
Red Hat OpenStack Services on
OpenShift 18.0

Configuring the Compute service for instance
creation

Configuring and managing the Compute service (nova) for creating instances

Last Updated: 2024-09-09

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute
service for instance creation

Configuring and managing the Compute service (nova) for creating instances

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Configure and manage the Compute service (nova) in a Red Hat OpenStack Services on OpenShift
deployment.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

ABOUT THIS GUIDE

CHAPTER 1. COMPUTE SERVICE (NOVA) FUNCTIONALITY

CHAPTER 2. CONFIGURING THE COMPUTE SERVICE (NOVA)

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES
3.1. CREATING A FLAVOR
3.2. FLAVOR ARGUMENTS
3.3. FLAVOR METADATA

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES
4.1. CONFIGURING CPU PINNING ON COMPUTE NODES

4.1.1. Prerequisites
4.1.2. Designating and configuring Compute nodes for CPU pinning
4.1.3. Creating a dedicated CPU flavor for instances
4.1.4. Creating a shared CPU flavor for instances
4.1.5. Creating a mixed CPU flavor for instances
4.1.6. Configuring CPU pinning on Compute nodes with simultaneous multithreading (SMT)
4.1.7. Additional resources

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES
5.1. CONFIGURING MEMORY FOR OVERALLOCATION
5.2. CALCULATING RESERVED HOST MEMORY ON COMPUTE NODES
5.3. CALCULATING SWAP SIZE
5.4. CONFIGURING HUGE PAGES ON COMPUTE NODES

5.4.1. Creating a huge pages flavor for instances
5.4.2. Mounting multiple huge page folders during first boot

5.5. CONFIGURING COMPUTE NODES TO USE FILE-BACKED MEMORY FOR INSTANCES
5.5.1. Changing the memory backing directory host disk

5.6. CONFIGURING AMD SEV COMPUTE NODES TO PROVIDE MEMORY ENCRYPTION FOR INSTANCES
5.6.1. Secure Encrypted Virtualization (SEV)
5.6.2. Designating AMD SEV Compute nodes for memory encryption
5.6.3. Configuring AMD SEV Compute nodes for memory encryption
5.6.4. Creating an image for memory encryption
5.6.5. Creating a flavor for memory encryption
5.6.6. Launching an instance with memory encryption

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT
6.1. PREFILTERING USING THE PLACEMENT SERVICE

6.1.1. Filtering by requested image type support
6.1.2. Filtering by resource provider traits

6.1.2.1. Creating an image that requires or forbids a resource provider trait
6.1.2.2. Creating a flavor that requires or forbids a resource provider trait

6.1.3. Filtering by isolating host aggregates
6.2. CONFIGURING FILTERS AND WEIGHTS FOR THE COMPUTE SCHEDULER SERVICE
6.3. COMPUTE SCHEDULER FILTERS
6.4. COMPUTE SCHEDULER WEIGHTS
6.5. DECLARING CUSTOM TRAITS AND RESOURCE CLASSES
6.6. CREATING AND MANAGING HOST AGGREGATES

6.6.1. Enabling scheduling on host aggregates

4

5

6

8

9
9

10
12

28
28
29
29
32
33
34
35
35

36
36
38
39
39
43
44
46
49
49
50
51
51

54
55
56

57
57
58
59
59
61

62
64
66
71
77
83
83

Table of Contents

1

. .

. .

. .

. .

6.6.2. Creating a host aggregate
6.6.3. Creating an availability zone
6.6.4. Deleting a host aggregate
6.6.5. Creating a project-isolated host aggregate

CHAPTER 7. ADDING METADATA TO INSTANCES
7.1. TYPES OF INSTANCE METADATA

CHAPTER 8. CONFIGURING INSTANCE SECURITY

CHAPTER 9. DATABASE CLEANING

CHAPTER 10. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES
10.1. MIGRATION TYPES

85
86
87
88

91
91

92

93

94
94

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

2

Table of Contents

3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation for Red Hat OpenStack Services
on OpenShift (RHOSO) or earlier releases of Red Hat OpenStack Platform (RHOSP). When you create
an issue for RHOSO or RHOSP documents, the issue is recorded in the RHOSO Jira project, where you
can track the progress of your feedback.

To complete the Create Issue form, ensure that you are logged in to Jira. If you do not have a Red Hat
Jira account, you can create an account at https://issues.redhat.com.

1. Click the following link to open a Create Issue page: Create Issue

2. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

3. Click Create.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

4

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

ABOUT THIS GUIDE

IMPORTANT

Red Hat is currently reviewing the information and procedures provided in this guide for
Red Hat OpenStack Services on OpenShift (RHOSO). This guide will be updated when
the reviewed content is available for enterprise use. If you require assistance for the
current RHOSO release, please contact Red Hat Support.

ABOUT THIS GUIDE

5

CHAPTER 1. COMPUTE SERVICE (NOVA) FUNCTIONALITY
You use the Compute (nova) service to create, provision, and manage virtual machine instances and
bare metal servers in a Red Hat OpenStack Services on OpenShift (RHOSO) environment. The
Compute service abstracts the underlying hardware that it runs on, rather than exposing specifics about
the underlying host platforms. For example, rather than exposing the types and topologies of CPUs
running on hosts, the Compute service exposes a number of virtual CPUs (vCPUs) and allows for
overcommitting of these vCPUs.

The Compute service uses the KVM hypervisor to execute Compute service workloads. The libvirt driver
interacts with QEMU to handle all interactions with KVM, and enables the creation of virtual machine
instances. To create and provision instances, the Compute service interacts with the following RHOSO
services:

Identity (keystone) service for authentication.

Placement service for resource inventory tracking and selection.

Image Service (glance) for disk and instance images.

Networking (neutron) service for provisioning the virtual or physical networks that instances
connect to on boot.

The Compute service consists of daemon processes and services, named nova-*. The following are the
core Compute services:

Compute service (nova-compute)

This service creates, manages and terminates instances by using the libvirt for KVM or QEMU
hypervisor APIs, and updates the database with instance states.

Compute conductor (nova-conductor)

This service mediates interactions between the Compute service and the database, which insulates
Compute nodes from direct database access. Do not deploy this service on nodes where the nova-
compute service runs.

Compute scheduler (nova-scheduler)

This service takes an instance request from the queue and determines on which Compute node to
host the instance.

Compute API (nova-api)

This service provides the external REST API to users.

API database

This database tracks instance location information, and provides a temporary location for instances
that are built but not scheduled. In multi-cell deployments, this database also contains cell mappings
that specify the database connection for each cell.

Cell database

This database contains most of the information about instances. It is used by the API database, the
conductor, and the Compute services.

Message queue

This messaging service is used by all services to communicate with each other within the cell and with
the global services.

Compute metadata

This service stores data specific to instances. Instances access the metadata service at
http://169.254.169.254 or over IPv6 at the link-local address fe80::a9fe:a9fe. The Networking

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

6

http://169.254.169.254

(neutron) service is responsible for forwarding requests to the metadata API server. You must use
the NeutronMetadataProxySharedSecret parameter to set a secret keyword in the configuration of
both the Networking service and the Compute service to allow the services to communicate. The
Compute metadata service can be run globally, as part of the Compute API, or in each cell.

You can deploy more than one Compute node. The hypervisor that operates instances runs on each
Compute node. Each Compute node requires a minimum of two network interfaces. The Compute node
also runs a Networking service agent that connects instances to virtual networks and provides
firewalling services to instances through security groups.

CHAPTER 1. COMPUTE SERVICE (NOVA) FUNCTIONALITY

7

CHAPTER 2. CONFIGURING THE COMPUTE SERVICE (NOVA)
To designate and configure all node sets for a particular feature or workload, the Compute service
(nova) provides a default ConfigMap CR named nova-extra-config, where you can add generic
configuration that applies to all the node sets that use the default nova service. If you use this default
nova-extra-config ConfigMap to add generic configuration to be applied to all the node sets, then you
do not need to create a custom service.

Example of a generic feature configuration:

apiVersion: v1
kind: ConfigMap
metadata:
 name: nova-extra-config
 namespace: openstack
data:
 <integer>-<service>-<feature>.conf: |
 [<section>]
 <config_option>=<value>

Replace <integer> with an integer that indicates when the configuration should be applied in
the series of configuration files that are applied to etc/<service>/<service>.conf.d/ in the
<service> container when the service is deployed. Numbers below 25 are reserved for the
OpenStack services and Ansible configuration files.

Replace <service> with the name of the service.

Replace <feature> with a string that identifies the feature.

Replace <section> with the section to which you want to add the configuration.

You can configure only whole node sets. Reconfiguring a subset of the nodes within a node set is not
supported. If you need to reconfigure a subset of nodes within a node set, you must split the node set via
scaling in the current node set, remove the scaled in nodes from the node set, and add them to a new
node set.

If your deployment has more than one node set, changes to the nova-extra-config ConfigMap might
directly affect more than one node set, depending on how the node sets and the DataPlaneServices are
configured.

Procedure

1. Create or update the default ConfigMap CR named nova-extra-config.

2. Create a new OpenStackDataPlaneDeployment CR to configure the services on the data
plane nodes.

3. Specify nodeSets to include all the OpenStackDataPlaneNodeSet CRs you want to deploy.

4. Deploy the data plane.

Additional resources

Customizing the data plane in Customizing the Red Hat OpenStack Services on OpenShift
deployment

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

8

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/customizing_the_red_hat_openstack_services_on_openshift_deployment/assembly_customizing-the-data-plane

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING
INSTANCES

An instance flavor is a resource template that specifies the virtual hardware profile for the instance.
Cloud users must specify a flavor when they launch an instance.

A flavor can specify the quantity of the following resources the Compute service must allocate to an
instance:

The number of vCPUs.

The RAM, in MB.

The root disk, in GB.

The virtual storage, including secondary ephemeral storage and swap disk.

You can specify who can use flavors by making the flavor public to all projects, or private to specific
projects or domains.

There are no default flavors in Red Hat OpenStack Services on OpenShift (RHOSO). To create a flavor,
you must use the openstack flavor create command, for example:

openstack --os-compute-api=2.86 flavor create --ram 128 --disk 1 --vcpus 1 m1.nano

This command creates a public flavor called m1.nano with 128MB RAM and 1GB disk size. The API micro
version enables flavor extra spec validation. Flavor extra spec validation prevents common typos and
similar errors when defining flavors. You specify the micro version by using --os-compute-api=2.86.

openstack --os-compute-api=2.86 flavor create --ram 196 --disk 1 --vcpus 1 m1.micro

This command creates a public flavor called m1.micro with 196MB RAM and 1GB disk size.

Flavors can use metadata, also referred to as "extra specs", to specify instance hardware support and
quotas. The flavor metadata influences the instance placement, resource usage limits, and
performance. For a complete list of available metadata properties, see Flavor metadata.

You can also use the flavor metadata keys to find a suitable host aggregate to host the instance, by
matching the extra_specs metadata set on the host aggregate. To schedule an instance on a host
aggregate, you must scope the flavor metadata by prefixing the extra_specs key with the
aggregate_instance_extra_specs: namespace. For more information, see Creating and managing host
aggregates.

NOTE

Behaviors set using flavor properties override behaviors set using images. When a cloud
user launches an instance, the properties of the flavor they specify override the
properties of the image they specify.

3.1. CREATING A FLAVOR

You can create and manage specialized flavors for specific functionality or behaviors, for example:

Change default memory and capacity to suit the underlying hardware needs.

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

9

Add metadata to force a specific I/O rate for the instance or to match a host aggregate.

Procedure

1. Create a flavor that specifies the basic resources to make available to an instance:

$ openstack --os-compute-api=2.86 flavor create --ram <size_mb> \
 --disk <size_gb> --vcpus <no_vcpus> \
 [--private --project <project_id>] <flavor_name>

Replace <size_mb> with the size of RAM to allocate to an instance created with this flavor.

Replace <size_gb> with the size of root disk to allocate to an instance created with this
flavor.

Replace <no_vcpus> with the number of vCPUs to reserve for an instance created with this
flavor.

Optional: Specify the --private and --project options to make the flavor accessible only by a
particular project or group of users. Replace <project_id> with the ID of the project that
can use this flavor to create instances. If you do not specify the accessibility, the flavor
defaults to public, which means that it is available to all projects.

NOTE

You cannot make a public flavor private after it has been created.

Replace <flavor_name> with a unique name for your flavor.
For more information about flavor arguments, see Flavor arguments.

2. Optional: To specify flavor metadata, set the required properties by using key-value pairs:

$ openstack --os-compute-api=2.86 flavor set \
 --property <key=value> --property <key=value> ... <flavor_name>

Replace <key> with the metadata key of the property you want to allocate to an instance
that is created with this flavor. For a list of available metadata keys, see Flavor metadata.

Replace <value> with the value of the metadata key you want to allocate to an instance
that is created with this flavor.

Replace <flavor_name> with the name of your flavor.
For example, an instance that is launched by using the following flavor has two CPU sockets,
each with two CPUs:

$ openstack --os-compute-api=2.86 flavor set \
 --property hw:cpu_sockets=2 \
 --property hw:cpu_cores=2 processor_topology_flavor

3.2. FLAVOR ARGUMENTS

The openstack flavor create command has one positional argument, <flavor_name>, to specify the
name of your new flavor.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

10

The following table details the optional arguments that you can specify as required when you create a
new flavor.

Table 3.1. Optional flavor arguments

Optional argument Description

--id Unique ID for the flavor. The default value, auto, generates a
UUID4 value. You can use this argument to manually specify an
integer or UUID4 value.

--ram (Mandatory) Size of memory to make available to the instance,
in MB.

Default: 256 MB

--disk (Mandatory) Amount of disk space to use for the root (/)
partition, in GB. The root disk is an ephemeral disk that the base
image is copied into. When an instance boots from a persistent
volume, the root disk is not used.

NOTE

Creation of an instance with a flavor that has --
disk set to 0 requires that the instance boots
from volume.

Default: 0 GB

--ephemeral Amount of disk space to use for the ephemeral disks, in GB.
Defaults to 0 GB, which means that no secondary ephemeral
disk is created. Ephemeral disks offer machine local disk storage
linked to the lifecycle of the instance. Ephemeral disks are not
included in any snapshots. This disk is destroyed and all data is
lost when the instance is deleted.

Default: 0 GB

--swap Swap disk size in MB. Do not specify swap in a flavor if the
Compute service back end storage is not local storage.

Default: 0 GB

--vcpus (Mandatory) Number of virtual CPUs for the instance.

Default: 1

--public The flavor is available to all projects. By default, a flavor is public
and available to all projects.

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

11

--private The flavor is only available to the projects specified by using the
--project option. If you create a private flavor but add no
projects to it then the flavor is only available to the cloud
administrator.

--property Metadata, or "extra specs", specified by using key-value pairs in
the following format:

--property <key=value>

Repeat this option to set multiple properties.

--project Specifies the project that can use the private flavor. You must
use this argument with the --private option. If you do not
specify any projects, the flavor is visible only to the admin user.

Repeat this option to allow access to multiple projects.

--project-domain Specifies the project domain that can use the private flavor. You
must use this argument with the --private option.

Repeat this option to allow access to multiple project domains.

--description Description of the flavor. Limited to 65535 characters in length.
You can use only printable characters.

Optional argument Description

3.3. FLAVOR METADATA

Use the --property option to specify flavor metadata when you create a flavor. Flavor metadata is also
referred to as extra specs. Flavor metadata determines instance hardware support and quotas, which
influence instance placement, instance limits, and performance.

Instance resource usage

Use the property keys in the following table to configure limits on CPU, memory and disk I/O usage by
instances.

NOTE

The extra specs for limiting instance CPU resource usage are host-specific tunable
properties that are passed directly to libvirt, which then passes the limits onto the host
OS. Therefore, the supported instance CPU resource limits configurations are dependent
on the underlying host OS.

For more information on how to configure instance CPU resource usage for the
Compute nodes in your RHOSO deployment, see Understanding cgroups in the RHEL 9
documentation, and CPU Tuning in the Libvirt documentation.

Table 3.2. Flavor metadata for resource usage

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

12

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/setting-limits-for-applications_managing-monitoring-and-updating-the-kernel
https://libvirt.org/formatdomain.html#cpu-tuning

Key Description

quota:cpu_shares Specifies the proportional weighted share of CPU time for the
domain. Defaults to the OS provided defaults. The Compute
scheduler weighs this value relative to the setting of this
property on other instances in the same domain. For example, an
instance that is configured with quota:cpu_shares=2048 is
allocated double the CPU time as an instance that is configured
with quota:cpu_shares=1024.

quota:cpu_period Specifies the period of time within which to enforce the
cpu_quota, in microseconds. Within the cpu_period, each
vCPU cannot consume more than cpu_quota of runtime. Set
to a value in the range 1000 – 1000000. Set to 0 to disable.

quota:cpu_quota Specifies the maximum allowed bandwidth for the vCPU in each
cpu_period, in microseconds:

Set to a value in the range 1000 –
18446744073709551.

Set to 0 to disable.

Set to a negative value to allow infinite bandwidth.

You can use cpu_quota and cpu_period to ensure that all
vCPUs run at the same speed. For example, you can use the
following flavor to launch an instance that can consume a
maximum of only 50% CPU of a physical CPU computing
capability:

$ openstack flavor set cpu_limits_flavor \
 --property quota:cpu_quota=10000 \
 --property quota:cpu_period=20000

Instance disk tuning

Use the property keys in the following table to tune the instance disk performance.

NOTE

The Compute service applies the following quality of service settings to storage that the
Compute service has provisioned, such as ephemeral storage. To tune the performance
of Block Storage (cinder) volumes, you must also configure and associate a Quality of
Service (QoS) specification for the volume type.

Table 3.3. Flavor metadata for disk tuning

Key Description

quota:disk_read_bytes_sec Specifies the maximum disk reads available to an instance, in
bytes per second.

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

13

quota:disk_read_iops_sec Specifies the maximum disk reads available to an instance, in
IOPS.

quota:disk_write_bytes_sec Specifies the maximum disk writes available to an instance, in
bytes per second.

quota:disk_write_iops_sec Specifies the maximum disk writes available to an instance, in
IOPS.

quota:disk_total_bytes_sec Specifies the maximum I/O operations available to an instance,
in bytes per second.

quota:disk_total_iops_sec Specifies the maximum I/O operations available to an instance,
in IOPS.

