OpenStack Services on OpenShift environment

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Configure your Networking service (neutron) in a Red Hat OpenStack Services on OpenShift
environment.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO OPENSTACK NETWORKING
1.1. MANAGING YOUR RHOSO NETWORKS
1.2. NETWORKING SERVICE COMPONENTS
1.3. MODULAR LAYER 2 (ML2) NETWORKING
1.4. ML2 NETWORK TYPES
1.5. EXTENSION DRIVERS FOR THE RHOSO NETWORKING SERVICE

CHAPTER 2. WORKING WITH ML2/OVN
2.1. OPEN VIRTUAL NETWORK (OVN)
2.2. LIST OF COMPONENTS IN THE RHOSO OVN ARCHITECTURE
2.3. LAYER 3 HIGH AVAILABILITY WITH OVN
2.4. ACTIVE-ACTIVE CLUSTERED DATABASE SERVICE MODEL
2.5. SR-IOV WITH ML2/OVN AND NATIVE OVN DHCP

CHAPTER 3. CUSTOMIZING DATA PLANE NETWORKS
3.1. APPLYING CUSTOM NETWORK CONFIGURATION TO A NODE SET
3.2. NETWORK INTERFACE CONFIGURATION OPTIONS

3.2.1. interface
3.2.2. vlan
3.2.3. ovs_bridge
3.2.4. Network interface bonding

3.2.4.1. ovs_bond
3.2.5. LACP with OVS bonding modes
3.2.6. linux_bond
3.2.7. routes

3.3. EXAMPLE CUSTOM NETWORK INTERFACES

CHAPTER 4. MANAGING PROJECT NETWORKS
4.1. VLAN PLANNING
4.2. DEFAULT RED HAT OPENSTACK SERVICES ON OPENSHIFT NETWORKS
4.3. IP ADDRESS CONSUMPTION
4.4. VIRTUAL NETWORKING
4.5. EXAMPLE NETWORK PLAN
4.6. WORKING WITH SUBNETS
4.7. CONFIGURING FLOATING IP PORT FORWARDING
4.8. BRIDGING THE PHYSICAL NETWORK

CHAPTER 5. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC
5.1. QOS RULES
5.2. CONFIGURING THE NETWORKING SERVICE FOR QOS POLICIES
5.3. CONFIGURING THE NETWORKING SERVICE FOR QOS POLICIES FOR SR-IOV

CHAPTER 6. VLAN-AWARE INSTANCES
6.1. VLAN TRUNKS AND VLAN TRANSPARENT NETWORKS
6.2. ENABLING VLAN TRANSPARENCY

CHAPTER 7. CONFIGURING RBAC POLICIES
7.1. CREATING RBAC POLICIES
7.2. REVIEWING RBAC POLICIES
7.3. DELETING RBAC POLICIES
7.4. GRANTING RBAC POLICY ACCESS FOR EXTERNAL NETWORKS

4

5
5
6
6
6
7

8
8
8

10
11
11

12
12
14
14
16
17

20
20
23
25
28
29

31
31
31
32
33
33
34
34
35

37
37
38
41

45
45
45

48
48
49
50
51

Table of Contents

1

. .CHAPTER 8. COMMON ADMINISTRATIVE NETWORKING TASKS
8.1. CONFIGURING SHARED SECURITY GROUPS
8.2. SPECIFYING THE NAME THAT DNS ASSIGNS TO PORTS
8.3. ENABLING NUMA AFFINITY ON PORTS

53
53
55
57

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

2

Table of Contents

3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation for Red Hat OpenStack Services
on OpenShift (RHOSO) or earlier releases of Red Hat OpenStack Platform (RHOSP). When you create
an issue for RHOSO or RHOSP documents, the issue is recorded in the RHOSO Jira project, where you
can track the progress of your feedback.

To complete the Create Issue form, ensure that you are logged in to Jira. If you do not have a Red Hat
Jira account, you can create an account at https://issues.redhat.com.

1. Click the following link to open a Create Issue page: Create Issue

2. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

3. Click Create.

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

4

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. INTRODUCTION TO OPENSTACK NETWORKING
The Networking service (neutron) is the software-defined networking (SDN) component of Red Hat
OpenStack Services on OpenShift (RHOSO). The RHOSO Networking service manages internal and
external traffic to and from virtual machine instances and provides core services such as routing,
segmentation, DHCP, and metadata. It provides the API for virtual networking capabilities and
management of switches, routers, ports, and firewalls.

1.1. MANAGING YOUR RHOSO NETWORKS

With the Red Hat OpenStack Services on OpenShift (RHOSO) Networking service (neutron) you can
effectively meet your site’s networking goals. You can do the following tasks:

Provide connectivity to VM instances within a project.
Project networks primarily enable general (non-privileged) projects to manage networks
without involving administrators. These networks are entirely virtual and require virtual routers
to interact with other project networks and external networks such as the Internet. Project
networks also usually provide DHCP and metadata services to VM (virtual machine) instances.
RHOSO supports the following project network types: flat, VLAN, and GENEVE.

For more information, see Managing project networks.

Secure your network at the port level.
Security groups provide a container for virtual firewall rules that control ingress (inbound to
instances) and egress (outbound from instances) network traffic at the port level. Security
groups use a default deny policy and only contain rules that allow specific traffic. Each port can
reference one or more security groups in an additive fashion. ML2/OVN uses the Open vSwitch
firewall driver to translate security group rules to a configuration.

By default, security groups are stateful. In ML2/OVN deployments, you can also create stateless
security groups. A stateless security group can provide significant performance benefits. Unlike
stateful security groups, stateless security groups do not automatically allow returning traffic, so
you must create a complimentary security group rule to allow the return of related traffic.

For more information, see Configuring shared security groups .

Set ingress and egress limits for traffic on VM instances.
You can offer varying service levels for instances by using quality of service (QoS) policies to
apply rate limits to egress and ingress traffic. You can apply QoS policies to individual ports. You
can also apply QoS policies to a project network, where ports with no specific policy attached
inherit the policy.

For more information, see Configuring Quality of Service (QoS) policies .

Optimize your VM instances for Network Functions Virtualization (NFV).
Instances can send and receive VLAN-tagged traffic over a single virtual NIC. This is particularly
useful for NFV applications (VNFs) that expect VLAN-tagged traffic, allowing a single virtual
NIC to serve multiple customers or services.

In a VLAN transparent network, you set up VLAN tagging in the VM instances. The VLAN tags
are transferred over the network and consumed by the VM instances on the same VLAN, and
ignored by other instances and devices. VLAN trunks support VLAN-aware instances by
combining VLANs into a single trunked port.

For more information, see VLAN-aware instances.

CHAPTER 1. INTRODUCTION TO OPENSTACK NETWORKING

5

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_networking_services/manage-proj-network_rhoso-cfg-network
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_networking_services/common-network-tasks_rhoso-cfg-network#config-shared-security-groups_common-network-tasks
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_networking_services/config-qos-policies_rhoso-cfg-network
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_networking_services/vlan-aware-instances_rhoso-cfg-network

Control which projects can attach instances to a shared network.
Using role-based access control (RBAC) policies in the RHOSO Networking service, cloud
administrators can remove the ability for some projects to create networks and can instead
allow them to attach to pre-existing networks that correspond to their project.

For more information, see Configuring RBAC policies .

1.2. NETWORKING SERVICE COMPONENTS

The Red Hat OpenStack Services on OpenShift (RHOSO) Networking service (neutron) includes the
following components:

API server
The RHOSO networking API includes support for Layer 2 networking and IP Address
Management (IPAM), as well as an extension for a Layer 3 router construct that enables routing
between Layer 2 networks and gateways to external networks. RHOSO networking includes a
growing list of plug-ins that enable interoperability with various commercial and open source
network technologies, including routers, switches, virtual switches and software-defined
networking (SDN) controllers.

Modular Layer 2 (ML2) plug-in and agents
ML2 plugs and unplugs ports, creates networks or subnets, and provides IP addressing.

Messaging queue
Accepts and routes RPC requests between RHOSO services to complete API operations.

1.3. MODULAR LAYER 2 (ML2) NETWORKING

Modular Layer 2 (ML2) is the Red Hat OpenStack Services on OpenShift (RHOSO) networking core
plug-in. The ML2 modular design enables the concurrent operation of mixed network technologies
through mechanism drivers. Open Virtual Network (OVN) is the default mechanism driver used with
ML2.

The ML2 framework distinguishes between the two kinds of drivers that can be configured:

Type drivers

Define how an RHOSO network is technically realized.
Each available network type is managed by an ML2 type driver, and they maintain any required type-
specific network state. Validating the type-specific information for provider networks, type drivers
are responsible for the allocation of a free segment in project networks. Examples of type drivers are
GENEVE, VLAN, and flat networks.

Mechanism drivers

Define the mechanism to access an RHOSO network of a certain type.
The mechanism driver takes the information established by the type driver and applies it to the
networking mechanisms that have been enabled. RHOSO uses the OVN mechanism driver.

Mechanism drivers can employ L2 agents, and by using RPC interact directly with external devices or
controllers. You can use multiple mechanism and type drivers simultaneously to access different
ports of the same virtual network.

1.4. ML2 NETWORK TYPES

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

6

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_networking_services/config-rbac-policies_rhoso-cfg-network

You can operate multiple network segments at the same time. ML2 supports the use and
interconnection of multiple network segments. You don’t have to bind a port to a network segment
because ML2 binds ports to segments with connectivity. Depending on the mechanism driver, ML2
supports the following network segment types:

Flat

VLAN

GENEVE tunnels

Flat

All virtual machine (VM) instances reside on the same network, which can also be shared with the
hosts. No VLAN tagging or other network segregation occurs.

VLAN

With RHOSO networking users can create multiple provider or project networks using VLAN IDs
(802.1Q tagged) that correspond to VLANs present in the physical network. This allows instances to
communicate with each other across the environment. They can also communicate with dedicated
servers, firewalls, load balancers and other network infrastructure on the same Layer 2 VLAN.
You can use VLANs to segment network traffic for computers running on the same switch. This
means that you can logically divide your switch by configuring the ports to be members of different
networks — they are basically mini-LANs that you can use to separate traffic for security reasons.

For example, if your switch has 24 ports in total, you can assign ports 1-6 to VLAN200, and ports 7-18
to VLAN201. As a result, computers connected to VLAN200 are completely separate from those on
VLAN201; they cannot communicate directly, and if they wanted to, the traffic must pass through a
router as if they were two separate physical switches. Firewalls can also be useful for governing which
VLANs can communicate with each other.

GENEVE tunnels

Generic Network Virtualization Encapsulation (GENEVE) recognizes and accommodates changing
capabilities and needs of different devices in network virtualization. It provides a framework for
tunneling rather than being prescriptive about the entire system. GENEVE defines the content of the
metadata flexibly that is added during encapsulation and tries to adapt to various virtualization
scenarios. It uses UDP as its transport protocol and is dynamic in size using extensible option
headers. GENEVE supports unicast, multicast, and broadcast. The GENEVE type driver is compatible
with the ML2/OVN mechanism driver.

