
Red Hat OpenStack Services on
OpenShift 18.0

Deploying a network functions virtualization
environment

Planning, installing, and configuring network functions virtualization (NFV) in Red Hat
OpenStack Services on OpenShift

Last Updated: 2024-09-12

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network
functions virtualization environment

Planning, installing, and configuring network functions virtualization (NFV) in Red Hat OpenStack
Services on OpenShift

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Plan, install, and configure single root input/output virtualization (SR-IOV) and Open vSwitch Data
Plane Development Kit (OVS-DPDK) for network functions virtualization infrastructure (NFVi) in a
Red Hat OpenStack Services on OpenShift environment.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. UNDERSTANDING RED HAT NETWORK FUNCTIONS VIRTUALIZATION (NFV)
1.1. ADVANTAGES OF NFV
1.2. SUPPORTED CONFIGURATIONS FOR NFV DEPLOYMENTS
1.3. NFV DATA PLANE CONNECTIVITY
1.4. ETSI NFV ARCHITECTURE
1.5. NFV ETSI ARCHITECTURE AND COMPONENTS
1.6. RED HAT NFV COMPONENTS

CHAPTER 2. NFV PERFORMANCE CONSIDERATIONS
2.1. CPUS AND NUMA NODES

2.1.1. NUMA node example
2.1.2. NUMA aware instances

2.2. CPU PINNING
2.3. HUGE PAGES

CHAPTER 3. REQUIREMENTS FOR NFV
3.1. TESTED NICS FOR NFV
3.2. DISCOVERING YOUR NUMA NODE TOPOLOGY
3.3. NFV BIOS SETTINGS
3.4. SUPPORTED DRIVERS FOR NFV

CHAPTER 4. PLANNING AN SR-IOV DEPLOYMENT
4.1. NIC PARTITIONING FOR AN SR-IOV DEPLOYMENT
4.2. HARDWARE PARTITIONING FOR AN SR-IOV DEPLOYMENT
4.3. TOPOLOGY OF AN NFV SR-IOV DEPLOYMENT
4.4. TOPOLOGY FOR NFV SR-IOV WITHOUT HCI

CHAPTER 5. PLANNING AN OVS-DPDK DEPLOYMENT
5.1. OVS-DPDK WITH CPU PARTITIONING AND NUMA TOPOLOGY
5.2. OVS-DPDK PARAMETERS

5.2.1. Data plane (EDPM) Ansible variables
5.2.2. Configuration map parameters

5.3. TWO NUMA NODE EXAMPLE OVS-DPDK DEPLOYMENT
5.4. TOPOLOGY OF AN NFV OVS-DPDK DEPLOYMENT

CHAPTER 6. INSTALLING AND PREPARING THE OPERATORS
6.1. PREREQUISITES
6.2. INSTALLING THE OPENSTACK OPERATOR

CHAPTER 7. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK
SERVICES ON OPENSHIFT

7.1. CONFIGURING RED HAT OPENSHIFT CONTAINER PLATFORM NODES FOR A RED HAT OPENSTACK
PLATFORM DEPLOYMENT
7.2. CREATING A STORAGE CLASS
7.3. CREATING THE OPENSTACK NAMESPACE
7.4. PROVIDING SECURE ACCESS TO THE RED HAT OPENSTACK SERVICES ON OPENSHIFT SERVICES

CHAPTER 8. PREPARING NETWORKS FOR RHOSO WITH NFV
8.1. DEFAULT RED HAT OPENSTACK SERVICES ON OPENSHIFT NETWORKS
8.2. NIC CONFIGURATIONS FOR NFV
8.3. PREPARING RHOCP FOR RHOSO NETWORKS
8.4. CREATING THE DATA PLANE NETWORK

4

5
5
5
6
7
7
9

10
10
10
11
11

12

13
13
13
13
15

16
16
16
17
17

19
19

20
20
21
22
23

25
25
25

26

26
26
27
28

30
30
31
32
39

Table of Contents

1

. .

. .

. .

. .

CHAPTER 9. CREATING THE CONTROL PLANE FOR NFV ENVIRONMENTS
9.1. PREREQUISITES
9.2. CREATING THE CONTROL PLANE
9.3. EXAMPLE OPENSTACKCONTROLPLANE CR
9.4. REMOVING A SERVICE FROM THE CONTROL PLANE
9.5. ADDITIONAL RESOURCES

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS
10.1. PREREQUISITES
10.2. CREATING THE DATA PLANE SECRETS
10.3. CREATING A CUSTOM SR-IOV COMPUTE SERVICE
10.4. CREATING A CUSTOM OVS-DPDK COMPUTE SERVICE
10.5. CREATING A SET OF DATA PLANE NODES WITH PRE-PROVISIONED NODES

10.5.1. Example OpenStackDataPlaneNodeSet CR for pre-provisioned nodes
10.6. CREATING A SET OF DATA PLANE NODES WITH UNPROVISIONED NODES

10.6.1. Example OpenStackDataPlaneNodeSet CR for unprovisioned nodes
10.6.2. Provisioning bare-metal data plane nodes

10.7. OPENSTACKDATAPLANENODESET CR SPEC PROPERTIES
10.7.1. nodeTemplate
10.7.2. nodes
10.7.3. ansible
10.7.4. ansibleVarsFrom

10.8. NETWORK INTERFACE CONFIGURATION OPTIONS
10.8.1. interface
10.8.2. vlan
10.8.3. ovs_bridge
10.8.4. Network interface bonding

10.8.4.1. ovs_bond
10.8.5. LACP with OVS bonding modes
10.8.6. linux_bond
10.8.7. routes

10.9. EXAMPLE CUSTOM NETWORK INTERFACES FOR NFV
10.9.1. Example template - non-partitioned NIC
10.9.2. Example template - partitioned NIC

10.10. DEPLOYING THE DATA PLANE
10.11. DATA PLANE CONDITIONS AND STATES
10.12. TROUBLESHOOTING DATA PLANE CREATION AND DEPLOYMENT

10.12.1. Checking the job condition message for a service
10.12.1.1. Job condition messages

10.12.2. Checking the logs for a node set

CHAPTER 11. ACCESSING THE RHOSO CLOUD
11.1. ACCESSING THE OPENSTACKCLIENT POD
11.2. ACCESSING THE DASHBOARD SERVICE (HORIZON) INTERFACE

CHAPTER 12. TUNING NFV IN A RED HAT OPENSTACK SERVICES ON OPENSHIFT ENVIRONMENT
12.1. MANAGING PORT SECURITY IN NFV ENVIRONMENTS
12.2. CREATING AND USING VF PORTS
12.3. KNOWN LIMITATIONS FOR NUMA-AWARE VSWITCHES
12.4. QUALITY OF SERVICE (QOS) IN NFVI ENVIRONMENTS
12.5. CREATING AN HCI DATA PLANE THAT USES DPDK

12.5.1. Example NUMA node configuration
12.5.2. Recommended configuration for HCI-DPDK deployments

42
42
42
54
60
62

63
63
64
66
69
71
75
78
82
86
87
87
87
88
89
89
89
91

92
95
95
99

100
104
104
104
113
116
118

120
121
122
122

124
124
124

126
126
126
128
128
129
129
129

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

2

Table of Contents

3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation for Red Hat OpenStack Services
on OpenShift (RHOSO) or earlier releases of Red Hat OpenStack Platform (RHOSP). When you create
an issue for RHOSO or RHOSP documents, the issue is recorded in the RHOSO Jira project, where you
can track the progress of your feedback.

To complete the Create Issue form, ensure that you are logged in to Jira. If you do not have a Red Hat
Jira account, you can create an account at https://issues.redhat.com.

1. Click the following link to open a Create Issue page: Create Issue

2. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

3. Click Create.

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

4

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. UNDERSTANDING RED HAT NETWORK
FUNCTIONS VIRTUALIZATION (NFV)

Network functions virtualization (NFV) is a software-based solution that helps communication service
providers (CSPs) to move beyond the traditional, proprietary hardware to achieve greater efficiency and
agility and to reduce operational costs.

Using NFV in a Red Hat OpenStack Services on OpenShift (RHOSO) environment allows for IT and
network convergence by providing a virtualized infrastructure that uses the standard virtualization
technologies to virtualize network functions (VNFs) that run on hardware devices such as switches,
routers, and storage.

1.1. ADVANTAGES OF NFV

The main advantages of implementing network functions virtualization (NFV) in a Red Hat OpenStack
Services on OpenShift (RHOSO) environment are:

Accelerates the time-to-market by enabling you to quickly deploy and scale new networking
services to address changing demands.

Supports innovation by enabling service developers to self-manage their resources and
prototype using the same platform that will be used in production.

Addresses customer demands in hours or minutes instead of weeks or days, without sacrificing
security or performance.

Reduces capital expenditure because it uses commodity-off-the-shelf hardware instead of
expensive tailor-made equipment.

Uses streamlined operations and automation that optimize day-to-day tasks to improve
employee productivity and reduce operational costs.

1.2. SUPPORTED CONFIGURATIONS FOR NFV DEPLOYMENTS

Red Hat supports network functions virtualization (NFV) on Red Hat OpenStack Services on OpenShift
(RHOSO) environments using Data Plane Development Kit (DPDK) and Single Root I/O Virtualization
(SR-IOV).

Other configurations include:

Open vSwitch (OVS) with LACP

Hyper-converged infrastructure (HCI)

IMPORTANT

Red Hat does not support the use of OVS-DPDK for non-NFV workloads. If you need
OVS-DPDK functionality for non-NFV workloads, contact your Technical Account
Manager (TAM) or open a customer service request case to discuss a Support Exception
and other options. To open a customer service request case, go to Create a case and
choose Account > Customer Service Request.

Additional resources

CHAPTER 1. UNDERSTANDING RED HAT NETWORK FUNCTIONS VIRTUALIZATION (NFV)

5

https://access.redhat.com/support/cases/new

Deploying a hyper-converged infrastructure environment

1.3. NFV DATA PLANE CONNECTIVITY

With the introduction of network functions virtualization (NFV), more networking vendors are starting to
implement their traditional devices as VNFs. While the majority of networking vendors are considering
virtual machines, some are also investigating a container-based approach as a design choice. A Red Hat
OpenStack Services on OpenShift (RHOSO) environment should be rich and flexible because of two
primary reasons:

Application readiness - Network vendors are currently in the process of transforming their
devices into VNFs. Different VNFs in the market have different maturity levels; common
barriers to this readiness include enabling RESTful interfaces in their APIs, evolving their data
models to become stateless, and providing automated management operations. OpenStack
should provide a common platform for all.

Broad use-cases - NFV includes a broad range of applications that serve different use-cases.
For example, Virtual Customer Premise Equipment (vCPE) aims at providing a number of
network functions such as routing, firewall, virtual private network (VPN), and network address
translation (NAT) at customer premises. Virtual Evolved Packet Core (vEPC), is a cloud
architecture that provides a cost-effective platform for the core components of Long-Term
Evolution (LTE) network, allowing dynamic provisioning of gateways and mobile endpoints to
sustain the increased volumes of data traffic from smartphones and other devices.
These use cases are implemented using different network applications and protocols, and
require different connectivity, isolation, and performance characteristics from the
infrastructure. It is also common to separate between control plane interfaces and protocols and
the actual forwarding plane. OpenStack must be flexible enough to offer different datapath
connectivity options.

In principle, there are two common approaches for providing data plane connectivity to virtual machines:

Direct hardware access bypasses the linux kernel and provides secure direct memory access
(DMA) to the physical NIC using technologies such as PCI Passthrough or single root I/O
virtualization (SR-IOV) for both Virtual Function (VF) and Physical Function (PF) pass-through.

Using a virtual switch (vswitch), implemented as a software service of the hypervisor. Virtual
machines are connected to the vSwitch using virtual interfaces (vNICs), and the vSwitch is
capable of forwarding traffic between virtual machines, as well as between virtual machines and
the physical network.

Some of the fast data path options are as follows:

Single Root I/O Virtualization (SR-IOV) is a standard that makes a single PCI hardware device
appear as multiple virtual PCI devices. It works by introducing Physical Functions (PFs), which
are the fully featured PCIe functions that represent the physical hardware ports, and Virtual
Functions (VFs), which are lightweight functions that are assigned to the virtual machines. To
the VM, the VF resembles a regular NIC that communicates directly with the hardware. NICs
support multiple VFs.

Open vSwitch (OVS) is an open source software switch that is designed to be used as a virtual
switch within a virtualized server environment. OVS supports the capabilities of a regular L2-L3
switch and also offers support to the SDN protocols such as OpenFlow to create user-defined
overlay networks (for example, VXLAN). OVS uses Linux kernel networking to switch packets
between virtual machines and across hosts using physical NIC. OVS now supports connection

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

6

tracking (Conntrack) with built-in firewall capability to avoid the overhead of Linux bridges that
use iptables/ebtables. Open vSwitch for Red Hat OpenStack Platform environments offers
default OpenStack Networking (neutron) integration with OVS.

Data Plane Development Kit (DPDK) consists of a set of libraries and poll mode drivers (PMD)
for fast packet processing. It is designed to run mostly in the user-space, enabling applications
to perform their own packet processing directly from or to the NIC. DPDK reduces latency and
allows more packets to be processed. DPDK Poll Mode Drivers (PMDs) run in busy loop,
constantly scanning the NIC ports on host and vNIC ports in guest for arrival of packets.

DPDK accelerated Open vSwitch (OVS-DPDK) is Open vSwitch bundled with DPDK for a high
performance user-space solution with Linux kernel bypass and direct memory access (DMA) to
physical NICs. The idea is to replace the standard OVS kernel data path with a DPDK-based
data path, creating a user-space vSwitch on the host that uses DPDK internally for its packet
forwarding. The advantage of this architecture is that it is mostly transparent to users. The
interfaces it exposes, such as OpenFlow, OVSDB, the command line, remain mostly the same.

1.4. ETSI NFV ARCHITECTURE

The European Telecommunications Standards Institute (ETSI) is an independent standardization group
that develops standards for information and communications technologies (ICT) in Europe.

Network functions virtualization (NFV) focuses on addressing problems involved in using proprietary
hardware devices. With NFV, the necessity to install network-specific equipment is reduced, depending
upon the use case requirements and economic benefits. The ETSI Industry Specification Group for
Network Functions Virtualization (ETSI ISG NFV) sets the requirements, reference architecture, and the
infrastructure specifications necessary to ensure virtualized functions are supported.

Red Hat is offering an open-source based cloud-optimized solution to help the Communication Service
Providers (CSP) to achieve IT and network convergence. Red Hat adds NFV features such as single root
I/O virtualization (SR-IOV) and Open vSwitch with Data Plane Development Kit (OVS-DPDK) to
Red Hat OpenStack Services on OpenShift (RHOSO) environments.

1.5. NFV ETSI ARCHITECTURE AND COMPONENTS

In general, a network functions virtualization (NFV) on Red Hat OpenStack Services on OpenShift
(RHOSO) environments has the following components:

Figure 1.1. NFV ETSI architecture and components

CHAPTER 1. UNDERSTANDING RED HAT NETWORK FUNCTIONS VIRTUALIZATION (NFV)

7

Figure 1.1. NFV ETSI architecture and components

Virtualized Network Functions (VNFs) - the software implementation of routers, firewalls,
load balancers, broadband gateways, mobile packet processors, servicing nodes, signalling,
location services, and other network functions.

NFV Infrastructure (NFVi) - the physical resources (compute, storage, network) and the
virtualization layer that make up the infrastructure. The network includes the datapath for
forwarding packets between virtual machines and across hosts. This allows you to install VNFs
without being concerned about the details of the underlying hardware. NFVi forms the
foundation of the NFV stack. NFVi supports multi-tenancy and is managed by the Virtual
Infrastructure Manager (VIM). Enhanced Platform Awareness (EPA) improves the virtual
machine packet forwarding performance (throughput, latency, jitter) by exposing low-level CPU
and NIC acceleration components to the VNF.

NFV Management and Orchestration (MANO) - the management and orchestration layer
focuses on all the service management tasks required throughout the life cycle of the VNF. The
main goals of MANO is to allow service definition, automation, error-correlation, monitoring, and
life-cycle management of the network functions offered by the operator to its customers,
decoupled from the physical infrastructure. This decoupling requires additional layers of
management, provided by the Virtual Network Function Manager (VNFM). VNFM manages the

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

8

life cycle of the virtual machines and VNFs by either interacting directly with them or through
the Element Management System (EMS) provided by the VNF vendor. The other important
component defined by MANO is the Orchestrator, also known as NFVO. NFVO interfaces with
various databases and systems including Operations/Business Support Systems (OSS/BSS) on
the top and the VNFM on the bottom. If the NFVO wants to create a new service for a customer,
it asks the VNFM to trigger the instantiation of a VNF, which may result in multiple virtual
machines.

Operations and Business Support Systems (OSS/BSS) - provides the essential business
function applications, for example, operations support and billing. The OSS/BSS needs to be
adapted to NFV, integrating with both legacy systems and the new MANO components. The
BSS systems set policies based on service subscriptions and manage reporting and billing.

Systems Administration, Automation and Life-Cycle Management - manages system
administration, automation of the infrastructure components and life cycle of the NFVi
platform.

1.6. RED HAT NFV COMPONENTS

Red Hat’s solution for network functions virtualization (NFV) includes a range of products that can act as
the different components of the NFV framework in the ETSI model. The following products from the
Red Hat portfolio integrate into an NFV solution:

Red Hat OpenStack Services on OpenShift (RHOSO) - Supports IT and NFV workloads. The
Enhanced Platform Awareness (EPA) features deliver deterministic performance improvements
through CPU pinning, huge pages, Non-Uniform Memory Access (NUMA) affinity, and network
adaptors (NICs) that support SR-IOV and OVS-DPDK.

Red Hat Enterprise Linux and Red Hat Enterprise Linux Atomic Host - Create virtual machines
and containers as VNFs.

Red Hat Ceph Storage - Provides the unified elastic and high-performance storage layer for all
the needs of the service provider workloads.

Red Hat JBoss Middleware and OpenShift Enterprise by Red Hat - Optionally provide the
ability to modernize the OSS/BSS components.

Red Hat CloudForms - Provides a VNF manager and presents data from multiple sources, such
as the VIM and the NFVi in a unified display.

Red Hat Satellite and Ansible by Red Hat - Optionally provide enhanced systems
administration, automation and life-cycle management.

CHAPTER 1. UNDERSTANDING RED HAT NETWORK FUNCTIONS VIRTUALIZATION (NFV)

9

CHAPTER 2. NFV PERFORMANCE CONSIDERATIONS
For a network functions virtualization (NFV) solution to be useful, its virtualized functions must meet or
exceed the performance of physical implementations. Red Hat’s virtualization technologies are based on
the high-performance Kernel-based Virtual Machine (KVM) hypervisor, common in OpenStack and
cloud deployments.

In Red Hat OpenStack Services on OpenShift (RHOSO), you configure the Compute nodes to enforce
resource partitioning and fine tuning to achieve line rate performance for the guest virtual network
functions (VNFs). The key performance factors in the NFV use case are throughput, latency, and jitter.

You can enable high-performance packet switching between physical NICs and virtual machines using
data plane development kit (DPDK) accelerated virtual machines. Open vSwitch (OVS) embeds support
for Data Plane Development Kit (DPDK) and includes support for vhost-user multiqueue, allowing
scalable performance. OVS-DPDK provides line-rate performance for guest VNFs.

Single root I/O virtualization (SR-IOV) networking provides enhanced performance, including improved
throughput for specific networks and virtual machines.

Other important features for performance tuning include huge pages, NUMA alignment, host isolation,
and CPU pinning. VNF flavors require huge pages and emulator thread isolation for better performance.
Host isolation and CPU pinning improve NFV performance and prevent spurious packet loss.

2.1. CPUS AND NUMA NODES

Previously, all memory on x86 systems was equally accessible to all CPUs in the system. This resulted in
memory access times that were the same regardless of which CPU in the system was performing the
operation and was referred to as Uniform Memory Access (UMA).

In Non-Uniform Memory Access (NUMA), system memory is divided into zones called nodes, which are
allocated to particular CPUs or sockets. Access to memory that is local to a CPU is faster than memory
connected to remote CPUs on that system. Normally, each socket on a NUMA system has a local
memory node whose contents can be accessed faster than the memory in the node local to another
CPU or the memory on a bus shared by all CPUs.

Similarly, physical NICs are placed in PCI slots on the Compute node hardware. These slots connect to
specific CPU sockets that are associated to a particular NUMA node. For optimum performance,
connect your datapath NICs to the same NUMA nodes in your CPU configuration (SR-IOV or OVS-
DPDK).

The performance impact of NUMA misses are significant, generally starting at a 10% performance hit or
higher. Each CPU socket can have multiple CPU cores which are treated as individual CPUs for
virtualization purposes.

TIP

For more information about NUMA, see What is NUMA and how does it work on Linux?

2.1.1. NUMA node example

The following diagram provides an example of a two-node NUMA system and the way the CPU cores
and memory pages are made available:

Figure 2.1. Example: two-node NUMA system

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

10

https://access.redhat.com/solutions/700683

Figure 2.1. Example: two-node NUMA system

NOTE

Remote memory available via Interconnect is accessed only if VM1 from NUMA node 0
has a CPU core in NUMA node 1. In this case, the memory of NUMA node 1 acts as local
for the third CPU core of VM1 (for example, if VM1 is allocated with CPU 4 in the diagram
above), but at the same time, it acts as remote memory for the other CPU cores of the
same VM.

2.1.2. NUMA aware instances

You can configure an OpenStack environment to use NUMA topology awareness on systems with a
NUMA architecture. When running a guest operating system in a virtual machine (VM) there are two
NUMA topologies involved:

NUMA topology of the physical hardware of the host

NUMA topology of the virtual hardware exposed to the guest operating system

You can optimize the performance of guest operating systems by aligning the virtual hardware with the
physical hardware NUMA topology.

2.2. CPU PINNING

CPU pinning is the ability to run a specific virtual machine’s virtual CPU on a specific physical CPU, in a
given host. vCPU pinning provides similar advantages to task pinning on bare-metal systems. Since

CHAPTER 2. NFV PERFORMANCE CONSIDERATIONS

11

virtual machines run as user space tasks on the host operating system, pinning increases cache
efficiency.

Additional resources

XREF TO "Configuring CPU pinning on Compute nodes" in the Configuring the Compute service
for instance creation guide.

2.3. HUGE PAGES

Physical memory is segmented into contiguous regions called pages. For efficiency, the system
retrieves memory by accessing entire pages instead of individual bytes of memory. To perform this
translation, the system looks in the Translation Lookaside Buffers (TLB) that contain the physical to
virtual address mappings for the most recently or frequently used pages. When the system cannot find a
mapping in the TLB, the processor must iterate through all of the page tables to determine the address
mappings. Optimize the TLB to minimize the performance penalty that occurs during these TLB misses.

The typical page size in an x86 system is 4KB, with other larger page sizes available. Larger page sizes
mean that there are fewer pages overall, and therefore increases the amount of system memory that
can have its virtual to physical address translation stored in the TLB. Consequently, this reduces TLB
misses, which increases performance. With larger page sizes, there is an increased potential for memory
to be under-utilized as processes must allocate in pages, but not all of the memory is likely required. As a
result, choosing a page size is a compromise between providing faster access times with larger pages,
and ensuring maximum memory utilization with smaller pages.

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

12

CHAPTER 3. REQUIREMENTS FOR NFV
This section describes the requirements for network functions virtualization (NFV) in a Red Hat
OpenStack Services on OpenShift (RHOSO) environment.

Red Hat certifies hardware for use with RHOSO. For more information, see Certified hardware .

3.1. TESTED NICS FOR NFV

For a list of tested NICs for NFV, see the Red Hat Knowledgebase solution Network Adapter Fast
Datapath Feature Support Matrix.

Use the default driver for the supported NIC, unless you are configuring NVIDIA (Mellanox) network
interfaces. For NVIDIA network interfaces, you must specify the kernel driver during configuration.

Example

In this example, an OVS-DPDK port is being configured. Because the NIC being used is an NVIDIA
ConnectX-5, the driver must be specified:

members
 - type: ovs_dpdk_port
 name: dpdk0
 driver: mlx5_core
 members:
 - type: interface
 name: enp3s0f0

3.2. DISCOVERING YOUR NUMA NODE TOPOLOGY

For network functions virtualization (NFV) on Red Hat OpenStack Services on OpenShift (RHOSO)
environments, you must understand the NUMA topology of your Compute node to partition the CPU
and memory resources for optimum performance. To determine the NUMA information, perform one of
the following tasks:

Enable hardware introspection to retrieve this information from bare-metal nodes.

Log on to each bare-metal node to manually collect the information.

Additional resources

Bare metal configuration in the Red Hat OpenShift Container Platform (RHOCP)
Postinstallation configuration guide.

3.3. NFV BIOS SETTINGS

The following table describes the required BIOS settings for network functions virtualization (NFV) on
Red Hat OpenStack Services on OpenShift (RHOSO) environments:

NOTE

You must enable SR-IOV global and NIC settings in the BIOS, or your RHOSO
deployment with SR-IOV Compute nodes will fail.

CHAPTER 3. REQUIREMENTS FOR NFV

13

https://catalog.redhat.com/platform/red-hat-openstack#hardware
https://access.redhat.com/articles/3538141#network-adapter-support-2
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/postinstallation_configuration/post-install-bare-metal-configuration

Table 3.1. BIOS Settings

Parameter Setting

C3 Power State Disabled.

C6 Power State Disabled.

MLC Streamer Enabled.

