
Red Hat OpenStack Services on
OpenShift 18.0

Deploying Red Hat OpenStack Services on
OpenShift

Deploying a Red Hat OpenStack Services on OpenShift environment on a Red Hat
OpenShift Container Platform cluster

Last Updated: 2024-09-13

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat
OpenStack Services on OpenShift

Deploying a Red Hat OpenStack Services on OpenShift environment on a Red Hat OpenShift
Container Platform cluster

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to install the OpenStack Operator for Red Hat OpenStack Services on OpenShift
(RHOSO), create a RHOSO control plane on a Red Hat OpenShift Container Platform cluster, and
use the OpenStack Operator to deploy a RHOSO data plane.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INSTALLING AND PREPARING THE OPERATORS
1.1. PREREQUISITES
1.2. INSTALLING THE OPENSTACK OPERATOR

CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK
SERVICES ON OPENSHIFT

2.1. CONFIGURING RED HAT OPENSHIFT CONTAINER PLATFORM NODES FOR A RED HAT OPENSTACK
PLATFORM DEPLOYMENT
2.2. CREATING A STORAGE CLASS
2.3. CREATING THE OPENSTACK NAMESPACE
2.4. PROVIDING SECURE ACCESS TO THE RED HAT OPENSTACK SERVICES ON OPENSHIFT SERVICES

CHAPTER 3. PREPARING NETWORKS FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT
3.1. DEFAULT RED HAT OPENSTACK SERVICES ON OPENSHIFT NETWORKS
3.2. PREPARING RHOCP FOR RHOSO NETWORKS
3.3. CREATING THE DATA PLANE NETWORK

CHAPTER 4. CREATING THE CONTROL PLANE
4.1. PREREQUISITES
4.2. CREATING THE CONTROL PLANE
4.3. EXAMPLE OPENSTACKCONTROLPLANE CR
4.4. REMOVING A SERVICE FROM THE CONTROL PLANE
4.5. ADDITIONAL RESOURCES

CHAPTER 5. CREATING THE DATA PLANE
5.1. PREREQUISITES
5.2. CREATING THE DATA PLANE SECRETS
5.3. CREATING A SET OF DATA PLANE NODES WITH PRE-PROVISIONED NODES

5.3.1. Example OpenStackDataPlaneNodeSet CR for pre-provisioned nodes
5.4. CREATING A SET OF DATA PLANE NODES WITH UNPROVISIONED NODES

5.4.1. Example OpenStackDataPlaneNodeSet CR for unprovisioned nodes
5.4.2. Provisioning bare-metal data plane nodes

5.5. OPENSTACKDATAPLANENODESET CR SPEC PROPERTIES
5.5.1. nodeTemplate
5.5.2. nodes
5.5.3. ansible
5.5.4. ansibleVarsFrom

5.6. DEPLOYING THE DATA PLANE
5.7. DATA PLANE CONDITIONS AND STATES
5.8. TROUBLESHOOTING DATA PLANE CREATION AND DEPLOYMENT

5.8.1. Checking the job condition message for a service
5.8.1.1. Job condition messages

5.8.2. Checking the logs for a node set

CHAPTER 6. ACCESSING THE RHOSO CLOUD
6.1. ACCESSING THE OPENSTACKCLIENT POD
6.2. ACCESSING THE DASHBOARD SERVICE (HORIZON) INTERFACE

3

4
4
4

5

5
5
6
7

9
9

10
17

21
21
21
31

38
39

41
41
41

44
49
53
59
62
63
63
64
65
65
66
67
69
70
71
71

73
73
73

Table of Contents

1

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

2

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation for Red Hat OpenStack Services
on OpenShift (RHOSO) or earlier releases of Red Hat OpenStack Platform (RHOSP). When you create
an issue for RHOSO or RHOSP documents, the issue is recorded in the RHOSO Jira project, where you
can track the progress of your feedback.

To complete the Create Issue form, ensure that you are logged in to Jira. If you do not have a Red Hat
Jira account, you can create an account at https://issues.redhat.com.

1. Click the following link to open a Create Issue page: Create Issue

2. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

3. Click Create.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

3

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. INSTALLING AND PREPARING THE OPERATORS
You install the Red Hat OpenStack Services on OpenShift (RHOSO) OpenStack Operator (openstack-
operator) and create the RHOSO control plane on an operational Red Hat OpenShift Container
Platform (RHOCP) cluster. You install the OpenStack Operator by using the RHOCP web console. You
perform the control plane installation tasks and all data plane creation tasks on a workstation that has
access to the RHOCP cluster.

1.1. PREREQUISITES

An operational RHOCP cluster, version 4.16. For the RHOCP system requirements, see Red Hat
OpenShift Container Platform cluster requirements in Planning your deployment .

The oc command line tool is installed on your workstation.

You are logged in to the RHOCP cluster as a user with cluster-admin privileges.

1.2. INSTALLING THE OPENSTACK OPERATOR

You use OperatorHub on the Red Hat OpenShift Container Platform (RHOCP) web console to install
the OpenStack Operator (openstack-operator) on your RHOCP cluster.

Procedure

1. Log in to the RHOCP web console as a user with cluster-admin permissions.

2. Select Operators → OperatorHub.

3. In the Filter by keyword field, type OpenStack.

4. Click the OpenStack Operator tile with the Red Hat source label.

5. Read the information about the Operator and click Install.

6. On the Install Operator page, select "Operator recommended Namespace: openstack-
operators" from the Installed Namespace list.

7. Click Install to make the Operator available to the openstack-operators namespace. The
Operators are deployed and ready when the Status of the OpenStack Operator is Succeeded.

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

4

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/planning_your_deployment/assembly_system-requirements#ref_RHOCP-cluster-requirements_planning

CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER
PLATFORM FOR RED HAT OPENSTACK SERVICES ON

OPENSHIFT
You install Red Hat OpenStack Services on OpenShift (RHOSO) on an operational Red Hat OpenShift
Container Platform (RHOCP) cluster. To prepare for installing and deploying your RHOSO environment,
you must configure the RHOCP worker nodes and the RHOCP networks on your RHOCP cluster.

2.1. CONFIGURING RED HAT OPENSHIFT CONTAINER PLATFORM
NODES FOR A RED HAT OPENSTACK PLATFORM DEPLOYMENT

Red Hat OpenStack Services on OpenShift (RHOSO) services run on Red Hat OpenShift Container
Platform (RHOCP) worker nodes. By default, the OpenStack Operator deploys RHOSO services on any
worker node. You can use node labels in your OpenStackControlPlane custom resource (CR) to
specify which RHOCP nodes host the RHOSO services. By pinning some services to specific
infrastructure nodes rather than running the services on all of your RHOCP worker nodes, you optimize
the performance of your deployment. You can create labels for the RHOCP nodes, or you can use the
existing labels, and then specify those labels in the OpenStackControlPlane CR by using the
nodeSelector field.

For example, the Block Storage service (cinder) has different requirements for each of its services:

The cinder-scheduler service is a very light service with low memory, disk, network, and CPU
usage.

The cinder-api service has high network usage due to resource listing requests.

The cinder-volume service has high disk and network usage because many of its operations are
in the data path, such as offline volume migration, and creating a volume from an image.

The cinder-backup service has high memory, network, and CPU requirements.

Therefore, you can pin the cinder-api, cinder-volume, and cinder-backup services to dedicated nodes
and let the OpenStack Operator place the cinder-scheduler service on a node that has capacity.

Additional resources

Placing pods on specific nodes using node selectors

Machine configuration overview

Node Feature Discovery Operator

2.2. CREATING A STORAGE CLASS

You must create a storage class for your Red Hat OpenShift Container Platform (RHOCP) cluster
storage back end, to provide persistent volumes to Red Hat OpenStack Services on OpenShift
(RHOSO) pods. Red Hat recommends that you use the Logical Volume Manager (LVM) Storage
storage class with RHOSO, although you can use other implementations, such as Container Storage
Interface (CSI) or OpenShift Data Foundation (ODF). You specify this storage class as the cluster
storage back end for the RHOSO deployment. Red Hat recommends that you use a storage back end
based on SSD or NVMe drives for the storage class.

You must wait until the LVM Storage Operator announces that the storage is available before creating

CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/nodes/working-with-pods#nodes-pods-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/machine_configuration/machine-config-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/specialized_hardware_and_driver_enablement/psap-node-feature-discovery-operator

You must wait until the LVM Storage Operator announces that the storage is available before creating
the control plane. The LVM Storage Operator announces that the cluster and LVMS storage
configuration is complete through the annotation for the volume group to the worker node object. If you
deploy pods before all the control plane nodes are ready, then multiple PVCs and pods are scheduled on
the same nodes.

To check that the storage is ready, you can query the nodes in your lvmclusters.lvm.topolvm.io object.
For example, run the following command if you have three worker nodes and your device class for the
LVM Storage Operator is named "local-storage":

oc get node -l "topology.topolvm.io/node in ($(oc get nodes -l node-role.kubernetes.io/worker -o
name | cut -d '/' -f 2 | tr '\n' ',' | sed 's/.\{1\}$//'))" -
o=jsonpath='{.items[*].metadata.annotations.capacity\.topolvm\.io/local-storage}' | tr ' ' '\n'

The storage is ready when this command returns three non-zero values

For more information about how to configure the LVM Storage storage class, see Persistent storage
using Logical Volume Manager Storage in the RHOCP Storage guide.

2.3. CREATING THE OPENSTACK NAMESPACE

You must create a namespace within your Red Hat OpenShift Container Platform (RHOCP)
environment for the service pods of your Red Hat OpenStack Services on OpenShift (RHOSO)
deployment. The service pods of each RHOSO deployment exist in their own namespace within the
RHOCP environment.

Prerequisites

You are logged on to a workstation that has access to the RHOCP cluster, as a user with
cluster-admin privileges.

Procedure

1. Create the openstack project for the deployed RHOSO environment:

$ oc new-project openstack

2. Ensure the openstack namespace is labeled to enable privileged pod creation by the
OpenStack Operators:

$ oc get namespace openstack -ojsonpath='{.metadata.labels}' | jq
{
 "kubernetes.io/metadata.name": "openstack",
 "pod-security.kubernetes.io/enforce": "privileged",
 "security.openshift.io/scc.podSecurityLabelSync": "false"
}

If the security context constraint (SCC) is not "privileged", use the following commands to
change it:

$ oc label ns openstack security.openshift.io/scc.podSecurityLabelSync=false --overwrite
$ oc label ns openstack pod-security.kubernetes.io/enforce=privileged --overwrite

3. Optional: To remove the need to specify the namespace when executing commands on the

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

6

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/storage/configuring-persistent-storage#persistent-storage-using-lvms

3. Optional: To remove the need to specify the namespace when executing commands on the
openstack namespace, set the default namespace to openstack:

$ oc project openstack

2.4. PROVIDING SECURE ACCESS TO THE RED HAT OPENSTACK
SERVICES ON OPENSHIFT SERVICES

You must create a Secret custom resource (CR) to provide secure access to the Red Hat OpenStack
Services on OpenShift (RHOSO) service pods.

WARNING

You cannot change a service password once the control plane is deployed. If a
service password is changed in osp-secret after deploying the control plane, the
service is reconfigured to use the new password but the password is not updated in
the Identity service (keystone). This results in a service outage.

Procedure

1. Create a Secret CR file on your workstation, for example, openstack_service_secret.yaml.

2. Add the following initial configuration to openstack_service_secret.yaml:

apiVersion: v1
data:
 AdminPassword: <base64_password>
 AodhPassword: <base64_password>
 AodhDatabasePassword: <base64_password>
 BarbicanDatabasePassword: <base64_password>
 BarbicanPassword: <base64_password>
 BarbicanSimpleCryptoKEK: <base64_fernet_key>
 CeilometerPassword: <base64_password>
 CinderDatabasePassword: <base64_password>
 CinderPassword: <base64_password>
 DatabasePassword: <base64_password>
 DbRootPassword: <base64_password>
 DesignateDatabasePassword: <base64_password>
 DesignatePassword: <base64_password>
 GlanceDatabasePassword: <base64_password>
 GlancePassword: <base64_password>
 HeatAuthEncryptionKey: <base64_password>
 HeatDatabasePassword: <base64_password>
 HeatPassword: <base64_password>
 IronicDatabasePassword: <base64_password>
 IronicInspectorDatabasePassword: <base64_password>
 IronicInspectorPassword: <base64_password>
 IronicPassword: <base64_password>
 KeystoneDatabasePassword: <base64_password>
 ManilaDatabasePassword: <base64_password>



CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

7

 ManilaPassword: <base64_password>
 MetadataSecret: <base64_password>
 NeutronDatabasePassword: <base64_password>
 NeutronPassword: <base64_password>
 NovaAPIDatabasePassword: <base64_password>
 NovaAPIMessageBusPassword: <base64_password>
 NovaCell0DatabasePassword: <base64_password>
 NovaCell0MessageBusPassword: <base64_password>
 NovaCell1DatabasePassword: <base64_password>
 NovaCell1MessageBusPassword: <base64_password>
 NovaPassword: <base64_password>
 OctaviaDatabasePassword: <base64_password>
 OctaviaPassword: <base64_password>
 PlacementDatabasePassword: <base64_password>
 PlacementPassword: <base64_password>
 SwiftPassword: <base64_password>
kind: Secret
metadata:
 name: osp-secret
 namespace: openstack
type: Opaque

Replace <base64_password> with a 32-character key that is base64 encoded. You can
use the following command to manually generate a base64 encoded password:

$ echo -n <password> | base64

Alternatively, if you are using a Linux workstation and you are generating the Secret CR
definition file by using a Bash command such as cat, you can replace <base64_password>
with the following command to auto-generate random passwords for each service:

$(tr -dc 'A-Za-z0-9' < /dev/urandom | head -c 32 | base64)

Replace the <base64_fernet_key> with a fernet key that is base64 encoded. You can use
the following command to manually generate the fernet key:

python3 -c "from cryptography.fernet import Fernet;
print(Fernet.generate_key().decode('UTF-8'))" | base64

NOTE

The HeatAuthEncryptionKey password must be a 32-character key for
Orchestration service (heat) encryption. If you increase the length of the
passwords for all other services, ensure that the HeatAuthEncryptionKey
password remains at length 32.

