& RedHat

Red Hat OpenStack Services on
OpenShift18.0

Customizing the Red Hat OpenStack Services
on OpenShift deployment

Customizing a deployed Red Hat OpenStack Services on OpenShift environment on
a Red Hat OpenShift Container Platform cluster

Last Updated: 2024-09-13

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat
OpenStack Services on OpenShift deployment

Customizing a deployed Red Hat OpenStack Services on OpenShift environment on a Red Hat
OpenShift Container Platform cluster

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to customize your Red Hat OpenStack Services on OpenShift control plane on a Red Hat
OpenShift Container Platform cluster, and customize the data plane.

Table of Contents

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ..ottt eiieeieeiiennneeannens 3
CHAPTER 1. CUSTOMIZING THE CONTROL PLANE ...ttt eiteieneeeaneennneennn, 4
1.1. PREREQUISITES 4
1.2. ENABLING DISABLED SERVICES 4
1.3. ADDING THE BARE METAL PROVISIONING SERVICE (IRONIC) TO THE CONTROL PLANE 4
1.4. ADDING COMPUTE CELLS TO THE CONTROL PLANE 7
1.5. ENABLING THE DASHBOARD SERVICE (HORIZON) INTERFACE 10
1.6. ENABLING THE ORCHESTRATION SERVICE (HEAT) 12
1.7. ADDITIONAL RESOURCES 13
CHAPTER 2. CUSTOMIZING THE DATA PLANE .ttt ittt ittt et et raneennneeannenns 15
2.1. PREREQUISITES 15
2.2. MODIFYING AN OPENSTACKDATAPLANENODESET CR 15
2.3. DATA PLANE SERVICES 17
2.3.1. Creating and enabling a custom service 19
2.3.2. Building a custom ansible-runner image 22

2.4. CONFIGURING A NODE SET FOR A FEATURE OR WORKLOAD 22
2.5. CONNECTING AN OPENSTACKDATAPLANENODESET CR TO A COMPUTE CELL 24
CHAPTER 3. CUSTOMIZING RED HAT OPENSTACK SERVICES ON OPENSHIFT OBSERVABILITY 27
3.1. CONFIGURING RED HAT OPENSTACK SERVICES ON OPENSHIFT OBSERVABILITY 27

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deplo

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation for Red Hat OpenStack Services
on OpenShift (RHOSO) or earlier releases of Red Hat OpenStack Platform (RHOSP). When you create
an issue for RHOSO or RHOSP documents, the issue is recorded in the RHOSO Jira project, where you
can track the progress of your feedback.

To complete the Create Issue form, ensure that you are logged in to Jira. If you do not have a Red Hat
Jira account, you can create an account at https://issues.redhat.com.

1. Click the following link to open a Create Issue page: Create Issue

2. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

3. Click Create.

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deplo)

CHAPTER 1. CUSTOMIZING THE CONTROL PLANE

The Red Hat OpenStack Services on OpenShift (RHOSO) control plane contains the RHOSO services
that manage the cloud. The RHOSO services run as a Red Hat OpenShift Container Platform (RHOCP)
workload. You can customize your deployed control plane with the services required for your
environment.

1.1. PREREQUISITES

® The RHOSO environment is deployed on a RHOCP cluster. For more information, see
Deploying Red Hat OpenStack Services on OpenShift.

® You are logged on to a workstation that has access to the RHOCP cluster, as a user with
cluster-admin privileges.

1.2. ENABLING DISABLED SERVICES

If you enable a service that is disabled by setting enabled: true, you must either create an empty
template for the service by adding template: {} to the service definition to ensure that the default
values for the service are set, or specify some or all of the template parameter values. For example, to
enable the Dashboard service (horizon) with the default service values, add the following configuration
to your OpenStackControlPlane custom resource (CR):

spec:

horizon:
apiOverride: {}
enabled: true
template: {}

If you want to set the values for specific service parameters, then add the following configuration to your
OpenStackControlPlane custom resource (CR):

spec:

horizon:

apiOverride: {}

enabled: true

template:
customServiceConfig: ™
memcachedInstance: memcached
override: {}
preservedJobs: false
replicas: 2
resources: {}
secret: osp-secret
tls: {}

Any parameters that you do not specify are set to the default value from the service template.

1.3. ADDING THE BARE METAL PROVISIONING SERVICE (IRONIC) TO
THE CONTROL PLANE

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/index

CHAPTER 1. CUSTOMIZING THE CONTROL PLANE

If you want your cloud users to be able to launch bare-metal instances, you must configure the control
plane with the Bare Metal Provisioning service (ironic).

Procedure

1. Open your OpenStackControlPlane custom resource (CR) file,
openstack_control_plane.yaml, on your workstation.

2. Add the following cellTemplates configuration to the nova service configuration:

nova:
apiOverride:
route: {}
template:

secret: osp-secret
cellTemplates:
cellO:
cellDatabaseAccount: nova-cell0
hasAPIlAccess: true
celll:
cellDatabaseAccount: nova-celld
cellDatabaselnstance: openstack-celld
cellMessageBusinstance: rabbitmqg-cell1
hasAPIlAccess: true
novaComputeTemplates:
compute-ironic:
computeDriver: ironic.lronicDriver

The name of the Compute service. The name has a limit of 20 characters, and must
contain only lowercase alphanumeric characters and the - symbol.

3. Create the network that the ironic service pod attaches to, for example, baremetal. For more
information about how to create an isolated network, see Preparing RHOCP for RHOSO
networks in the Deploying Red Hat OpenStack Services on OpenShift guide.