Key Description

Instance network traffic bandwidth

Use the property keys in the following table to configure bandwidth limits on the instance network
traffic by configuring the VIF I/O options.

NOTE

The quota :vif_* properties are deprecated. Instead, you should use the Networking
(neutron) service Quality of Service (QoS) policies. For more information about QoS
policies, see Configuring Quality of Service (QoS) policies in the Configuring Red Hat
OpenStack Platform networking guide. The quota:vif_* properties are only supported
when you use the ML2/OVS mechanism driver with NeutronOVSFirewallDriver set to
iptables_hybrid.

Table 3.4. Flavor metadata for bandwidth limits

Key Description

quota:vif_inbound_average (Deprecated) Specifies the required average bit rate on the
traffic incoming to the instance, in kbps.

quota:vif_inbound_burst (Deprecated) Specifies the maximum amount of incoming
traffic that can be burst at peak speed, in KB.

quota:vif_inbound_peak (Deprecated) Specifies the maximum rate at which the instance
can receive incoming traffic, in kbps.

quota:vif_outbound_average (Deprecated) Specifies the required average bit rate on the
traffic outgoing from the instance, in kbps.

quota:vif_outbound_burst (Deprecated) Specifies the maximum amount of outgoing
traffic that can be burst at peak speed, in KB.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

14

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_networking_services/config-qos-policies_rhoso-cfg-network

quota:vif_outbound_peak (Deprecated) Specifies the maximum rate at which the instance
can send outgoing traffic, in kbps.

Key Description

Hardware video RAM

Use the property key in the following table to configure limits on the instance RAM to use for video
devices.

Table 3.5. Flavor metadata for video devices

Key Description

hw_video:ram_max_mb Specifies the maximum RAM to use for video devices, in MB. Use
with the hw_video_ram image property. hw_video_ram
must be less than or equal to hw_video:ram_max_mb.

Watchdog behavior

Use the property key in the following table to enable the virtual hardware watchdog device on the
instance.

Table 3.6. Flavor metadata for watchdog behavior

Key Description

hw:watchdog_action Specify to enable the virtual hardware watchdog device and set
its behavior. Watchdog devices perform the configured action if
the instance hangs or fails. The watchdog uses the i6300esb
device, which emulates a PCI Intel 6300ESB. If
hw:watchdog_action is not specified, the watchdog is
disabled.

Set to one of the following valid values:

disabled: (Default) The device is not attached.

reset: Force instance reset.

poweroff: Force instance shut down.

pause: Pause the instance.

none: Enable the watchdog, but do nothing if the
instance hangs or fails.

NOTE

Watchdog behavior that you set by
using the properties of a specific
image override behavior that you set
by using flavors.

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

15

Random number generator (RNG)

Use the property keys in the following table to enable the RNG device on the instance.

Table 3.7. Flavor metadata for RNG

Key Description

hw_rng:allowed Set to False to disable the RNG device that is added to the
instance through its image properties.

Default: True

hw_rng:rate_bytes Specifies the maximum number of bytes that the instance can
read from the entropy of the host, per period.

hw_rng:rate_period Specifies the duration of the read period in milliseconds.

Virtual Performance Monitoring Unit (vPMU)

Use the property key in the following table to enable the vPMU for the instance.

Table 3.8. Flavor metadata for vPMU

Key Description

hw:pmu Set to True to enable a vPMU for the instance.

Tools such as perf use the vPMU on the instance to provide
more accurate information to profile and monitor instance
performance. For realtime workloads, the emulation of a vPMU
can introduce additional latency which might be undesirable. If
the telemetry it provides is not required, set hw:pmu=False.

Virtual Trusted Platform Module (vTPM) devices

Use the property keys in the following table to enable a vTPM device for the instance.

Table 3.9. Flavor metadata for vPMU

Key Description

hw:tpm_version Set to the version of TPM to use. TPM version 2.0 is the only
supported version.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

16

hw:tpm_model Set to the model of TPM device to use. Ignored if
hw:tpm_version is not configured. Set to one of the following
valid values:

tpm-tis: (Default) TPM Interface Specification.

tpm-crb: Command-Response Buffer. Compatible
only with TPM version 2.0.

Key Description

Instance CPU topology

Use the property keys in the following table to define the topology of the processors in the instance.

Table 3.10. Flavor metadata for CPU topology

Key Description

hw:cpu_sockets Specifies the preferred number of sockets for the instance.

Default: the number of vCPUs requested

hw:cpu_cores Specifies the preferred number of cores per socket for the
instance.

Default: 1

hw:cpu_threads Specifies the preferred number of threads per core for the
instance.

Default: 1

hw:cpu_max_sockets Specifies the maximum number of sockets that users can select
for their instances by using image properties.

Example: hw:cpu_max_sockets=2

hw:cpu_max_cores Specifies the maximum number of cores per socket that users
can select for their instances by using image properties.

hw:cpu_max_threads Specifies the maximum number of threads per core that users
can select for their instances by using image properties.

Serial ports

Use the property key in the following table to configure the number of serial ports per instance.

Table 3.11. Flavor metadata for serial ports

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

17

Key Description

hw:serial_port_count Maximum serial ports per instance.

CPU pinning policy

By default, instance virtual CPUs (vCPUs) are sockets with one core and one thread. You can use
properties to create flavors that pin the vCPUs of instances to the physical CPU cores (pCPUs) of the
host. You can also configure the behavior of hardware CPU threads in a simultaneous multithreading
(SMT) architecture where one or more cores have thread siblings.

Use the property keys in the following table to define the CPU pinning policy of the instance.

Table 3.12. Flavor metadata for CPU pinning

Key Description

hw:cpu_policy Specifies the CPU policy to use. Set to one of the following valid
values:

shared: (Default) The instance vCPUs float across
host pCPUs.

dedicated: Pin the instance vCPUs to a set of host
pCPUs. This creates an instance CPU topology that
matches the topology of the CPUs to which the
instance is pinned. This option implies an overcommit
ratio of 1.0.

mixed: The instance vCPUs use a mix of dedicated
(pinned) host pCPUs and shared (unpinned) host
pCPUs.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

18

hw:cpu_thread_policy Specifies the CPU thread policy to use when
hw:cpu_policy=dedicated. Set to one of the following valid
values:

prefer: (Default) The host might or might not have an
SMT architecture. If an SMT architecture is present, the
Compute scheduler gives preference to thread siblings.

isolate: The host must not have an SMT architecture
or must emulate a non-SMT architecture. This policy
ensures that the Compute scheduler places the
instance on a host without SMT by requesting hosts
that do not report the
HW_CPU_HYPERTHREADING trait. It is also
possible to request this trait explicitly by using the
following property:

--property
trait:HW_CPU_HYPERTHREADING=forbidden

If the host does not have an SMT architecture, the
Compute service places each vCPU on a different core
as expected. If the host does have an SMT
architecture, then the behaviour is determined by the
configuration of the
[workarounds]/disable_fallback_pcpu_query
parameter:

True: The host with an SMT architecture is not
used and scheduling fails.

False: The Compute service places each vCPU on
a different physical core. The Compute service
does not place vCPUs from other instances on the
same core. All but one thread sibling on each used
core is therefore guaranteed to be unusable.

require: The host must have an SMT architecture. This
policy ensures that the Compute scheduler places the
instance on a host with SMT by requesting hosts that
report the HW_CPU_HYPERTHREADING trait. It is
also possible to request this trait explicitly by using the
following property:

--property
trait:HW_CPU_HYPERTHREADING=required

The Compute service allocates each vCPU on thread
siblings. If the host does not have an SMT architecture,
then it is not used. If the host has an SMT architecture,
but not enough cores with free thread siblings are
available, then scheduling fails.

Key Description

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

19

hw:cpu_dedicated_mask Specifies which CPUs are dedicated (pinned) or shared
(unpinned/floating).

To specify dedicated CPUs, specify the CPU number or
CPU range. For example, set the property to 2-3 to
specify that CPUs 2 and 3 are dedicated and all the
remaining CPUs are shared.

To specify shared CPUs, prepend the CPU number or
CPU range with a caret (^). For example, set the
property to ^0-1 to specify that CPUs 0 and 1 are
shared and all the remaining CPUs are dedicated.

Key Description

Instance PCI NUMA affinity policy

Use the property key in the following table to create flavors that specify the NUMA affinity policy for
PCI passthrough devices and SR-IOV interfaces.

Table 3.13. Flavor metadata for PCI NUMA affinity policy

Key Description

hw:pci_numa_affinity_policy Specifies the NUMA affinity policy for PCI passthrough devices
and SR-IOV interfaces. Set to one of the following valid values:

required: The Compute service creates an instance
that requests a PCI device only when at least one of
the NUMA nodes of the instance has affinity with the
PCI device. This option provides the best performance.

preferred: The Compute service attempts a best
effort selection of PCI devices based on NUMA affinity.
If this is not possible, then the Compute service
schedules the instance on a NUMA node that has no
affinity with the PCI device.

legacy: (Default) The Compute service creates
instances that request a PCI device in one of the
following cases:

The PCI device has affinity with at least one of the
NUMA nodes.

The PCI devices do not provide information about
their NUMA affinities.

socket: The Compute service creates an instance that
requests a PCI device only when at least one of the
instance NUMA nodes has affinity with a NUMA node in
the same host socket as the PCI device. For example,
the following host architecture has two sockets, each
socket has two NUMA nodes, and a PCI device is
connected to one of the nodes in one of the sockets.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

20

The Compute service can pin an instance with two
NUMA nodes and the socket PCI NUMA affinity policy
only to the following combinations of host nodes
because they all have at least one instance NUMA node
pinned to the PCI device’s socket:

node 0 and node 1

node 0 and node 2

node 0 and node 3

node 1 and node 2

node 1 and node 3

The only combination of host nodes that the instance
cannot be pinned to is node 2 and node 3, as neither of
those nodes are on the same socket as the PCI device.
If the other nodes are consumed by other instances and
only nodes 2 and 3 are available, the instance does not
boot.

Key Description

Instance NUMA topology

You can use properties to create flavors that define the host NUMA placement for the instance vCPU
threads, and the allocation of instance vCPUs and memory from the host NUMA nodes.

Defining a NUMA topology for the instance improves the performance of the instance OS for flavors
whose memory and vCPU allocations are larger than the size of NUMA nodes in the Compute hosts.

The Compute scheduler uses these properties to determine a suitable host for the instance. For
example, a cloud user launches an instance by using the following flavor:

$ openstack flavor set numa_top_flavor \
 --property hw:numa_nodes=2 \
 --property hw:numa_cpus.0=0,1,2,3,4,5 \
 --property hw:numa_cpus.1=6,7 \
 --property hw:numa_mem.0=3072 \
 --property hw:numa_mem.1=1024

The Compute scheduler searches for a host that has two NUMA nodes, one with 3GB of RAM and the
ability to run six CPUs, and the other with 1GB of RAM and two CPUS. If a host has a single NUMA node
with capability to run eight CPUs and 4GB of RAM, the Compute scheduler does not consider it a valid
match.

NOTE

NUMA topologies defined by a flavor cannot be overridden by NUMA topologies defined
by the image. The Compute service raises an ImageNUMATopologyForbidden error if
the image NUMA topology conflicts with the flavor NUMA topology.

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

21

CAUTION

You cannot use this feature to constrain instances to specific host CPUs or NUMA nodes. Use this
feature only after you complete extensive testing and performance measurements. You can use the
hw:pci_numa_affinity_policy property instead.

Use the property keys in the following table to define the instance NUMA topology.

Table 3.14. Flavor metadata for NUMA topology

Key Description

hw:numa_nodes Specifies the number of host NUMA nodes to restrict execution
of instance vCPU threads to. If not specified, the vCPU threads
can run on any number of the available host NUMA nodes.

hw:numa_cpus.N A comma-separated list of instance vCPUs to map to instance
NUMA node N. If this key is not specified, vCPUs are evenly
divided among available NUMA nodes.

N starts from 0. Use *.N values with caution, and only if you have
at least two NUMA nodes.

This property is valid only if you have set hw:numa_nodes,
and is required only if the NUMA nodes of the instance have an
asymmetrical allocation of CPUs and RAM, which is important for
some NFV workloads.

hw:numa_mem.N The number of MB of instance memory to map to instance
NUMA node N. If this key is not specified, memory is evenly
divided among available NUMA nodes.

N starts from 0. Use *.N values with caution, and only if you have
at least two NUMA nodes.

This property is valid only if you have set hw:numa_nodes,
and is required only if the NUMA nodes of the instance have an
asymmetrical allocation of CPUs and RAM, which is important for
some NFV workloads.

WARNING

If the combined values of hw:numa_cpus.N or hw:numa_mem.N are greater than
the available number of CPUs or memory respectively, the Compute service raises
an exception.

CPU real-time policy

Use the property keys in the following table to define the real-time policy of the processors in the

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

22

Use the property keys in the following table to define the real-time policy of the processors in the
instance.

NOTE

Although most of your instance vCPUs can run with a real-time policy, you must
mark at least one vCPU as non-real-time to use for both non-real-time guest
processes and emulator overhead processes.

To use this extra spec, you must enable pinned CPUs.

Table 3.15. Flavor metadata for CPU real-time policy

Key Description

hw:cpu_realtime Set to yes to create a flavor that assigns a real-time policy to
the instance vCPUs.

Default: no

hw:cpu_realtime_mask Specifies the vCPUs to not assign a real-time policy to. You
must prepend the mask value with a caret symbol (^). The
following example indicates that all vCPUs except vCPUs 0 and 1
have a real-time policy:

$ openstack flavor set <flavor> \
 --property hw:cpu_realtime="yes" \
 --property hw:cpu_realtime_mask=^0-1

NOTE

If the hw_cpu_realtime_mask property is set
on the image then it takes precedence over the
hw:cpu_realtime_mask property set on the
flavor.

Emulator threads policy

You can assign a pCPU to an instance to use for emulator threads. Emulator threads are emulator
processes that are not directly related to the instance. A dedicated emulator thread pCPU is required
for real-time workloads. To use the emulator threads policy, you must enable pinned CPUs by setting
the following property:

--property hw:cpu_policy=dedicated

Use the property key in the following table to define the emulator threads policy of the instance.

Table 3.16. Flavor metadata for the emulator threads policy

Key Description

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

23

hw:emulator_threads_policy Specifies the emulator threads policy to use for instances. Set to
one of the following valid values:

share: The emulator thread floats across the pCPUs
defined in the NovaComputeCpuSharedSet heat
parameter. If NovaComputeCpuSharedSet is not
configured, then the emulator thread floats across the
pinned CPUs that are associated with the instance.

isolate: Reserves an additional dedicated pCPU per
instance for the emulator thread. Use this policy with
caution, as it is prohibitively resource intensive.

unset: (Default) The emulator thread policy is not
enabled, and the emulator thread floats across the
pinned CPUs associated with the instance.

Key Description

Instance memory page size

Use the property keys in the following table to create an instance with an explicit memory page size.

Table 3.17. Flavor metadata for memory page size

Key Description

hw:mem_page_size Specifies the size of large pages to use to back the instances.
Use of this option creates an implicit NUMA topology of 1 NUMA
node unless otherwise specified by hw:numa_nodes. Set to
one of the following valid values:

large: Selects a page size larger than the smallest page
size supported on the host, which can be 2 MB or 1 GB
on x86_64 systems.

small: Selects the smallest page size supported on the
host. On x86_64 systems this is 4 kB (normal pages).

any: Selects the largest available huge page size, as
determined by the libvirt driver.

<pagesize>: (String) Sets an explicit page size if the
workload has specific requirements. Use an integer
value for the page size in KB, or any standard suffix. For
example: 4KB, 2MB, 2048, 1GB.

unset: (Default) Large pages are not used to back
instances and no implicit NUMA topology is generated.

PCI passthrough

Use the property key in the following table to attach a physical PCI device, such as a graphics card or a
network device, to an instance.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

24

Table 3.18. Flavor metadata for PCI passthrough

Key Description

pci_passthrough:alias Specifies the PCI device to assign to an instance by using the
following format:

<alias>:<count>

Replace <alias> with the alias that corresponds to a
particular PCI device class.

Replace <count> with the number of PCI devices of
type <alias> to assign to the instance.

Hypervisor signature

Use the property key in the following table to hide the hypervisor signature from the instance.

Table 3.19. Flavor metadata for hiding hypervisor signature

Key Description

hide_hypervisor_id Set to True to hide the hypervisor signature from the instance,
to allow all drivers to load and work on the instance.

UEFI Secure Boot

Use the property key in the following table to create an instance that is protected with UEFI Secure
Boot.

NOTE

Instances with UEFI Secure Boot must support UEFI and the GUID Partition Table (GPT)
standard, and include an EFI system partition.

Table 3.20. Flavor metadata for UEFI Secure Boot

Key Description

os:secure_boot Set to required to enable Secure Boot for instances launched
with this flavor. Disabled by default.

Instance resource traits

Each resource provider has a set of traits. Traits are the qualitative aspects of a resource provider, for
example, the type of storage disk, or the Intel CPU instruction set extension. An instance can specify
which of these traits it requires.

The traits that you can specify are defined in the os-traits library. Example traits include the following:

COMPUTE_TRUSTED_CERTS

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

25

COMPUTE_NET_ATTACH_INTERFACE_WITH_TAG

COMPUTE_IMAGE_TYPE_RAW

HW_CPU_X86_AVX

HW_CPU_X86_AVX512VL

HW_CPU_X86_AVX512CD

For details about how to use the os-traits library, see https://docs.openstack.org/os-
traits/latest/user/index.html.

Use the property key in the following table to define the resource traits of the instance.

Table 3.21. Flavor metadata for resource traits

Key Description

trait:<trait_name> Specifies Compute node traits. Set the trait to one of the
following valid values:

required: The Compute node selected to host the
instance must have the trait.

forbidden: The Compute node selected to host the
instance must not have the trait.

Example:

$ openstack flavor set --property
trait:HW_CPU_X86_AVX512BW=required avx512-
flavor

Instance bare-metal resource class

Use the property key in the following table to request a bare-metal resource class for an instance.

Table 3.22. Flavor metadata for bare-metal resource class

Key Description

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

26

https://docs.openstack.org/os-traits/latest/user/index.html

resources:<resource_class_name> Use this property to specify standard bare-metal resource
classes to override the values of, or to specify custom bare-
metal resource classes that the instance requires.

