
Red Hat OpenStack Services on
OpenShift 18.0

Performing storage operations

Performing operations with the Block Storage service, Image service, Object Storage
service, and Shared File Systems service

Last Updated: 2024-08-19

Red Hat OpenStack Services on OpenShift 18.0 Performing storage
operations

Performing operations with the Block Storage service, Image service, Object Storage service, and
Shared File Systems service

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Perform operations with volumes, images, objects, and file shares in your Red Hat OpenStack
Services on OpenShift environment.

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. PERFORMING STORAGE OPERATIONS IN RED HAT OPENSTACK SERVICES ON OPENSHIFT
1.1. BLOCK STORAGE (CINDER)
1.2. IMAGES (GLANCE)
1.3. OBJECT STORAGE (SWIFT)
1.4. SHARED FILE SYSTEMS (MANILA)
1.5. CUSTOMIZING AND MANAGING RED HAT CEPH STORAGE

CHAPTER 2. PERFORMING OPERATIONS WITH THE BLOCK STORAGE BACKUP SERVICE
2.1. USING THE BLOCK STORAGE BACKUP SERVICE

2.1.1. Authenticating volume owners for access to volume backups
2.1.2. Creating backups

2.1.2.1. Creating a full volume backup
2.1.2.2. Creating a full backup of a snapshot
2.1.2.3. Creating a backup of an in-use volume
2.1.2.4. Incremental backups
2.1.2.5. Creating an incremental backup
2.1.2.6. Canceling a backup

2.1.3. Protecting your backups
2.1.3.1. Exporting backup metadata
2.1.3.2. Importing backup metadata

2.1.4. Restoring backups
2.1.4.1. Restoring a backup to a specific volume
2.1.4.2. Restoring a backup to a new volume
2.1.4.3. Canceling restoring a backup

2.2. TROUBLESHOOTING THE BLOCK STORAGE BACKUP SERVICE
2.2.1. Troubleshooting backups
2.2.2. Examining the Block Storage backup service log file
2.2.3. Volume backup workflow
2.2.4. Volume restore workflow

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)
3.1. CREATING OS IMAGES

3.1.1. Virtual machine image formats
3.1.2. Creating RHEL KVM images

3.1.2.1. Using a RHEL KVM instance image
3.1.2.2. Creating a RHEL-based root partition image for bare-metal instances
3.1.2.3. Creating a RHEL-based whole-disk user image for bare-metal instances

3.1.3. Creating instance images with RHEL or Windows ISO files
3.1.3.1. Prerequisites
3.1.3.2. Creating a Red Hat Enterprise Linux 9 image
3.1.3.3. Creating a Windows image

3.1.4. Creating an image for UEFI Secure Boot
3.1.5. Metadata properties for virtual hardware

3.2. UPLOADING, IMPORTING, AND MANAGING IMAGES
3.2.1. Uploading images to the Image service
3.2.2. Image service image import methods

3.2.2.1. Importing an image from a remote URI
3.2.2.2. Importing an image from a local volume

3.2.3. Converting the format of an image
3.2.3.1. Converting an image to RAW format manually

4

5
5
5
5
5
6

7
7
7
8
8
9
11

12
13
14
15
15
16
17
17
19

20
21
21
21
22
23

25
25
25
27
27
27
29
30
30
30
33
35
35
36
36
36
37
37
38
40

Table of Contents

1

. .

. .

3.2.3.2. Storing an image in RAW format
3.2.4. Updating image properties
3.2.5. Hiding or unhiding images
3.2.6. Deleting images from the Image service

3.3. IMPORTING AND COPYING IMAGES TO SINGLE OR MULTIPLE STORES
3.3.1. Importing image data to a single store
3.3.2. Importing image data to multiple stores
3.3.3. Importing image data to all stores without failure
3.3.4. Checking the progress of the image import operation
3.3.5. Managing image import failures
3.3.6. Copying an image to specific stores
3.3.7. Copying an image to multiple stores
3.3.8. Copying an image to all stores
3.3.9. Deleting an image from a specific store
3.3.10. Listing image locations and location properties

3.4. IMAGE SERVICE COMMAND OPTIONS AND PROPERTIES
3.4.1. Image service command options
3.4.2. Image properties and property keys

CHAPTER 4. PERFORMING OPERATIONS WITH THE OBJECT STORAGE SERVICE (SWIFT)
4.1. CREATING PRIVATE AND PUBLIC CONTAINERS
4.2. CREATING PSEUDO-FOLDERS IN CONTAINERS
4.3. DELETING CONTAINERS FROM THE OBJECT STORAGE SERVICE
4.4. UPLOADING OBJECTS TO CONTAINERS
4.5. COPYING OBJECTS BETWEEN CONTAINERS
4.6. DELETING OBJECTS FROM THE OBJECT STORAGE SERVICE

CHAPTER 5. PERFORMING OPERATIONS WITH THE SHARED FILE SYSTEMS SERVICE (MANILA)
5.1. LISTING SHARE TYPES
5.2. CREATING NFS, CEPHFS, OR CIFS SHARES

5.2.1. Creating NFS or CIFS shares with DHSS=true
5.2.2. Creating NFS, CephFS, or CIFS shares with DHSS=false

5.3. LISTING SHARES AND EXPORTING INFORMATION
5.4. CREATING A SNAPSHOT OF DATA ON A SHARED FILE SYSTEM

5.4.1. Creating a share from a snapshot
5.4.2. Deleting a snapshot

5.5. CONNECTING TO A SHARED NETWORK TO ACCESS SHARES
5.6. CONFIGURING AN IPV6 INTERFACE BETWEEN THE NETWORK AND AN INSTANCE
5.7. GRANTING SHARE ACCESS FOR END-USER CLIENTS

5.7.1. Granting access to an NFS share
5.7.2. Granting access to a native CephFS share
5.7.3. Granting access to a CIFS share
5.7.4. Revoking access to a share

5.8. MOUNTING SHARES ON COMPUTE INSTANCES
5.8.1. Listing share export locations
5.8.2. Mounting NFS, native CephFS, or CIFS shares

5.9. DELETING SHARES
5.10. LISTING RESOURCE LIMITS OF THE SHARED FILE SYSTEMS SERVICE
5.11. TROUBLESHOOTING OPERATION FAILURES

5.11.1. Viewing error messages for shares
5.11.2. Debugging share mounting failures

40
41
41
41

42
42
43
43
44
45
45
46
47
47
47
49
49
50

61
61

62
63
63
63
64

65
65
65
66
67
68
69
69
70
71
72
73
74
75
75
76
76
76
77
78
79
79
79
79

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

2

Table of Contents

3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation for Red Hat OpenStack Services
on OpenShift (RHOSO) or earlier releases of Red Hat OpenStack Platform (RHOSP). When you create
an issue for RHOSO or RHOSP documents, the issue is recorded in the RHOSO Jira project, where you
can track the progress of your feedback.

To complete the Create Issue form, ensure that you are logged in to Jira. If you do not have a Red Hat
Jira account, you can create an account at https://issues.redhat.com.

1. Click the following link to open a Create Issue page: Create Issue

2. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

3. Click Create.

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

4

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. PERFORMING STORAGE OPERATIONS IN
RED HAT OPENSTACK SERVICES ON OPENSHIFT

Red Hat OpenStack Services on OpenShift (RHOSO) provides the following storage services:

Block Storage service (cinder)

Image service (glance)

Object Storage service (swift)

Shared File Systems service (manila)

You can manage cloud storage by using either the RHOSO Dashboard (horizon) or the OpenStack
command-line interface (CLI). You can perform most procedures by using either method, but you can
only complete some of the more advanced procedures by using the OpenStack CLI.

1.1. BLOCK STORAGE (CINDER)

The Block Storage service (cinder) allows users to provision block storage volumes on back ends. Users
can attach volumes to instances to augment their ephemeral storage with general-purpose persistent
storage. You can detach and re-attach volumes to instances, but you can only access these volumes
through the attached instance.

You can also configure instances so that they do not use ephemeral storage. Instead of using ephemeral
storage, you can configure the Block Storage service to write images to a volume. You can then use the
volume as a bootable root volume for an instance. Volumes also provide inherent redundancy and
disaster recovery through backups and snapshots. However, backups are only provided if you deploy the
optional Block Storage backup service. In addition, you can encrypt volumes for added security.

1.2. IMAGES (GLANCE)

The Image service (glance) provides discovery, registration, and delivery services for instance images. It
also provides the ability to store snapshots of instances ephemeral disks for cloning or restore purposes.
You can use stored images as templates to commission new servers quickly and more consistently than
installing a server operating system and individually configuring services.

1.3. OBJECT STORAGE (SWIFT)

The Object Storage service (swift) provides a fully-distributed storage solution that you can use to store
any kind of static data or binary object; such as media files, large datasets, and disk images. The Object
Storage service organizes objects by using object containers, which are similar to directories in a file
system, but they cannot be nested. You can use the Object Storage service as a repository for nearly
every service in the cloud.

Red Hat Ceph Storage RGW can be used as an alternative to the Object Storage service.

1.4. SHARED FILE SYSTEMS (MANILA)

The Shared File Systems service (manila) provides the means to provision remote, shareable file
systems. These are known as shares. Shares allow projects in the cloud to share POSIX compliant
storage, and they can be consumed by multiple instances simultaneously.

Shares are used for instance consumption, and they can be consumed by multiple instances at the same

CHAPTER 1. PERFORMING STORAGE OPERATIONS IN RED HAT OPENSTACK SERVICES ON OPENSHIFT

5

Shares are used for instance consumption, and they can be consumed by multiple instances at the same
time with read/write access mode.

1.5. CUSTOMIZING AND MANAGING RED HAT CEPH STORAGE

Red Hat OpenStack Services on OpenShift (RHOSO) 18.0 supports Red Hat Ceph Storage 7. For
information on the customization and management of Red Hat Ceph Storage 7, refer to the Red Hat
Ceph Storage documentation. The following guides contain key information and procedures for these
tasks:

Administration Guide

Configuration Guide

Operations Guide

Data Security and Hardening Guide

Dashboard Guide

Troubleshooting Guide

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

6

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html/administration_guide
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html/configuration_guide
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html/operations_guide
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html/data_security_and_hardening_guide
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html/dashboard_guide
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/7/html/troubleshooting_guide

CHAPTER 2. PERFORMING OPERATIONS WITH THE BLOCK
STORAGE BACKUP SERVICE

You can use the Block Storage service (cinder) backup service to perform, protect, restore, and
troubleshoot backups.