MLC Spatial Prefetcher Enabled.

DCU Data Prefetcher Enabled.

DCA Enabled.

CPU Power and Performance Performance.

Memory RAS and Performance Config →
NUMA Optimized

Enabled.

Turbo Boost Disabled in NFV deployments that require
deterministic performance.
Enabled in all other scenarios.

VT-d Enabled for Intel cards if VFIO functionality is
needed.

NUMA memory interleave Disabled.

On processors that use the intel_idle driver, Red Hat Enterprise Linux can ignore BIOS settings and re-
enable the processor C-state.

You can disable intel_idle and instead use the acpi_idle driver by specifying the key-value pair
intel_idle.max_cstate=0 on the kernel boot command line.

Confirm that the processor is using the acpi_idle driver by checking the contents of current_driver:

$ cat /sys/devices/system/cpu/cpuidle/current_driver

Sample output

acpi_idle

NOTE

You will experience some latency after changing drivers, because it takes time for the
Tuned daemon to start. However, after Tuned loads, the processor does not use the
deeper C-state.

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

14

3.4. SUPPORTED DRIVERS FOR NFV

For a complete list of supported drivers for network functions virtualization (NFV) on Red Hat
OpenStack Services on OpenShift (RHOSO) environments, see Component, Plug-In, and Driver
Support in Red Hat OpenStack Platform .

For a list of NICs tested for NFV on RHOSO environments, see Tested NICs for NFV .

CHAPTER 3. REQUIREMENTS FOR NFV

15

https://access.redhat.com/articles/1535373
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_a_network_functions_virtualization_environment/req-nfv_rhoso-nfv#tested-nics-nfv_req-nfv

CHAPTER 4. PLANNING AN SR-IOV DEPLOYMENT
To optimize single root I/O virtualization (SR-IOV) deployments for NFV in Red Hat OpenStack Services
on OpenShift (RHOSO) environments, it is important to understand how SR-IOV uses the Compute
node hardware (CPU, NUMA nodes, memory, NICs). This understanding will help you to determine the
values required for the parameters used in your SR-IOV configuration.

To evaluate your hardware impact on the SR-IOV parameters, see Discovering your NUMA node
topology.

4.1. NIC PARTITIONING FOR AN SR-IOV DEPLOYMENT

You can reduce the number of NICs that you need for each host by configuring single root I/O
virtualization (SR-IOV) virtual functions (VFs) for Red Hat OpenStack Services on OpenShift (RHOSO)
management networks and provider networks. When you partition a single, high-speed NIC into multiple
VFs, you can use the NIC for both control and data plane traffic. This feature has been validated on Intel
Fortville NICs, and Mellanox CX-5 NICs.

To partition your NICs, you must adhere to the following requirements:

The NICs, their applications, the VF guest, and OVS reside on the same NUMA Compute node.
Doing so helps to prevent performance degradation from cross-NUMA operations.

Ensure that the NIC firmware updated.
Yum or dnf updates might not complete the firmware update. For more information, see your
vendor documentation.

Additional resources

Example template - partitioned NIC

4.2. HARDWARE PARTITIONING FOR AN SR-IOV DEPLOYMENT

To achieve high performance with SR-IOV, partition the resources between the host and the guest.

Figure 4.1. NUMA node topology

A typical topology includes 14 cores per NUMA node on dual socket Compute nodes. Both hyper-

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

16

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_a_network_functions_virtualization_environment/req-nfv_rhoso-nfv#discover-numa-node-topo_req-nfv
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_a_network_functions_virtualization_environment/assembly_create-data-plane-sriov-dpdk_rhoso-nfv#example-partition-nic-template_dataplane

threading (HT) and non-HT cores are supported. Each core has two sibling threads. One core is
dedicated to the host on each NUMA node. The virtual network function (VNF) handles the SR-IOV
interface bonding. All the interrupt requests (IRQs) are routed on the host cores. The VNF cores are
dedicated to the VNFs. They provide isolation from other VNFs and isolation from the host. Each VNF
must use resources on a single NUMA node. The SR-IOV NICs used by the VNF must also be associated
with that same NUMA node. This topology does not have a virtualization overhead. The host, OpenStack
Networking (neutron), and Compute (nova) configuration parameters are exposed in a single file for
ease, consistency, and to avoid incoherence that is fatal to proper isolation, causing preemption, and
packet loss. The host and virtual machine isolation depend on a tuned profile, which defines the boot
parameters and any Red Hat OpenStack Platform modifications based on the list of isolated CPUs.

4.3. TOPOLOGY OF AN NFV SR-IOV DEPLOYMENT

The following image has two VNFs each with the management interface represented by mgt and the
data plane interfaces. The management interface manages the ssh access, and so on. The data plane
interfaces bond the VNFs to DPDK to ensure high availability, as VNFs bond the data plane interfaces
using the DPDK library. The image also has two provider networks for redundancy. The Compute node
has two regular NICs bonded together and shared between the VNF management and the Red Hat
OpenStack Platform API management.

Figure 4.2. NFV SR-IOV topology

The image shows a VNF that uses DPDK at an application level, and has access to SR-IOV virtual
functions (VFs) and physical functions (PFs), for better availability or performance, depending on the
fabric configuration. DPDK improves performance, while the VF/PF DPDK bonds provide support for
failover, and high availability. The VNF vendor must ensure that the DPDK poll mode driver (PMD)
supports the SR-IOV card that is being exposed as a VF/PF. The management network uses OVS,
therefore the VNF sees a mgmt network device using the standard virtIO drivers. You can use that
device to initially connect to the VNF, and ensure that the DPDK application bonds the two VF/PFs.

4.4. TOPOLOGY FOR NFV SR-IOV WITHOUT HCI

Observe the topology for SR-IOV without hyper-converged infrastructure (HCI) for NFV in the image

CHAPTER 4. PLANNING AN SR-IOV DEPLOYMENT

17

Observe the topology for SR-IOV without hyper-converged infrastructure (HCI) for NFV in the image
below. It consists of compute and controller nodes with 1 Gbps NICs, and the RHOSO worker node.

Figure 4.3. NFV SR-IOV topology without HCI

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

18

CHAPTER 5. PLANNING AN OVS-DPDK DEPLOYMENT
To optimize your Open vSwitch with Data Plane Development Kit (OVS-DPDK) deployment for NFV in
Red Hat OpenStack Services on OpenShift (RHOSO) environments, you should understand how OVS-
DPDK uses the Compute node hardware (CPU, NUMA nodes, memory, NICs). This understanding will
help you to determine the values required for the parameters used in your OVS-DPDK configuration.

IMPORTANT

When using OVS-DPDK and the OVS native firewall (a stateful firewall based on
conntrack), you can track only packets that use ICMPv4, ICMPv6, TCP, and UDP
protocols. OVS marks all other types of network traffic as invalid.

IMPORTANT

Red Hat does not support the use of OVS-DPDK for non-NFV workloads. If you need
OVS-DPDK functionality for non-NFV workloads, contact your Technical Account
Manager (TAM) or open a customer service request case to discuss a Support Exception
and other options. To open a customer service request case, go to Create a case and
choose Account > Customer Service Request.

5.1. OVS-DPDK WITH CPU PARTITIONING AND NUMA TOPOLOGY

OVS-DPDK partitions the hardware resources for host, guests, and itself. The OVS-DPDK Poll Mode
Drivers (PMDs) run DPDK active loops, which require dedicated CPU cores. Therefore you must allocate
some CPUs, and huge pages, to OVS-DPDK.

A sample partitioning includes 16 cores per NUMA node on dual-socket Compute nodes. The traffic
requires additional NICs because you cannot share NICs between the host and OVS-DPDK.

Figure 5.1. NUMA topology: OVS-DPDK with CPU partitioning

NOTE

You must reserve DPDK PMD threads on both NUMA nodes, even if a NUMA node does
not have an associated DPDK NIC.

CHAPTER 5. PLANNING AN OVS-DPDK DEPLOYMENT

19

https://access.redhat.com/support/cases/new

For optimum OVS-DPDK performance, reserve a block of memory local to the NUMA node. Choose
NICs associated with the same NUMA node that you use for memory and CPU pinning. Ensure that both
bonded interfaces are from NICs on the same NUMA node.

5.2. OVS-DPDK PARAMETERS

This section describes how OVS-DPDK uses parameters to configure the CPU and memory for
optimum performance. Use this information to evaluate the hardware support on your Compute nodes
and how to partition the hardware to optimize your OVS-DPDK deployment.

This section describes the data plane parameters used in custom resources (CRs) to configure an OVS-
DPDK deployment.

NOTE

Always pair CPU sibling threads, or logical CPUs, together in the physical core when
allocating CPU cores.

For details on how to determine the CPU and NUMA nodes on your Compute nodes, see Discovering
your NUMA node topology. Use this information to map CPU and other parameters to support the host,
guest instance, and OVS-DPDK process needs.

5.2.1. Data plane (EDPM) Ansible variables

The following variables are part of data plane (EDPM) Ansible roles:

edpm_ovs_dpdk

Enables you to add, modify, and delete OVS-DPDK configurations, by using values defined in the
OVS-DPDK edpm Ansible variables.

edpm_ovs_dpdk_pmd_core_list

Provides the CPU cores that are used for the DPDK poll mode drivers (PMD). It is recommended
that you choose CPU cores that are associated with the local NUMA nodes of the DPDK interfaces.

edpm_ovs_dpdk_lcore_list

List of CPU cores to be used for DPDK lcore threads.

edpm_tuned_profile

Name of the custom TuneD profile. The default value is throughput-performance.

edpm_tuned_isolated_cores

A set of CPU cores isolated from the host processes.

edpm_ovs_dpdk_socket_memory

Specifies the amount of memory in MB to pre-allocate from the hugepage pool, per NUMA node.
dpm_ovs_dpdk_socket_memory is the other_config:dpdk-socket-mem value in OVS. Observe
the following recommendations:

Provide as a comma-separated list.

For a NUMA node without a DPDK NIC, use the static recommendation of 1024MB (1GB).

Calculate the edpm_ovs_dpdk_socket_memory value from the MTU value of each NIC on the
NUMA node. The following equation approximates the value:

MEMORY_REQD_PER_MTU = (ROUNDUP_PER_MTU + 800) * (4096 * 64) Bytes

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

20

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_a_network_functions_virtualization_environment/req-nfv_rhoso-nfv#discover-numa-node-topo_req-nfv

800 is the overhead value.

4096 * 64 is the number of packets in the mempool.

Add the MEMORY_REQD_PER_MTU for each of the MTU values set on the NUMA node
and add another 512MB as buffer. Round the value up to a multiple of 1024.

edpm_ovs_dpdk_memory_channels

Maps memory channels in the CPU per NUMA node. edpm_ovs_dpdk_memory_channels is the
other_config:dpdk-extra="-n <value>" value in OVS. Observe the following recommendations:

Use dmidecode -t memory or your hardware manual to determine the number of memory
channels available.

Use ls /sys/devices/system/node/node* -d to determine the number of NUMA nodes.

Divide the number of memory channels available by the number of NUMA nodes.

edpm_ovs_dpdk_vhost_postcopy_support

Enable or disable OVS-DPDK vhost post-copy support. Setting this to true enables post-copy
support for all vhost user client ports.

edpm_nova_libvirt_qemu_group

Set edpm_nova_libvirt_qemu_group to hugetlbfs `so that the `ovs-vswitchd and qemu
processes can access the shared huge pages and UNIX socket that configures the virtio-net device.
This value is role-specific and should be applied to any role leveraging OVS-DPDK.

edpm_ovn_bridge_mappings

List of bridge and dpdk ports mappings.

edpm_kernel_args

Provides multiple kernel arguments to /etc/default/grub for the compute nodes at boot time.

5.2.2. Configuration map parameters

The following list describes parameters that you can use in ConfigMap sections:

cpu_shared_set

List or range of host CPU cores used to determine the host CPUs that instance emulator threads
should be offloaded to for instances configured with the share emulator thread policy
(hw::emulator_threads_policy=share).

cpu_dedicated_set

A comma-separated list or range of physical host CPU numbers to which processes for pinned
instance CPUs can be scheduled.

Exclude all cores from the edpm_ovs_dpdk_pmd_core_list.

Include all remaining cores.

Pair the sibling threads together.

reserved_host_memory_mb

Reserves memory in MB for tasks on the host. Use the static recommended value of 4096MB.

CHAPTER 5. PLANNING AN OVS-DPDK DEPLOYMENT

21

5.3. TWO NUMA NODE EXAMPLE OVS-DPDK DEPLOYMENT

The Red Hat OpenStack Services on OpenShift (RHOSO) Compute node in the following example
includes two NUMA nodes:

NUMA 0 has logical cores 0-7 (four physical cores). The sibling thread pairs are (0,1), (2,3),
(4,5), and (6,7)

NUMA 1 has cores 8-15. The sibling thread pairs are (8,9), (10,11), (12,13), and (14,15).

Each NUMA node connects to a physical NIC, namely NIC1 on NUMA 0, and NIC2 on NUMA 1.

Figure 5.2. OVS-DPDK: two NUMA nodes example

NOTE

Reserve the first physical cores or both thread pairs on each NUMA node (0,1 and 8,9)
for non-datapath DPDK processes.

This example also assumes a 1500 MTU configuration, so the OvsDpdkSocketMemory is the same for
all use cases:

NIC 1 for DPDK, with one physical core for PMD

In this use case, you allocate one physical core on NUMA 0 for PMD. You must also allocate one physical
core on NUMA 1, even though DPDK is not enabled on the NIC for that NUMA node. The remaining
cores are allocated for guest instances. The resulting parameter settings are:

NIC 1 for DPDK, with two physical cores for PMD

In this use case, you allocate two physical cores on NUMA 0 for PMD. You must also allocate one
physical core on NUMA 1, even though DPDK is not enabled on the NIC for that NUMA node. The
remaining cores are allocated for guest instances. The resulting parameter settings are:

NIC 2 for DPDK, with one physical core for PMD

In this use case, you allocate one physical core on NUMA 1 for PMD. You must also allocate one physical

OvsDpdkSocketMemory: "1024,1024"

OvsPmdCoreList: "2,3,10,11"
NovaComputeCpuDedicatedSet: "4,5,6,7,12,13,14,15"

OvsPmdCoreList: "2,3,4,5,10,11"
NovaComputeCpuDedicatedSet: "6,7,12,13,14,15"

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

22

In this use case, you allocate one physical core on NUMA 1 for PMD. You must also allocate one physical
core on NUMA 0, even though DPDK is not enabled on the NIC for that NUMA node. The remaining
cores are allocated for guest instances. The resulting parameter settings are:

NIC 2 for DPDK, with two physical cores for PMD

In this use case, you allocate two physical cores on NUMA 1 for PMD. You must also allocate one physical
core on NUMA 0, even though DPDK is not enabled on the NIC for that NUMA node. The remaining
cores are allocated for guest instances. The resulting parameter settings are:

NIC 1 and NIC2 for DPDK, with two physical cores for PMD

In this use case, you allocate two physical cores on each NUMA node for PMD. The remaining cores are
allocated for guest instances. The resulting parameter settings are:

5.4. TOPOLOGY OF AN NFV OVS-DPDK DEPLOYMENT

This example deployment shows an OVS-DPDK configuration and consists of two virtual network
functions (VNFs) with two interfaces each:

The management interface, represented by mgt.

The data plane interface.

In the OVS-DPDK deployment, the VNFs operate with inbuilt DPDK that supports the physical
interface. OVS-DPDK enables bonding at the vSwitch level. For improved performance in your OVS-
DPDK deployment, it is recommended that you separate kernel and OVS-DPDK NICs. To separate the
management (mgt) network, connected to the Base provider network for the virtual machine, ensure
you have additional NICs. The Compute node consists of two regular NICs for the Red Hat OpenStack
Platform API management that can be reused by the Ceph API but cannot be shared with any
OpenStack project.

Figure 5.3. Compute node: NFV OVS-DPDK

OvsPmdCoreList: "2,3,10,11"
NovaComputeCpuDedicatedSet: "4,5,6,7,12,13,14,15"

OvsPmdCoreList: "2,3,10,11,12,13"
NovaComputeCpuDedicatedSet: "4,5,6,7,14,15"

OvsPmdCoreList: "2,3,4,5,10,11,12,13"
NovaComputeCpuDedicatedSet: "6,7,14,15"

CHAPTER 5. PLANNING AN OVS-DPDK DEPLOYMENT

23

Figure 5.3. Compute node: NFV OVS-DPDK

OVS-DPDK Topology for NFV

The following image shows the topology for OVS-DPDK on an NFV environment.

Figure 5.4. OVS-DPDK Topology for NFV

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

24

CHAPTER 6. INSTALLING AND PREPARING THE OPERATORS
You install the Red Hat OpenStack Services on OpenShift (RHOSO) OpenStack Operator (openstack-
operator) and create the RHOSO control plane on an operational Red Hat OpenShift Container
Platform (RHOCP) cluster. You install the OpenStack Operator by using the RHOCP web console. You
perform the control plane installation tasks and all data plane creation tasks on a workstation that has
access to the RHOCP cluster.

6.1. PREREQUISITES

An operational RHOCP cluster, version 4.16. For the RHOCP system requirements, see Red Hat
OpenShift Container Platform cluster requirements in Planning your deployment .

The oc command line tool is installed on your workstation.

You are logged in to the RHOCP cluster as a user with cluster-admin privileges.

6.2. INSTALLING THE OPENSTACK OPERATOR

You use OperatorHub on the Red Hat OpenShift Container Platform (RHOCP) web console to install
the OpenStack Operator (openstack-operator) on your RHOCP cluster.

Procedure

1. Log in to the RHOCP web console as a user with cluster-admin permissions.

2. Select Operators → OperatorHub.

3. In the Filter by keyword field, type OpenStack.

4. Click the OpenStack Operator tile with the Red Hat source label.

5. Read the information about the Operator and click Install.

6. On the Install Operator page, select "Operator recommended Namespace: openstack-
operators" from the Installed Namespace list.

7. Click Install to make the Operator available to the openstack-operators namespace. The
Operators are deployed and ready when the Status of the OpenStack Operator is Succeeded.

CHAPTER 6. INSTALLING AND PREPARING THE OPERATORS

25

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/planning_your_deployment/assembly_system-requirements#ref_RHOCP-cluster-requirements_planning

CHAPTER 7. PREPARING RED HAT OPENSHIFT CONTAINER
PLATFORM FOR RED HAT OPENSTACK SERVICES ON

OPENSHIFT
You install Red Hat OpenStack Services on OpenShift (RHOSO) on an operational Red Hat OpenShift
Container Platform (RHOCP) cluster. To prepare for installing and deploying your RHOSO environment,
you must configure the RHOCP worker nodes and the RHOCP networks on your RHOCP cluster.

7.1. CONFIGURING RED HAT OPENSHIFT CONTAINER PLATFORM
NODES FOR A RED HAT OPENSTACK PLATFORM DEPLOYMENT

Red Hat OpenStack Services on OpenShift (RHOSO) services run on Red Hat OpenShift Container
Platform (RHOCP) worker nodes. By default, the OpenStack Operator deploys RHOSO services on any
worker node. You can use node labels in your OpenStackControlPlane custom resource (CR) to
specify which RHOCP nodes host the RHOSO services. By pinning some services to specific
infrastructure nodes rather than running the services on all of your RHOCP worker nodes, you optimize
the performance of your deployment. You can create labels for the RHOCP nodes, or you can use the
existing labels, and then specify those labels in the OpenStackControlPlane CR by using the
nodeSelector field.

For example, the Block Storage service (cinder) has different requirements for each of its services:

The cinder-scheduler service is a very light service with low memory, disk, network, and CPU
usage.

The cinder-api service has high network usage due to resource listing requests.

The cinder-volume service has high disk and network usage because many of its operations are
in the data path, such as offline volume migration, and creating a volume from an image.

The cinder-backup service has high memory, network, and CPU requirements.

Therefore, you can pin the cinder-api, cinder-volume, and cinder-backup services to dedicated nodes
and let the OpenStack Operator place the cinder-scheduler service on a node that has capacity.

Additional resources

Placing pods on specific nodes using node selectors

Machine configuration overview

Node Feature Discovery Operator

7.2. CREATING A STORAGE CLASS

You must create a storage class for your Red Hat OpenShift Container Platform (RHOCP) cluster
storage back end, to provide persistent volumes to Red Hat OpenStack Services on OpenShift
(RHOSO) pods. Red Hat recommends that you use the Logical Volume Manager (LVM) Storage
storage class with RHOSO, although you can use other implementations, such as Container Storage
Interface (CSI) or OpenShift Data Foundation (ODF). You specify this storage class as the cluster
storage back end for the RHOSO deployment. Red Hat recommends that you use a storage back end
based on SSD or NVMe drives for the storage class.

You must wait until the LVM Storage Operator announces that the storage is available before creating

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/nodes/working-with-pods#nodes-pods-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/machine_configuration/machine-config-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/specialized_hardware_and_driver_enablement/psap-node-feature-discovery-operator

You must wait until the LVM Storage Operator announces that the storage is available before creating
the control plane. The LVM Storage Operator announces that the cluster and LVMS storage
configuration is complete through the annotation for the volume group to the worker node object. If you
deploy pods before all the control plane nodes are ready, then multiple PVCs and pods are scheduled on
the same nodes.

To check that the storage is ready, you can query the nodes in your lvmclusters.lvm.topolvm.io object.
For example, run the following command if you have three worker nodes and your device class for the
LVM Storage Operator is named "local-storage":

oc get node -l "topology.topolvm.io/node in ($(oc get nodes -l node-role.kubernetes.io/worker -o
name | cut -d '/' -f 2 | tr '\n' ',' | sed 's/.\{1\}$//'))" -
o=jsonpath='{.items[*].metadata.annotations.capacity\.topolvm\.io/local-storage}' | tr ' ' '\n'

The storage is ready when this command returns three non-zero values

For more information about how to configure the LVM Storage storage class, see Persistent storage
using Logical Volume Manager Storage in the RHOCP Storage guide.

7.3. CREATING THE OPENSTACK NAMESPACE

You must create a namespace within your Red Hat OpenShift Container Platform (RHOCP)
environment for the service pods of your Red Hat OpenStack Services on OpenShift (RHOSO)
deployment. The service pods of each RHOSO deployment exist in their own namespace within the
RHOCP environment.

Prerequisites

You are logged on to a workstation that has access to the RHOCP cluster, as a user with
cluster-admin privileges.

Procedure

1. Create the openstack project for the deployed RHOSO environment:

$ oc new-project openstack

2. Ensure the openstack namespace is labeled to enable privileged pod creation by the
OpenStack Operators:

$ oc get namespace openstack -ojsonpath='{.metadata.labels}' | jq
{
 "kubernetes.io/metadata.name": "openstack",
 "pod-security.kubernetes.io/enforce": "privileged",
 "security.openshift.io/scc.podSecurityLabelSync": "false"
}

If the security context constraint (SCC) is not "privileged", use the following commands to
change it:

$ oc label ns openstack security.openshift.io/scc.podSecurityLabelSync=false --overwrite
$ oc label ns openstack pod-security.kubernetes.io/enforce=privileged --overwrite

3. Optional: To remove the need to specify the namespace when executing commands on the

CHAPTER 7. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/storage/configuring-persistent-storage#persistent-storage-using-lvms

3. Optional: To remove the need to specify the namespace when executing commands on the
openstack namespace, set the default namespace to openstack:

$ oc project openstack

7.4. PROVIDING SECURE ACCESS TO THE RED HAT OPENSTACK
SERVICES ON OPENSHIFT SERVICES

You must create a Secret custom resource (CR) to provide secure access to the Red Hat OpenStack
Services on OpenShift (RHOSO) service pods.

WARNING

You cannot change a service password once the control plane is deployed. If a
service password is changed in osp-secret after deploying the control plane, the
service is reconfigured to use the new password but the password is not updated in
the Identity service (keystone). This results in a service outage.

Procedure

1. Create a Secret CR file on your workstation, for example, openstack_service_secret.yaml.

2. Add the following initial configuration to openstack_service_secret.yaml:

apiVersion: v1
data:
 AdminPassword: <base64_password>
 AodhPassword: <base64_password>
 AodhDatabasePassword: <base64_password>
 BarbicanDatabasePassword: <base64_password>
 BarbicanPassword: <base64_password>
 BarbicanSimpleCryptoKEK: <base64_fernet_key>
 CeilometerPassword: <base64_password>
 CinderDatabasePassword: <base64_password>
 CinderPassword: <base64_password>
 DatabasePassword: <base64_password>
 DbRootPassword: <base64_password>
 DesignateDatabasePassword: <base64_password>
 DesignatePassword: <base64_password>
 GlanceDatabasePassword: <base64_password>
 GlancePassword: <base64_password>
 HeatAuthEncryptionKey: <base64_password>
 HeatDatabasePassword: <base64_password>
 HeatPassword: <base64_password>
 IronicDatabasePassword: <base64_password>
 IronicInspectorDatabasePassword: <base64_password>
 IronicInspectorPassword: <base64_password>
 IronicPassword: <base64_password>
 KeystoneDatabasePassword: <base64_password>
 ManilaDatabasePassword: <base64_password>

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

28

 ManilaPassword: <base64_password>
 MetadataSecret: <base64_password>
 NeutronDatabasePassword: <base64_password>
 NeutronPassword: <base64_password>
 NovaAPIDatabasePassword: <base64_password>
 NovaAPIMessageBusPassword: <base64_password>
 NovaCell0DatabasePassword: <base64_password>
 NovaCell0MessageBusPassword: <base64_password>
 NovaCell1DatabasePassword: <base64_password>
 NovaCell1MessageBusPassword: <base64_password>
 NovaPassword: <base64_password>
 OctaviaDatabasePassword: <base64_password>
 OctaviaPassword: <base64_password>
 PlacementDatabasePassword: <base64_password>
 PlacementPassword: <base64_password>
 SwiftPassword: <base64_password>
kind: Secret
metadata:
 name: osp-secret
 namespace: openstack
type: Opaque

Replace <base64_password> with a 32-character key that is base64 encoded. You can
use the following command to manually generate a base64 encoded password:

$ echo -n <password> | base64

Alternatively, if you are using a Linux workstation and you are generating the Secret CR
definition file by using a Bash command such as cat, you can replace <base64_password>
with the following command to auto-generate random passwords for each service:

$(tr -dc 'A-Za-z0-9' < /dev/urandom | head -c 32 | base64)

Replace the <base64_fernet_key> with a fernet key that is base64 encoded. You can use
the following command to manually generate the fernet key:

python3 -c "from cryptography.fernet import Fernet;
print(Fernet.generate_key().decode('UTF-8'))" | base64

NOTE

The HeatAuthEncryptionKey password must be a 32-character key for
Orchestration service (heat) encryption. If you increase the length of the
passwords for all other services, ensure that the HeatAuthEncryptionKey
password remains at length 32.