4. Enable and configure the ironic service:
spec:

ironic:
enabled: true
template:
rpcTransport: oslo
databaselnstance: openstack
ironicAPI:
replicas: 1
override:
service:
internal:
metadata:
annotations:
metallb.universe.tf/address-pool: internalapi
metallb.universe.tf/allow-shared-ip: internalapi
metallb.universe.tf/loadBalancerlPs: 172.17.0.80

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/assembly_preparing-rhoso-networks#proc_preparing-RHOCP-for-RHOSO-networks_preparing_networks

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deplo)

spec:
type: LoadBalancer
ironicConductors:
- replicas: 1
storageRequest: 10G
networkAttachments:
- baremetal ﬂ
provisionNetwork: baremetal
customServiceConfig: |
[neutron]
cleaning_network = provisioning
provisioning_network = provisioning
rescuing_network = provisioning
ironiclnspector:
replicas: 0
networkAttachments:
- baremetal
inspectionNetwork: baremetal
ironicNeutronAgent:
replicas: 1
secret: osp-secret

Q The NetworkAttachmentDefinition CR for your baremetal network.

5. Update the control plane:

I $ oc apply -f openstack_control_plane.yaml -n openstack

6. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack
NAME STATUS MESSAGE
openstack-control-plane Unknown Setup started

The OpenStackControlPlane resources are created when the status is "Setup complete”.
TIP
Append the -w option to the end of the get command to track deployment progress.
7. Confirm that the control plane is deployed by reviewing the pods in the openstack namespace:
I $ oc get pods -n openstack

The control plane is deployed when all the pods are either completed or running.

Verification

1. Open aremote shell connection to the OpenStackClient pod:

I $ oc rsh -n openstack openstackclient

CHAPTER 1. CUSTOMIZING THE CONTROL PLANE

2. Confirm that the internal service endpoints are registered with each service:

$ openstack endpoint list -c 'Service Name' -¢ Interface -¢ URL --service ironic

+- + +- +

| Service Name | Interface | URL |

+- + +- +

| ironic | internal | http://ironic-internal.openstack.svc:9292 |

| ironic | public | http:/ironic-public-openstack.apps.ostest.test.metalkube.org |
+- + +- +

3. Exit the openstackclient pod:

I $ exit

1.4. ADDING COMPUTE CELLS TO THE CONTROL PLANE

You can use cells to divide Compute nodes in large deployments into groups. Each cell has a dedicated
message queue, runs standalone copies of the cell-specific Compute services and databases, and
stores instance metadata in a database dedicated to instances in that cell.

By default, the control plane creates two cells:

® cell0: The controller cell that manages global components and services, such as the Compute
scheduler and the global conductor. This cell also contains a dedicated database to store
information about instances that failed to be scheduled to a Compute node. You cannot
connect Compute nodes to this cell.

e cell1: The default cell that Compute nodes are connected to when you don't create and
configure additional cells.

You can add cells to your Red Hat OpenStack Services on OpenShift (RHOSO) environment when you
create your control plane or at any time afterwards.

Procedure

1. Open your OpenStackControlPlane custom resource (CR) file,
openstack_control_plane.yaml, on your workstation.

2. Create a database server for each new cell that you want to add to your RHOSO environment:

apiVersion: core.openstack.org/vibetal
kind: OpenStackControlPlane
metadata:
name: openstack-control-plane
namespace: openstack
spec:
secret: osp-secret

galera:
enabled: true
templates:
openstack:
storageRequest: 5G
secret: cell0-secret

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deploy

replicas: 1

openstack-cell1: g
storageRequest: 5G
secret: cell1-secret
replicas: 1

openstack-cell2: 6
storageRequest: 5G
secret: cell2-secret
replicas: 1

ﬂ The database used by most of the RHOSO services, including the Compute services nova-
api and nova-scheduler, and cellO.

9 The database to be used by celld.

9 The database to be used by cell2.

3. Create a message bus with unique IPs for the load balancer for each new cell that you want to
add to your RHOSO environment:

apiVersion: core.openstack.org/vibetal
kind: OpenStackControlPlane
metadata:

name: openstack-control-plane
spec:

secret: osp-secret

rabbitmq:
templates:
rabbitmq: ﬂ
override:
service:
metadata:
annotations:
metallb.universe.tf/address-pool: internalapi
metallb.universe.tf/loadBalancerIPs: 172.17.0.85
spec:
type: LoadBalancer
rabbitmg-cell1: g
override:
service:
metadata:
annotations:
metallb.universe.tf/address-pool: internalapi
metallb.universe.tf/loadBalancerIPs: 172.17.0.86
spec:
type: LoadBalancer
rabbitmg-cell2:
override:
service:
metadata:
annotations:
metallb.universe.tf/address-pool: internalapi

CHAPTER 1. CUSTOMIZING THE CONTROL PLANE

metallb.universe.tf/loadBalancerlPs: 172.17.0.87
spec:
type: LoadBalancer

nova-api and nova-scheduler, and cellO.

ﬂ The message bus used by most of the RHOSO services, including the Compute services
9 The message bus to be used by celld.

9 The message bus to be used by cell2.

4. Add the new cells to the cellTemplates configuration in the nova service configuration:

nova:

apiOverride:
route: {}
template:

secret: osp-secret
apiDatabaseAccount: nova-api
cellTemplates:
cellO:
hasAPIlAccess: true
cellDatabaseAccount: nova-cell0
cellDatabaselnstance: openstack
cellMessageBusinstance: rabbitmq
celll:
hasAPIlAccess: true
cellDatabaseAccount: nova-celld
cellDatabaselnstance: openstack-celld
cellMessageBusinstance: rabbitmg-cell1

cell2: @

hasAPIlAccess: true
cellDatabaseAccount: nova-cell2
cellDatabaselnstance: openstack-cell2
cellMessageBusinstance: rabbitmqg-cell2

The name of the new Compute cell. The name has a limit of 20 characters, and must
contain only lowercase alphanumeric characters and the - symbol. For more information
about the properties you can configure for a cell, view the definition for the Nova CRD:

I $ oc describe crd nova

5. Update the control plane:

I $ oc apply -f openstack_control_plane.yaml -n openstack

6. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack
NAME STATUS MESSAGE
openstack-control-plane Unknown Setup started

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deplo)

The OpenStackControlPlane resources are created when the status is "Setup complete”.