3. Create the Secret CR in the cluster:

$ oc create -f openstack_service_secret.yaml -n openstack

4. Verify that the Secret CR is created:

$ oc describe secret osp-secret -n openstack

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

8

CHAPTER 3. PREPARING NETWORKS FOR RED HAT
OPENSTACK SERVICES ON OPENSHIFT

To prepare for configuring and deploying your Red Hat OpenStack Services on OpenShift (RHOSO)
environment, you must configure the Red Hat OpenShift Container Platform (RHOCP) networks on
your RHOCP cluster.

3.1. DEFAULT RED HAT OPENSTACK SERVICES ON OPENSHIFT
NETWORKS

The following physical data center networks are typically implemented for a Red Hat OpenStack
Services on OpenShift (RHOSO) deployment:

Control plane network: This network is used by the OpenStack Operator for Ansible SSH access
to deploy and connect to the data plane nodes from the Red Hat OpenShift Container Platform
(RHOCP) environment. This network is also used by data plane nodes for live migration of
instances.

External network: (Optional) You can configure an external network if one is required for your
environment. For example, you might create an external network for any of the following
purposes:

To provide virtual machine instances with Internet access.

To create flat provider networks that are separate from the control plane.

To configure VLAN provider networks on a separate bridge from the control plane.

To provide access to virtual machine instances with floating IPs on a network other than the
control plane network.

Internal API network: This network is used for internal communication between RHOSO
components.

Storage network: This network is used for block storage, RBD, NFS, FC, and iSCSI.

Tenant (project) network: This network is used for data communication between virtual machine
instances within the cloud deployment.

Storage Management network: (Optional) This network is used by storage components. For
example, Red Hat Ceph Storage uses the Storage Management network in a hyperconverged
infrastructure (HCI) environment as the cluster_network to replicate data.

NOTE

For more information on Red Hat Ceph Storage network configuration, see Ceph
network configuration in the Red Hat Ceph Storage Configuration Guide .

The following table details the default networks used in a RHOSO deployment. If required, you can
update the networks for your environment.

NOTE

CHAPTER 3. PREPARING NETWORKS FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

9

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html/configuration_guide/ceph-network-configuration

NOTE

By default, the control plane and external networks do not use VLANs. Networks that do
not use VLANs must be placed on separate NICs. You can use a VLAN for the control
plane network on new RHOSO deployments. You can also use the Native VLAN on a
trunked interface as the non-VLAN network. For example, you can have the control plane
and the internal API on one NIC, and the external network with no VLAN on a separate
NIC.

Table 3.1. Default RHOSO networks

Network
name

VLAN CIDR NetConfig
allocationR
ange

MetalLB
IPAddress
Pool range

net-attach-
def ipam
range

OCP worker
nncp range

ctlplane n/a 192.168.122.0
/24

192.168.122.10
0 -
192.168.122.25
0

192.168.122.8
0 -
192.168.122.9
0

192.168.122.3
0 -
192.168.122.7
0

192.168.122.10
-
192.168.122.2
0

external n/a 10.0.0.0/24 10.0.0.100 -
10.0.0.250

n/a n/a

internalapi 20 172.17.0.0/24 172.17.0.100 -
172.17.0.250

172.17.0.80 -
172.17.0.90

172.17.0.30 -
172.17.0.70

172.17.0.10 -
172.17.0.20

storage 21 172.18.0.0/24 172.18.0.100
-
172.18.0.250

n/a 172.18.0.30 -
172.18.0.70

172.18.0.10 -
172.18.0.20

tenant 22 172.19.0.0/24 172.19.0.100
-
172.19.0.250

n/a 172.19.0.30 -
172.19.0.70

172.19.0.10 -
172.19.0.20

storageMg
mt

23 172.20.0.0/2
4

172.20.0.100
-
172.20.0.250

n/a 172.20.0.30 -
172.20.0.70

172.20.0.10 -
172.20.0.20

3.2. PREPARING RHOCP FOR RHOSO NETWORKS

The Red Hat OpenStack Services on OpenShift (RHOSO) services run as a Red Hat OpenShift
Container Platform (RHOCP) workload. You use the NMState Operator to connect the worker nodes to
the required isolated networks. You create a NetworkAttachmentDefinition (net-attach-def) custom
resource (CR) for each isolated network to attach service pods to the isolated networks, where needed.
You use the MetalLB Operator to expose internal service endpoints on the isolated networks. By
default, the public service endpoints are exposed as RHOCP routes.

You must also create an L2Advertisement resource to define how the Virtual IPs (VIPs) are announced,
and an IPAddressPool resource to configure which IPs can be used as VIPs. In layer 2 mode, one node
assumes the responsibility of advertising a service to the local network.

NOTE

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

10

NOTE

The examples in the following procedure use IPv4 addresses. You can use IPv6 addresses
instead of IPv4 addresses. Dual stack IPv4/6 is not available. For information about how
to configure IPv6 addresses, see the following resources in the RHOCP Networking
guide:

Installing the Kubernetes NMState Operator

Configuring MetalLB address pools

Procedure

1. Create a NodeNetworkConfigurationPolicy (nncp) CR file on your workstation, for example,
openstack-nncp.yaml.

2. Retrieve the names of the worker nodes in the RHOCP cluster:

$ oc get nodes -l node-role.kubernetes.io/worker -o jsonpath="{.items[*].metadata.name}"

3. Discover the network configuration:

$ oc get nns/<worker_node> -o yaml | more

Replace <worker_node> with the name of a worker node retrieved in step 2, for example,
worker-1. Repeat this step for each worker node.

4. In the nncp CR file, configure the interfaces for each isolated network on each worker node in
the RHOCP cluster. For information about the default physical data center networks that must
be configured with network isolation, see Default Red Hat OpenStack Services on OpenShift
networks.
In the following example, the nncp CR configures the enp6s0 interface for worker node 1, osp-
enp6s0-worker-1, to use VLAN interfaces with IPv4 addresses for network isolation:

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: osp-enp6s0-worker-1
spec:
 desiredState:
 interfaces:
 - description: internalapi vlan interface
 ipv4:
 address:
 - ip: 172.17.0.10
 prefix-length: 24
 enabled: true
 dhcp: false
 ipv6:
 enabled: false
 name: internalapi
 state: up
 type: vlan
 vlan:
 base-iface: enp6s0

CHAPTER 3. PREPARING NETWORKS FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/kubernetes-nmstate#installing-the-kubernetes-nmstate-operator-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/load-balancing-with-metallb#metallb-configure-address-pools

 id: 20
 reorder-headers: true
 - description: storage vlan interface
 ipv4:
 address:
 - ip: 172.18.0.10
 prefix-length: 24
 enabled: true
 dhcp: false
 ipv6:
 enabled: false
 name: storage
 state: up
 type: vlan
 vlan:
 base-iface: enp6s0
 id: 21
 reorder-headers: true
 - description: tenant vlan interface
 ipv4:
 address:
 - ip: 172.19.0.10
 prefix-length: 24
 enabled: true
 dhcp: false
 ipv6:
 enabled: false
 name: tenant
 state: up
 type: vlan
 vlan:
 base-iface: enp6s0
 id: 22
 reorder-headers: true
 - description: Configuring enp6s0
 ipv4:
 address:
 - ip: 192.168.122.10
 prefix-length: 24
 enabled: true
 dhcp: false
 ipv6:
 enabled: false
 mtu: 1500
 name: enp6s0
 state: up
 type: ethernet
 nodeSelector:
 kubernetes.io/hostname: worker-1
 node-role.kubernetes.io/worker: ""

5. Create the nncp CR in the cluster:

$ oc apply -f openstack-nncp.yaml

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

12

6. Verify that the nncp CR is created:

$ oc get nncp -w
NAME STATUS REASON
osp-enp6s0-worker-1 Progressing ConfigurationProgressing
osp-enp6s0-worker-1 Progressing ConfigurationProgressing
osp-enp6s0-worker-1 Available SuccessfullyConfigured

7. Create a NetworkAttachmentDefinition (net-attach-def) CR file on your workstation, for
example, openstack-net-attach-def.yaml.

8. In the NetworkAttachmentDefinition CR file, configure a NetworkAttachmentDefinition
resource for each isolated network to attach a service deployment pod to the network. The
following examples create a NetworkAttachmentDefinition resource for the internalapi,
storage, ctlplane, and tenant networks of type macvlan:

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: internalapi
 namespace: openstack 1
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "internalapi",
 "type": "macvlan",
 "master": "internalapi", 2
 "ipam": { 3
 "type": "whereabouts",
 "range": "172.17.0.0/24",
 "range_start": "172.17.0.30", 4
 "range_end": "172.17.0.70"
 }
 }

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: ctlplane
 namespace: openstack
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "ctlplane",
 "type": "macvlan",
 "master": "enp6s0",
 "ipam": {
 "type": "whereabouts",
 "range": "192.168.122.0/24",
 "range_start": "192.168.122.30",
 "range_end": "192.168.122.70"
 }
 }

CHAPTER 3. PREPARING NETWORKS FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

13

1

2

3

4

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: storage
 namespace: openstack
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "storage",
 "type": "macvlan",
 "master": "storage",
 "ipam": {
 "type": "whereabouts",
 "range": "172.18.0.0/24",
 "range_start": "172.18.0.30",
 "range_end": "172.18.0.70"
 }
 }

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
 name: tenant
 namespace: openstack
spec:
 config: |
 {
 "cniVersion": "0.3.1",
 "name": "tenant",
 "type": "macvlan",
 "master": "tenant",
 "ipam": {
 "type": "whereabouts",
 "range": "172.19.0.0/24",
 "range_start": "172.19.0.30",
 "range_end": "172.19.0.70"
 }
 }

The namespace where the services are deployed.

The node interface name associated with the network, as defined in the nncp CR.

The whereabouts CNI IPAM plugin to assign IPs to the created pods from the range .30 -
.70.

The IP address pool range must not overlap with the MetalLB IPAddressPool range and
the NetConfig allocationRange.

9. Create the NetworkAttachmentDefinition CR in the cluster:

$ oc apply -f openstack-net-attach-def.yaml

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

14

10. Verify that the NetworkAttachmentDefinition CR is created:

$ oc get net-attach-def -n openstack

11. Create an IPAddressPool CR file on your workstation, for example, openstack-
ipaddresspools.yaml.

12. In the IPAddressPool CR file, configure an IPAddressPool resource on the isolated network to
specify the IP address ranges over which MetalLB has authority:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: internalapi
 namespace: metallb-system
spec:
 addresses:
 - 172.17.0.80-172.17.0.90 1
 autoAssign: true
 avoidBuggyIPs: false

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: ctlplane
spec:
 addresses:
 - 192.168.122.80-192.168.122.90
 autoAssign: true
 avoidBuggyIPs: false

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: storage
spec:
 addresses:
 - 172.18.0.80-172.18.0.90
 autoAssign: true
 avoidBuggyIPs: false

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 namespace: metallb-system
 name: tenant
spec:
 addresses:
 - 172.19.0.80-172.19.0.90
 autoAssign: true
 avoidBuggyIPs: false

CHAPTER 3. PREPARING NETWORKS FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

15

1 The IPAddressPool range must not overlap with the whereabouts IPAM range and the
NetConfig allocationRange.

For information about how to configure the other IPAddressPool resource parameters, see
Configuring MetalLB address pools in the RHOCP Networking guide.

13. Create the IPAddressPool CR in the cluster:

$ oc apply -f openstack-ipaddresspools.yaml

14. Verify that the IPAddressPool CR is created:

$ oc describe -n metallb-system IPAddressPool

15. Create a L2Advertisement CR file on your workstation, for example, openstack-
l2advertisement.yaml.

16. In the L2Advertisement CR file, configure L2Advertisement CRs to define which node
advertises a service to the local network. Create one L2Advertisement resource for each
network.
In the following example, each L2Advertisement CR specifies that the VIPs requested from the
network address pools are announced on the interface that is attached to the VLAN:

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: internalapi
 namespace: metallb-system
spec:
 ipAddressPools:
 - internalapi
 interfaces:
 - internalapi 1

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: ctlplane
 namespace: metallb-system
spec:
 ipAddressPools:
 - ctlplane
 interfaces:
 - enp6s0

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: storage
 namespace: metallb-system
spec:
 ipAddressPools:
 - storage
 interfaces:

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/load-balancing-with-metallb#metallb-configure-address-pools

1

 - storage

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: tenant
 namespace: metallb-system
spec:
 ipAddressPools:
 - tenant
 interfaces:
 - tenant

The interface where the VIPs requested from the VLAN address pool are announced.

For information about how to configure the other L2Advertisement resource parameters, see
Configuring MetalLB with a L2 advertisement and label in the RHOCP Networking guide.

17. Create the L2Advertisement CRs in the cluster:

$ oc apply -f openstack-l2advertisement.yaml

18. Verify that the L2Advertisement CRs are created:

$ oc get -n metallb-system L2Advertisement
NAME IPADDRESSPOOLS IPADDRESSPOOL SELECTORS INTERFACES
ctlplane ["ctlplane"] ["enp6s0"]
internalapi ["internalapi"] ["internalapi"]
storage ["storage"] ["storage"]
tenant ["tenant"] ["tenant"]

19. If your cluster has OVNKubernetes as the network back end, then you must enable global
forwarding so that MetalLB can work on a secondary network interface.

a. Check the network back end used by your cluster:

$ oc get network.operator cluster --output=jsonpath='{.spec.defaultNetwork.type}'

b. If the back end is OVNKubernetes, then run the following command to enable global IP
forwarding:

$ oc patch network.operator cluster -p '{"spec":{"defaultNetwork":
{"ovnKubernetesConfig":{"gatewayConfig":{"ipForwarding": "Global"}}}}}' --type=merge

3.3. CREATING THE DATA PLANE NETWORK

To create the data plane network, you define a NetConfig custom resource (CR) and specify all the
subnets for the data plane networks. You must define at least one control plane network for your data
plane. You can also define VLAN networks to create network isolation for composable networks, such as
InternalAPI, Storage, and External. Each network definition must include the IP address assignment.