The standard resource classes that you can override are VCPU,
MEMORY_MB and DISK_GB. To prevent the Compute
scheduler from using the bare-metal flavor properties for
scheduling instance, set the value of the standard resource
classes to 0.

The name of custom resource classes must start with
CUSTOM_. To determine the name of a custom resource class
that corresponds to a resource class of a Bare Metal service
node, convert the resource class to uppercase, replace all
punctuation with an underscore, and prefix with CUSTOM_.

For example, to schedule instances on a node that has --
resource-class baremetal.SMALL, create the following
flavor:

$ openstack flavor set \
 --property
resources:CUSTOM_BAREMETAL_SMALL=1 \
 --property resources:VCPU=0 --property
resources:MEMORY_MB=0 \
 --property resources:DISK_GB=0 compute-small

Key Description

CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES

27

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES

WARNING

The content for this feature is available in this release as a Documentation Preview,
and therefore is not fully verified by Red Hat. Use it only for testing, and do not use
in a production environment.

As a cloud administrator, you can configure the scheduling and placement of instances for optimal
performance by creating customized flavors to target specialized workloads, including NFV and High
Performance Computing (HPC).

Use the following features to tune your instances for optimal CPU performance:

CPU pinning: Pin virtual CPUs to physical CPUs.

Emulator threads: Pin emulator threads associated with the instance to physical CPUs.

CPU feature flags: Configure the standard set of CPU feature flags that are applied to
instances to improve live migration compatibility across Compute nodes.

4.1. CONFIGURING CPU PINNING ON COMPUTE NODES

You can configure each instance CPU process to run on a dedicated host CPU by enabling CPU pinning
on the Compute nodes. When an instance uses CPU pinning, each instance vCPU process is allocated
its own host pCPU that no other instance vCPU process can use. Instances that run on Compute nodes
with CPU pinning enabled have a NUMA topology. Each NUMA node of the instance NUMA topology
maps to a NUMA node on the host Compute node.

You can configure the Compute scheduler to schedule instances with dedicated (pinned) CPUs and
instances with shared (floating) CPUs on the same Compute node. To configure CPU pinning on
Compute nodes that have a NUMA topology, you must complete the following:

1. Designate Compute nodes for CPU pinning.

2. Configure the Compute nodes to reserve host cores for pinned instance vCPU processes,
floating instance vCPU processes, and host processes.

3. Deploy the data plane.

4. Create a flavor for launching instances that require CPU pinning.

5. Create a flavor for launching instances that use shared, or floating, CPUs.

NOTE

Configuring CPU pinning creates an implicit NUMA topology on the instance even if a
NUMA topology is not requested. Do not run NUMA and non-NUMA virtual machines
(VMs) on the same hosts.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

28

4.1.1. Prerequisites

You know the NUMA topology of your Compute node.

The oc command line tool is installed on your workstation.

You are logged in to Red Hat OpenStack Services on OpenShift (RHOSO) as a user with
cluster-admin privileges.

4.1.2. Designating and configuring Compute nodes for CPU pinning

To designate Compute nodes for instances with pinned CPUs, you must create and configure a new
OpenStackDataPlaneNodeSet custom resource (CR) to configure the nodes that are designated for
CPU pinning. Configure CPU pinning on your Compute nodes based on the NUMA topology of the
nodes. Reserve some CPU cores across all the NUMA nodes for the host processes for efficiency.
Assign the remaining CPU cores to managing your instances. This procedure uses the following NUMA
topology, with eight CPU cores spread across two NUMA nodes, to illustrate how to configure CPU
pinning:

Table 4.1. Example of NUMA Topology

NUMA Node 0 NUMA Node 1

Core 0 Core 1 Core 4 Core 5

Core 2 Core 3 Core 6 Core 7

The procedure reserves cores 0 and 4 for host processes, cores 1, 3, 5 and 7 for instances that require
CPU pinning, and cores 2 and 6 for floating instances that do not require CPU pinning.

NOTE

The following procedure applies to new OpenStackDataPlaneNodeSet CRs that have
not yet been provisioned. To reconfigure an existing OpenStackDataPlaneNodeSet that
has already been provisioned, you must first drain the guest instances from all the nodes
in the OpenStackDataPlaneNodeSet.

NOTE

Configuring CPU pinning creates an implicit NUMA topology on the instance even if a
NUMA topology is not requested. Do not run NUMA and non-NUMA virtual machines
(VMs) on the same hosts.

Prerequisites

You have selected the OpenStackDataPlaneNodeSet CR that defines the nodes for which you
want to designate and configure CPU pinning. For more information about creating an
OpenStackDataPlaneNodeSet CR, see Creating the data plane in the Deploying Red Hat
OpenStack Services on OpenShift guide.

Procedure

1. Create or update the ConfigMap CR named nova-extra-config.yaml and set the values of the

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES

29

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane

1

2

3

4

1. Create or update the ConfigMap CR named nova-extra-config.yaml and set the values of the
parameters under [compute] and [default]:

apiVersion: v1
kind: ConfigMap
metadata:
name: nova-extra-config
namespace: openstack
data:
 25-nova-cpu-pinning.conf: | 1
 [compute]
 cpu_shared_set = 2,6 2
 cpu_dedicated_set = 1,3,5,7 3
 [DEFAULT]
 reserved_huge_pages = node:0,size:4,count:131072 4
 reserved_huge_pages = node:1,size:4,count:131072

The name of the new Compute configuration file. The nova-operator generates the
default configuration file with the name 01-nova.conf. Do not use the default name,
because it would override the infrastructure configuration, such as the transport_url. The
nova-compute service applies every file under /etc/nova/nova.conf.d/ in lexicographical
order, therefore configurations defined in later files override the same configurations
defined in an earlier file.

Reserves physical CPU cores for the shared instances.

Reserves physical CPU cores for the dedicated instances.

Specifies the amount memory to reserve per NUMA node.

For more information about creating ConfigMap objects, see Creating and using config maps .

2. Create a new OpenStackDataPlaneDeployment CR to configure the services on the data
plane nodes and deploy the data plane, and save it to a file named
compute_cpu_pinning_deploy.yaml on your workstation:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: openstack-edpm-cpu-pinning

For more information about creating an OpenStackDataPlaneDeployment CR, see Deploying
the data plane in the Deploying Red Hat OpenStack Services on OpenShift guide.

3. In the compute_cpu_pinning_deploy.yaml, specify nodeSets to include all the
OpenStackDataPlaneNodeSet CRs you want to deploy. Ensure that you include the
OpenStackDataPlaneNodeSet CR that you selected as a prerequisite. That
OpenStackDataPlaneNodeSet CR defines the nodes you want to designate for CPU pinning.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/nodes/working-with-pods#nodes-pods-configmap-overview_configmaps
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/index#proc_deploying-the-data-plane_dataplane

WARNING

You can configure only whole node sets. Reconfiguring a subset of the
nodes within a node set is not supported. If you need to reconfigure a
subset of nodes within a node set, you must scale the node set down, and
create a new node set from the previously removed nodes.

WARNING

If your deployment has more than one node set, changes to the nova-
extra-config.yaml ConfigMap might directly affect more than one node
set, depending on how the node sets and the DataPlaneServices are
configured. To check if a node set uses the nova-extra-config ConfigMap
and therefore will be affected by the reconfiguration, complete the
following steps:

1. Check the services list of the node set and find the name of the
DataPlaneService that points to nova.

2. Ensure that the value of the edpmServiceType field of the
DataPlaneService is set to nova.
If the dataSources list of the DataPlaneService contains a
configMapRef named nova-extra-config, then this node set uses this
ConfigMap and therefore will be affected by the configuration changes
in this ConfigMap. If some of the node sets that are affected should
not be reconfigured, you must create a new DataPlaneService pointing
to a separate ConfigMap for these node sets.

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: openstack-edpm-cpu-pinning
spec:
 nodeSets:
 - openstack-edpm
 - compute-cpu-pinning
 - ...
 - <nodeSet_name>

Replace <nodeSet_name> with the names of the OpenStackDataPlaneNodeSet CRs that
you want to include in your data plane deployment.

4. Save the compute_cpu_pinning_deploy.yaml deployment file.

5. Deploy the data plane:

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES

31

$ oc create -f compute_cpu_pinning_deploy.yaml

6. Verify that the data plane is deployed:

$ oc get openstackdataplanenodeset
NAME STATUS MESSAGE
compute-cpu-pinning True Deployed

7. Access the remote shell for openstackclient and verify that the deployed Compute nodes are
visible on the control plane:

$ oc rsh -n openstack openstackclient
$ openstack hypervisor list

4.1.3. Creating a dedicated CPU flavor for instances

To enable your cloud users to create instances that have dedicated CPUs, you can create a flavor with a
dedicated CPU policy for launching instances.

Prerequisites

Simultaneous multithreading (SMT) is configured on the host if you intend to use the required
cpu_thread_policy. You can have a mix of SMT and non-SMT Compute hosts. Flavors with the
require cpu_thread_policy will land on SMT hosts, and flavors with isolate will land on non-
SMT.

The Compute node is configured to allow CPU pinning. For more information, see Configuring
CPU pinning on the Compute nodes.

Procedure

1. Create a flavor for instances that require CPU pinning:

$ openstack flavor create --ram <size_mb> \
 --disk <size_gb> --vcpus <num_guest_vcpus> pinned_cpus

2. If you are not using file-backed memory, set the hw:mem_page_size property of the flavor to
enable NUMA-aware memory allocation:

 $ openstack --os-compute-api=2.86 flavor set \
 --property hw:mem_page_size=<page_size> pinned_cpus

Replace <page_size> with one of the following valid values:

large: Selects the largest page size supported on the host, which may be 2 MB or 1 GB
on x86_64 systems.

small: (Default) Selects the smallest page size supported on the host. On x86_64
systems this is 4 kB (normal pages).

any: Selects the page size by using the hw_mem_page_size set on the image. If the
page size is not specified by the image, selects the largest available page size, as
determined by the libvirt driver.

<pagesize>: Set an explicit page size if the workload has specific requirements. Use an

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

32

<pagesize>: Set an explicit page size if the workload has specific requirements. Use an
integer value for the page size in KB, or any standard suffix. For example: 4KB, 2MB,
2048, 1GB.

NOTE

To set hw:mem_page_size to small or any, you must have configured the
amount of memory pages to reserve on each NUMA node for processes that are
not instances.

3. To request pinned CPUs, set the hw:cpu_policy property of the flavor to dedicated:

$ openstack --os-compute-api=2.86 flavor set \
 --property hw:cpu_policy=dedicated pinned_cpus

4. Optional: To place each vCPU on thread siblings, set the hw:cpu_thread_policy property of
the flavor to require:

$ openstack --os-compute-api=2.86 flavor set \
 --property hw:cpu_thread_policy=require pinned_cpus

NOTE

If the host does not have an SMT architecture or enough CPU cores with
available thread siblings, scheduling fails. To prevent this, set
hw:cpu_thread_policy to prefer instead of require. The prefer policy is the
default policy that ensures that thread siblings are used when available.

If you use hw:cpu_thread_policy=isolate, you must have SMT disabled or
use a platform that does not support SMT.

5. To verify the flavor creates an instance with dedicated CPUs, use your new flavor to launch an
instance:

$ openstack server create --flavor pinned_cpus \
 --image <image> pinned_cpu_instance

4.1.4. Creating a shared CPU flavor for instances

To enable your cloud users to create instances that use shared, or floating, CPUs, you can create a
flavor with a shared CPU policy for launching instances.

Prerequisites

The Compute node is configured to reserve physical CPU cores for the shared CPUs. For more
information, see Configuring CPU pinning on the Compute nodes .

Procedure

1. Create a flavor for instances that do not require CPU pinning:

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES

33

$ openstack flavor create --ram <size_mb> \
 --disk <size_gb> --vcpus <no_reserved_vcpus> floating_cpus

2. To request floating CPUs, set the hw:cpu_policy property of the flavor to shared:

$ openstack --os-compute-api=2.86 flavor set \
 --property hw:cpu_policy=shared floating_cpus

4.1.5. Creating a mixed CPU flavor for instances

To enable your cloud users to create instances that have a mix of dedicated and shared CPUs, you can
create a flavor with a mixed CPU policy for launching instances.

Procedure

1. Create a flavor for instances that require a mix of dedicated and shared CPUs:

$ openstack flavor create --ram <size_mb> \
 --disk <size_gb> --vcpus <number_of_reserved_vcpus> \
 --property hw:cpu_policy=mixed mixed_CPUs_flavor

2. Specify which CPUs must be dedicated or shared:

$ openstack --os-compute-api=2.86 flavor set \
 --property hw:cpu_dedicated_mask=<CPU_MASK> \
 mixed_CPUs_flavor

Replace <CPU_MASK> with the CPUs that must be either dedicated or shared:

To specify dedicated CPUs, specify the CPU number or CPU range. For example, set
the property to 2-3 to specify that CPUs 2 and 3 are dedicated and all the remaining
CPUs are shared.

To specify shared CPUs, prepend the CPU number or CPU range with a caret (^). For
example, set the property to ^0-1 to specify that CPUs 0 and 1 are shared and all the
remaining CPUs are dedicated.

3. If you are not using file-backed memory, set the hw:mem_page_size property of the flavor to
enable NUMA-aware memory allocation:

 $ openstack --os-compute-api=2.86 flavor set \
 --property hw:mem_page_size=<page_size> mixed_CPUs_flavor

Replace <page_size> with one of the following valid values:

large: Selects the largest page size supported on the host, which may be 2 MB or 1 GB
on x86_64 systems.

small: (Default) Selects the smallest page size supported on the host. On x86_64
systems this is 4 kB (normal pages).

any: Selects the page size by using the hw_mem_page_size set on the image. If the
page size is not specified by the image, selects the largest available page size, as
determined by the libvirt driver.

<pagesize>: Set an explicit page size if the workload has specific requirements. Use an

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

34

<pagesize>: Set an explicit page size if the workload has specific requirements. Use an
integer value for the page size in KB, or any standard suffix. For example: 4KB, 2MB,
2048, 1GB.

NOTE

To set hw:mem_page_size to small or any, you must have configured
the amount of memory pages to reserve on each NUMA node for
processes that are not instances.

4.1.6. Configuring CPU pinning on Compute nodes with simultaneous multithreading
(SMT)

If a Compute node supports simultaneous multithreading (SMT), group thread siblings together in
either the dedicated or the shared set. Thread siblings share some common hardware which means it is
possible for a process running on one thread sibling to impact the performance of the other thread
sibling.

For example, the host identifies four logical CPU cores in a dual core CPU with SMT: 0, 1, 2, and 3. Of
these four, there are two pairs of thread siblings:

Thread sibling 1: logical CPU cores 0 and 2

Thread sibling 2: logical CPU cores 1 and 3

In this scenario, do not assign logical CPU cores 0 and 1 as dedicated and 2 and 3 as shared. Instead,
assign 0 and 2 as dedicated and 1 and 3 as shared.

The files /sys/devices/system/cpu/cpuN/topology/thread_siblings_list, where N is the logical CPU
number, contain the thread pairs. You can use the following command to identify which logical CPU
cores are thread siblings:

grep -H . /sys/devices/system/cpu/cpu*/topology/thread_siblings_list | sort -n -t ':' -k 2 -u

The following output indicates that logical CPU core 0 and logical CPU core 2 are threads on the same
core:

/sys/devices/system/cpu/cpu0/topology/thread_siblings_list:0,2
/sys/devices/system/cpu/cpu2/topology/thread_siblings_list:1,3

4.1.7. Additional resources

Discovering your NUMA node topology

CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES

35

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_a_network_functions_virtualization_environment/req-nfv_rhoso-nfv#discover-numa-node-topo_req-nfv

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

WARNING

The content for this feature is available in this release as a Documentation Preview,
and therefore is not fully verified by Red Hat. Use it only for testing, and do not use
in a production environment.

As a cloud administrator, you can configure the scheduling and placement of instances for optimal
performance by creating customized flavors to target specialized workloads, including NFV and High
Performance Computing (HPC).

Use the following features to tune your instances:

Overallocation: Tune the virtual RAM to physical RAM allocation ratio.

Swap: Tune the allocated swap size to handle memory overcommit.

Huge pages: Tune instance memory allocation policies both for normal memory (4k pages) and
huge pages (2 MB or 1 GB pages).

File-backed memory: Use to expand your Compute node memory capacity.

SEV: Use to enable your cloud users to create instances that use memory encryption.

5.1. CONFIGURING MEMORY FOR OVERALLOCATION

When you use memory overcommit (ram_allocation_ratio >= 1.0), you need to deploy your overcloud
with enough swap space to support the allocation ratio.

NOTE

If your ram_allocation_ratio parameter is set to < 1, follow the RHEL recommendations
for swap size. For more information, see Recommended system swap space in the RHEL
Managing Storage Devices guide.

Prerequisites

You have calculated the swap size your node requires. For more information, see Calculating
swap size.

Procedure

1. Open the OpenStackDataPlaneNodeSet CR definition file for the node set you want to
update, for example, my_data_plane_node_set.yaml.

2. Add the required configuration or modify the existing configuration under ansibleVars:

apiVersion: dataplane.openstack.org/v1beta1

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

36

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-swap_managing-storage-devices#recommended-system-swap-space_getting-started-with-swap

kind: OpenStackDataPlaneNodeSet
metadata:
 name: my-data-plane-node-set
spec:
 ...
 nodeTemplate:
 ...
 ansible:
 ansibleVars:
 edpm_bootstrap_swap_size_megabytes: 1024
 edpm_bootstrap_swap_path: /swap
 edpm_bootstrap_swap_partition_enabled: false
 edpm_bootstrap_swap_partition_label: swap1
 ...

3. Save the OpenStackDataPlaneNodeSet CR definition file.

4. Apply the updated OpenStackDataPlaneNodeSet CR configuration:

$ oc apply -f my_data_plane_node_set.yaml -n openstack

5. Verify that the data plane resource has been updated:

$ oc get openstackdataplanenodeset

Sample output:

NAME STATUS MESSAGE
my-data-plane-node-set False Deployment not started

6. Create a file on your workstation to define the OpenStackDataPlaneDeployment CR, for
example, my_data_plane_deploy.yaml:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: my-data-plane-deploy

TIP

Give the definition file and the OpenStackDataPlaneDeployment CR a unique and descriptive
name that indicates the purpose of the modified node set.