1.5. EXTENSION DRIVERS FOR THE RHOSO NETWORKING SERVICE

The Red Hat OpenStack Services on OpenShift (RHOSO) Networking service (neutron) is extensible.
Extensions serve two purposes: they allow the introduction of new features in the API without requiring a
version change and they allow the introduction of vendor specific niche functionality. Applications can
programmatically list available extensions by performing a GET on the /extensions URI. Note that this is
a versioned request; that is, an extension available in one API version might not be available in another.

The ML2 plug-in also supports extension drivers that allows other pluggable drivers to extend the core
resources implemented in the ML2 plug-in for network objects. Examples of extension drivers include
support for QoS, port security, and so on.

CHAPTER 1. INTRODUCTION TO OPENSTACK NETWORKING

7

CHAPTER 2. WORKING WITH ML2/OVN
Red Hat OpenStack Services on OpenShift (RHOSO) networks are managed by the Networking service
(neutron). The core of the Networking service is the Modular Layer 2 (ML2) plug-in, and the default
mechanism driver for RHOSO ML2 plug-in is the Open Virtual Networking (OVN) mechanism driver.

2.1. OPEN VIRTUAL NETWORK (OVN)

Open Virtual Network (OVN), is a system to support logical network abstraction in virtual machine and
container environments. OVN is used as the mechanism driver for the Red Hat OpenStack Services on
OpenShift (RHOSO) Networking service (neutron).

Sometimes called open source virtual networking for Open vSwitch (OVS), OVN complements the
existing capabilities of OVS to add native support for logical network abstractions, such as logical L2
and L3 overlays, security groups and services such as DHCP.

A physical network comprises physical wires, switches, and routers. A virtual network extends a physical
network into a hypervisor or container platform, bridging VMs or containers into the physical network.
An OVN logical network is a network implemented in software that is insulated from physical networks by
tunnels or other encapsulations. This allows IP and other address spaces used in logical networks to
overlap with those used on physical networks without causing conflicts. Logical network topologies can
be arranged without regard for the topologies of the physical networks on which they run. Thus, VMs
that are part of a logical network can migrate from one physical machine to another without network
disruption.

The encapsulation layer prevents VMs and containers connected to a logical network from
communicating with nodes on physical networks. For clustering VMs and containers, this can be
acceptable or even desirable, but in many cases VMs and containers do need connectivity to physical
networks. OVN provides multiple forms of gateways for this purpose.

An OVN deployment consists of several components:

Cloud Management System (CMS)

integrates OVN into a physical network by managing the OVN logical network elements and
connecting the OVN logical network infrastructure to physical network elements. Some examples
include OpenStack and OpenShift.

OVN databases

stores data representing the OVN logical and physical networks.

Hypervisors

run Open vSwitch and translate the OVN logical network into OpenFlow on a physical or virtual
machine.

Gateways

extends a tunnel-based OVN logical network into a physical network by forwarding packets between
tunnels and the physical network infrastructure.

2.2. LIST OF COMPONENTS IN THE RHOSO OVN ARCHITECTURE

Open Virtual Network (OVN) provides networking services for Red Hat OpenStack Services on
OpenShift (RHOSO) environments. The OVN architecture consists of the following components and
services:

Networking service

This service runs the OpenStack Networking API server, which provides the API for end-users and

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

8

This service runs the OpenStack Networking API server, which provides the API for end-users and
services to interact with OpenStack Networking. This server also integrates with the underlying
database to store and retrieve project network, router, and load balancer details, among others.

Compute node

This node hosts the hypervisor that runs the virtual machines, also known as instances. A Compute
node must be wired directly to the network in order to provide external connectivity for instances.

ML2 plug-in with OVN mechanism driver

The ML2 plug-in translates the OpenStack-specific networking configuration into the platform-
neutral OVN logical networking configuration. It typically runs on the RHOSO control plane on
OpenShift worker nodes.

OVN northbound (NB) database (ovn-nb)

This database stores the logical OVN networking configuration from the OVN ML2 plugin. It typically
runs on the RHOSO control plane and listens on TCP port 6641.
The northbound database (OVN_Northbound) serves as the interface between OVN and a cloud
management system such as RHOSO. RHOSO produces the contents of the northbound database.

The northbound database contains the current desired state of the network, presented as a
collection of logical ports, logical switches, logical routers, and more. Every RHOSO Networking
service (neutron) object is represented in a table in the northbound database.

OVN northbound service (ovn-northd)

This service converts the logical networking configuration from the OVN NB database to the logical
data path flows and populates these on the OVN Southbound database. It typically runs on the
RHOSO control plane.

OVN southbound (SB) database (ovn-sb)

This database stores the converted logical data path flows. It typically runs on the RHOSO control
plane and listens on TCP port 6642.
The southbound database (OVN_Southbound) holds the logical and physical configuration state for
OVN system to support virtual network abstraction. The ovn-controller uses the information in this
database to configure OVS to satisfy Networking service (neutron) requirements.

NOTE

The schema file for the NB database is located in /usr/share/ovn/ovn-nb.ovsschema,
and the SB database schema file is in /usr/share/ovn/ovn-sb.ovsschema.

OVS database server (OVSDB)

Hosts the OVN Northbound and Southbound databases. Also interacts with ovs-vswitchd to host
the OVS database conf.db.

OVN controller (ovn-controller)

This controller connects to the OVN SB database and acts as the open vSwitch controller to control
and monitor network traffic. It runs on all Compute and gateway nodes.

OVN metadata agent (ovn-metadata-agent)

This agent creates the haproxy instances for managing the OVS interfaces, network namespaces
and HAProxy processes used to proxy metadata API requests. The agent runs on all Compute and
gateway nodes.
The OVN Networking service creates a unique network namespace for each virtual network that
enables the metadata service. Each network accessed by the instances on the Compute node has a
corresponding metadata namespace (ovnmeta-<network_uuid>).

CHAPTER 2. WORKING WITH ML2/OVN

9

OpenStack guest instances access the Networking metadata service available at the link-local IP
address: 169.254.169.254. The neutron-ovn-metadata-agent has access to the host networks where
the Compute metadata API exists. Each HAProxy is in a network namespace that is not able to reach
the appropriate host network. HaProxy adds the necessary headers to the metadata API request and
then forwards the request to the neutron-ovn-metadata-agent over a UNIX domain socket.

2.3. LAYER 3 HIGH AVAILABILITY WITH OVN

OVN supports Layer 3 high availability (L3 HA) without any special configuration in Red Hat OpenStack
Services on OpenShift (RHOSO) environments,

NOTE

When you create a router, do not use --ha option because OVN routers are highly
available by default. Openstack router create commands that include the --ha option
fail.

OVN automatically schedules the router port to all available gateway nodes that can act as an L3
gateway on the specified external network. OVN L3 HA uses the gateway_chassis column in the OVN
Logical_Router_Port table. Most functionality is managed by OpenFlow rules with bundled
active_passive outputs. The ovn-controller handles the Address Resolution Protocol (ARP) responder
and router enablement and disablement. Gratuitous ARPs for FIPs and router external addresses are
also periodically sent by the ovn-controller.

NOTE

L3HA uses OVN to balance the routers back to the original gateway nodes to avoid any
nodes becoming a bottleneck.

BFD monitoring

OVN uses the Bidirectional Forwarding Detection (BFD) protocol to monitor the availability of the
gateway nodes. This protocol is encapsulated on top of the GENEVE tunnels established from node to
node.

Each gateway node monitors all the other gateway nodes in a star topology in the deployment. Gateway
nodes also monitor the compute nodes to let the gateways enable and disable routing of packets and
ARP responses and announcements.

Each compute node uses BFD to monitor each gateway node and automatically steers external traffic,
such as source and destination Network Address Translation (SNAT and DNAT), through the active
gateway node for a given router. Compute nodes do not need to monitor other compute nodes.

NOTE

External network failures are not detected as would happen with an ML2-OVS
configuration.

L3 HA for OVN supports the following failure modes:

The gateway node becomes disconnected from the network (tunneling interface).

ovs-vswitchd stops (ovs-switchd is responsible for BFD signaling)

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

10

ovn-controller stops (ovn-controller removes itself as a registered node).

NOTE

This BFD monitoring mechanism only works for link failures, not for routing failures.

2.4. ACTIVE-ACTIVE CLUSTERED DATABASE SERVICE MODEL

On Red Hat OpenStack Services on OpenShift (RHOSO) environments, OVN uses a clustered database
service model that applies the Raft consensus algorithm to enhance performance of OVS database
protocol traffic and provide faster, more reliable failover handling.

A clustered database operates on a cluster of at least three database servers on different hosts. Servers
use the Raft consensus algorithm to synchronize writes and share network traffic continuously across
the cluster. The cluster elects one server as the leader. All servers in the cluster can handle database
read operations, which mitigates potential bottlenecks on the control plane. Write operations are
handled by the cluster leader.

If a server fails, a new cluster leader is elected and the traffic is redistributed among the remaining
operational servers. The clustered database service model handles failovers more efficiently than the
pacemaker-based model did. This mitigates related downtime and complications that can occur with
longer failover times.

The leader election process requires a majority, so the fault tolerance capacity is limited by the highest
odd number in the cluster. For example, a three-server cluster continues to operate if one server fails. A
five-server cluster tolerates up to two failures. Increasing the number of servers to an even number does
not increase fault tolerance. For example, a four-server cluster cannot tolerate more failures than a
three-server cluster.

Most RHOSO deployments use three servers.

Clusters larger than five servers also work, with every two added servers allowing the cluster to tolerate
an additional failure, but write performance decreases.

2.5. SR-IOV WITH ML2/OVN AND NATIVE OVN DHCP

You can deploy a custom node set to use SR-IOV in an ML2/OVN deployment with native OVN DHCP
in Red Hat OpenStack Services on OpenShift (RHOSO) environments.

Limitations

The following limitations apply to the use of SR-IOV with ML2/OVN and native OVN DHCP in this
release.

All external ports are scheduled on a single gateway node because there is only one HA Chassis
Group for all of the ports.

North/south routing on VF(direct) ports on VLAN tenant networks does not work with SR-IOV
because the external ports are not colocated with the logical router’s gateway ports. See
https://bugs.launchpad.net/neutron/+bug/1875852.

CHAPTER 2. WORKING WITH ML2/OVN

11

https://bugs.launchpad.net/neutron/+bug/1875852

CHAPTER 3. CUSTOMIZING DATA PLANE NETWORKS
In a Red Hat OpenStack Services on OpenShift (RHOSO) environment, the network configuration
applied by default to the data plane nodes is the single NIC VLANs configuration. However, you can
modify the network configuration that the OpenStack Operator applies.

3.1. APPLYING CUSTOM NETWORK CONFIGURATION TO A NODE SET

You can customize the network configuration for each data plane node set in your Red Hat OpenStack
Services on OpenShift (RHOSO) environment.

Prerequisites

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Open the OpenStackDataPlaneNodeSet CR definition file for the node set you want to
update, for example, my_data_plane_node_set.yaml.