TIP

CHAPTER 3. PREPARING NETWORKS FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/load-balancing-with-metallb#nw-metallb-configure-with-L2-advertisement_about-advertising-ip-address-pool

TIP

Use the following commands to view the NetConfig CRD definition and specification schema:

$ oc describe crd netconfig

$ oc explain netconfig.spec

Procedure

1. Create a file named openstack_netconfig.yaml on your workstation.

2. Add the following configuration to openstack_netconfig.yaml to create the NetConfig CR:

apiVersion: network.openstack.org/v1beta1
kind: NetConfig
metadata:
 name: openstacknetconfig
 namespace: openstack

3. In the openstack_netconfig.yaml file, define the topology for each data plane network. To use
the default Red Hat OpenStack Services on OpenShift (RHOSO) networks, you must define a
specification for each network. For information about the default RHOSO networks, see Default
Red Hat OpenStack Services on OpenShift networks. The following example creates isolated
networks for the data plane:

spec:
 networks:
 - name: CtlPlane 1
 dnsDomain: ctlplane.example.com
 subnets: 2
 - name: subnet1 3
 allocationRanges: 4
 - end: 192.168.122.120
 start: 192.168.122.100
 - end: 192.168.122.200
 start: 192.168.122.150
 cidr: 192.168.122.0/24
 gateway: 192.168.122.1
 - name: InternalApi
 dnsDomain: internalapi.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 172.17.0.250
 start: 172.17.0.100
 excludeAddresses: 5
 - 172.17.0.10
 - 172.17.0.12
 cidr: 172.17.0.0/24
 vlan: 20 6
 - name: External
 dnsDomain: external.example.com
 subnets:

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

18

1

2

3

4

5

6

 - name: subnet1
 allocationRanges:
 - end: 10.0.0.250
 start: 10.0.0.100
 cidr: 10.0.0.0/24
 gateway: 10.0.0.1
 - name: Storage
 dnsDomain: storage.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 172.18.0.250
 start: 172.18.0.100
 cidr: 172.18.0.0/24
 vlan: 21
 - name: Tenant
 dnsDomain: tenant.example.com
 subnets:
 - name: subnet1
 allocationRanges:
 - end: 172.19.0.250
 start: 172.19.0.100
 cidr: 172.19.0.0/24
 vlan: 22

The name of the network, for example, CtlPlane.

The IPv4 subnet specification.

The name of the subnet, for example, subnet1.

The NetConfig allocationRange. The allocationRange must not overlap with the
MetalLB IPAddressPool range and the IP address pool range.

Optional: List of IP addresses from the allocation range that must not be used by data
plane nodes.

The network VLAN. For information about the default RHOSO networks, see Default
Red Hat OpenStack Services on OpenShift networks.

4. Save the openstack_netconfig.yaml definition file.

5. Create the data plane network:

$ oc create -f openstack_netconfig.yaml -n openstack

6. To verify that the data plane network is created, view the openstacknetconfig resource:

$ oc get netconfig/openstacknetconfig -n openstack

If you see errors, check the underlying network-attach-definition and node network
configuration policies:

$ oc get network-attachment-definitions -n openstack
$ oc get nncp

CHAPTER 3. PREPARING NETWORKS FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT

19

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

20

CHAPTER 4. CREATING THE CONTROL PLANE
The Red Hat OpenStack Services on OpenShift (RHOSO) control plane contains the RHOSO services
that manage the cloud. The RHOSO services run as a Red Hat OpenShift Container Platform (RHOCP)
workload.

NOTE

Creating the control plane also creates an OpenStackClient pod that you can access
through a remote shell (rsh) to run OpenStack CLI commands.

4.1. PREREQUISITES

The OpenStack Operator (openstack-operator) is installed. For more information, see
Installing and preparing the Operators.

The RHOCP cluster is prepared for RHOSO networks. For more information, see Preparing
RHOCP for RHOSO networks.

The RHOCP cluster is not configured with any network policies that prevent communication
between the openstack-operators namespace and the control plane namespace (default
openstack). Use the following command to check the existing network policies on the cluster:

$ oc get networkpolicy -n openstack

You are logged on to a workstation that has access to the RHOCP cluster, as a user with
cluster-admin privileges.

4.2. CREATING THE CONTROL PLANE

Define an OpenStackControlPlane custom resource (CR) to perform the following tasks:

Create the control plane.

Enable the Red Hat OpenStack Services on OpenShift (RHOSO) services.

The following procedure creates an initial control plane with the recommended configurations for each
service. The procedure helps you quickly create an operating control plane environment that you can use
to troubleshoot issues and test the environment before adding all the customizations you require. You
can add service customizations to a deployed environment. For more information about how to
customize your control plane after deployment, see the Customizing the Red Hat OpenStack Services
on OpenShift deployment guide.

For an example OpenStackControlPlane CR, see Example OpenStackControlPlane CR.

TIP

Use the following commands to view the OpenStackControlPlane CRD definition and specification
schema:

$ oc describe crd openstackcontrolplane

$ oc explain openstackcontrolplane.spec

CHAPTER 4. CREATING THE CONTROL PLANE

21

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/customizing_the_red_hat_openstack_services_on_openshift_deployment/index

Procedure

1. Create a file on your workstation named openstack_control_plane.yaml to define the
OpenStackControlPlane CR:

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-control-plane
 namespace: openstack

2. Specify the Secret CR you created to provide secure access to the RHOSO service pods in
Providing secure access to the Red Hat OpenStack Services on OpenShift services :

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-control-plane
 namespace: openstack
spec:
 secret: osp-secret

3. Specify the storageClass you created for your Red Hat OpenShift Container Platform
(RHOCP) cluster storage back end:

spec:
 secret: osp-secret
 storageClass: <RHOCP_storage_class>

Replace <RHOCP_storage_class> with the storage class you created for your RHOCP
cluster storage back end. For information about storage classes, see Creating a storage
class.

4. Add the following service configurations:

Block Storage service (cinder):

 cinder:
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 secret: osp-secret
 cinderAPI:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

22

1

2

 cinderScheduler:
 replicas: 1
 cinderBackup:
 networkAttachments:
 - storage
 replicas: 0 1
 cinderVolumes:
 volume1:
 networkAttachments:
 - storage
 replicas: 0 2

You can deploy the initial control plane without activating the cinderBackup service.
To deploy the service, you must set the number of replicas for the service and
configure the back end for the service. For information about the recommended
replicas for each service and how to configure a back end for the Block Storage
service and the backup service, see Configuring the Block Storage backup service in
Configuring persistent storage .

You can deploy the initial control plane without activating the cinderVolumes service.
To deploy the service, you must set the number of replicas for the service and
configure the back end for the service. For information about the recommended
replicas for the cinderVolumes service and how to configure a back end for the
service, see Configuring the volume service in Configuring persistent storage .

Compute service (nova):

 nova:
 apiOverride:
 route: {}
 template:
 apiServiceTemplate:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 metadataServiceTemplate:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 schedulerServiceTemplate:

CHAPTER 4. CREATING THE CONTROL PLANE

23

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_persistent_storage/assembly_configuring-the-block-storage-backup-service_block-storage-backup
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_persistent_storage/assembly_cinder-configuring-the-block-storage-service_block-storage#proc_cinder-configure-volume_block-storage

 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 cellTemplates:
 cell0:
 cellDatabaseAccount: nova-cell0
 cellDatabaseInstance: openstack
 cellMessageBusInstance: rabbitmq
 hasAPIAccess: true
 cell1:
 cellDatabaseAccount: nova-cell1
 cellDatabaseInstance: openstack-cell1
 cellMessageBusInstance: rabbitmq-cell1
 noVNCProxyServiceTemplate:
 enabled: true
 networkAttachments:
 - internalapi
 - ctlplane
 hasAPIAccess: true
 secret: osp-secret

NOTE

A full set of Compute services (nova) are deployed by default for each of the
default cells, cell0 and cell1: nova-api, nova-metadata, nova-scheduler,
and nova-conductor. The novncproxy service is also enabled for cell1 by
default.

DNS service for the data plane:

 dns:
 template:
 options: 1
 - key: server 2
 values: 3
 - 192.168.122.1
 - key: server
 values:
 - 192.168.122.2
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: ctlplane
 metallb.universe.tf/allow-shared-ip: ctlplane
 metallb.universe.tf/loadBalancerIPs: 192.168.122.80

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

24

1

2

3

 spec:
 type: LoadBalancer
 replicas: 2

Defines the dnsmasq instances required for each DNS server by using key-value pairs.
In this example, there are two key-value pairs defined because there are two DNS
servers configured to forward requests to.

Specifies the dnsmasq parameter to customize for the deployed dnsmasq instance.
Set to one of the following valid values:

server

rev-server

srv-host

txt-record

ptr-record

rebind-domain-ok

naptr-record

cname

host-record

caa-record

dns-rr

auth-zone

synth-domain

no-negcache

local

Specifies the values for the dnsmasq parameter. You can specify a generic DNS server
as the value, for example, 1.1.1.1, or a DNS server for a specific domain, for example,
/google.com/8.8.8.8.

A Galera cluster for use by all RHOSO services (openstack), and a Galera cluster for use by
the Compute service for cell1 (openstack-cell1):

 galera:
 templates:
 openstack:
 storageRequest: 5000M
 secret: osp-secret
 replicas: 3
 openstack-cell1:

CHAPTER 4. CREATING THE CONTROL PLANE

25

1

 storageRequest: 5000M
 secret: osp-secret
 replicas: 3

Identity service (keystone)

 keystone:
 apiOverride:
 route: {}
 template:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret
 replicas: 3

Image service (glance):

 glance:
 apiOverrides:
 default:
 route: {}
 template:
 databaseInstance: openstack
 storage:
 storageRequest: 10G
 secret: osp-secret
 keystoneEndpoint: default
 glanceAPIs:
 default:
 replicas: 0 1
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 networkAttachments:
 - storage

You can deploy the initial control plane without activating the Image service (glance).
To deploy the service, you must set the number of replicas for the service and
configure the back end for the service. For information about the recommended

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

26

replicas for the Image service and how to configure a back end for the service, see
Configuring the Image service (glance) in Configuring persistent storage .

Key Management service (barbican):

 barbican:
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 secret: osp-secret
 barbicanAPI:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 barbicanWorker:
 replicas: 3
 barbicanKeystoneListener:
 replicas: 1

Memcached:

 memcached:
 templates:
 memcached:
 replicas: 3

Networking service (neutron):

 neutron:
 apiOverride:
 route: {}
 template:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack

CHAPTER 4. CREATING THE CONTROL PLANE

27

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_persistent_storage/assembly_glance-configuring-glance_image

 secret: osp-secret
 networkAttachments:
 - internalapi

Object Storage service (swift):

 swift:
 enabled: true
 proxyOverride:
 route: {}
 template:
 swiftProxy:
 networkAttachments:
 - storage
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 replicas: 1
 secret: osp-secret
 swiftRing:
 ringReplicas: 1
 swiftStorage:
 networkAttachments:
 - storage
 replicas: 1
 storageRequest: 10Gi

OVN:

 ovn:
 template:
 ovnDBCluster:
 ovndbcluster-nb:
 replicas: 3
 dbType: NB
 storageRequest: 10G
 networkAttachment: internalapi
 ovndbcluster-sb:
 dbType: SB
 storageRequest: 10G
 networkAttachment: internalapi
 ovnNorthd:
 networkAttachment: internalapi

Placement service (placement):

 placement:
 apiOverride:

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

28

 route: {}
 template:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 replicas: 3
 secret: osp-secret

RabbitMQ:

 rabbitmq:
 templates:
 rabbitmq:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.85
 spec:
 type: LoadBalancer
 rabbitmq-cell1:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.86
 spec:
 type: LoadBalancer

Telemetry service (ceilometer, prometheus):

 telemetry:
 enabled: true
 template:
 metricStorage:
 enabled: true
 monitoringStack:
 alertingEnabled: true
 scrapeInterval: 30s
 storage:
 strategy: persistent
 retention: 24h
 persistent:

CHAPTER 4. CREATING THE CONTROL PLANE

29

1

 pvcStorageRequest: 20G
 autoscaling: 1
 enabled: false
 aodh:
 databaseAccount: aodh
 databaseInstance: openstack
 passwordSelector:
 aodhService: AodhPassword
 rabbitMqClusterName: rabbitmq
 serviceUser: aodh
 secret: osp-secret
 heatInstance: heat
 ceilometer:
 enabled: true
 secret: osp-secret
 logging:
 enabled: false
 ipaddr: 172.17.0.80

You must have the autoscaling field present, even if autoscaling is disabled.

5. Create the control plane:

$ oc create -f openstack_control_plane.yaml -n openstack

NOTE

Creating the control plane also creates an OpenStackClient pod that you can
access through a remote shell (rsh) to run OpenStack CLI commands.

$ oc rsh -n openstack openstackclient

6. Wait until RHOCP creates the resources related to the OpenStackControlPlane CR. Run the
following command to check the status:

$ oc get openstackcontrolplane -n openstack
NAME STATUS MESSAGE
openstack-control-plane Unknown Setup started

The OpenStackControlPlane resources are created when the status is "Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

NOTE

Creating the control plane also creates an OpenStackClient pod that you can
access through a remote shell (rsh) to run RHOSO CLI commands.

$ oc rsh -n openstack openstackclient

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

30

7. Optional: Confirm that the control plane is deployed by reviewing the pods in the openstack
namespace:

$ oc get pods -n openstack

The control plane is deployed when all the pods are either completed or running.