TIP

Append the -w option to the end of the get command to track deployment progress.

7. Optional: Confirm that the control plane is deployed by reviewing the pods in the openstack
namespace for each of the cells you created:

$ oc get pods -n openstack | grep cell2

nova-cell2-conductor-0 1/1 Running 2 5d20h
nova-cell2-novncproxy-0 1/1 Running 2 5d20h
openstack-cell2-galera-0 1/1 Running 2 5d20h
rabbitmg-cell2-server-0 1/1 Running 2 5d20h

The control plane is deployed when all the pods are either completed or running.

8. Optional: Confirm that the new cells are created:

$ oc exec -it nova-cell0-conductor-0 /bin/bash
nova-manage cell_v2 list_cells

+ + +
+ + +| Name | UUID |
Transport URL | Database Connection | Disabled |+ + +
+
+ +| cell0 | 00000000-0000-0000-0000-000000000000 |

rabbit: | mysql+pymysql://nova_cell0:****@openstack/nova_cell0 | False || cell1 | c5bf5e35-
6677-40aa-80d0-33a440cac14e | rabbit://default_user_CuUVnXz-
PvgzXvPxypU:****@rabbitmqg-cell1.openstack.svc:5672 |
mysql+pymysql://nova_cell1:****@openstack-cell1/nova_cell1 | False || cell2 | c5bf5e35-
6677-40aa-80d0-33a440cac14e | rabbit://default_user_CuUVnXz-
PvgzXvPxypU:****@rabbitmqg-cell2.openstack.svc:5672 |
mysql+pymysql://nova_cell2:****@openstack-cell2/nova_cell2| False |+ +

} }
h h

1.5. ENABLING THE DASHBOARD SERVICE (HORIZON) INTERFACE

You can enable the Dashboard service (horizon) interface for cloud user access to the cloud through a
web browser.

Procedure

1. Open your OpenStackControlPlane custom resource (CR) file,
openstack_control_plane.yaml, on your workstation.

2. Enable and configure the horizon service:
spec:
horizon:
apiOverride: {}

enabled: true
template:

10

CHAPTER 1. CUSTOMIZING THE CONTROL PLANE

customServiceConfig: ™
memcachedInstance: memcached
override: {}

preservedJobs: false

replicas: 2

resources: {}

secret: osp-secret

tls: {}

ﬂ Set replicas to a minimum of 2 for high availability.

3. Update the control plane:

I $ oc apply -f openstack_control_plane.yaml -n openstack

4. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack
NAME STATUS MESSAGE
openstack-control-plane Unknown Setup started

The OpenStackControlPlane resources are created when the status is "Setup complete”.
TIP
Append the -w option to the end of the get command to track deployment progress.
5. Confirm that the control plane is deployed by reviewing the pods in the openstack namespace:
I $ oc get pods -n openstack

The control plane is deployed when all the pods are either completed or running.

6. Retrieve the Dashboard service endpoint URL:
I $ oc get horizons horizon -0 jsonpath='{.status.endpoint}'
Use this URL to access the Horizon interface.

Verification

1. Tologin as the admin user, obtain the admin password from the AdminPassword parameter
in the osp-secret secret:

I $ oc get secret osp-secret -0 jsonpath="{.data.AdminPassword}' | base64 -d

2. Open a web browser.
3. Enter the Dashboard endpoint URL.

4. Login to the dashboard with your username and password.

1

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deploy

1.6. ENABLING THE ORCHESTRATION SERVICE (HEAT)

You can enable the Orchestration service (heat) in your Red Hat OpenStack Services on OpenShift
(RHOSO) environment. Cloud users can use the Orchestration service to create and manage cloud
resources such as storage, networking, instances, or applications.

Procedure

1. Open your OpenStackControlPlane custom resource (CR) file,
openstack_control_plane.yaml, on your workstation.

2. Enable and configure the heat service:
spec:
heat:
apiOverride:
route: {}
cnfAPIOverride:
route: {}
enabled: true
template:
databaseAccount: heat
databaselnstance: openstack
heatAPI:
override:
service:
internal:
metadata:
annotations:
metallb.universe.tf/address-pool: internalapi
metallb.universe.tf/allow-shared-ip: internalapi
metallb.universe.tf/loadBalancerlPs: 172.17.0.80
spec:
type: LoadBalancer
replicas: 1
resources: {}
tls:
api:
internal: {}
public: {}
heatCfnAPI:
override: {}
replicas: 1
resources: {}
tls:
api:
internal: {}
public: {}
heatEngine:
replicas: 1
resources: {}
memcachedInstance: memcached
passwordSelectors:
authEncryptionKey: HeatAuthEncryptionKey
service: HeatPassword

12

CHAPTER 1. CUSTOMIZING THE CONTROL PLANE

preservedJobs: false
rabbitMqgClusterName: rabbitmq
secret: osp-secret

serviceUser: heat

3. Update the control plane:
I $ oc apply -f openstack_control_plane.yaml -n openstack

4. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack
NAME STATUS MESSAGE
openstack-control-plane Unknown Setup started

The OpenStackControlPlane resources are created when the status is "Setup complete”.
TIP
Append the -w option to the end of the get command to track deployment progress.