2. Add the required network configuration or modify the existing configuration. Place the
configuration in the edpm_network_config_template under ansibleVars:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: my-data-plane-node-set
spec:
 ...
 nodeTemplate:
 ...
 ansible:
 ansibleVars:
 edpm_network_config_template: |

 Network configuration options here
 ...

When modifying your network configuration, refer to Section 3.2, “Network interface
configuration options”.

3. Save the OpenStackDataPlaneNodeSet CR definition file.

4. Apply the updated OpenStackDataPlaneNodeSet CR configuration:

5. Verify that the data plane resource has been updated:

$ oc apply -f my_data_plane_node_set.yaml

$ oc get openstackdataplanenodeset

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

12

Sample output

6. Create a file on your workstation to define the OpenStackDataPlaneDeployment CR, for
example, my_data_plane_deploy.yaml:

TIP

Give the definition file and the OpenStackDataPlaneDeployment CR a unique and descriptive
name that indicates the purpose of the modified node set.

7. Add the OpenStackDataPlaneNodeSet CR that you modified:

8. Save the OpenStackDataPlaneDeployment CR deployment file.

9. Deploy the modified OpenStackDataPlaneNodeSet CR:

You can view the Ansible logs while the deployment executes:

10. Verify that the modified OpenStackDataPlaneNodeSet CR is deployed:

Example

Sample output

11. Repeat the oc get command until you see the NodeSet Ready message:

Example

NAME STATUS MESSAGE
my-data-plane-node-set False Deployment not started

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: my-data-plane-deploy

spec:
 nodeSets:
 - my-data-plane-node-set

$ oc create -f my_data_plane_deploy.yaml -n openstack

$ oc get pod -l app=openstackansibleee -n openstack -w

$ oc logs -l app=openstackansibleee -n openstack -f \
--max-log-requests 10

$ oc get openstackdataplanedeployment -n openstack

NAME STATUS MESSAGE
my-data-plane-node-set True Setup Complete

CHAPTER 3. CUSTOMIZING DATA PLANE NETWORKS

13

Sample output

For information on the meaning of the returned status, see Data plane conditions and states in
the Deploying Red Hat OpenStack Services on OpenShift guide.

Additional resources

Section 3.2, “Network interface configuration options”

Section 3.3, “Example custom network interfaces”

3.2. NETWORK INTERFACE CONFIGURATION OPTIONS

Use the following tables to understand the available options for configuring network interfaces for
Red Hat OpenStack Services on OpenShift (RHOSO) environments.

interface

vlan

ovs_bridge

Network interface bonding

ovs_bond

LACP with OVS bonding modes

linux_bond

routes

3.2.1. interface

Defines a single network interface. The network interface name uses either the actual interface name
(eth0, eth1, enp0s25) or a set of numbered interfaces (nic1, nic2, nic3). The network interfaces of
hosts within a role do not have to be exactly the same when you use numbered interfaces such as nic1
and nic2, instead of named interfaces such as eth0 and eno2. For example, one host might have
interfaces em1 and em2, while another has eno1 and eno2, but you can refer to the NICs of both hosts
as nic1 and nic2.

The order of numbered interfaces corresponds to the order of named network interface types:

ethX interfaces, such as eth0, eth1, and so on.
Names appear in this format when consistent device naming is turned off in udev.

enoX and emX interfaces, such as eno0, eno1, em0, em1, and so on.
These are usually on-board interfaces.

enX and any other interfaces, sorted alpha numerically, such as enp3s0, enp3s1, ens3, and so

$ oc get openstackdataplanenodeset -n openstack

NAME STATUS MESSAGE
my-data-plane-node-set True NodeSet Ready

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

14

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane#ref_data-plane-conditions-and-states_dataplane

enX and any other interfaces, sorted alpha numerically, such as enp3s0, enp3s1, ens3, and so
on.
These are usually add-on interfaces.

The numbered NIC scheme includes only live interfaces, for example, if the interfaces have a cable
attached to the switch. If you have some hosts with four interfaces and some with six interfaces, use
nic1 to nic4 and attach only four cables on each host.

Table 3.1. interface options

Option Default Description

name Name of the interface. The
network interface name uses
either the actual interface name
(eth0, eth1, enp0s25) or a set
of numbered interfaces (nic1,
nic2, nic3).

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the interface.

routes A list of routes assigned to the
interface. For more information,
see Section 3.2.7, “routes”.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the interface as the
primary interface. Required only
when the interface is a member
of a bond.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the interface.

ethtool_opts Set this option to "rx-flow-hash
udp4 sdfn" to improve
throughput when you use VXLAN
on certain NICs.

CHAPTER 3. CUSTOMIZING DATA PLANE NETWORKS

15

Example

3.2.2. vlan

Defines a VLAN. Use the VLAN ID and subnet passed from the parameters section.

Table 3.2. vlan options

Option Default Description

vlan_id The VLAN ID.

device The parent device to attach the
VLAN. Use this parameter when
the VLAN is not a member of an
OVS bridge. For example, use this
parameter to attach the VLAN to
a bonded interface device.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the VLAN.

routes A list of routes assigned to the
VLAN. For more information, see
Section 3.2.7, “routes”.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the VLAN as the primary
interface.

...
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: interface
 name: nic2
 ...

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

16

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the VLAN.

Option Default Description

Example

...
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 ...
 members:
 - type: vlan
 device: nic{{ loop.index + 1 }}
 mtu: {{ lookup(vars, networks_lower[network] ~ _mtu) }}
 vlan_id: {{ lookup(vars, networks_lower[network] ~ _vlan_id) }}
 addresses:
 - ip_netmask:
 {{ lookup(vars, networks_lower[network] ~ _ip) }}/{{ lookup(vars, networks_lower[network]
~ _cidr) }}
 routes: {{ lookup(vars, networks_lower[network] ~ _host_routes) }}
...

3.2.3. ovs_bridge

Defines a bridge in Open vSwitch (OVS), which connects multiple interface, ovs_bond, and vlan
objects together.

The network interface type, ovs_bridge, takes a parameter name.

IMPORTANT

CHAPTER 3. CUSTOMIZING DATA PLANE NETWORKS

17

IMPORTANT

The ovs_bridge interface is not recommended for control plane network traffic. The
OVS bridge connects to the Networking service (neutron) server to obtain configuration
data. If the OpenStack control traffic, typically the Control Plane and Internal API
networks, is placed on an OVS bridge, then connectivity to the neutron server is lost
whenever you upgrade OVS, or the OVS bridge is restarted by the admin user or process.
This causes some downtime. If downtime is not acceptable in these circumstances, then
you must place the Control group networks on a separate interface or bond rather than
on an OVS bridge:

You can achieve a minimal setting when you put the Internal API network on a
VLAN on the provisioning interface and the OVS bridge on a second interface.

To implement bonding, you need at least two bonds (four network interfaces).
Place the control group on a Linux bond. If the switch does not support LACP
fallback to a single interface for PXE boot, then this solution requires at least five
NICs.

NOTE

If you have multiple bridges, you must use distinct bridge names other than accepting the
default name of bridge_name. If you do not use distinct names, then during the converge
phase, two network bonds are placed on the same bridge.

Table 3.3. ovs_bridge options

Option Default Description

name Name of the bridge.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bridge.

routes A list of routes assigned to the
bridge. For more information, see
Section 3.2.7, “routes”.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

members A sequence of interface, VLAN,
and bond objects that you want
to use in the bridge.

ovs_options A set of options to pass to OVS
when creating the bridge.

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

18

ovs_extra A set of options to to set as the
OVS_EXTRA parameter in the
network configuration file of the
bridge.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bridge.

Option Default Description

Example

...
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: br-bond
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 members:
 - type: ovs_bond
 name: bond1
 mtu: {{ min_viable_mtu }}
 ovs_options: {{ bound_interface_ovs_options }}
 members:
 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu }}
 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu }}
 ...

CHAPTER 3. CUSTOMIZING DATA PLANE NETWORKS

19

3.2.4. Network interface bonding

You can bundle multiple physical NICs together to form a single logical channel known as a bond. You
can configure bonds to provide redundancy for high availability systems or increased throughput.

Red Hat OpenStack Platform supports Open vSwitch (OVS) kernel bonds, OVS-DPDK bonds, and
Linux kernel bonds.

Table 3.4. Supported interface bonding types

Bond type Type value Allowed bridge types Allowed members

OVS kernel bonds ovs_bond ovs_bridge interface

OVS-DPDK bonds ovs_dpdk_bond ovs_user_bridge ovs_dpdk_port

Linux kernel bonds linux_bond ovs_bridge interface

IMPORTANT

Do not combine ovs_bridge and ovs_user_bridge on the same node.

3.2.4.1. ovs_bond

Defines a bond in Open vSwitch (OVS) to join two or more interfaces together. This helps with
redundancy and increases bandwidth.

Table 3.5. ovs_bond options

Option Default Description

name Name of the bond.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bond.

routes A list of routes assigned to the
bond. For more information, see
Section 3.2.7, “routes”.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the interface as the
primary interface.

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

20

members A sequence of interface objects
that you want to use in the bond.

ovs_options A set of options to pass to OVS
when creating the bond. For more
information, see Table 3.6,
“ovs_options parameters for
OVS bonds”.

ovs_extra A set of options to set as the
OVS_EXTRA parameter in the
network configuration file of the
bond.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bond.

Option Default Description

Table 3.6. ovs_options parameters for OVS bonds

ovs_option Description

bond_mode=balance-slb Source load balancing (slb) balances flows based on
source MAC address and output VLAN, with periodic
rebalancing as traffic patterns change. When you
configure a bond with the balance-slb bonding
option, there is no configuration required on the
remote switch. The Networking service (neutron)
assigns each source MAC and VLAN pair to a link and
transmits all packets from that MAC and VLAN
through that link. A simple hashing algorithm based
on source MAC address and VLAN number is used,
with periodic rebalancing as traffic patterns change.
The balance-slb mode is similar to mode 2 bonds
used by the Linux bonding driver. You can use this
mode to provide load balancing even when the switch
is not configured to use LACP.