Verification

1. Open a remote shell connection to the OpenStackClient pod:

$ oc rsh -n openstack openstackclient

2. Confirm that the internal service endpoints are registered with each service:

$ openstack endpoint list -c 'Service Name' -c Interface -c URL --service glance
+--------------+-----------+---+
| Service Name | Interface | URL |
+--------------+-----------+---+
| glance | internal | https://glance-internal.openstack.svc |
| glance | public | https://glance-default-public-openstack.apps.ostest.test.metalkube.org
|
+--------------+-----------+---+

3. Exit the OpenStackClient pod:

$ exit

4.3. EXAMPLE OPENSTACKCONTROLPLANE CR

The following example OpenStackControlPlane CR is a complete control plane configuration that
includes all the key services that must always be enabled for a successful deployment.

apiVersion: core.openstack.org/v1beta1
kind: OpenStackControlPlane
metadata:
 name: openstack-control-plane
 namespace: openstack
spec:
 secret: osp-secret
 storageClass: your-RHOCP-storage-class 1
 cinder: 2
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 secret: osp-secret
 cinderAPI:
 replicas: 3
 override:
 service:
 internal:
 metadata:

CHAPTER 4. CREATING THE CONTROL PLANE

31

 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 cinderScheduler:
 replicas: 1
 cinderBackup: 3
 networkAttachments:
 - storage
 replicas: 0 # backend needs to be configured to activate the service
 cinderVolumes: 4
 volume1:
 networkAttachments: 5
 - storage
 replicas: 0 # backend needs to be configured to activate the service
 nova: 6
 apiOverride: 7
 route: {}
 template:
 apiServiceTemplate:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi 8
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80 9
 spec:
 type: LoadBalancer
 metadataServiceTemplate:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 schedulerServiceTemplate:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

32

 cellTemplates:
 cell0:
 cellDatabaseAccount: nova-cell0
 cellDatabaseInstance: openstack
 cellMessageBusInstance: rabbitmq
 hasAPIAccess: true
 cell1:
 cellDatabaseAccount: nova-cell1
 cellDatabaseInstance: openstack-cell1
 cellMessageBusInstance: rabbitmq-cell1
 noVNCProxyServiceTemplate:
 enabled: true
 networkAttachments:
 - internalapi
 - ctlplane
 hasAPIAccess: true
 secret: osp-secret
 dns:
 template:
 options:
 - key: server
 values:
 - 192.168.122.1
 - key: server
 values:
 - 192.168.122.2
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: ctlplane
 metallb.universe.tf/allow-shared-ip: ctlplane
 metallb.universe.tf/loadBalancerIPs: 192.168.122.80
 spec:
 type: LoadBalancer
 replicas: 2
 galera:
 templates:
 openstack:
 storageRequest: 5000M
 secret: osp-secret
 replicas: 3
 openstack-cell1:
 storageRequest: 5000M
 secret: osp-secret
 replicas: 3
 keystone:
 apiOverride:
 route: {}
 template:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi

CHAPTER 4. CREATING THE CONTROL PLANE

33

 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret
 replicas: 3
 glance:
 apiOverrides:
 default:
 route: {}
 template:
 databaseInstance: openstack
 storage:
 storageRequest: 10G
 secret: osp-secret
 keystoneEndpoint: default
 glanceAPIs:
 default:
 replicas: 0 # backend needs to be configured to activate the service
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 networkAttachments:
 - storage
 barbican:
 apiOverride:
 route: {}
 template:
 databaseInstance: openstack
 secret: osp-secret
 barbicanAPI:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 barbicanWorker:
 replicas: 3
 barbicanKeystoneListener:
 replicas: 1
 memcached:
 templates:

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

34

 memcached:
 replicas: 3
 neutron:
 apiOverride:
 route: {}
 template:
 replicas: 3
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 secret: osp-secret
 networkAttachments:
 - internalapi
 swift:
 enabled: true
 proxyOverride:
 route: {}
 template:
 swiftProxy:
 networkAttachments:
 - storage
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 replicas: 1
 swiftRing:
 ringReplicas: 1
 swiftStorage:
 networkAttachments:
 - storage
 replicas: 1
 storageRequest: 10Gi
 ovn:
 template:
 ovnDBCluster:
 ovndbcluster-nb:
 replicas: 3
 dbType: NB
 storageRequest: 10G
 networkAttachment: internalapi
 ovndbcluster-sb:

CHAPTER 4. CREATING THE CONTROL PLANE

35

 dbType: SB
 storageRequest: 10G
 networkAttachment: internalapi
 ovnNorthd:
 networkAttachment: internalapi
 placement:
 apiOverride:
 route: {}
 template:
 override:
 service:
 internal:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/allow-shared-ip: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.80
 spec:
 type: LoadBalancer
 databaseInstance: openstack
 replicas: 3
 secret: osp-secret
 rabbitmq: 10
 templates:
 rabbitmq:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.85 11
 spec:
 type: LoadBalancer
 rabbitmq-cell1:
 replicas: 3
 override:
 service:
 metadata:
 annotations:
 metallb.universe.tf/address-pool: internalapi
 metallb.universe.tf/loadBalancerIPs: 172.17.0.86 12
 spec:
 type: LoadBalancer
 telemetry:
 enabled: true
 template:
 metricStorage:
 enabled: true
 monitoringStack:
 alertingEnabled: true
 scrapeInterval: 30s
 storage:
 strategy: persistent
 retention: 24h
 persistent:

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

36

1

2

3

4

5

6

7

8

9

10

 pvcStorageRequest: 20G
 autoscaling:
 enabled: false
 aodh:
 databaseAccount: aodh
 databaseInstance: openstack
 passwordSelector:
 aodhService: AodhPassword
 rabbitMqClusterName: rabbitmq
 serviceUser: aodh
 secret: osp-secret
 heatInstance: heat
 ceilometer:
 enabled: true
 secret: osp-secret
 logging:
 enabled: false
 ipaddr: 172.17.0.80

The storage class that you created for your Red Hat OpenShift Container Platform (RHOCP)
cluster storage back end.

Service-specific parameters for the Block Storage service (cinder).

The Block Storage service back end. For more information on configuring storage services, see the
Configuring persistent storage guide.

The Block Storage service configuration. For more information on configuring storage services, see
the Configuring persistent storage guide.

The list of networks that each service pod is directly attached to, specified by using the
NetworkAttachmentDefinition resource names. A NIC is configured for the service for each
specified network attachment.

NOTE

If you do not configure the isolated networks that each service pod is attached to,
then the default pod network is used. For example, the Block Storage service uses
the storage network to connect to a storage back end; the Identity service
(keystone) uses an LDAP or Active Directory (AD) network; the ovnDBCluster and
ovnNorthd services use the internalapi network; and the ovnController service
uses the tenant network.

Service-specific parameters for the Compute service (nova).

Service API route definition. You can customize the service route by using route-specific
annotations. For more information, see Route-specific annotations in the RHOCP Networking
guide. Set route: to {} to apply the default route template.

The internal service API endpoint registered as a MetalLB service with the IPAddressPool
internalapi.

The virtual IP (VIP) address for the service. The IP is shared with other services by default.

The RabbitMQ instances exposed to an isolated network with distinct IP addresses defined in the
loadBalancerIPs annotation, as indicated in 11 and 12.

CHAPTER 4. CREATING THE CONTROL PLANE

37

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_persistent_storage/index
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_persistent_storage/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/configuring-routes#nw-route-specific-annotations_route-configuration

11

12

NOTE

Multiple RabbitMQ instances cannot share the same VIP as they use the same port.
If you need to expose multiple RabbitMQ instances to the same network, then you
must use distinct IP addresses.

The distinct IP address for a RabbitMQ instance that is exposed to an isolated network.

The distinct IP address for a RabbitMQ instance that is exposed to an isolated network.

4.4. REMOVING A SERVICE FROM THE CONTROL PLANE

You can completely remove a service and the service database from the control plane after deployment
by disabling the service. Many services are enabled by default, which means that the OpenStack
Operator creates resources such as the service database and Identity service (keystone) users, even if
no service pod is created because replicas is set to 0.

WARNING

Remove a service with caution. Removing a service is not the same as stopping
service pods. Removing a service is irreversible. Disabling a service removes the
service database and any resources that referenced the service are no longer
tracked. Red Hat recommends creating a backup of the service database before
removing a service.

Procedure

1. Open the OpenStackControlPlane CR file on your workstation.

2. Locate the service you want to remove from the control plane and disable it:

 cinder:
 enabled: false
 apiOverride:
 route: {}
 ...

3. Update the control plane:

$ oc apply -f openstack_control_plane.yaml -n openstack

4. Wait until RHOCP removes the resource related to the disabled service. Run the following
command to check the status:

$ oc get openstackcontrolplane -n openstack
NAME STATUS MESSAGE
openstack-control-plane Unknown Setup started

The OpenStackControlPlane resource is updated with the disabled service when the status is



Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

38

The OpenStackControlPlane resource is updated with the disabled service when the status is
"Setup complete".

TIP

Append the -w option to the end of the get command to track deployment progress.

5. Optional: Confirm that the pods from the disabled service are no longer listed by reviewing the
pods in the openstack namespace:

$ oc get pods -n openstack

6. Check that the service is removed:

$ oc get cinder -n openstack

This command returns the following message when the service is successfully removed:

No resources found in openstack namespace.

7. Check that the API endpoints for the service are removed from the Identity service (keystone):

$ oc rsh -n openstack openstackclient
$ openstack endpoint list --service volumev3

This command returns the following message when the API endpoints for the service are
successfully removed:

No service with a type, name or ID of 'volumev3' exists.

4.5. ADDITIONAL RESOURCES

Kubernetes NMState Operator

The Kubernetes NMState project

Load balancing with MetalLB

MetalLB documentation

MetalLB in layer 2 mode

Specify network interfaces that LB IP can be announced from

Multiple networks

Using the Multus CNI in OpenShift

macvlan plugin

whereabouts IPAM CNI plugin - Extended configuration

About advertising for the IP address pools

CHAPTER 4. CREATING THE CONTROL PLANE

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/kubernetes-nmstate
https://nmstate.io/kubernetes-nmstate/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/load-balancing-with-metallb
https://metallb.universe.tf/
https://metallb.universe.tf/concepts/layer2/
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#specify-network-interfaces-that-lb-ip-can-be-announced-from
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/multiple-networks
https://cloud.redhat.com/blog/using-the-multus-cni-in-openshift
https://www.cni.dev/plugins/current/main/macvlan/
https://github.com/k8snetworkplumbingwg/whereabouts/blob/master/doc/extended-configuration.md
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/networking/load-balancing-with-metallb#about-advertise-for-ipaddress-pools

Dynamic provisioning

Configuring the Block Storage backup service in Configuring persistent storage .

Configuring the Image service (glance) in Configuring persistent storage .

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

40

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/storage/dynamic-provisioning
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_persistent_storage/assembly_configuring-the-block-storage-backup-service_block-storage-backup
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_persistent_storage/assembly_glance-configuring-glance_image

CHAPTER 5. CREATING THE DATA PLANE
The Red Hat OpenStack Services on OpenShift (RHOSO) data plane consists of RHEL 9.4 nodes. Use
the OpenStackDataPlaneNodeSet custom resource definition (CRD) to create the custom resources
(CRs) that define the nodes and the layout of the data plane. An OpenStackDataPlaneNodeSet CR is
a logical grouping of nodes of a similar type. A data plane typically consists of multiple
OpenStackDataPlaneNodeSet CRs to define groups of nodes with different configurations and roles.
You can use pre-provisioned or unprovisioned nodes in an OpenStackDataPlaneNodeSet CR:

Pre-provisioned node: You have used your own tooling to install the operating system on the
node before adding it to the data plane.

Unprovisioned node: The node does not have an operating system installed before you add it to
the data plane. The node is provisioned by using the Cluster Baremetal Operator (CBO) as part
of the data plane creation and deployment process.

NOTE

You cannot include both pre-provisioned and unprovisioned nodes in the same
OpenStackDataPlaneNodeSet CR.

To create and deploy a data plane, you must perform the following tasks:

1. Create a Secret CR for each node set for Ansible to use to execute commands on the data
plane nodes.

2. Create the OpenStackDataPlaneNodeSet CRs that define the nodes and layout of the data
plane.

3. Create the OpenStackDataPlaneDeployment CR that triggers the Ansible execution that
deploys and configures the software for the specified list of OpenStackDataPlaneNodeSet
CRs.

The following procedures create two simple node sets, one with pre-provisioned nodes, and one with
bare-metal nodes that must be provisioned during the node set deployment. The procedures aim to get
you up and running quickly with a data plane environment that you can use to troubleshoot issues and
test the environment before adding all the customizations you require. You can add additional node sets
to a deployed environment, and you can customize your deployed environment by updating the
common configuration in the default ConfigMap CR for the service, and by creating custom services.
For more information about how to customize your data plane after deployment, see the Customizing
the Red Hat OpenStack Services on OpenShift deployment guide.

5.1. PREREQUISITES

A functional control plane, created with the OpenStack Operator. For more information, see
Creating the control plane .

You are logged on to a workstation that has access to the Red Hat OpenShift Container
Platform (RHOCP) cluster as a user with cluster-admin privileges.

5.2. CREATING THE DATA PLANE SECRETS

The data plane requires several Secret custom resources (CRs) to operate. The Secret CRs are used by
the data plane nodes for the following functionality:

CHAPTER 5. CREATING THE DATA PLANE

41

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/customizing_the_red_hat_openstack_services_on_openshift_deployment/index

To enable secure access between nodes:

You must generate an SSH key and create an SSH key Secret CR for each key to enable
Ansible to manage the RHEL nodes on the data plane. Ansible executes commands with this
user and key. You can create an SSH key for each node set in your data plane.

You must generate an SSH key and create an SSH key Secret CR for each key to enable
migration of instances between Compute nodes.

To register the operating system of the nodes that are not registered to the Red Hat Customer
Portal.