7. Add the OpenStackDataPlaneNodeSet CR that you modified:

spec:
 nodeSets:
 - my-data-plane-node-set

8. Save the OpenStackDataPlaneDeployment CR deployment file.

9. Deploy the modified OpenStackDataPlaneNodeSet CR:

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

37

$ oc create -f my_data_plane_deploy.yaml -n openstack

10. You can view the Ansible logs while the deployment executes:

$ oc get pod -l app=openstackansibleee -n openstack -w
$ oc logs -l app=openstackansibleee -n openstack -f \
--max-log-requests 10

11. Verify that the modified OpenStackDataPlaneNodeSet CR is deployed:
Example:

$ oc get openstackdataplanedeployment -n openstack

Sample output

NAME STATUS MESSAGE
my-data-plane-node-set True Setup Complete

12. Repeat the oc get command until you see the NodeSet Ready message:
Example

$ oc get openstackdataplanenodeset -n openstack

Sample output:

NAME STATUS MESSAGE
my-data-plane-node-set True NodeSet Ready

For information on the meaning of the returned status, see Data plane conditions and states in
the Deploying Red Hat OpenStack Services on OpenShift .

5.2. CALCULATING RESERVED HOST MEMORY ON COMPUTE NODES

To determine the total amount of RAM to reserve for host processes, you need to allocate enough
memory for each of the following:

The resources that run on the host, for example, Ceph Object Storage Daemon (OSD)
consumes 3 GB of memory.

The emulator overhead required to host instances.

The hypervisor for each instance.

You can use the following formula to calculate the amount of memory to reserve for host processes on
each node:

reserved_host_memory_mb = total_RAM - ((vm_no * (avg_instance_size + overhead)) + (resource1
* resource_ram) + (resourceN * resource_ram))

Replace vm_no with the number of instances.

Replace avg_instance_size with the average amount of memory each instance can use.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

38

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/htmldeploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane#ref_data-plane-conditions-and-states_dataplane

Replace overhead with the hypervisor overhead required for each instance.

Replace resource1 and all resources up to <resourceN> with the number of a resource type on
the node.

Replace resource_ram with the amount of RAM each resource of this type requires.

NOTE

If this host will run workloads with a guest NUMA topology, for example, instances with
CPU pinning, huge pages, or an explicit NUMA topology specified in the flavor, you must
use the reserved_huge_pages configuration option to reserve the memory per NUMA
node as 4096 pages.

For information about how to calculate the reserved_host_memory_mb value, see Calculating
reserved host memory on Compute nodes.

5.3. CALCULATING SWAP SIZE

The allocated swap size must be large enough to handle any memory overcommit. You can use the
following formulas to calculate the swap size your node requires:

overcommit_ratio = ram_allocation_ratio - 1

Minimum swap size (MB) = (total_RAM * overcommit_ratio) + RHEL_min_swap

Recommended (maximum) swap size (MB) = total_RAM * (overcommit_ratio +
percentage_of_RAM_to_use_for_swap)

The percentage_of_RAM_to_use_for_swap variable creates a buffer to account for QEMU overhead
and any other resources consumed by the operating system or host services.

For instance, to use 25% of the available RAM for swap, with 64GB total RAM, and ram_allocation_ratio
set to 1:

Recommended (maximum) swap size = 64000 MB * (0 + 0.25) = 16000 MB

For information about how to determine the RHEL_min_swap value, see Recommended system swap
space in the RHEL Managing Storage Devices guide.

5.4. CONFIGURING HUGE PAGES ON COMPUTE NODES

As a cloud administrator, you can configure Compute nodes to enable instances to request huge pages.

NOTE

Configuring huge pages creates an implicit NUMA topology on the instance even if a
NUMA topology is not requested. Do not run NUMA and non-NUMA virtual machines
(VMs) on the same hosts.

Prerequisites

The oc command line tool is installed on your workstation.

You are logged in to Red Hat OpenStack Services on OpenShift (RHOSO) as a user with

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

39

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-swap_managing-storage-devices#recommended-system-swap-space_getting-started-with-swap

1

You are logged in to Red Hat OpenStack Services on OpenShift (RHOSO) as a user with
cluster-admin privileges.

You have selected the OpenStackDataPlaneNodeSet CR that defines the nodes for which you
want to enable instances to request huge pages. For more information about creating an
OpenStackDataPlaneNodeSet CR, see Creating a set of data plane nodes in Deploying Red
Hat OpenStack Services on OpenShift.

Procedure

1. Create or update the ConfigMap CR named nova-extra-config.yaml and set the values of the
parameters under [default] and [libvirt]:

apiVersion: v1
kind: ConfigMap
metadata:
name: nova-extra-config
namespace: openstack
data:
28-nova-huge-pages.conf: | 1
 [default]
 reserved_huge_pages = node:0,size:2048,count:64
 reserved_huge_pages = node:1,size:1GB,count:1
 [libvirt]
 cpu_mode = custom
 cpu_models = Haswell-noTSX
 cpu_model_extra_flags = vmx, pdpe1gb, +pcid

The name of the new Compute configuration file. The nova-operator generates the
default configuration file with the name 01-nova.conf. Do not use the default name,
because it would override the infrastructure configuration, such as the transport_url. The
nova-compute service applies every file under /etc/nova/nova.conf.d/ in lexicographical
order, therefore configurations defined in later files override the same configurations
defined in an earlier file.

NOTE

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

40

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/index#proc_creating-a-set-of-data-plane-nodes_dataplane

NOTE

Do not configure CPU feature flags to allow instances to only request 2 MB
huge pages.

You can only allocate 1G huge pages to an instance if the host supports 1G
huge page allocation.

You only need to set cpu_model_extra_flags to pdpe1gb when cpu_mode
is set to host-model or custom.

If the host supports pdpe1gb, and host-passthrough is used as the
cpu_mode, then you do not need to set pdpe1gb as a
cpu_model_extra_flags.

NOTE

The pdpe1gb flag is only included in Opteron_G4 and
Opteron_G5 CPU models, it is not included in any of the Intel
CPU models supported by QEMU. To mitigate CPU hardware
issues, such as Microarchitectural Data Sampling (MDS), you
might need to configure other CPU flags. For more
information, see RHOS Mitigation for MDS
("Microarchitectural Data Sampling") Security Flaws.

For more information about creating ConfigMap objects, see Creating and using config maps .

2. Create a new OpenStackDataPlaneDeployment CR to configure the services on the data
plane nodes and deploy the data plane, and save it to a file named
compute_huge_pages_deploy.yaml on your workstation:

$ openstack baremetal node set \
kind: OpenStackDataPlaneDeployment
metadata:
name: openstack-edpm-huge-pages

3. In the compute_huge_pages_deploy.yaml, specify nodeSets to include all the
OpenStackDataPlaneNodeSet CRs you want to deploy. Ensure that you include the
OpenStackDataPlaneNodeSet CR that you selected as a prerequisite. That
OpenStackDataPlaneNodeSet CR defines the nodes you want to designate for huge pages.

WARNING

You can configure only whole node sets. Reconfiguring a subset of the
nodes within a node set is not supported. If you need to reconfigure a
subset of nodes within a node set, you must scale the node set down, and
create a new node set from the previously removed nodes.

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/nodes/working-with-pods#nodes-pods-configmap-overview_configmaps

WARNING

If your deployment has more than one node set, changes to the nova-
extra-config.yaml ConfigMap might directly affect more than one node
set. To check if a node set uses the nova-extra-config.yaml ConfigMap
and therefore will be affected by the reconfiguration, complete the
following steps:

1. Navigate to the services list of the node set and find the name of the
DataPlaneService` that points to nova.

2. Ensure that the value of the edpmServiceType field of the
DataPlaneService is set to nova.
If the dataSources list of the DataPlaneService contains a
configMapRef named nova-extra-config, then this node set uses this
ConfigMap and therefore will be affected by the configuration changes
in this ConfigMap. If some of the node sets that are affected should
not be reconfigured, you must create a new DataPlaneService pointing
to a separate ConfigMap for these node sets.

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: openstack-edpm-huge-pages
spec:
 nodeSets:
 - openstack-edpm
 - compute-huge-pages
 - ...
 - <nodeSet_name>

Replace <nodeSet_name> with the names of the OpenStackDataPlaneNodeSet CRs that
you want to include in your data plane deployment.

4. Save the compute_huge_pages_deploy.yaml deployment file.

5. Deploy the data plane:

$ oc create -f compute_huge_pages_deploy.yaml

6. Verify that the data plane is deployed:

$ oc get openstackdataplanenodeset

NAME STATUS MESSAGE
compute-huge-pages True Deployed

7. Access the remote shell for openstackclient and verify that the deployed Compute nodes are
visible on the control plane:

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

42

$ oc rsh -n openstack openstackclient

$ openstack hypervisor list

5.4.1. Creating a huge pages flavor for instances

To enable your cloud users to create instances that use huge pages, you can create a flavor with the
hw:mem_page_size extra spec key for launching instances.

NOTE

To execute openstack client commands on the cloud you must specify the name of the
cloud detailed in your clouds.yaml file. You can specify the name of the cloud by using
one of the following methods:

Use the --os-cloud option with each command:

$ openstack flavor list --os-cloud <cloud_name>

Use this option if you access more than one cloud.

Create an environment variable for the cloud name in your bashrc file:

`export OS_CLOUD=<cloud_name>`

Prerequisites

The Compute node is configured for huge pages. For more information, see Configuring huge
pages on Compute nodes.

Procedure

1. Create a flavor for instances that require huge pages:

$ openstack flavor create --ram <size_mb> --disk <size_gb> \
 --vcpus <num_reserved_vcpus> huge_pages

2. To request huge pages, set the hw:mem_page_size property of the flavor to the required size:

$ openstack --os-compute-api=2.86 flavor set huge_pages --property hw:mem_page_size=
<page_size>

Replace <page_size> with one of the following valid values:

large: Selects the largest page size supported on the host, which may be 2 MB or 1 GB
on x86_64 systems.

small: (Default) Selects the smallest page size supported on the host. On x86_64
systems this is 4 kB (normal pages).

any: Selects the page size by using the hw_mem_page_size set on the image. If the
page size is not specified by the image, selects the largest available page size, as
determined by the libvirt driver.

<pagesize>: Set an explicit page size if the workload has specific requirements. Use an

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

43

<pagesize>: Set an explicit page size if the workload has specific requirements. Use an
integer value for the page size in KB, or any standard suffix. For example: 4KB, 2MB,
2048, 1GB.

3. To verify the flavor creates an instance with huge pages, use your new flavor to launch an
instance:

$ openstack server create --flavor huge_pages \
 --image <image> huge_pages_instance

The Compute scheduler identifies a host with enough free huge pages of the required size to
back the memory of the instance. If the scheduler is unable to find a host and NUMA node with
enough pages, then the request will fail with a NoValidHost error.

5.4.2. Mounting multiple huge page folders during first boot

You can configure the Compute service (nova) to handle multiple page sizes as part of the first boot
process.

Procedure

1. Open the OpenStackDataPlaneNodeSet CR definition file for the node set you want to
update, for example, my_data_plane_node_set.yaml. Add the required configuration or
modify the existing configuration in the edpm_default_mounts template under ansibleVars:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: my-data-plane-node-set
spec:
 ...
 nodeTemplate:
 ...
 ansible:
 ansibleVars:
 edpm_default_mounts: |
 [
 {
 "name": "hugepages1G",
 "path": "/dev/hugepages1G",
 "opts": "pagesize=1G",
 "fstype": "hugetlbfs",
 "group": "hugetlbfs"
 },
 {
 "name": "hugepages2M",
 "path": "/dev/hugepages2M",
 "opts": "pagesize=2M",
 "fstype": "hugetlbfs",
 "group": "hugetlbfs"
 }
]

 ...

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

44

2. Save the OpenStackDataPlaneNodeSet CR definition file.

3. Apply the updated OpenStackDataPlaneNodeSet CR configuration:

$ oc apply -f my_data_plane_node_set.yaml

4. Verify that the data plane resource has been updated:

$ oc get openstackdataplanenodeset

Sample output:

NAME STATUS MESSAGE
my-data-plane-node-set False Deployment not started

5. Create a file on your workstation to define the OpenStackDataPlaneDeployment CR, for
example, my_data_plane_deploy.yaml:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: my-data-plane-deploy

TIP

Give the definition file and the OpenStackDataPlaneDeployment CR a unique and descriptive
name that indicates the purpose of the modified node set.

6. Add the OpenStackDataPlaneNodeSet CR that you modified:

spec:
 nodeSets:
 - my-data-plane-node-set

7. Save the OpenStackDataPlaneDeployment CR deployment file.

8. Deploy the modified OpenStackDataPlaneNodeSet CR:

$ oc create -f my_data_plane_deploy.yaml -n openstack

9. To view the Ansible logs while the deployment executes, enter the following command:

$ oc get pod -l app=openstackansibleee -n openstack -w
$ oc logs -l app=openstackansibleee -n openstack -f \
--max-log-requests 10

10. Verify that the modified OpenStackDataPlaneNodeSet CR is deployed: Example:

$ oc get openstackdataplanedeployment -n openstack

Sample output:

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

45

NAME STATUS MESSAGE
my-data-plane-node-set True Setup Complete

11. Repeat the oc get command until you see the NodeSet Ready message:
Example:

$ oc get openstackdataplanenodeset -n openstack

Sample output:

NAME STATUS MESSAGE
my-data-plane-node-set True NodeSet Ready

For information on the meaning of the returned status, see Data plane conditions and states in
the Deploying Red Hat OpenStack Services on OpenShift .

5.5. CONFIGURING COMPUTE NODES TO USE FILE-BACKED MEMORY
FOR INSTANCES

You can use file-backed memory to expand your Compute node memory capacity. In this case, you
allocate files within the libvirt memory backing directory to be instance memory. You can configure the
amount of the host disk that is available for instance memory, and the location on the disk of the
instance memory files.

The Compute (nova) service reports the capacity configured for file-backed memory to the Placement
service as the total system memory capacity. This allows the Compute node to host more instances than
would normally fit within the system memory.

To use file-backed memory for instances, you must enable file-backed memory on the Compute node.

Limitations

You cannot live migrate instances between Compute nodes that have file-backed memory
enabled and Compute nodes that do not have file-backed memory enabled.

File-backed memory is not compatible with huge pages. Instances that use huge pages cannot
start on a Compute node with file-backed memory enabled. Use host aggregates to ensure that
instances that use huge pages are not placed on Compute nodes with file-backed memory
enabled.

File-backed memory is not compatible with memory overcommit.

You cannot reserve memory for host processes using reserved_host_memory_mb. When file-
backed memory is in use, reserved memory corresponds to disk space not set aside for file-
backed memory. File-backed memory is reported to the Placement service as the total system
memory, with RAM used as cache memory.

Prerequisites

ram_allocation_ratio must be set to "1.0" on the node and any host aggregate the node is
added to.

reserved_host_memory_mb must be set to "0".

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

46

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/htmldeploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane#ref_data-plane-conditions-and-states_dataplane

The oc command line tool is installed on your workstation.

You are logged in to Red Hat OpenStack Services on OpenShift (RHOSO) as a user with
cluster-admin privileges.

You have selected the OpenStackDataPlaneNodeSet CR that defines which nodes use file-
backed memory for instances. For more information about creating an
OpenStackDataPlaneNodeSet CR, see Creating a set of data plane nodes in the Deploying
Red Hat OpenStack Services on OpenShift guide.

Procedure

1. Create or update the ConfigMap CR named nova-extra-config.yaml and set the values of the
parameters under [libvirt]:

apiVersion: v1
kind: ConfigMap
metadata:
name: nova-extra-config
namespace: openstack
data:
30-nova-file-backed-memory.conf: |
 [libvirt]
 file_backed_memory = 1048576

For more information about creating ConfigMap objects, see Creating and using config maps .

2. Optional: To configure the directory to store the memory backing files, set the
memory_backing_dir parameter. The default memory backing directory is
/var/lib/libvirt/qemu/ram/:

[libvirt]
file_backed_memory = 1048576
memory_backing_dir = <new_directory_location>

Replace <new_directory_location> with the location of the memory backing directory.

NOTE

You must locate your backing store in a directory at or above the default
directory location, /var/lib/libvirt/qemu/ram/. You can also change the host
disk for the backing store. For more information, see Changing the memory
backing directory host disk.

3. Create a new OpenStackDataPlaneDeployment CR to configure the services on the data
plane nodes and deploy the data plane, and save it to a file named
compute_file_backed_memory_deploy.yaml on your workstation:

$ openstack baremetal node set \
kind: OpenStackDataPlaneDeployment
metadata:
name: compute-file-backed-memory

4. In the compute_file_backed_memory_deploy.yaml, specify nodeSets to include all the

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

47

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/index#proc_creating-a-set-of-data-plane-nodes_dataplane
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/nodes/working-with-pods#nodes-pods-configmap-overview_configmaps

OpenStackDataPlaneNodeSet CRs you want to deploy. Ensure that you include the
OpenStackDataPlaneNodeSet CR that you selected as a prerequisite. That
OpenStackDataPlaneNodeSet CR defines the nodes you want to designate for file-backed
memory.

WARNING

You can configure only whole node sets. Reconfiguring a subset of the
nodes within a node set is not supported. If you need to reconfigure a
subset of nodes within a node set, you must scale the node set down, and
create a new node set from the previously removed nodes.

WARNING

If your deployment has more than one node set, changes to the nova-
extra-config.yaml ConfigMap might directly affect more than one node
set, depending on how the node sets and the DataPlaneServices are
configured. To check if a node set uses the nova-extra-config ConfigMap
and therefore will be affected by the reconfiguration, complete the
following steps:

1. Check the services list of the node set and find the name of the
DataPlaneService that points to nova.

2. Ensure that the value of the edpmServiceType field of the
DataPlaneService is set to nova.
If the dataSources list of the DataPlaneService contains a
configMapRef named nova-extra-config, then this node set uses this
ConfigMap and therefore will be affected by the configuration changes
in this ConfigMap. If some of the node sets that are affected should
not be reconfigured, you must create a new DataPlaneService pointing
to a separate ConfigMap for these node sets.