NOTE

To execute openstack client commands on the cloud, you must specify the name of the
cloud detailed in your clouds.yaml file. You can specify the name of the cloud by using
one of the following methods:

Use the --os-cloud option with each command:

$ openstack flavor list --os-cloud <cloud_name>

Use this option if you access more than one cloud.

Create an environment variable for the cloud name in your bashrc file:

`export OS_CLOUD=<cloud_name>`

Prerequisites

The administrator has created a project for you, and they have provided you with a clouds.yaml
file for you to access the cloud.

You have installed the python-openstackclient package.

Only administrators and volume owners with access can perform and access backups.

2.1. USING THE BLOCK STORAGE BACKUP SERVICE

You can use the Block Storage backup service to perform full or incremental backups, to protect your
backups, and to restore a backup to a volume.

2.1.1. Authenticating volume owners for access to volume backups

Administrators can back up any volume belonging to the project. To ensure that the volume owner can
also access the volume backup, administrators must provide arguments to authenticate the volume
owner when backing up the volume.

Procedure

Provide the following arguments to authenticate a volume owner for access to volume backups:

$ openstack --os-project-name <projectname> \
--os-username <username> \
--os-password <password> \
volume backup create [--name <backup_name>] <volume>

Replace <projectname> with the name of the project (tenant) of the owner of the volume.

Replace <username> and <password> with the username and password credentials of the

CHAPTER 2. PERFORMING OPERATIONS WITH THE BLOCK STORAGE BACKUP SERVICE

7

Replace <username> and <password> with the username and password credentials of the
user that is the owner of the volume within this project.

NOTE

[--name <backup_name>] <volume> are the typical arguments when creating a volume
backup.

2.1.2. Creating backups

Create a backup of your Block Storage volume to protect your data from being lost if there is an issue
with the volume. For more information, see Creating a full volume backup . You can also create a backup
directly from a snapshot of a volume. In addition to the volume data, a backup stores the volume
metadata, such as the name and description.

If data compression is enabled for the storage back end for your backups, then your backups are
compressed, which can reduce the performance of backup operations.

Full backups are easier to manage but they can become resource intensive when the size of the volume
increases over time. With incremental backups, you can capture periodic changes to volumes and
minimize resource usage.

When you create a backup of a Block Storage volume, the metadata for this backup is stored in the
Block Storage service database. The metadata is used if you restore the volume backup. To ensure that
a backup survives a catastrophic loss of the Block Storage service database, you can manually export
and store the metadata of this backup.

2.1.2.1. Creating a full volume backup

You can create one or more full backups of a volume.

Prerequisites

Only volume owners and administrators can backup volumes.

The storage back end for backups must have the necessary space.

The backup quotas specified for your project have not been exceeded.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. List the volumes to obtain the ID or name of the volume you want to back up:

$ openstack volume list

NOTE

Usually, you can only back up a volume that has an available status, but you can
backup a volume with an in-use status if required. For more information, see
Creating a backup of an in-use volume .

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

8

3. Back up the volume:

$ openstack volume backup create [--name <backup_name>] <volume>

Replace <volume> with the ID or name of the volume you want to back up.

Optional: replace <backup_name> with the name of this backup.
This command immediately provides the ID of this backup but the volume is backed up
asynchronously, in the background. For example:

$ openstack volume backup create --name vol1bu2 vol_1
+-------+--------------------------------------+
| Field | Value |
+-------+--------------------------------------+
| id | 83dadc43-2aa9-4c0b-bc05-a12203a8f4cb |
| name | vol1bu2 |
+-------+--------------------------------------+

Verification

List the backups:

$ openstack volume backup list

The volume backup is created when this backup has an available status. For example:

+--------------------------------------+---------+-------------+-----------+------+
| ID | Name | Description | Status | Size |
+--------------------------------------+---------+-------------+-----------+------+
| 83dadc43-2aa9-4c0b-bc05-a12203a8f4cb | vol1bu2 | None | available | 1 |
| b604a932-94a5-468e-bf6b-841ac16f69a8 | None | None | available | 1 |
+--------------------------------------+---------+-------------+-----------+------+

1. Exit the openstackclient pod:

$ exit

Additional resources

Creating backups

2.1.2.2. Creating a full backup of a snapshot

You can create a full backup from a snapshot by using the ID of the volume associated with the
snapshot.

The backup is created by directly attaching to the snapshot, which is faster than cloning the snapshot
into a volume and then backing up this volume. But this feature can affect the backup performance
because of the extra step of creating the volume from a snapshot.

Prerequisites:

Your backup repository must have the necessary space.

CHAPTER 2. PERFORMING OPERATIONS WITH THE BLOCK STORAGE BACKUP SERVICE

9

The backup quotas specified for your project have not been exceeded.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. List the snapshots to obtain the name or ID of the snapshot you want to backup:

$ openstack volume snapshot list

3. List the details of this snapshot to obtain the ID of the volume associated with this snapshot:

$ openstack volume snapshot show <snapshot>

Replace <snapshot> with the name or ID of the snapshot you want to backup.
The value of the volume_id field is the ID of the volume associated with this snapshot. For
example:

$ openstack volume snapshot show snap_1
+--+--------------------------------------+
| Field | Value |
+--+--------------------------------------+
created_at	2023-07-18T08:14:16.000000
description	None
id	2d95b707-6657-49af-ac8f-f9a7417d4650
name	snap_1
os-extended-snapshot-attributes:progress	100%
os-extended-snapshot-attributes:project_id	c2c1da89ed1648fc8b4f35a045f8d34c
properties	
size	1
status	available
updated_at	2023-07-18T08:14:17.000000
volume_id	6841e3d1-8a1a-4496-bc51-f7c04b787e8f
+--+--------------------------------------+

4. Backup the snapshot:

$ openstack volume backup create [--name <backup_name>] --snapshot <snapshot>
<volume_id>

Replace <volume_id> with the ID of the volume associated with this snapshot.

Optional: Replace <backup_name> with the name of this backup.
This command immediately provides the ID of this backup but the snapshot is backed up
asynchronously, in the background. For example:

$ openstack volume backup create --name snap1bu1 --snapshot snap_1 6841e3d1-
8a1a-4496-bc51-f7c04b787e8f
+-------+--------------------------------------+
| Field | Value |
+-------+--------------------------------------+

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

10

| id | 867e6cfb-9be7-47fa-8a79-221b0e80c757 |
| name | snap1bu1 |
+-------+--------------------------------------+

Verification

List the backups:

$ openstack volume backup list

The snapshot backup is created when this backup has an available status. For example:

+--------------------------------------+------------+-------------+-----------+------+
| ID | Name | Description | Status | Size |
+--------------------------------------+------------+-------------+-----------+------+
| 867e6cfb-9be7-47fa-8a79-221b0e80c757 | snap1bu1 | None | available | 1 |
+--------------------------------------+------------+-------------+-----------+------+

1. Exit the openstackclient pod:

$ exit

2.1.2.3. Creating a backup of an in-use volume

Usually you can only backup a volume that has an available status. But you can use the --force option
when creating a backup, to back up a volume that has an in-use status.

When you use the --force volume backup option, you create a crash-consistent, but not an application-
consistent, backup because the volume is not quiesced before performing the backup. Therefore, the
data is intact but the backup does not have an awareness of which applications were running when the
backup was performed.

Prerequisites

Only volume owners and project administrators can backup volumes.

Your backup repository must have the necessary space.

The backup quotas specified for your project have not been exceeded.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. List the volumes to obtain the ID or name of the volume you want to back up:

$ openstack volume list

For example:

+--------------------------------------+----------------+-----------+------+--------------------------------+

CHAPTER 2. PERFORMING OPERATIONS WITH THE BLOCK STORAGE BACKUP SERVICE

11

| ID | Name | Status | Size | Attached to |
+--------------------------------------+----------------+-----------+------+--------------------------------+
| 6841e3d1-8a1a-4496-bc51-f7c04b787e8f | vol_1 | available | 1 | |
| 92800cf6-82ae-448a-a2bb-872fa4d98099 | Pansible_vol_2 | in-use | 1 | Attached to
inst1 on /dev/vdc |
+--------------------------------------+----------------+-----------+------+--------------------------------+

3. Force the back up, if the volume that you want to backup has an in-use status:

$ openstack volume backup create [--name <backup_name>] --force <volume>

Replace <volume> with the ID or name of the volume you want to back up.

Optional: replace <backup_name> with the name of this backup.
This command immediately provides the ID of this backup but the volume is backed up
asynchronously, in the background. For example:

$ openstack volume backup create --name panvol2bu1 --force Pansible_vol_2
+-------+--------------------------------------+
| Field | Value |
+-------+--------------------------------------+
| id | 8c72bbf3-eb8e-4459-83e9-c7654ebe6343 |
| name | panvol2bu1 |
+-------+--------------------------------------+

Verification

List the backups:

$ openstack volume backup list

The volume backup is created when this backup has an available status. For example:

+--------------------------------------+------------+-------------+-----------+------+
| ID | Name | Description | Status | Size |
+--------------------------------------+------------+-------------+-----------+------+
| 8c72bbf3-eb8e-4459-83e9-c7654ebe6343 | panvol2bu1 | None | available | 1 |
+--------------------------------------+------------+-------------+-----------+------+

1. Exit the openstackclient pod:

$ exit

2.1.2.4. Incremental backups

If a volume has at least one full backup, you can use the Block Storage backup service to create an
incremental backup. For more information, see Creating an incremental backup .

Full backups are easier to manage but they can become resource intensive when the size of the volume
increases over time. With incremental backups, you can capture periodic changes to volumes and
minimize your resource usage.

An incremental backup only stores the changes made to the volume since the last full or incremental

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

12

An incremental backup only stores the changes made to the volume since the last full or incremental
backup.

Incremental backups increase the administrative overhead required for managing your backups. For
instance, you cannot delete a full backup if it already has one or more incremental backups, you can only
delete the latest incremental backup.

Incremental backups have a lower performance than full backups: When you create an incremental
backup, all of the data in the volume must first be read and compared with the data in both the full
backup and each subsequent incremental backup.

2.1.2.5. Creating an incremental backup

You can create an incremental backup to only store the changes made to the volume since the last full
or incremental backup.