CHAPTER 3. CUSTOMIZING DATA PLANE NETWORKS

21

bond_mode=active-backup When you configure a bond using active-backup
bond mode, the Networking service keeps one NIC in
standby. The standby NIC resumes network
operations when the active connection fails. Only one
MAC address is presented to the physical switch. This
mode does not require switch configuration, and
works when the links are connected to separate
switches. This mode does not provide load balancing.

lacp=[active | passive | off] Controls the Link Aggregation Control Protocol
(LACP) behavior. Only certain switches support
LACP. If your switch does not support LACP, use
bond_mode=balance-slb or
bond_mode=active-backup.

other-config:lacp-fallback-ab=true Set active-backup as the bond mode if LACP fails.

other_config:lacp-time=[fast | slow] Set the LACP heartbeat to one second (fast) or 30
seconds (slow). The default is slow.

other_config:bond-detect-mode=[miimon |
carrier]

Set the link detection to use miimon heartbeats
(miimon) or monitor carrier (carrier). The default is
carrier.

other_config:bond-miimon-interval=100 If using miimon, set the heartbeat interval
(milliseconds).

bond_updelay=1000 Set the interval (milliseconds) that a link must be up
to be activated to prevent flapping.

other_config:bond-rebalance-interval=10000 Set the interval (milliseconds) that flows are
rebalancing between bond members. Set this value
to zero to disable flow rebalancing between bond
members.

ovs_option Description

Example - OVS bond

...
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 ...
 members:
 - type: ovs_bond

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

22

 name: bond1
 mtu: {{ min_viable_mtu }}
 ovs_options: {{ bond_interface_ovs_options }}
 members:
 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu }}
 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu }}

Example - OVS DPDK bond

In this example, a bond is created as part of an OVS user space bridge:

 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 ...
 members:
 - type: ovs_user_bridge
 name: br-dpdk0
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond0
 rx_queue: {{ num_dpdk_interface_rx_queues }}
 members:
 - type: ovs_dpdk_port
 name: dpdk0
 members:
 - type: interface
 name: nic4
 - type: ovs_dpdk_port
 name: dpdk1
 members:
 - type: interface
 name: nic5

3.2.5. LACP with OVS bonding modes

You can use Open vSwitch (OVS) bonds with the optional Link Aggregation Control Protocol (LACP).
LACP is a negotiation protocol that creates a dynamic bond for load balancing and fault tolerance.

Use the following table to understand support compatibility for OVS kernel and OVS-DPDK bonded
interfaces in conjunction with LACP options.

IMPORTANT

CHAPTER 3. CUSTOMIZING DATA PLANE NETWORKS

23

IMPORTANT

On control and storage networks, Red Hat recommends that you use Linux bonds with
VLAN and LACP, because OVS bonds carry the potential for control plane disruption
that can occur when OVS or the neutron agent is restarted for updates, hot fixes, and
other events. The Linux bond-LACP-VLAN configuration provides NIC management
without the OVS disruption potential.

Table 3.7. LACP options for OVS kernel and OVS-DPDK bond modes

Objective OVS bond mode Compatible LACP
options

Notes

High availability (active-
passive)

active-backup active, passive, or off

Increased throughput
(active-active)

balance-slb active, passive, or off
Performance is
affected by
extra parsing
per packet.

There is a
potential for
vhost-user lock
contention.

balance-tcp active or passive
As with
balance-slb,
performance is
affected by
extra parsing
per packet and
there is a
potential for
vhost-user lock
contention.

LACP must be
configured and
enabled.

Set lb-output-
action=true.
For example:

ovs-vsctl
set port
<bond
port>
other_confi
g:lb-
output-
action=true

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

24

3.2.6. linux_bond

Defines a Linux bond that joins two or more interfaces together. This helps with redundancy and
increases bandwidth. Ensure that you include the kernel-based bonding options in the
bonding_options parameter.

Table 3.8. linux_bond options

Option Default Description

name Name of the bond.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bond.

routes A list of routes assigned to the
bond. See Section 3.2.7, “routes”.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

members A sequence of interface objects
that you want to use in the bond.

bonding_options A set of options when creating
the bond. See
bonding_options parameters
for Linux bonds.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bond.

bonding_options parameters for Linux bonds

The bonding_options parameter sets the specific bonding options for the Linux bond. See the Linux

CHAPTER 3. CUSTOMIZING DATA PLANE NETWORKS

25

The bonding_options parameter sets the specific bonding options for the Linux bond. See the Linux
bonding examples that follow this table:

bonding_options Description

mode Sets the bonding mode, which in the example is
802.3ad or LACP mode. For more information about
Linux bonding modes, see Configuring a network
bond in Red Hat Enterprise Linux 9, Configuring and
managing networking.

lacp_rate Defines whether LACP packets are sent every 1
second, or every 30 seconds.

updelay Defines the minimum amount of time that an
interface must be active before it is used for traffic.
This minimum configuration helps to mitigate port
flapping outages.

miimon The interval in milliseconds that is used for
monitoring the port state using the MIIMON
functionality of the driver.

Example - Linux bond

...
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: linux_bond
 name: bond1
 mtu: {{ min_viable_mtu }}
 bonding_options: "mode=802.3ad lacp_rate=fast updelay=1000 miimon=100
xmit_hash_policy=layer3+4"
 members:
 type: interface
 name: ens1f0
 mtu: {{ min_viable_mtu }}
 primary: true
 type: interface
 name: ens1f1
 mtu: {{ min_viable_mtu }}
 ...

Example - Linux bond: bonding two interfaces

...

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

26

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_networking/configuring-network-bonding_configuring-and-managing-networking#configuring-network-bonding_configuring-and-managing-networking

 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: linux_bond
 name: bond1
 members:
 - type: interface
 name: nic2
 - type: interface
 name: nic3
 bonding_options: "mode=802.3ad lacp_rate=[fast|slow] updelay=1000 miimon=100"
 ...

Example - Linux bond set to active-backup mode with one VLAN

....
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: linux_bond
 name: bond_api
 bonding_options: "mode=active-backup"
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 members:
 - type: interface
 name: nic3
 primary: true
 - type: interface
 name: nic4

 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet

Example - Linux bond on OVS bridge

In this example, the bond is set to 802.3ad with LACP mode and one VLAN:

...

CHAPTER 3. CUSTOMIZING DATA PLANE NETWORKS

27

 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: br-tenant
 use_dhcp: false
 mtu: 9000
 members:
 - type: linux_bond
 name: bond_tenant
 bonding_options: "mode=802.3ad updelay=1000 miimon=100"
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 members:
 - type: interface
 name: p1p1
 primary: true
 - type: interface
 name: p1p2
 - type: vlan
 device: bond_tenant
 vlan_id: {get_param: TenantNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: TenantIpSubnet}
 ...

3.2.7. routes

Defines a list of routes to apply to a network interface, VLAN, bridge, or bond.

Table 3.9. routes options

Option Default Description

ip_netmask None IP and netmask of the destination
network.

default False Sets this route to a default route.
Equivalent to setting
ip_netmask: 0.0.0.0/0.

next_hop None The IP address of the router used
to reach the destination network.

Example - routes

...

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

28

 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: br-tenant
 ...
 routes: {{ [ctlplane_host_routes] | flatten | unique }}
 ...

Additional resources

Section 3.3, “Example custom network interfaces”

3.3. EXAMPLE CUSTOM NETWORK INTERFACES

The following example illustrates how you can use a template to customize network interfaces for
Red Hat OpenStack Services on OpenShift (RHOSO) environments.

Example

This template example configures the control group separate from the OVS bridge. The template uses
five network interfaces and assigns a number of tagged VLAN devices to the numbered interfaces. On
nic2 and nic3 the template creates a linux bond for control plane traffic. The template creates OVS
bridges for the RHOSO data plane on nic4 and nic5.

 edpm_network_config_os_net_config_mappings:
 edpm-compute-0:
 dmiString: system-serial-number
 id: 3V3J4V3
 nic1: ec:2a:72:40:ca:2e
 nic2: 6c:fe:54:3f:8a:00
 nic3: 6c:fe:54:3f:8a:01
 nic4: 6c:fe:54:3f:8a:02
 nic5: 6c:fe:54:3f:8a:03
 nic6: e8:eb:d3:33:39:12
 nic7: e8:eb:d3:33:39:13

 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 - type: interface
 name: nic1
 use_dhcp: false
 use_dhcpv6: false
 type: linux_bond
 name: bond_api

CHAPTER 3. CUSTOMIZING DATA PLANE NETWORKS

29

Additional resources

Section 3.2, “Network interface configuration options”

 use_dhcp: false
 use_dhcpv6: false
 bonding_options: "mode=active-backup"
 dns_servers: {{ ctlplane_dns_nameservers }}
 addresses:
 ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_cidr }}
 routes:
 default: true
 next_hop: 192.168.122.1
 members:
 - type: interface
 name: nic2
 primary: true
 - type: interface
 name: nic3
 {% for network in nodeset_networks if network not in ['external', 'tenant'] %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 device: bond_api
 addresses:
 - ip_netmask: {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 {% endfor %}
 - type: ovs_bridge
 name: br-access
 use_dhcp: false
 use_dhcpv6: false
 members:
 - type: linux_bond
 name: bond_data
 mtu: {{ min_viable_mtu }}
 bonding_options: "mode=active-backup"
 members:
 - type: interface
 name: nic4
 - type: interface
 name: nic5
 - type: vlan
 vlan_id: {{ lookup('vars', networks_lower['tenant'] ~ '_vlan_id') }}
 mtu: {{ lookup('vars', networks_lower['tenant'] ~ '_mtu') }}
 device: bond_data
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower['tenant'] ~ '_ip') }}/{{ lookup('vars', networks_lower['tenant']
~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower['tenant'] ~ '_host_routes') }}

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

30

CHAPTER 4. MANAGING PROJECT NETWORKS
Project networks help you to isolate network traffic for cloud computing. Steps to create a project
network include planning and creating the network, and adding subnets and routers.

4.1. VLAN PLANNING

When you plan for VLANs in your Red Hat OpenStack Services on OpenShift (RHOSO) environment,
you start with a number of subnets, from which you allocate individual IP addresses. When you use
multiple subnets you can segregate traffic between systems into VLANs.

For example, it is ideal that your management or API traffic is not on the same network as systems that
serve web traffic. Traffic between VLANs travels through a router where you can implement firewalls to
govern traffic flow.

You must plan your VLANs as part of your overall plan that includes traffic isolation, high availability, and
IP address utilization for the various types of virtual networking resources in your deployment.

4.2. DEFAULT RED HAT OPENSTACK SERVICES ON OPENSHIFT
NETWORKS

The following physical data center networks are typically implemented for a Red Hat OpenStack
Services on OpenShift (RHOSO) deployment:

Control plane network: This network is used by the OpenStack Operator for Ansible SSH access
to deploy and connect to the data plane nodes from the Red Hat OpenShift Container Platform
(RHOCP) environment. This network is also used by data plane nodes for live migration of
instances.

External network: (Optional) You can configure an external network if one is required for your
environment. For example, you might create an external network for any of the following
purposes:

To provide virtual machine instances with Internet access.

To create flat provider networks that are separate from the control plane.

To configure VLAN provider networks on a separate bridge from the control plane.

To provide access to virtual machine instances with floating IPs on a network other than the
control plane network.

Internal API network: This network is used for internal communication between RHOSO
components.

Storage network: This network is used for block storage, RBD, NFS, FC, and iSCSI.

Tenant (project) network: This network is used for data communication between virtual machine
instances within the cloud deployment.

Storage Management network: (Optional) This network is used by storage components. For
example, Red Hat Ceph Storage uses the Storage Management network in a hyperconverged
infrastructure (HCI) environment as the cluster_network to replicate data.

NOTE

CHAPTER 4. MANAGING PROJECT NETWORKS

31

NOTE

For more information on Red Hat Ceph Storage network configuration, see Ceph
network configuration in the Red Hat Ceph Storage Configuration Guide .

The following table details the default networks used in a RHOSO deployment. If required, you can
update the networks for your environment.