To enable repositories for the nodes.

To provide access to libvirt.

Prerequisites

Pre-provisioned nodes are configured with an SSH public key in the
$HOME/.ssh/authorized_keys file for a user with passwordless sudo privileges. For
information, see Configuring reserved user and group IDs in the RHEL Configuring basic system
settings guide.

Procedure

1. For unprovisioned nodes, create the SSH key pair for Ansible:

$ ssh-keygen -f <key_file_name> -N "" -t rsa -b 4096

Replace <key_file_name> with the name to use for the key pair.

2. Create the Secret CR for Ansible and apply it to the cluster:

$ oc create secret generic dataplane-ansible-ssh-private-key-secret \
--save-config \
--dry-run=client \
[--from-file=authorized_keys=<key_file_name>.pub \]
--from-file=ssh-privatekey=<key_file_name> \
--from-file=ssh-publickey=<key_file_name>.pub \
-n openstack \
-o yaml | oc apply -f -

Replace <key_file_name> with the name and location of your SSH key pair file.

Include the --from-file=authorized_keys option for bare-metal nodes that must be
provisioned when creating the data plane.

3. Create the SSH key pair for instance migration:

$ ssh-keygen -f ./nova-migration-ssh-key -t ecdsa-sha2-nistp521 -N ''

4. Create the Secret CR for migration and apply it to the cluster:

$ oc create secret generic nova-migration-ssh-key \
--save-config \

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

42

https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/configuring_basic_system_settings/managing-users-and-groups_configuring-basic-system-settings#configuring-reserved-user-and-group-ids_introduction-to-managing-user-and-group-accounts

--from-file=ssh-privatekey=nova-migration-ssh-key \
--from-file=ssh-publickey=nova-migration-ssh-key.pub \
-n openstack \
-o yaml | oc apply -f -

5. Create a file on your workstation named secret_subscription.yaml that contains the
subscription-manager credentials for registering the operating system of the nodes that are
not registered to the Red Hat Customer Portal:

apiVersion: v1
kind: Secret
metadata:
 name: subscription-manager
data:
 username: <base64_encoded_username>
 password: <base64_encoded_password>

6. Create the Secret CR:

$ oc create -f secret_subscription.yaml

7. Create a file on your workstation named secret_registry.yaml that contains the Red Hat
registry credentials:

apiVersion: v1
kind: Secret
metadata:
 name: redhat-registry
data:
 username: <registry_username>
 password: <registry_password>

8. Create the Secret CR:

$ oc create -f secret_registry.yaml

9. Create a file on your workstation named secret_libvirt.yaml to define the libvirt secret:

apiVersion: v1
data:
 LibvirtPassword: <base64_password>
kind: Secret
metadata:
 name: libvirt-secret
 namespace: openstack
type: Opaque

Replace <base64_password> with a base64 encoded string with maximum length 63
characters. Use the following command to generate a base64 encoded password:

$ echo -n <password> | base64

10. Create the Secret CR:

CHAPTER 5. CREATING THE DATA PLANE

43

1

$ oc apply -f secret_libvirt.yaml -n openstack

11. Verify that the Secret CRs are created:

$ oc describe secret dataplane-ansible-ssh-private-key-secret
$ oc describe secret nova-migration-ssh-key
$ oc describe secret subscription-manager
$ oc describe secret redhat-registry
$ oc describe secret libvirt-secret

5.3. CREATING A SET OF DATA PLANE NODES WITH PRE-
PROVISIONED NODES

Define an OpenStackDataPlaneNodeSet custom resource (CR) for each logical grouping of pre-
provisioned nodes in your data plane, for example, nodes grouped by hardware, location, or networking.
You can define as many node sets as necessary for your deployment. Each node can be included in only
one OpenStackDataPlaneNodeSet CR. Each node set can be connected to only one Compute cell. By
default, node sets are connected to cell1. If you customize your control plane to include additional
Compute cells, you must specify the cell to which the node set is connected. For more information on
adding Compute cells, see Connecting an OpenStackDataPlaneNodeSet CR to a Compute cell in the
Customizing the Red Hat OpenStack Services on OpenShift deployment guide.

You use the nodeTemplate field to configure the properties that all nodes in an
OpenStackDataPlaneNodeSet CR share, and the nodeTemplate.nodes field for node-specific
properties. Node-specific configurations override the inherited values from the nodeTemplate.

For an example OpenStackDataPlaneNodeSet CR that creates a node set from pre-provisioned
Compute nodes, see Example OpenStackDataPlaneNodeSet CR for pre-provisioned nodes.

Procedure

1. Create a file on your workstation named openstack_preprovisioned_node_set.yaml to define
the OpenStackDataPlaneNodeSet CR:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-data-plane 1
 namespace: openstack
spec:
 env:
 - name: ANSIBLE_FORCE_COLOR
 value: "True"

The OpenStackDataPlaneNodeSet CR name must be unique, must consist of lower case
alphanumeric characters, - (hyphen) or . (period), must start and end with an alphanumeric
character, and must have a maximum length of 20 characters. Update the name in this
example to a name that reflects the nodes in the set.

2. Specify the services to apply to the nodes:

spec:
 ...

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

44

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/customizing_the_red_hat_openstack_services_on_openshift_deployment/index#proc_connecting-an-OpenStackDataPlaneNodeSet-CR-to-a-Compute-cell_custom_dataplane

 services:
 - bootstrap
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - ssh-known-hosts
 - run-os
 - reboot-os
 - install-certs
 - ovn
 - neutron-metadata
 - libvirt
 - nova
 - telemetry

NOTE

The order of the services in the list is important. Do not change the order of the
service deployments

3. Connect the data plane to the control plane network:

spec:
 ...
 networkAttachments:
 - ctlplane

4. Specify that the nodes in this set are pre-provisioned:

 preProvisioned: true

5. Add the SSH key secret that you created to enable Ansible to connect to the data plane nodes:

 nodeTemplate:
 ansibleSSHPrivateKeySecret: <secret-key>

Replace <secret-key> with the name of the SSH key Secret CR you created for this node
set in Creating the data plane secrets , for example, dataplane-ansible-ssh-private-key-
secret.

6. Create a Persistent Volume Claim (PVC) on your Red Hat OpenShift Container Platform
(RHOCP) cluster to store logs. Set the volumeType to Filesystem and accessModes to
ReadWriteOnce. For information on how to create a PVC, see Understanding persistent
storage in the RHOCP Storage guide.

7. Enable persistent logging for the data plane nodes:

 nodeTemplate:
 ansibleSSHPrivateKeySecret: <secret-key>
 extraMounts:
 - extraVolType: Logs
 volumes:
 - name: ansible-logs

CHAPTER 5. CREATING THE DATA PLANE

45

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html/storage/understanding-persistent-storage

 persistentVolumeClaim:
 claimName: <pvc_name>
 mounts:
 - name: ansible-logs
 mountPath: "/runner/artifacts"

Replace <pvc_name> with the name of the Persistent Volume Claim (PVC) storage on
your RHOCP cluster.

8. Specify the management network:

 nodeTemplate:
 ...
 managementNetwork: ctlplane

9. Specify the Secret CRs used to source the usernames and passwords to register the operating
system of the nodes that are not registered to the Red Hat Customer Portal, and enable
repositories for your nodes. The following example demonstrates how to register your nodes to
CDN. For details on how to register your nodes with Red Hat Satellite 6.13, see Managing Hosts.

 nodeTemplate:
 ...
 ansible:
 ansibleUser: cloud-admin
 ansiblePort: 22
 ansibleVarsFrom:
 - prefix: subscription_manager_
 secretRef:
 name: subscription-manager
 - prefix: registry_
 secretRef:
 name: redhat-registry
 ansibleVars:
 edpm_bootstrap_command: |
 subscription-manager register --username {{ subscription_manager_username }} --
password {{ subscription_manager_password }}
 subscription-manager release --set=9.4
 subscription-manager repos --disable=*
 subscription-manager repos --enable=rhel-9-for-x86_64-baseos-eus-rpms --
enable=rhel-9-for-x86_64-appstream-eus-rpms --enable=rhel-9-for-x86_64-highavailability-
eus-rpms --enable=fast-datapath-for-rhel-9-x86_64-rpms --enable=rhoso-18.0-for-rhel-9-
x86_64-rpms --enable=rhceph-7-tools-for-rhel-9-x86_64-rpms
 podman login -u {{ registry_username }} -p {{ registry_password }} registry.redhat.io
 edpm_bootstrap_release_version_package: []

For a complete list of the Red Hat Customer Portal registration commands, see
https://access.redhat.com/solutions/253273. For information about how to log into
registry.redhat.io, see https://access.redhat.com/RegistryAuthentication#creating-registry-
service-accounts-6.

10. Add the network configuration template to apply to your data plane nodes. The following
example applies the single NIC VLANs network configuration to the data plane nodes:

 nodeTemplate:
 ...

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

46

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.13/html-single/managing_hosts/index#Registering_Hosts_to_Server_managing-hosts
https://access.redhat.com/solutions/253273
https://access.redhat.com/RegistryAuthentication#creating-registry-service-accounts-6

1

 ansible:
 ...
 ansibleVars:
 ...
 edpm_bootstrap_release_version_package: []
 edpm_network_config_os_net_config_mappings:
 edpm-compute-0:
 nic1: 52:54:04:60:55:22 1
 neutron_physical_bridge_name: br-ex
 neutron_public_interface_name: eth0
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_cidr }}
 routes: {{ ctlplane_host_routes }}
 members:
 - type: interface
 name: nic1
 mtu: {{ min_viable_mtu }}
 # force the MAC address of the bridge to this interface
 primary: true
 {% for network in nodeset_networks %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
 {% endfor %}

Update the nic1 to the MAC address assigned to the NIC to use for network configuration
on the Compute node.

For alternative templates, see roles/edpm_network_config/templates. For more information
about data plane network configuration, see Customizing data plane networks in the
Configuring network services guide.

11. Add the common configuration for the set of nodes in this group under the nodeTemplate
section. Each node in this OpenStackDataPlaneNodeSet inherits this configuration. For
information about the properties you can use to configure common node attributes, see
OpenStackDataPlaneNodeSet CR spec properties.

CHAPTER 5. CREATING THE DATA PLANE

47

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_networking_services/customize-data-plane-networks_rhoso-cfg-network

1

2

3

4

12. Define each node in this node set:

 nodes:
 edpm-compute-0: 1
 hostName: edpm-compute-0
 networks: 2
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.100 3
 - name: internalapi
 subnetName: subnet1
 fixedIP: 172.17.0.100
 - name: storage
 subnetName: subnet1
 fixedIP: 172.18.0.100
 - name: tenant
 subnetName: subnet1
 fixedIP: 172.19.0.100
 ansible:
 ansibleHost: 192.168.122.100
 ansibleUser: cloud-admin
 ansibleVars: 4
 fqdn_internal_api: edpm-compute-0.example.com
 edpm-compute-1:
 hostName: edpm-compute-1
 networks:
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.101
 - name: internalapi
 subnetName: subnet1
 fixedIP: 172.17.0.101
 - name: storage
 subnetName: subnet1
 fixedIP: 172.18.0.101
 - name: tenant
 subnetName: subnet1
 fixedIP: 172.19.0.101
 ansible:
 ansibleHost: 192.168.122.101
 ansibleUser: cloud-admin
 ansibleVars:
 fqdn_internal_api: edpm-compute-1.example.com

The node definition reference, for example, edpm-compute-0. Each node in the node set
must have a node definition.

Defines the IPAM and the DNS records for the node.

Defines the predictable IP addresses for each network.

Node-specific Ansible variables that customize the node.

NOTE

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

48

NOTE

Nodes defined within the nodes section can configure the same Ansible
variables that are configured in the nodeTemplate section. Where an Ansible
variable is configured for both a specific node and within the nodeTemplate
section, the node-specific values override those from the nodeTemplate
section.

You do not need to replicate all the nodeTemplate Ansible variables for a
node to override the default and set some node-specific values. You only
need to configure the Ansible variables you want to override for the node.

Many ansibleVars include edpm in the name, which stands for "External
Data Plane Management".

For information about the properties you can use to configure node attributes, see
OpenStackDataPlaneNodeSet CR properties.

13. Save the openstack_preprovisioned_node_set.yaml definition file.

14. Create the data plane resources:

$ oc create --save-config -f openstack_preprovisioned_node_set.yaml -n openstack

15. Verify that the data plane resources have been created by confirming that the status is
SetupReady:

$ oc wait openstackdataplanenodeset openstack-data-plane --for condition=SetupReady --
timeout=10m

When the status is SetupReady the command returns a condition met message, otherwise it
returns a timeout error.

For information about the data plane conditions and states, see Data plane conditions and
states.

16. Verify that the Secret resource was created for the node set:

$ oc get secret | grep openstack-data-plane
dataplanenodeset-openstack-data-plane Opaque 1 3m50s

17. Verify the services were created:

$ oc get openstackdataplaneservice -n openstack
NAME AGE
bootstrap 46m
ceph-client 46m
ceph-hci-pre 46m
configure-network 46m
configure-os 46m
...

5.3.1. Example OpenStackDataPlaneNodeSet CR for pre-provisioned nodes

The following example OpenStackDataPlaneNodeSet CR creates a node set from pre-provisioned

CHAPTER 5. CREATING THE DATA PLANE

49

The following example OpenStackDataPlaneNodeSet CR creates a node set from pre-provisioned
Compute nodes with some node-specific configuration. Update the name of the
OpenStackDataPlaneNodeSet CR in this example to a name that reflects the nodes in the set. The
OpenStackDataPlaneNodeSet CR name must be unique, must consist of lower case alphanumeric
characters, - (hyphen) or . (period), must start and end with an alphanumeric character, and must have a
maximum length of 20 characters. Update the name in this example to a name that reflects the nodes in
the set.