3. Create the Secret CR in the cluster:

$ oc create -f openstack_service_secret.yaml -n openstack

4. Verify that the Secret CR is created:

$ oc describe secret osp-secret -n openstack

CHAPTER 7. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

29

CHAPTER 8. PREPARING NETWORKS FOR RHOSO WITH NFV
To prepare for configuring and deploying your Red Hat OpenStack Services on OpenShift (RHOSO) on
a network functions virtualization (NFV) environment, you must configure the Red Hat OpenShift
Container Platform (RHOCP) networks on your RHOCP cluster.

8.1. DEFAULT RED HAT OPENSTACK SERVICES ON OPENSHIFT
NETWORKS

The following physical data center networks are typically implemented for a Red Hat OpenStack
Services on OpenShift (RHOSO) deployment:

Control plane network: This network is used by the OpenStack Operator for Ansible SSH access
to deploy and connect to the data plane nodes from the Red Hat OpenShift Container Platform
(RHOCP) environment. This network is also used by data plane nodes for live migration of
instances.

External network: (Optional) You can configure an external network if one is required for your
environment. For example, you might create an external network for any of the following
purposes:

To provide virtual machine instances with Internet access.

To create flat provider networks that are separate from the control plane.

To configure VLAN provider networks on a separate bridge from the control plane.

To provide access to virtual machine instances with floating IPs on a network other than the
control plane network.

Internal API network: This network is used for internal communication between RHOSO
components.

Storage network: This network is used for block storage, RBD, NFS, FC, and iSCSI.

Tenant (project) network: This network is used for data communication between virtual machine
instances within the cloud deployment.

Storage Management network: (Optional) This network is used by storage components. For
example, Red Hat Ceph Storage uses the Storage Management network in a hyperconverged
infrastructure (HCI) environment as the cluster_network to replicate data.

NOTE

For more information on Red Hat Ceph Storage network configuration, see Ceph
network configuration in the Red Hat Ceph Storage Configuration Guide .

The following table details the default networks used in a RHOSO deployment. If required, you can
update the networks for your environment.

NOTE

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

30

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html/configuration_guide/ceph-network-configuration

NOTE

By default, the control plane and external networks do not use VLANs. Networks that do
not use VLANs must be placed on separate NICs. You can use a VLAN for the control
plane network on new RHOSO deployments. You can also use the Native VLAN on a
trunked interface as the non-VLAN network. For example, you can have the control plane
and the internal API on one NIC, and the external network with no VLAN on a separate
NIC.

Table 8.1. Default RHOSO networks

Network
name

VLAN CIDR NetConfig
allocationR
ange

MetalLB
IPAddress
Pool range

net-attach-
def ipam
range

OCP worker
nncp range

ctlplane n/a 192.168.122.0
/24

192.168.122.10
0 -
192.168.122.25
0

192.168.122.8
0 -
192.168.122.9
0

192.168.122.3
0 -
192.168.122.7
0

192.168.122.10
-
192.168.122.2
0

external n/a 10.0.0.0/24 10.0.0.100 -
10.0.0.250

n/a n/a

internalapi 20 172.17.0.0/24 172.17.0.100 -
172.17.0.250

172.17.0.80 -
172.17.0.90

172.17.0.30 -
172.17.0.70

172.17.0.10 -
172.17.0.20

storage 21 172.18.0.0/24 172.18.0.100
-
172.18.0.250

n/a 172.18.0.30 -
172.18.0.70

172.18.0.10 -
172.18.0.20

tenant 22 172.19.0.0/24 172.19.0.100
-
172.19.0.250

n/a 172.19.0.30 -
172.19.0.70

172.19.0.10 -
172.19.0.20

storageMg
mt

23 172.20.0.0/2
4

172.20.0.100
-
172.20.0.250

n/a 172.20.0.30 -
172.20.0.70

172.20.0.10 -
172.20.0.20

8.2. NIC CONFIGURATIONS FOR NFV

The Red Hat OpenStack Services on OpenShift (RHOSO) nodes that host the data plane require one of
the following NIC configurations:

Single NIC configuration - One NIC for the provisioning network on the native VLAN and
tagged VLANs that use subnets for the different data plane network types.

Dual NIC configuration - One NIC for the provisioning network and the other NIC for the
external network.

Dual NIC configuration - One NIC for the provisioning network on the native VLAN, and the
other NIC for tagged VLANs that use subnets for different data plane network types.

CHAPTER 8. PREPARING NETWORKS FOR RHOSO WITH NFV

31

Multiple NIC configuration - Each NIC uses a subnet for a different data plane network type.

8.3. PREPARING RHOCP FOR RHOSO NETWORKS

The Red Hat OpenStack Services on OpenShift (RHOSO) services run as a Red Hat OpenShift
Container Platform (RHOCP) workload. You use the NMState Operator to connect the worker nodes to
the required isolated networks. You create a NetworkAttachmentDefinition (net-attach-def) custom
resource (CR) for each isolated network to attach service pods to the isolated networks, where needed.
You use the MetalLB Operator to expose internal service endpoints on the isolated networks. By
default, the public service endpoints are exposed as RHOCP routes.

You must also create an L2Advertisement resource to define how the Virtual IPs (VIPs) are announced,
and an IPAddressPool resource to configure which IPs can be used as VIPs. In layer 2 mode, one node
assumes the responsibility of advertising a service to the local network.

NOTE

The examples in the following procedure use IPv4 addresses. You can use IPv6 addresses
instead of IPv4 addresses. Dual stack IPv4/6 is not available. For information about how
to configure IPv6 addresses, see the following resources in the RHOCP Networking
guide:

Installing the Kubernetes NMState Operator

Configuring MetalLB address pools

Procedure

1. Create a NodeNetworkConfigurationPolicy (nncp) CR file on your workstation, for example,
openstack-nncp.yaml.

2. Retrieve the names of the worker nodes in the RHOCP cluster:

$ oc get nodes -l node-role.kubernetes.io/worker -o jsonpath="{.items[*].metadata.name}"

3. Discover the network configuration:

$ oc get nns/<worker_node> -o yaml | more

Replace <worker_node> with the name of a worker node retrieved in step 2, for example,
worker-1. Repeat this step for each worker node.

4. In the nncp CR file, configure the interfaces for each isolated network on each worker node in
the RHOCP cluster. For information about the default physical data center networks that must
be configured with network isolation, see Default Red Hat OpenStack Services on OpenShift
networks.
In the following example, the nncp CR configures the enp6s0 interface for worker node 1, osp-
enp6s0-worker-1, to use VLAN interfaces with IPv4 addresses for network isolation:

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: osp-enp6s0-worker-1
spec:

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/kubernetes-nmstate#installing-the-kubernetes-nmstate-operator-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/load-balancing-with-metallb#metallb-configure-address-pools

 desiredState:
 interfaces:
 - description: internalapi vlan interface
 ipv4:
 address:
 - ip: 172.17.0.10
 prefix-length: 24
 enabled: true
 dhcp: false
 ipv6:
 enabled: false
 name: internalapi
 state: up
 type: vlan
 vlan:
 base-iface: enp6s0
 id: 20
 reorder-headers: true
 - description: storage vlan interface
 ipv4:
 address:
 - ip: 172.18.0.10
 prefix-length: 24
 enabled: true
 dhcp: false
 ipv6:
 enabled: false
 name: storage
 state: up
 type: vlan
 vlan:
 base-iface: enp6s0
 id: 21
 reorder-headers: true
 - description: tenant vlan interface
 ipv4:
 address:
 - ip: 172.19.0.10
 prefix-length: 24
 enabled: true
 dhcp: false
 ipv6:
 enabled: false
 name: tenant
 state: up
 type: vlan
 vlan:
 base-iface: enp6s0
 id: 22
 reorder-headers: true
 - description: Configuring enp6s0
 ipv4:
 address:
 - ip: 192.168.122.10
 prefix-length: 24
 enabled: true

CHAPTER 8. PREPARING NETWORKS FOR RHOSO WITH NFV

33

 dhcp: false
 ipv6:
 enabled: false
 mtu: 1500
 name: enp6s0
 state: up
 type: ethernet
 nodeSelector:
 kubernetes.io/hostname: worker-1
 node-role.kubernetes.io/worker: ""

5. Create the nncp CR in the cluster:

$ oc apply -f openstack-nncp.yaml

6. Verify that the nncp CR is created:

$ oc get nncp -w
NAME STATUS REASON
osp-enp6s0-worker-1 Progressing ConfigurationProgressing
osp-enp6s0-worker-1 Progressing ConfigurationProgressing
osp-enp6s0-worker-1 Available SuccessfullyConfigured

7. Create a NetworkAttachmentDefinition (net-attach-def) CR file on your workstation, for
example, openstack-net-attach-def.yaml.

8. In the NetworkAttachmentDefinition CR file, configure a NetworkAttachmentDefinition
resource for each isolated network to attach a service deployment pod to the network. The
following examples create a NetworkAttachmentDefinition resource for the internalapi,
storage, ctlplane, and tenant networks of type macvlan:

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: internalapi
 namespace: openstack 1
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "internalapi",
 "type": "macvlan",
 "master": "internalapi", 2
 "ipam": { 3
 "type": "whereabouts",
 "range": "172.17.0.0/24",
 "range_start": "172.17.0.30", 4
 "range_end": "172.17.0.70"
 }
 }

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

34

 name: ctlplane
 namespace: openstack
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "ctlplane",
 "type": "macvlan",
 "master": "enp6s0",
 "ipam": {
 "type": "whereabouts",
 "range": "192.168.122.0/24",
 "range_start": "192.168.122.30",
 "range_end": "192.168.122.70"
 }
 }

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: storage
 namespace: openstack
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "storage",
 "type": "macvlan",
 "master": "storage",
 "ipam": {
 "type": "whereabouts",
 "range": "172.18.0.0/24",
 "range_start": "172.18.0.30",
 "range_end": "172.18.0.70"
 }
 }

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: tenant
 namespace: openstack
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "tenant",
 "type": "macvlan",
 "master": "tenant",
 "ipam": {
 "type": "whereabouts",
 "range": "172.19.0.0/24",
 "range_start": "172.19.0.30",
 "range_end": "172.19.0.70"
 }
 }

CHAPTER 8. PREPARING NETWORKS FOR RHOSO WITH NFV

35

1

2

3

4

The namespace where the services are deployed.

The node interface name associated with the network, as defined in the nncp CR.

The whereabouts CNI IPAM plugin to assign IPs to the created pods from the range .30 -
.70.

The IP address pool range must not overlap with the MetalLB IPAddressPool range and
the NetConfig allocationRange.

9. Create the NetworkAttachmentDefinition CR in the cluster:

$ oc apply -f openstack-net-attach-def.yaml

10. Verify that the NetworkAttachmentDefinition CR is created:

$ oc get net-attach-def -n openstack

11. Create an IPAddressPool CR file on your workstation, for example, openstack-
ipaddresspools.yaml.

12. In the IPAddressPool CR file, configure an IPAddressPool resource on the isolated network to
specify the IP address ranges over which MetalLB has authority:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: internalapi
 namespace: metallb-system
spec:
 addresses:
 - 172.17.0.80-172.17.0.90 1
 autoAssign: true
 avoidBuggyIPs: false

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: ctlplane
spec:
 addresses:
 - 192.168.122.80-192.168.122.90
 autoAssign: true
 avoidBuggyIPs: false

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: storage
spec:
 addresses:
 - 172.18.0.80-172.18.0.90

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

36

1

 autoAssign: true
 avoidBuggyIPs: false

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: tenant
spec:
 addresses:
 - 172.19.0.80-172.19.0.90
 autoAssign: true
 avoidBuggyIPs: false

The IPAddressPool range must not overlap with the whereabouts IPAM range and the
NetConfig allocationRange.

For information about how to configure the other IPAddressPool resource parameters, see
Configuring MetalLB address pools in the RHOCP Networking guide.

13. Create the IPAddressPool CR in the cluster:

$ oc apply -f openstack-ipaddresspools.yaml

14. Verify that the IPAddressPool CR is created:

$ oc describe -n metallb-system IPAddressPool

15. Create a L2Advertisement CR file on your workstation, for example, openstack-
l2advertisement.yaml.

16. In the L2Advertisement CR file, configure L2Advertisement CRs to define which node
advertises a service to the local network. Create one L2Advertisement resource for each
network.
In the following example, each L2Advertisement CR specifies that the VIPs requested from the
network address pools are announced on the interface that is attached to the VLAN:

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: internalapi
 namespace: metallb-system
spec:
 ipAddressPools:
 - internalapi
 interfaces:
 - internalapi 1

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: ctlplane
 namespace: metallb-system
spec:

CHAPTER 8. PREPARING NETWORKS FOR RHOSO WITH NFV

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/load-balancing-with-metallb#metallb-configure-address-pools

1

 ipAddressPools:
 - ctlplane
 interfaces:
 - enp6s0

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: storage
 namespace: metallb-system
spec:
 ipAddressPools:
 - storage
 interfaces:
 - storage

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: tenant
 namespace: metallb-system
spec:
 ipAddressPools:
 - tenant
 interfaces:
 - tenant

The interface where the VIPs requested from the VLAN address pool are announced.

For information about how to configure the other L2Advertisement resource parameters, see
Configuring MetalLB with a L2 advertisement and label in the RHOCP Networking guide.

17. Create the L2Advertisement CRs in the cluster:

$ oc apply -f openstack-l2advertisement.yaml

18. Verify that the L2Advertisement CRs are created:

$ oc get -n metallb-system L2Advertisement
NAME IPADDRESSPOOLS IPADDRESSPOOL SELECTORS INTERFACES
ctlplane ["ctlplane"] ["enp6s0"]
internalapi ["internalapi"] ["internalapi"]
storage ["storage"] ["storage"]
tenant ["tenant"] ["tenant"]

19. If your cluster has OVNKubernetes as the network back end, then you must enable global
forwarding so that MetalLB can work on a secondary network interface.

a. Check the network back end used by your cluster:

$ oc get network.operator cluster --output=jsonpath='{.spec.defaultNetwork.type}'

b. If the back end is OVNKubernetes, then run the following command to enable global IP
forwarding:

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/load-balancing-with-metallb#nw-metallb-configure-with-L2-advertisement_about-advertising-ip-address-pool

$ oc patch network.operator cluster -p '{"spec":{"defaultNetwork":
{"ovnKubernetesConfig":{"gatewayConfig":{"ipForwarding": "Global"}}}}}' --type=merge

8.4. CREATING THE DATA PLANE NETWORK

To create the data plane network, you define a NetConfig custom resource (CR) and specify all the
subnets for the data plane networks. You must define at least one control plane network for your data
plane. You can also define VLAN networks to create network isolation for composable networks, such as
InternalAPI, Storage, and External. Each network definition must include the IP address assignment.

TIP

Use the following commands to view the NetConfig CRD definition and specification schema:

$ oc describe crd netconfig

$ oc explain netconfig.spec

Procedure

1. Create a file named openstack_netconfig.yaml on your workstation.

2. Add the following configuration to openstack_netconfig.yaml to create the NetConfig CR:

apiVersion: network.openstack.org/v1beta1
kind: NetConfig
metadata:
 name: openstacknetconfig
 namespace: openstack

3. In the openstack_netconfig.yaml file, define the topology for each data plane network. To use
the default Red Hat OpenStack Services on OpenShift (RHOSO) networks, you must define a
specification for each network. For information about the default RHOSO networks, see Default
Red Hat OpenStack Services on OpenShift networks. The following example creates isolated
networks for the data plane:

spec:
 networks:
 - name: CtlPlane 1
 dnsDomain: ctlplane.example.com
 subnets: 2
 - name: subnet1 3
 allocationRanges: 4
 - end: 192.168.122.120
 start: 192.168.122.100
 - end: 192.168.122.200
 start: 192.168.122.150
 cidr: 192.168.122.0/24
 gateway: 192.168.122.1
 - name: InternalApi
 dnsDomain: internalapi.example.com
 subnets:
 - name: subnet1

CHAPTER 8. PREPARING NETWORKS FOR RHOSO WITH NFV

39

1

2

3

4

5

6

 allocationRanges:
 - end: 172.17.0.250
 start: 172.17.0.100
 excludeAddresses: 5
 - 172.17.0.10
 - 172.17.0.12
 cidr: 172.17.0.0/24
 vlan: 20 6
 - name: External
 dnsDomain: external.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 10.0.0.250
 start: 10.0.0.100
 cidr: 10.0.0.0/24
 gateway: 10.0.0.1
 - name: Storage
 dnsDomain: storage.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 172.18.0.250
 start: 172.18.0.100
 cidr: 172.18.0.0/24
 vlan: 21
 - name: Tenant
 dnsDomain: tenant.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 172.19.0.250
 start: 172.19.0.100
 cidr: 172.19.0.0/24
 vlan: 22

The name of the network, for example, CtlPlane.

The IPv4 subnet specification.

The name of the subnet, for example, subnet1.

The NetConfig allocationRange. The allocationRange must not overlap with the
MetalLB IPAddressPool range and the IP address pool range.

Optional: List of IP addresses from the allocation range that must not be used by data
plane nodes.

The network VLAN. For information about the default RHOSO networks, see Default
Red Hat OpenStack Services on OpenShift networks.

4. Save the openstack_netconfig.yaml definition file.

5. Create the data plane network:

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

40

$ oc create -f openstack_netconfig.yaml -n openstack

6. To verify that the data plane network is created, view the openstacknetconfig resource:

$ oc get netconfig/openstacknetconfig -n openstack

If you see errors, check the underlying network-attach-definition and node network
configuration policies:

$ oc get network-attachment-definitions -n openstack
$ oc get nncp

CHAPTER 8. PREPARING NETWORKS FOR RHOSO WITH NFV

41

CHAPTER 9. CREATING THE CONTROL PLANE FOR NFV
ENVIRONMENTS

The Red Hat OpenStack Services on OpenShift (RHOSO) control plane contains the RHOSO services
that manage the cloud. These control plane services are services that provide APIs and do not run
Compute node workloads. The RHOSO control plane services run as a Red Hat OpenShift Container
Platform (RHOCP) workload, and you deploy these services using Operators in OpenShift. When you
configure these OpenStack control plane services, you use one custom resource (CR) definition called
OpenStackControlPlane.

NOTE

Creating the control plane also creates an OpenStackClient pod that you can access
through a remote shell (rsh) to run RHOSO CLI commands.

$ oc rsh -n openstack openstackclient

9.1. PREREQUISITES

The RHOCP cluster is prepared for RHOSO network isolation. For more information, see
Preparing RHOCP for RHOSO networks .

The OpenStack Operator (openstack-operator) is installed. For more information, see
Installing and preparing the Operators.

The RHOCP cluster is not configured with any network policies that prevent communication
between the openstack-operators namespace and the control plane namespace (default
openstack). Use the following command to check the existing network policies on the cluster:

$ oc get networkpolicy -n openstack

You are logged on to a workstation that has access to the RHOCP cluster, as a user with
cluster-admin privileges.

Use the generic CustomServiceConfig interface available in each service’s specification to
override any and all service-specific configuration settings.

9.2. CREATING THE CONTROL PLANE

Define an OpenStackControlPlane custom resource (CR) to perform the following tasks:

Create the control plane.

Enable the Red Hat OpenStack Services on OpenShift (RHOSO) services.

The following procedure creates an initial control plane with the recommended configurations for each
service. The procedure helps you create an operational control plane environment. You can use the
environment to test and troubleshoot issues before additional required service customization. Services
can be added and customized after the initial deployment.

For more information on how to customize your control plane after deployment, see the Customizing
the Red Hat OpenStack Services on OpenShift deployment guide.

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

42

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/customizing_the_red_hat_openstack_services_on_openshift_deployment/index

For more information, see Example OpenStackControlPlane CR.

TIP

Use the following commands to view the OpenStackControlPlane CRD definition and specification
schema:

For NFV environments, when you add the Networking service (neutron) and OVN service configurations,
you must supply the following information:

Physical networks where your gateways are located.

Path to vhost sockets.

VLAN ranges.

Number of NUMA nodes.

NICs that connect to the gateway networks.

NOTE

If you are using SR-IOV, you must also add the sriovnicswitch mechanism driver to the
Networking service configuration.

Procedure

1. Create the openstack project for the deployed RHOSO environment:

2. Ensure the openstack namespace is labeled to enable privileged pod creation by the
OpenStack Operators:

If the security context constraint (SCC) is not "privileged", use the following commands to
change it:

3. Create a file on your workstation named openstack_control_plane.yaml to define the
OpenStackControlPlane CR:

$ oc describe crd openstackcontrolplane

$ oc explain openstackcontrolplane.spec

$ oc new-project openstack

$ oc get namespace openstack -ojsonpath='{.metadata.labels}' | jq
{
 "kubernetes.io/metadata.name": "openstack",
 "pod-security.kubernetes.io/enforce": "privileged",
 "security.openshift.io/scc.podSecurityLabelSync": "false"
}

$ oc label ns openstack security.openshift.io/scc.podSecurityLabelSync=false --overwrite
$ oc label ns openstack pod-security.kubernetes.io/enforce=privileged --overwrite

CHAPTER 9. CREATING THE CONTROL PLANE FOR NFV ENVIRONMENTS

43

4. Specify the Secret CR you created to provide secure access to the RHOSO service pods in
Providing secure access to the Red Hat OpenStack Services on OpenShift services :

5. Specify the storageClass you created for your Red Hat OpenShift Container Platform
(RHOCP) cluster storage back end:

NOTE

For information about storage classes, see Creating a storage class .

6. Add the following service configurations:

Block Storage service (cinder):

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-control-plane
 namespace: openstack

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-control-plane
spec:
 secret: osp-secret

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-control-plane
spec:
 secret: osp-secret
 storageClass: your-RHOCP-storage-class

 cinder:
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 secret: osp-secret
 cinderAPI:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 cinderScheduler:

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

44

IMPORTANT

This definition for the Block Storage service is only a sample. You might need to
modify it for your NFV environment. For more information, see Planning storage
and shared file systems in Planning your deployment .

NOTE

For the initial control plane deployment, the cinderBackup and cinderVolumes
services are deployed but not activated (replicas: 0). You can configure your
control plane post-deployment with a back end for the Block Storage service and
the backup service.

Compute service (nova):

 replicas: 1
 cinderBackup:
 networkAttachments:
 - storage
 replicas: 0 # backend needs to be configured to activate the service
 cinderVolumes:
 volume1:
 networkAttachments:
 - storage
 replicas: 0 # backend needs to be configured to activate the service

 nova:
 apiOverride:
 route: {}
 template:
 apiServiceTemplate:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 schedulerServiceTemplate:
 customServiceConfig: |
 [filter_scheduler]
 enabled_filters = AvailabilityZoneFilter, ComputeFilter, ComputeCapabilitiesFilter,
ImagePropertiesFilter, ServerGroupAntiAffinityFilter, ServerGroupAffinityFilter,
PciPassthroughFilter, AggregateInstanceExtraSpecsFilter
 available_filters = nova.scheduler.filters.all_filters
 metadataServiceTemplate:
 replicas: 3
 override:
 service:
 metadata:
 annotations:

CHAPTER 9. CREATING THE CONTROL PLANE FOR NFV ENVIRONMENTS

45

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/planning_your_deployment/assembly_planning-storage

NOTE

A full set of Compute services (nova) are deployed by default for each of the
default cells, cell0 and cell1: nova-api, nova-metadata, nova-scheduler, and
nova-conductor. The novncproxy service is also enabled for cell1 by default.

DNS service for the data plane:

 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 schedulerServiceTemplate:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 cellTemplates:
 cell1:
 noVNCProxyServiceTemplate:
 enabled: true
 networkAttachments:
 - ctlplane
 secret: osp-secret

 dns:
 template:
 options: 1
 - key: server 2
 values: 3
 - 192.168.122.1
 - key: server
 values:
 - 192.168.122.2
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: ctlplane
 metallb.universe.tf/allow-shared-ip: ctlplane
 metallb.universe.tf/loadBalancerIPs: 192.168.122.80
 spec:
 type: LoadBalancer
 replicas: 2

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

46

1

2

3

Defines the dnsmasq instances required for each DNS server by using key-value pairs. In
this example, there are two key-value pairs defined because there are two DNS servers

Specifies the dnsmasq parameter to customize for the deployed dnsmasq instance. Set to
one of the following valid values:

server

rev-server

srv-host

txt-record

ptr-record

rebind-domain-ok

naptr-record

cname

host-record

caa-record

dns-rr

auth-zone

synth-domain

no-negcache

local

Specifies the values for the dnsmasq parameter. You can specify a generic DNS server as
the value, for example, 1.1.1.1, or a DNS server for a specific domain, for example,
/google.com/8.8.8.8.