NOTE

By default, the control plane and external networks do not use VLANs. Networks that do
not use VLANs must be placed on separate NICs. You can use a VLAN for the control
plane network on new RHOSO deployments. You can also use the Native VLAN on a
trunked interface as the non-VLAN network. For example, you can have the control plane
and the internal API on one NIC, and the external network with no VLAN on a separate
NIC.

Table 4.1. Default RHOSO networks

Network
name

VLAN CIDR NetConfig
allocationR
ange

MetalLB
IPAddress
Pool range

net-attach-
def ipam
range

OCP worker
nncp range

ctlplane n/a 192.168.122.0
/24

192.168.122.10
0 -
192.168.122.25
0

192.168.122.8
0 -
192.168.122.9
0

192.168.122.3
0 -
192.168.122.7
0

192.168.122.10
-
192.168.122.2
0

external n/a 10.0.0.0/24 10.0.0.100 -
10.0.0.250

n/a n/a

internalapi 20 172.17.0.0/24 172.17.0.100 -
172.17.0.250

172.17.0.80 -
172.17.0.90

172.17.0.30 -
172.17.0.70

172.17.0.10 -
172.17.0.20

storage 21 172.18.0.0/24 172.18.0.100
-
172.18.0.250

n/a 172.18.0.30 -
172.18.0.70

172.18.0.10 -
172.18.0.20

tenant 22 172.19.0.0/24 172.19.0.100
-
172.19.0.250

n/a 172.19.0.30 -
172.19.0.70

172.19.0.10 -
172.19.0.20

storageMg
mt

23 172.20.0.0/2
4

172.20.0.100
-
172.20.0.250

n/a 172.20.0.30 -
172.20.0.70

172.20.0.10 -
172.20.0.20

4.3. IP ADDRESS CONSUMPTION

In Red Hat OpenStack Services on OpenShift (RHOSO) environments the following systems consume
IP addresses from your allocated range:

Physical nodes - Each physical NIC requires one IP address. It is common practice to dedicate

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

32

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html/configuration_guide/ceph-network-configuration

Physical nodes - Each physical NIC requires one IP address. It is common practice to dedicate
physical NICs to specific functions. For example, allocate management and NFS traffic to
distinct physical NICs, sometimes with multiple NICs connecting across to different switches for
redundancy purposes.

Virtual IPs (VIPs) for High Availability - Plan to allocate between one and three VIPs for each
network that controller nodes share.

4.4. VIRTUAL NETWORKING

The following virtual resources consume IP addresses in OpenStack Networking in Red Hat OpenStack
Services on OpenShift (RHOSO) environments. These resources are considered local to the cloud
infrastructure, and do not need to be reachable by systems in the external physical network:

Project networks - Each project network requires a subnet that it can use to allocate IP
addresses to instances.

Virtual routers - Each router interface plugging into a subnet requires one IP address.

Instances - Each instance requires an address from the project subnet that hosts the instance.
If you require ingress traffic, you must allocate a floating IP address to the instance from the
designated external network.

Management traffic - Includes OpenStack Services and API traffic. All services share a small
number of VIPs. API, RPC and database services communicate on the internal API VIP.

4.5. EXAMPLE NETWORK PLAN

This example shows a number of networks in a Red Hat OpenStack Services on OpenShift (RHOSO)
environment that accommodate multiple subnets, with each subnet being assigned a range of IP
addresses:

Table 4.2. Example subnet plan

Subnet name Address range Number of addresses Subnet Mask

Provisioning network 192.168.100.1 -
192.168.100.250

250 255.255.255.0

Internal API network 172.16.1.10 - 172.16.1.250 241 255.255.255.0

Storage 172.16.2.10 - 172.16.2.250 241 255.255.255.0

Storage Management 172.16.3.10 - 172.16.3.250 241 255.255.255.0

Tenant network
(GRE/VXLAN)

172.16.4.10 - 172.16.4.250 241 255.255.255.0

External network (incl.
floating IPs)

10.1.2.10 - 10.1.3.222 469 255.255.254.0

CHAPTER 4. MANAGING PROJECT NETWORKS

33

Provider network
(infrastructure)

10.10.3.10 - 10.10.3.250 241 255.255.252.0

Subnet name Address range Number of addresses Subnet Mask

4.6. WORKING WITH SUBNETS

In Red Hat OpenStack Services on OpenShift (RHOSO) environments use subnets to grant network
connectivity to instances. A subnet is a pool of IP addresses. Instances are assigned to a Networking
service (neutron) network. One network can have multiple subnets, and you can also add IP addresses
from multiple subnets to the port.

You can create subnets only in pre-existing networks. Remember that project networks in the
Networking service can host multiple subnets. This is useful if you intend to host distinctly different
systems in the same network, and prefer a measure of isolation between them.

You can lessen network latency and load by grouping systems in the same subnet that require a high
volume of traffic between each other.

4.7. CONFIGURING FLOATING IP PORT FORWARDING

In Red Hat OpenStack Services on OpenShift (RHOSO) environments, to enable users to set up port
forwarding for floating IPs, you must enable the Networking service (neutron) port_forwarding service
plug-in.

Prerequisites

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

The port_forwarding service plug-in requires that you also set the ovn-router service plug-in.

Procedure

Update the control plane:

NOTE

$ oc patch -n openstack openstackcontrolplane openstack-galera-network-isolation --
type=merge --patch "

spec:
 neutron:
 template:
 customServiceConfig: |
 [default]
 service_plugins=ovn-router,port_forwarding
"

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

34

NOTE

The port_forwarding service plug-in requires that you also set the router service
plug-in.

RHOSO users can now set up port forwarding for floating IPs.

Verification

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Ensure that the Networking service has successfully loaded the port_forwarding and router
service plug-ins:

Replace <cloud_name> with the name of the cloud on which you are running the command.

Sample output

A successful verification produces output similar to the following:

3. Exit the openstackclient pod:

4.8. BRIDGING THE PHYSICAL NETWORK

In Red Hat OpenStack Services on OpenShift (RHOSO) environments you can bridge your virtual
network to the physical network to enable connectivity to and from virtual instances.

In this procedure, the example physical interface, eth0, is mapped to the bridge, br-ex; the virtual bridge
acts as the intermediary between the physical network and any virtual networks.

As a result, all traffic traversing eth0 uses the configured Open vSwitch to reach instances.

To map a physical NIC to the virtual Open vSwitch bridge, complete the following steps:

Procedure

1. Open /etc/sysconfig/network-scripts/ifcfg-eth0 in a text editor, and update the following
parameters with values appropriate for the network at your site:

IPADDR

NETMASK GATEWAY

$ openstack extension list --network -c Name -c Alias --max-width 74 | \
grep -i -e 'Neutron L3 Router' -i -e floating-ip-port-forwarding \
--os-cloud <cloud_name>

| Floating IP Port Forwarding | floating-ip-port-forwarding |
| Neutron L3 Router | router |

$ exit

CHAPTER 4. MANAGING PROJECT NETWORKS

35

DNS1 (name server)
Here is an example:

2. Open /etc/sysconfig/network-scripts/ifcfg-br-ex in a text editor and update the virtual bridge
parameters with the IP address values that were previously allocated to eth0:

You can now assign floating IP addresses to instances and make them available to the physical
network.

DEVICE=eth0
TYPE=OVSPort
DEVICETYPE=ovs
OVS_BRIDGE=br-ex
ONBOOT=yes

DEVICE=br-ex
DEVICETYPE=ovs
TYPE=OVSBridge
BOOTPROTO=static
IPADDR=192.168.120.10
NETMASK=255.255.255.0
GATEWAY=192.168.120.1
DNS1=192.168.120.1
ONBOOT=yes

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

36

CHAPTER 5. USING QUALITY OF SERVICE (QOS) POLICIES
TO MANAGE DATA TRAFFIC

You can offer varying service levels for VM instances by using quality of service (QoS) policies to apply
rate limits to egress and ingress traffic in Red Hat OpenStack Services on OpenShift (RHOSO)
environments.

You can apply QoS policies to individual ports, or apply QoS policies to a project network, where ports
with no specific policy attached inherit the policy.

NOTE

Internal network owned ports, such as DHCP and internal router ports, are excluded from
network policy application.

You can apply, modify, or remove QoS policies dynamically. However, for guaranteed minimum
bandwidth QoS policies, you can only apply modifications when there are no instances that use any of
the ports the policy is assigned to.

5.1. QOS RULES

You can configure the following rule types to define a quality of service (QoS) policy in the Red Hat
OpenStack Services on OpenShift (RHOSO) Networking service (neutron):

Minimum bandwidth (minimum_bandwidth)

Provides minimum bandwidth constraints on certain types of traffic. If implemented, best efforts are
made to provide no less than the specified bandwidth to each port on which the rule is applied.

Bandwidth limit (bandwidth_limit)

Provides bandwidth limitations on networks, ports, floating IPs (FIPs), and router gateway IPs. If
implemented, any traffic that exceeds the specified rate is dropped.

DSCP marking (dscp_marking)

Marks network traffic with a Differentiated Services Code Point (DSCP) value.

QoS policies can be enforced in various contexts, including virtual machine instance placements, floating
IP assignments, and gateway IP assignments.

Depending on the enforcement context and on the mechanism driver you use, a QoS rule affects egress
traffic (upload from instance), ingress traffic (download to instance), or both.

NOTE

In ML2/OVN deployments, you can enable minimum bandwidth and bandwidth limit
egress policies for hardware offloaded ports. You cannot enable ingress policies for
hardware offloaded ports. For more information, see Configuring the Networking service
for QoS policies.

Table 5.1. Supported traffic direction by driver (all QoS rule types)

Rule [1] Supported traffic direction by mechanism driver

CHAPTER 5. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

37

ML2/SR-IOV ML2/OVN

Minimum bandwidth Egress only Currently, no support [2]

Bandwidth limit Egress only [3] Egress and ingress

DSCP marking N/A Egress only [4]

[1] RHOSO does not support QoS for trunk ports.

[2] https://bugzilla.redhat.com/show_bug.cgi?id=2060310

[3] The mechanism drivers ignore the max-burst-kbits parameter because they do not support it.

[4] ML2/OVN does not support DSCP marking on tunneled protocols.

Table 5.2. Supported traffic direction by driver for placement reporting and scheduling (minimum
bandwidth only)

Enforcement type Supported traffic by direction mechanism driver

ML2/SR-IOV ML2/OVN

Placement Egress and ingress Currently, no support

Table 5.3. Supported traffic direction by driver for enforcement types (bandwidth limit only)

Enforcement type Supported traffic direction by mechanism driver

ML2/OVN

Floating IP Egress and ingress

Gateway IP Egress and ingress [1]

[1] Technology preview in RHOSP 17.1. See BZ 2088291.

5.2. CONFIGURING THE NETWORKING SERVICE FOR QOS POLICIES

The quality of service feature in the Red Hat OpenStack Services on OpenShift (RHOSO) Networking
service (neutron) is provided through the qos service plug-in. With the ML2/OVN mechanism driver,
qos is loaded by default. However, this is not true for ML2/SR-IOV.

When using the qos service plug-in with the ML2/SR-IOV mechanism driver, you must also load the qos
extension on their respective agents.