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-data-plane
 namespace: openstack
spec:
 env: 1
 - name: ANSIBLE_FORCE_COLOR
 value: "True"
 services:
 - bootstrap
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - ssh-known-hosts
 - run-os
 - reboot-os
 - install-certs
 - ovn
 - neutron-metadata
 - libvirt
 - nova
 - telemetry
 networkAttachments:
 - ctlplane
 preProvisioned: true 2
 nodeTemplate: 3
 ansibleSSHPrivateKeySecret: dataplane-ansible-ssh-private-key-secret 4
 extraMounts:
 - extraVolType: Logs
 volumes:
 - name: ansible-logs
 persistentVolumeClaim:
 claimName: <pvc_name>
 mounts:
 - name: ansible-logs
 mountPath: "/runner/artifacts"
 managementNetwork: ctlplane
 ansible:
 ansibleUser: cloud-admin 5
 ansiblePort: 22
 ansibleVarsFrom:
 - prefix: subscription_manager_
 secretRef:
 name: subscription-manager
 - prefix: registry_

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

50

 secretRef:
 name: redhat-registry
 ansibleVars: 6
 edpm_bootstrap_command: |
 subscription-manager register --username {{ subscription_manager_username }} --password {{
subscription_manager_password }}
 subscription-manager release --set=9.4
 subscription-manager repos --disable=*
 subscription-manager repos --enable=rhel-9-for-x86_64-baseos-eus-rpms --enable=rhel-9-for-
x86_64-appstream-eus-rpms --enable=rhel-9-for-x86_64-highavailability-eus-rpms --enable=fast-
datapath-for-rhel-9-x86_64-rpms --enable=rhoso-18.0-for-rhel-9-x86_64-rpms --enable=rhceph-7-
tools-for-rhel-9-x86_64-rpms
 podman login -u {{ registry_username }} -p {{ registry_password }} registry.redhat.io
 edpm_bootstrap_release_version_package: []
 edpm_network_config_os_net_config_mappings:
 edpm-compute-1:
 nic1: 52:54:04:60:55:22 7
 neutron_physical_bridge_name: br-ex
 neutron_public_interface_name: eth0
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_cidr }}
 routes: {{ ctlplane_host_routes }}
 members:
 - type: interface
 name: nic1
 mtu: {{ min_viable_mtu }}
 # force the MAC address of the bridge to this interface
 primary: true
 {% for network in nodeset_networks %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
 {% endfor %}
 nodes:
 edpm-compute-0: 8
 hostName: edpm-compute-0
 ansible:

CHAPTER 5. CREATING THE DATA PLANE

51

1

2

3

4

5

6

7

8

 ansibleHost: 192.168.122.100
 ansibleUser: cloud-admin
 ansibleVars:
 fqdn_internal_api: edpm-compute-0.example.com
 networks:
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.100
 - name: internalapi
 subnetName: subnet1
 fixedIP: 172.17.0.100
 - name: storage
 subnetName: subnet1
 fixedIP: 172.18.0.100
 - name: tenant
 subnetName: subnet1
 fixedIP: 172.19.0.100
 edpm-compute-1:
 hostName: edpm-compute-1
 ansible:
 ansibleHost: 192.168.122.101
 ansibleUser: cloud-admin
 ansibleVars:
 fqdn_internal_api: edpm-compute-1.example.com
 networks:
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.101
 - name: internalapi
 subnetName: subnet1
 fixedIP: 172.17.0.101
 - name: storage
 subnetName: subnet1
 fixedIP: 172.18.0.101
 - name: tenant
 subnetName: subnet1
 fixedIP: 172.19.0.101

Optional: A list of environment variables to pass to the pod.

Specify that the nodes in this set are pre-provisioned.

The common configuration to apply to all nodes in this set of nodes.

The name of the secret that you created in Creating the data plane secrets .

The user associated with the secret you created in Creating the data plane secrets .

The Ansible variables that customize the set of nodes. For a list of Ansible variables that you can
use, see https://openstack-k8s-operators.github.io/edpm-ansible/.

The MAC address assigned to the NIC to use for network configuration on the Compute node.

The node definition reference, for example, edpm-compute-0. Each node in the node set must
have a node definition.

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

52

https://openstack-k8s-operators.github.io/edpm-ansible/

1

5.4. CREATING A SET OF DATA PLANE NODES WITH UNPROVISIONED
NODES

Define an OpenStackDataPlaneNodeSet custom resource (CR) for each logical grouping of
unprovisioned nodes in your data plane, for example, nodes grouped by hardware, location, or
networking. You can define as many node sets as necessary for your deployment. Each node can be
included in only one OpenStackDataPlaneNodeSet CR. Each node set can be connected to only one
Compute cell. By default, node sets are connected to cell1. If you customize your control plane to
include additional Compute cells, you must specify the cell to which the node set is connected. For more
information on adding Compute cells, see Connecting an OpenStackDataPlaneNodeSet CR to a
Compute cell in the Customizing the Red Hat OpenStack Services on OpenShift deployment guide.

You use the nodeTemplate field to configure the properties that all nodes in an
OpenStackDataPlaneNodeSet CR share, and the nodeTemplate.nodes field for node-specific
properties. Node-specific configurations override the inherited values from the nodeTemplate.

For more information about provisioning bare-metal nodes, see Provisioning bare-metal data plane
nodes.

For an example OpenStackDataPlaneNodeSet CR that creates a node set from unprovisioned
Compute nodes, see Example OpenStackDataPlaneNodeSet CR for unprovisioned nodes .

Prerequisites

Cluster Baremetal Operator (CBO) is installed and configured for provisioning. For more
information, see Provisioning bare-metal data plane nodes .

A Provisioning CR is created in RHOCP. For more information about creating a Provisioning
CR, see Configuring a provisioning resource to scale user-provisioned clusters in the Red Hat
OpenShift Container Platform (RHOCP) Installing guide.

A BareMetalHost CR is registered and inspected for each bare-metal data plane node. Each
bare-metal node must be in the Available state after inspection. For more information about
configuring bare-metal nodes, see Bare metal configuration in the RHOCP Postinstallation
configuration guide.

Procedure

1. Create a file on your workstation named openstack_unprovisioned_node_set.yaml to define
the OpenStackDataPlaneNodeSet CR:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-data-plane 1
 namespace: openstack
spec:
 tlsEnabled: true
 env:
 - name: ANSIBLE_FORCE_COLOR
 value: "True"

The OpenStackDataPlaneNodeSet CR name must be unique, must consist of lower case
alphanumeric characters, - (hyphen) or . (period), must start and end with an alphanumeric
character, and must have a maximum length of 20 characters. Update the name in this

CHAPTER 5. CREATING THE DATA PLANE

53

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/customizing_the_red_hat_openstack_services_on_openshift_deployment/index#proc_connecting-an-OpenStackDataPlaneNodeSet-CR-to-a-Compute-cell_custom_dataplane
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html-single/installing/index#configuring-a-provisioning-resource-to-scale-user-provisioned-clusters_scaling-a-user-provisioned-cluster-with-the-bare-metal-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/postinstallation_configuration/post-install-bare-metal-configuration

example to a name that reflects the nodes in the set.

2. Specify the services to apply to the nodes:

spec:
 ...
 services:
 - bootstrap
 - configure-network
 - validate-network
 - install-os
 - configure-os
 - ssh-known-hosts
 - run-os
 - reboot-os
 - install-certs
 - ovn
 - neutron-metadata
 - libvirt
 - nova
 - telemetry

NOTE

The order of the services in the list is important. Do not change the order of the
service deployments

3. Connect the data plane to the control plane network:

spec:
 ...
 networkAttachments:
 - ctlplane

4. Define the baremetalSetTemplate field to describe the configuration of the bare-metal nodes:

 preProvisioned: false
 baremetalSetTemplate:
 deploymentSSHSecret: dataplane-ansible-ssh-private-key-secret
 bmhNamespace: <bmh_namespace>
 cloudUserName: <ansible_ssh_user>
 bmhLabelSelector:
 app: <bmh_label>
 ctlplaneInterface: <interface>
 dnsSearchDomains:
 - osptest.openstack.org

Replace <bmh_namespace> with the namespace defined in the corresponding
BareMetalHost CR for the node, for example, openshift-machine-api.

Replace <ansible_ssh_user> with the username of the Ansible SSH user, for example,
cloud-admin.

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

54

Replace <bmh_label> with the label defined in the corresponding BareMetalHost CR for
the node, for example, openstack.

Replace <interface> with the control plane interface the node connects to, for example,
enp6s0.

5. The BMO manages BareMetalHost CRs in the openshift-machine-api namespace by default.
You must update the Provisioning CR to watch all namespaces:

$ oc patch provisioning provisioning-configuration --type merge -p '{"spec":
{"watchAllNamespaces": true }}'

6. Add the SSH key secret that you created to enable Ansible to connect to the data plane nodes:

 nodeTemplate:
 ansibleSSHPrivateKeySecret: <secret-key>

Replace <secret-key> with the name of the SSH key Secret CR you created in Creating
the data plane secrets, for example, dataplane-ansible-ssh-private-key-secret.

7. Create a Persistent Volume Claim (PVC) on your RHOCP cluster to store logs. Set the
volumeType to Filesystem and accessModes to ReadWriteOnce. For information on how to
create a PVC, see Understanding persistent storage in the RHOCP Storage guide.

8. Enable persistent logging for the data plane nodes:

 nodeTemplate:
 ansibleSSHPrivateKeySecret: <secret-key>
 extraMounts:
 - extraVolType: Logs
 volumes:
 - name: ansible-logs
 persistentVolumeClaim:
 claimName: <pvc_name>
 mounts:
 - name: ansible-logs
 mountPath: "/runner/artifacts"

Replace <pvc_name> with the name of the Persistent Volume Claim (PVC) storage on
your RHOCP cluster.

9. Specify the management network:

 nodeTemplate:
 ...
 managementNetwork: ctlplane

10. Specify the Secret CRs used to source the usernames and passwords to register the operating
system of the nodes that are not registered to the Red Hat Customer Portal, and enable
repositories for your nodes. The following example demonstrates how to register your nodes to
CDN. For details on how to register your nodes with Red Hat Satellite 6.13, see Managing Hosts.

 nodeTemplate:
 ansible:
 ansibleUser: cloud-admin

CHAPTER 5. CREATING THE DATA PLANE

55

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html/storage/understanding-persistent-storage
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.13/html-single/managing_hosts/index#Registering_Hosts_to_Server_managing-hosts

 ansiblePort: 22
 ansibleVarsFrom:
 - prefix: subscription_manager_
 secretRef:
 name: subscription-manager
 - prefix: registry_
 secretRef:
 name: redhat-registry
 ansibleVars:
 edpm_bootstrap_command: |
 subscription-manager register --username {{ subscription_manager_username }} --
password {{ subscription_manager_password }}
 subscription-manager release --set=9.4
 subscription-manager repos --disable=*
 subscription-manager repos --enable=rhel-9-for-x86_64-baseos-eus-rpms --
enable=rhel-9-for-x86_64-appstream-eus-rpms --enable=rhel-9-for-x86_64-highavailability-
eus-rpms --enable=fast-datapath-for-rhel-9-x86_64-rpms --enable=rhoso-18.0-for-rhel-9-
x86_64-rpms --enable=rhceph-7-tools-for-rhel-9-x86_64-rpms
 podman login -u {{ registry_username }} -p {{ registry_password }} registry.redhat.io
 edpm_bootstrap_release_version_package: []

For a complete list of the Red Hat Customer Portal registration commands, see
https://access.redhat.com/solutions/253273. For information about how to log into
registry.redhat.io, see https://access.redhat.com/RegistryAuthentication#creating-registry-
service-accounts-6.

11. Add the network configuration template to apply to your data plane nodes. The following
example applies the single NIC VLANs network configuration to the data plane nodes:

 nodeTemplate:
 ...
 ansible:
 ...
 ansibleVars:
 ...
 edpm_bootstrap_release_version_package: []
 edpm_network_config_os_net_config_mappings:
 edpm-compute-0:
 nic1: 52:54:04:60:55:22 1
 edpm-compute-1:
 nic1: 52:54:04:60:55:22
 neutron_physical_bridge_name: br-ex
 neutron_public_interface_name: eth0
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

56

https://access.redhat.com/solutions/253273
https://access.redhat.com/RegistryAuthentication#creating-registry-service-accounts-6

1

 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_cidr }}
 routes: {{ ctlplane_host_routes }}
 members:
 - type: interface
 name: nic1
 mtu: {{ min_viable_mtu }}
 # force the MAC address of the bridge to this interface
 primary: true
 {% for network in nodeset_networks %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
 {% endfor %}

Update the nic1 to the MAC address assigned to the NIC to use for network configuration
on the Compute node.

For alternative templates, see roles/edpm_network_config/templates. For more information
about data plane network configuration, see Customizing data plane networks in the
Configuring network services guide.

12. Add the common configuration for the set of nodes in this group under the nodeTemplate
section. Each node in this OpenStackDataPlaneNodeSet inherits this configuration. For
information about the properties you can use to configure common node attributes, see
OpenStackDataPlaneNodeSet CR properties.

13. Define each node in this node set:

 nodes:
 edpm-compute-0: 1
 hostName: edpm-compute-0
 networks: 2
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.100 3
 - name: internalapi
 subnetName: subnet1
 - name: storage
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1
 ansible:
 ansibleHost: 192.168.122.100
 ansibleUser: cloud-admin
 ansibleVars: 4
 fqdn_internal_api: edpm-compute-0.example.com
 edpm-compute-1:

CHAPTER 5. CREATING THE DATA PLANE

57

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_networking_services/customize-data-plane-networks_rhoso-cfg-network

1

2

3

4

 hostName: edpm-compute-1
 networks:
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.101
 - name: internalapi
 subnetName: subnet1
 - name: storage
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1
 ansible:
 ansibleHost: 192.168.122.101
 ansibleUser: cloud-admin
 ansibleVars:
 fqdn_internal_api: edpm-compute-1.example.com

The node definition reference, for example, edpm-compute-0. Each node in the node set
must have a node definition.