5. Confirm that the control plane is deployed by reviewing the pods in the openstack namespace:
I $ oc get pods -n openstack
The control plane is deployed when all the pods are either completed or running.

Verification

1. Open a remote shell connection to the OpenStackClient pod:
I $ oc rsh -n openstack openstackclient

2. Confirm that the internal service endpoints are registered with each service:

$ openstack endpoint list -c 'Service Name' -¢ Interface -¢ URL --service heat

+- + +- +

| Service Name | Interface | URL |

+- + +- +

| heat | internal | http://heat-internal.openstack.svc:9292 |

| heat | public | http://heat-public-openstack.apps.ostest.test.metalkube.org |
+- + +- +

3. Exit the openstackclient pod:

I $ exit

1.7. ADDITIONAL RESOURCES

® Kubernetes NMState Operator

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/kubernetes-nmstate

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deplo)

The Kubernetes NMState project

® | oad balancing with MetalLB

® MetalLB documentation

® MetalLB in layer 2 mode

® Specify network interfaces that LB IP can be announced from
® Multiple networks

e Using the Multus CNI in OpenShift

® macvlan plugin

® whereabouts IPAM CNI plugin - Extended configuration

® About advertising for the IP address pools

® Dynamic provisioning

14

https://nmstate.io/kubernetes-nmstate/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/load-balancing-with-metallb
https://metallb.universe.tf/
https://metallb.universe.tf/concepts/layer2/
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#specify-network-interfaces-that-lb-ip-can-be-announced-from
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/multiple-networks
https://cloud.redhat.com/blog/using-the-multus-cni-in-openshift
https://www.cni.dev/plugins/current/main/macvlan/
https://github.com/k8snetworkplumbingwg/whereabouts/blob/master/doc/extended-configuration.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/load-balancing-with-metallb#about-advertise-for-ipaddress-pools
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/storage/dynamic-provisioning

CHAPTER 2. CUSTOMIZING THE DATA PLANE

CHAPTER 2. CUSTOMIZING THE DATA PLANE

The Red Hat OpenStack Services on OpenShift (RHOSO) data plane consists of RHEL 9.4 nodes. You
use the OpenStackDataPlaneNodeSet custom resource definition (CRD) to create the custom
resources (CRs) that define the nodes and the layout of the data plane. You can use pre-provisioned
nodes, or provision bare-metal nodes as part of the data plane creation and deployment process.

You can add additional node sets to your data plane by using the procedures in Creating the data plane
in the Deploying Red Hat OpenStack Services on OpenShift guide.

You can also modify existing OpenStackDataPlaneNodeSet CRs, add Compute cells to your data
plane, and customize your data plane by creating custom services.

2.1. PREREQUISITES

® The RHOSO environment is deployed on a Red Hat OpenShift Container Platform (RHOCP)
cluster. For more information, see Deploying Red Hat OpenStack Services on OpenShift.

® You are logged on to a workstation that has access to the RHOCP cluster as a user with
cluster-admin privileges.

2.2. MODIFYING AN OPENSTACKDATAPLANENODESET CR

You can modify an existing OpenStackDataPlaneNodeSet custom resource (CR), for example, to add a
new node or update node configuration. Each node can be included in only one
OpenStackDataPlaneNodeSet CR. Each node set can be connected to only one Compute cell. By
default, node sets are connected to celll1. If your control plane includes additional Compute cells, you
must specify the cell to which the node set is connected.

To apply the OpenStackDataPlaneNodeSet CR modifications to the data plane, you create an
OpenStackDataPlaneDeployment CR that deploys the modified OpenStackDataPlaneNodeSet CR.

NOTE

When the OpenStackDataPlaneDeployment successfully completes execution, it does
not automatically execute the Ansible again, even if the
OpenStackDataPlaneDeployment or related OpenStackDataPlaneNodeSet resources
are changed. To start another Ansible execution, you must create another
OpenStackDataPlaneDeployment CR.

Procedure

1. Open the OpenStackDataPlaneNodeSet CR definition file for the node set you want to
update, for example, openstack_data_plane.yaml.

2. Update or add the configuration you require. For information about the properties you can use
to configure common node attributes, see OpenStackDataPlaneNodeSet CR spec properties
in the Deploying Red Hat OpenStack Services on OpenShift guide.

3. Save the OpenStackDataPlaneNodeSet CR definition file.

4. Apply the updated OpenStackDataPlaneNodeSet CR configuration:

I $ oc apply -f openstack_data_plane.yami

15

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/index
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane#ref_OpenStackDataPlaneNodeSet-CR-properties_dataplane

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deplo)

5. Verify that the data plane resource has been updated by confirming that the status is
SetupReady:

$ oc wait openstackdataplanenodeset openstack-data-plane --for condition=SetupReady --
timeout=10m

When the status is SetupReady the command returns a condition met message, otherwise it
returns a timeout error.

For information about the data plane conditions and states, see Data plane conditions and
states in Deploying Red Hat OpenStack Services on OpenShift .

6. Create a file on your workstation to define the OpenStackDataPlaneDeployment CR:
apiVersion: dataplane.openstack.org/vibetal
kind: OpenStackDataPlaneDeployment

metadata:
name: <node_set_deployment_name>

TIP

Give the definition file and the OpenStackDataPlaneDeployment CR a unique and descriptive
name that indicates the purpose of the modified node set.