The following list summarizes the tasks that you must perform to configure the Networking service for
QoS. The task details follow this list:

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

38

https://bugzilla.redhat.com/show_bug.cgi?id=2060310
https://bugzilla.redhat.com/show_bug.cgi?id=2088291

For all types of QoS policies:

Add the qos service plug-in.

Add qos extension for the agents (SR-IOV only).

In ML2/OVN deployments, you can enable minimum bandwidth and bandwidth limit egress
policies for hardware offloaded ports. You cannot enable ingress policies for hardware
offloaded ports.

Additional tasks for scheduling VM instances using minimum bandwidth policies only:

Specify the hypervisor name if it differs from the name that the Compute service (nova)
uses.

Configure the resource provider ingress and egress bandwidths for the relevant agents on
each Compute node.

(Optional) Mark vnic_types as not supported.

Additional task for DSCP marking policies on systems that use ML/OVS with tunneling only:

Set dscp_inherit to true.

Prerequisites

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. If you are using the ML2/SR-IOV mechanism driver, you must enable the qos agent extension
on the Compute nodes, also referred to as the RHOSO data plane.
For more information, see Configuring the Networking service for QoS policies for SR-IOV .

2. In ML2/OVN deployments, you can enable egress minimum and maximum bandwidth policies
for hardware offloaded ports, which is managed by the neutron-ovn-agent. The OVN agent
runs on the Compute nodes and is configured through the OpenStackDataPlaneNodeSet CR
definition. Open the OpenStackDataPlaneNodeSet CR definition file for the node set you want
to update, for example, my_data_plane_node_set.yaml.

3. Add the required QoS configuration. Place the configuration in the
edpm_network_config_template under ansibleVars:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: my-data-plane-node-set
spec:
 ...
 nodeTemplate:
 ...
 ansible:
 ansibleVars:
 edpm_network_config_template: |

CHAPTER 5. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

39

 OvnHardwareOffloadedQos: true
 ...

4. Save the OpenStackDataPlaneNodeSet CR definition file.

5. Apply the updated OpenStackDataPlaneNodeSet CR configuration:

6. Verify that the data plane resource has been updated:

Sample output

7. Create a file on your workstation to define the OpenStackDataPlaneDeployment CR, for
example, my_data_plane_deploy.yaml:

TIP

Give the definition file and the OpenStackDataPlaneDeployment CR a unique and descriptive
name that indicates the purpose of the modified node set.

8. Add the OpenStackDataPlaneNodeSet CR that you modified:

9. Save the OpenStackDataPlaneDeployment CR deployment file.

10. Deploy the modified OpenStackDataPlaneNodeSet CR:

You can view the Ansible logs while the deployment executes:

11. Verify that the modified OpenStackDataPlaneNodeSet CR is deployed:

$ oc apply -f my_data_plane_node_set.yaml

$ oc get openstackdataplanenodeset

NAME STATUS MESSAGE
my-data-plane-node-set False Deployment not started

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: my-data-plane-deploy

spec:
 nodeSets:
 - my-data-plane-node-set

$ oc create -f my_data_plane_deploy.yaml -n openstack

$ oc get pod -l app=openstackansibleee -n openstack -w

$ oc logs -l app=openstackansibleee -n openstack -f \
--max-log-requests 10

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

40

Example

Sample output

12. Repeat the oc get command until you see the NodeSet Ready message:

Example

Sample output

For information on the meaning of the returned status, see Data plane conditions and states in
the Deploying Red Hat OpenStack Services on OpenShift guide.

Verification

Confirm that the qos service plug-in is loaded:

If the qos service plug-in is loaded, then you do not receive a ResourceNotFound error.

5.3. CONFIGURING THE NETWORKING SERVICE FOR QOS POLICIES
FOR SR-IOV

The quality of service feature in the Red Hat OpenStack Services on OpenShift (RHOSO) Networking
service (neutron) is provided through the qos service plug-in. If your Networking service ML2
mechanism driver is SR-IOV, then you must also load the qos extension driver for the NIC switch agent,
neutron-sriov-nic-agent, which runs on the Compute nodes, also referred to as the RHOSO data plane.

Prerequisites

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Open the OpenStackDataPlaneNodeSet CR definition file for the node set you want to
update, for example, my_data_plane_node_set.yaml.

2. Add the required QoS configuration, NeutronSriovAgentExtensions: "qos".

$ oc get openstackdataplanedeployment -n openstack

NAME STATUS MESSAGE
my-data-plane-node-set True Setup Complete

$ oc get openstackdataplanenodeset -n openstack

NAME STATUS MESSAGE
my-data-plane-node-set True NodeSet Ready

$ openstack network qos policy list

CHAPTER 5. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

41

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane#ref_data-plane-conditions-and-states_dataplane

Place the configuration in the edpm_network_config_template under ansibleVars:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: my-data-plane-node-set
spec:
 ...
 nodeTemplate:
 ...
 ansible:
 ansibleVars:
 edpm_network_config_template: |

 NeutronSriovAgentExtensions: "qos"
 ...

3. Save the OpenStackDataPlaneNodeSet CR definition file.

4. Apply the updated OpenStackDataPlaneNodeSet CR configuration:

5. Verify that the data plane resource has been updated:

Sample output

6. Create a file on your workstation to define the OpenStackDataPlaneDeployment CR, for
example, my_data_plane_deploy.yaml:

TIP

Give the definition file and the OpenStackDataPlaneDeployment CR a unique and descriptive
name that indicates the purpose of the modified node set.

7. Add the OpenStackDataPlaneNodeSet CR that you modified:

8. Save the OpenStackDataPlaneDeployment CR deployment file.

$ oc apply -f my_data_plane_node_set.yaml

$ oc get openstackdataplanenodeset

NAME STATUS MESSAGE
my-data-plane-node-set False Deployment not started

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: my-data-plane-deploy

spec:
 nodeSets:
 - my-data-plane-node-set

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

42

9. Deploy the modified OpenStackDataPlaneNodeSet CR:

You can view the Ansible logs while the deployment executes:

10. Verify that the modified OpenStackDataPlaneNodeSet CR is deployed:

Example

Sample output

11. Repeat the oc get command until you see the NodeSet Ready message:

Example

Sample output

For information on the meaning of the returned status, see Data plane conditions and states in
the Deploying Red Hat OpenStack Services on OpenShift guide.

Verification

Confirm that the NIC switch agent, neutron-sriov-nic-agent, has loaded the qos extension.

1. Obtain the UUID for the NIC switch agent:

2. With the neutron-sriov-nic-agent UUID, run the following command:

Example

$ oc create -f my_data_plane_deploy.yaml -n openstack

$ oc get pod -l app=openstackansibleee -n openstack -w

$ oc logs -l app=openstackansibleee -n openstack -f \
--max-log-requests 10

$ oc get openstackdataplanedeployment -n openstack

NAME STATUS MESSAGE
my-data-plane-node-set True Setup Complete

$ oc get openstackdataplanenodeset -n openstack

NAME STATUS MESSAGE
my-data-plane-node-set True NodeSet Ready

$ openstack network agent list

$ openstack network agent show <uuid>

$ openstack network agent show 8676ccb3-1de0-4ca6-8fb7-b814015d9e5f \
--max-width 70

CHAPTER 5. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

43

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane#ref_data-plane-conditions-and-states_dataplane

Sample output

You should see an agent object with a field called configuration. When the qos extension is
loaded, the extensions field should contain qos in its list.

---+
| Field | Value |
---+
admin_state_up	UP
agent_type	NIC Switch agent
alive	:-)
availability_zone	None
binary	neutron-sriov-nic-agent
configuration	{device_mappings: {}, devices: 0, extensi
resource_provider_bandwidths:	
	{}, resource_provider_hypervisors: {}, reso
urce_provider_inventory_defaults: {allocatio	
	reserved: 0}}
created_at	2024-08-08 08:22:57
description	None
ha_state	None
host	edpm-compute-0.ctlplane.example.com
id	8676ccb3-1de0-4ca6-8fb7-b814015d9e5f
last_heartbeat_at	2024-08-08 08:24:27
resources_synced	None
started_at	2024-08-08 08:22:57
topic	N/A
---+

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

44

CHAPTER 6. VLAN-AWARE INSTANCES
In Red Hat OpenStack Services on OpenShift (RHOSO) environments, VM instances can send and
receive VLAN-tagged traffic over a single virtual NIC. This is particularly useful for NFV applications
(VNFs) that expect VLAN-tagged traffic, allowing a single virtual NIC to serve multiple customers or
services. You can support VLAN-aware instances using VLAN transparent networks. As an alternative,
you can support VLAN-aware instances using trunks.

6.1. VLAN TRUNKS AND VLAN TRANSPARENT NETWORKS

In Red Hat OpenStack Services on OpenShift (RHOSO) environments that use a VLAN transparent
network, you set up VLAN tagging in the VM instances. The VLAN tags are transferred over the network
and consumed by the instances on the same VLAN, and ignored by other instances and devices. In a
VLAN transparent network, the VLANs are managed in the instance. You do not need to set up the
VLAN in the OpenStack Networking Service (neutron).

VLAN trunks support VLAN-aware instances by combining VLANs into a single trunked port. For
example, a project data network can use VLANs or tunneling (VXLAN, GRE, or GENEVE) segmentation,
while the instances see the traffic tagged with VLAN IDs. Network packets are tagged immediately
before they are injected to the instance and do not need to be tagged throughout the entire network.

The following table compares certain features of VLAN transparent networks and VLAN trunks:

 Transparent Trunk

Mechanism driver
support

ML2/OVN ML2/OVN

VLAN setup
managed by

VM instance OpenStack Networking Service
(neutron)

IP assignment Configured in VM instance Assigned by DHCP

VLAN ID Flexible. You can set the VLAN ID in the
instance

Fixed. Instances must use the
VLAN ID configured in the trunk

6.2. ENABLING VLAN TRANSPARENCY

Enable VLAN transparency if you need to send VLAN tagged traffic between virtual machine (VM)
instances. In a VLAN transparent network you can configure the VLANS directly in the VMs without
configuring them in neutron.

Prerequisites

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Provider network of type VLAN or GENEVE. Do not use VLAN transparency in deployments
with flat type provider networks.

Ensure that the external switch supports 802.1q VLAN stacking using ethertype 0x8100 on both

CHAPTER 6. VLAN-AWARE INSTANCES

45

Ensure that the external switch supports 802.1q VLAN stacking using ethertype 0x8100 on both
VLANs. OVN VLAN transparency does not support 802.1ad QinQ with outer provider VLAN
ethertype set to 0x88A8 or 0x9100.

Procedure

1. Update the control plane by adding the vlan_transparent = true key value pair:

$ oc patch -n openstack openstackcontrolplane openstack-galera-network-isolation --
type=merge --patch "

spec:
 neutron:
 template:
 customServiceConfig: |
 [DEFAULT]
 vlan_transparent = true
"

2. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

3. Create the network using the --transparent-vlan argument.

Example

Replace <network-name> with the name of the network that you are creating.