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: compute-file-backed-memory
spec:
 nodeSets:
 - openstack-edpm
 - compute-file-backed-memory
 - ...
 - <nodeSet_name>

Replace <nodeSet_name> with the names of the OpenStackDataPlaneNodeSet CRs that

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

48

Replace <nodeSet_name> with the names of the OpenStackDataPlaneNodeSet CRs that
you want to include in your data plane deployment.

5. Save the compute_file_backed_memory_deploy.yaml deployment file.

6. Deploy the data plane:

$ oc create -f compute_file_backed_memory_deploy.yaml

7. Verify that the data plane is deployed:

$ oc get openstackdataplanenodeset

NAME STATUS MESSAGE
compute-file-backed-memory True Deployed

8. Access the remote shell for openstackclient and verify that the deployed Compute nodes are
visible on the control plane:

$ oc rsh -n openstack openstackclient

$ openstack hypervisor list

5.5.1. Changing the memory backing directory host disk

You can move the memory backing directory from the default primary disk location to an alternative
disk.

Procedure

1. Create a file system on the alternative backing device. For example, enter the following
command to create an ext4 filesystem on /dev/sdb:

mkfs.ext4 /dev/sdb

2. Mount the backing device. For example, enter the following command to mount /dev/sdb on
the default libvirt memory backing directory:

mount /dev/sdb /var/lib/libvirt/qemu/ram

NOTE

The mount point must match the value of the QemuMemoryBackingDir
parameter.

5.6. CONFIGURING AMD SEV COMPUTE NODES TO PROVIDE
MEMORY ENCRYPTION FOR INSTANCES

Secure Encrypted Virtualization (SEV) hardware, provided by AMD, protects the data in DRAM that a
running virtual machine instance is using. SEV encrypts the memory of each instance with a unique key.

As a cloud administrator, you can provide cloud users the ability to create instances that run on SEV-

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

49

As a cloud administrator, you can provide cloud users the ability to create instances that run on SEV-
capable Compute nodes with memory encryption enabled.

This feature is available to use from the 2nd Gen AMD EPYC™ 7002 Series ("Rome").

To enable your cloud users to create instances that use memory encryption, you must perform the
following tasks:

1. Designate the AMD SEV Compute nodes for memory encryption.

2. Configure the Compute nodes for memory encryption.

3. Deploy the data plane.

4. Create a flavor or image for launching instances with memory encryption.

TIP

If the AMD SEV hardware is limited, you can also configure a host aggregate to optimize scheduling on
the AMD SEV Compute nodes. To schedule only instances that request memory encryption on the AMD
SEV Compute nodes, create a host aggregate of the Compute nodes that have the AMD SEV hardware,
and configure the Compute scheduler to place only instances that request memory encryption on the
host aggregate.

For more information, see Creating and managing host aggregates and Filtering by isolating host
aggregates.

5.6.1. Secure Encrypted Virtualization (SEV)

Secure Encrypted Virtualization (SEV), provided by AMD, protects the data in DRAM that a running
virtual machine instance is using. SEV encrypts the memory of each instance with a unique key.

SEV increases security when you use non-volatile memory technology (NVDIMM), because an NVDIMM
chip can be physically removed from a system with the data intact, similar to a hard drive. Without
encryption, any stored information such as sensitive data, passwords, or secret keys can be
compromised.

For more information, see the AMD Secure Encrypted Virtualization (SEV) documentation.

Limitations of instances with memory encryption

You cannot live migrate, or suspend and resume instances with memory encryption.

You cannot use PCI passthrough to directly access devices on instances with memory
encryption.

You cannot use virtio-blk as the boot disk of instances with memory encryption with Red Hat
Enterprise Linux (RHEL) kernels earlier than kernel-4.18.0-115.el8 (RHEL-8.1.0).

NOTE

You can use virtio-scsi or SATA as the boot disk, or virtio-blk for non-boot
disks.

The operating system that runs in an encrypted instance must provide SEV support. For more

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

50

https://developer.amd.com/sev/

The operating system that runs in an encrypted instance must provide SEV support. For more
information, see the Red Hat Knowledgebase solution Enabling AMD Secure Encrypted
Virtualization in RHEL 8.

Machines that support SEV have a limited number of slots in their memory controller for storing
encryption keys. Each running instance with encrypted memory consumes one of these slots.
Therefore, the number of instances with memory encryption that can run concurrently is limited
to the number of slots in the memory controller. For example, on 1st Gen AMD EPYC™ 7001
Series ("Naples") the limit is 16, and on 2nd Gen AMD EPYC™ 7002 Series ("Rome") the limit is
255.

Instances with memory encryption pin pages in RAM. The Compute service cannot swap these
pages, therefore you cannot overcommit memory on a Compute node that hosts instances with
memory encryption.

You cannot use memory encryption with instances that have multiple NUMA nodes.

5.6.2. Designating AMD SEV Compute nodes for memory encryption

To designate AMD SEV Compute nodes for instances that use memory encryption, you must create a
new node set to configure the AMD SEV role, and configure the bare metal nodes with an AMD SEV
resource class to use to tag the Compute nodes for memory encryption.

NOTE

The following procedure applies to new overcloud nodes that have not yet been
provisioned. To assign a resource class to an existing overcloud node that has already
been provisioned, you must use the scale down procedure to unprovision the node, then
use the scale up procedure to reprovision the node with the new resource class
assignment. For more information, see Scaling overcloud nodes .

For more information, see Configuring a node set for a feature or workload in Customizing the Red Hat
OpenStack Services on OpenShift deployment.

5.6.3. Configuring AMD SEV Compute nodes for memory encryption

To enable your cloud users to create instances that use memory encryption, you must configure the
Compute nodes that have the AMD SEV hardware.

Prerequisites

The oc command line tool is installed on your workstation.

You are logged in to Red Hat OpenStack Services on OpenShift (RHOSO) as a user with
cluster-admin privileges.

You have selected the OpenStackDataPlaneNodeSet CR that defines the nodes for which you
want to designate and configure CPU pinning. For more information about creating an
OpenStackDataPlaneNodeSet CR, see Creating the data plane in the Deploying Red Hat
OpenStack Services on OpenShift guide.

Your deployment must include a Compute node that runs on AMD hardware capable of
supporting SEV, such as an AMD EPYC CPU. You can use the following command to determine
if your deployment is SEV-capable:

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

51

https://access.redhat.com/articles/4491591
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#assembly_scaling-overcloud-nodes
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/htmlcustomizing_the_red_hat_openstack_services_on_openshift_deployment/index#proc_configuring-a-node-set-for-a-feature-or-workload_custom_dataplane

$ lscpu | grep sev

Procedure

1. Create or update the ConfigMap CR named nova-extra-config.yaml and set the values of the
parameters under [libvirt]:

apiVersion: v1
kind: ConfigMap
metadata:
name: nova-extra-config
namespace: openstack
data:
30-nova-amd-sev.conf: |
 [libvirt]
 num_memory_encrypted_guests = 15

NOTE

The default value of the libvirt/num_memory_encrypted_guests parameter is
none. If you do not set a custom value, the AMD SEV Compute nodes do not
impose a limit on the number of memory-encrypted instances that the nodes can
host concurrently. Instead, the hardware determines the maximum number of
memory-encrypted instances that the AMD SEV Compute nodes can host
concurrently, which might cause some memory-encrypted instances to fail to
launch.

NOTE

Q35 machine type is the default machine type and is required for SEV.

2. To configure the kernel parameters for the AMD SEV Compute nodes, open the
OpenStackDataPlaneNodeSet CR definition file for the node set you want to update, for
example, my_data_plane_node_set.yaml.

3. Add the required network configuration or modify the existing configuration. Place the
configuration in the under ansibleVars:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: my-data-plane-node-set
spec:
 ...
 nodeTemplate:
 ...
 ansible:
 ansibleVars:
edpm_kernel_args: "default_hugepagesz=1GB hugepagesz=1G hugepages=64 iommu=pt
intel_iommu=on tsx=off isolcpus=2-11,14-23"

4. Create a new OpenStackDataPlaneDeployment CR to configure the services on the data

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

52

4. Create a new OpenStackDataPlaneDeployment CR to configure the services on the data
plane nodes and deploy the data plane, and save it to a file named
compute_amd_sev_deploy.yaml on your workstation:

$ openstack baremetal node set \
kind: OpenStackDataPlaneDeployment
metadata:
name: openstack-edpm-amd_sev

5. In the compute_amd_sev_deploy.yaml, specify nodeSets to include all the
OpenStackDataPlaneNodeSet CRs you want to deploy. Ensure that you include the
OpenStackDataPlaneNodeSet CR that you selected as a prerequisite. That
OpenStackDataPlaneNodeSet CR defines the nodes you want to designate for memory
encryption.

WARNING

You can configure only whole node sets. Reconfiguring a subset of the
nodes within a node set is not supported. If you need to reconfigure a
subset of nodes within a node set, you must scale the node set down, and
create a new node set from the previously removed nodes.

WARNING

If your deployment has more than one node set, changes to the nova-
extra-config.yaml ConfigMap might directly affect more than one node
set, depending on how the NodeSets and the DataPlaneServices are
configured. To check if a node set uses the nova-extra-config.yaml
ConfigMap and therefore will be affected by the reconfiguration, complete
the following steps:

1. Check the services list of the node set and find the name of the
DataPlaneService that points to nova.

2. Ensure that the value of the edpmServiceType field of the
DataPlaneService is set to nova.
If the dataSources list of the DataPlaneService contains a
configMapRef named nova-extra-config, then this node set uses this
ConfigMap and therefore will be affected by the configuration changes
in this ConfigMap. If some of the node sets that are affected should not
be reconfigured, you must create a new DataPlaneService pointing to a
separate ConfigMap for these node sets.

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

53

metadata:
 name: openstack-edpm-amd-sev
spec:
 nodeSets:
 - openstack-edpm
 - compute-amd-sev
 - my-data-plane-node-set
 - ...
 - <nodeSet_name>

Replace <nodeSet_name> with the names of the OpenStackDataPlaneNodeSet CRs that
you want to include in your data plane deployment.

6. Save the compute_amd_sev_deploy.yaml deployment file.

7. Deploy the data plane:

$ oc create -f compute_amd_sev_deploy.yaml

8. Verify that the data plane is deployed:

$ oc get openstackdataplanenodeset
NAME STATUS MESSAGE
openstack-edpm True Deployed

9. Access the remote shell for openstackclient and verify that the deployed Compute nodes are
visible on the control plane:

$ oc rsh -n openstack openstackclient
$ openstack hypervisor list

5.6.4. Creating an image for memory encryption

When the data plane contains AMD SEV Compute nodes, you can create an AMD SEV instance image
that your cloud users can use to launch instances that have memory encryption.

NOTE

To execute openstack client commands on the cloud you must specify the name of the
cloud detailed in your clouds.yaml file. You can specify the name of the cloud by using
one of the following methods:

Use the --os-cloud option with each command:

$ openstack flavor list --os-cloud <cloud_name>

Use this option if you access more than one cloud.

Create an environment variable for the cloud name in your bashrc file:

`export OS_CLOUD=<cloud_name>`

Prerequisites

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

54

The administrator has created a project for you and they have provided you with a clouds.yaml
file for you to access the cloud.

You have installed the python-openstackclient package.

Procedure

1. Create a new image for memory encryption:

 $ openstack image create ... \
 --property hw_firmware_type=uefi amd-sev-image

NOTE

If you use an existing image, the image must have the hw_firmware_type
property set to uefi.

2. Add the property hw_mem_encryption=True to the image to enable AMD SEV memory
encryption on the image:

 $ openstack image set \
 --property hw_mem_encryption=True amd-sev-image

TIP

You can enable memory encryption on the flavor. For more information, see Creating a flavor
for memory encryption.

5.6.5. Creating a flavor for memory encryption

When the data plane contains AMD SEV Compute nodes, you can create one or more AMD SEV flavors
that your cloud users can use to launch instances that have memory encryption.

Prerequisites

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

NOTE

An AMD SEV flavor is necessary only when the hw_mem_encryption property is not set
on an image.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Create a flavor for memory encryption:

CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES

55

$ openstack flavor create --vcpus 1 --ram 512 --disk 2 \
--property hw:mem_encryption=True m1.small-amd-sev

3. Exit the openstackclient pod:

$ exit

5.6.6. Launching an instance with memory encryption

To verify that you can launch instances on an AMD SEV Compute node with memory encryption
enabled, use a memory encryption flavor or image to create an instance.

NOTE

To execute openstack client commands on the cloud you must specify the name of the
cloud detailed in your clouds.yaml file. You can specify the name of the cloud by using
one of the following methods:

Use the --os-cloud option with each command:

$ openstack flavor list --os-cloud <cloud_name>

Use this option if you access more than one cloud.

Create an environment variable for the cloud name in your bashrc file:

`export OS_CLOUD=<cloud_name>`

Prerequisites

The administrator has created a project for you and they have provided you with a clouds.yaml
file for you to access the cloud.

You have installed the python-openstackclient package.

Procedure

1. Create an instance by using an AMD SEV flavor or image. The following example creates an
instance by using the flavor created in Creating a flavor for memory encryption and the image
created in Creating an image for memory encryption :

 $ openstack server create --flavor m1.small-amd-sev \
 --image amd-sev-image amd-sev-instance

2. Log in to the instance as a cloud user.

3. To verify that the instance uses memory encryption, enter the following command from the
instance:

$ dmesg | grep -i sev
AMD Secure Encrypted Virtualization (SEV) active

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

56

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND
PLACEMENT

The Compute scheduler service determines on which Compute node or host aggregate to place an
instance. When the Compute (nova) service receives a request to launch or move an instance, it uses
the specifications provided in the request, the flavor, and the image to find a suitable host. For example,
a flavor can specify the traits an instance requires a host to have, such as the type of storage disk, or the
Intel CPU instruction set extension.

The Compute scheduler service uses the configuration of the following components, in the following
order, to determine on which Compute node to launch or move an instance:

1. Placement service prefilters: The Compute scheduler service uses the Placement service to
filter the set of candidate Compute nodes based on specific attributes. For example, the
Placement service automatically excludes disabled Compute nodes.

2. Filters: Used by the Compute scheduler service to determine the initial set of Compute nodes
on which to launch an instance.

3. Weights: The Compute scheduler service prioritizes the filtered Compute nodes using a
weighting system. The highest weight has the highest priority.

In the following diagram, hosts 1 and 3 are eligible after filtering. Host 1 has the highest weight and
therefore has the highest priority for scheduling.

6.1. PREFILTERING USING THE PLACEMENT SERVICE

The Compute service (nova) interacts with the Placement service when it creates and manages
instances. The Placement service tracks the inventory and use of resource providers, such as a Compute
node, a shared storage pool, or an IP allocation pool, and their available quantitative resources, such as
the available vCPUs. Any service that needs to manage the selection and consumption of resources can
use the Placement service.

The Placement service also tracks the mapping of available qualitative resources to resource providers,
such as the type of storage disk trait a resource provider has.

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

57

The Placement service applies prefilters to the set of candidate Compute nodes based on Placement
service resource provider inventories and traits. You can create prefilters based on the following criteria:

Supported image types

Traits

Projects or tenants

Availability zone

6.1.1. Filtering by requested image type support

You can exclude Compute nodes that do not support the disk format of the image used to launch an
instance. This is useful when your environment uses Red Hat Ceph Storage as an ephemeral backend,
which does not support QCOW2 images. Enabling this feature ensures that the scheduler does not send
requests to launch instances using a QCOW2 image to Compute nodes backed by Red Hat Ceph
Storage.

Procedure

1. Open your OpenStackControlPlane custom resource (CR) file,
openstack_control_plane.yaml, on your workstation.

2. Add the customServiceConfig parameter to the Compute scheduler (nova-scheduler)
template, schedulerServiceTemplate, to configure the Compute scheduler service to filter by
requested image type support:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
spec:
 extraMounts:
 ...
 nova:
 template:
 schedulerServiceTemplate:
 customServiceConfig: |
 [scheduler]
 query_placement_for_image_type_support = true

3. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

4. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

58

5. Optional: Confirm that the control plane is deployed by reviewing the pods in the openstack
namespace for each of the cells you created. The control plane is deployed when all the pods are
either completed or running.

6.1.2. Filtering by resource provider traits

Each resource provider has a set of traits. Traits are the qualitative aspects of a resource provider, for
example, the type of storage disk, or the Intel CPU instruction set extension.

The Compute node reports its capabilities to the Placement service as traits. An instance can specify
which of these traits it requires, or which traits the resource provider must not have. The Compute
scheduler can use these traits to identify a suitable Compute node or host aggregate to host an
instance.

To enable your cloud users to create instances on hosts that have particular traits, you can define a
flavor that requires or forbids a particular trait, and you can create an image that requires or forbids a
particular trait.

For a list of the available traits, see the os-traits library. You can also create custom traits, as required.

Additional resources

Section 6.5, “Declaring custom traits and resource classes”

6.1.2.1. Creating an image that requires or forbids a resource provider trait

You can create an instance image that your cloud users can use to launch instances on hosts that have
particular traits.

Prerequisites

You installed the oc and podman command line tools on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Change to the cloud-admin home directory:

$ cd /home/cloud-admin

3. Create a new image:

$ openstack image create ... trait-image

4. Identify the trait you require a host or host aggregate to have. You can select an existing trait, or
create a new trait:

To use an existing trait, list the existing traits to retrieve the trait name:

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

59

https://opendev.org/openstack/os-traits/src/branch/master/os_traits/compute

$ openstack --os-placement-api-version 1.6 trait list

To create a new trait, enter the following command:

$ openstack --os-placement-api-version 1.6 trait \
 create CUSTOM_TRAIT_NAME

Custom traits must begin with the prefix CUSTOM_ and contain only the letters A through
Z, the numbers 0 through 9 and the underscore “_” character.

5. Collect the existing resource provider traits of each host:

$ existing_traits=$(openstack --os-placement-api-version 1.6 resource provider trait list -f
value <host_uuid> | sed 's/^/--trait /')

6. Check the existing resource provider traits for the traits you require a host or host aggregate to
have:

$ echo $existing_traits

7. If the traits you require are not already added to the resource provider, then add the existing
traits and your required traits to the resource providers for each host:

$ openstack --os-placement-api-version 1.6 \
 resource provider trait set $existing_traits \
 --trait <TRAIT_NAME> \
 <host_uuid>

Replace <TRAIT_NAME> with the name of the trait that you want to add to the resource
provider. You can use the --trait option more than once to add additional traits, as required.