A Galera cluster for use by all RHOSO services (openstack), and a Galera cluster for use by the
Compute service for cell1 (openstack-cell1):

Identity service (keystone)

 galera:
 templates:
 openstack:
 storageRequest: 5000M
 secret: osp-secret
 replicas: 3
 openstack-cell1:
 storageRequest: 5000M
 secret: osp-secret
 replicas: 3

CHAPTER 9. CREATING THE CONTROL PLANE FOR NFV ENVIRONMENTS

47

Image service (glance):

NOTE

For the initial control plane deployment, the Image service is deployed but not
activated (replicas: 0). You can configure your control plane post-deployment
with a back end for the Image service.

Key Management service (barbican):

 keystone:
 apiOverride:
 route: {}
 template:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret
 replicas: 3

 glance:
 apiOverrides:
 default:
 route: {}
 template:
 databaseInstance: openstack
 storage:
 storageRequest: 10G
 secret: osp-secret
 keystoneEndpoint: default
 glanceAPIs:
 default:
 replicas: 0 # backend needs to be configured to activate the service
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 networkAttachments:
 - storage

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

48

Memcached:

Networking service (neutron):

 neutron:
 apiOverride:
 route: {}
 template:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret
 networkAttachments:
 - internalapi
 customServiceConfig: |
 [DEFAULT]
 global_physnet_mtu = 9000
 [ml2]

 barbican:
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 secret: osp-secret
 barbicanAPI:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 barbicanWorker:
 replicas: 3
 barbicanKeystoneListener:
 replicas: 1

 memcached:
 templates:
 memcached:
 replicas: 3

CHAPTER 9. CREATING THE CONTROL PLANE FOR NFV ENVIRONMENTS

49

 mechanism_drivers = ovn
 [ovn]
 vhost_sock_dir = <path>
 [ml2_type_vlan]
 network_vlan_ranges = <network_name1>:<VLAN-ID1>:<VLAN-
ID2>,<network_name2>:<VLAN-ID1>:<VLAN-ID2>

If you are using SR-IOV, you must also add the sriovnicswitch mechanism driver, for
example, mechanism_drivers = ovn,sriovnicswitch.

Replace <path> with the absolute path to the vhost sockets, for example, /var/lib/vhost.

Replace <network_name1> and <network_name2> with the names of the physical
networks that your gateways are on. (This network is set in the neutron network
provider:*name field.)

Replace <VLAN-ID1> and`<VLAN-ID2>` with the VLAN IDs you are using.

Object Storage service (swift):

OVN:

 ovn:
 template:
 ovnDBCluster:
 ovndbcluster-nb:
 replicas: 3
 dbType: NB

 swift:
 enabled: true
 proxyOverride:
 route: {}
 template:
 swiftProxy:
 networkAttachments:
 - storage
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 replicas: 1
 swiftRing:
 ringReplicas: 1
 swiftStorage:
 networkAttachments:
 - storage
 replicas: 1
 storageClass: local-storage
 storageRequest: 10Gi

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

50

 storageRequest: 10G
 networkAttachment: internalapi
 ovndbcluster-sb:
 dbType: SB
 storageRequest: 10G
 networkAttachment: internalapi
 ovnNorthd:
 networkAttachment: internalapi
 ovnController:
 networkAttachment: tenant
 nicMappings:
 <network_name>: <nic_name>

Replace <network_name> with the name of the physical network your gateway is on. (This
network is set in the neutron network provider:*name field.)

Replace <nic_name> with the name of the NIC connecting to the gateway network.

Optional: Add additional <network_name>:<nic_name> pairs under nicMappings as
required.

Placement service (placement):

RabbitMQ:

 placement:
 apiOverride:
 route: {}
 template:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 replicas: 3
 secret: osp-secret

 rabbitmq:
 templates:
 rabbitmq:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.85
 spec:
 type: LoadBalancer
 rabbitmq-cell1:

CHAPTER 9. CREATING THE CONTROL PLANE FOR NFV ENVIRONMENTS

51

1

Telemetry service (ceilometer, prometheus):

You must have the autoscaling field present, even if autoscaling is disabled.

1. Create the control plane:

NOTE

Creating the control plane also creates an OpenStackClient pod that
you can access through a remote shell (rsh) to run RHOSO CLI
commands.

 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.86
 spec:
 type: LoadBalancer

 telemetry:
 enabled: true
 template:
 metricStorage:
 enabled: true
 monitoringStack:
 alertingEnabled: true
 scrapeInterval: 30s
 storage:
 strategy: persistent
 retention: 24h
 persistent:
 pvcStorageRequest: 20G
 autoscaling: 1
 enabled: false
 aodh:
 passwordSelectors:
 databaseAccount: aodh
 databaseInstance: openstack
 memcachedInstance: memcached
 secret: osp-secret
 heatInstance: heat
 ceilometer:
 enabled: true
 secret: osp-secret
 logging:
 enabled: false
 ipaddr: 172.17.0.80

$ oc create -f openstack_control_plane.yaml -n openstack

$ oc rsh -n openstack openstackclient

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

52

2. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR.
Check the status of the control plane deployment:

Sample output

The OpenStackControlPlane resources are created when the status is "Setup
complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

NOTE

Creating the control plane also creates an OpenStackClient pod that
you can access through a remote shell (rsh) to run RHOSO CLI
commands.

3. Optional: Confirm that the control plane is deployed by reviewing the pods in the
openstack namespace:

The control plane is deployed when all the pods are either completed or running.

Verification

1. Open a remote shell connection to the OpenStackClient pod:

2. Confirm that the internal service endpoints are registered with each service:

Sample output

$ oc get openstackcontrolplane -n openstack

NAME STATUS MESSAGE
openstack-control-plane Unknown Setup started

$ oc rsh -n openstack openstackclient

$ oc get pods -n openstack

$ oc rsh -n openstack openstackclient

$ openstack endpoint list -c 'Service Name' -c Interface -c URL --service glance

+--------------+-----------+---+
| Service Name | Interface | URL |
+--------------+-----------+---+
| glance | internal | http://glance-internal.openstack.svc:9292 |
| glance | public | http://glance-public-openstack.apps.ostest.test.metalkube.org |
+--------------+-----------+---+

CHAPTER 9. CREATING THE CONTROL PLANE FOR NFV ENVIRONMENTS

53

3. Exit the OpenStackClient pod:

9.3. EXAMPLE OPENSTACKCONTROLPLANE CR

The following example OpenStackControlPlane CR is a complete control plane configuration that
includes all the key services that must always be enabled for a successful deployment.

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-control-plane
 namespace: openstack
spec:
 secret: osp-secret
 storageClass: your-RHOCP-storage-class 1
 cinder: 2
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 secret: osp-secret
 cinderAPI:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 cinderScheduler:
 replicas: 1
 cinderBackup: 3
 networkAttachments:
 - storage
 replicas: 0 # backend needs to be configured to activate the service
 cinderVolumes: 4
 volume1:
 networkAttachments: 5
 - storage
 replicas: 0 # backend needs to be configured to activate the service
 nova: 6
 apiOverride: 7
 route: {}
 template:
 apiServiceTemplate:
 replicas: 3
 override:
 service:

$ exit

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

54

 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi 8
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80 9
 spec:
 type: LoadBalancer
 metadataServiceTemplate:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 schedulerServiceTemplate:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 cellTemplates:
 cell0:
 cellDatabaseAccount: nova-cell0
 cellDatabaseInstance: openstack
 cellMessageBusInstance: rabbitmq
 hasAPIAccess: true
 cell1:
 cellDatabaseAccount: nova-cell1
 cellDatabaseInstance: openstack-cell1
 cellMessageBusInstance: rabbitmq-cell1
 noVNCProxyServiceTemplate:
 enabled: true
 networkAttachments:
 - internalapi
 - ctlplane
 hasAPIAccess: true
 secret: osp-secret
 dns:
 template:
 options:
 - key: server
 values:
 - 192.168.122.1
 - key: server
 values:
 - 192.168.122.2

CHAPTER 9. CREATING THE CONTROL PLANE FOR NFV ENVIRONMENTS

55

 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: ctlplane
 metallb.universe.tf/allow-shared-ip: ctlplane
 metallb.universe.tf/loadBalancerIPs: 192.168.122.80
 spec:
 type: LoadBalancer
 replicas: 2
 galera:
 templates:
 openstack:
 storageRequest: 5000M
 secret: osp-secret
 replicas: 3
 openstack-cell1:
 storageRequest: 5000M
 secret: osp-secret
 replicas: 3
 keystone:
 apiOverride:
 route: {}
 template:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret
 replicas: 3
 glance:
 apiOverrides:
 default:
 route: {}
 template:
 databaseInstance: openstack
 storage:
 storageRequest: 10G
 secret: osp-secret
 keystoneEndpoint: default
 glanceAPIs:
 default:
 replicas: 0 # backend needs to be configured to activate the service
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

56

 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 networkAttachments:
 - storage
 barbican:
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 secret: osp-secret
 barbicanAPI:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 barbicanWorker:
 replicas: 3
 barbicanKeystoneListener:
 replicas: 1
 memcached:
 templates:
 memcached:
 replicas: 3
 neutron:
 apiOverride:
 route: {}
 template:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret
 networkAttachments:
 - internalapi
 swift:
 enabled: true
 proxyOverride:
 route: {}
 template:

CHAPTER 9. CREATING THE CONTROL PLANE FOR NFV ENVIRONMENTS

57

 swiftProxy:
 networkAttachments:
 - storage
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 replicas: 1
 swiftRing:
 ringReplicas: 1
 swiftStorage:
 networkAttachments:
 - storage
 replicas: 1
 storageRequest: 10Gi
 ovn:
 template:
 ovnDBCluster:
 ovndbcluster-nb:
 replicas: 3
 dbType: NB
 storageRequest: 10G
 networkAttachment: internalapi
 ovndbcluster-sb:
 dbType: SB
 storageRequest: 10G
 networkAttachment: internalapi
 ovnNorthd:
 networkAttachment: internalapi
 placement:
 apiOverride:
 route: {}
 template:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 replicas: 3
 secret: osp-secret
 rabbitmq: 10
 templates:
 rabbitmq:
 replicas: 3

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

58

1

2

3

 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.85 11
 spec:
 type: LoadBalancer
 rabbitmq-cell1:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.86 12
 spec:
 type: LoadBalancer
 telemetry:
 enabled: true
 template:
 metricStorage:
 enabled: true
 monitoringStack:
 alertingEnabled: true
 scrapeInterval: 30s
 storage:
 strategy: persistent
 retention: 24h
 persistent:
 pvcStorageRequest: 20G
 autoscaling:
 enabled: false
 aodh:
 databaseAccount: aodh
 databaseInstance: openstack
 passwordSelector:
 aodhService: AodhPassword
 rabbitMqClusterName: rabbitmq
 serviceUser: aodh
 secret: osp-secret
 heatInstance: heat
 ceilometer:
 enabled: true
 secret: osp-secret
 logging:
 enabled: false
 ipaddr: 172.17.0.80

The storage class that you created for your Red Hat OpenShift Container Platform (RHOCP)
cluster storage back end.

Service-specific parameters for the Block Storage service (cinder).

The Block Storage service back end. For more information on configuring storage services, see the
Configuring persistent storage guide.

CHAPTER 9. CREATING THE CONTROL PLANE FOR NFV ENVIRONMENTS

59

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_persistent_storage/index

4

5

6

7

8

9

10

11

12

The Block Storage service configuration. For more information on configuring storage services, see
the Configuring persistent storage guide.

The list of networks that each service pod is directly attached to, specified by using the
NetworkAttachmentDefinition resource names. A NIC is configured for the service for each
specified network attachment.

NOTE

If you do not configure the isolated networks that each service pod is attached to,
then the default pod network is used. For example, the Block Storage service uses
the storage network to connect to a storage back end; the Identity service
(keystone) uses an LDAP or Active Directory (AD) network; the ovnDBCluster and
ovnNorthd services use the internalapi network; and the ovnController service
uses the tenant network.

Service-specific parameters for the Compute service (nova).

Service API route definition. You can customize the service route by using route-specific
annotations. For more information, see Route-specific annotations in the RHOCP Networking
guide. Set route: to {} to apply the default route template.

The internal service API endpoint registered as a MetalLB service with the IPAddressPool
internalapi.

The virtual IP (VIP) address for the service. The IP is shared with other services by default.

The RabbitMQ instances exposed to an isolated network with distinct IP addresses defined in the
loadBalancerIPs annotation, as indicated in 11 and 12.

NOTE

Multiple RabbitMQ instances cannot share the same VIP as they use the same port.
If you need to expose multiple RabbitMQ instances to the same network, then you
must use distinct IP addresses.

The distinct IP address for a RabbitMQ instance that is exposed to an isolated network.

The distinct IP address for a RabbitMQ instance that is exposed to an isolated network.

9.4. REMOVING A SERVICE FROM THE CONTROL PLANE

You can completely remove a service and the service database from the control plane after deployment
by disabling the service. Many services are enabled by default, which means that the OpenStack
Operator creates resources such as the service database and Identity service (keystone) users, even if
no service pod is created because replicas is set to 0.

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

60

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_persistent_storage/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/configuring-routes#nw-route-specific-annotations_route-configuration

WARNING

Remove a service with caution. Removing a service is not the same as stopping
service pods. Removing a service is irreversible. Disabling a service removes the
service database and any resources that referenced the service are no longer
tracked. Red Hat recommends creating a backup of the service database before
removing a service.

Procedure

1. Open the OpenStackControlPlane CR file on your workstation.

2. Locate the service you want to remove from the control plane and disable it:

 cinder:
 enabled: false
 apiOverride:
 route: {}
 ...

3. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

4. Wait until RHOCP removes the resource related to the disabled service. Run the following
command to check the status:

$ oc get openstackcontrolplane -n openstack
NAME STATUS MESSAGE
openstack-control-plane Unknown Setup started

The OpenStackControlPlane resource is updated with the disabled service when the status is
"Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

5. Optional: Confirm that the pods from the disabled service are no longer listed by reviewing the
pods in the openstack namespace:

$ oc get pods -n openstack

6. Check that the service is removed:

$ oc get cinder -n openstack

This command returns the following message when the service is successfully removed:

CHAPTER 9. CREATING THE CONTROL PLANE FOR NFV ENVIRONMENTS

61

No resources found in openstack namespace.

7. Check that the API endpoints for the service are removed from the Identity service (keystone):

$ oc rsh -n openstack openstackclient
$ openstack endpoint list --service volumev3

This command returns the following message when the API endpoints for the service are
successfully removed:

No service with a type, name or ID of 'volumev3' exists.

9.5. ADDITIONAL RESOURCES

Kubernetes NMState Operator

The Kubernetes NMState project

Load balancing with MetalLB

MetalLB documentation

MetalLB in layer 2 mode

Specify network interfaces that LB IP can be announced from

Multiple networks

Using the Multus CNI in OpenShift

macvlan plugin

whereabouts IPAM CNI plugin - Extended configuration

About advertising for the IP address pools

Dynamic provisioning

Configuring the Block Storage backup service in Configuring persistent storage .

Configuring the Image service (glance) in Configuring persistent storage .

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

62

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/kubernetes-nmstate
https://nmstate.io/kubernetes-nmstate/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/load-balancing-with-metallb
https://metallb.universe.tf/
https://metallb.universe.tf/concepts/layer2/
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#specify-network-interfaces-that-lb-ip-can-be-announced-from
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/multiple-networks
https://cloud.redhat.com/blog/using-the-multus-cni-in-openshift
https://www.cni.dev/plugins/current/main/macvlan/
https://github.com/k8snetworkplumbingwg/whereabouts/blob/master/doc/extended-configuration.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/load-balancing-with-metallb#about-advertise-for-ipaddress-pools
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/storage/dynamic-provisioning
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_persistent_storage/assembly_configuring-the-block-storage-backup-service_block-storage-backup
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_persistent_storage/assembly_glance-configuring-glance_image

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND
DPDK ENVIRONMENTS

The Red Hat OpenStack Services on OpenShift (RHOSO) data plane consists of RHEL 9.4 nodes. Use
the OpenStackDataPlaneNodeSet custom resource definition (CRD) to create the custom resources
(CRs) that define the nodes and the layout of the data plane. After you have defined your
OpenStackDataPlaneNodeSet CRs, you create an OpenStackDataPlaneDeployment CR that deploys
each of your OpenStackDataPlaneNodeSet CRs.

An OpenStackDataPlaneNodeSet CR is a logical grouping of nodes of a similar type. A data plane
typically consists of multiple OpenStackDataPlaneNodeSet CRs to define groups of nodes with
different configurations and roles. You can use pre-provisioned or unprovisioned nodes in an
OpenStackDataPlaneNodeSet CR:

Pre-provisioned node: You have used your own tooling to install the operating system on the
node before adding it to the data plane.

Unprovisioned node: The node does not have an operating system installed before you add it to
the data plane. The node is provisioned by using the Cluster Baremetal Operator (CBO) as part
of the data plane creation and deployment process.

NOTE

You cannot include both pre-provisioned and unprovisioned nodes in the same
OpenStackDataPlaneNodeSet CR.

To create and deploy a data plane, you must perform the following tasks:

1. Create a Secret CR for each node set for Ansible to use to execute commands on the data
plane nodes.

2. Create the OpenStackDataPlaneNodeSet CRs that define the nodes and layout of the data
plane.

3. Create the OpenStackDataPlaneDeployment CR that triggers the Ansible execution that
deploys and configures the software for the specified list of OpenStackDataPlaneNodeSet
CRs.

The following procedures create two simple node sets, one with pre-provisioned nodes, and one with
bare-metal nodes that must be provisioned during the node set deployment. The procedures aim to get
you up and running quickly with a data plane environment that you can use to troubleshoot issues and
test the environment before adding all the customizations you require. You can add additional node sets
to a deployed environment, and you can customize your deployed environment by updating the
common configuration in the default ConfigMap CR for the service, and by creating custom services.
For more information on how to customize your data plane after deployment, see the Customizing the
Red Hat OpenStack Services on OpenShift deployment guide.

10.1. PREREQUISITES

A functional control plane, created with the OpenStack Operator. For more information, see
Creating the control plane for NFV environments .

You are logged on to a workstation that has access to the Red Hat OpenShift Container
Platform (RHOCP) cluster as a user with cluster-admin privileges.

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

63

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/customizing_the_red_hat_openstack_services_on_openshift_deployment/index
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_a_network_functions_virtualization_environment/create-ctrl-plane-nfv

Use the generic CustomServiceConfig interface available in each service’s specification to
override any and all service-specific configuration settings.

10.2. CREATING THE DATA PLANE SECRETS

The data plane requires several Secret custom resources (CRs) to operate. The Secret CRs are used by
the data plane nodes for the following functionality:

To enable secure access between nodes:

You must generate an SSH key and create an SSH key Secret CR for each key to enable
Ansible to manage the RHEL nodes on the data plane. Ansible executes commands with this
user and key. You can create an SSH key for each node set in your data plane.

You must generate an SSH key and create an SSH key Secret CR for each key to enable
migration of instances between Compute nodes.

To register the operating system of the nodes that are not registered to the Red Hat Customer
Portal.

To enable repositories for the nodes.

To provide access to libvirt.

Prerequisites

Pre-provisioned nodes are configured with an SSH public key in the
$HOME/.ssh/authorized_keys file for a user with passwordless sudo privileges. For
information, see Configuring reserved user and group IDs in the RHEL Configuring basic system
settings guide.

Procedure

1. For unprovisioned nodes, create the SSH key pair for Ansible:

$ ssh-keygen -f <key_file_name> -N "" -t rsa -b 4096

Replace <key_file_name> with the name to use for the key pair.

2. Create the Secret CR for Ansible and apply it to the cluster:

$ oc create secret generic dataplane-ansible-ssh-private-key-secret \
--save-config \
--dry-run=client \
[--from-file=authorized_keys=<key_file_name>.pub \]
--from-file=ssh-privatekey=<key_file_name> \
--from-file=ssh-publickey=<key_file_name>.pub \
-n openstack \
-o yaml | oc apply -f -

Replace <key_file_name> with the name and location of your SSH key pair file.

Include the --from-file=authorized_keys option for bare-metal nodes that must be
provisioned when creating the data plane.

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

64

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-users-and-groups_configuring-basic-system-settings#configuring-reserved-user-and-group-ids_introduction-to-managing-user-and-group-accounts

3. Create the SSH key pair for instance migration:

$ ssh-keygen -f ./nova-migration-ssh-key -t ecdsa-sha2-nistp521 -N ''

4. Create the Secret CR for migration and apply it to the cluster:

$ oc create secret generic nova-migration-ssh-key \
--save-config \
--from-file=ssh-privatekey=nova-migration-ssh-key \
--from-file=ssh-publickey=nova-migration-ssh-key.pub \
-n openstack \
-o yaml | oc apply -f -

5. Create a file on your workstation named secret_subscription.yaml that contains the
subscription-manager credentials for registering the operating system of the nodes that are
not registered to the Red Hat Customer Portal:

apiVersion: v1
kind: Secret
metadata:
 name: subscription-manager
data:
 username: <base64_encoded_username>
 password: <base64_encoded_password>

6. Create the Secret CR:

$ oc create -f secret_subscription.yaml

7. Create a file on your workstation named secret_registry.yaml that contains the Red Hat
registry credentials:

apiVersion: v1
kind: Secret
metadata:
 name: redhat-registry
data:
 username: <registry_username>
 password: <registry_password>

8. Create the Secret CR:

$ oc create -f secret_registry.yaml

9. Create a file on your workstation named secret_libvirt.yaml to define the libvirt secret:

apiVersion: v1
data:
 LibvirtPassword: <base64_password>
kind: Secret
metadata:

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

65

 name: libvirt-secret
 namespace: openstack
type: Opaque

Replace <base64_password> with a base64 encoded string with maximum length 63
characters. Use the following command to generate a base64 encoded password:

$ echo -n <password> | base64

10. Create the Secret CR:

$ oc apply -f secret_libvirt.yaml -n openstack

11. Verify that the Secret CRs are created:

$ oc describe secret dataplane-ansible-ssh-private-key-secret
$ oc describe secret nova-migration-ssh-key
$ oc describe secret subscription-manager
$ oc describe secret redhat-registry
$ oc describe secret libvirt-secret

10.3. CREATING A CUSTOM SR-IOV COMPUTE SERVICE

You must create a custom SR-IOV Compute service for NFV in a Red Hat OpenStack Services on
OpenShift (RHOSO) environment. This service is an Ansible service that is executed on the data plane.
This custom service performs the following tasks on the SR-IOV Compute nodes:

Applies CPU pinning parameters.

Performs PCI passthrough.

To create the SR-IOV custom service, you must perform these actions:

Create a ConfigMap for CPU pinning that maps a CPU pinning configuration to a specified set
of SR-IOV Compute nodes.

Create a ConfigMap for PCI passthrough that maps a PCI passthrough configuration to a
specified set of SR-IOV Compute nodes.

Create the actual SR-IOV custom service that will implement the configMaps on your data
plane.

Prerequisites

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Create a ConfigMap CR that defines configurations for CPU pinning and PCI passthrough, and
save it to a YAML file on your workstation, for example, pinning-passthrough.yaml.
Change the values (in boldface) as appropriate for your environment:

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

66

apiVersion: v1
kind: ConfigMap
metadata:
 name: cpu-pinning-nova
data:
 25-cpu-pinning-nova.conf: |
 [DEFAULT]
 reserved_host_memory_mb = 4096
 [compute]
 cpu_shared_set = 0-3,24-27
 cpu_dedicated_set = 8-23,32-47
 [neutron]
 physnets = <network_name1>, <network_name2>
 [neutron_physnet_<network_name1>]
 numa_nodes = <number>
 [neutron_physnet_<network_name2>]
 numa_nodes = <number>
 [neutron_tunnel]
 numa_nodes = <number>

apiVersion: v1
kind: ConfigMap
metadata:
 name: sriov-nova
data:
 26-sriov-nova.conf: |
 [libvirt]
 cpu_power_management=false
 [pci]
 passthrough_whitelist = {"address": "0000:05:00.2", "physical_network":"sriov-1",
"trusted":"true"}
 passthrough_whitelist = {"address": "0000:05:00.3", "physical_network":"sriov-2",
"trusted":"true"}

cpu_shared_set: enter a comma-separated list or range of physical host CPU numbers
used to provide vCPU inventory, determine the host CPUs that unpinned instances can be
scheduled to, and determine the host CPUs that instance emulator threads should be
offloaded to for instances configured with the share emulator thread policy.

cpu_dedicated_set: enter a comma-separated list or range of physical host CPU numbers
to which processes for pinned instance CPUs can be scheduled. For example, 4-12,^8,15
reserves cores from 4-12 and 15, excluding 8.

<network_name_n_>: replace <network_name1> and <network_name2> with the names
of the physical networks that your gateways are on. (This network is set in the neutron
network provider:*name field.)

<number>: replace <number> with the number of NUMA nodes you are using.

passthrough_whitelist: specify valid NIC addresses and names for "address" and
"physical_network".