Prerequisites:

At least one full backup of the volume. For more information, see Creating a full volume backup .

Only volume owners and project administrators can backup volumes.

Your backup repository must have the necessary space.

The backup quotas specified for your project have not been exceeded.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. List the volumes to obtain the ID or name of the volume you want to back up:

$ openstack volume list

3. Back up the volume and use the --incremental option:

$ openstack volume backup create --incremental [--name <backup_name>] <volume>

Replace <volume> with the ID or name of the volume you want to back up.

Optional: replace <backup_name> with the name of this backup.
This command immediately provides the ID of this backup but the volume is backed up
asynchronously, in the background. For example:

$ openstack volume backup create --name vol3incbu1 --incremental vol_3
+-------+--------------------------------------+
| Field | Value |
+-------+--------------------------------------+
| id | f1681313-b5ed-4520-9b63-5b533f7cdc11 |
| name | vol3incbu1 |
+-------+--------------------------------------+

Verification

CHAPTER 2. PERFORMING OPERATIONS WITH THE BLOCK STORAGE BACKUP SERVICE

13

Verification

List the backups:

$ openstack volume backup list

The volume backup is created when this backup has an available status. For example:

+--------------------------------------+---------+-------------+-----------+------+
| ID | Name | Description | Status | Size |
+--------------------------------------+---------+-------------+-----------+------+
| f1681313-b5ed-4520-9b63-5b533f7cdc11 | vol3incbu1 | None | available | 1 |
| f0e9ba67-67e1-4c2c-96ce-221df75bf2c2 | vol3bu1 | None | available | 1 |
+--------------------------------------+---------+-------------+-----------+------+

1. Exit the openstackclient pod:

$ exit

2.1.2.6. Canceling a backup

You must request a force delete on the backup to cancel it.

IMPORTANT

You cannot cancel backups if you use the Red Hat Ceph Storage back end for your
backup repository.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. List the backups to obtain the ID or name of the backup you want to cancel:

$ openstack volume backup list

3. Cancel the backup:

openstack volume backup delete --force <backup>

Replace <backup> with the ID or name of the volume backup that you want to cancel.
There can be a slight delay for the backup to be successfully canceled.

Verification

The backup is canceled when the backup record is not listed by this command:

$ openstack volume backup show <backup>

1. Exit the openstackclient pod:

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

14

$ exit

2.1.3. Protecting your backups

When you create a backup of a Block Storage volume, the metadata for this backup is stored in the
Block Storage service database, which is used to restore this volume. To ensure that a backup survives a
catastrophic loss of the Block Storage service database, you can manually export and store the
metadata of this backup in a safe location, such as an offsite backup. For more information, see
Exporting backup metadata.

When the Block Storage service database experiences a catastrophic loss, you cannot restore any of
your backups because this database contains the backup metadata used when restoring backups. But if
you manually exported and saved the metadata of a backup, then you can import this metadata into the
new Block Storage database, so that you can use this backup to restore the volume. For more
information see Importing backup metadata.

NOTE

For incremental backups, you must import the metadata of all the preceding backups
before you can use it to restore the volume.

2.1.3.1. Exporting backup metadata

You can export the metadata of a backup and store it in a file so that you can restore the volume backup
even if the Block Storage database suffers a catastrophic loss.

NOTE

For an incremental backup, you must export the metadata of all the preceding backups.

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. List the backups to obtain the ID or name of the backup:

$ openstack volume backup list

3. Export the metadata of the backup and store it in an appropriately named YAML file:

$ openstack volume backup record export -f yaml <backup> > <filename>.yaml

Replace <backup> with the ID or name of the volume backup.

Replace <filename> with the name of the YAML file to save the exported backup_service
and backup_url values for this backup.
For example:

$ openstack volume backup record export -f yaml vol1bu2 > vol1bu2.yaml

4. Copy the file to a safe location, such as an offsite backup.

Verification

CHAPTER 2. PERFORMING OPERATIONS WITH THE BLOCK STORAGE BACKUP SERVICE

15

Verification

Edit the file to see that the values of the backup_service and backup_url, match the values
provided by this command:

$ openstack volume backup record export -f yaml <backup>

For example:

$ openstack volume backup record export -f yaml vol1bu2
backup_service: cinder.backup.drivers.ceph.CephBackupDriver
backup_url: eyJkcml2 … YWxzZX0=

1. Exit the openstackclient pod:

$ exit

2.1.3.2. Importing backup metadata

If you export and save the metadata of a volume backup, then you can import this metadata and use the
backup if there is a loss of the Block Storage service database.

You can also use this procedure to recreate a backup that was deleted.

NOTE

For incremental backups, you must also import the metadata of all the preceding
backups.

Prerequisites

You must provide the backup_service and backup_url metadata values of this backup. For
more information see Exporting backup metadata.

A Block Storage database that does not already contain this backup.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. Locate the file in which you stored the exported backup_service and backup_url metadata
values of this backup.

3. Import the metadata values of this volume backup to the Block Storage database:

$ openstack volume backup record import <backup_service> <backup_url>

Replace <backup_service> with the backup_service metadata value of this volume
backup.

Replace <backup_url> with the backup_url metadata value of this volume backup.
This command provides the name and the ID of this backup. For example:

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

16

$ openstack volume backup record import cinder.backup.drivers.ceph.CephBackupDriver
eyJkcml2 … YWxzZX0=
+-------+--------------------------------------+
| Field | Value |
+-------+--------------------------------------+
| id | 83dadc43-2aa9-4c0b-bc05-a12203a8f4cb |
| name | vol1bu2 |
+-------+--------------------------------------+

4. Exit the openstackclient pod:

$ exit

Next steps

Restoring backups

2.1.4. Restoring backups

After you create a Block Storage volume backup, you can restore this backed up data if needed.

You can use one of the following methods to restore your backups:

Restore the backup to a volume that you specify. For more information, see Restoring a backup
to a specific volume.

NOTE

If you choose Red Hat Ceph Storage as the back end for your backup repository,
then you can only restore backed up volumes to a RBD-based Block Storage
back end.

Restore the backup to a new volume. For more information, see Restoring a backup to a new
volume.

IMPORTANT

When the Block Storage service database experiences a catastrophic loss you cannot
restore any of your backups, unless you have exported and saved their metadata.

Only administrators can cancel restoring a volume backup.

2.1.4.1. Restoring a backup to a specific volume

You can restore a volume backup to an available volume that you have already created.

If you restore a volume from an encrypted volume backup, then the destination volume type must also
be encrypted.

IMPORTANT

CHAPTER 2. PERFORMING OPERATIONS WITH THE BLOCK STORAGE BACKUP SERVICE

17

IMPORTANT

If you choose Red Hat Ceph Storage as the back end for your backup repository, then you
can only restore backed up volumes to a RBD-based Block Storage back end.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. List the backups to obtain the name or ID of the backup you want to restore:

$ openstack volume backup list

For example:

+--------------------------------------+---------+-------------+-----------+------+
| ID | Name | Description | Status | Size |
+--------------------------------------+---------+-------------+-----------+------+
| 83dadc43-2aa9-4c0b-bc05-a12203a8f4cb | vol1bu2 | None | available | 1 |

3. List the volumes:

$ openstack volume list

Ensure that the status of the required volume is available and then obtain the name or ID of
this volume. For example:

+--------------------------------------+----------------+-----------+------+--------------------------------+
| ID | Name | Status | Size | Attached to |
+--------------------------------------+----------------+-----------+------+--------------------------------+
| 654e2be8-bc79-4528-96a7-5f773d31c201 | vol_3 | available | 1 |
|

4. Restore the backup to the volume:

$ openstack volume backup restore <backup> <volume>

Replace <backup> with the name or ID of the Block Storage volume backup.

Replace <volume> with the name or ID of the available Block Storage volume.
For example:

$ openstack volume backup restore vol1bu2 vol_3
+-------------+--------------------------------------+
| Field | Value |
+-------------+--------------------------------------+
backup_id	83dadc43-2aa9-4c0b-bc05-a12203a8f4cb
volume_id	654e2be8-bc79-4528-96a7-5f773d31c201
volume_name	vol_3
+-------------+--------------------------------------+

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

18

5. Verify that the backup_id provided by this command corresponds to the ID of the backup that
was restored and that the volume_name and volume_id values correspond to the name and ID
of the specified volume.

6. Delete the backup if you no longer need it:

$ openstack volume backup delete <backup>

7. Exit the openstackclient pod:

$ exit

2.1.4.2. Restoring a backup to a new volume

You can create a new volume when you restore a backup of a Block Storage volume.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. List the backups to obtain the name or ID of the backup you want to restore:

$ openstack volume backup list

For example:

+--------------------------------------+---------+-------------+-----------+------+
| ID | Name | Description | Status | Size |
+--------------------------------------+---------+-------------+-----------+------+
| 83dadc43-2aa9-4c0b-bc05-a12203a8f4cb | vol1bu2 | None | available | 1 |

3. Restore the backup to a new volume:

$ openstack volume backup restore <backup> [<volume>]

Replace <backup> with the ID of the Block Storage volume backup.

Optional: Replace <volume> with the ID of the Block Storage volume.

4. Verify that the backup_id provided by this command corresponds to the ID of the backup that
was restored.
The volume_id value is the ID of the created volume. But the volume_name can be a
temporary name that is replaced with the name of the backed up volume.

5. List the volumes to verify that the volume with an ID of volume_id has been created and to
obtain this volume name:

$ openstack volume list

For example:

CHAPTER 2. PERFORMING OPERATIONS WITH THE BLOCK STORAGE BACKUP SERVICE

19

+--------------------------------------+----------------+-----------+------+--------------------------------+
| ID | Name | Status | Size | Attached to |
+--------------------------------------+----------------+-----------+------+--------------------------------+
| 296c853c-c749-4eb6-857a-57ec182232a6 | vol_1 | available | 1 |
|

6. Delete the backup if you no longer need it:

$ openstack volume backup delete <backup>

7. Exit the openstackclient pod:

$ exit

2.1.4.3. Canceling restoring a backup

You can cancel restoring a volume backup by changing the status of the backup to error. But you cannot
cancel restoring a backup when Red Hat Ceph Storage is the back end of the backup repository.

WARNING

If you cancel restoring a backup after it starts, the destination volume is useless,
because there is no way of knowing how much data, if any, was actually restored.

Prerequisites

Ensure that the back end of your backup repository is not Red Hat Ceph Storage.