4. Exit the openstackclient pod:

5. Set up a VLAN interface on each participating VM.
Set the interface MTU to 4 bytes less than the MTU of the underlay network to accommodate
the extra tagging required by VLAN transparency. For example, if the underlay network MTU is
1500, set the interface MTU to 1496.

The following example command adds a VLAN interface on eth0 with an MTU of 1496. The
VLAN is 50 and the interface name is vlan50:

Example

6. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

$ openstack network create <network-name> --transparent-vlan

$ exit

$ ip link add link eth0 name vlan50 type vlan id 50 mtu 1496
$ ip link set vlan50 up
$ ip addr add 192.128.111.3/24 dev vlan50

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

46

7. Set --allowed-address on the VM port.
Set the allowed address to the IP address you created on the VLAN interface inside the VM in
step 4. Optionally, you can also set the VLAN interface MAC address:

Example

The following example sets the IP address to 192.128.111.3 with the optional MAC address
00:40:96:a8:45:c4 on port fv82gwk3-qq2e-yu93-go31-56w7sf476mm0:

8. Exit the openstackclient pod:

Verification

1. Ping between two VMs on the VLAN using the vlan50 IP address.

2. Use tcpdump on eth0 to see if the packets arrive with the VLAN tag intact.

$ openstack port set --allowed-address ip-address=192.128.111.3,mac-
address=00:40:96:a8:45:c4 fv82gwk3-qq2e-yu93-go31-56w7sf476mm0

$ exit

CHAPTER 6. VLAN-AWARE INSTANCES

47

CHAPTER 7. CONFIGURING RBAC POLICIES
In Red Hat OpenStack Services on OpenShift (RHOSO) environments, administrators can use role-
based access control (RBAC) policies in the Networking service (neutron) to control which projects are
granted permission to attach instances to a network, and also access to other resources like QoS
policies, security groups, address scopes, subnet pools, and address groups.

IMPORTANT

Networking service RBAC is separate from secure role-based access control (SRBAC)
that the Identity service (keystone) uses in RHOSO.

7.1. CREATING RBAC POLICIES

This example procedure demonstrates how to use a Networking service (neutron) role-based access
control (RBAC) policy to grant a project access to a shared network in a Red Hat OpenStack Services on
OpenShift (RHOSO) environment.

Prerequisites

The administrator has created a project for you and has provided you with a clouds.yaml file for
you to access the cloud.

The python-openstackclient package resides on your workstation.

$ dnf list installed python-openstackclient

Procedure

1. Confirm that the system OS_CLOUD variable is set for your cloud:

Reset the variable if necessary:

As an alternative, you can specify the cloud name by adding the --os-cloud <cloud_name>
option each time you run an openstack command.

2. View the list of available networks:

$ echo OS_CLOUD
my_cloud

$ export OS_CLOUD=my_other_cloud

$ openstack network list

+--------------------------------------+-------------+---+
| id | name | subnets |
+--------------------------------------+-------------+---+
| fa9bb72f-b81a-4572-9c7f-7237e5fcabd3 | web-servers | 20512ffe-ad56-4bb4-b064-
2cb18fecc923 192.168.200.0/24 |
| bcc16b34-e33e-445b-9fde-dd491817a48a | private | 7fe4a05a-4b81-4a59-8c47-
82c965b0e050 10.0.0.0/24 |

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

48

3. View the list of projects:

4. Create a RBAC entry for the web-servers network that grants access to the auditors project
(4b0b98f8c6c040f38ba4f7146e8680f5):

Sample output

As a result, users in the auditors project can connect instances to the web-servers network.

7.2. REVIEWING RBAC POLICIES

This example procedure demonstrates how to obtain information about a Networking service (neutron)
role-based access control (RBAC) policy used to grant a project access to a shared network in a
Red Hat OpenStack Services on OpenShift (RHOSO) environment.

Prerequisites

The administrator has created a project for you and has provided you with a clouds.yaml file for
you to access the cloud.

The python-openstackclient package resides on your workstation.

$ dnf list installed python-openstackclient

| 9b2f4feb-fee8-43da-bb99-032e4aaf3f85 | public | 2318dc3b-cff0-43fc-9489-
7d4cf48aaab9 172.24.4.224/28 |
+--------------------------------------+-------------+---+

$ openstack project list

+----------------------------------+----------+
| ID | Name |
+----------------------------------+----------+
4b0b98f8c6c040f38ba4f7146e8680f5	auditors
519e6344f82e4c079c8e2eabb690023b	services
80bf5732752a41128e612fe615c886c6	demo
98a2f53c20ce4d50a40dac4a38016c69	admin
+----------------------------------+----------+

$ openstack network rbac create --type network --target-project
4b0b98f8c6c040f38ba4f7146e8680f5 --action access_as_shared web-servers

+----------------+--------------------------------------+
| Field | Value |
+----------------+--------------------------------------+
action	access_as_shared
id	314004d0-2261-4d5e-bda7-0181fcf40709
object_id	fa9bb72f-b81a-4572-9c7f-7237e5fcabd3
object_type	network
target_project	4b0b98f8c6c040f38ba4f7146e8680f5
project_id	98a2f53c20ce4d50a40dac4a38016c69
+----------------+--------------------------------------+

CHAPTER 7. CONFIGURING RBAC POLICIES

49

Procedure

1. Confirm that the system OS_CLOUD variable is set for your cloud:

Reset the variable if necessary:

As an alternative, you can specify the cloud name by adding the --os-cloud <cloud_name>
option each time you run an openstack command.

2. Run the openstack network rbac list command to retrieve the ID of your existing role-based
access control (RBAC) policies:

Sample output

3. Run the openstack network rbac-show command to view the details of a specific RBAC entry:

Sample output

7.3. DELETING RBAC POLICIES

This example procedure demonstrates how to remove a Networking service (neutron) role-based
access control (RBAC) policy that grants a project access to a shared network in a Red Hat OpenStack
Services on OpenShift (RHOSO) environment.

$ echo OS_CLOUD
my_cloud

$ export OS_CLOUD=my_other_cloud

$ openstack network rbac list

+--------------------------------------+-------------+--------------------------------------+
| id | object_type | object_id |
+--------------------------------------+-------------+--------------------------------------+
| 314004d0-2261-4d5e-bda7-0181fcf40709 | network | fa9bb72f-b81a-4572-9c7f-
7237e5fcabd3 |
| bbab1cf9-edc5-47f9-aee3-a413bd582c0a | network | 9b2f4feb-fee8-43da-bb99-
032e4aaf3f85 |
+--------------------------------------+-------------+--------------------------------------+

$ openstack network rbac show 314004d0-2261-4d5e-bda7-0181fcf40709

+----------------+--------------------------------------+
| Field | Value |
+----------------+--------------------------------------+
action	access_as_shared
id	314004d0-2261-4d5e-bda7-0181fcf40709
object_id	fa9bb72f-b81a-4572-9c7f-7237e5fcabd3
object_type	network
target_project	4b0b98f8c6c040f38ba4f7146e8680f5
project_id	98a2f53c20ce4d50a40dac4a38016c69
+----------------+--------------------------------------+

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

50

Prerequisites

The administrator has created a project for you and has provided you with a clouds.yaml file for
you to access the cloud.

The python-openstackclient package resides on your workstation.

$ dnf list installed python-openstackclient

Procedure

1. Confirm that the system OS_CLOUD variable is set for your cloud:

Reset the variable if necessary:

As an alternative, you can specify the cloud name by adding the --os-cloud <cloud_name>
option each time you run an openstack command.

2. Run the openstack network rbac list command to retrieve the ID of your existing role-based
access control (RBAC) policies:

openstack network rbac list
+--------------------------------------+-------------+--------------------------------------+
| id | object_type | object_id |
+--------------------------------------+-------------+--------------------------------------+
| 314004d0-2261-4d5e-bda7-0181fcf40709 | network | fa9bb72f-b81a-4572-9c7f-
7237e5fcabd3 |
| bbab1cf9-edc5-47f9-aee3-a413bd582c0a | network | 9b2f4feb-fee8-43da-bb99-
032e4aaf3f85 |
+--------------------------------------+-------------+--------------------------------------+

3. Run the openstack network rbac delete command to delete the RBAC, using the ID of the
RBAC that you want to delete:

openstack network rbac delete 314004d0-2261-4d5e-bda7-0181fcf40709
Deleted rbac_policy: 314004d0-2261-4d5e-bda7-0181fcf40709

7.4. GRANTING RBAC POLICY ACCESS FOR EXTERNAL NETWORKS

In a Red Hat OpenStack Services on OpenShift (RHOSO) environment, you can use a Networking
service (neutron) role-based access control (RBAC) policy to grant a project access to an external
networks—​networks with gateway interfaces attached.

In the following example, a RBAC policy is created for the web-servers network and access is granted to
the engineering project, c717f263785d4679b16a122516247deb:

Prerequisites

$ echo OS_CLOUD
my_cloud

$ export OS_CLOUD=my_other_cloud

CHAPTER 7. CONFIGURING RBAC POLICIES

51

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Create a new RBAC policy using the --action access_as_external option:

Sample output

Created a new rbac_policy:

As a result, users in the engineering project are able to view the network or connect instances
to it:

3. Exit the openstackclient pod:

$ openstack network rbac create --type network --target-project
c717f263785d4679b16a122516247deb --action access_as_external web-servers

+----------------+--------------------------------------+
| Field | Value |
+----------------+--------------------------------------+
action	access_as_external
id	ddef112a-c092-4ac1-8914-c714a3d3ba08
object_id	6e437ff0-d20f-4483-b627-c3749399bdca
object_type	network
target_project	c717f263785d4679b16a122516247deb
project_id	c717f263785d4679b16a122516247deb
+----------------+--------------------------------------+

$ openstack network list

+--------------------------------------+-------------+--+
| id | name | subnets |
+--------------------------------------+-------------+--+
| 6e437ff0-d20f-4483-b627-c3749399bdca | web-servers | fa273245-1eff-4830-b40c-
57eaeac9b904 192.168.10.0/24 |
+--------------------------------------+-------------+--+

$ exit

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

52

CHAPTER 8. COMMON ADMINISTRATIVE NETWORKING
TASKS

Sometimes you might need to perform administration tasks on the Red Hat OpenStack Services on
OpenShift (RHOSO) Networking service (neutron) such as specifying the name assigned to ports by the
internal DNS.

This section includes the following topics:

Section 8.1, “Configuring shared security groups”

Section 8.2, “Specifying the name that DNS assigns to ports”

Section 8.3, “Enabling NUMA affinity on ports”

8.1. CONFIGURING SHARED SECURITY GROUPS

When you want one or more projects to be able to share data in a Red Hat OpenStack Services on
OpenShift (RHOSO) environment, you can use the Networking service (neutron) RBAC policy feature to
share a security group. You create security groups and Networking service role-based access control
(RBAC) policies using the OpenStack Client.

You can apply a security group directly to an instance during instance creation, or to a port on the
running instance.

NOTE

You cannot apply a role-based access control (RBAC)-shared security group directly to
an instance during instance creation. To apply an RBAC-shared security group to an
instance you must first create the port, apply the shared security group to that port, and
then assign that port to the instance. See Adding a security group to a port in Creating
and managing instances.