2. Create the ConfigMap object, using the ConfigMap CR file:

Example

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

67

Example

3. Create an OpenStackDataPlaneService CR that defines the SR-IOV custom service, and save
it to a YAML file on your workstation, for example nova-custom-sriov.yaml:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: nova-custom-sriov

4. Add the ConfigMap CRs to the custom service, and specify the Secret CR for the cell that the
node set that runs this service connects to:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: nova-custom-sriov
spec:
 label: dataplane-deployment-nova-custom-sriov
 configMaps:
 - cpu-pinning-nova
 - sriov-nova
 secrets:
 - nova-cell1-compute-config
 - nova-migration-ssh-key

5. Specify the Ansible commands to create the custom service, by referencing an Ansible playbook
or by including the Ansible play in the playbookContents field:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: nova-custom-sriov
spec:
 label: dataplane-deployment-nova-custom-sriov
 playbook: osp.edpm.nova
 configMaps:
 - cpu-pinning-nova
 - sriov-nova
 secrets:
 - nova-cell1-compute-config
 - nova-migration-ssh-key

playbook: identifies the default playbook available for your service.
In this case, it is the Compute service (nova). To see the listing of default playbooks, see
https://openstack-k8s-operators.github.io/edpm-ansible/playbooks.html.

6. Create the custom-nova-sriov service:

7. Verify that the custom service is created:

$ oc create -f sriov-pinning-passthru.yaml -n openstack

$ oc apply -f nova-custom-sriov.yaml -n openstack

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

68

https://openstack-k8s-operators.github.io/edpm-ansible/playbooks.html

10.4. CREATING A CUSTOM OVS-DPDK COMPUTE SERVICE

You must create a custom OVS-DPDK Compute service for NFV in a Red Hat OpenStack Services on
OpenShift (RHOSO) environment. This service is an Ansible service that is executed on the data plane.
This custom service applies CPU pinning parameters on the OVS-DPDK Compute nodes.

To create the SR-IOV custom service, you must perform these actions:

Create a ConfigMap for CPU pinning that maps a CPU pinning configuration to a specified set
of OVS-DPDK Compute nodes.

Create the actual OVS-DPDK custom service that will implement the ConfigMap on your data
plane.

Prerequisites

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Create a ConfigMap CR that defines a configuration for CPU pinning, and save it to a YAML file
on your workstation, for example, dpdk-pinning.yaml.
Change the values (in boldface) as appropriate for your environment:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cpu-pinning-nova
data:
 25-cpu-pinning-nova.conf: |
 [DEFAULT]
 reserved_host_memory_mb = 4096
 [compute]
 cpu_shared_set = 0-3,24-27
 cpu_dedicated_set = 8-23,32-47
 [neutron]
 physnets = <network_name1>, <network_name2>
 [neutron_physnet_<network_name1>]
 numa_nodes = <number>
 [neutron_physnet_<network_name2>]
 numa_nodes = <number>
 [neutron_tunnel]
 numa_nodes = <number>

cpu_shared_set: enter a comma-separated list or range of physical host CPU numbers
used to provide vCPU inventory, determine the host CPUs that unpinned instances can be
scheduled to, and determine the host CPUs that instance emulator threads should be
offloaded to for instances configured with the share emulator thread policy.

$ oc get openstackdataplaneservice nova-custom-sriov -o yaml -n openstack

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

69

cpu_dedicated_set: enter a comma-separated list or range of physical host CPU numbers
to which processes for pinned instance CPUs can be scheduled. For example, 4-12,^8,15
reserves cores from 4-12 and 15, excluding 8.

<network_name_n_>: replace <network_name1> and <network_name2> with the names
of the physical networks that your gateways are on. (This network is set in the neutron
network provider:*name field.)

<number>: replace <number> with the number of NUMA nodes you are using.

2. Create the ConfigMap object, using the ConfigMap CR file:

Example

3. Create an OpenStackDataPlaneService CR that defines the OVS-DPDK custom service, and
save it to a YAML file on your workstation, for example nova-custom-ovsdpdk.yaml:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: nova-custom-ovsdpdk

4. Add the ConfigMap CR to the custom service, and specify the Secret CR for the cell that the
node set that runs this service connects to:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: nova-custom-ovsdpdk
spec:
 label: dataplane-deployment-nova-custom-ovsdpdk
 configMaps:
 - cpu-pinning-nova
 secrets:
 - nova-cell1-compute-config
 - nova-migration-ssh-key

5. Specify the Ansible commands to create the custom service, by referencing an Ansible playbook
or by including the Ansible play in the playbookContents field:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: nova-custom-ovsdpdk
 playbook: osp.edpm.nova
spec:
 label: dataplane-deployment-nova-custom-ovsdpdk
 configMaps:
 - cpu-pinning-nova
 secrets:
 - nova-cell1-compute-config
 - nova-migration-ssh-key

$ oc create -f dpdk-pinning.yaml -n openstack

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

70

1

playbook: identifies the default playbook available for your service.
In this case, it is the Compute service (nova). To see the listing of default playbooks, see
https://openstack-k8s-operators.github.io/edpm-ansible/playbooks.html.

6. Create the nova-custom-ovsdpdk service:

7. Verify that the custom service is created:

10.5. CREATING A SET OF DATA PLANE NODES WITH PRE-
PROVISIONED NODES

Define an OpenStackDataPlaneNodeSet custom resource (CR) for each logical grouping of pre-
provisioned nodes in your data plane, for example, nodes grouped by hardware, location, or networking.
You can define as many node sets as necessary for your deployment. Each node can be included in only
one OpenStackDataPlaneNodeSet CR. Each node set can be connected to only one Compute cell. By
default, node sets are connected to cell1. If you customize your control plane to include additional
Compute cells, you must specify the cell to which the node set is connected. For more information on
adding Compute cells, see Connecting an OpenStackDataPlaneNodeSet CR to a Compute cell in the
Customizing the Red Hat OpenStack Services on OpenShift deployment guide.

You use the nodeTemplate field to configure the properties that all nodes in an
OpenStackDataPlaneNodeSet CR share, and the nodeTemplate.nodes field for node-specific
properties. Node-specific configurations override the inherited values from the nodeTemplate.

Procedure

1. Create a file on your workstation named openstack_preprovisioned_node_set.yaml to define
the OpenStackDataPlaneNodeSet CR:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-data-plane 1
 namespace: openstack
spec:
 env:
 - name: ANSIBLE_FORCE_COLOR
 value: "True"

The OpenStackDataPlaneNodeSet CR name must be unique, must consist of lower case
alphanumeric characters, - (hyphen) or . (period), must start and end with an alphanumeric
character, and must have a maximum length of 20 characters. Update the name in this
example to a name that reflects the nodes in the set.

2. Specify that the nodes in this set are pre-provisioned:

 preProvisioned: true

$ oc apply -f nova-custom-ovsdpdk.yaml -n openstack

$ oc get openstackdataplaneservice nova-custom-ovsdpdk -o yaml -n openstack

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

71

https://openstack-k8s-operators.github.io/edpm-ansible/playbooks.html
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/customizing_the_red_hat_openstack_services_on_openshift_deployment/assembly_customizing-the-data-plane#proc_connecting-an-OpenStackDataPlaneNodeSet-CR-to-a-Compute-cell_custom_dataplane

3. Add the SSH key secret that you created to enable Ansible to connect to the data plane nodes:

 nodeTemplate:
 ansibleSSHPrivateKeySecret: <secret-key>

Replace <secret-key> with the name of the SSH key Secret CR you created for this node
set in Creating the data plane secrets , for example, dataplane-ansible-ssh-private-key-
secret.

4. Create a Persistent Volume Claim (PVC) on your Red Hat OpenShift Container Platform
(RHOCP) cluster to store logs. For information on how to create a PVC, see Understanding
persistent storage in the RHOCP Storage guide.

5. Enable persistent logging for the data plane nodes:

 nodeTemplate:
 ansibleSSHPrivateKeySecret: <secret-key>
 extraMounts:
 - extraVolType: Logs
 volumes:
 - name: ansible-logs
 persistentVolumeClaim:
 claimName: <pvc_name>
 mounts:
 - name: ansible-logs
 mountPath: "/runner/artifacts"

Replace <pvc_name> with the name of the Persistent Volume Claim (PVC) storage on
your RHOCP cluster.

6. Add the common configuration for the set of nodes in this group under the nodeTemplate
section. Each node in this OpenStackDataPlaneNodeSet inherits this configuration. For
information about the properties you can use to configure common node attributes, see
OpenStackDataPlaneNodeSet CR spec properties.

7. Register the operating system of the nodes that are not registered to the Red Hat Customer
Portal, and enable repositories for your nodes. The following steps demonstrate how to register
your nodes to CDN. For details on how to register your nodes with Red Hat Satellite 6.13, see
Managing Hosts.

a. Create a Secret CR that contains the subscription-manager credentials:

apiVersion: v1
kind: Secret
metadata:
 name: subscription-manager
data:
 username: <base64_encoded_username>
 password: <base64_encoded_password>

b. Create a Secret CR that contains the Red Hat registry credentials:

apiVersion: v1
kind: Secret
metadata:

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/storage/understanding-persistent-storage
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.13/html-single/managing_hosts/index#Registering_Hosts_to_Server_managing-hosts

 name: redhat-registry
data:
 username: <registry_username>
 password: <registry_password>

c. Specify the Secret CRs to use to source the usernames and passwords:

 nodeTemplate:
 ansible:
 ...
 ansibleVarsFrom:
 - prefix: subscription_manager_
 secretRef:
 name: subscription-manager
 - prefix: registry_
 secretRef:
 name: redhat-registry
 ansibleVars:
 edpm_bootstrap_command: |
 subscription-manager register --username {{ subscription_manager_username }} --
password {{ subscription_manager_password }}
 subscription-manager release --set=9.4
 subscription-manager repos --disable=*
 subscription-manager repos --enable=rhel-9-for-x86_64-baseos-eus-rpms --
enable=rhel-9-for-x86_64-appstream-eus-rpms --enable=rhel-9-for-x86_64-
highavailability-eus-rpms --enable=fast-datapath-for-rhel-9-x86_64-rpms --enable=rhoso-
18-beta-for-rhel-9-x86_64-rpms --enable=rhceph-7-tools-for-rhel-9-x86_64-rpms
 podman login -u {{ registry_username }} -p {{ registry_password }} registry.redhat.io

For a complete list of the Red Hat Customer Portal registration commands, see
https://access.redhat.com/solutions/253273. For information about how to log into
registry.redhat.io, see https://access.redhat.com/RegistryAuthentication#creating-registry-
service-accounts-6.

8. Define each node in this node set:

 nodes:
 edpm-compute-0: 1
 hostName: edpm-compute-0
 networks: 2
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.100 3
 - name: internalapi
 subnetName: subnet1
 fixedIP: 172.17.0.100
 - name: storage
 subnetName: subnet1
 fixedIP: 172.18.0.100
 - name: tenant
 subnetName: subnet1
 fixedIP: 172.19.0.100
 ansible:
 ansibleHost: 192.168.122.100

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

73

https://access.redhat.com/solutions/253273
https://access.redhat.com/RegistryAuthentication#creating-registry-service-accounts-6

1

2

3

4

 ansibleUser: cloud-admin
 ansibleVars: 4
 fqdn_internal_api: edpm-compute-0.example.com
 edpm-compute-1:
 hostName: edpm-compute-1
 networks:
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.101
 - name: internalapi
 subnetName: subnet1
 fixedIP: 172.17.0.101
 - name: storage
 subnetName: subnet1
 fixedIP: 172.18.0.101
 - name: tenant
 subnetName: subnet1
 fixedIP: 172.19.0.101
 ansible:
 ansibleHost: 192.168.122.101
 ansibleUser: cloud-admin
 ansibleVars:
 fqdn_internal_api: edpm-compute-1.example.com

The node definition reference, for example, edpm-compute-0. Each node in the node set
must have a node definition.

Defines the IPAM and the DNS records for the node.

Defines the predictable IP addresses for each network.

Node-specific Ansible variables that customize the node.

NOTE

Nodes defined within the nodes section can configure the same Ansible
variables that are configured in the nodeTemplate section. Where an Ansible
variable is configured for both a specific node and within the nodeTemplate
section, the node-specific values override those from the nodeTemplate
section.

You do not need to replicate all the nodeTemplate Ansible variables for a
node to override the default and set some node-specific values. You only
need to configure the Ansible variables you want to override for the node.

Many ansibleVars include edpm in the name, which stands for "External
Data Plane Management".

For more information, see:

OpenStackDataPlaneNodeSet CR properties

Network interface configuration options

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

74

Example custom network interfaces for NFV

9. Save the openstack_preprovisioned_node_set.yaml definition file.

10. Create the data plane resources:

$ oc create -f openstack_preprovisioned_node_set.yaml -n openstack

11. Verify that the data plane resources have been created:

$ oc get openstackdataplanenodeset -n openstack
NAME STATUS MESSAGE
openstack-data-plane False Deployment not started

For information about the meaning of the returned status, see Data plane conditions and states .

12. Verify that the Secret resource was created for the node set:

$ oc get secret | grep openstack-data-plane
dataplanenodeset-openstack-data-plane Opaque 1 3m50s

13. Verify the services were created:

$ oc get openstackdataplaneservice -n openstack
NAME AGE
configure-network 6d7h
configure-os 6d6h
install-os 6d6h
run-os 6d6h
validate-network 6d6h
ovn 6d6h
libvirt 6d6h
nova 6d6h
telemetry 6d6h

10.5.1. Example OpenStackDataPlaneNodeSet CR for pre-provisioned nodes

The following example OpenStackDataPlaneNodeSet CR creates a node set from pre-provisioned
Compute nodes with some node-specific configuration. Update the name of the
OpenStackDataPlaneNodeSet CR in this example to a name that reflects the nodes in the set. The
OpenStackDataPlaneNodeSet CR name must be unique, must consist of lower case alphanumeric
characters, - (hyphen) or . (period), must start and end with an alphanumeric character, and must have a
maximum length of 20 characters. Update the name in this example to a name that reflects the nodes in
the set.

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-data-plane
 namespace: openstack
spec:
 env: 1
 - name: ANSIBLE_FORCE_COLOR
 value: "True"

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

75

 services:
 - bootstrap
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - ssh-known-hosts
 - run-os
 - reboot-os
 - install-certs
 - ovn
 - neutron-metadata
 - libvirt
 - nova
 - telemetry
 networkAttachments:
 - ctlplane
 preProvisioned: true 2
 nodeTemplate: 3
 ansibleSSHPrivateKeySecret: dataplane-ansible-ssh-private-key-secret 4
 extraMounts:
 - extraVolType: Logs
 volumes:
 - name: ansible-logs
 persistentVolumeClaim:
 claimName: <pvc_name>
 mounts:
 - name: ansible-logs
 mountPath: "/runner/artifacts"
 managementNetwork: ctlplane
 ansible:
 ansibleUser: cloud-admin 5
 ansiblePort: 22
 ansibleVarsFrom:
 - prefix: subscription_manager_
 secretRef:
 name: subscription-manager
 - prefix: registry_
 secretRef:
 name: redhat-registry
 ansibleVars: 6
 edpm_bootstrap_command: |
 subscription-manager register --username {{ subscription_manager_username }} --password {{
subscription_manager_password }}
 subscription-manager release --set=9.4
 subscription-manager repos --disable=*
 subscription-manager repos --enable=rhel-9-for-x86_64-baseos-eus-rpms --enable=rhel-9-for-
x86_64-appstream-eus-rpms --enable=rhel-9-for-x86_64-highavailability-eus-rpms --enable=fast-
datapath-for-rhel-9-x86_64-rpms --enable=rhoso-18.0-for-rhel-9-x86_64-rpms --enable=rhceph-7-
tools-for-rhel-9-x86_64-rpms
 podman login -u {{ registry_username }} -p {{ registry_password }} registry.redhat.io
 edpm_bootstrap_release_version_package: []
 edpm_network_config_os_net_config_mappings:
 edpm-compute-1:
 nic1: 52:54:04:60:55:22 7

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

76

 neutron_physical_bridge_name: br-ex
 neutron_public_interface_name: eth0
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_cidr }}
 routes: {{ ctlplane_host_routes }}
 members:
 - type: interface
 name: nic1
 mtu: {{ min_viable_mtu }}
 # force the MAC address of the bridge to this interface
 primary: true
 {% for network in nodeset_networks %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
 {% endfor %}
 nodes:
 edpm-compute-0: 8
 hostName: edpm-compute-0
 ansible:
 ansibleHost: 192.168.122.100
 ansibleUser: cloud-admin
 ansibleVars:
 fqdn_internal_api: edpm-compute-0.example.com
 networks:
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.100
 - name: internalapi
 subnetName: subnet1
 fixedIP: 172.17.0.100
 - name: storage
 subnetName: subnet1
 fixedIP: 172.18.0.100
 - name: tenant
 subnetName: subnet1

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

77

1

2

3

4

5

6

7

8

 fixedIP: 172.19.0.100
 edpm-compute-1:
 hostName: edpm-compute-1
 ansible:
 ansibleHost: 192.168.122.101
 ansibleUser: cloud-admin
 ansibleVars:
 fqdn_internal_api: edpm-compute-1.example.com
 networks:
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.101
 - name: internalapi
 subnetName: subnet1
 fixedIP: 172.17.0.101
 - name: storage
 subnetName: subnet1
 fixedIP: 172.18.0.101
 - name: tenant
 subnetName: subnet1
 fixedIP: 172.19.0.101

Optional: A list of environment variables to pass to the pod.

Specify that the nodes in this set are pre-provisioned.

The common configuration to apply to all nodes in this set of nodes.

The name of the secret that you created in Creating the data plane secrets .

The user associated with the secret you created in Creating the data plane secrets .

The Ansible variables that customize the set of nodes. For a list of Ansible variables that you can
use, see https://openstack-k8s-operators.github.io/edpm-ansible/.

The MAC address assigned to the NIC to use for network configuration on the Compute node.

The node definition reference, for example, edpm-compute-0. Each node in the node set must
have a node definition.

10.6. CREATING A SET OF DATA PLANE NODES WITH
UNPROVISIONED NODES

Define an OpenStackDataPlaneNodeSet custom resource (CR) for each logical grouping of
unprovisioned nodes in your data plane, for example, nodes grouped by hardware, location, or
networking. You can define as many node sets as necessary for your deployment. Each node can be
included in only one OpenStackDataPlaneNodeSet CR. Each node set can be connected to only one
Compute cell. By default, node sets are connected to cell1. If you customize your control plane to
include additional Compute cells, you must specify the cell to which the node set is connected. For more
information on adding Compute cells, see Connecting an OpenStackDataPlaneNodeSet CR to a
Compute cell in the Customizing the Red Hat OpenStack Services on OpenShift deployment guide.

You use the nodeTemplate field to configure the properties that all nodes in an

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

78

https://openstack-k8s-operators.github.io/edpm-ansible/
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/customizing_the_red_hat_openstack_services_on_openshift_deployment/assembly_customizing-the-data-plane#proc_connecting-an-OpenStackDataPlaneNodeSet-CR-to-a-Compute-cell_custom_dataplane

1

You use the nodeTemplate field to configure the properties that all nodes in an
OpenStackDataPlaneNodeSet CR share, and the nodeTemplate.nodes field for node-specific
properties. Node-specific configurations override the inherited values from the nodeTemplate.

For more information about provisioning bare-metal nodes, see Provisioning bare-metal data plane
nodes.

Prerequisites

Cluster Baremetal Operator (CBO) is installed and configured for provisioning. For more
information, see Provisioning bare-metal data plane nodes .

A BareMetalHost CR is registered and inspected for each bare-metal data plane node. Each
bare-metal node must be in the Available state after inspection. For more information about
configuring bare-metal nodes, see Bare metal configuration in the Red Hat OpenShift
Container Platform (RHOCP) Postinstallation configuration guide.

Procedure

1. Create a file on your workstation named openstack_unprovisioned_node_set.yaml to define
the OpenStackDataPlaneNodeSet CR:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-data-plane 1
 namespace: openstack
spec:
 tlsEnabled: true
 env:
 - name: ANSIBLE_FORCE_COLOR
 value: "True"

The OpenStackDataPlaneNodeSet CR name must be unique, must consist of lower case
alphanumeric characters, - (hyphen) or . (period), must start and end with an alphanumeric
character, and must have a maximum length of 20 characters. Update the name in this
example to a name that reflects the nodes in the set.

2. Define the baremetalSetTemplate field to describe the configuration of the bare-metal nodes:

 preProvisioned: false
 baremetalSetTemplate:
 deploymentSSHSecret: dataplane-ansible-ssh-private-key-secret
 bmhNamespace: <bmh_namespace>
 cloudUserName: <ansible_ssh_user>
 bmhLabelSelector:
 app: <bmh_label>
 ctlplaneInterface: <interface>
 dnsSearchDomains:
 - osptest.openstack.org

Replace <bmh_namespace> with the namespace defined in the corresponding
BareMetalHost CR for the node.

Replace <ansible_ssh_user> with the username of the Ansible SSH user.

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

79

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/postinstallation_configuration/post-install-bare-metal-configuration

Replace <bmh_label> with the label defined in the corresponding BareMetalHost CR for
the node.

Replace <interface> with the control plane interface the node connects to, for example,
enp6s0.

3. The BMO manages BareMetalHost CRs in the openshift-machine-api namespace by default.
You must update the Provisioning CR to watch all namespaces:

$ oc patch provisioning provisioning-configuration --type merge -p '{"spec":
{"watchAllNamespaces": true }}'

4. Add the SSH key secret that you created to enable Ansible to connect to the data plane nodes:

 nodeTemplate:
 ansibleSSHPrivateKeySecret: <secret-key>

Replace <secret-key> with the name of the SSH key Secret CR you created in Creating
the data plane secrets, for example, dataplane-ansible-ssh-private-key-secret.

5. Create a Persistent Volume Claim (PVC) on your RHOCP cluster to store logs. For information
about how to create a PVC, see Understanding persistent storage in the RHOCP Storage guide.

6. Enable persistent logging for the data plane nodes:

 nodeTemplate:
 ansibleSSHPrivateKeySecret: <secret-key>
 extraMounts:
 - extraVolType: Logs
 volumes:
 - name: ansible-logs
 persistentVolumeClaim:
 claimName: <pvc_name>
 mounts:
 - name: ansible-logs
 mountPath: "/runner/artifacts"

Replace <pvc_name> with the name of the Persistent Volume Claim (PVC) storage on
your RHOCP cluster.

7. Add the common configuration for the set of nodes in this group under the nodeTemplate
section. Each node in this OpenStackDataPlaneNodeSet inherits this configuration.
For more information, see:

OpenStackDataPlaneNodeSet CR properties

Network interface configuration options

Example custom network interfaces for NFV

8. Define each node in this node set:

 nodes:
 edpm-compute-0: 1
 hostName: edpm-compute-0

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

80

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/storage/understanding-persistent-storage

1

2

3

4

 networks: 2
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.100 3
 - name: internalapi
 subnetName: subnet1
 - name: storage
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1
 ansible:
 ansibleHost: 192.168.122.100
 ansibleUser: cloud-admin
 ansibleVars: 4
 fqdn_internal_api: edpm-compute-0.example.com
 edpm-compute-1:
 hostName: edpm-compute-1
 networks:
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.101
 - name: internalapi
 subnetName: subnet1
 - name: storage
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1
 ansible:
 ansibleHost: 192.168.122.101
 ansibleUser: cloud-admin
 ansibleVars:
 fqdn_internal_api: edpm-compute-1.example.com

The node definition reference, for example, edpm-compute-0. Each node in the node set
must have a node definition.

Defines the IPAM and the DNS records for the node.

Defines the predictable IP addresses for each network.

Node-specific Ansible variables that customize the node.

NOTE

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

81

NOTE

Nodes defined within the nodes section can configure the same Ansible
variables that are configured in the nodeTemplate section. Where an Ansible
variable is configured for both a specific node and within the nodeTemplate
section, the node-specific values override those from the nodeTemplate
section.

You do not need to replicate all the nodeTemplate Ansible variables for a
node to override the default and set some node-specific values. You only
need to configure the Ansible variables you want to override for the node.

Many ansibleVars include edpm in the name, which stands for "External
Data Plane Management".

For information about the properties you can use to configure node attributes, see
OpenStackDataPlaneNodeSet CR properties.

9. Save the openstack_unprovisioned_node_set.yaml definition file.

10. Create the data plane resources:

$ oc create -f openstack_unprovisioned_node_set.yaml -n openstack

11. Verify that the data plane resources have been created:

$ oc get openstackdataplanenodeset -n openstack
NAME STATUS MESSAGE
openstack-data-plane False Deployment not started

For information on the meaning of the returned status, see Data plane conditions and states.

12. Verify that the Secret resource was created for the node set:

$ oc get secret -n openstack | grep openstack-data-plane
dataplanenodeset-openstack-data-plane Opaque 1 3m50s

13. Verify the services were created:

$ oc get openstackdataplaneservice -n openstack
NAME AGE
configure-network 6d7h
configure-os 6d6h
install-os 6d6h
run-os 6d6h
validate-network 6d6h
ovn 6d6h
libvirt 6d6h
nova 6d6h
telemetry 6d6h

10.6.1. Example OpenStackDataPlaneNodeSet CR for unprovisioned nodes

The following example OpenStackDataPlaneNodeSet CR creates a node set from unprovisioned

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

82

Compute nodes with some node-specific configuration. The unprovisioned Compute nodes are
provisioned when the node set is created. Update the name of the OpenStackDataPlaneNodeSet CR
in this example to a name that reflects the nodes in the set. The OpenStackDataPlaneNodeSet CR
name must be unique, must consist of lower case alphanumeric characters, - (hyphen) or . (period), must
start and end with an alphanumeric character, and must have a maximum length of 20 characters.
Update the name in this example to a name that reflects the nodes in the set.