NOTE

This command performs a full replacement of the traits for the resource
provider. Therefore, you must retrieve the list of existing resource provider traits
on the host and set them again to prevent them from being removed.

8. To schedule instances on a host or host aggregate that has a required trait, add the trait to the
image extra specs. For example, to schedule instances on a host or host aggregate that
supports AVX-512, add the following trait to the image extra specs:

$ openstack image set \
 --property trait:HW_CPU_X86_AVX512BW=required \
 trait-image

9. To filter out hosts or host aggregates that have a forbidden trait, add the trait to the image
extra specs. For example, to prevent instances from being scheduled on a host or host
aggregate that supports multi-attach volumes, add the following trait to the image extra specs:

$ openstack image set \
 --property trait:COMPUTE_VOLUME_MULTI_ATTACH=forbidden \
 trait-image

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

60

10. Exit the openstackclient pod:

$ exit

6.1.2.2. Creating a flavor that requires or forbids a resource provider trait

You can create flavors that your cloud users can use to launch instances on hosts that have particular
traits.

Prerequisites

You installed the oc and podman command line tools on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Change to the cloud-admin home directory:

$ cd /home/cloud-admin

3. Create a flavor:

$ openstack flavor create --vcpus 1 --ram 512 \
 --disk 2 trait-flavor

4. Identify the trait you require a host or host aggregate to have. You can select an existing trait, or
create a new trait:

To use an existing trait, list the existing traits to retrieve the trait name:

$ openstack --os-placement-api-version 1.6 trait list

To create a new trait, enter the following command:

$ openstack --os-placement-api-version 1.6 trait \
 create CUSTOM_TRAIT_NAME

Custom traits must begin with the prefix CUSTOM_ and contain only the letters A through
Z, the numbers 0 through 9 and the underscore “_” character.

5. Collect the existing resource provider traits of each host:

$ existing_traits=$(openstack --os-placement-api-version 1.6 resource provider trait list -f
value <host_uuid> | sed 's/^/--trait /')

6. Check the existing resource provider traits for the traits you require a host or host aggregate to
have:

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

61

$ echo $existing_traits

7. If the traits you require are not already added to the resource provider, then add the existing
traits and your required traits to the resource providers for each host:

$ openstack --os-placement-api-version 1.6 \
 resource provider trait set $existing_traits \
 --trait <TRAIT_NAME> \
 <host_uuid>

Replace <TRAIT_NAME> with the name of the trait that you want to add to the resource
provider. You can use the --trait option more than once to add additional traits, as required.

NOTE

This command performs a full replacement of the traits for the resource
provider. Therefore, you must retrieve the list of existing resource provider traits
on the host and set them again to prevent them from being removed.

8. To schedule instances on a host or host aggregate that has a required trait, add the trait to the
flavor extra specs. For example, to schedule instances on a host or host aggregate that
supports AVX-512, add the following trait to the flavor extra specs:

$ openstack flavor set \
 --property trait:HW_CPU_X86_AVX512BW=required \
 trait-flavor

9. To filter out hosts or host aggregates that have a forbidden trait, add the trait to the flavor
extra specs. For example, to prevent instances from being scheduled on a host or host
aggregate that supports multi-attach volumes, add the following trait to the flavor extra specs:

$ openstack flavor set \
 --property trait:COMPUTE_VOLUME_MULTI_ATTACH=forbidden \
 trait-flavor

10. Exit the openstackclient pod:

$ exit

6.1.3. Filtering by isolating host aggregates

You can restrict scheduling on a host aggregate to only those instances whose flavor and image traits
match the metadata of the host aggregate. The combination of flavor and image metadata must
require all the host aggregate traits to be eligible for scheduling on Compute nodes in that host
aggregate.

Prerequisites

You installed oc and podman command line tools on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

62

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Change to the cloud-admin home directory:

$ cd /home/cloud-admin

3. Open your Compute environment file.

4. To isolate host aggregates to host only instances whose flavor and image traits match the
aggregate metadata, set the NovaSchedulerEnableIsolatedAggregateFiltering parameter to
True in the Compute environment file.

5. Save the updates to your Compute environment file.

6. Add your Compute environment file to the stack with your other environment files and deploy
the data plane:

$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml

7. Identify the traits you want to isolate the host aggregate for. You can select an existing trait, or
create a new trait:

To use an existing trait, list the existing traits to retrieve the trait name:

$ openstack --os-placement-api-version 1.6 trait list

To create a new trait, enter the following command:

$ openstack --os-placement-api-version 1.6 trait \
 create CUSTOM_TRAIT_NAME

Custom traits must begin with the prefix CUSTOM_ and contain only the letters A through
Z, the numbers 0 through 9 and the underscore “_” character.

8. Collect the existing resource provider traits of each Compute node:

$ existing_traits=$(openstack --os-placement-api-version 1.6 resource provider trait list -f
value <host_uuid> | sed 's/^/--trait /')

9. Check the existing resource provider traits for the traits you want to isolate the host aggregate
for:

$ echo $existing_traits

10. If the traits you require are not already added to the resource provider, then add the existing
traits and your required traits to the resource providers for each Compute node in the host
aggregate:

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

63

$ openstack --os-placement-api-version 1.6 \
 resource provider trait set $existing_traits \
 --trait <TRAIT_NAME> \
 <host_uuid>

Replace <TRAIT_NAME> with the name of the trait that you want to add to the resource
provider. You can use the --trait option more than once to add additional traits, as required.

NOTE

This command performs a full replacement of the traits for the resource
provider. Therefore, you must retrieve the list of existing resource provider traits
on the host and set them again to prevent them from being removed.

11. Repeat steps 6 - 8 for each Compute node in the host aggregate.

12. Add the metadata property for the trait to the host aggregate:

$ openstack --os-compute-api-version 2.53 aggregate set \
 --property trait:<TRAIT_NAME>=required <aggregate_name>

13. Add the trait to a flavor or an image:

$ openstack --os-compute-api=2.86 flavor set \
 --property trait:<TRAIT_NAME>=required <flavor>
$ openstack image set \
 --property trait:<TRAIT_NAME>=required <image>

14. Exit the openstackclient pod:

$ exit

6.2. CONFIGURING FILTERS AND WEIGHTS FOR THE COMPUTE
SCHEDULER SERVICE

You need to configure the filters and weights for the Compute scheduler service to determine the initial
set of Compute nodes on which to launch an instance.

Procedure

1. On your workstation, open your OpenStackControlPlane custom resource (CR) file,
openstack_control_plane.yaml.

2. Add the filters that you want the scheduler to use to the [filter_scheduler] enabled_filters
parameter, for example:

spec:
 nova:
 template:
 schedulerServiceTemplate:
 customServiceConfig: |

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

64

 [filter_scheduler]
 enabled_filters = AggregateInstanceExtraSpecsFilter, ComputeFilter,
ComputeCapabilitiesFilter, ImagePropertiesFilter

3. Specify which attribute to use to calculate the weight of each Compute node, for example:

spec:
 nova:
 template:
 schedulerServiceTemplate:
 customServiceConfig: |
 [filter_scheduler]
 weight_classes = nova.scheduler.weights.all_weighers

For more information on the available attributes, see Compute scheduler weights.

4. Optional: Configure the multiplier to apply to each weigher. For example, to specify that the
available RAM of a Compute node has a higher weight than the other default weighers, and that
the Compute scheduler prefers Compute nodes with more available RAM over those nodes with
less available RAM, use the following configuration:

spec:
 nova:
 template:
 schedulerServiceTemplate:
 customServiceConfig: |
 [filter_scheduler]
 weight_classes = nova.scheduler.weights.all_weighers
 [filter_scheduler]
 ram_weight_multiplier = 2.0

TIP

You can also set multipliers to a negative value. In the above example, to prefer Compute nodes
with less available RAM over those nodes with more available RAM, set ram_weight_multiplier
to -2.0.

5. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

6. After the RHOCP creates the resources related to the OpenStackControlPlane CR, run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

7. Optional: Confirm that the control plane is deployed by reviewing the pods in the openstack

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

65

7. Optional: Confirm that the control plane is deployed by reviewing the pods in the openstack
namespace for each of the cells that you created.

$ oc get pods -n openstack

The control plane is deployed when all the pods are either completed or running.

Additional resources

For a list of the available Compute scheduler service filters, see Compute scheduler filters.

For a list of the available weight configuration options, see Compute scheduler weights.

6.3. COMPUTE SCHEDULER FILTERS

You configure the enabled_filters parameter in your Compute environment file to specify the filters
the Compute scheduler must apply when selecting an appropriate Compute node to host an instance.
The default configuration applies the following filters:

ComputeFilter: The Compute node can service the request.

ComputeCapabilitiesFilter: The Compute node satisfies the flavor extra specs.

ImagePropertiesFilter: The Compute node satisfies the requested image properties.

ServerGroupAntiAffinityFilter: The Compute node is not already hosting an instance in a
specified group.

ServerGroupAffinityFilter: The Compute node is already hosting instances in a specified group.

SameHostFilter: The Compute node can schedule an instance on the same Compute node as a
set of specific instances.

DifferentHostFilter: The Compute host can schedule an instance on a different Compute node
from a set of specific instances.

PciPassthroughFilter: The Compute host can schedule instances on Compute nodes that have
the devices that the instance requests by using the flavor extra_specs.

NUMATopologyFilter: The Compute host can schedule instances with a NUMA topology on
NUMA-capable Compute nodes.

You can add and remove filters. The following table describes all the available filters.

Table 6.1. Compute scheduler filters

Filter Description

AggregateImagePropert
iesIsolation

Use this filter to match the image metadata of an instance with host
aggregate metadata. If any of the host aggregate metadata matches the
metadata of the image, then the Compute nodes that belong to that host
aggregate are candidates for launching instances from that image. The
scheduler only recognises valid image metadata properties.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

66

AggregateInstanceExtra
SpecsFilter

Use this filter to match namespaced properties defined in the flavor extra
specs of an instance with host aggregate metadata.

You must scope your flavor extra_specs keys by prefixing them with the
aggregate_instance_extra_specs: namespace.

If any of the host aggregate metadata matches the metadata of the flavor
extra spec, then the Compute nodes that belong to that host aggregate are
candidates for launching instances from that image.

AggregateIoOpsFilter Use this filter to filter hosts by I/O operations with a per-aggregate
filter_scheduler/max_io_ops_per_host value. If the per-aggregate
value is not found, the value falls back to the global setting. If the host is in
more than one aggregate and more than one value is found, the scheduler
uses the minimum value.

AggregateMultiTenancy
Isolation

Use this filter to limit the availability of Compute nodes in project-isolated
host aggregates to a specified set of projects. Only projects specified using
the filter_tenant_id metadata key can launch instances on Compute nodes
in the host aggregate. For more information, see Creating a project-isolated
host aggregate.

NOTE

The project can still place instances on other hosts. To restrict
this, use the
NovaSchedulerPlacementAggregateRequiredForTen
ants parameter.

AggregateNumInstance
sFilter

Use this filter to limit the number of instances each Compute node in an
aggregate can host. You can configure the maximum number of instances per-
aggregate by using the filter_scheduler/max_instances_per_host
parameter. If the per-aggregate value is not found, the value falls back to the
global setting. If the Compute node is in more than one aggregate, the
scheduler uses the lowest max_instances_per_host value.

AggregateTypeAffinityF
ilter

Use this filter to pass hosts if no flavor metadata key is set, or the flavor
aggregate metadata value contains the name of the requested flavor. The
value of the flavor metadata entry is a string that may contain either a single
flavor name or a comma-separated list of flavor names, such as m1.nano or
m1.nano,m1.small.

AllHostsFilter Use this filter to consider all available Compute nodes for instance scheduling.

NOTE

Using this filter does not disable other filters.

AvailabilityZoneFilter Use this filter to launch instances on a Compute node in the availability zone
specified by the instance.

Filter Description

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

67

ComputeCapabilitiesFilt
er

Use this filter to match namespaced properties defined in the flavor extra
specs of an instance against the Compute node capabilities. You must prefix
the flavor extra specs with the capabilities: namespace.

A more efficient alternative to using the ComputeCapabilitiesFilter filter is
to use CPU traits in your flavors, which are reported to the Placement service.
Traits provide consistent naming for CPU features. For more information, see
Filtering by using resource provider traits.

ComputeFilter Use this filter to pass all Compute nodes that are operational and enabled.
This filter should always be present.

DifferentHostFilter Use this filter to enable scheduling of an instance on a different Compute
node from a set of specific instances. To specify these instances when
launching an instance, use the --hint argument with different_host as the
key and the instance UUID as the value:

$ openstack server create --image cedef40a-ed67-4d10-800e-
17455edce175 \
 --flavor 1 --hint different_host=a0cf03a5-d921-4877-bb5c-
86d26cf818e1 \
 --hint different_host=8c19174f-4220-44f0-824a-cd1eeef10287
server-1

ImagePropertiesFilter Use this filter to filter Compute nodes based on the following properties
defined on the instance image:

hw_architecture - Corresponds to the architecture of the host, for
example, x86, ARM, and Power.

img_hv_type - Corresponds to the hypervisor type, for example,
KVM, QEMU, Xen, and LXC.

img_hv_requested_version - Corresponds to the hypervisor
version the Compute service reports.

hw_vm_mode - Corresponds to the hyperviser type, for example
hvm, xen, uml, or exe.

Compute nodes that can support the specified image properties contained in
the instance are passed to the scheduler. For more information on image
properties, see Image configuration parameters.

Filter Description

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

68

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/creating_and_managing_images/assembly_image-config-parameters_glance-creating-images

IsolatedHostsFilter Use this filter to only schedule instances with isolated images on isolated
Compute nodes. You can also prevent non-isolated images from being used
to build instances on isolated Compute nodes by configuring
filter_scheduler/restrict_isolated_hosts_to_isolated_images.

To specify the isolated set of images and hosts use the
filter_scheduler/isolated_hosts and
filter_scheduler/isolated_images configuration options, for example:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 filter_scheduler/isolated_hosts:
 value: server1, server2
 filter_scheduler/isolated_images:
 value: 342b492c-128f-4a42-8d3a-c5088cf27d13, ebd267a6-
ca86-4d6c-9a0e-bd132d6b7d09

IoOpsFilter Use this filter to filter out hosts that have concurrent I/O operations that
exceed the configured filter_scheduler/max_io_ops_per_host, which
specifies the maximum number of I/O intensive instances allowed to run on
the host.

MetricsFilter Use this filter to limit scheduling to Compute nodes that report the metrics
configured by using metrics/weight_setting.

To use this filter, add the following configuration to your Compute
environment file:

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 DEFAULT/compute_monitors:
 value: 'cpu.virt_driver'

By default, the Compute scheduler service updates the metrics every 60
seconds.

NUMATopologyFilter Use this filter to schedule instances with a NUMA topology on NUMA-capable
Compute nodes. Use flavor extra_specs and image properties to specify the
NUMA topology for an instance. The filter tries to match the instance NUMA
topology to the Compute node topology, taking into consideration the over-
subscription limits for each host NUMA cell.

NumInstancesFilter Use this filter to filter out Compute nodes that have more instances running
than specified by the max_instances_per_host option.

Filter Description

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

69

PciPassthroughFilter Use this filter to schedule instances on Compute nodes that have the devices
that the instance requests by using the flavor extra_specs.

Use this filter if you want to reserve nodes with PCI devices, which are
typically expensive and limited, for instances that request them.

SameHostFilter Use this filter to enable scheduling of an instance on the same Compute node
as a set of specific instances. To specify these instances when launching an
instance, use the --hint argument with same_host as the key and the
instance UUID as the value:

$ openstack server create --image cedef40a-ed67-4d10-800e-
17455edce175 \
 --flavor 1 --hint same_host=a0cf03a5-d921-4877-bb5c-
86d26cf818e1 \
 --hint same_host=8c19174f-4220-44f0-824a-cd1eeef10287 server-
1

ServerGroupAffinityFilt
er

Use this filter to schedule instances in an affinity server group on the same
Compute node. To create the server group, enter the following command:

$ openstack server group create --policy affinity <group_name>

To launch an instance in this group, use the --hint argument with group as
the key and the group UUID as the value:

$ openstack server create --image <image> \
 --flavor <flavor> \
 --hint group=<group_uuid> <instance_name>

ServerGroupAntiAffinity
Filter

Use this filter to schedule instances that belong to an anti-affinity server
group on different Compute nodes. To create the server group, enter the
following command:

$ openstack server group create --policy anti-affinity <group_name>

To launch an instance in this group, use the --hint argument with group as
the key and the group UUID as the value:

$ openstack server create --image <image> \
 --flavor <flavor> \
 --hint group=<group_uuid> <instance_name>

Filter Description

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

70

SimpleCIDRAffinityFilte
r

Use this filter to schedule instances on Compute nodes that have a specific IP
subnet range. To specify the required range, use the --hint argument to pass
the keys build_near_host_ip and cidr when launching an instance:

$ openstack server create --image <image> \
 --flavor <flavor> \
 --hint build_near_host_ip=<ip_address> \
 --hint cidr=<subnet_mask> <instance_name>

Filter Description

6.4. COMPUTE SCHEDULER WEIGHTS

Each Compute node has a weight that the scheduler can use to prioritize instance scheduling. After the
Compute scheduler applies the filters, it selects the Compute node with the largest weight from the
remaining candidate Compute nodes.

The Compute scheduler determines the weight of each Compute node by performing the following
tasks:

1. The scheduler normalizes each weight to a value between 0.0 and 1.0.

2. The scheduler multiplies the normalized weight by the weigher multiplier.

The Compute scheduler calculates the weight normalization for each resource type by using the lower
and upper values for the resource availability across the candidate Compute nodes:

Nodes with the lowest availability of a resource (minval) are assigned '0'.

Nodes with the highest availability of a resource (maxval) are assigned '1'.

Nodes with resource availability within the minval - maxval range are assigned a normalized
weight calculated by using the following formula:

(node_resource_availability - minval) / (maxval - minval)

If all the Compute nodes have the same availability for a resource then they are all normalized to 0.