Only administrators can cancel restoring a volume backup.

Procedure

1. Access the remote shell for the OpenStackClient pod from your workstation:

$ oc rsh -n openstack openstackclient

2. List the backups to obtain the name or ID of the backup that you want to stop restoring:

$ openstack volume backup list

3. Change the status of this backup to error to cancel its restore operation:

$ openstack volume backup set --state error <backup>

Replace <backup> with the name or ID of the volume backup that you do not want to
restore.

Canceling a restore is an asynchronous action, because the back end of the backup repository



Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

20

Canceling a restore is an asynchronous action, because the back end of the backup repository
must detect the change in the backup status before it cancels the restore.

Verification

List the volume backups to verify that the restore is canceled:

$ openstack volume backup list

When the status of the backup changes to available, then the restore is canceled.

1. Exit the openstackclient pod:

$ exit

2.2. TROUBLESHOOTING THE BLOCK STORAGE BACKUP SERVICE

You can diagnose many issues by verifying that the Block Storage services are running correctly and
then by examining the log files for error messages.

2.2.1. Troubleshooting backups

The Block Storage backup service performs static checks when receiving a request to back up a Block
Storage (cinder) volume. If these checks fail then you will immediately be notified:

Check for an invalid volume reference (missing).

Check if the volume is in-use or attached to an instance. The in-use case requires you to use
the --force option to perform a backup. For more information, see Creating a backup of an in-
use volume.
When you use the --force volume backup option, you create a crash-consistent, but not an
application-consistent, backup because the volume is not quiesced before performing the
backup. Therefore, the data is intact but the backup does not have an awareness of which
applications were running when the backup was performed.

When these checks succeed: the Block Storage backup service accepts the request to backup this
volume, the CLI backup command returns immediately, and the volume is backed up in the background.

Therefore the CLI backup command returns even if the backup fails. You can use the openstack
volume backup list command to verify that the volume backup is successful, when the Status of the
backup entry is available.

If a backup fails, examine the Block Storage backup service log file for error messages to discover the
cause.

2.2.2. Examining the Block Storage backup service log file

When a backup or restore does not succeed, you can examine the Block Storage backup service log file
for error messages that can help you to determine the reason.

Procedure

Find the Block Storage backup service log file on the Controller node where the backup service
is running.

CHAPTER 2. PERFORMING OPERATIONS WITH THE BLOCK STORAGE BACKUP SERVICE

21

This log file is located in the following path: /var/log/containers/cinder/cinder-backup.log.

2.2.3. Volume backup workflow

The following diagram and explanation describe the steps that occur when the user requests the cinder
API to back up a Block Storage (cinder) volume.

Figure 2.1. Creating a backup of a Block Storage volume

1. The user issues a request to the cinder API, which is a REST API, to back up a Block Storage
volume.

2. The cinder API receives the request from HAProxy and validates the request, the user
credentials, and other information.

3. The cinder API creates the backup record in the SQL database.

4. The cinder API makes an RPC call to the cinder-scheduler.

5. The cinder-scheduler makes an asynchronous RPC call to the cinder-backup service via
AMQP to back up the volume.

6. The cinder API returns the current backup record, with an ID, to the API caller.

7. An RPC create message arrives on one of the backup services.

8. The cinder-backup service performs a synchronous RPC call to get_backup_device.

9. The cinder-volume service ensures that the correct device is returned to the caller. Normally, it
is the same volume, but if the volume is in use, the service returns a temporary cloned volume or
a temporary snapshot, depending on the configuration.

10. The cinder-backup service issues another synchronous RPC to cinder-volume to expose the
source device.

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

22

11. The cinder-volume service exports and maps the source device (volume or snapshot) and
returns the appropriate connection information.

12. The cinder-backup service attaches the source device by using the connection information.

13. The cinder-backup service calls the backup back end driver, with the device already attached,
which begins the data transfer to the backup repository.

14. The source device is detached from the Backup host.

15. The cinder-backup service issues a synchronous RPC to cinder-volume to disconnect the
source device.

16. The cinder-volume service unmaps and removes the export for the device.

17. If a temporary volume or temporary snapshot was created, cinder-backup calls cinder-volume
to remove it.

18. The cinder-volume service removes the temporary volume.

19. When the backup is completed, the backup record is updated in the database.

2.2.4. Volume restore workflow

The following diagram and explanation describe the steps that occur when the user requests the cinder
API to restore a Block Storage service (cinder) backup.

Figure 2.2. Restoring a Block Storage backup

1. The user issues a request to the cinder API, which is a REST API, to restore a Block Storage
backup.

2. The cinder API receives the request from HAProxy and validates the request, the user

CHAPTER 2. PERFORMING OPERATIONS WITH THE BLOCK STORAGE BACKUP SERVICE

23

2. The cinder API receives the request from HAProxy and validates the request, the user
credentials, and other information.

3. If the request does not contain an existing volume as the destination, the cinder API makes an
asynchronous RPC call to create a new volume and polls the status of the volume until it
becomes available.

4. The cinder-scheduler selects a volume service and makes the RPC call to create the volume.

5. The selected cinder-volume service creates the volume.

6. When the cinder API detects that the volume is available, the backup record is updated in the
database.

7. The cinder API makes an asynchronous RPC call to the backup service via AMQP to restore the
backup.

8. The cinder API returns the current volume ID, backup ID, and volume name to the API caller.

9. An RPC create message arrives on one of the backup services.

10. The cinder-backup service performs a synchronous RPC call to cinder-volume to expose the
volume.

11. The cinder-volume service exports and maps the volume returning the appropriate connection
information.

12. The cinder-backup service attaches the volume by using the connection information.

13. The cinder-backup service calls the back end driver with the volume already attached, which
begins the data restoration to the volume.

14. The volume is detached from the backup host.

15. The cinder-backup service issues a synchronous RPC to cinder-volume to disconnect the
volume.

16. The cinder-volume service unmaps and removes the export for the volume.

17. When the volume is restored, the backup record is updated in the database.

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

24

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE
SERVICE (GLANCE)

You can create and manage images in the Red Hat OpenStack Services on OpenShift (RHOSO) Image
service (glance).

NOTE

To execute openstack client commands on the cloud, you must specify the name of the
cloud detailed in your clouds.yaml file. You can specify the name of the cloud by using
one of the following methods:

Use the --os-cloud option with each command:

$ openstack flavor list --os-cloud <cloud_name>

Use this option if you access more than one cloud.

Create an environment variable for the cloud name in your bashrc file:

`export OS_CLOUD=<cloud_name>`

Prerequisites

The administrator has created a project for you, and they have provided you with a clouds.yaml
file for you to access the cloud.

You have installed the python-openstackclient package.

3.1. CREATING OS IMAGES

To create OS images that you can manage in the Image service (glance), you can use Red Hat
Enterprise Linux (RHEL) Kernel-based Virtual Machine (KVM) instance images, or you can manually
create RHOSO-compatible images in the QCOW2 format by using RHEL ISO files or Windows ISO files.

3.1.1. Virtual machine image formats

A virtual machine (VM) image is a file that contains a virtual disk with a bootable OS installed. Red Hat
OpenStack Services on OpenShift (RHOSO) supports VM images in different formats.

The disk format of a VM image is the format of the underlying disk image. The container format
indicates if the VM image is in a file format that also contains metadata about the VM.

When you add an image to the Image service (glance), you can set the disk or container format for your
image to any of the values in the following tables by using the --disk-format and --container-format
command options with the openstack image create, glance image-create-via-import, and openstack
image set commands. If you are not sure of the container format of your VM image, you can set it to
bare.

Table 3.1. Disk image formats

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

25

Format Description

aki Indicates an Amazon kernel image that is stored in the Image service.

ami Indicates an Amazon machine image that is stored in the Image service.

ari Indicates an Amazon ramdisk image that is stored in the Image service.

iso Sector-by-sector copy of the data on a disk, stored in a binary file. Although an
ISO file is not normally considered a VM image format, these files contain
bootable file systems with an installed operating system, and you use them in the
same way as other VM image files.

ploop A disk format supported and used by Virtuozzo to run OS containers.

qcow2 Supported by QEMU emulator. This format includes QCOW2v3 (sometimes
referred to as QCOW3), which requires QEMU 1.1 or higher.

raw Unstructured disk image format.

vdi Supported by VirtualBox VM monitor and QEMU emulator.

vhd Virtual Hard Disk. Used by VM monitors from VMware, VirtualBox, and others.

vhdx Virtual Hard Disk v2. Disk image format with a larger storage capacity than VHD.

vmdk Virtual Machine Disk. Disk image format that allows incremental backups of data
changes from the time of the last backup.

Table 3.2. Container image formats

Format Description

aki Indicates an Amazon kernel image that is stored in the Image service.

ami Indicates an Amazon machine image that is stored in the Image service.

ari Indicates an Amazon ramdisk image that is stored in the Image service.

bare Indicates there is no container or metadata envelope for the image.

docker Indicates a TAR archive of the file system of a Docker container that is stored in
the Image service.

ova Indicates an Open Virtual Appliance (OVA) TAR archive file that is stored in the
Image service. This file is stored in the Open Virtualization Format (OVF)
container file.

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

26

ovf OVF container file format. Open standard for packaging and distributing virtual
appliances or software to be run on virtual machines.

Format Description

3.1.2. Creating RHEL KVM images

Use Red Hat Enterprise Linux (RHEL) Kernel-based Virtual Machine (KVM) instance images to create
images that you can manage in the Red Hat OpenStack Services on OpenShift (RHOSO) Image service
(glance).

3.1.2.1. Using a RHEL KVM instance image

You can use the following Red Hat Enterprise Linux (RHEL) Kernel-based Virtual Machine (KVM)
instance image with Red Hat OpenStack Services on OpenShift (RHOSO):

Red Hat Enterprise Linux 9 KVM Guest Image

QCOW2 images are configured with cloud-init and must have EC2-compatible metadata services for
provisioning Secure Shell (SSH) keys to function correctly.

Ready Windows KVM instance images in QCOW2 format are not available.

NOTE

For KVM instance images:

The root account in the image is deactivated, but sudo access is granted to a
special user named cloud-user.

There is no root password set for this image.

The root password is locked in /etc/shadow by placing !! in the second field.

For a RHOSO instance, generate an SSH keypair from the RHOSO dashboard or command line, and use
that key combination to perform an SSH public authentication to the instance as root user.