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-data-plane
 namespace: openstack
spec:
 env: 1
 - name: ANSIBLE_FORCE_COLOR
 value: "True"
 services:
 - bootstrap
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - ssh-known-hosts
 - run-os
 - reboot-os
 - install-certs
 - ovn
 - neutron-metadata
 - libvirt
 - nova
 - telemetry
 networkAttachments:
 - ctlplane
 preProvisioned: false 2
 baremetalSetTemplate: 3
 deploymentSSHSecret: dataplane-ansible-ssh-private-key-secret
 bmhNamespace: openshift-machine-api 4
 cloudUserName: <ansible_ssh_user>
 bmhLabelSelector:
 app: openstack 5
 ctlplaneInterface: enp1s0
 dnsSearchDomains:
 - osptest.openstack.org
 nodeTemplate: 6
 ansibleSSHPrivateKeySecret: dataplane-ansible-ssh-private-key-secret 7
 extraMounts:
 - extraVolType: Logs
 volumes:
 - name: ansible-logs
 persistentVolumeClaim:
 claimName: <pvc_name>
 mounts:
 - name: ansible-logs
 mountPath: "/runner/artifacts"
 managementNetwork: ctlplane

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

83

 ansible:
 ansibleUser: cloud-admin 8
 ansiblePort: 22
 ansibleVarsFrom:
 - prefix: subscription_manager_
 secretRef:
 name: subscription-manager
 - prefix: registry_
 secretRef:
 name: redhat-registry
 ansibleVars: 9
 edpm_bootstrap_command: |
 subscription-manager register --username {{ subscription_manager_username }} --password {{
subscription_manager_password }}
 subscription-manager release --set=9.4
 subscription-manager repos --disable=*
 subscription-manager repos --enable=rhel-9-for-x86_64-baseos-eus-rpms --enable=rhel-9-for-
x86_64-appstream-eus-rpms --enable=rhel-9-for-x86_64-highavailability-eus-rpms --enable=fast-
datapath-for-rhel-9-x86_64-rpms --enable=rhoso-18.0-for-rhel-9-x86_64-rpms --enable=rhceph-7-
tools-for-rhel-9-x86_64-rpms
 podman login -u {{ registry_username }} -p {{ registry_password }} registry.redhat.io
 edpm_bootstrap_release_version_package: []
 edpm_network_config_os_net_config_mappings:
 edpm-compute-0:
 nic1: 52:54:04:60:55:22 10
 edpm-compute-1:
 nic1: 52:54:04:60:55:22
 neutron_physical_bridge_name: br-ex
 neutron_public_interface_name: eth0
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_cidr }}
 routes: {{ ctlplane_host_routes }}
 members:
 - type: interface
 name: nic1
 mtu: {{ min_viable_mtu }}
 # force the MAC address of the bridge to this interface
 primary: true
 {% for network in nodeset_networks %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

84

1

2

3

4

5

 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
 {% endfor %}
 nodes:
 edpm-compute-0: 11
 hostName: edpm-compute-0
 ansible:
 ansibleHost: 192.168.122.100
 ansibleUser: cloud-admin
 ansibleVars:
 fqdn_internal_api: edpm-compute-0.example.com
 networks: 12
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.100 13
 - name: internalapi
 subnetName: subnet1
 - name: storage
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1
 edpm-compute-1:
 hostName: edpm-compute-1
 ansible: 14
 ansibleHost: 192.168.122.101
 ansibleUser: cloud-admin
 ansibleVars:
 fqdn_internal_api: edpm-compute-1.example.com
 networks:
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.101
 - name: internalapi
 subnetName: subnet1
 - name: storage
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1

Optional: A list of environment variables to pass to the pod.

Specify that the nodes in this set are unprovisioned and must be provisioned when creating the
resource.

Configure the bare-metal template for bare-metal nodes that must be provisioned when creating
the resource.

The namespace defined in the corresponding BareMetalHost CR for the node.

The label defined in the corresponding BareMetalHost CR for the node.

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

85

6

7

8

9

10

11

12

13 14

The common configuration to apply to all nodes in this set of nodes.

The name of the secret that you created in Creating the data plane secrets .

The user associated with the secret you created in Creating the data plane secrets .

The Ansible variables that customize the set of nodes. For a list of Ansible variables that you can
use, see https://openstack-k8s-operators.github.io/edpm-ansible/.

The MAC address assigned to the NIC to use for network configuration on the Compute node.

The node definition reference, for example, edpm-compute-0. Each node in the node set must
have a node definition.

Defines the IPAM and the DNS records for the node.

Defines the predictable IP addresses for each network.

10.6.2. Provisioning bare-metal data plane nodes

Provisioning bare-metal nodes on the data plane is supported with the Red Hat OpenShift Container
Platform (RHOCP) Cluster Baremetal Operator (CBO). The CBO deploys the components required to
provision bare-metal nodes within the RHOCP cluster, including the Bare Metal Operator (BMO) and
Ironic containers.

The BMO manages the available hosts on clusters and performs the following operations:

Inspects node hardware details and reports them to the corresponding BareMetalHost CR. This
includes information about CPUs, RAM, disks, and NICs.

Provisions nodes with a specific image.

Cleans node disk contents before and after provisioning.

The availability of the CBO depends on which of the following installation methods was used for the
RHOCP cluster:

Assisted Installer

You can enable CBO on clusters installed with the Assisted Installer, and you can manually add the
provisioning network to the Assisted Installer cluster after installation.

Installer-provisioned infrastructure

CBO is enabled by default on RHOCP clusters that are installed with the bare-metal installer-
provisioned infrastructure. You can configure installer-provisioned clusters with a provisioning
network to enable both virtual media and network boot installations. Alternatively, you can configure
an installer-provisioned cluster without a provisioning network so that only virtual media provisioning
is available. For more information about installer-provisioned clusters on bare metal, see Deploying
installer-provisioned clusters on bare metal.

User-provisioned infrastructure

You can activate CBO on RHOCP clusters installed with user-provisioned infrastructure by creating
a Provisioning CR. You cannot add a provisioning network to a user-provisioned cluster. For more
information about how to create a Provisioning CR, see Scaling a user-provisioned cluster with the
Bare Metal Operator.

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

86

https://openstack-k8s-operators.github.io/edpm-ansible/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/installing/deploying-installer-provisioned-clusters-on-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/installing/installing-on-bare-metal#scaling-a-user-provisioned-cluster-with-the-bare-metal-operator

10.7. OPENSTACKDATAPLANENODESET CR SPEC PROPERTIES

The following sections detail the OpenStackDataPlaneNodeSet CR spec properties you can configure.

10.7.1. nodeTemplate

Defines the common attributes for the nodes in this OpenStackDataPlaneNodeSet. You can override
these common attributes in the definition for each individual node.

Table 10.1. nodeTemplate properties

Field Description

ansibleSSHPrivateKeySecret Name of the private SSH key secret that contains the private
SSH key for connecting to nodes.

Secret name format: Secret.data.ssh-privatekey

For more information, see Creating an SSH authentication
secret.

Default: dataplane-ansible-ssh-private-key-secret

managementNetwork Name of the network to use for management (SSH/Ansible).
Default: ctlplane

networks Network definitions for the OpenStackDataPlaneNodeSet.

ansible Ansible configuration options. For more information, see
ansible properties.

extraMounts The files to mount into an Ansible Execution Pod.

userData UserData configuration for the
OpenStackDataPlaneNodeSet.

networkData NetworkData configuration for the
OpenStackDataPlaneNodeSet.

10.7.2. nodes

Defines the node names and node-specific attributes for the nodes in this
OpenStackDataPlaneNodeSet. Overrides the common attributes defined in the nodeTemplate.

Table 10.2. nodes properties

Field Description

ansible Ansible configuration options. For more information, see
ansible properties.

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

87

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/nodes/working-with-pods#nodes-pods-secrets-creating-ssh_nodes-pods-secrets

extraMounts The files to mount into an Ansible Execution Pod.

hostName The node name.

managementNetwork Name of the network to use for management (SSH/Ansible).

networkData NetworkData configuration for the node.

networks Instance networks.

preprovisioningNetworkDataName NetworkData secret name in the local namespace for pre-
provisioning.

userData Node-specific user data.

Field Description

10.7.3. ansible

Defines the group of Ansible configuration options.

Table 10.3. ansible properties

Field Description

ansibleUser The user associated with the secret you created in Creating the
data plane secrets. Default: rhel-user

ansibleHost SSH host for the Ansible connection.

ansiblePort SSH port for the Ansible connection.

ansibleVars The Ansible variables that customize the set of nodes. You can
use this property to configure any custom Ansible variable,
including the Ansible variables available for each edpm-ansible
role. For a complete list of Ansible variables by role, see the
edpm-ansible documentation.

NOTE

The ansibleVars parameters that you can
configure for an
OpenStackDataPlaneNodeSet CR are
determined by the services defined for the
OpenStackDataPlaneNodeSet. The
OpenStackDataPlaneService CRs call the
Ansible playbooks from the edpm-ansible
playbook collection, which include the roles that
are executed as part of the data plane service.

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

88

https://openstack-k8s-operators.github.io/edpm-ansible/
https://github.com/openstack-k8s-operators/edpm-ansible/tree/main/playbooks

ansibleVarsFrom A list of sources to populate Ansible variables from. Values
defined by an AnsibleVars with a duplicate key take
precedence. For more information, see ansibleVarsFrom
properties.

Field Description

10.7.4. ansibleVarsFrom

Defines the list of sources to populate Ansible variables from.

Table 10.4. ansibleVarsFrom properties

Field Description

prefix An optional identifier to prepend to each key in the ConfigMap.
Must be a C_IDENTIFIER.

configMapRef The ConfigMap CR to select the ansibleVars from.

secretRef The Secret CR to select the ansibleVars from.

10.8. NETWORK INTERFACE CONFIGURATION OPTIONS

Use the following tables to understand the available options for configuring network interfaces for
Red Hat OpenStack Services on OpenShift (RHOSO) environments.

interface

vlan

ovs_bridge

Network interface bonding

ovs_bond

LACP with OVS bonding modes

linux_bond

routes

10.8.1. interface

Defines a single network interface. The network interface name uses either the actual interface name
(eth0, eth1, enp0s25) or a set of numbered interfaces (nic1, nic2, nic3). The network interfaces of
hosts within a role do not have to be exactly the same when you use numbered interfaces such as nic1

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

89

and nic2, instead of named interfaces such as eth0 and eno2. For example, one host might have
interfaces em1 and em2, while another has eno1 and eno2, but you can refer to the NICs of both hosts
as nic1 and nic2.

The order of numbered interfaces corresponds to the order of named network interface types:

ethX interfaces, such as eth0, eth1, and so on.
Names appear in this format when consistent device naming is turned off in udev.

enoX and emX interfaces, such as eno0, eno1, em0, em1, and so on.
These are usually on-board interfaces.

enX and any other interfaces, sorted alpha numerically, such as enp3s0, enp3s1, ens3, and so
on.
These are usually add-on interfaces.

The numbered NIC scheme includes only live interfaces, for example, if the interfaces have a cable
attached to the switch. If you have some hosts with four interfaces and some with six interfaces, use
nic1 to nic4 and attach only four cables on each host.

Table 10.5. interface options

Option Default Description

name Name of the interface. The
network interface name uses
either the actual interface name
(eth0, eth1, enp0s25) or a set
of numbered interfaces (nic1,
nic2, nic3).

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the interface.

routes A list of routes assigned to the
interface. For more information,
see Section 10.8.7, “routes”.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the interface as the
primary interface. Required only
when the interface is a member
of a bond.

persist_mapping False Write the device alias
configuration instead of the
system names.

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

90

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the interface.

ethtool_opts Set this option to "rx-flow-hash
udp4 sdfn" to improve
throughput when you use VXLAN
on certain NICs.

Option Default Description

Example

10.8.2. vlan

Defines a VLAN. Use the VLAN ID and subnet passed from the parameters section.

Table 10.6. vlan options

Option Default Description

vlan_id The VLAN ID.

device The parent device to attach the
VLAN. Use this parameter when
the VLAN is not a member of an
OVS bridge. For example, use this
parameter to attach the VLAN to
a bonded interface device.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

...
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: interface
 name: nic2
 ...

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

91

addresses A list of IP addresses assigned to
the VLAN.

routes A list of routes assigned to the
VLAN. For more information, see
Section 10.8.7, “routes”.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the VLAN as the primary
interface.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the VLAN.

Option Default Description

Example

...
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 ...
 members:
 - type: vlan
 device: nic{{ loop.index + 1 }}
 mtu: {{ lookup(vars, networks_lower[network] ~ _mtu) }}
 vlan_id: {{ lookup(vars, networks_lower[network] ~ _vlan_id) }}
 addresses:
 - ip_netmask:
 {{ lookup(vars, networks_lower[network] ~ _ip) }}/{{ lookup(vars, networks_lower[network]
~ _cidr) }}
 routes: {{ lookup(vars, networks_lower[network] ~ _host_routes) }}
...

10.8.3. ovs_bridge

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

92

Defines a bridge in Open vSwitch (OVS), which connects multiple interface, ovs_bond, and vlan
objects together.

The network interface type, ovs_bridge, takes a parameter name.

IMPORTANT

The ovs_bridge interface is not recommended for control plane network traffic. The
OVS bridge connects to the Networking service (neutron) server to obtain configuration
data. If the OpenStack control traffic, typically the Control Plane and Internal API
networks, is placed on an OVS bridge, then connectivity to the neutron server is lost
whenever you upgrade OVS, or the OVS bridge is restarted by the admin user or process.
This causes some downtime. If downtime is not acceptable in these circumstances, then
you must place the Control group networks on a separate interface or bond rather than
on an OVS bridge:

You can achieve a minimal setting when you put the Internal API network on a
VLAN on the provisioning interface and the OVS bridge on a second interface.

To implement bonding, you need at least two bonds (four network interfaces).
Place the control group on a Linux bond. If the switch does not support LACP
fallback to a single interface for PXE boot, then this solution requires at least five
NICs.

NOTE

If you have multiple bridges, you must use distinct bridge names other than accepting the
default name of bridge_name. If you do not use distinct names, then during the converge
phase, two network bonds are placed on the same bridge.

Table 10.7. ovs_bridge options

Option Default Description

name Name of the bridge.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bridge.

routes A list of routes assigned to the
bridge. For more information, see
Section 10.8.7, “routes”.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

93

members A sequence of interface, VLAN,
and bond objects that you want
to use in the bridge.

ovs_options A set of options to pass to OVS
when creating the bridge.

ovs_extra A set of options to to set as the
OVS_EXTRA parameter in the
network configuration file of the
bridge.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bridge.

Option Default Description

Example

...
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: br-bond
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 members:
 - type: ovs_bond
 name: bond1
 mtu: {{ min_viable_mtu }}
 ovs_options: {{ bound_interface_ovs_options }}
 members:
 - type: interface
 name: nic2

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

94

 mtu: {{ min_viable_mtu }}
 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu }}
 ...

10.8.4. Network interface bonding

You can bundle multiple physical NICs together to form a single logical channel known as a bond. You
can configure bonds to provide redundancy for high availability systems or increased throughput.

Red Hat OpenStack Platform supports Open vSwitch (OVS) kernel bonds, OVS-DPDK bonds, and
Linux kernel bonds.

Table 10.8. Supported interface bonding types

Bond type Type value Allowed bridge types Allowed members

OVS kernel bonds ovs_bond ovs_bridge interface

OVS-DPDK bonds ovs_dpdk_bond ovs_user_bridge ovs_dpdk_port

Linux kernel bonds linux_bond ovs_bridge interface

IMPORTANT

Do not combine ovs_bridge and ovs_user_bridge on the same node.

10.8.4.1. ovs_bond

Defines a bond in Open vSwitch (OVS) to join two or more interfaces together. This helps with
redundancy and increases bandwidth.

Table 10.9. ovs_bond options

Option Default Description

name Name of the bond.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bond.

routes A list of routes assigned to the
bond. For more information, see
Section 10.8.7, “routes”.

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

95

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the interface as the
primary interface.

members A sequence of interface objects
that you want to use in the bond.

ovs_options A set of options to pass to OVS
when creating the bond. For more
information, see Table 10.10,
“ovs_options parameters for
OVS bonds”.

ovs_extra A set of options to set as the
OVS_EXTRA parameter in the
network configuration file of the
bond.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bond.

Option Default Description

Table 10.10. ovs_options parameters for OVS bonds

ovs_option Description

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

96

bond_mode=balance-slb Source load balancing (slb) balances flows based on
source MAC address and output VLAN, with periodic
rebalancing as traffic patterns change. When you
configure a bond with the balance-slb bonding
option, there is no configuration required on the
remote switch. The Networking service (neutron)
assigns each source MAC and VLAN pair to a link and
transmits all packets from that MAC and VLAN
through that link. A simple hashing algorithm based
on source MAC address and VLAN number is used,
with periodic rebalancing as traffic patterns change.
The balance-slb mode is similar to mode 2 bonds
used by the Linux bonding driver. You can use this
mode to provide load balancing even when the switch
is not configured to use LACP.

bond_mode=active-backup When you configure a bond using active-backup
bond mode, the Networking service keeps one NIC in
standby. The standby NIC resumes network
operations when the active connection fails. Only one
MAC address is presented to the physical switch. This
mode does not require switch configuration, and
works when the links are connected to separate
switches. This mode does not provide load balancing.

lacp=[active | passive | off] Controls the Link Aggregation Control Protocol
(LACP) behavior. Only certain switches support
LACP. If your switch does not support LACP, use
bond_mode=balance-slb or
bond_mode=active-backup.

other-config:lacp-fallback-ab=true Set active-backup as the bond mode if LACP fails.

other_config:lacp-time=[fast | slow] Set the LACP heartbeat to one second (fast) or 30
seconds (slow). The default is slow.

other_config:bond-detect-mode=[miimon |
carrier]

Set the link detection to use miimon heartbeats
(miimon) or monitor carrier (carrier). The default is
carrier.

other_config:bond-miimon-interval=100 If using miimon, set the heartbeat interval
(milliseconds).

bond_updelay=1000 Set the interval (milliseconds) that a link must be up
to be activated to prevent flapping.

ovs_option Description

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

97

other_config:bond-rebalance-interval=10000 Set the interval (milliseconds) that flows are
rebalancing between bond members. Set this value
to zero to disable flow rebalancing between bond
members.

ovs_option Description

Example - OVS bond

...
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 ...
 members:
 - type: ovs_bond
 name: bond1
 mtu: {{ min_viable_mtu }}
 ovs_options: {{ bond_interface_ovs_options }}
 members:
 - type: interface
 name: nic2
 mtu: {{ min_viable_mtu }}
 primary: true
 - type: interface
 name: nic3
 mtu: {{ min_viable_mtu }}

Example - OVS DPDK bond

In this example, a bond is created as part of an OVS user space bridge:

 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 ...
 members:
 - type: ovs_user_bridge
 name: br-dpdk0
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond0
 rx_queue: {{ num_dpdk_interface_rx_queues }}
 members:

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

98

 - type: ovs_dpdk_port
 name: dpdk0
 members:
 - type: interface
 name: nic4
 - type: ovs_dpdk_port
 name: dpdk1
 members:
 - type: interface
 name: nic5

10.8.5. LACP with OVS bonding modes

You can use Open vSwitch (OVS) bonds with the optional Link Aggregation Control Protocol (LACP).
LACP is a negotiation protocol that creates a dynamic bond for load balancing and fault tolerance.

Use the following table to understand support compatibility for OVS kernel and OVS-DPDK bonded
interfaces in conjunction with LACP options.

IMPORTANT

On control and storage networks, Red Hat recommends that you use Linux bonds with
VLAN and LACP, because OVS bonds carry the potential for control plane disruption
that can occur when OVS or the neutron agent is restarted for updates, hot fixes, and
other events. The Linux bond-LACP-VLAN configuration provides NIC management
without the OVS disruption potential.

Table 10.11. LACP options for OVS kernel and OVS-DPDK bond modes

Objective OVS bond mode Compatible LACP
options

Notes

High availability (active-
passive)

active-backup active, passive, or off

Increased throughput
(active-active)

balance-slb active, passive, or off
Performance is
affected by
extra parsing
per packet.

There is a
potential for
vhost-user lock
contention.

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

99

balance-tcp active or passive
As with
balance-slb,
performance is
affected by
extra parsing
per packet and
there is a
potential for
vhost-user lock
contention.

LACP must be
configured and
enabled.

Set lb-output-
action=true.
For example:

ovs-vsctl
set port
<bond
port>
other_confi
g:lb-
output-
action=true

10.8.6. linux_bond

Defines a Linux bond that joins two or more interfaces together. This helps with redundancy and
increases bandwidth. Ensure that you include the kernel-based bonding options in the
bonding_options parameter.

Table 10.12. linux_bond options

Option Default Description

name Name of the bond.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bond.

routes A list of routes assigned to the
bond. See Section 10.8.7, “routes”.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

100

members A sequence of interface objects
that you want to use in the bond.

bonding_options A set of options when creating
the bond. See
bonding_options parameters
for Linux bonds.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bond.

Option Default Description

bonding_options parameters for Linux bonds

The bonding_options parameter sets the specific bonding options for the Linux bond. See the Linux
bonding examples that follow this table:

bonding_options Description

mode Sets the bonding mode, which in the example is
802.3ad or LACP mode. For more information about
Linux bonding modes, see Configuring a network
bond in Red Hat Enterprise Linux 9, Configuring and
managing networking.

lacp_rate Defines whether LACP packets are sent every 1
second, or every 30 seconds.

updelay Defines the minimum amount of time that an
interface must be active before it is used for traffic.
This minimum configuration helps to mitigate port
flapping outages.

miimon The interval in milliseconds that is used for
monitoring the port state using the MIIMON
functionality of the driver.

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

101

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_and_managing_networking/configuring-network-bonding_configuring-and-managing-networking#configuring-network-bonding_configuring-and-managing-networking

Example - Linux bond

...
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: linux_bond
 name: bond1
 mtu: {{ min_viable_mtu }}
 bonding_options: "mode=802.3ad lacp_rate=fast updelay=1000 miimon=100
xmit_hash_policy=layer3+4"
 members:
 type: interface
 name: ens1f0
 mtu: {{ min_viable_mtu }}
 primary: true
 type: interface
 name: ens1f1
 mtu: {{ min_viable_mtu }}
 ...

Example - Linux bond: bonding two interfaces

...
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: linux_bond
 name: bond1
 members:
 - type: interface
 name: nic2
 - type: interface
 name: nic3
 bonding_options: "mode=802.3ad lacp_rate=[fast|slow] updelay=1000 miimon=100"
 ...

Example - Linux bond set to active-backup mode with one VLAN

....
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

102

 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: linux_bond
 name: bond_api
 bonding_options: "mode=active-backup"
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 members:
 - type: interface
 name: nic3
 primary: true
 - type: interface
 name: nic4

 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet

Example - Linux bond on OVS bridge

In this example, the bond is set to 802.3ad with LACP mode and one VLAN:

...
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: br-tenant
 use_dhcp: false
 mtu: 9000
 members:
 - type: linux_bond
 name: bond_tenant
 bonding_options: "mode=802.3ad updelay=1000 miimon=100"
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 members:
 - type: interface
 name: p1p1
 primary: true
 - type: interface
 name: p1p2
 - type: vlan

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

103

 device: bond_tenant
 vlan_id: {get_param: TenantNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: TenantIpSubnet}
 ...

10.8.7. routes

Defines a list of routes to apply to a network interface, VLAN, bridge, or bond.

Table 10.13. routes options

Option Default Description

ip_netmask None IP and netmask of the destination
network.

default False Sets this route to a default route.
Equivalent to setting
ip_netmask: 0.0.0.0/0.

next_hop None The IP address of the router used
to reach the destination network.

Example - routes

...
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: br-tenant
 ...
 routes: {{ [ctlplane_host_routes] | flatten | unique }}
 ...

Additional resources

Section 10.9, “Example custom network interfaces for NFV”

10.9. EXAMPLE CUSTOM NETWORK INTERFACES FOR NFV

The following examples illustrates how you can use a template to customize network interfaces for NFV
in Red Hat OpenStack Services on OpenShift (RHOSO) environments.