7. Add the OpenStackDataPlaneNodeSet CR that you modified:
spec:

nodeSets:
- <nodeSet_name>

8. Save the OpenStackDataPlaneDeployment CR deployment file.

9. Deploy the modified OpenStackDataPlaneNodeSet CR:
I $ oc create -f openstack_data_plane_deploy.yaml -n openstack

You can view the Ansible logs while the deployment executes:
$ oc get pod -I app=openstackansibleee -w
$ oc logs -l app=openstackansibleee -f --max-log-requests 10

10. Verify that the modified OpenStackDataPlaneNodeSet CR is deployed:

$ oc get openstackdataplanedeployment -n openstack
NAME STATUS MESSAGE
openstack-data-plane True Setup Complete

$ oc get openstackdataplanenodeset -n openstack
NAME STATUS MESSAGE
openstack-data-plane True NodeSet Ready

16

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane#ref_data-plane-conditions-and-states_dataplane

CHAPTER 2. CUSTOMIZING THE DATA PLANE

For information about the meaning of the returned status, see Data plane conditions and states
in the Deploying Red Hat OpenStack Services on OpenShift guide.

If the status indicates that the data plane has not been deployed, then troubleshoot the
deployment. For information, see Troubleshooting the data plane creation and deployment in
the Deploying Red Hat OpenStack Services on OpenShift guide.

11. If you added a new node to the node set, then map the node to the Compute cell it is connected
to:

I $ oc rsh nova-cell0-conductor-0 nova-manage cell_v2 discover_hosts --verbose

If you did not create additional cells, this command maps the Compute nodes to celll.

Access the remote shell for the openstackclient pod and verify that the deployed Compute
nodes are visible on the control plane:

$ oc rsh -n openstack openstackclient
$ openstack hypervisor list

2.3. DATA PLANE SERVICES

A data plane service is an Ansible execution that manages the installation, configuration, and execution
of a software deployment on data plane nodes. Each service is a resource instance of the
OpenStackDataPlaneService custom resource definition (CRD), which combines Ansible content and
configuration data from ConfigMap and Secret CRs. You specify the Ansible execution for your service
with Ansible play content, which can be an Ansible playbook from edpm-ansible, or any Ansible play
content. The ConfigMap and Secret CRs can contain any configuration data that needs to be
consumed by the Ansible content.

The OpenStack Operator provides core services that are deployed by default on data plane nodes. If
you omit the services field from the OpenStackDataPlaneNodeSet specification, then the following
services are applied by default in the following order:

services:
- bootstrap
- download-cache
- configure-network
- validate-network
- install-os
- configure-os
- ssh-known-hosts
- run-os
- reboot-os
- install-certs
-ovn
- neutron-metadata
- libvirt
- nova
- telemetry

The OpenStack Operator also includes the following services that are not enabled by default:

17

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane#ref_data-plane-conditions-and-states_dataplane
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane#assembly_troubleshooting-data-plane-creation-and-deployment
https://openstack-k8s-operators.github.io/edpm-ansible/playbooks.html

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deploy

Service Description

ceph-client

ceph-hci-pre

neutron-dhcp

neutron-metadata

heutron-ovn

neutron-sriov

Include this service to configure data plane nodes as clients of a
Red Hat Ceph Storage server. Include between the install-os
and configure-os services. The
OpenStackDataPlaneNodeSet CR must include the
following configuration to access the Red Hat Ceph Storage
secrets:

apiVersion: dataplane.openstack.org/vibetal
kind: OpenStackDataPlaneNodeSet
spec:

nodeTemplate:
extraMounts:
- extraVolType: Ceph
volumes:
- name: ceph
secret:
secretName: ceph-conf-files
mounts:
- name: ceph
mountPath: "/etc/ceph”
readOnly: true

Include this service to prepare data plane nodes to host Red Hat
Ceph Storage in a HCI configuration. For more information, see
Deploying a Hyperconverged Infrastructure environment

Include this service to run a Neutron DHCP agent on the data
plane nodes.

Include this service to run the Neutron OVN Metadata agent on
the data plane nodes. This agent is required to provide metadata
services to the Compute nodes.

Include this service to run the Neutron OVN agent on the data
plane nodes. This agent is required to provide QoS to hardware
offloaded ports on the Compute nodes.

Include this service to run a Neutron SR-IOV NIC agent on the
data plane nodes.

For more information about the available default services, see https://github.com/openstack-k8s-
operators/openstack-operator/tree/main/config/services.

You can enable and disable services for an OpenStackDataPlaneNodeSet resource.

NOTE

Do not change the order of the default service deployments.

18

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_a_hyperconverged_infrastructure_environment
https://github.com/openstack-k8s-operators/openstack-operator/tree/main/config/services

CHAPTER 2. CUSTOMIZING THE DATA PLANE

You can use the OpenStackDataPlaneService CRD to create a custom service that you can deploy on
your data plane nodes. You add your custom service to the default list of services where the service
must be executed. For more information, see Creating and enabling a custom service .

You can view the details of a service by viewing the YAML representation of the resource:

I $ oc get openstackdataplaneservice configure-network -o yaml -n openstack

2.3.1. Creating and enabling a custom service

You can use the OpenStackDataPlaneService CRD to create custom services to deploy on your data
plane nodes.

NOTE

Do not create a custom service with the same name as one of the default services. If a
custom service name matches a default service name, the default service values
overwrite the custom service values during OpenStackDataPlaneNodeSet reconciliation.

You specify the Ansible execution for your service with either an Ansible playbook or by including the
free-form playbook contents directly in the playbookContents section of the service.

NOTE

You cannot include an Ansible playbook and playbookContents in the same service.