When you launch the instance, this public key is injected to it. You can then authenticate by using the
private key that you download when you create the keypair.

3.1.2.2. Creating a RHEL-based root partition image for bare-metal instances

To create a custom root partition image for bare-metal instances, download the base Red Hat
Enterprise Linux KVM instance image, and then upload the image to the Image service (glance).

Procedure

1. Download the base Red Hat Enterprise Linux KVM instance image from the Customer Portal.

2. Define DIB_LOCAL_IMAGE as the downloaded image:

$ export DIB_LOCAL_IMAGE=rhel-<ver>-x86_64-kvm.qcow2

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

27

https://access.redhat.com/downloads/content/479/ver=/rhel---9/9.0/x86_64/product-software
https://access.redhat.com/downloads/content/479

Replace <ver> with the RHEL version number of the image.

3. Set your registration information depending on your method of registration:

Red Hat Customer Portal:

$ export REG_USER='<username>'
$ export REG_PASSWORD='<password>'
$ export REG_AUTO_ATTACH=true
$ export REG_METHOD=portal
$ export https_proxy='<IP_address:port>' (if applicable)
$ export http_proxy='<IP_address:port>' (if applicable)

Red Hat Satellite:

$ export REG_USER='<username>'
$ export REG_PASSWORD='<password>'
$ export REG_SAT_URL='<satellite-url>'
$ export REG_ORG='<satellite-org>'
$ export REG_ENV='<satellite-env>'
$ export REG_METHOD=<method>

Replace values in angle brackets <> with the correct values for your Red Hat Customer
Portal or Red Hat Satellite registration.

4. Optional: If you have any offline repositories, you can define DIB_YUM_REPO_CONF as a local
repository configuration:

$ export DIB_YUM_REPO_CONF=<file-path>

Replace <file-path> with the path to your local repository configuration file.

5. Use the diskimage-builder tool to extract the kernel as rhel-image.vmlinuz and the initial
RAM disk as rhel-image.initrd:

$ export DIB_RELEASE=<ver>
$ disk-image-create rhel baremetal \
 -o rhel-image

6. Upload the images to the Image service:

$ KERNEL_ID=$(openstack image create \
 --file rhel-image.vmlinuz --public \
 --container-format aki --disk-format aki \
 -f value -c id rhel-image.vmlinuz)
$ RAMDISK_ID=$(openstack image create \
 --file rhel-image.initrd --public \
 --container-format ari --disk-format ari \
 -f value -c id rhel-image.initrd)
$ openstack image create \
 --file rhel-image.qcow2 --public \
 --container-format bare \
 --disk-format qcow2 \

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

28

 --property kernel_id=$KERNEL_ID \
 --property ramdisk_id=$RAMDISK_ID \
 rhel-root-partition-bare-metal-image

3.1.2.3. Creating a RHEL-based whole-disk user image for bare-metal instances

To create a whole-disk user image for bare-metal instances, download the base Red Hat Enterprise
Linux KVM instance image, and then upload the image to the Image service (glance).

Procedure

1. Download the base Red Hat Enterprise Linux KVM instance image from the Customer Portal.

2. Define DIB_LOCAL_IMAGE as the downloaded image:

$ export DIB_LOCAL_IMAGE=rhel-<ver>-x86_64-kvm.qcow2

Replace <ver> with the RHEL version number of the image.

3. Set your registration information depending on your method of registration:

Red Hat Customer Portal:

$ export REG_USER='<username>'
$ export REG_PASSWORD='<password>'
$ export REG_AUTO_ATTACH=true
$ export REG_METHOD=portal
$ export https_proxy='<IP_address:port>' (if applicable)
$ export http_proxy='<IP_address:port>' (if applicable)

Red Hat Satellite:

$ export REG_USER='<username>'
$ export REG_PASSWORD='<password>'
$ export REG_SAT_URL='<satellite-url>'
$ export REG_ORG='<satellite-org>'
$ export REG_ENV='<satellite-env>'
$ export REG_METHOD=<method>

Replace values in angle brackets <> with the correct values for your Red Hat Customer
Portal or Red Hat Satellite registration.

4. Optional: If you have any offline repositories, you can define DIB_YUM_REPO_CONF as a local
repository configuration:

$ export DIB_YUM_REPO_CONF=<file-path>

Replace <file-path> with the path to your local repository configuration file.

5. Upload the image to the Image service:

$ openstack image create \
 --file rhel-image.qcow2 --public \
 --container-format bare \

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

29

https://access.redhat.com/downloads/content/479

 --disk-format qcow2 \
 rhel-whole-disk-bare-metal-image

3.1.3. Creating instance images with RHEL or Windows ISO files

You can create custom Red Hat Enterprise Linux (RHEL) or Windows images in QCOW2 format from
ISO files, and upload these images to the Red Hat OpenStack Services on OpenShift (RHOSO) Image
service (glance) for use when creating instances.

3.1.3.1. Prerequisites

A Linux host machine to create an image. This can be any machine on which you can install and
run the Linux packages, except for the undercloud or the overcloud.

The advanced-virt repository is enabled:

$ sudo subscription-manager repos --enable=advanced-virt-for-rhel-<ver>-x86_64-rpms

The virt-manager application is installed to have all packages necessary to create a guest
operating system:

$ sudo dnf module install -y virt

The libguestfs-tools package is installed to have a set of tools to access and modify virtual
machine images:

$ sudo dnf install -y libguestfs-tools-c

A RHEL 9 ISO file or a Windows ISO file. For more information about RHEL ISO files, see RHEL
9.0 Binary DVD. If you do not have a Windows ISO file, see the Microsoft Evaluation Center to
download an evaluation image.

A text editor, if you want to change the kickstart files (RHEL only).

IMPORTANT

If you install the libguestfs-tools package on the undercloud, deactivate iscsid.socket
to avoid port conflicts with the tripleo_iscsid service on the undercloud:

$ sudo systemctl disable --now iscsid.socket

When you have the prerequisites in place, you can proceed to create a RHEL or Windows image:

Create a Red Hat Enterprise Linux 9 image

Create a Windows image

3.1.3.2. Creating a Red Hat Enterprise Linux 9 image

You can create a Red Hat OpenStack Services on OpenShift (RHOSO) image in QCOW2 format by
using a Red Hat Enterprise Linux (RHEL) 9 ISO file.

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

30

https://access.redhat.com/downloads/content/479/ver=/rhel---9/9.0/x86_64/product-software
https://www.microsoft.com/en-us/evalcenter/

Procedure

1. Log on to your host machine as the root user.

2. Start the installation by using virt-install:

[root@host]# virt-install \
 --virt-type kvm \
 --name <rhel9-cloud-image> \
 --ram <2048> \
 --cdrom </var/lib/libvirt/images/rhel-9.0-x86_64-dvd.iso> \
 --disk <rhel9.qcow2>,format=qcow2,size=<10> \
 --network=bridge:virbr0 \
 --graphics vnc,listen=127.0.0.1 \
 --noautoconsole \
 --os-variant=<rhel9.0>

Replace the values in angle brackets <> with the correct values for your RHEL 9 image.
This command launches an instance and starts the installation process.

NOTE

If the instance does not launch automatically, run the virt-viewer command
to view the console:

[root@host]# virt-viewer <rhel9-cloud-image>

3. Configure the instance:

a. At the initial Installer boot menu, select Install Red Hat Enterprise Linux 9.

b. Choose the appropriate Language and Keyboard options.

c. When prompted about which type of devices your installation uses, select Auto-detected
installation media.

d. When prompted about which type of installation destination, select Local Standard Disks.
For other storage options, select Automatically configure partitioning.

e. In the Which type of installation would you like? window, choose the Basic Server install,
which installs an SSH server.

f. For network and host name, select eth0 for network and choose a host name for your
device. The default host name is localhost.localdomain.

g. Enter a password in the Root Password field and enter the same password again in the
Confirm field.

4. When the on-screen message confirms that the installation is complete, reboot the instance
and log in as the root user.

5. Update the /etc/sysconfig/network-scripts/ifcfg-eth0 file so that it contains only the following
values:

TYPE=Ethernet

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

31

DEVICE=eth0
ONBOOT=yes
BOOTPROTO=dhcp
NM_CONTROLLED=no

6. Reboot the machine.

7. Register the machine with the Content Delivery Network.

sudo subscription-manager register
sudo subscription-manager attach \
 --pool=<pool-id>
sudo subscription-manager repos \
 --enable rhel-9-for-x86_64-baseos-rpms \
 --enable rhel-9-for-x86_64-appstream-rpms

Replace pool-id with a valid pool ID. You can see a list of available pool IDs by running the
subscription-manager list --available command.

8. Update the system:

dnf -y update

9. Install the cloud-init packages:

dnf install -y cloud-utils-growpart cloud-init

10. Edit the /etc/cloud/cloud.cfg configuration file and add the following content under
cloud_init_modules:

- resolv-conf

The resolv-conf option automatically configures the resolv.conf file when an instance boots
for the first time. This file contains information related to the instance such as nameservers,
domain, and other options.

11. Add the following line to /etc/sysconfig/network to avoid issues when accessing the EC2
metadata service:

NOZEROCONF=yes

12. To ensure that the console messages appear in the Log tab on the dashboard and the nova
console-log output, add the following boot option to the /etc/default/grub file:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty0 console=ttyS0,115200n8"

13. Run the grub2-mkconfig command:

grub2-mkconfig -o /boot/grub2/grub.cfg

The output is as follows:

Generating grub configuration file ...

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

32

Found linux image: /boot/vmlinuz-3.10.0-229.9.2.el9.x86_64
Found initrd image: /boot/initramfs-3.10.0-229.9.2.el9.x86_64.img
Found linux image: /boot/vmlinuz-3.10.0-121.el9.x86_64
Found initrd image: /boot/initramfs-3.10.0-121.el9.x86_64.img
Found linux image: /boot/vmlinuz-0-rescue-b82a3044fb384a3f9aeacf883474428b
Found initrd image: /boot/initramfs-0-rescue-b82a3044fb384a3f9aeacf883474428b.img
done

14. Deregister the instance so that the resulting image does not contain the subscription details for
this instance:

subscription-manager repos --disable=*
subscription-manager unregister
dnf clean all

15. Power off the instance:

poweroff

16. Reset and clean the image by using the virt-sysprep command so that it can be used to create
instances without issues:

[root@host]# virt-sysprep -d <rhel9-cloud-image>

17. Reduce the image size by converting any free space in the disk image back to free space in the
host:

[root@host]# virt-sparsify \
 --compress <rhel9.qcow2> <rhel9-cloud.qcow2>

This command creates a new <rhel9-cloud.qcow2> file in the location from where the
command is run.