10.9.1. Example template - non-partitioned NIC

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

104

This template example configures the RHOSO networks on a NIC that is not partitioned.

apiVersion: v1
data:
 25-igmp.conf: |
 [ovs]
 igmp_snooping_enable = True
kind: ConfigMap
metadata:
 name: neutron-igmp
 namespace: openstack

apiVersion: v1
data:
 25-cpu-pinning-nova.conf: |
 [DEFAULT]
 reserved_host_memory_mb = 4096
 [compute]
 cpu_shared_set = "0,20,1,21"
 cpu_dedicated_set = "8-19,28-39"
 [neutron]
 physnets = dpdkdata1
 [neutron_physnet_dpdkdata1]
 numa_nodes = 1
 [libvirt]
 cpu_power_management=false
kind: ConfigMap
metadata:
 name: ovs-dpdk-sriov-cpu-pinning-nova
 namespace: openstack

apiVersion: v1
data:
 03-sriov-nova.conf: |
 [pci]
 device_spec = {"address": "0000:05:00.2", "physical_network":"sriov-1", "trusted":"true"}
 device_spec = {"address": "0000:05:00.3", "physical_network":"sriov-2", "trusted":"true"}
 device_spec = {"address": "0000:07:00.0", "physical_network":"sriov-3", "trusted":"true"}
 device_spec = {"address": "0000:07:00.1", "physical_network":"sriov-4", "trusted":"true"}
kind: ConfigMap
metadata:
 name: sriov-nova
 namespace: openstack

apiVersion: v1
data:
 NodeRootPassword: cmVkaGF0Cg==
kind: Secret
metadata:
 name: baremetalset-password-secret
 namespace: openstack
type: Opaque

apiVersion: v1
data:
 authorized_keys:

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

105

ZWNkc2Etc2hhMi1uaXN0cDUyMSBBQUFBRTJWalpITmhMWE5vWVRJdGJtbHpkSEExTWpFQUFBQ
UlibWx6ZEhBMU1qRUFBQUNGQkFBVFdweE5LNlNYTEo0dnh2Y0F4N0t4c3FLenI0a3pEalRpT0dQa
3pyZWZnTjdVcmo2RUZPUXlBRWk5cXNnYkRVYXp0MktpdzJqc3djbG5TYW1zUDE0V2x3RkN2a1NuU
1o4cTZwWGJTbGpNa3Z1R3FiVXZoSTVxTVlMTDNlRWpyU21nNDlWcTBWZkdFQmxIWUx6TGFncV
BlN1FKR0NCMGlWTVk5b3N0TFdPM1NKbXVuZz09IGNpZm13X3JlcHJvZHVjZXJfa2V5Cg==
 ssh-privatekey:
LS0tLS1CRUdJTiBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0KYjNCbGJuTnphQzFyWlhrdGRqRUFB
QUFBQkc1dmJtVUFBQUFFYm05dVpRQUFBQUFBQUFBQkFBQUFyQUFBQUJObFkyUnpZUwoxe
mFHRXlMVzVwYzNSd05USXhBQUFBQ0c1cGMzUndOVEl4QUFBQWhRUUFFMXFjVFN1a2x5eWV
MOGIzQU1leXNiS2lzNitKCk13NDA0amhqNU02M240RGUxSzQraEJUa01nQkl2YXJJR3cxR3M3ZGlvc
05vN01ISlowbXByRDllRnBjQlFyNUVwMG1mS3UKcVYyMHBZekpMN2hxbTFMNFNPYWpHQ3k5M2h
JNjBwb09QVmF0Rlh4aEFaUjJDOHkyb0tqM3UwQ1JnZ2RJbFRHUGFMTFMxagp0MGlacnA0QUFBR
Vl0cGNtdHJhWEpyWUFBQUFUWldOa2MyRXRjMmhoTWkxdWFYTjBjRFV5TVFBQUFBaHVhWE4wY
0RVeU1RCkFBQUlVRUFCTmFuRTBycEpjc25pL0c5d0RIc3JHeW9yT3ZpVE1PTk9JNFkrVE90NStBM
3RTdVBvUVU1RElBU0wycXlCc04KUnJPM1lxTERhT3pCeVdkSnFhdy9YaGFYQVVLK1JLZEpueXJxb
GR0S1dNeVMrNGFwdFMrRWptb3hnc3ZkNFNPdEthRGoxVwpyUlY4WVFHVWRndk10cUNvOTd0Q
WtZSUhTSlV4ajJpeTB0WTdkSW1hNmVBQUFBUWdHTWZobWFSblZFcnhjZ2Z6aVRpdzFnClBjYXBB
V21TMHh5dDNyclhoSnExd0pRMys3ZFp0Y3l0alg5VVVuNnh0NlE1M0JTT1ZvaWR2L2pZK2krYytNVVh
UZ0FBQUIKUmphV1p0ZDE5eVpYQnliMlIxWTJWeVgydGxlUUVDQXdRRkJnPT0KLS0tLS1FTkQgT1B
FTlNTSCBQUklWQVRFIEtFWS0tLS0tCg==
 ssh-publickey:
ZWNkc2Etc2hhMi1uaXN0cDUyMSBBQUFBRTJWalpITmhMWE5vWVRJdGJtbHpkSEExTWpFQUFBQ
UlibWx6ZEhBMU1qRUFBQUNGQkFBVFdweE5LNlNYTEo0dnh2Y0F4N0t4c3FLenI0a3pEalRpT0dQa
3pyZWZnTjdVcmo2RUZPUXlBRWk5cXNnYkRVYXp0MktpdzJqc3djbG5TYW1zUDE0V2x3RkN2a1NuU
1o4cTZwWGJTbGpNa3Z1R3FiVXZoSTVxTVlMTDNlRWpyU21nNDlWcTBWZkdFQmxIWUx6TGFncV
BlN1FKR0NCMGlWTVk5b3N0TFdPM1NKbXVuZz09IGNpZm13X3JlcHJvZHVjZXJfa2V5Cg==
kind: Secret
metadata:
 name: dataplane-ansible-ssh-private-key-secret
 namespace: openstack
type: Opaque

apiVersion: v1
data:
 LibvirtPassword: MTIzNDU2Nzg=
kind: Secret
metadata:
 name: libvirt-secret
 namespace: openstack
type: Opaque

apiVersion: v1
data:
 ssh-privatekey:
LS0tLS1CRUdJTiBPUEVOU1NIIFBSSVZBVEUgS0VZLS0tLS0KYjNCbGJuTnphQzFyWlhrdGRqRUFB
QUFBQkc1dmJtVUFBQUFFYm05dVpRQUFBQUFBQUFBQkFBQUFyQUFBQUJObFkyUnpZUwoxe
mFHRXlMVzVwYzNSd05USXhBQUFBQ0c1cGMzUndOVEl4QUFBQWhRUUFwWTlSRzV5a2pLR3p2
c295dWlDZm1zakEwZkFYCmkvS0hQT3R3Zm9NZjRQZXpRSFFNOHFJZ0pGc0svaVlwNVJIWmNVQl
cwVVBCNnBpazQ1L3k0QVF4bmVBQWRrN0JQbTc0dG8KSkxoVjY2U3pzV2pHR1NFdzVXVFBwVUV
paXdQMlNiL1l4dXloNWlLbUJyTE5SRWpYTEJvbjJJZWRBbEJMaC9FaGpkdFZjUwo5ZzczQ0tvQUFBR
VFoeS9PODRjdnp2TUFBQUFUWldOa2MyRXRjMmhoTWkxdWFYTjBjRFV5TVFBQUFBaHVhWE4wY
0RVeU1RCkFBQUlVRUFLV1BVUnVjcEl5aHM3N0tNcm9nbjVySXdOSHdGNHZ5aHp6cmNINkRIK0Qz
czBCMERQS2lJQ1JiQ3Y0bUtlVVIKMlhGQVZ0RkR3ZXFZcE9PZjh1QUVNWjNnQUhaT3dUNXUrTGF
DUzRWZXVrczdGb3hoa2hNT1ZrejZWQklvc0Q5a20vMk1icwpvZVlpcGdheXpVUkkxeXdhSjlpSG5RSlF
TNGZ4SVkzYlZYRXZZTzl3aXFBQUFBUWdEQ0lEdHFqZ0JNam8rbG1rRnhzV3NvCkxKOGxBSWF0a
0ZTdDkxcGJHWWIrVFRnS0NSOGhqbXdjalNoRzFlNlRaZWZNTkc5TklzVlRYYjNjTkYvaThJTHV1UUF

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

106

BQUEKNXViM1poSUcxcFozSmhkR2x2YmdFQ0F3UT0KLS0tLS1FTkQgT1BFTlNTSCBQUklWQVRFI
EtFWS0tLS0tCg==
 ssh-publickey:
ZWNkc2Etc2hhMi1uaXN0cDUyMSBBQUFBRTJWalpITmhMWE5vWVRJdGJtbHpkSEExTWpFQUFBQ
UlibWx6ZEhBMU1qRUFBQUNGQkFDbGoxRWJuS1NNb2JPK3lqSzZJSitheU1EUjhCZUw4b2M4NjNC
K2d4L2c5N05BZEF6eW9pQWtXd3IrSmlubEVkbHhRRmJSUThIcW1LVGpuL0xnQkRHZDRBQjJUc0Ur
YnZpMmdrdUZYcnBMT3hhTVlaSVREbFpNK2xRU0tMQS9aSnY5akc3S0htSXFZR3NzMUVTTmNzR2l
mWWg1MENVRXVIOFNHTjIxVnhMMkR2Y0lxZz09IG5vdmEgbWlncmF0aW9uCg==
kind: Secret
metadata:
 name: nova-migration-ssh-key
 namespace: openstack
type: kubernetes.io/ssh-auth

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-edpm
 namespace: openstack
spec:
 baremetalSetTemplate:
 bmhLabelSelector:
 app: openstack
 cloudUserName: cloud-admin
 ctlplaneInterface: enp130s0f0
 passwordSecret:
 name: baremetalset-password-secret
 namespace: openstack
 provisioningInterface: enp5s0
 env:
 - name: ANSIBLE_FORCE_COLOR
 value: "True"
 networkAttachments:
 - ctlplane
 nodeTemplate:
 ansible:
 ansiblePort: 22
 ansibleUser: cloud-admin
 ansibleVars:
 dns_search_domains: []
 edpm_bootstrap_command: |-
 # root CA
 cd /etc/pki/ca-trust/source/anchors/
 curl -LOk https://certs.corp.redhat.com/RH-IT-Root-CA.crt
 curl -LOk https://certs.corp.redhat.com/certs/2022-IT-Root-CA.pem
 update-ca-trust

 # install rhos-release repos
 dnf --nogpgcheck --repofrompath=rhos-release,http://download.devel.redhat.com/rcm-
guest/puddles/OpenStack/rhos-release/ --repo=rhos-release install -y rhos-release
 rhos-release ceph-7.1-rhel-9 -r 9.4

 # Issue #2 - edpm_bootstrap fails if we don't update container-selinux
 dnf update -y

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

107

 rpm -ivh --nosignature http://download.devel.redhat.com/rcm-guest/puddles/OpenStack/rhos-
release/rhos-release-latest.noarch.rpm
 rhos-release ceph-7.1-rhel-9 -r 9.4
 curl -o /etc/yum.repos.d/delorean.repo https://osp-trunk.hosted.upshift.rdu2.redhat.com/rhel9-
osp18/current-podified/delorean.repo
 echo "[osptrunk-candidate-deps]" >> "/etc/yum.repos.d/osptrunk-candidate-deps.repo"
 echo "name=osptrunk-candidate-deps" >> "/etc/yum.repos.d/osptrunk-candidate-deps.repo"
 echo "baseurl=http://download.eng.bos.redhat.com/brewroot/repos/rhos-18.0-rhel-9-trunk-
candidate/latest/x86_64/" >> "/etc/yum.repos.d/osptrunk-candidate-deps.repo"
 echo "gpgcheck=0" >> /etc/yum.repos.d/osptrunk-candidate-deps.repo
 echo "enabled=1" >> /etc/yum.repos.d/osptrunk-candidate-deps.repo
 echo "priority=1" >> /etc/yum.repos.d/osptrunk-candidate-deps.repo
 # sets up rhoso release repo
 echo "[rhoso-18.0-rhel-9-nightly-compose]" >> /etc/yum.repos.d/rhosotrunk-compose-deps.repo
 echo "name=rhoso-18.0-rhel-9-nightly-compose" >> /etc/yum.repos.d/rhosotrunk-compose-
deps.repo
 echo "baseurl=http://download.hosts.prod.upshift.rdu2.redhat.com/rhel-
9/nightly/RHOSO/RHOSO-18.0-trunk/latest-RHOSO_TRUNK-18-RHEL-
9/compose/OpenStack/x86_64/os/" >> /etc/yum.repos.d/rhosotrunk-compose-deps.repo
 echo "gpgcheck=0" >> /etc/yum.repos.d/rhosotrunk-compose-deps.repo
 echo "enabled=1" >> /etc/yum.repos.d/rhosotrunk-compose-deps.repo
 echo "priority=1" >> /etc/yum.repos.d/rhosotrunk-compose-deps.repo
 echo "includepkgs=rhoso-release-18*" >> /etc/yum.repos.d/rhosotrunk-compose-deps.repo
 edpm_fips_mode: check
 edpm_kernel_args: default_hugepagesz=1GB hugepagesz=1G hugepages=64 iommu=pt
 intel_iommu=on tsx=off isolcpus=2-19,22-39
 edpm_network_config_hide_sensitive_logs: false
 edpm_network_config_os_net_config_mappings:
 edpm-compute-0: 1
 dmiString: system-product-name
 id: PowerEdge R730
 nic1: eno1
 nic2: eno2
 nic3: enp130s0f0
 nic4: enp130s0f1
 nic5: enp130s0f2
 nic6: enp130s0f3
 nic7: enp5s0f0
 nic8: enp5s0f1
 nic9: enp5s0f2
 nic10: enp5s0f3
 nic11: enp7s0f0np0
 nic12: enp7s0f1np1
 edpm-compute-1: 2
 dmiString: system-product-name
 id: PowerEdge R730
 nic1: eno1
 nic2: eno2
 nic3: enp130s0f0
 nic4: enp130s0f1
 nic5: enp130s0f2
 nic6: enp130s0f3
 nic7: enp5s0f0
 nic8: enp5s0f1

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

108

 nic9: enp5s0f2
 nic10: enp5s0f3
 nic11: enp7s0f0np0
 nic12: enp7s0f1np1
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 - type: interface
 name: nic2
 use_dhcp: false
 - type: linux_bond 3
 name: bond_api
 use_dhcp: false
 bonding_options: "mode=active-backup"
 dns_servers: {{ ctlplane_dns_nameservers }}
 members:
 - type: interface
 name: nic3
 primary: true
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_cidr }}
 routes:
 - default: true
 next_hop: {{ ctlplane_gateway_ip }}
 - type: vlan 4
 vlan_id: {{ lookup(vars, networks_lower[internalapi] ~ _vlan_id) }}
 device: bond_api
 addresses:
 - ip_netmask: {{ lookup(vars, networks_lower[internalapi] ~ _ip) }}/{{ lookup(vars,
networks_lower[internalapi] ~ _cidr) }}
 - type: vlan 5
 vlan_id: {{ lookup(vars, networks_lower[storage] ~ _vlan_id) }}
 device: bond_api
 addresses:
 - ip_netmask: {{ lookup(vars, networks_lower[storage] ~ _ip) }}/{{ lookup(vars,
networks_lower[storage] ~ _cidr) }}
 - type: ovs_user_bridge 6
 name: br-link0
 use_dhcp: false
 ovs_extra: "set port br-link0 tag={{ lookup(vars, networks_lower[tenant] ~ _vlan_id) }}"
 addresses:
 - ip_netmask: {{ lookup(vars, networks_lower[tenant] ~ _ip) }}/{{ lookup(vars,
networks_lower[tenant] ~ _cidr) }}
 mtu: {{ lookup(vars, networks_lower[tenant] ~ _mtu) }}
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond0
 mtu: 9000

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

109

 rx_queue: 2
 ovs_extra: "set port dpdkbond0 bond_mode=balance-slb"
 members:
 - type: ovs_dpdk_port
 name: dpdk0
 members:
 - type: interface
 name: nic7
 - type: ovs_dpdk_port
 name: dpdk1
 members:
 - type: interface
 name: nic8
 - type: ovs_user_bridge
 name: br-dpdk0
 mtu: 9000
 use_dhcp: false
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond1
 mtu: 9000
 rx_queue: 3
 ovs_options: "bond_mode=balance-tcp lacp=active other_config:lacp-time=fast other-
config:lacp-fallback-ab=true other_config:lb-output-action=true"
 members:
 - type: ovs_dpdk_port
 name: dpdk2
 members:
 - type: interface
 name: nic5
 - type: ovs_dpdk_port
 name: dpdk3
 members:
 - type: interface
 name: nic6
 - type: ovs_user_bridge
 name: br-dpdk1
 mtu: 9000
 use_dhcp: false
 members:
 - type: ovs_dpdk_port
 name: dpdk4
 mtu: 9000
 rx_queue: 3
 members:
 - type: interface
 name: nic4
 - type: sriov_pf 7
 name: nic9
 numvfs: 10 8
 mtu: 9000
 use_dhcp: false
 promisc: true
 - type: sriov_pf
 name: nic10
 numvfs: 10

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

110

 mtu: 9000
 use_dhcp: false
 promisc: true
 - type: sriov_pf 9
 name: nic11
 numvfs: 5 10
 mtu: 9000
 use_dhcp: false
 promisc: true
 - type: sriov_pf 11
 name: nic12
 numvfs: 5 12
 mtu: 9000
 use_dhcp: false
 promisc: true
 edpm_neutron_sriov_agent_SRIOV_NIC_physical_device_mappings: sriov-1:enp5s0f2,sriov-
2:enp5s0f3,sriov-3:enp7s0f0np0,sriov-4:enp7s0f1np1
 edpm_nodes_validation_validate_controllers_icmp: false
 edpm_nodes_validation_validate_gateway_icmp: false
 edpm_nova_libvirt_qemu_group: hugetlbfs
 edpm_ovn_bridge_mappings:
 - dpdkmgmt:br-link0
 - dpdkdata0:br-dpdk0
 - dpdkdata1:br-dpdk1
 edpm_ovs_dpdk_lcore_list: 0,20,1,21
 edpm_ovs_dpdk_memory_channels: "4"
 edpm_ovs_dpdk_pmd_auto_lb: "true"
 edpm_ovs_dpdk_pmd_core_list: 2,3,4,5,6,7,22,23,24,25,26,27
 edpm_ovs_dpdk_pmd_improvement_threshold: "25"
 edpm_ovs_dpdk_pmd_load_threshold: "70"
 edpm_ovs_dpdk_pmd_rebal_interval: "2"
 edpm_ovs_dpdk_socket_memory: 4096,4096
 edpm_ovs_dpdk_vhost_postcopy_support: "true"
 edpm_selinux_mode: enforcing
 edpm_sshd_allowed_ranges:
 - 192.168.122.0/24
 edpm_sshd_configure_firewall: true
 edpm_tuned_isolated_cores: 2-19,22-39
 edpm_tuned_profile: cpu-partitioning-powersave
 enable_debug: false
 gather_facts: false
 neutron_physical_bridge_name: br-access
 neutron_public_interface_name: nic1
 service_net_map:
 nova_api_network: internalapi
 nova_libvirt_network: internalapi
 timesync_ntp_servers:
 - hostname: clock.redhat.com
 ansibleSSHPrivateKeySecret: dataplane-ansible-ssh-private-key-secret
 managementNetwork: ctlplane
 networks:
 - defaultRoute: true
 name: ctlplane
 subnetName: subnet1
 - name: internalapi
 subnetName: subnet1

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

111

 - name: storage
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1
 nodes:
 edpm-compute-0:
 hostName: compute-0
 edpm-compute-1:
 hostName: compute-1
 preProvisioned: false
 services:
 - bootstrap
 - download-cache
 - reboot-os
 - configure-ovs-dpdk
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - ssh-known-hosts
 - run-os
 - install-certs
 - ovn
 - neutron-ovn-igmp
 - neutron-metadata
 - neutron-sriov
 - libvirt
 - nova-custom-ovsdpdksriov
 - telemetry

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: neutron-ovn-igmp
 namespace: openstack
spec:
 caCerts: combined-ca-bundle
 dataSources:
 - configMapRef:
 name: neutron-igmp
 - secretRef:
 name: neutron-ovn-agent-neutron-config
 edpmServiceType: neutron-ovn
 label: neutron-ovn-igmp
 playbook: osp.edpm.neutron_ovn
 tlsCerts:
 default:
 contents:
 - dnsnames
 - ips
 issuer: osp-rootca-issuer-ovn
 keyUsages:
 - digital signature
 - key encipherment
 - client auth
 networks:

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

112

1 2

3

4 5

6

7 9 11

8 10 12

 - ctlplane

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneService
metadata:
 name: nova-custom-ovsdpdksriov
 namespace: openstack
spec:
 caCerts: combined-ca-bundle
 dataSources:
 - configMapRef:
 name: ovs-dpdk-sriov-cpu-pinning-nova
 - configMapRef:
 name: sriov-nova
 - secretRef:
 name: nova-cell1-compute-config
 - secretRef:
 name: nova-migration-ssh-key
 edpmServiceType: nova
 label: nova-custom-ovsdpdksriov
 playbook: osp.edpm.nova
 tlsCerts:
 default:
 contents:
 - dnsnames
 - ips
 issuer: osp-rootca-issuer-internal
 networks:
 - ctlplane

edpm-compute-n: defines the edpm_network_config_os_net_config_mappings variable to
map the actual NICs. You identify each NIC by specifying the MAC address or the device name on
each compute node to the NIC ID that the RHOSO os-net-config tool uses which is typically,
`nic`n.

linux_bond: creates a control-plane Linux bond for an isolated network. In this example, a Linux
bond is created with mode active-backup on nic3 and nic4.

type: vlan: assign VLANs to Linux bonds. In this example, the VLAN ID of the internalapi and
storage networks is assigned to bond-api.

ovs_user_bridge: set a bridge with OVS-DPDK ports. In this example, an OVS user bridge is
created with a DPDK bond that has two DPDK ports that corresponds to nic7 and nic8 for the
tenant network. A GENEVE tunnel is used.

sriov_pf: create SR-IOV VFs. In this example, an interface type of sriov_pf is configured as a
physical function that the host can use.

numvfs: only set the number of VFs that are required.

10.9.2. Example template - partitioned NIC

This template example configures the RHOSO networks on a NIC that is partitioned. This example only
shows the portion of the custom resource (CR) definition where the NIC is partitioned.

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

113

 edpm_network_config_os_net_config_mappings:
 dellr750:
 dmiString: system-product-name
 id: PowerEdge R750
 nic1: eno8303
 nic2: ens1f0
 nic3: ens1f1
 nic4: ens1f2
 nic5: ens1f3
 nic6: ens2f0np0
 nic7: ens2f1np1
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup(vars, networks_lower[network] ~ _mtu)) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 - type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_cidr }}
 routes:
 - default: true
 next_hop: {{ ctlplane_gateway_ip }}
 - type: sriov_pf
 name: nic3
 mtu: 9000
 numvfs: 5
 use_dhcp: false
 defroute: false
 nm_controlled: true
 hotplug: true
 - type: sriov_pf
 name: nic4
 mtu: 9000
 numvfs: 5
 use_dhcp: false
 defroute: false
 nm_controlled: true
 hotplug: true
 - type: linux_bond
 name: bond_api
 use_dhcp: false
 bonding_options: "mode=active-backup"
 dns_servers: {{ ctlplane_dns_nameservers }}
 members:
 - type: sriov_vf
 device: nic3
 vfid: 0
 vlan_id: {{ lookup(vars, networks_lower[internalapi] ~ _vlan_id) }}

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

114

 - type: sriov_vf
 device: nic4
 vfid: 0
 vlan_id: {{ lookup(vars, networks_lower[internalapi] ~ _vlan_id) }}
 addresses:
 - ip_netmask: {{ lookup(vars, networks_lower[internalapi] ~ _ip) }}/{{ lookup(vars,
networks_lower[internalapi] ~ _cidr) }}
 - type: linux_bond
 name: storage_bond
 use_dhcp: false
 bonding_options: "mode=active-backup"
 dns_servers: {{ ctlplane_dns_nameservers }}
 members:
 - type: sriov_vf
 device: nic3
 vfid: 1
 vlan_id: {{ lookup(vars, networks_lower[storage] ~ _vlan_id) }}
 - type: sriov_vf
 device: nic4
 vfid: 1
 vlan_id: {{ lookup(vars, networks_lower[storage] ~ _vlan_id) }}
 addresses:
 - ip_netmask: {{ lookup(vars, networks_lower[storage] ~ _ip) }}/{{ lookup(vars,
networks_lower[storage] ~ _cidr) }}
 - type: linux_bond
 name: mgmtst_bond
 use_dhcp: false
 bonding_options: "mode=active-backup"
 dns_servers: {{ ctlplane_dns_nameservers }}
 members:
 - type: sriov_vf
 device: nic3
 vfid: 2
 vlan_id: {{ lookup(vars, networks_lower[storagemgmt] ~ _vlan_id) }}
 - type: sriov_vf
 device: nic4
 vfid: 2
 vlan_id: {{ lookup(vars, networks_lower[storagemgmt] ~ _vlan_id) }}
 addresses:
 - ip_netmask: {{ lookup(vars, networks_lower[storagemgmt] ~ _ip) }}/{{ lookup(vars,
networks_lower[storagemgmt] ~ _cidr) }}
 - type: ovs_user_bridge
 name: br-link0
 use_dhcp: false
 mtu: 9000
 ovs_extra: "set port br-link0 tag={{ lookup(vars, networks_lower[tenant] ~ _vlan_id) }}"
 addresses:
 - ip_netmask: {{ lookup(vars, networks_lower[tenant] ~ _ip) }}/{{ lookup(vars,
networks_lower[tenant] ~ _cidr) }}
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond0
 mtu: 9000
 rx_queue: 1
 members:
 - type: ovs_dpdk_port

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

115

 name: dpdk0
 members:
 - type: sriov_vf
 device: nic3
 vfid: 3
 - type: ovs_dpdk_port
 name: dpdk1
 members:
 - type: sriov_vf
 device: nic4
 vfid: 3
 - type: ovs_user_bridge
 name: br-dpdk0
 use_dhcp: false
 mtu: 9000
 rx_queue: 1
 members:
 - type: ovs_dpdk_port
 name: dpdk2
 members:
 - type: interface
 name: nic5
 - type: sriov_pf
 name: nic6
 mtu: 9000
 numvfs: 5
 use_dhcp: false
 defroute: false
 - type: sriov_pf
 name: nic7
 mtu: 9000
 numvfs: 5
 use_dhcp: false
 defroute: false

Additional resources

Section 10.8, “Network interface configuration options”

10.10. DEPLOYING THE DATA PLANE

You use the OpenStackDataPlaneDeployment CRD to configure the services on the data plane nodes
and deploy the data plane. You control the execution of Ansible on the data plane by creating
OpenStackDataPlaneDeployment custom resources (CRs). Each OpenStackDataPlaneDeployment
CR models a single Ansible execution.