For example, the scheduler calculates the normalized weights for available vCPUs across 10 Compute
nodes, each with a different number of available vCPUs, as follows:

Compute node 1 2 3 4 5 6 7 8 9 10

No of vCPUs 5 5 10 10 15 20 20 15 10 5

Normalized weight 0 0 0.33 0.33 0.67 1 1 0.67 0.33 0

The Compute scheduler uses the following formula to calculate the weight of a Compute node:

(w1_multiplier * norm(w1)) + (w2_multiplier * norm(w2)) + ...

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

71

The following table describes the available configuration options for weights.

NOTE

Weights can be set on host aggregates using the aggregate metadata key with the same
name as the options detailed in the following table. If set on the host aggregate, the host
aggregate value takes precedence.

Table 6.2. Compute scheduler weights

Configuration
option

Type Description

filter_scheduler/w
eight_classes

String Use this parameter to configure which of the following
attributes to use for calculating the weight of each
Compute node:

nova.scheduler.weights.ram.RAMWeigher -
Weighs the available RAM on the Compute node.

nova.scheduler.weights.cpu.CPUWeigher -
Weighs the available CPUs on the Compute node.

nova.scheduler.weights.disk.DiskWeigher -
Weighs the available disks on the Compute node.

nova.scheduler.weights.metrics.MetricsWe
igher - Weighs the metrics of the Compute node.

nova.scheduler.weights.affinity.ServerGrou
pSoftAffinityWeigher - Weighs the proximity of
the Compute node to other nodes in the given
instance group.

nova.scheduler.weights.affinity.ServerGrou
pSoftAntiAffinityWeigher - Weighs the
proximity of the Compute node to other nodes in
the given instance group.

nova.scheduler.weights.compute.BuildFail
ureWeigher - Weighs Compute nodes by the
number of recent failed boot attempts.

nova.scheduler.weights.io_ops.IoOpsWeig
her - Weighs Compute nodes by their workload.

nova.scheduler.weights.pci.PCIWeigher -
Weighs Compute nodes by their PCI availability.

nova.scheduler.weights.cross_cell.CrossC
ellWeigher - Weighs Compute nodes based on
which cell they are in, giving preference to
Compute nodes in the source cell when moving an
instance.

nova.scheduler.weights.all_weighers -
(Default) Uses all the above weighers.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

72

filter_scheduler/ra
m_weight_multipl
ier

Floating point Use this parameter to specify the multiplier to use to weigh
hosts based on the available RAM.

Set to a positive value to prefer hosts with more available
RAM, which spreads instances across many hosts.

Set to a negative value to prefer hosts with less available
RAM, which fills up (stacks) hosts as much as possible
before scheduling to a less-used host.

The absolute value, whether positive or negative, controls
how strong the RAM weigher is relative to other weighers.

Default: 1.0 - The scheduler spreads instances across all
hosts evenly.

filter_scheduler/di
sk_weight_multipl
ier

 Floating point Use this parameter to specify the multiplier to use to weigh
hosts based on the available disk space.

Set to a positive value to prefer hosts with more available
disk space, which spreads instances across many hosts.

Set to a negative value to prefer hosts with less available
disk space, which fills up (stacks) hosts as much as possible
before scheduling to a less-used host.

The absolute value, whether positive or negative, controls
how strong the disk weigher is relative to other weighers.

Default: 1.0 - The scheduler spreads instances across all
hosts evenly.

filter_scheduler/c
pu_weight_multip
lier

 Floating point Use this parameter to specify the multiplier to use to weigh
hosts based on the available vCPUs.

Set to a positive value to prefer hosts with more available
vCPUs, which spreads instances across many hosts.

Set to a negative value to prefer hosts with less available
vCPUs, which fills up (stacks) hosts as much as possible
before scheduling to a less-used host.

The absolute value, whether positive or negative, controls
how strong the vCPU weigher is relative to other weighers.

Default: 1.0 - The scheduler spreads instances across all
hosts evenly.

Configuration
option

Type Description

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

73

filter_scheduler/io
_ops_weight_mul
tiplier

 Floating point Use this parameter to specify the multiplier to use to weigh
hosts based on the host workload.

Set to a negative value to prefer hosts with lighter
workloads, which distributes the workload across more
hosts.

Set to a positive value to prefer hosts with heavier
workloads, which schedules instances onto hosts that are
already busy.

The absolute value, whether positive or negative, controls
how strong the I/O operations weigher is relative to other
weighers.

Default: -1.0 - The scheduler distributes the workload
across more hosts.

filter_scheduler/b
uild_failure_weig
ht_multiplier

Floating point Use this parameter to specify the multiplier to use to weigh
hosts based on recent build failures.

Set to a positive value to increase the significance of build
failures recently reported by the host. Hosts with recent
build failures are then less likely to be chosen.

Set to 0 to disable weighing compute hosts by the number
of recent failures.

Default: 1000000.0

filter_scheduler/cr
oss_cell_move_w
eight_multiplier

Floating point Use this parameter to specify the multiplier to use to weigh
hosts during a cross-cell move. This option determines how
much weight is placed on a host which is within the same
source cell when moving an instance. By default, the
scheduler prefers hosts within the same source cell when
migrating an instance.

Set to a positive value to prefer hosts within the same cell
the instance is currently running. Set to a negative value to
prefer hosts located in a different cell from that where the
instance is currently running.

Default: 1000000.0

Configuration
option

Type Description

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

74

filter_scheduler/p
ci_weight_multipli
er

Positive floating
point

Use this parameter to specify the multiplier to use to weigh
hosts based on the number of PCI devices on the host and
the number of PCI devices requested by an instance. If an
instance requests PCI devices, then the more PCI devices a
Compute node has the higher the weight allocated to the
Compute node.

For example, if there are three hosts available, one with a
single PCI device, one with multiple PCI devices and one
without any PCI devices, then the Compute scheduler
prioritizes these hosts based on the demands of the
instance. The scheduler should prefer the first host if the
instance requests one PCI device, the second host if the
instance requires multiple PCI devices and the third host if
the instance does not request a PCI device.

Configure this option to prevent non-PCI instances from
occupying resources on hosts with PCI devices.

Default: 1.0

filter_scheduler/h
ost_subset_size

Integer Use this parameter to specify the size of the subset of
filtered hosts from which to select the host. You must set
this option to at least 1. A value of 1 selects the first host
returned by the weighing functions. The scheduler ignores
any value less than 1 and uses 1 instead.

Set to a value greater than 1 to prevent multiple scheduler
processes handling similar requests selecting the same host,
creating a potential race condition. By selecting a host
randomly from the N hosts that best fit the request, the
chance of a conflict is reduced. However, the higher you set
this value, the less optimal the chosen host may be for a
given request.

Default: 1

filter_scheduler/s
oft_affinity_weigh
t_multiplier

Positive floating
point

Use this parameter to specify the multiplier to use to weigh
hosts for group soft-affinity.

NOTE

You need to specify the microversion when
creating a group with this policy:

$ openstack --os-compute-api-
version 2.15 server group create --
policy soft-affinity <group_name>

Default: 1.0

Configuration
option

Type Description

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

75

filter_scheduler/s
oft_anti_affinity_
weight_multiplier

Positive floating
point

Use this parameter to specify the multiplier to use to weigh
hosts for group soft-anti-affinity.

NOTE

You need to specify the microversion when
creating a group with this policy:

$ openstack --os-compute-api-
version 2.15 server group create --
policy soft-affinity <group_name>

Default: 1.0

metrics/weight_m
ultiplier

Floating point Use this parameter to specify the multiplier to use for
weighting metrics. By default, weight_multiplier=1.0,
which spreads instances across possible hosts.

Set to a number greater than 1.0 to increase the effect of
the metric on the overall weight.

Set to a number between 0.0 and 1.0 to reduce the effect
of the metric on the overall weight.

Set to 0.0 to ignore the metric value and return the value of
the weight_of_unavailable option.

Set to a negative number to prioritize the host with lower
metrics, and stack instances in hosts.

Default: 1.0

Configuration
option

Type Description

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

76

metrics/weight_se
tting

Comma-separated
list of metric=ratio
pairs

Use this parameter to specify the metrics to use for
weighting, and the ratio to use to calculate the weight of
each metric. Valid metric names:

cpu.frequency - CPU frequency

cpu.user.time - CPU user mode time

cpu.kernel.time - CPU kernel time

cpu.idle.time - CPU idle time

cpu.iowait.time - CPU I/O wait time

cpu.user.percent - CPU user mode percentage

cpu.kernel.percent - CPU kernel percentage

cpu.idle.percent - CPU idle percentage

cpu.iowait.percent - CPU I/O wait percentage

cpu.percent - Generic CPU use

Example: weight_setting=cpu.user.time=1.0

metrics/required Boolean Use this parameter to specify how to handle configured
metrics/weight_setting metrics that are unavailable:

True - Metrics are required. If the metric is
unavailable, an exception is raised. To avoid the
exception, use the MetricsFilter filter in
NovaSchedulerEnabledFilters.

False - The unavailable metric is treated as a
negative factor in the weighing process. Set the
returned value by using the
weight_of_unavailable configuration option.

metrics/weight_of
_unavailable

Floating point Use this parameter to specify the weight to use if any
metrics/weight_setting metric is unavailable, and
metrics/required=False.

Default: -10000.0

Configuration
option

Type Description

6.5. DECLARING CUSTOM TRAITS AND RESOURCE CLASSES

As an administrator, you can declare which custom physical features and consumable resources are
available on data plane nodes by defining a custom inventory of resources in a YAML file,
provider.yaml.

You can declare the availability of physical host features by defining custom traits, such as
CUSTOM_DIESEL_BACKUP_POWER, CUSTOM_FIPS_COMPLIANT, and
CUSTOM_HPC_OPTIMIZED. You can also declare the availability of consumable resources by defining

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

77

resource classes, such as CUSTOM_DISK_IOPS, and CUSTOM_POWER_WATTS.

NOTE

You can use flavor metadata to request custom resources and custom traits. For more
information, see Instance bare-metal resource class and Instance resource traits .

Prerequisites

You installed the oc and podman command line tools on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Create a file in /home/stack/templates/ called provider.yaml.

2. To configure the resource provider, add the following configuration to your provider.yaml file:

meta:
 schema_version: '1.0'
providers:
 - identification:
 uuid: <node_uuid>

Replace <node_uuid> with the UUID for the node, for example, '5213b75d-9260-42a6-
b236-f39b0fd10561'. Alternatively, you can use the name property to identify the resource
provider: name: 'EXAMPLE_RESOURCE_PROVIDER'.

3. To configure the available custom resource classes for the resource provider, add the following
configuration to your provider.yaml file:

meta:
 schema_version: '1.0'
providers:
 - identification:
 uuid: <node_uuid>
 inventories:
 additional:
 - CUSTOM_EXAMPLE_RESOURCE_CLASS:
 total: <total_available>
 reserved: <reserved>
 min_unit: <min_unit>
 max_unit: <max_unit>
 step_size: <step_size>
 allocation_ratio: <allocation_ratio>

Replace CUSTOM_EXAMPLE_RESOURCE_CLASS with the name of the resource class.
Custom resource classes must begin with the prefix CUSTOM_ and contain only the letters
A through Z, the numbers 0 through 9 and the underscore “_” character.

Replace <total_available> with the number of available
CUSTOM_EXAMPLE_RESOURCE_CLASS for this resource provider.

Replace <reserved> with the number of available

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

78

Replace <reserved> with the number of available
CUSTOM_EXAMPLE_RESOURCE_CLASS for this resource provider.

Replace <min_unit> with the minimum units of resources a single instance can consume.

Replace <max_unit> with the maximum units of resources a single instance can consume.

Replace <step_size> with the number of available
CUSTOM_EXAMPLE_RESOURCE_CLASS for this resource provider.

Replace <allocation_ratio> with the value to set the allocation ratio. If allocation_ratio is
set to 1.0, then no overallocation is allowed. But if allocation_ration is greater than 1.0, then
the total available resource is more than the physically existing one.

4. To configure the available traits for the resource provider, add the following configuration to
your provider.yaml file:

meta:
 schema_version: '1.0'
providers:
 - identification:
 uuid: <node_uuid>
 inventories:
 additional:
 ...
 traits:
 additional:
 - 'CUSTOM_EXAMPLE_TRAIT'

Replace CUSTOM_EXAMPLE_TRAIT with the name of the trait. Custom traits must begin
with the prefix CUSTOM_ and contain only the letters A through Z, the numbers 0 through
9 and the underscore “_” character.

Example provider.yaml file

The following example declares one custom resource class and one custom trait for a
resource provider.

meta:
 schema_version: 1.0
providers:
 - identification:
 uuid: $COMPUTE_NODE
 inventories:
 additional:
 CUSTOM_LLC:
 # Describing LLC on this compute node
 # max_unit indicates maximum size of single LLC
 # total indicates sum of sizes of all LLC
 total: 22 1
 reserved: 2 2
 min_unit: 1 3
 max_unit: 11 4
 step_size: 1 5
 allocation_ratio: 1.0 6

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

79

1

2

3 4

5

6

 traits:
 additional:
 # Describing that this compute node enables support for
 # P-state control
 - CUSTOM_P_STATE_ENABLED

This hypervisor has 22 units of last level cache (LLC).

Two of the units of LLC are reserved for the host.

The min_unit and max_unit values define how many units of resources a single VM can
consume.

The step size defines the increments of consumption.

The allocation ratio configures the overallocation of resources.

5. Save and close the provider.yaml file.

6. Create a ConfigMap CR that configures the Compute nodes to use the provider.yaml file for
the declaration of the custom traits and resources, and save it to a file named compute-
provider.yaml on your workstation:

apiVersion: v1
kind: ConfigMap
metadata:
 name: compute-provider
 namespace: openstack
data:
 provider.yaml: |

For more information about creating ConfigMap objects, see Creating and using config maps.

7. Create the ConfigMap object:

$ oc create -f compute-provider.yaml

8. Create a new custom service, compute-provider, that includes the compute-provider
ConfigMap object, and save it to a file named compute-provider-service.yaml on your
workstation:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
 name: compute-provider
 namespace: openstack
spec:
 label: dataplane-deployment-compute
 playbook: osp.edpm.nova
 secrets: []
 dataSources:
 - secretRef:
 name: nova-cell1-compute-config
 - secretRef:
 name: nova-migration-ssh-key
 - configMapRef:

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

80

 name: compute-provider
 - configMapRef:
 name: nova-extra-config
 optional: true

9. Create the compute-provider service:

$ oc apply -f compute-provider-service.yaml

10. Create a new OpenStackDataPlaneNodeSet CR that defines the nodes that you want to use
the provider.yaml file for the declaration of the custom traits and resources, and save it to a file
named compute-provider.yaml on your workstation:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: compute-provider

For information about how to create an OpenStackDataPlaneNodeSet CR, see Creating a set
of data plane nodes.

11. Modify your compute-provider OpenStackDataPlaneNodeSet CR to use your compute-
provider-service service instead of the default Compute service:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: compute-provider
spec:
 services:
 - download-cache
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - run-os
 - ovn
 - libvirt
 - compute-provider-service #replaced the nova service
 - telemetry

12. Save the compute-provider.yaml OpenStackDataPlaneNodeSet CR definition file.

13. Create the data plane resources:

$ oc create -f compute-provider.yaml

14. Verify the data plane resources have been created:

$ oc get openstackdataplanenodeset
NAME STATUS MESSAGE
compute-provider False Deployment not started

15. Verify the services were created:

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

81

$ oc get openstackdataplaneservice
NAME AGE
download-cache 6d7h
configure-network 6d7h
configure-os 6d6h
install-os 6d6h
run-os 6d6h
validate-network 6d6h
ovn 6d6h
libvirt 6d6h
compute-provider 6d6h
telemetry 6d6h

16. Create a new OpenStackDataPlaneDeployment CR to configure the services on the data
plane nodes and deploy the nodes, and save it to a file named compute-provider_deploy.yaml
on your workstation:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: compute-provider

For information about how to create an OpenStackDataPlaneDeployment CR, see Deploying
the data plane.

17. Specify nodeSets to include all the OpenStackDataPlaneNodeSet CRs that you want to deploy:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: compute-provider
spec:
 nodeSets:
 - openstack-edpm
 - compute-provider
 - ...
 - <nodeSet_name>

Replace <nodeSet_name> with the names of the OpenStackDataPlaneNodeSet CRs that
you want to include in your data plane deployment.

18. Save the compute-provider_deploy.yaml deployment file.

19. Deploy the data plane:

$ oc create -f compute-provider_deploy.yaml

20. Verify that the data plane is deployed:

$ oc get openstackdataplanedeployment
NAME STATUS MESSAGE
compute-provider True Deployment Completed

$ oc get openstackdataplanenodeset

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

82

NAME STATUS MESSAGE
openstack-edpm True Deployed
compute-provider True Deployed

21. Ensure that the deployed Compute nodes are visible on the control plane:

$ oc rsh nova-cell0-conductor-0 nova-manage cell_v2 discover_hosts --verbose

22. Access the remote shell for openstackclient and verify that the deployed Compute nodes are
visible on the control plane:

$ oc rsh -n openstack openstackclient
$ openstack hypervisor list

6.6. CREATING AND MANAGING HOST AGGREGATES

As a cloud administrator, you can partition a Compute deployment into logical groups for performance
or administrative purposes. Red Hat OpenStack Services on OpenShift (RHOSO) provides the following
mechanisms for partitioning logical groups:

Host aggregate

A host aggregate is a grouping of Compute nodes into a logical unit based on attributes such as the
hardware or performance characteristics. You can assign a Compute node to one or more host
aggregates.
You can map flavors and images to host aggregates by setting metadata on the host aggregate, and
then matching flavor extra specs or image metadata properties to the host aggregate metadata. The
Compute scheduler can use this metadata to schedule instances when the required filters are
enabled. Metadata that you specify in a host aggregate limits the use of that host to any instance
that has the same metadata specified in its flavor or image.

You can configure weight multipliers for each host aggregate by setting the xxx_weight_multiplier
configuration option in the host aggregate metadata.

You can use host aggregates to handle load balancing, enforce physical isolation or redundancy,
group servers with common attributes, or separate classes of hardware.

When you create a host aggregate, you can specify a zone name. This name is presented to cloud
users as an availability zone that they can select.