NOTE

You must manually resize the partitions of instances based on the image in
accordance with the disk space in the flavor that is applied to the instance.

The <rhel9-cloud.qcow2> image file is ready to be uploaded to the Image service. For more
information about uploading this image to your RHOSO deployment, see Uploading images to the
Image service.

3.1.3.3. Creating a Windows image

You can create a Red Hat OpenStack Services on OpenShift (RHOSO) image in QCOW2 format by
using a Windows ISO file.

Procedure

1. Log on to your host machine as the root user.

2. Start the installation by using virt-install:

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

33

[root@host]# virt-install \
 --name=<windows-image> \
 --disk size=<size> \
 --cdrom=<file-path-to-windows-iso-file> \
 --os-type=windows \
 --network=bridge:virbr0 \
 --graphics spice \
 --ram=<ram>

Replace the values in angle brackets <> withe the correct values for your Windows image.

NOTE

The --os-type=windows parameter ensures that the clock is configured
correctly for the Windows instance and enables its Hyper-V enlightenment
features. You must also set os_type=windows in the image metadata
before uploading the image to the Image service (glance).

3. The virt-install command saves the instance image as /var/lib/libvirt/images/<windows-
image>.qcow2 by default. If you want to keep the instance image elsewhere, change the
parameter of the --disk option:

--disk path=<file-name>,size=<size>

Replace <file-name> with the name of the file that stores the instance image, and
optionally its path. For example, path=win8.qcow2,size=8 creates an 8 GB file named
win8.qcow2 in the current working directory.

NOTE

If the instance does not launch automatically, run the virt-viewer command
to view the console:

[root@host]# virt-viewer <windows-image>

For more information about how to install Windows, see the Microsoft documentation.

4. To allow the newly-installed Windows system to use the virtualized hardware, you might need to
install VirtIO drivers. For more information, see Installing KVM paravirtualized drivers for
Windows virtual machines in Configuring and managing virtualization .

5. To complete the configuration, download and run Cloudbase-Init on the Windows system. At
the end of the installation of Cloudbase-Init, select the Run Sysprep and Shutdown
checkboxes. The Sysprep tool makes the instance unique by generating an OS ID, which is used
by certain Microsoft services.

IMPORTANT

Red Hat does not provide technical support for Cloudbase-Init. If you encounter
an issue, see Contact Cloudbase Solutions .

When the Windows system shuts down, the <windows-image.qcow2> image file is ready to be

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

34

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_and_managing_virtualization/index#installing-kvm-paravirtualized-drivers-for-rhel-virtual-machines_optimizing-windows-virtual-machines-on-rhel
http://www.cloudbase.it/cloudbase-init/
https://cloudbase.it/about/#contact

When the Windows system shuts down, the <windows-image.qcow2> image file is ready to be
uploaded to the Image service. For more information about uploading this image to your
RHOSO deployment, see Uploading images to the Image service .

3.1.4. Creating an image for UEFI Secure Boot

If your Red Hat OpenStack Services on OpenShift (RHOSO) deployment contains UEFI Secure Boot
Compute nodes, you can create a Secure Boot image that cloud users can use to launch Secure Boot
instances.

Procedure

1. Create a new image for UEFI Secure Boot:

$ openstack image create \
--file <base_image_file> \
--container-format <container_format> \
--disk-format <disk_format> \
uefi_secure_boot_image

Replace <base_image_file> with an image file that supports UEFI and the GUID Partition
Table (GPT) standard, and includes an EFI system partition.

Replace <container_format> with one of the following container formats: none, ami, ari, aki,
bare, ovf, ova, docker

Replace <disk_format> with one of the following disk formats: none, ami, ari, aki, vhd, vhdx,
vmdk, raw, qcow2, vdi, iso, ploop.

2. If the default machine type is not q35, then set the machine type to q35:

$ openstack image set --property hw_machine_type=q35 uefi_secure_boot_image

3. Specify that the instance must be scheduled on a UEFI Secure Boot host:

$ openstack image set \
 --property hw_firmware_type=uefi \
 --property os_secure_boot=required \
 uefi_secure_boot_image

3.1.5. Metadata properties for virtual hardware

The Compute service (nova) has deprecated support for using libosinfo data to set default device
models. Instead, use the following image metadata properties to configure the optimal virtual hardware
for an instance:

os_distro

os_version

hw_cdrom_bus

hw_disk_bus

hw_scsi_model

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

35

hw_vif_model

hw_video_model

hypervisor_type

3.2. UPLOADING, IMPORTING, AND MANAGING IMAGES

Manage images and the properties and formats of images that you upload, import, or store in the
Red Hat OpenStack Services on OpenShift (RHOSO) Image service (glance).

3.2.1. Uploading images to the Image service

You can upload an image to the OpenStack Image service (glance) by using the openstack image
create command with the --property option.

Procedure

Use the openstack image create command with the property option to upload an image.
For example:

$ openstack image create --name <name> \
 --is-public true --disk-format <qcow2> \
 --container-format <bare> \
 --file </path/to/image> \
 --property <os_version>=<11.10>

Replace <name> with a descriptive name for your image.

Replace <disk-format> with one of the following disk formats: none, ami, ari, aki, vhd, vhdx,
vmdk, raw, qcow2, vdi, iso, ploop.

Replace <container-format> with one of the following container formats: none, ami, ari, aki,
bare, ovf, ova, docker.

Replace </path/to/image> with the file path to your image file.

Replace <os_version> and <11.10> with the key-value pair of the property you want to
associate to your image. You can use the --property option multiple times with different
key-value pairs you want to associate to your image.

3.2.2. Image service image import methods

You can import images to the Image service (glance) by using the following methods:

Use the web-download (default) method to import images from a URI.

Use the copy-image method to copy an existing image to other Image service back ends that
are in your deployment. Use this import method only if multiple Image service back ends are
enabled in your deployment.

The web-download method is enabled by default, but the administrator configures other import
methods. You can run the openstack image import info command to list available import options.

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

36

3.2.2.1. Importing an image from a remote URI

You can use the web-download image import method to copy an image from a remote URI to the
OpenStack Image service (glance).

The Image service web-download method uses a two-stage process to perform the import:

1. The web-download method creates an image record.

2. The web-download method retrieves the image from the specified URI.

The URI is subject to optional allowlist and blocklist filtering.

If the Inject Image Metadata plugin is enabled in your Red Hat OpenStack Services on OpenShift
(RHOSO) deployment, the plugin might inject metadata properties to the image. These metadata
properties determine which Compute nodes the image instances are launched on.

Procedure

Create an image and specify the URI of the image to import:

$ glance image-create-via-import \
 --container-format <container_format> \
 --disk-format <disk_format> \
 --name <name> \
 --import-method web-download \
 --uri <uri>

Replace <container_format> with one of the following container formats: none, ami, ari, aki,
bare, ovf, ova, docker

Replace <disk_format> with one of the following disk formats: none, ami, ari, aki, vhd, vhdx,
vmdk, raw, qcow2, vdi, iso, ploop.

Replace <name> with a descriptive name for your image.

Replace <uri> with the URI of your image.

Verification

Check the availability of the image:

$ openstack image show <image-id>

Replace <image-id> with the image ID you provided during image creation.

3.2.2.2. Importing an image from a local volume

The glance-direct image import method creates an image record, which generates an image ID. When
you upload an image to the Image service (glance) from a local volume, the image is stored in a staging
area and becomes active when it passes any configured checks.

NOTE

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

37

NOTE

The glance-direct method requires a shared staging area when used in a highly available
(HA) configuration. If you upload images by using the glance-direct import method, the
upload can fail in a HA environment if a shared staging area is not present. In a HA active-
active environment, API calls are distributed to the Image service controllers. The
download API call can be sent to a different controller than the API call to upload the
image.

The glance-direct image import method uses three different calls to import an image:

openstack image create

openstack image stage

openstack image import

You can use the glance image-create-via-import command to perform all three of the glance-direct
calls in one command.

Procedure

1. Use the glance image-create-via-import command to import a local image:

$ glance image-create-via-import \
 --container-format <container-format> \
 --disk-format <disk-format> \
 --name <name> \
 --file </path/to/image>

Replace <container-format> with one of the following container formats: none, ami, ari, aki,
bare, ovf, ova, docker

Replace <disk-format> with one of the following disk formats: none, ami, ari, aki, vhd, vhdx,
vmdk, raw, qcow2, vdi, iso, ploop.

Replace <name> with a descriptive name for your image.

Replace </path/to/image> with the file path to your image file.
When the image moves from the staging area to the back-end storage location, the image
is listed. However, it might take some time for the image to become active.

Verification

Check the availability of the image:

$ openstack image show <image-id>

Replace <image-id> with the image ID you provided during image creation.

3.2.3. Converting the format of an image

When you import an image to the Image service (glance), you can convert the image to a different
format if your administrator has configured the Image Conversion plugin with a preferred format for
images in your Red Hat OpenStack Services on OpenShift (RHOSO) deployment.

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

38

For example,if you import a QCOW2 image to the Image service and the Image Conversion plugin is
configured to the preferred format of RAW, your QCOW2 image is converted to the RAW format when
you import it.

You can trigger image conversion only when you import an image. It does not run when you upload an
image.

When you import an image to the Image service, the bits of the image are stored in a particular format in
a temporary location. When you activate the Image Conversion plugin, the image is converted to the
target format and moved to a final storage destination. When the task is finished, the Image service
deletes the temporary location. The Image service does not retain the format that you initially uploaded.

NOTE

When you use image conversion with the ISO image format, the image import operation
remains in an importing state. If your deployment supports uploading images in ISO
format, you can use the image-create command to upload ISO images instead of using
image conversion with the image-create-via-import command:

Example:

glance image-create \
--name <iso_image> \
--disk-format iso \
--container-format bare \
--file <my_file.iso>

Replace <iso_image> with the name of your image.

Replace <my_file.iso> with the file name for your image.