When the OpenStackDataPlaneDeployment successfully completes execution, it does not
automatically execute the Ansible again, even if the OpenStackDataPlaneDeployment or related
OpenStackDataPlaneNodeSet resources are changed. To start another Ansible execution, you must
create another OpenStackDataPlaneDeployment CR.

Create an OpenStackDataPlaneDeployment (CR) that deploys each of your
OpenStackDataPlaneNodeSet CRs.

Procedure

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

116

1

1. Create a file on your workstation named openstack_data_plane_deploy.yaml to define the
OpenStackDataPlaneDeployment CR:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: openstack-data-plane 1

The OpenStackDataPlaneDeployment CR name must be unique, must consist of lower
case alphanumeric characters, - (hyphen) or . (period), must start and end with an
alphanumeric character, and must have a maximum length of 20 characters. Update the
name in this example to a name that reflects the node sets in the deployment.

2. In the list of services, replace nova with nova-custom-sriov, nova-custom-ovsdpdk, or both:

spec:
 services:
 - bootstrap
 - download-cache
 - reboot-os
 - configure-ovs-dpdk
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - ssh-known-hosts
 - run-os
 - install-certs
 - ovn
 - neutron-ovn-igmp
 - neutron-metadata
 - neutron-sriov
 - libvirt
 - nova-custom-sriov
 - nova-custom-ovsdpdk
 - telemetry
 nodeSets:
 ...

3. Add all the OpenStackDataPlaneNodeSet CRs that you want to deploy.

spec:
 nodeSets:
 - openstack-data-plane
 - <nodeSet_name>
 - ...
 - <nodeSet_name>
 services:
 ...

Replace <nodeSet_name> with the names of the OpenStackDataPlaneNodeSet CRs that
you want to include in your data plane deployment.

4. Save the openstack_data_plane_deploy.yaml deployment file.

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

117

5. Deploy the data plane:

You can view the Ansible logs while the deployment executes:

6. Confirm that the data plane is deployed:

Sample output

7. Repeat the oc get command until you see the NodeSet Ready message:

Sample output

For information about the meaning of the returned status, see Data plane conditions and states .

If the status indicates that the data plane has not been deployed, then troubleshoot the
deployment. For information, see Troubleshooting the data plane creation and deployment .

8. Map the Compute nodes to the Compute cell that they are connected to:

If you did not create additional cells, this command maps the Compute nodes to cell1.

Verification

Access the remote shell for the openstackclient pod and confirm that the deployed Compute
nodes are visible on the control plane:

10.11. DATA PLANE CONDITIONS AND STATES

Each data plane resource has a series of conditions within their status subresource that indicates the
overall state of the resource, including its deployment progress.

For an OpenStackDataPlaneNodeSet, until an OpenStackDataPlaneDeployment has been started

$ oc create -f openstack_data_plane_deploy.yaml -n openstack

$ oc get pod -l app=openstackansibleee -w
$ oc logs -l app=openstackansibleee -f --max-log-requests 10

$ oc get openstackdataplanedeployment -n openstack

NAME STATUS MESSAGE
openstack-data-plane True Setup Complete

$ oc get openstackdataplanenodeset -n openstack

NAME STATUS MESSAGE
openstack-data-plane True NodeSet Ready

$ oc rsh nova-cell0-conductor-0 nova-manage cell_v2 discover_hosts --verbose

$ oc rsh -n openstack openstackclient
$ openstack hypervisor list

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

118

and finished successfully, the Ready condition is False. When the deployment succeeds, the Ready
condition is set to True. A subsequent deployment sets the Ready condition to False until the
deployment succeeds, when the Ready condition is set to True.

Table 10.14. OpenStackDataPlaneNodeSet CR conditions

Condition Description

Ready
"True": The OpenStackDataPlaneNodeSet CR is
successfully deployed.

"False": The deployment is not yet requested or has
failed, or there are other failed conditions.

SetupReady "True": All setup tasks for a resource are complete. Setup tasks
include verifying the SSH key secret, verifying other fields on the
resource, and creating the Ansible inventory for each resource.
Each service-specific condition is set to "True" when that service
completes deployment. You can check the service conditions to
see which services have completed their deployment, or which
services failed.

DeploymentReady "True": The NodeSet has been successfully deployed.

InputReady "True": The required inputs are available and ready.

NodeSetDNSDataReady "True": DNSData resources are ready.

NodeSetIPReservationReady "True": The IPSet resources are ready.

NodeSetBaremetalProvisionReady "True": Bare-metal nodes are provisioned and ready.

Table 10.15. OpenStackDataPlaneNodeSet status fields

Status field Description

Deployed
"True": The OpenStackDataPlaneNodeSet CR is
successfully deployed.

"False": The deployment is not yet requested or has
failed, or there are other failed conditions.

DNSClusterAddresses

CtlplaneSearchDomain

Table 10.16. OpenStackDataPlaneDeployment CR conditions

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

119

Condition Description

Ready
"True": The data plane is successfully deployed.

"False": The data plane deployment failed, or there are
other failed conditions.

DeploymentReady "True": The data plane is successfully deployed.

InputReady "True": The required inputs are available and ready.

<NodeSet> Deployment Ready "True": The deployment has succeeded for the named
NodeSet, indicating all services for the NodeSet have
succeeded.

<NodeSet> <Service> Deployment
Ready

"True": The deployment has succeeded for the named NodeSet
and Service. Each <NodeSet> <Service> Deployment
Ready specific condition is set to "True" as that service
completes successfully for the named NodeSet. Once all
services are complete for a NodeSet, the <NodeSet>
Deployment Ready condition is set to "True". The service
conditions indicate which services have completed their
deployment, or which services failed and for which NodeSets.

Table 10.17. OpenStackDataPlaneDeployment status fields

Status field Description

Deployed
"True": The data plane is successfully deployed. All
Services for all NodeSets have succeeded.

"False": The deployment is not yet requested or has
failed, or there are other failed conditions.

Table 10.18. OpenStackDataPlaneService CR conditions

Condition Description

Ready "True": The service has been created and is ready for use.
"False": The service has failed to be created.

10.12. TROUBLESHOOTING DATA PLANE CREATION AND
DEPLOYMENT

To troubleshoot a deployment when services are not deploying or operating correctly, you can check the
job condition message for the service, and you can check the logs for a node set.

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

120

10.12.1. Checking the job condition message for a service

Each data plane deployment in the environment has associated services. Each of these services have a
job condition message that matches the current status of the AnsibleEE job executing for that service.
This information can be used to troubleshoot deployments when services are not deploying or operating
correctly.

Procedure

1. Determine the name and status of all deployments:

$ oc get openstackdataplanedeployment

The following example output shows two deployments currently in progress:

$ oc get openstackdataplanedeployment

NAME NODESETS STATUS MESSAGE
data-plane-deploy ["openstack-data-plane-1"] False Deployment in progress
data-plane-deploy ["openstack-data-plane-2"] False Deployment in progress

2. Determine the name and status of all services and their job condition:

$ oc get openstackansibleee

The following example output shows all services and their job condition for all current
deployments:

$ oc get openstackansibleee

NAME NETWORKATTACHMENTS STATUS MESSAGE
bootstrap-openstack-edpm ["ctlplane"] True Job complete
download-cache-openstack-edpm ["ctlplane"] False Job is running
repo-setup-openstack-edpm ["ctlplane"] True Job complete
validate-network-another-osdpd ["ctlplane"] False Job is running

For information on the job condition messages, see Job condition messages.

3. Filter for the name and service for a specific deployment:

$ oc get openstackansibleee -l \
openstackdataplanedeployment=<deployment_name>

Replace <deployment_name> with the name of the deployment to use to filter the
services list.
The following example filters the list to only show services and their job condition for the
data-plane-deploy deployment:

$ oc get openstackansibleee -l \
openstackdataplanedeployment=data-plane-deploy

NAME NETWORKATTACHMENTS STATUS MESSAGE

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

121

bootstrap-openstack-edpm ["ctlplane"] True Job complete
download-cache-openstack-edpm ["ctlplane"] False Job is running
repo-setup-openstack-edpm ["ctlplane"] True Job complete

10.12.1.1. Job condition messages

AnsibleEE jobs have an associated condition message that indicates the current state of the service job.
This condition message is displayed in the MESSAGE field of the oc get openstackansibleee
command output. Jobs return one of the following conditions when queried:

Job not started: The job has not started.

Job not found: The job could not be found.

Job is running: The job is currently running.

Job complete: The job execution is complete.

Job error occured <error_message>: The job stopped executing unexpectedly. The
<error_message> is replaced with a specific error message.

To further investigate a service that is displaying a particular job condition message, view its logs by
using the command oc logs job/<service>. For example, to view the logs for the repo-setup-
openstack-edpm service, use the command oc logs job/repo-setup-openstack-edpm.

10.12.2. Checking the logs for a node set

You can access the logs for a node set to check for deployment issues.

Procedure

1. Retrieve pods with the OpenStackAnsibleEE label:

$ oc get pods -l app=openstackansibleee
configure-network-edpm-compute-j6r4l 0/1 Completed 0 3m36s
validate-network-edpm-compute-6g7n9 0/1 Pending 0 0s
validate-network-edpm-compute-6g7n9 0/1 ContainerCreating 0 11s
validate-network-edpm-compute-6g7n9 1/1 Running 0 13s

2. SSH into the pod you want to check:

a. Pod that is running:

$ oc rsh validate-network-edpm-compute-6g7n9

b. Pod that is not running:

$ oc debug configure-network-edpm-compute-j6r4l

3. List the directories in the /runner/artifacts mount:

$ ls /runner/artifacts
configure-network-edpm-compute
validate-network-edpm-compute

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

122

4. View the stdout for the required artifact:

$ cat /runner/artifacts/configure-network-edpm-compute/stdout

CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS

123

CHAPTER 11. ACCESSING THE RHOSO CLOUD
You can access your Red Hat OpenStack Services on OpenShift (RHOSO) cloud to perform actions on
your data plane by either accessing the OpenStackClient pod through a remote shell from your
workstation, or by using a web browser to access the Dashboard service (horizon) interface.

11.1. ACCESSING THE OPENSTACKCLIENT POD

You can execute Red Hat OpenStack Services on OpenShift (RHOSO) commands on the deployed
data plane by using the OpenStackClient pod through a remote shell from your workstation. The
OpenStack Operator created the OpenStackClient pod as a part of the OpenStackControlPlane
resource. The OpenStackClient pod contains the client tools and authentication details that you require
to perform actions on your data plane.

Procedure

1. Access the remote shell for openstackclient:

$ oc rsh -n openstack openstackclient

2. Change to the cloud-admin home directory:

$ cd /home/cloud-admin

3. Run your openstack commands. For example, you can create a default network with the
following command:

$ openstack network create default

Additional resources

Creating and managing instances

Configuring networking services

11.2. ACCESSING THE DASHBOARD SERVICE (HORIZON) INTERFACE

You can access the Dashboard service (horizon) interface by using a web browser to access the virtual
IP address that is reserved by the control plane.

Procedure

1. To log in as the admin user, obtain the admin password from the AdminPassword parameter in
the osp-secret secret:

$ oc get secret osp-secret -o jsonpath='{.data.AdminPassword}' | base64 -d

2. Retrieve the Dashboard service endpoint URL:

$ oc get horizons horizon -o jsonpath='{.status.endpoint}'

3. Open a web browser.

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

124

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/creating_and_managing_instances/index
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_networking_services/index

4. Enter the Dashboard endpoint URL.

5. Log in to the dashboard with your username and password.

CHAPTER 11. ACCESSING THE RHOSO CLOUD

125

CHAPTER 12. TUNING NFV IN A RED HAT OPENSTACK
SERVICES ON OPENSHIFT ENVIRONMENT

12.1. MANAGING PORT SECURITY IN NFV ENVIRONMENTS

Port security is an anti-spoofing measure that blocks any egress traffic that does not match the source
IP and source MAC address of the originating network port. You cannot view or modify this behavior
using security group rules.

By default, the port_security_enabled parameter is set to enabled on newly created Networking
service (neutron) networks in Red Hat OpenStack Services on OpenShift (RHOSO) environments.
Newly created ports copy the value of the port_security_enabled parameter from the network they are
created on.

For some NFV use cases, such as building a firewall or router, you must disable port security.

Prerequisites

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. To disable port security on a single port, run the following command:

3. To prevent port security from being enabled on any newly created port on a network, run the
following command:

4. Exit the openstackclient pod:

12.2. CREATING AND USING VF PORTS

By running various OpenStack CLI client commands, you can create and use virtual function (VF) ports.

Prerequisites

You have the oc command line tool installed on your workstation.

You are logged on to a workstation that has access to the RHOSO control plane as a user with
cluster-admin privileges.

$ openstack port set --disable-port-security <port-id>

$ openstack network set --disable-port-security <network-id>

$ exit

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

126

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Create a network of type vlan.

3. Create a subnet.

4. Create a port.
Set the vnic-type option to direct, and the binding-profile option to true.

5. Create an instance, and bind it to the previously-created trusted port.

6. Exit the openstackclient pod:

Verification

Confirm the trusted VF configuration on the hypervisor by performing the following steps:

1. On the compute node that you created the instance, enter the following command:

Sample output

7: p5p2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP mode
DEFAULT group default qlen 1000
 link/ether b4:96:91:1c:40:fa brd ff:ff:ff:ff:ff:ff
 vf 6 MAC fa:16:3e:b8:91:c2, vlan 111, spoof checking off, link-state auto, trust on,
query_rss off
 vf 7 MAC fa:16:3e:84:cf:c8, vlan 111, spoof checking off, link-state auto, trust off, query_rss
off

2. Verify that the trust status of the VF is trust on. The example output contains details of an

$ openstack network create trusted_vf_network --provider-network-type vlan \
 --provider-segment 111 --provider-physical-network sriov2 \
 --external --disable-port-security

$ openstack subnet create --network trusted_vf_network \
 --ip-version 4 --subnet-range 192.168.111.0/24 --no-dhcp \
 subnet-trusted_vf_network

$ openstack port create --network sriov111 \
--vnic-type direct --binding-profile trusted=true \
sriov111_port_trusted

$ openstack server create --image rhel --flavor dpdk --network internal --port
trusted_vf_network_port_trusted --config-drive True --wait rhel-dpdk-sriov_trusted

$ exit

$ ip link

CHAPTER 12. TUNING NFV IN A RED HAT OPENSTACK SERVICES ON OPENSHIFT ENVIRONMENT

127

2. Verify that the trust status of the VF is trust on. The example output contains details of an
environment that contains two ports. Note that vf 6 contains the text trust on.

3. You can disable spoof checking if you set port_security_enabled: false in the Networking
service (neutron) network, or if you include the argument --disable-port-security when you run
the openstack port create command.

12.3. KNOWN LIMITATIONS FOR NUMA-AWARE VSWITCHES

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

This section lists the constraints for implementing a NUMA-aware vSwitch in a Red Hat OpenStack
Services on OpenShift (RHOSO) network functions virtualization infrastructure (NFVi).

You cannot start a VM that has two NICs connected to physnets on different NUMA nodes, if
you did not specify a two-node guest NUMA topology.

You cannot start a VM that has one NIC connected to a physnet and another NIC connected to
a tunneled network on different NUMA nodes, if you did not specify a two-node guest NUMA
topology.

You cannot start a VM that has one vhost port and one VF on different NUMA nodes, if you did
not specify a two-node guest NUMA topology.

NUMA-aware vSwitch parameters are specific to overcloud roles. For example, Compute node 1
and Compute node 2 can have different NUMA topologies.

If the interfaces of a VM have NUMA affinity, ensure that the affinity is for a single NUMA node
only. You can locate any interface without NUMA affinity on any NUMA node.

Configure NUMA affinity for data plane networks, not management networks.

NUMA affinity for tunneled networks is a global setting that applies to all VMs.

12.4. QUALITY OF SERVICE (QOS) IN NFVI ENVIRONMENTS

You can offer varying service levels for VM instances by using quality of service (QoS) policies to apply
rate limits to egress and ingress traffic on Red Hat OpenStack Services on OpenShift (RHOSO)
networks in a network functions virtualization infrastructure (NFVi).

In NFVi environments, QoS support is limited to the following rule types:

minimum bandwidth on SR-IOV, if supported by vendor.

bandwidth limit on SR-IOV and OVS-DPDK egress interfaces.

Additional resources

Using Quality of Service (QoS) policies to manage data traffic in Configuring networking
services

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

128

https://access.redhat.com/support/offerings/production/scope_moredetail
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_networking_services/config-qos-policies_rhoso-cfg-network

12.5. CREATING AN HCI DATA PLANE THAT USES DPDK

You can deploy your NFV infrastructure with hyperconverged nodes, by co-locating and configuring
Compute and Ceph Storage services for optimized resource usage.

For more information about hyperconverged infrastructure (HCI), see Deploying a hyperconverged
infrastructure environment.

12.5.1. Example NUMA node configuration

For increased performance, place the tenant network and Ceph object service daemon (OSD)s in one
NUMA node, such as NUMA-0, and the VNF and any non-NFV VMs in another NUMA node, such as
NUMA-1.

Table 12.1. CPU allocation

NUMA-0 NUMA-1

Number of Ceph OSDs * 4 HT Guest vCPU for the VNF and non-NFV VMs

DPDK lcore - 2 HT DPDK lcore - 2 HT

DPDK PMD - 2 HT DPDK PMD - 2 HT

Table 12.2. Example of CPU allocation

 NUMA-0 NUMA-1

Ceph OSD 32,34,36,38,40,42,76,78,80,82,84
,86

DPDK-lcore 0,44 1,45

DPDK-pmd 2,46 3,47

nova 5,7,9,11,13,15,17,19,21,23,25,27,29,31,
33,35,37,39,41,43,49,51,53,55,57,
59,61,63,65,67,69,71,73,75,77,79,
81,83,85,87

12.5.2. Recommended configuration for HCI-DPDK deployments

Table 12.3. Tunable parameters for HCI deployments

Block Device Type OSDs, Memory, vCPUs per device

NVMe Memory : 5GB per OSD
OSDs per device: 4
vCPUs per device: 3

CHAPTER 12. TUNING NFV IN A RED HAT OPENSTACK SERVICES ON OPENSHIFT ENVIRONMENT

129

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/deploying_a_hyperconverged_infrastructure_environment/index

SSD Memory : 5GB per OSD
OSDs per device: 1
vCPUs per device: 4

HDD Memory : 5GB per OSD
OSDs per device: 1
vCPUs per device: 1

Block Device Type OSDs, Memory, vCPUs per device

Use the same NUMA node for the following functions:

Disk controller

Storage networks

Storage CPU and memory

Allocate another NUMA node for the following functions of the DPDK provider network:

NIC

PMD CPUs

Socket memory

Red Hat OpenStack Services on OpenShift 18.0 Deploying a network functions virtualization environment

130

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. UNDERSTANDING RED HAT NETWORK FUNCTIONS VIRTUALIZATION (NFV)
	1.1. ADVANTAGES OF NFV
	1.2. SUPPORTED CONFIGURATIONS FOR NFV DEPLOYMENTS
	1.3. NFV DATA PLANE CONNECTIVITY
	1.4. ETSI NFV ARCHITECTURE
	1.5. NFV ETSI ARCHITECTURE AND COMPONENTS
	1.6. RED HAT NFV COMPONENTS

	CHAPTER 2. NFV PERFORMANCE CONSIDERATIONS
	2.1. CPUS AND NUMA NODES
	2.1.1. NUMA node example
	2.1.2. NUMA aware instances

	2.2. CPU PINNING
	2.3. HUGE PAGES

	CHAPTER 3. REQUIREMENTS FOR NFV
	3.1. TESTED NICS FOR NFV
	3.2. DISCOVERING YOUR NUMA NODE TOPOLOGY
	3.3. NFV BIOS SETTINGS
	3.4. SUPPORTED DRIVERS FOR NFV

	CHAPTER 4. PLANNING AN SR-IOV DEPLOYMENT
	4.1. NIC PARTITIONING FOR AN SR-IOV DEPLOYMENT
	4.2. HARDWARE PARTITIONING FOR AN SR-IOV DEPLOYMENT
	4.3. TOPOLOGY OF AN NFV SR-IOV DEPLOYMENT
	4.4. TOPOLOGY FOR NFV SR-IOV WITHOUT HCI

	CHAPTER 5. PLANNING AN OVS-DPDK DEPLOYMENT
	5.1. OVS-DPDK WITH CPU PARTITIONING AND NUMA TOPOLOGY
	5.2. OVS-DPDK PARAMETERS
	5.2.1. Data plane (EDPM) Ansible variables
	5.2.2. Configuration map parameters

	5.3. TWO NUMA NODE EXAMPLE OVS-DPDK DEPLOYMENT
	5.4. TOPOLOGY OF AN NFV OVS-DPDK DEPLOYMENT

	CHAPTER 6. INSTALLING AND PREPARING THE OPERATORS
	6.1. PREREQUISITES
	6.2. INSTALLING THE OPENSTACK OPERATOR

	CHAPTER 7. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT
	7.1. CONFIGURING RED HAT OPENSHIFT CONTAINER PLATFORM NODES FOR A RED HAT OPENSTACK PLATFORM DEPLOYMENT
	7.2. CREATING A STORAGE CLASS
	7.3. CREATING THE OPENSTACK NAMESPACE
	7.4. PROVIDING SECURE ACCESS TO THE RED HAT OPENSTACK SERVICES ON OPENSHIFT SERVICES

	CHAPTER 8. PREPARING NETWORKS FOR RHOSO WITH NFV
	8.1. DEFAULT RED HAT OPENSTACK SERVICES ON OPENSHIFT NETWORKS
	8.2. NIC CONFIGURATIONS FOR NFV
	8.3. PREPARING RHOCP FOR RHOSO NETWORKS
	8.4. CREATING THE DATA PLANE NETWORK

	CHAPTER 9. CREATING THE CONTROL PLANE FOR NFV ENVIRONMENTS
	9.1. PREREQUISITES
	9.2. CREATING THE CONTROL PLANE
	9.3. EXAMPLE OPENSTACKCONTROLPLANE CR
	9.4. REMOVING A SERVICE FROM THE CONTROL PLANE
	9.5. ADDITIONAL RESOURCES

	CHAPTER 10. CREATING THE DATA PLANE FOR SR-IOV AND DPDK ENVIRONMENTS
	10.1. PREREQUISITES
	10.2. CREATING THE DATA PLANE SECRETS
	10.3. CREATING A CUSTOM SR-IOV COMPUTE SERVICE
	10.4. CREATING A CUSTOM OVS-DPDK COMPUTE SERVICE
	10.5. CREATING A SET OF DATA PLANE NODES WITH PRE-PROVISIONED NODES
	10.5.1. Example OpenStackDataPlaneNodeSet CR for pre-provisioned nodes

	10.6. CREATING A SET OF DATA PLANE NODES WITH UNPROVISIONED NODES
	10.6.1. Example OpenStackDataPlaneNodeSet CR for unprovisioned nodes
	10.6.2. Provisioning bare-metal data plane nodes

	10.7. OPENSTACKDATAPLANENODESET CR SPEC PROPERTIES
	10.7.1. nodeTemplate
	10.7.2. nodes
	10.7.3. ansible
	10.7.4. ansibleVarsFrom

	10.8. NETWORK INTERFACE CONFIGURATION OPTIONS
	10.8.1. interface
	10.8.2. vlan
	10.8.3. ovs_bridge
	10.8.4. Network interface bonding
	10.8.4.1. ovs_bond

	10.8.5. LACP with OVS bonding modes
	10.8.6. linux_bond
	10.8.7. routes

	10.9. EXAMPLE CUSTOM NETWORK INTERFACES FOR NFV
	10.9.1. Example template - non-partitioned NIC
	10.9.2. Example template - partitioned NIC

	10.10. DEPLOYING THE DATA PLANE
	10.11. DATA PLANE CONDITIONS AND STATES
	10.12. TROUBLESHOOTING DATA PLANE CREATION AND DEPLOYMENT
	10.12.1. Checking the job condition message for a service
	10.12.1.1. Job condition messages

	10.12.2. Checking the logs for a node set

	CHAPTER 11. ACCESSING THE RHOSO CLOUD
	11.1. ACCESSING THE OPENSTACKCLIENT POD
	11.2. ACCESSING THE DASHBOARD SERVICE (HORIZON) INTERFACE

	CHAPTER 12. TUNING NFV IN A RED HAT OPENSTACK SERVICES ON OPENSHIFT ENVIRONMENT
	12.1. MANAGING PORT SECURITY IN NFV ENVIRONMENTS
	12.2. CREATING AND USING VF PORTS
	12.3. KNOWN LIMITATIONS FOR NUMA-AWARE VSWITCHES
	12.4. QUALITY OF SERVICE (QOS) IN NFVI ENVIRONMENTS
	12.5. CREATING AN HCI DATA PLANE THAT USES DPDK
	12.5.1. Example NUMA node configuration
	12.5.2. Recommended configuration for HCI-DPDK deployments