Defines the IPAM and the DNS records for the node.

Defines the predictable IP addresses for each network.

Node-specific Ansible variables that customize the node.

NOTE

Nodes defined within the nodes section can configure the same Ansible
variables that are configured in the nodeTemplate section. Where an Ansible
variable is configured for both a specific node and within the nodeTemplate
section, the node-specific values override those from the nodeTemplate
section.

You do not need to replicate all the nodeTemplate Ansible variables for a
node to override the default and set some node-specific values. You only
need to configure the Ansible variables you want to override for the node.

Many ansibleVars include edpm in the name, which stands for "External
Data Plane Management".

For information about the properties you can use to configure node attributes, see
OpenStackDataPlaneNodeSet CR properties.

14. Save the openstack_unprovisioned_node_set.yaml definition file.

15. Create the data plane resources:

$ oc create --save-config -f openstack_unprovisioned_node_set.yaml -n openstack

16. Verify that the data plane resources have been created by confirming that the status is
SetupReady:

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

58

$ oc wait openstackdataplanenodeset openstack-data-plane --for condition=SetupReady --
timeout=10m

When the status is SetupReady the command returns a condition met message, otherwise it
returns a timeout error.

For information about the data plane conditions and states, see Data plane conditions and
states.

17. Verify that the Secret resource was created for the node set:

$ oc get secret -n openstack | grep openstack-data-plane
dataplanenodeset-openstack-data-plane Opaque 1 3m50s

18. Verify that the nodes have transitioned to the provisioned state:

$ oc get bmh
NAME STATE CONSUMER ONLINE ERROR AGE
edpm-compute-0 provisioned openstack-data-plane true 3d21h

19. Verify that the services were created:

$ oc get openstackdataplaneservice -n openstack
NAME AGE
bootstrap 8m40s
ceph-client 8m40s
ceph-hci-pre 8m40s
configure-network 8m40s
configure-os 8m40s
...

5.4.1. Example OpenStackDataPlaneNodeSet CR for unprovisioned nodes

The following example OpenStackDataPlaneNodeSet CR creates a node set from unprovisioned
Compute nodes with some node-specific configuration. The unprovisioned Compute nodes are
provisioned when the node set is created. Update the name of the OpenStackDataPlaneNodeSet CR
in this example to a name that reflects the nodes in the set. The OpenStackDataPlaneNodeSet CR
name must be unique, must consist of lower case alphanumeric characters, - (hyphen) or . (period), must
start and end with an alphanumeric character, and must have a maximum length of 20 characters.
Update the name in this example to a name that reflects the nodes in the set.

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneNodeSet
metadata:
 name: openstack-data-plane
 namespace: openstack
spec:
 env: 1
 - name: ANSIBLE_FORCE_COLOR
 value: "True"
 services:
 - bootstrap
 - configure-network
 - validate-network

CHAPTER 5. CREATING THE DATA PLANE

59

 - install-os
 - configure-os
 - ssh-known-hosts
 - run-os
 - reboot-os
 - install-certs
 - ovn
 - neutron-metadata
 - libvirt
 - nova
 - telemetry
 networkAttachments:
 - ctlplane
 preProvisioned: false 2
 baremetalSetTemplate: 3
 deploymentSSHSecret: dataplane-ansible-ssh-private-key-secret
 bmhNamespace: openshift-machine-api 4
 cloudUserName: <ansible_ssh_user>
 bmhLabelSelector:
 app: openstack 5
 ctlplaneInterface: enp1s0
 dnsSearchDomains:
 - osptest.openstack.org
 nodeTemplate: 6
 ansibleSSHPrivateKeySecret: dataplane-ansible-ssh-private-key-secret 7
 extraMounts:
 - extraVolType: Logs
 volumes:
 - name: ansible-logs
 persistentVolumeClaim:
 claimName: <pvc_name>
 mounts:
 - name: ansible-logs
 mountPath: "/runner/artifacts"
 managementNetwork: ctlplane
 ansible:
 ansibleUser: cloud-admin 8
 ansiblePort: 22
 ansibleVarsFrom:
 - prefix: subscription_manager_
 secretRef:
 name: subscription-manager
 - prefix: registry_
 secretRef:
 name: redhat-registry
 ansibleVars: 9
 edpm_bootstrap_command: |
 subscription-manager register --username {{ subscription_manager_username }} --password {{
subscription_manager_password }}
 subscription-manager release --set=9.4
 subscription-manager repos --disable=*
 subscription-manager repos --enable=rhel-9-for-x86_64-baseos-eus-rpms --enable=rhel-9-for-
x86_64-appstream-eus-rpms --enable=rhel-9-for-x86_64-highavailability-eus-rpms --enable=fast-
datapath-for-rhel-9-x86_64-rpms --enable=rhoso-18.0-for-rhel-9-x86_64-rpms --enable=rhceph-7-
tools-for-rhel-9-x86_64-rpms

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

60

 podman login -u {{ registry_username }} -p {{ registry_password }} registry.redhat.io
 edpm_bootstrap_release_version_package: []
 edpm_network_config_os_net_config_mappings:
 edpm-compute-0:
 nic1: 52:54:04:60:55:22 10
 edpm-compute-1:
 nic1: 52:54:04:60:55:22
 neutron_physical_bridge_name: br-ex
 neutron_public_interface_name: eth0
 edpm_network_config_template: |

 {% set mtu_list = [ctlplane_mtu] %}
 {% for network in nodeset_networks %}
 {{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
 {%- endfor %}
 {% set min_viable_mtu = mtu_list | max %}
 network_config:
 - type: ovs_bridge
 name: {{ neutron_physical_bridge_name }}
 mtu: {{ min_viable_mtu }}
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 domain: {{ dns_search_domains }}
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_cidr }}
 routes: {{ ctlplane_host_routes }}
 members:
 - type: interface
 name: nic1
 mtu: {{ min_viable_mtu }}
 # force the MAC address of the bridge to this interface
 primary: true
 {% for network in nodeset_networks %}
 - type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask:
 {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
 routes: {{ lookup('vars', networks_lower[network] ~ '_host_routes') }}
 {% endfor %}
 nodes:
 edpm-compute-0: 11
 hostName: edpm-compute-0
 ansible:
 ansibleHost: 192.168.122.100
 ansibleUser: cloud-admin
 ansibleVars:
 fqdn_internal_api: edpm-compute-0.example.com
 networks: 12
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.100 13
 - name: internalapi

CHAPTER 5. CREATING THE DATA PLANE

61

1

2

3

4

5

6

7

8

9

10

11

12

13 14

 subnetName: subnet1
 - name: storage
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1
 edpm-compute-1:
 hostName: edpm-compute-1
 ansible: 14
 ansibleHost: 192.168.122.101
 ansibleUser: cloud-admin
 ansibleVars:
 fqdn_internal_api: edpm-compute-1.example.com
 networks:
 - name: ctlplane
 subnetName: subnet1
 defaultRoute: true
 fixedIP: 192.168.122.101
 - name: internalapi
 subnetName: subnet1
 - name: storage
 subnetName: subnet1
 - name: tenant
 subnetName: subnet1

Optional: A list of environment variables to pass to the pod.

Specify that the nodes in this set are unprovisioned and must be provisioned when creating the
resource.

Configure the bare-metal template for bare-metal nodes that must be provisioned when creating
the resource.

The namespace defined in the corresponding BareMetalHost CR for the node.

The label defined in the corresponding BareMetalHost CR for the node.

The common configuration to apply to all nodes in this set of nodes.

The name of the secret that you created in Creating the data plane secrets .

The user associated with the secret you created in Creating the data plane secrets .

The Ansible variables that customize the set of nodes. For a list of Ansible variables that you can
use, see https://openstack-k8s-operators.github.io/edpm-ansible/.

The MAC address assigned to the NIC to use for network configuration on the Compute node.

The node definition reference, for example, edpm-compute-0. Each node in the node set must
have a node definition.

Defines the IPAM and the DNS records for the node.

Defines the predictable IP addresses for each network.

5.4.2. Provisioning bare-metal data plane nodes

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

62

https://openstack-k8s-operators.github.io/edpm-ansible/

Provisioning bare-metal nodes on the data plane is supported with the Red Hat OpenShift Container
Platform (RHOCP) Cluster Baremetal Operator (CBO). The CBO deploys the components required to
provision bare-metal nodes within the RHOCP cluster, including the Bare Metal Operator (BMO) and
Ironic containers.

The BMO manages the available hosts on clusters and performs the following operations:

Inspects node hardware details and reports them to the corresponding BareMetalHost CR. This
includes information about CPUs, RAM, disks, and NICs.

Provisions nodes with a specific image.

Cleans node disk contents before and after provisioning.

The availability of the CBO depends on which of the following installation methods was used for the
RHOCP cluster:

Assisted Installer

You can enable CBO on clusters installed with the Assisted Installer, and you can manually add the
provisioning network to the Assisted Installer cluster after installation.

Installer-provisioned infrastructure

CBO is enabled by default on RHOCP clusters that are installed with the bare-metal installer-
provisioned infrastructure. You can configure installer-provisioned clusters with a provisioning
network to enable both virtual media and network boot installations. Alternatively, you can configure
an installer-provisioned cluster without a provisioning network so that only virtual media provisioning
is available. For more information about installer-provisioned clusters on bare metal, see Deploying
installer-provisioned clusters on bare metal.

User-provisioned infrastructure

You can activate CBO on RHOCP clusters installed with user-provisioned infrastructure by creating
a Provisioning CR. You cannot add a provisioning network to a user-provisioned cluster. For more
information about how to create a Provisioning CR, see Scaling a user-provisioned cluster with the
Bare Metal Operator.

5.5. OPENSTACKDATAPLANENODESET CR SPEC PROPERTIES

The following sections detail the OpenStackDataPlaneNodeSet CR spec properties you can configure.

5.5.1. nodeTemplate

Defines the common attributes for the nodes in this OpenStackDataPlaneNodeSet. You can override
these common attributes in the definition for each individual node.

Table 5.1. nodeTemplate properties

Field Description

CHAPTER 5. CREATING THE DATA PLANE

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/installing/deploying-installer-provisioned-clusters-on-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/installing/installing-on-bare-metal#scaling-a-user-provisioned-cluster-with-the-bare-metal-operator

ansibleSSHPrivateKeySecret Name of the private SSH key secret that contains the private
SSH key for connecting to nodes.

Secret name format: Secret.data.ssh-privatekey

For more information, see Creating an SSH authentication
secret.

Default: dataplane-ansible-ssh-private-key-secret

managementNetwork Name of the network to use for management (SSH/Ansible).
Default: ctlplane

networks Network definitions for the OpenStackDataPlaneNodeSet.

ansible Ansible configuration options. For more information, see
ansible properties.

extraMounts The files to mount into an Ansible Execution Pod.

userData UserData configuration for the
OpenStackDataPlaneNodeSet.

networkData NetworkData configuration for the
OpenStackDataPlaneNodeSet.

Field Description

5.5.2. nodes

Defines the node names and node-specific attributes for the nodes in this
OpenStackDataPlaneNodeSet. Overrides the common attributes defined in the nodeTemplate.

Table 5.2. nodes properties

Field Description

ansible Ansible configuration options. For more information, see
ansible properties.

extraMounts The files to mount into an Ansible Execution Pod.

hostName The node name.

managementNetwork Name of the network to use for management (SSH/Ansible).

networkData NetworkData configuration for the node.

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/html/nodes/working-with-pods#nodes-pods-secrets-creating-ssh_nodes-pods-secrets

networks Instance networks.

preprovisioningNetworkDataName NetworkData secret name in the local namespace for pre-
provisioning.

userData Node-specific user data.

Field Description

5.5.3. ansible

Defines the group of Ansible configuration options.

Table 5.3. ansible properties

Field Description

ansibleUser The user associated with the secret you created in Creating the
data plane secrets. Default: rhel-user

ansibleHost SSH host for the Ansible connection.

ansiblePort SSH port for the Ansible connection.

ansibleVars The Ansible variables that customize the set of nodes. You can
use this property to configure any custom Ansible variable,
including the Ansible variables available for each edpm-ansible
role. For a complete list of Ansible variables by role, see the
edpm-ansible documentation.

NOTE

The ansibleVars parameters that you can
configure for an
OpenStackDataPlaneNodeSet CR are
determined by the services defined for the
OpenStackDataPlaneNodeSet. The
OpenStackDataPlaneService CRs call the
Ansible playbooks from the edpm-ansible
playbook collection, which include the roles that
are executed as part of the data plane service.

ansibleVarsFrom A list of sources to populate Ansible variables from. Values
defined by an AnsibleVars with a duplicate key take
precedence. For more information, see ansibleVarsFrom
properties.

5.5.4. ansibleVarsFrom

Defines the list of sources to populate Ansible variables from.

CHAPTER 5. CREATING THE DATA PLANE

65

https://openstack-k8s-operators.github.io/edpm-ansible/
https://github.com/openstack-k8s-operators/edpm-ansible/tree/main/playbooks

1

Table 5.4. ansibleVarsFrom properties

Field Description

prefix An optional identifier to prepend to each key in the ConfigMap.
Must be a C_IDENTIFIER.

configMapRef The ConfigMap CR to select the ansibleVars from.

secretRef The Secret CR to select the ansibleVars from.

5.6. DEPLOYING THE DATA PLANE

You use the OpenStackDataPlaneDeployment CRD to configure the services on the data plane nodes
and deploy the data plane. You control the execution of Ansible on the data plane by creating
OpenStackDataPlaneDeployment custom resources (CRs). Each OpenStackDataPlaneDeployment
CR models a single Ansible execution. When the OpenStackDataPlaneDeployment successfully
completes execution, it does not automatically execute the Ansible again, even if the
OpenStackDataPlaneDeployment or related OpenStackDataPlaneNodeSet resources are changed.
To start another Ansible execution, you must create another OpenStackDataPlaneDeployment CR.