Procedure

Convert the format of an image by using the web-download or glance-direct import method:

Convert the format by using the glance image-create-via-import command with web-
download:

$ glance image-create-via-import \
 --disk-format <qcow2> \
 --container-format <bare> \
 --name <name> \
 --visibility public \
 --import-method web-download \
 --uri __<http://server/image.qcow2>__

Replace <disk-format> with one of the following disk formats: none, ami, ari, aki, vhd,
vhdx, vmdk, raw, qcow2, vdi, iso, ploop.

Replace <container-format> with one of the following container formats: none, ami, ari,
aki, bare, ovf, ova, docker

Replace <name> with a descriptive name for your image.

Replace <http://server/image.qcow2> with the URI of your image.

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

39

Convert the format by using the glance-direct image import method:

$ glance image-create-via-import \
 --disk-format <qcow2> \
 --container-format <bare>
 --name <name>
 --visibility public
 --file <local_file.qcow2>

Replace <local_file.qcow2> with your image file.

3.2.3.1. Converting an image to RAW format manually

To launch instances from images that are stored in Red Hat Ceph Storage more efficiently, the image
format must be RAW. If your administrator has enabled the Image Conversion plugin for your Red Hat
OpenStack Services on OpenShift (RHOSO) deployment, your QCOW2 images are automatically
converted to RAW format when you import them to the Image service. Alternatively, you can convert the
image manually.

Procedure

1. When you convert an image to RAW format, the RAW image is larger in size than the original
QCOW2 image file. Run the following command before the conversion to determine the final
RAW image size:

$ qemu-img info <image_id>.qcow2

Replace <image_id> with the ID of your QCOW2 image.

2. Convert the image from QCOW2 to RAW format:

$ qemu-img convert -p -f qcow2 -O raw <image_id>.qcow2 <image_id>.raw

3.2.3.2. Storing an image in RAW format

With the GlanceImageImportPlugins parameter enabled, run the following command to store a
previously created image in RAW format:

$ glance image-create-via-import \
 --disk-format qcow2 \
 --container-format bare \
 --name <name> \
 --visibility public \
 --import-method web-download \
 --uri <http://server/image.qcow2>

Replace <name> with the name of the image; this is the name that will appear in openstack
image list.

Replace <http://server/image.qcow2> with the location and file name of the QCOW2 image.

NOTE

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

40

NOTE

This command example creates the image record and imports it by using the web-
download method.

3.2.4. Updating image properties

You can update the properties of an image you have stored in the Image service (glance) by using the
openstack image set command with the --property option.

Procedure

Use the openstack image set command with the --property option to update an image.
For example:

$ openstack image set <image-id> \
 --property <architecture>=<x86_64>

Replace <image-id> with the ID of the image you want to update.

Replace <architecture> and <x86_64> with the key-value pair of the property you want to
update for your image. You can use the --property option multiple times with different key-
value pairs you want to associate to your image.

3.2.5. Hiding or unhiding images

You can hide public images from normal listings presented to cloud users. For example, you can hide
obsolete CentOS 7 images and show only the latest version to simplify the user experience. By default,
project administrators and project members can delete images. Cloud users can discover and use
hidden images.

To create a hidden image, add the --hidden argument to the openstack image create command.

Procedure

Hide an image:

$ openstack image set <image_id> --hidden 'true'

Unhide an image:

$ openstack image set <image_id> --hidden 'false'

List hidden images:

$ openstack image list --hidden 'true'

3.2.6. Deleting images from the Image service

Use the openstack image delete command to delete one or more images that you do not need to store
in the Image service (glance). By default, project administrators and project members can delete
images.

Procedure

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

41

Procedure

Delete one or more images:

$ openstack image delete <image-id> [<image-id> ...]

Replace <image-id> with the ID of the image you want to delete.

WARNING

The openstack image delete command permanently deletes the
image and all copies of the image, as well as the image instance and
metadata.

3.3. IMPORTING AND COPYING IMAGES TO SINGLE OR MULTIPLE
STORES

When you configure the Image service (glance) to use Red Hat Ceph Storage as a back end, you can
import image data from a local file system or a web server to multiple Ceph Storage clusters.

You can import an image from a web server to multiple stores at once. If the image is not available on a
web server, you can import the image from a local file system to the central store, and then copy it to
other stores.

IMPORTANT

Always store an image copy on the central site, even if there are no instances using the
image at the central location.

3.3.1. Importing image data to a single store

You can use the Image service (glance) to import image data to a single store.

Procedure

1. Import image data to a single store:

$ glance image-create-via-import \
--container-format bare \
--name <image-name> \
--import-method web-download \
--uri <uri> \
--store <store>

Replace <image-name> with the name of the image you want to import.

Replace <uri> with the URI of the image.

Replace <store> with the name of the store to which you want to copy the image data.

NOTE



Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

42

NOTE

If you do not include the options of --stores, --all-stores, or --store in the
command, the Image service creates the image in the central store.

2. Verify that the image data was added to specific stores:

$ openstack image show <image-id> | grep stores

Replace <image-id> with the ID of the original image.
The output displays a comma-delimited list of stores.

3.3.2. Importing image data to multiple stores

Because the default setting of the --allow-failure parameter is true, you do not need to include the
parameter in the command if it is acceptable for some stores to fail to import the image data.

NOTE

This procedure does not require all stores to successfully import the image data.

Procedure

Import image data to multiple, specified stores:

$ glance image-create-via-import \
--container-format bare \
--name <image-name> \
--import-method web-download \
--uri <uri> \
--stores <store-1>,<store-2>,<store-3>

Replace <image-name> with the name of the image you want to import.

Replace <uri> with the URI of the image.

Replace <store-1>, <store-2>, and <store-3> with the names of the stores to which you
want to import the image data.

Alternatively, replace --stores with --all-stores true to upload the image to all the stores.

3.3.3. Importing image data to all stores without failure

This procedure requires all stores to successfully import the image data.

Procedure

Import image data to multiple, specified stores:

$ glance image-create-via-import \
--container-format bare \
--name <image-name> \

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

43

--import-method web-download \
--uri <uri> \
--stores <store-1>,<store-2>,<store-3>

Replace <image-name> with the name of the image you want to import.

Replace <uri> with the URI of the image.

Replace <store-1>, <store-2>, and <store-3> with the names of stores to which you want to
copy the image data.

Alternatively, replace --stores with --all-stores true to upload the image to all the stores.

NOTE

With the --allow-failure parameter set to false, the Image service (glance)
does not ignore stores that fail to import the image data. You can view the
list of failed stores with the image property os_glance_failed_import. For
more information, see Section 3.3.4, “Checking the progress of the image
import operation”.

Verification

Verify that the image data was added to specific stores:

$ openstack image show <image-id> | grep stores

Replace <image-id> with the ID of the original existing image.

The output displays a comma-delimited list of stores.

3.3.4. Checking the progress of the image import operation

The image import workflow sequentially imports image data into stores. The size of the image, the
number of stores, and the network speed between the central site and the edge sites impact how long it
takes for the image import operation to complete.

You can follow the progress of the image import by looking at two image properties, which appear in
notifications sent during the image import operation:

The os_glance_importing_to_stores property lists the stores that have not imported the
image data. At the beginning of the import, all requested stores show up in the list. Each time a
store successfully imports the image data, the Image service removes the store from the list.

The os_glance_failed_import property lists the stores that fail to import the image data. This
list is empty at the beginning of the image import operation.

NOTE

In the following procedure, the environment has three Red Hat Ceph Storage clusters:
the central store and two stores at the edge, dcn0 and dcn1.

Procedure

1. Verify that the image data was added to specific stores:

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

44

$ openstack image show <image-id>

Replace <image-id> with the ID of the original image.
The output displays a comma-delimited list of stores similar to the following example
snippet:

| os_glance_failed_import |
| os_glance_importing_to_stores | central,dcn0,dcn1
| status | importing

2. Monitor the status of the image import operation. When you precede a command with watch,
the command output refreshes every two seconds.

$ watch openstack image show <image-id>

Replace <image-id> with the ID of the original image.
The status of the operation changes as the image import operation progresses:

| os_glance_failed_import |
| os_glance_importing_to_stores | dcn0,dcn1
| status | importing

Output that shows that an image failed to import resembles the following example:

| os_glance_failed_import | dcn0
| os_glance_importing_to_stores | dcn1
| status | importing

After the operation completes, the status changes to active:

| os_glance_failed_import | dcn0
| os_glance_importing_to_stores |
| status | active

3.3.5. Managing image import failures

You can manage failures of the image import operation by using the --allow-failure parameter:

If the value of the --allow-failure parameter to true, the image status becomes active after the
first store successfully imports the data. This is the default setting. You can view a list of stores
that failed to import the image data by using the os_glance_failed_import image property.

If you set the value of the --allow-failure parameter to false, the image status only becomes
active after all specified stores successfully import the data. Failure of any store to import the
image data results in an image status of failed. The image is not imported into any of the
specified stores.

3.3.6. Copying an image to specific stores

Use the following procedure to copy image data to one or more specific stores.

Procedure

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

45

1. Copy image data to one or more specific stores.

Copy image data to a single store:

$ openstack image import <image_id> \
--store <store_id>\
--import-method copy-image

Replace <image_id> with the name of the image you want to copy.

Replace <store_id> with the name of the stores to which you want to copy the image
data.

Copy image data to specific stores:

$ openstack image import <image-id> \
--stores <store-1>,<store-2> \
--import-method copy-image

Replace <store-1> and <store-2> with the names of the stores to which you want to
copy the image data.

2. Confirm that the image data successfully replicated to the specified stores:

$ openstack image list --include-stores

For information about how to check the status of the image import operation, see Section 3.3.4,
“Checking the progress of the image import operation”.

3.3.7. Copying an image to multiple stores

You can use the Image service (glance) to copy image data to multiple Red Hat Ceph Storage stores at
the edge by using the image import workflow.

NOTE

The image must be present at the central site before you copy it to any edge sites. Only
the image owner or project administrator can copy existing images to newly added stores.

You can copy existing image data either by setting --all-stores to true or by specifying specific stores to
receive the image data.

The default setting for the --all-stores option is false. If --all-stores is false, you must specify
which stores receive the image data by using --stores <store-1>,<store-2>. If the image data is
already present in any of the specified stores, the request fails.

If you set all-stores to true, and the image data already exists in some of the stores, then those
stores are excluded from the list.

After you specify which stores receive the image data, the Image service copies data from the central
site to a staging area. Then, the Image service imports the image data by using the image import
workflow.