Procedure

1. Create an OpenStackDataPlaneService CR and save it to a YAML file on your workstation, for
example custom-service.yaml:

apiVersion: dataplane.openstack.org/vibetal
kind: OpenStackDataPlaneService
metadata:

name: custom-service
spec:

2. Specify the Ansible commands to create the custom service, by referencing an Ansible playbook
or by including the Ansible play in the playbookContents field:

® Specify the Ansible playbook to use:

apiVersion: dataplane.openstack.org/vibetal
kind: OpenStackDataPlaneService
metadata:

name: custom-service
spec:

playbook: osp.edpm.configure_os

® Specify the Ansible play in the playbookContents field as a string that uses Ansible
playbook syntax:

I apiVersion: dataplane.openstack.org/vibetal

19

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deplo)

kind: OpenStackDataPlaneService
metadata:
name: custom-service
spec:
playbookContents: |
- hosts: all
tasks:
- name: Hello World!
shell: "echo Hello World!"
register: output
- name: Show output
debug:
msg: "{{ output.stdout }}"
- name: Hello World role
import_role: hello_world

For information about how to create an Ansible playbook, see Creating a playbook.

3. Optional: To override the default container image used by the ansible-runner execution
environment with a custom image that uses additional Ansible content for a custom service,
build and include a custom ansible-runner image. For information, see Building a custom
ansible-runner image.

4. Optional: Specify the names of Secret or ConfigMap resources to use to pass secrets or
configurations into the OpenStackAnsibleEE job:

apiVersion: dataplane.openstack.org/vibetal
kind: OpenStackDataPlaneService
metadata:

name: custom-service
spec:

playbookContents: |

dataSources:
- configMapRef:
name: hello-world-cm-0
- secretRef:
name: hello-world-secret-0
- secretRef:
name: hello-world-secret-1
optional: true ﬂ

Optional: Set the optional field to "true" to mark the resource as optional so that an error
is not thrown if it doesn't exist.

A mount is created for each Secret and ConfigMap CR in the OpenStackAnsibleEE pod with
a filename that matches the resource value. The mounts are created under
/var/lib/openstack/configs/<service name>. You can then use Ansible content to access the
configuration or secret data.

5. Optional: Set the deployOnAlINodeSets field to true if the service must run on all node sets in

the OpenStackDataPlaneDeployment CR, even if the service is not listed as a service in every
node set in the deployment:

20

https://docs.ansible.com/ansible-core/devel/getting_started/get_started_playbook.html

CHAPTER 2. CUSTOMIZING THE DATA PLANE

apiVersion: dataplane.openstack.org/vibetal
kind: OpenStackDataPlaneService
metadata:

name: custom-service
spec:

playbookContents: |

deployOnAlINodeSets: true

6. Optional: Specify the edpmServiceType field for the service. Different custom services may
use the same Ansible content to manage the same data plane service, for example, ovn or
nova. You must mount the DataSources, TLS certificates, and CA certificates at the same
location so that Ansible content can locate them even when using a custom service. You use the
edpmServiceType field to create this association. The value is the name of the default service
that uses the same Ansible content as the custom service. For example, a custom service that
uses the edpm_ovn Ansible content from edpm-ansible would set edpmServiceType to ovn,
which matches the default ovn service name provided by the OpenStack Operator.

apiVersion: dataplane.openstack.org/vibetal
kind: OpenStackDataPlaneService
metadata:

name: custom-service
spec:

edpmServiceType: ovn

NOTE

The acroynm edpm used in fieldnames stands for "External Data Plane
Management".

7. Create the custom service:
I $ oc apply -f custom-service.yaml -n openstack

8. Verify that the custom service is created:

I $ oc get openstackdataplaneservice <custom_service_name> -o yaml -n openstack

9. Add the custom service to the services field in the definition file for the node sets the service
applies to. Add the service name in the order that it should be executed relative to the other
services. If the deployAlINodeSets field is set to true, then you need to add the service to only
one of the node sets in the deployment.

NOTE

When adding your custom service to the services list in a node set definition, you
must include all the required services, including the default services. If you
include only your custom service in the services list, then that is the only service
that is deployed.

21

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deplo)

2.3.2. Building a custom ansible-runner image

You can override the default container image used by the ansible-runner execution environment with
your own custom image when you need additional Ansible content for a custom service.

Procedure

1. Create a Containerfile that adds the custom content to the defaultimage:

FROM quay.io/openstack-k8s-operators/openstack-ansibleee-runner:latest
COPY my_custom_role /usr/share/ansible/roles/my_custom_role

2. Build and push the image to a container registry:

$ podman build -t quay.io/example_user/my_custom_image:latest .
$ podman push quay.io/example_user/my_custom_role:latest

3. Specify your new container image as the image that the ansible-runner execution environment
must use to add the additional Ansible content that your custom service requires, such as
Ansible roles or modules:

apiVersion: dataplane.openstack.org/vibetal
kind: OpenStackDataPlaneService
metadata:
name: custom-service
spec:
label: dataplane-deployment-custom-service
openStackAnsibleEERunnerimage: quay.io/openstack-k8s-operators/openstack-ansibleee-
runner:latest ﬂ
playbookContents: |

Your container image that the ansible-runner execution environment uses to execute
Ansible.

2.4. CONFIGURING A NODE SET FOR A FEATURE OR WORKLOAD

You can designate a node set for a particular feature or workload. To designate and configure a node
set for a feature or workload, complete the following tasks:

1. Create the ConfigMap custom resources (CRs) to configure the nodes for the feature.
2. Create a custom service for the node set that runs the playbook for the service.

3. Include the ConfigMap CRs in the custom service.

NOTE

The Compute service (nova) provides a default ConfigMap CR named nova-extra-
config, where you can add generic configuration that applies to all the node sets that use
the default nova service. If you use this default nova-extra-config ConfigMap to add
generic configuration to be applied to all the node sets, then you do not need to create a
custom service.