Availability zones

An availability zone is the cloud user view of a host aggregate. A cloud user cannot view the Compute
nodes in the availability zone, or view the metadata of the availability zone. The cloud user can only
see the name of the availability zone.
You can assign each Compute node to only one availability zone. You can configure a default
availability zone where instances will be scheduled when the cloud user does not specify a zone. You
can direct cloud users to use availability zones that have specific capabilities.

6.6.1. Enabling scheduling on host aggregates

To schedule instances on host aggregates that have specific attributes, update the configuration of the
Compute scheduler to enable filtering based on the host aggregate metadata.

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

83

Prerequisites

You installed oc and podman command line tools on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Change to the cloud-admin home directory:

$ cd /home/cloud-admin

3. Open your OpenStackControlPlane custom resource (CR) file,
openstack_control_plane.yaml, on your workstation.

4. Add the following values to the enabled_filters parameter, if they are not already present:

AggregateInstanceExtraSpecsFilter: Add this value to filter Compute nodes by host
aggregate metadata that match flavor extra specs.

NOTE

For this filter to perform as expected, you must scope the flavor extra specs
by prefixing the extra_specs key with the
aggregate_instance_extra_specs: namespace.

AggregateImagePropertiesIsolation: Add this value to filter Compute nodes by host
aggregate metadata that match image metadata properties.

NOTE

To filter host aggregate metadata by using image metadata properties, the
host aggregate metadata key must match a valid image metadata property.
For information about valid image metadata properties, see Image
configuration parameters.

AvailabilityZoneFilter: Add this value to filter by availability zone when launching an
instance.

NOTE

Instead of using the AvailabilityZoneFilter Compute scheduler service filter,
you can use the Placement service to process availability zone requests.

5. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

84

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/creating_and_managing_images/assembly_image-config-parameters_glance-creating-images

6. Exit the openstackclient pod:

$ exit

6.6.2. Creating a host aggregate

As a cloud administrator, you can create as many host aggregates as you require.

Prerequisites

You have the oc and podman command line tools installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Change to the cloud-admin home directory:

$ cd /home/cloud-admin

3. To create a host aggregate, enter the following command:

openstack aggregate create <aggregate_name>

Replace <aggregate_name> with the name you want to assign to the host aggregate.

4. Add metadata to the host aggregate:

openstack aggregate set \
 --property <key=value> \
 --property <key=value> \
 <aggregate_name>

Replace <key=value> with the metadata key-value pair. If you are using the
AggregateInstanceExtraSpecsFilter filter, the key can be any arbitrary string, for example,
ssd=true. If you are using the AggregateImagePropertiesIsolation filter, the key must
match a valid image metadata property. For more information about valid image metadata
properties, see Image configuration parameters.

Replace <aggregate_name> with the name of the host aggregate.

5. Add the Compute nodes to the host aggregate:

openstack aggregate add host \
 <aggregate_name> \
 <host_name>

Replace <aggregate_name> with the name of the host aggregate to add the Compute

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

85

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/creating_and_managing_images/assembly_image-config-parameters_glance-creating-images

Replace <aggregate_name> with the name of the host aggregate to add the Compute
node to.

Replace <host_name> with the name of the Compute node to add to the host aggregate.

6. Create a flavor or image for the host aggregate:

Create a flavor:

$ openstack flavor create \
 --ram <size_mb> \
 --disk <size_gb> \
 --vcpus <no_reserved_vcpus> \
 host-agg-flavor

Create an image:

$ openstack image create host-agg-image

7. Set one or more key-value pairs on the flavor or image that match the key-value pairs on the
host aggregate.

To set the key-value pairs on a flavor, use the scope aggregate_instance_extra_specs:

openstack flavor set \
 --property aggregate_instance_extra_specs:ssd=true \
 host-agg-flavor

To set the key-value pairs on an image, use valid image metadata properties as the key:

openstack image set \
 --property os_type=linux \
 host-agg-image

8. Exit the openstackclient pod:

$ exit

6.6.3. Creating an availability zone

As a cloud administrator, you can create an availability zone that cloud users can select when they create
an instance.

Prerequisites

You installed the oc and podman command line tools on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

86

$ oc rsh -n openstack openstackclient

2. Change to the cloud-admin home directory:

$ cd /home/cloud-admin

3. To create an availability zone, you can create a new availability zone host aggregate, or make an
existing host aggregate an availability zone:

a. To create a new availability zone host aggregate, enter the following command:

openstack aggregate create \
 --zone <availability_zone> \
 <aggregate_name>

Replace <availability_zone> with the name you want to assign to the availability zone.

Replace <aggregate_name> with the name you want to assign to the host aggregate.

b. To make an existing host aggregate an availability zone, enter the following command:

openstack aggregate set --zone <availability_zone> \
 <aggregate_name>

Replace <availability_zone> with the name you want to assign to the availability zone.

Replace <aggregate_name> with the name of the host aggregate.

4. Optional: Add metadata to the availability zone:

openstack aggregate set --property <key=value> \
 <aggregate_name>

Replace <key=value> with your metadata key-value pair. You can add as many key-value
properties as required.

Replace <aggregate_name> with the name of the availability zone host aggregate.

5. Add Compute nodes to the availability zone host aggregate:

openstack aggregate add host <aggregate_name> \
 <host_name>

Replace <aggregate_name> with the name of the availability zone host aggregate to add
the Compute node to.

Replace <host_name> with the name of the Compute node to add to the availability zone.

6. Exit the openstackclient pod:

$ exit

6.6.4. Deleting a host aggregate

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

87

To delete a host aggregate, you first remove all the Compute nodes from the host aggregate.

Prerequisites

You installed oc and podman command line tools on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Change to the cloud-admin home directory:

$ cd /home/cloud-admin

3. To view a list of all the Compute nodes assigned to the host aggregate, enter the following
command:

openstack aggregate show <aggregate_name>

4. To remove all assigned Compute nodes from the host aggregate, enter the following command
for each Compute node:

openstack aggregate remove host <aggregate_name> \
 <host_name>

Replace <aggregate_name> with the name of the host aggregate to remove the Compute
node from.

Replace <host_name> with the name of the Compute node to remove from the host
aggregate.

5. After you remove all the Compute nodes from the host aggregate, enter the following
command to delete the host aggregate:

openstack aggregate delete <aggregate_name>

6. Exit the openstackclient pod:

$ exit

6.6.5. Creating a project-isolated host aggregate

You can create a host aggregate that is available only to specific projects. Only the projects that you
assign to the host aggregate can launch instances on the host aggregate.

NOTE

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

88

NOTE

Project isolation uses the Placement service to filter host aggregates for each project.
This process supersedes the functionality of the AggregateMultiTenancyIsolation filter.
You therefore do not need to use the AggregateMultiTenancyIsolation filter.

Prerequisites

You installed the oc and podman command line tools on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Change to the cloud-admin home directory:

$ cd /home/cloud-admin

3. On your workstation, open your OpenStackControlPlane custom resource (CR) file,
openstack_control_plane.yaml.

4. To schedule project instances on the project-isolated host aggregate, set the value of the
query_placement_for_image_type_support parameter to True:

 [scheduler]
 query_placement_for_image_type_support = True

5. Optional: To ensure that only the projects that you assign to a host aggregate can create
instances on your cloud, set the value of the placement_aggregate_required_for_tenants
parameter to True.

NOTE

The parameter placement_aggregate_required_for_tenants is set to False by
default. When this parameter is False, projects that are not assigned to a host
aggregate can create instances on any host aggregate.

6. Save the updates to your Compute environment file.

7. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

8. Create the host aggregate.

9. Retrieve the list of project IDs:

openstack project list

CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

89

10. Use the filter_tenant_id<suffix> metadata key to assign projects to the host aggregate:

openstack aggregate set \
 --property filter_tenant_id<ID0>=<project_id0> \
 --property filter_tenant_id<ID1>=<project_id1> \
 ...
 --property filter_tenant_id<IDn>=<project_idn> \
 <aggregate_name>

Replace <ID0>, <ID1>, and all IDs up to <IDn> with unique values for each project filter that
you want to create.

Replace <project_id0>, <project_id1>, and all project IDs up to <project_idn> with the ID
of each project that you want to assign to the host aggregate.

Replace <aggregate_name> with the name of the project-isolated host aggregate.
For example, use the following syntax to assign projects 78f1, 9d3t, and aa29 to the host
aggregate project-isolated-aggregate:

openstack aggregate set \
 --property filter_tenant_id0=78f1 \
 --property filter_tenant_id1=9d3t \
 --property filter_tenant_id2=aa29 \
 project-isolated-aggregate

TIP

You can create a host aggregate that is available only to a single specific project by omitting
the suffix from the filter_tenant_id metadata key:

openstack aggregate set \
 --property filter_tenant_id=78f1 \
 single-project-isolated-aggregate

11. Exit the openstackclient pod:

$ exit

Additional resources

For more information on creating a host aggregate, see Creating and managing host
aggregates.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

90

CHAPTER 7. ADDING METADATA TO INSTANCES

WARNING

The content for this feature is available in this release as a Documentation Preview,
and therefore is not fully verified by Red Hat. Use it only for testing, and do not use
in a production environment.

The Compute (nova) service uses metadata to pass configuration information to instances on launch.
The instance can access the metadata by using a config drive or the metadata service.

Config drive

By default, every instance has a config drive. Config drives are special drives that you can attach to
an instance when it boots. The config drive is presented to the instance as a read-only drive. The
instance can mount this drive and read files from it to get information that is normally available
through the metadata service.

Metadata service

The Compute service provides the metadata service as a REST API, which can be used to retrieve
data specific to an instance. Instances access this service at 169.254.169.254 or at fe80::a9fe:a9fe.

7.1. TYPES OF INSTANCE METADATA

Cloud users, cloud administrators, and the Compute service can pass metadata to instances:

Cloud user provided data

Cloud users can specify additional data to use when they launch an instance, such as a shell script
that the instance runs on boot. The cloud user can pass data to instances by using the user data
feature, and by passing key-value pairs as required properties when creating or updating an instance.

Cloud administrator provided data

The Red Hat OpenStack Services on OpenShift (RHOSO) administrator uses the vendordata
feature to pass data to instances. The Compute service provides the vendordata modules
StaticJSON and DynamicJSON to allow administrators to pass metadata to instances:

StaticJSON: (Default) Use for metadata that is the same for all instances.

DynamicJSON: Use for metadata that is different for each instance. This module makes a
request to an external REST service to determine what metadata to add to an instance.

Vendordata configuration is located in one of the following read-only files on the instance:

/openstack/{version}/vendor_data.json

/openstack/{version}/vendor_data2.json

Compute service provided data

The Compute service uses its internal implementation of the metadata service to pass information to
the instance, such as the requested hostname for the instance, and the availability zone the instance
is in. This happens by default and requires no configuration by the cloud user or administrator.

CHAPTER 7. ADDING METADATA TO INSTANCES

91

CHAPTER 8. CONFIGURING INSTANCE SECURITY

WARNING

The content for this feature is available in this release as a Documentation Preview,
and therefore is not fully verified by Red Hat. Use it only for testing, and do not use
in a production environment.

As a cloud administrator, you can configure the following security features for the instances that run on
your cloud:

UEFI Secure boot: You can create a UEFI Secure Boot flavor with the property key
os:secure_boot enabled. Cloud users can use this flavor to create instances that are protected
with UEFI Secure Boot.

Emulated virtual Trusted Platform Module (vTPM): You can provide cloud users the ability to
create instances that have emulated vTPM devices.

SEV: Use to enable your cloud users to create instances that use memory encryption.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

92

CHAPTER 9. DATABASE CLEANING

WARNING

The content for this feature is available in this release as a Documentation Preview,
and therefore is not fully verified by Red Hat. Use it only for testing, and do not use
in a production environment.

The Compute service includes an administrative tool, nova-manage, that you can use to perform
deployment, upgrade, clean-up, and maintenance-related tasks, such as applying database schemas,
performing online data migrations during an upgrade, and managing and cleaning up the database.

The following database management tasks are performed by default:

Archives deleted instance records by moving the deleted rows from the production tables to
shadow tables.

Purges deleted rows from the shadow tables after archiving is complete.

CHAPTER 9. DATABASE CLEANING

93

CHAPTER 10. MIGRATING VIRTUAL MACHINE INSTANCES
BETWEEN COMPUTE NODES

WARNING

The content for this feature is available in this release as a Documentation Preview,
and therefore is not fully verified by Red Hat. Use it only for testing, and do not use
in a production environment.

You sometimes need to migrate instances from one Compute node to another Compute node in the
data plane, to perform maintenance, rebalance the workload, or replace a failed or failing node.

Compute node maintenance

If you need to temporarily take a Compute node out of service, for instance, to perform hardware
maintenance or repair, kernel upgrades and software updates, you can migrate instances running on
the Compute node to another Compute node.

Failing Compute node

If a Compute node is about to fail and you need to service it or replace it, you can migrate instances
from the failing Compute node to a healthy Compute node.

Failed Compute nodes

If a Compute node has already failed, you can evacuate the instances. You can rebuild instances from
the original image on another Compute node, using the same name, UUID, network addresses, and
any other allocated resources the instance had before the Compute node failed.

Workload rebalancing

You can migrate one or more instances to another Compute node to rebalance the workload. For
example, you can consolidate instances on a Compute node to conserve power, migrate instances to
a Compute node that is physically closer to other networked resources to reduce latency, or
distribute instances across Compute nodes to avoid hot spots and increase resiliency.

All Compute nodes provide secure migration. All Compute nodes also require a shared SSH key to
provide the users of each host with access to other Compute nodes during the migration process.

10.1. MIGRATION TYPES

Red Hat OpenStack Services on OpenShift (RHOSO) supports the following types of migration.

Cold migration

Cold migration, or non-live migration, involves shutting down a running instance before migrating it from
the source Compute node to the destination Compute node.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

94

Cold migration involves some downtime for the instance. The migrated instance maintains access to the
same volumes and IP addresses.

NOTE

Cold migration requires that both the source and destination Compute nodes are
running.

Live migration

Live migration involves moving the instance from the source Compute node to the destination
Compute node without shutting it down, and while maintaining state consistency.

Live migrating an instance involves little or no perceptible downtime. However, live migration does
impact performance for the duration of the migration operation. Therefore, instances should be taken
out of the critical path while being migrated.

IMPORTANT

Live migration impacts the performance of the workload being moved. Red Hat does not
provide support for increased packet loss, network latency, memory latency or a
reduction in network bandwith, memory bandwidth, storage IO, or CPU peformance
during live migration.

NOTE

CHAPTER 10. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

95

NOTE

Live migration requires that both the source and destination Compute nodes are running.

Evacuation

If you need to migrate instances because the source Compute node has already failed, you can
evacuate the instances.

Red Hat OpenStack Services on OpenShift 18.0 Configuring the Compute service for instance creation

96

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	ABOUT THIS GUIDE
	CHAPTER 1. COMPUTE SERVICE (NOVA) FUNCTIONALITY
	CHAPTER 2. CONFIGURING THE COMPUTE SERVICE (NOVA)
	CHAPTER 3. CREATING FLAVORS FOR LAUNCHING INSTANCES
	3.1. CREATING A FLAVOR
	3.2. FLAVOR ARGUMENTS
	3.3. FLAVOR METADATA

	CHAPTER 4. CONFIGURING CPUS ON COMPUTE NODES
	4.1. CONFIGURING CPU PINNING ON COMPUTE NODES
	4.1.1. Prerequisites
	4.1.2. Designating and configuring Compute nodes for CPU pinning
	4.1.3. Creating a dedicated CPU flavor for instances
	4.1.4. Creating a shared CPU flavor for instances
	4.1.5. Creating a mixed CPU flavor for instances
	4.1.6. Configuring CPU pinning on Compute nodes with simultaneous multithreading (SMT)
	4.1.7. Additional resources

	CHAPTER 5. CONFIGURING MEMORY ON COMPUTE NODES
	5.1. CONFIGURING MEMORY FOR OVERALLOCATION
	5.2. CALCULATING RESERVED HOST MEMORY ON COMPUTE NODES
	5.3. CALCULATING SWAP SIZE
	5.4. CONFIGURING HUGE PAGES ON COMPUTE NODES
	5.4.1. Creating a huge pages flavor for instances
	5.4.2. Mounting multiple huge page folders during first boot

	5.5. CONFIGURING COMPUTE NODES TO USE FILE-BACKED MEMORY FOR INSTANCES
	5.5.1. Changing the memory backing directory host disk

	5.6. CONFIGURING AMD SEV COMPUTE NODES TO PROVIDE MEMORY ENCRYPTION FOR INSTANCES
	5.6.1. Secure Encrypted Virtualization (SEV)
	5.6.2. Designating AMD SEV Compute nodes for memory encryption
	5.6.3. Configuring AMD SEV Compute nodes for memory encryption
	5.6.4. Creating an image for memory encryption
	5.6.5. Creating a flavor for memory encryption
	5.6.6. Launching an instance with memory encryption

	CHAPTER 6. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT
	6.1. PREFILTERING USING THE PLACEMENT SERVICE
	6.1.1. Filtering by requested image type support
	6.1.2. Filtering by resource provider traits
	6.1.2.1. Creating an image that requires or forbids a resource provider trait
	6.1.2.2. Creating a flavor that requires or forbids a resource provider trait

	6.1.3. Filtering by isolating host aggregates

	6.2. CONFIGURING FILTERS AND WEIGHTS FOR THE COMPUTE SCHEDULER SERVICE
	6.3. COMPUTE SCHEDULER FILTERS
	6.4. COMPUTE SCHEDULER WEIGHTS
	6.5. DECLARING CUSTOM TRAITS AND RESOURCE CLASSES
	6.6. CREATING AND MANAGING HOST AGGREGATES
	6.6.1. Enabling scheduling on host aggregates
	6.6.2. Creating a host aggregate
	6.6.3. Creating an availability zone
	6.6.4. Deleting a host aggregate
	6.6.5. Creating a project-isolated host aggregate

	CHAPTER 7. ADDING METADATA TO INSTANCES
	7.1. TYPES OF INSTANCE METADATA

	CHAPTER 8. CONFIGURING INSTANCE SECURITY
	CHAPTER 9. DATABASE CLEANING
	CHAPTER 10. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES
	10.1. MIGRATION TYPES