Create an OpenStackDataPlaneDeployment (CR) that deploys each of your
OpenStackDataPlaneNodeSet CRs.

Procedure

1. Create a file on your workstation named openstack_data_plane_deploy.yaml to define the
OpenStackDataPlaneDeployment CR:

apiVersion: dataplane.openstack.org/v1beta1
kind: OpenStackDataPlaneDeployment
metadata:
 name: data-plane-deploy 1
 namespace: openstack

The OpenStackDataPlaneDeployment CR name must be unique, must consist of lower
case alphanumeric characters, - (hyphen) or . (period), must start and end with an
alphanumeric character, and must have a maximum length of 20 characters. Update the
name in this example to a name that reflects the node sets in the deployment.

2. Add all the OpenStackDataPlaneNodeSet CRs that you want to deploy:

spec:
 nodeSets:
 - openstack-data-plane
 - <nodeSet_name>
 - ...
 - <nodeSet_name>

Replace <nodeSet_name> with the names of the OpenStackDataPlaneNodeSet CRs that
you want to include in your data plane deployment.

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

66

3. Save the openstack_data_plane_deploy.yaml deployment file.

4. Deploy the data plane:

$ oc create -f openstack_data_plane_deploy.yaml -n openstack

You can view the Ansible logs while the deployment executes:

$ oc get pod -l app=openstackansibleee -w
$ oc logs -l app=openstackansibleee -f --max-log-requests 10

5. Verify that the data plane is deployed:

$ oc get openstackdataplanedeployment -n openstack
NAME STATUS MESSAGE
data-plane-deploy True Setup Complete

$ oc get openstackdataplanenodeset -n openstack
NAME STATUS MESSAGE
openstack-data-plane True NodeSet Ready

For information about the meaning of the returned status, see Data plane conditions and states .

If the status indicates that the data plane has not been deployed, then troubleshoot the
deployment. For information, see Troubleshooting the data plane creation and deployment .

6. Map the Compute nodes to the Compute cell that they are connected to:

$ oc rsh nova-cell0-conductor-0 nova-manage cell_v2 discover_hosts --verbose

If you did not create additional cells, this command maps the Compute nodes to cell1.

7. Access the remote shell for the openstackclient pod and verify that the deployed Compute
nodes are visible on the control plane:

$ oc rsh -n openstack openstackclient
$ openstack hypervisor list

5.7. DATA PLANE CONDITIONS AND STATES

Each data plane resource has a series of conditions within their status subresource that indicates the
overall state of the resource, including its deployment progress.

For an OpenStackDataPlaneNodeSet, until an OpenStackDataPlaneDeployment has been started
and finished successfully, the Ready condition is False. When the deployment succeeds, the Ready
condition is set to True. A subsequent deployment sets the Ready condition to False until the
deployment succeeds, when the Ready condition is set to True.

Table 5.5. OpenStackDataPlaneNodeSet CR conditions

CHAPTER 5. CREATING THE DATA PLANE

67

Condition Description

Ready
"True": The OpenStackDataPlaneNodeSet CR is
successfully deployed.

"False": The deployment is not yet requested or has
failed, or there are other failed conditions.

SetupReady "True": All setup tasks for a resource are complete. Setup tasks
include verifying the SSH key secret, verifying other fields on the
resource, and creating the Ansible inventory for each resource.
Each service-specific condition is set to "True" when that service
completes deployment. You can check the service conditions to
see which services have completed their deployment, or which
services failed.

DeploymentReady "True": The NodeSet has been successfully deployed.

InputReady "True": The required inputs are available and ready.

NodeSetDNSDataReady "True": DNSData resources are ready.

NodeSetIPReservationReady "True": The IPSet resources are ready.

NodeSetBaremetalProvisionReady "True": Bare-metal nodes are provisioned and ready.

Table 5.6. OpenStackDataPlaneNodeSet status fields

Status field Description

Deployed
"True": The OpenStackDataPlaneNodeSet CR is
successfully deployed.

"False": The deployment is not yet requested or has
failed, or there are other failed conditions.

DNSClusterAddresses

CtlplaneSearchDomain

Table 5.7. OpenStackDataPlaneDeployment CR conditions

Condition Description

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

68

Ready
"True": The data plane is successfully deployed.

"False": The data plane deployment failed, or there are
other failed conditions.

DeploymentReady "True": The data plane is successfully deployed.

InputReady "True": The required inputs are available and ready.

<NodeSet> Deployment Ready "True": The deployment has succeeded for the named
NodeSet, indicating all services for the NodeSet have
succeeded.

<NodeSet> <Service> Deployment
Ready

"True": The deployment has succeeded for the named NodeSet
and Service. Each <NodeSet> <Service> Deployment
Ready specific condition is set to "True" as that service
completes successfully for the named NodeSet. Once all
services are complete for a NodeSet, the <NodeSet>
Deployment Ready condition is set to "True". The service
conditions indicate which services have completed their
deployment, or which services failed and for which NodeSets.

Condition Description

Table 5.8. OpenStackDataPlaneDeployment status fields

Status field Description

Deployed
"True": The data plane is successfully deployed. All
Services for all NodeSets have succeeded.

"False": The deployment is not yet requested or has
failed, or there are other failed conditions.

Table 5.9. OpenStackDataPlaneService CR conditions

Condition Description

Ready "True": The service has been created and is ready for use.
"False": The service has failed to be created.

5.8. TROUBLESHOOTING DATA PLANE CREATION AND
DEPLOYMENT

To troubleshoot a deployment when services are not deploying or operating correctly, you can check the
job condition message for the service, and you can check the logs for a node set.

CHAPTER 5. CREATING THE DATA PLANE

69

5.8.1. Checking the job condition message for a service

Each data plane deployment in the environment has associated services. Each of these services have a
job condition message that matches the current status of the AnsibleEE job executing for that service.
This information can be used to troubleshoot deployments when services are not deploying or operating
correctly.

Procedure

1. Determine the name and status of all deployments:

$ oc get openstackdataplanedeployment

The following example output shows two deployments currently in progress:

$ oc get openstackdataplanedeployment

NAME NODESETS STATUS MESSAGE
data-plane-deploy ["openstack-data-plane-1"] False Deployment in progress
data-plane-deploy ["openstack-data-plane-2"] False Deployment in progress

2. Determine the name and status of all services and their job condition:

$ oc get openstackansibleee

The following example output shows all services and their job condition for all current
deployments:

$ oc get openstackansibleee

NAME NETWORKATTACHMENTS STATUS MESSAGE
bootstrap-openstack-edpm ["ctlplane"] True Job complete
download-cache-openstack-edpm ["ctlplane"] False Job is running
repo-setup-openstack-edpm ["ctlplane"] True Job complete
validate-network-another-osdpd ["ctlplane"] False Job is running

For information on the job condition messages, see Job condition messages.

3. Filter for the name and service for a specific deployment:

$ oc get openstackansibleee -l \
openstackdataplanedeployment=<deployment_name>

Replace <deployment_name> with the name of the deployment to use to filter the
services list.
The following example filters the list to only show services and their job condition for the
data-plane-deploy deployment:

$ oc get openstackansibleee -l \
openstackdataplanedeployment=data-plane-deploy

NAME NETWORKATTACHMENTS STATUS MESSAGE

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

70

bootstrap-openstack-edpm ["ctlplane"] True Job complete
download-cache-openstack-edpm ["ctlplane"] False Job is running
repo-setup-openstack-edpm ["ctlplane"] True Job complete

5.8.1.1. Job condition messages

AnsibleEE jobs have an associated condition message that indicates the current state of the service job.
This condition message is displayed in the MESSAGE field of the oc get openstackansibleee
command output. Jobs return one of the following conditions when queried:

Job not started: The job has not started.

Job not found: The job could not be found.

Job is running: The job is currently running.

Job complete: The job execution is complete.

Job error occured <error_message>: The job stopped executing unexpectedly. The
<error_message> is replaced with a specific error message.

To further investigate a service that is displaying a particular job condition message, view its logs by
using the command oc logs job/<service>. For example, to view the logs for the repo-setup-
openstack-edpm service, use the command oc logs job/repo-setup-openstack-edpm.

5.8.2. Checking the logs for a node set

You can access the logs for a node set to check for deployment issues.

Procedure

1. Retrieve pods with the OpenStackAnsibleEE label:

$ oc get pods -l app=openstackansibleee
configure-network-edpm-compute-j6r4l 0/1 Completed 0 3m36s
validate-network-edpm-compute-6g7n9 0/1 Pending 0 0s
validate-network-edpm-compute-6g7n9 0/1 ContainerCreating 0 11s
validate-network-edpm-compute-6g7n9 1/1 Running 0 13s

2. SSH into the pod you want to check:

a. Pod that is running:

$ oc rsh validate-network-edpm-compute-6g7n9

b. Pod that is not running:

$ oc debug configure-network-edpm-compute-j6r4l

3. List the directories in the /runner/artifacts mount:

$ ls /runner/artifacts
configure-network-edpm-compute
validate-network-edpm-compute

CHAPTER 5. CREATING THE DATA PLANE

71

4. View the stdout for the required artifact:

$ cat /runner/artifacts/configure-network-edpm-compute/stdout

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

72

CHAPTER 6. ACCESSING THE RHOSO CLOUD
You can access your Red Hat OpenStack Services on OpenShift (RHOSO) cloud to perform actions on
your data plane by either accessing the OpenStackClient pod through a remote shell from your
workstation, or by using a web browser to access the Dashboard service (horizon) interface.

6.1. ACCESSING THE OPENSTACKCLIENT POD

You can execute Red Hat OpenStack Services on OpenShift (RHOSO) commands on the deployed
data plane by using the OpenStackClient pod through a remote shell from your workstation. The
OpenStack Operator created the OpenStackClient pod as a part of the OpenStackControlPlane
resource. The OpenStackClient pod contains the client tools and authentication details that you require
to perform actions on your data plane.

Procedure

1. Access the remote shell for openstackclient:

$ oc rsh -n openstack openstackclient

2. Change to the cloud-admin home directory:

$ cd /home/cloud-admin

3. Run your openstack commands. For example, you can create a default network with the
following command:

$ openstack network create default

Additional resources

Creating and managing instances

Configuring networking services

6.2. ACCESSING THE DASHBOARD SERVICE (HORIZON) INTERFACE

You can access the Dashboard service (horizon) interface by using a web browser to access the virtual
IP address that is reserved by the control plane.

Procedure

1. To log in as the admin user, obtain the admin password from the AdminPassword parameter in
the osp-secret secret:

$ oc get secret osp-secret -o jsonpath='{.data.AdminPassword}' | base64 -d

2. Retrieve the Dashboard service endpoint URL:

$ oc get horizons horizon -o jsonpath='{.status.endpoint}'

3. Open a web browser.

CHAPTER 6. ACCESSING THE RHOSO CLOUD

73

https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/creating_and_managing_instances/index
https://docs.redhat.com/en/documentation/red_hat_openstack_services_on_openshift/18.0/html/configuring_networking_services/index

4. Enter the Dashboard endpoint URL.

5. Log in to the dashboard with your username and password.

Red Hat OpenStack Services on OpenShift 18.0 Deploying Red Hat OpenStack Services on OpenShift

74

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INSTALLING AND PREPARING THE OPERATORS
	1.1. PREREQUISITES
	1.2. INSTALLING THE OPENSTACK OPERATOR

	CHAPTER 2. PREPARING RED HAT OPENSHIFT CONTAINER PLATFORM FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT
	2.1. CONFIGURING RED HAT OPENSHIFT CONTAINER PLATFORM NODES FOR A RED HAT OPENSTACK PLATFORM DEPLOYMENT
	2.2. CREATING A STORAGE CLASS
	2.3. CREATING THE OPENSTACK NAMESPACE
	2.4. PROVIDING SECURE ACCESS TO THE RED HAT OPENSTACK SERVICES ON OPENSHIFT SERVICES

	CHAPTER 3. PREPARING NETWORKS FOR RED HAT OPENSTACK SERVICES ON OPENSHIFT
	3.1. DEFAULT RED HAT OPENSTACK SERVICES ON OPENSHIFT NETWORKS
	3.2. PREPARING RHOCP FOR RHOSO NETWORKS
	3.3. CREATING THE DATA PLANE NETWORK

	CHAPTER 4. CREATING THE CONTROL PLANE
	4.1. PREREQUISITES
	4.2. CREATING THE CONTROL PLANE
	4.3. EXAMPLE OPENSTACKCONTROLPLANE CR
	4.4. REMOVING A SERVICE FROM THE CONTROL PLANE
	4.5. ADDITIONAL RESOURCES

	CHAPTER 5. CREATING THE DATA PLANE
	5.1. PREREQUISITES
	5.2. CREATING THE DATA PLANE SECRETS
	5.3. CREATING A SET OF DATA PLANE NODES WITH PRE-PROVISIONED NODES
	5.3.1. Example OpenStackDataPlaneNodeSet CR for pre-provisioned nodes

	5.4. CREATING A SET OF DATA PLANE NODES WITH UNPROVISIONED NODES
	5.4.1. Example OpenStackDataPlaneNodeSet CR for unprovisioned nodes
	5.4.2. Provisioning bare-metal data plane nodes

	5.5. OPENSTACKDATAPLANENODESET CR SPEC PROPERTIES
	5.5.1. nodeTemplate
	5.5.2. nodes
	5.5.3. ansible
	5.5.4. ansibleVarsFrom

	5.6. DEPLOYING THE DATA PLANE
	5.7. DATA PLANE CONDITIONS AND STATES
	5.8. TROUBLESHOOTING DATA PLANE CREATION AND DEPLOYMENT
	5.8.1. Checking the job condition message for a service
	5.8.1.1. Job condition messages

	5.8.2. Checking the logs for a node set

	CHAPTER 6. ACCESSING THE RHOSO CLOUD
	6.1. ACCESSING THE OPENSTACKCLIENT POD
	6.2. ACCESSING THE DASHBOARD SERVICE (HORIZON) INTERFACE