22

CHAPTER 2. CUSTOMIZING THE DATA PLANE

Procedure

1. Create a ConfigMap CR that defines a new configuration file for the feature:

apiVersion: v1
kind: ConfigMap
metadata:
name: feature-configmap
namespace: openstack
data:
<integer>-<feature>.conf: |
<[config_grouping]>
<config_option> = <value>
<config_option> = <value>

® Replace <integers> with a number that indicates when to apply the configuration. The
control plane services apply every file in their service directory,
/etc/<service>/<service>.conf.d/, in lexicographical order. Therefore, configurations
defined in later files override the same configurations defined in an earlier file. Each service
operator generates the default configuration file with the name 01-<service>.conf. For
example, the default configuration file for the nova-operator is 01-nova.conf.

NOTE

Numbers below 25 are reserved for the OpenStack services and Ansible
configuration files.

® Replace <feature> with a string that indicates the feature being configured.

NOTE

Do not use the name of the default configuration file, because it would
override the infrastructure configuration, such as the transport_url.

® Replace <[config_grouping]> with the name of the group the configuration options belong
to in the service configuration file. For example, [compute] or database.

® Replace <config_option> with the option you want to configure, for example,
cpu_shared_set.

® Replace <value> with the value for the configuration option, for example, 2,6.
When the service is deployed, it adds the configuration to the
etc/<service>/<services.conf.d/ directory in the service container. For example, for a
Compute feature, the configuration file is added to ete/nova/nova.conf.d/ in the
nova_compute container.

For more information on creating ConfigMap objects, see Creating and using config maps
in the RHOCP Nodes guide.

TIP

You can use a Secret to create the custom configuration instead if the configuration includes
sensitive information, such as passwords or certificates that are required for certification.

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/nodes/working-with-pods#configmaps

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deplo)

2. Create a custom service for the node set. For information about how to create a custom service,
see Creating and enabling a custom service .

3. Add the ConfigMap CR to the custom service:

apiVersion: dataplane.openstack.org/vibetal
kind: OpenStackDataPlaneService
metadata:

name: <nodeset>-service
spec:

dataSources:
- configMapRef:
name: feature-configmap

4. Specify the Secret CR for the cell that the node set that runs this service connects to:

apiVersion: dataplane.openstack.org/vibetal
kind: OpenStackDataPlaneService
metadata:

name: <nodeset>-service
spec:

dataSources:
- configMapRef:
name: feature-configmap
- secretRef:
name: nova-migration-ssh-key
- secretRef:
name: nova-cell1-compute-config

2.5. CONNECTING AN oPENSTACKDATAPLANENODESET CR TO A COMPUTE
CELL

Each node set can be connected to only one Compute cell. By default, node sets are connected to celli.
If you added additional Compute cells to your control plane, you must specify to which cell the node set
connects.

Procedure

1. Create a custom nova service that includes the Secret CR for the cell to connect to:

apiVersion: dataplane.openstack.org/vibetal
kind: OpenStackDataPlaneService
metadata:
name: nova-cell-custom
spec:
playbook: osp.edpm.nova

dataSources:
- secretRef:

name: nova-cell2-compute-config ﬂ
edpmServiceType: nova

24

CHAPTER 2. CUSTOMIZING THE DATA PLANE

ﬂ The Secret CR generated by the control plane for the cell.

9 Associate the OpenStackDataPlaneService CR with the nova service.

For information about how to create a custom service, see Creating and enabling a custom
service.

. Replace the nova service in your OpenStackDataPlaneNodeSet CR with your custom nova
service:

apiVersion: dataplane.openstack.org/vibetal
kind: OpenStackDataPlaneNodeSet
metadata:
name: openstack-cell2
spec:
services:
- download-cache
- bootstrap
- configure-network
- validate-network
- install-os
- configure-os
- ssh-known-hosts
- run-os
-ovn
- libvirt
- *nova-cell-custom*
- telemetry

NOTE

Do not change the order of the default services.

. Complete the configuration of your OpenStackDataPlaneNodeSet CR. For more information,
see Creating the data plane.

. Save the OpenStackDataPlaneNodeSet CR definition file.

. Create the data plane resources:

I $ oc create -f openstack_data_plane.yaml

. Verify that the data plane resources have been created by confirming that the status is
SetupReady:

$ oc wait openstackdataplanenodeset openstack-cell2 --for condition=SetupReady --
timeout=10m

When the status is SetupReady the command returns a condition met message, otherwise it
returns a timeout error.

For information about the data plane conditions and states, see Data plane conditions and
states in Deploying Red Hat OpenStack Services on OpenShift .

25

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane#ref_data-plane-conditions-and-states_dataplane

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deploy

7. Verify that the Secret resource was created for the node set:

$ oc get secret | grep openstack-cell2
dataplanenodeset-openstack-cell2 Opaque 1 3m50s
8. Verify the services were created:

I $ oc get openstackdataplaneservice -n openstack | grep nova-cell-custom

9. Create an OpenStackDataPlaneDeployment CR to deploy the OpenStackDataPlaneNodeSet

CR. For more information, see Deploying the data plane in the Deploying Red Hat OpenStack
Services on OpenShift guide.

26

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_red_hat_openstack_services_on_openshift/assembly_creating-the-data-plane#proc_deploying-the-data-plane_dataplane

CHAPTER 3. CUSTOMIZING RED HAT OPENSTACK SERVICES ON OPENSHIFT OBSERVABILITY

CHAPTER 3. CUSTOMIZING RED HAT OPENSTACK SERVICES
ON OPENSHIFT OBSERVABILITY

Use observability with Red Hat OpenStack Services on OpenShift (RHOSO) to get insight into the
metrics, logs, and alerts from your deployment.