Prerequisites

You have at least two RHOSO projects that you want to share.

In one of the projects, the current project, you have created a security group that you want to
share with another project, the target project.
In this example, the ping_ssh security group is created:

Example

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ openstack security group create ping_ssh

CHAPTER 8. COMMON ADMINISTRATIVE NETWORKING TASKS

53

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/creating_and_managing_instances/assembly_providing-public-access-to-an-instance_instances#proc_adding-a-security-group-to-a-port_instances

$ oc rsh -n openstack openstackclient

2. Obtain the names or IDs of the project that contains the security group and the target project.

3. Obtain the name or ID of the security group that you want to share between RHOSO projects.

4. Using the identifiers from the previous steps, create an RBAC policy using the openstack
network rbac create command.
In this example, the ID of the target project is 32016615de5d43bb88de99e7f2e26a1e. The ID of
the security group is 5ba835b7-22b0-4be6-bdbe-e0722d1b5f24:

Example

--target-project

specifies the project that requires access to the security group.

TIP

You can share data between all projects by using the --target-all-projects argument instead
of --target-project <target_project>. By default, only the admin user has this privilege.

--action access_as_shared

specifies what the project is allowed to do.

--type

indicates that the target object is a security group.

5ba835b7-22b0-4be6-bdbe-e0722d1b5f24

is the ID of the particular security group which is being granted access to.
The target project is able to access the security group when running the OpenStack Client
security group commands, in addition to being able to bind to its ports. No other users
(other than administrators and the owner) are able to access the security group.

TIP

To remove access for the target project, delete the RBAC policy that allows it using the
openstack network rbac delete command.

5. Exit the openstackclient pod:

$ openstack project list

$ openstack security group list

$ openstack network rbac create --target-project \
32016615de5d43bb88de99e7f2e26a1e --action access_as_shared \
--type security_group 5ba835b7-22b0-4be6-bdbe-e0722d1b5f24

$ exit

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

54

8.2. SPECIFYING THE NAME THAT DNS ASSIGNS TO PORTS

In Red Hat OpenStack Services on OpenShift (RHOSO) environments, you can specify the name
assigned to ports by the internal DNS. You enable this functionality in the Networking service (neutron),
by loading the ML2 extension driver, DNS domain for ports, dns_domain_ports.

After loading the driver, you can use the OpenStack Client port commands, port set or port create, with
--dns-name to assign a port name.

IMPORTANT

You must enable the DNS domain for ports extension (dns_domain_ports) for DNS to
internally resolve names for ports in your RHOSO environment. Using the
NeutronDnsDomain default value, openstacklocal, means that the Networking service
does not internally resolve port names for DNS.

Also, when the DNS domain for ports extension is enabled, the Compute service automatically populates
the dns_name attribute with the hostname attribute of the instance during the boot of VM instances.
At the end of the boot process, dnsmasq recognizes the allocated ports by their instance hostname.

Prerequisites

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

Update the control plane with the key value pair, service_plugins=dns_domain_ports:

NOTE

If you set dns_domain_ports, ensure that the deployment does not also use
dns_domain, the DNS Integration extension. These extensions are incompatible,
and both extensions cannot be defined simultaneously.

RHOSO users can now set up port forwarding for floating IPs.

Verification

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc patch -n openstack openstackcontrolplane openstack-galera-network-isolation --
type=merge --patch "

spec:
 neutron:
 template:
 customServiceConfig: |
 [ml2]
 extension_drivers=dns_domain_ports
"

CHAPTER 8. COMMON ADMINISTRATIVE NETWORKING TASKS

55

$ oc rsh -n openstack openstackclient

2. Confirm that the Networking service has successfully loaded the dns_domain_ports ML2
extension driver:

Replace <cloud_name> with the name of the cloud on which you are running the command.

Sample output

A successful verification produces output similar to the following:

3. Create a new port (new_port) on a network (public). Assign a DNS name (my_port) to the port.

Example

4. Display the details for your port (new_port).

Example

Sample output

Under dns_assignment, the fully qualified domain name (fqdn) value for the port contains a
concatenation of the DNS name (my_port) and the domain name (example.com) that you set
earlier with NeutronDnsDomain.

5. Create a new VM instance (my_vm) using the port (new_port) that you just created.

Example

$ openstack extension list --network --max-width 75 | \
grep dns-domain-ports --os-cloud <cloud_name>

| dns_domain for ports
| dns-domain-ports | Allows the DNS domain to be specified for a network
port.

$ openstack port create --network public --dns-name my_port new_port

$ openstack port show -c dns_assignment -c dns_domain -c dns_name -c name new_port

+-------------------------+--+
| Field | Value |
+-------------------------+--+
dns_assignment	fqdn='my_port.example.com',
	hostname='my_port',
	ip_address='10.65.176.113'
dns_domain	example.com
dns_name	my_port
name	new_port
+-------------------------+--+

$ openstack server create --image rhel --flavor m1.small --port new_port my_vm

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

56

6. Display the details for your port (new_port).

Example

Sample output

Note that the Compute service changes the dns_name attribute from its original value
(my_port) to the name of the instance with which the port is associated (my_vm).

7. Exit the openstackclient pod:

8.3. ENABLING NUMA AFFINITY ON PORTS

In Red Hat OpenStack Services on OpenShift (RHOSO) environments, to enable users to create
instances with NUMA affinity on the port, you must load the Networking service (neutron) ML2
extension driver, NUMA port affinity policy, port_numa_affinity_policy.

Prerequisites

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

Update the control plane with the key value pair, service_plugins=port_numa_affinity_policy:

$ openstack port show -c dns_assignment -c dns_domain -c dns_name -c name new_port

+-------------------------+--+
| Field | Value |
+-------------------------+--+
dns_assignment	fqdn='my_vm.example.com',
	hostname='my_vm',
	ip_address='10.65.176.113'
dns_domain	example.com
dns_name	my_vm
name	new_port
+-------------------------+--+

$ exit

$ oc patch -n openstack openstackcontrolplane openstack-galera-network-isolation --
type=merge --patch "

spec:
 neutron:
 template:
 customServiceConfig: |
 [ml2]
 extension_drivers=port_numa_affinity_policy
"

CHAPTER 8. COMMON ADMINISTRATIVE NETWORKING TASKS

57

Verification

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Confirm that the Networking service has successfully loaded the port_numa_affinity_policy
ML2 extension driver:

Replace <cloud_name> with the name of the cloud on which you are running the command.

Sample output

A successful verification produces output similar to the following:

3. Create a new port.
When you create a port, use one of the following options to specify the NUMA affinity policy to
apply to the port:

--numa-policy-required - NUMA affinity policy required to schedule this port.

--numa-policy-preferred - NUMA affinity policy preferred to schedule this port.

--numa-policy-legacy - NUMA affinity policy using legacy mode to schedule this port.

Example

$ openstack port create --network public \
 --numa-policy-legacy myNUMAAffinityPort

4. Display the details for your port.

Example

$ openstack port show myNUMAAffinityPort -c numa_affinity_policy

Sample output

When the extension is loaded, the Value column should read, legacy, preferred or required. If
the extension has failed to load, Value reads None:

+----------------------+--------+
| Field | Value |
+----------------------+--------+
| numa_affinity_policy | legacy |
+----------------------+--------+

$ openstack extension list --network --max-width 74 | \
grep port-numa-affinity-policy --os-cloud <cloud_name>

| Port NUMA affinity policy
| port-numa-affinity-policy | Expose the port NUMA affinity
policy

Red Hat OpenStack Services on OpenShift 18.0 Configuring networking services

58

5. Exit the openstackclient pod:

Additional resources

"Instance PCI NUMA affinity policy" in Flavor metadata in Configuring the Compute service for
instance creation

$ exit

CHAPTER 8. COMMON ADMINISTRATIVE NETWORKING TASKS

59

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_the_compute_service_for_instance_creation/assembly_creating-flavors-for-launching-instances_instance-flavors#ref_flavor-metadata_instance-flavors

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO OPENSTACK NETWORKING
	1.1. MANAGING YOUR RHOSO NETWORKS
	1.2. NETWORKING SERVICE COMPONENTS
	1.3. MODULAR LAYER 2 (ML2) NETWORKING
	1.4. ML2 NETWORK TYPES
	1.5. EXTENSION DRIVERS FOR THE RHOSO NETWORKING SERVICE

	CHAPTER 2. WORKING WITH ML2/OVN
	2.1. OPEN VIRTUAL NETWORK (OVN)
	2.2. LIST OF COMPONENTS IN THE RHOSO OVN ARCHITECTURE
	2.3. LAYER 3 HIGH AVAILABILITY WITH OVN
	2.4. ACTIVE-ACTIVE CLUSTERED DATABASE SERVICE MODEL
	2.5. SR-IOV WITH ML2/OVN AND NATIVE OVN DHCP

	CHAPTER 3. CUSTOMIZING DATA PLANE NETWORKS
	3.1. APPLYING CUSTOM NETWORK CONFIGURATION TO A NODE SET
	3.2. NETWORK INTERFACE CONFIGURATION OPTIONS
	3.2.1. interface
	3.2.2. vlan
	3.2.3. ovs_bridge
	3.2.4. Network interface bonding
	3.2.4.1. ovs_bond

	3.2.5. LACP with OVS bonding modes
	3.2.6. linux_bond
	3.2.7. routes

	3.3. EXAMPLE CUSTOM NETWORK INTERFACES

	CHAPTER 4. MANAGING PROJECT NETWORKS
	4.1. VLAN PLANNING
	4.2. DEFAULT RED HAT OPENSTACK SERVICES ON OPENSHIFT NETWORKS
	4.3. IP ADDRESS CONSUMPTION
	4.4. VIRTUAL NETWORKING
	4.5. EXAMPLE NETWORK PLAN
	4.6. WORKING WITH SUBNETS
	4.7. CONFIGURING FLOATING IP PORT FORWARDING
	4.8. BRIDGING THE PHYSICAL NETWORK

	CHAPTER 5. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC
	5.1. QOS RULES
	5.2. CONFIGURING THE NETWORKING SERVICE FOR QOS POLICIES
	5.3. CONFIGURING THE NETWORKING SERVICE FOR QOS POLICIES FOR SR-IOV

	CHAPTER 6. VLAN-AWARE INSTANCES
	6.1. VLAN TRUNKS AND VLAN TRANSPARENT NETWORKS
	6.2. ENABLING VLAN TRANSPARENCY

	CHAPTER 7. CONFIGURING RBAC POLICIES
	7.1. CREATING RBAC POLICIES
	7.2. REVIEWING RBAC POLICIES
	7.3. DELETING RBAC POLICIES
	7.4. GRANTING RBAC POLICY ACCESS FOR EXTERNAL NETWORKS

	CHAPTER 8. COMMON ADMINISTRATIVE NETWORKING TASKS
	8.1. CONFIGURING SHARED SECURITY GROUPS
	8.2. SPECIFYING THE NAME THAT DNS ASSIGNS TO PORTS
	8.3. ENABLING NUMA AFFINITY ON PORTS