The observability architecture in RHOSO is composed of services within OpenShift, as well as services on
your Compute nodes that expose metrics, logs, and alerts.You can use the OpenShift observability
ecosystem for insight into the RHOSO environment. Additionally, you have access to the logging
infrastructure for collecting, storing, and searching through logs. RHOSO services such as ceilometer
and sg-core make metrics from your compute nodes and associated virtual infrastructure available to
the OpenShift Observability framework.

3.1. CONFIGURING RED HAT OPENSTACK SERVICES ON OPENSHIFT
OBSERVABILITY

The Telemetry service (ceilometer, prometheus) is enabled by default in a Red Hat OpenStack Services
on OpenShift (RHOSO) deployment. You can configure observability by editing the
openstack_control_plane.yaml CR file.

Prerequisites

e Optional: If you plan to enable logging, the Cluster Logging Operator is installed from
OperatorHub.

o A LokiStack instance must be running. For more information, see Configuring the LokiStack
log store.

o A ClusterLogging instance must be running. For more information, see Configuring the
logging collector.

o The syslog receiver must be enabled. For more information, see Forwarding logs using the
syslog protocol.

NOTE

You do not need these Operators to expose and query OpenStack metrics in Prometheus
format. If you do not disable ceilometer, then a Prometheus metrics exporter is created
and exposed from inside the cluster at the following URL: http://ceilometer-
internal.openstack.svc:3000/metrics

Procedure

1. Open the OpenStackControlPlane CR definition file, openstack_control_plane.yaml, on your
workstation.

2. Update the telemetry section based on the needs of your environment:

telemetry:
enabled: true
template:
metricStorage:
enabled: true
dashboardsEnabled: true

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/logging/log-storage#cluster-logging-loki
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/logging/log-collection-and-forwarding#cluster-logging-collector
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/logging/log-collection-and-forwarding#cluster-logging-collector-log-forward-syslog_configuring-log-forwarding
http://ceilometer-internal.openstack.svc:3000/metrics

Red Hat OpenStack Services on OpenShift 18.0 Customizing the Red Hat OpenStack Services on OpenShift deplo)

monitoringStack:
alertingEnabled: true
scrapelnterval: 30s ﬂ
storage:
strategy: persistent
retention: 24h
persistent:
pvcStorageRequest: 20G 6
autoscaling:
enabled: false
aodh:
databaseAccount: aodh
databaselnstance: openstack
secret: osp-secret
heatlnstance: heat
ceilometer:
enabled: true
secret: osp-secret
logging:
enabled: false
ipaddr: <ip_address>

ﬂ Use the scrapelnterval field to control the amount of time that passes before new metrics
are gathered. Changing this parameter can affect performance.

9 Use the retention field to adjust the length of time telemetry metrics are stored. This field
affects the amount of storage required.

9 Use the pvcStorageRequest field to change the amount of storage to be allocated for the
Prometheus time series database.

3. Update the control plane:

I $ oc apply -f openstack_control_plane.yaml -n openstack

4. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack
NAME STATUS MESSAGE
openstack-control-plane Unknown Setup started

The OpenStackControlPlane resources are created when the status is "Setup complete”.

TIP

Append the -w option to the end of the get command to track deployment progress.

5. Optional: Confirm that the control plane is deployed by reviewing the pods in the openstack
namespace for each of your cells:

I $ oc get pods -n openstack

28

CHAPTER 3. CUSTOMIZING RED HAT OPENSTACK SERVICES ON OPENSHIFT OBSERVABILITY

The control plane is deployed when all the pods are either completed or running.

Verification

1. Access the remote shell for the OpenStackClient pod from your workstation:
I $ oc rsh -n openstack openstackclient
2. Confirm that you can query prometheus and that the scrape endpoints are active:

I $ openstack metric query up --disable-rbac -c container -c instance -c value

Example output:

+ + + +
| container | instance | value |
+ + + +

| alertmanager |10.217.1.112:9093 |1 |
| prometheus | 10.217.1.63:9090 |0 |
| proxy-httpd | 10.217.1.52:3000 [1]
| | 192.168.122.100:9100 |1 |
| | 192.168.122.101:9100 |1 |
+ + + +

NOTE

Each entry in the value field should be "1" when there are active workloads
scheduled on the cluster, except for the prometheus container. The
prometheus container reports a value of "0" due to TLS, which is enabled by
default.

3. You can find RHOSO telemetry dashboards by clicking Observe and then Dashboards in the
RHOCP console.

Additional resource

® |nstalling Logging

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/logging/cluster-logging-deploying

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. CUSTOMIZING THE CONTROL PLANE
	1.1. PREREQUISITES
	1.2. ENABLING DISABLED SERVICES
	1.3. ADDING THE BARE METAL PROVISIONING SERVICE (IRONIC) TO THE CONTROL PLANE
	1.4. ADDING COMPUTE CELLS TO THE CONTROL PLANE
	1.5. ENABLING THE DASHBOARD SERVICE (HORIZON) INTERFACE
	1.6. ENABLING THE ORCHESTRATION SERVICE (HEAT)
	1.7. ADDITIONAL RESOURCES

	CHAPTER 2. CUSTOMIZING THE DATA PLANE
	2.1. PREREQUISITES
	2.2. MODIFYING AN OPENSTACKDATAPLANENODESET CR
	2.3. DATA PLANE SERVICES
	2.3.1. Creating and enabling a custom service
	2.3.2. Building a custom ansible-runner image

	2.4. CONFIGURING A NODE SET FOR A FEATURE OR WORKLOAD
	2.5. CONNECTING AN OPENSTACKDATAPLANENODESET CR TO A COMPUTE CELL

	CHAPTER 3. CUSTOMIZING RED HAT OPENSTACK SERVICES ON OPENSHIFT OBSERVABILITY
	3.1. CONFIGURING RED HAT OPENSTACK SERVICES ON OPENSHIFT OBSERVABILITY