IMPORTANT

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

46

IMPORTANT

Red Hat recommends that you avoid closely timed image copy requests. Closely timed
copy-image operations for the same image cause race conditions and unexpected
results. Existing image data remains as it is, but copying data to new stores fails.

3.3.8. Copying an image to all stores

Use the following procedure to copy image data to all available stores.

Procedure

1. Copy image data to all available stores:

$ openstack image import <image-id> \
--all-stores true \
--import-method copy-image

Replace <image-id> with the ID of the image you want to copy.

2. Confirm that the image data successfully replicated to all available stores:

$ openstack image list --include-stores

For information about how to check the status of the image import operation, see Section 3.3.4,
“Checking the progress of the image import operation”.

3.3.9. Deleting an image from a specific store

Delete an existing image copy on a specific store by using the Red Hat OpenStack Services on
OpenShift (RHOSO) Image service (glance).

Procedure

Delete an image from a specific store:

$ openstack image delete --store <store-id> <image-id>

Replace <store-id> with the name of the store on which the image copy should be deleted.

Replace <image-id> with the ID of the image you want to delete.

WARNING

The openstack image delete --store <store-id> command permanently deletes
the image across all the sites. All image copies are deleted, as well as the image
instance and metadata.

3.3.10. Listing image locations and location properties



CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

47

Although an image can be present on multiple sites, there is only a single Universal Unique Identifier
(UUID) for a given image. The image metadata contains the locations of each copy. For example, an
image present on two edge sites is exposed as a single UUID with three locations: the central site and
the two edge sites.

Procedure

1. Show the sites on which a copy of the image exists:

$ openstack image show ID | grep "stores"

| stores | default_backend,dcn1,dcn2

In the example, the image is present on the central site, the default_backend, and on the two
edge sites dcn1 and dcn2.

2. Alternatively, you can run the openstack image list command with the --include-stores option
to see the sites where the images exist:

$ openstack image list --include-stores

| ID | Name | Stores

| 2bd882e7-1da0-4078-97fe-f1bb81f61b00 | cirros | default_backend,dcn1,dcn2

3. List the image location properties to show the details of each location:

$ openstack image show ID -c properties

| properties |

(--- cut ---)
locations='[{'url': 'rbd://79b70c32-df46-4741-93c0-8118ae2ae284/images/2bd882e7-1da0-
4078-97fe-f1bb81f61b00/snap', 'metadata': {'store': 'default_backend'}}, {'url': 'rbd://63df2767-
8ddb-4e06-8186-8c155334f487/images/2bd882e7-1da0-4078-97fe-f1bb81f61b00/snap',
'metadata': {'store': 'dcn1'}}, {'url': 'rbd://1b324138-2ef9-4ef9-bd9e-
aa7e6d6ead78/images/2bd882e7-1da0-4078-97fe-f1bb81f61b00/snap', 'metadata': {'store':
'dcn2'}}]',
(--- cut --)

The image properties show the different Ceph RBD URIs for the location of each image.

In the example, the central image location URI is:

rbd://79b70c32-df46-4741-93c0-8118ae2ae284/images/2bd882e7-1da0-4078-97fe-
f1bb81f61b00/snap', 'metadata': {'store': 'default_backend'}}

The URI is composed of the following data:

79b70c32-df46-4741-93c0-8118ae2ae284 corresponds to the central Ceph FSID. Each
Ceph cluster has a unique FSID.

The default value for all sites is images, which corresponds to the Ceph pool on which the
images are stored.

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

48

2bd882e7-1da0-4078-97fe-f1bb81f61b00 corresponds to the image UUID. The UUID is the
same for a given image regardless of its location.

The metadata shows the glance store to which this location maps. In this example, it maps to
the default_backend, which is the central hub site.

3.4. IMAGE SERVICE COMMAND OPTIONS AND PROPERTIES

You can use optional arguments, properties, and property keys with the openstack image create,
glance image-create-via-import, and openstack image set commands.

3.4.1. Image service command options

You can use the following optional arguments with the openstack image create, glance image-create-
via-import, and openstack image set commands.

Table 3.3. Command options

Specific to Option Description

All --architecture
<ARCHITECTURE>

Operating system architecture as specified in
https://docs.openstack.org/glance/latest/user/com
mon-image-properties.html#architecture

All --protected [True_False] If true, image will not be deletable.

All --name <NAME> Descriptive name for the image

All --instance-uuid
<INSTANCE_UUID>

Metadata that can be used to record which instance
this image is associated with. (Informational only,
does not create an instance snapshot.)

All --min-disk <MIN_DISK> Amount of disk space (in GB) required to boot
image.

All --visibility <VISIBILITY> Scope of image accessibility. Valid values: public,
private, community, shared

All --kernel-id <KERNEL_ID> ID of image stored in the Image service (glance) that
should be used as the kernel when booting an AMI-
style image.

All --os-version <OS_VERSION> Operating system version as specified by the
distributor

All --disk-format
<DISK_FORMAT>

Format of the disk. Valid values: none, ami, ari, aki,
vhd, vhdx, vmdk, raw, qcow2, vdi, iso, ploop

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

49

https://docs.openstack.org/glance/latest/user/common-image-properties.html#architecture

All --os-distro <OS_DISTRO> Common name of operating system distribution as
specified in
https://docs.openstack.org/glance/latest/user/com
mon-image-properties.html#os-distro

All --owner <OWNER> Owner of the image

All --ramdisk-id <RAMDISK_ID> ID of image stored in the Image service that should
be used as the ramdisk when booting an AMI-style
image.

All --min-ram <MIN_RAM> Amount of RAM (in MB) required to boot image.

All --container-format
<CONTAINER_FORMAT>

Format of the container. Valid values: none, ami, ari,
aki, bare, ovf, ova, docker

All --property <key=value> Arbitrary property to associate with image. May be
used multiple times.

openstack
image create

--tags <TAGS> [<TAGS> ...] List of strings related to the image

openstack
image create

--id <ID> An identifier for the image

openstack
image set

--remove-property Key name of arbitrary property to remove from the
image.

Specific to Option Description

3.4.2. Image properties and property keys

You can use the following keys with the property option for with the openstack image create, glance
image-create-via-import, and openstack image set commands.

Table 3.4. Property keys

Specific to Key Description Supported values

All architecture The CPU architecture that
must be supported by the
hypervisor. For example,
x86_64, arm, or ppc64.
Run uname -m to get the
architecture of a machine.

aarch - ARM 64-bit

alpha - DEC 64-bit RISC

armv7l - ARM Cortex-A7
MPCore

cris- Ethernet, Token Ring,
AXis-Code Reduced
Instruction Set

i686 - Intel sixth-generation
x86 (P6 micro architecture)

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

50

https://docs.openstack.org/glance/latest/user/common-image-properties.html#os-distro

ia64 - Itanium

lm32 - Lattice Micro32

m68k - Motorola 68000

microblaze - Xilinx 32-bit
FPGA (Big Endian)

microblazeel - Xilinx 32-
bit FPGA (Little Endian)

mips - MIPS 32-bit RISC
(Big Endian)

mipsel - MIPS 32-bit RISC
(Little Endian)

mips64 - MIPS 64-bit RISC
(Big Endian)

mips64el - MIPS 64-bit
RISC (Little Endian)

openrisc - OpenCores
RISC

parisc - HP Precision
Architecture RISC

parisc64 - HP Precision
Architecture 64-bit RISC

ppc - PowerPC 32-bit

ppc64 - PowerPC 64-bit

ppcemb - PowerPC
(Embedded 32-bit)

s390 - IBM Enterprise
Systems Architecture/390

s390x - S/390 64-bit

sh4 - SuperH SH-4 (Little
Endian)

sh4eb - SuperH SH-4 (Big
Endian)

sparc - Scalable Processor
Architecture, 32-bit

sparc64 - Scalable
Processor Architecture, 64-
bit

unicore32 -
Microprocessor Research
and Development Center
RISC Unicore32

x86_64 - 64-bit extension
of IA-32

Specific to Key Description Supported values

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

51

xtensa - Tensilica Xtensa
configurable
microprocessor core

xtensaeb - Tensilica
Xtensa configurable
microprocessor core (Big
Endian)

All hypervisor_ty
pe

The hypervisor type. kvm, vmware

All instance_uuid For snapshot images, this is
the UUID of the server
used to create this image.

Valid server UUID

All kernel_id The ID of an image stored
in the Image Service that
should be used as the
kernel when booting an
AMI-style image.

Valid image ID

All os_distro The common name of the
operating system
distribution in lowercase.

arch - Arch Linux. Do not
use archlinux or
org.archlinux.

centos - Community
Enterprise Operating
System. Do not use
org.centos or CentOS.

debian - Debian. Do not
use Debian or org.debian.

fedora - Fedora. Do not
use Fedora, org.fedora, or
org.fedoraproject.

freebsd - FreeBSD. Do not
use org.freebsd, freeBSD,
or FreeBSD.

gentoo - Gentoo Linux. Do
not use Gentoo or
org.gentoo.

mandrake - Mandrakelinux
(MandrakeSoft) distribution.
Do not use
mandrakelinux or
MandrakeLinux.

mandriva - Mandriva
Linux. Do not use
mandrivalinux.

mes - Mandriva Enterprise
Server. Do not use
mandrivaent or

Specific to Key Description Supported values

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

52

mandrivaES.

msdos - Microsoft Disc
Operating System. Do not
use ms-dos.

netbsd - NetBSD. Do not
use NetBSD or
org.netbsd.

netware - Novell NetWare.
Do not use novell or
NetWare.

openbsd - OpenBSD. Do
not use OpenBSD or
org.openbsd.

opensolaris -
OpenSolaris. Do not use
OpenSolaris or
org.opensolaris.

opensuse - openSUSE. Do
not use suse, SuSE, or
org.opensuse.

rhel - Red Hat Enterprise
Linux. Do not use redhat,
RedHat, or com.redhat.

sled - SUSE Linux
Enterprise Desktop. Do not
use com.suse.

ubuntu - Ubuntu. Do not
use Ubuntu, com.ubuntu,
org.ubuntu, or canonical.

windows - Microsoft
Windows. Do not use
com.microsoft.server.

All os_version The operating system
version as specified by the
distributor.

Version number (for example, "11.10")

All ramdisk_id The ID of image stored in
the Image Service that
should be used as the
ramdisk when booting an
AMI-style image.

Valid image ID

All vm_mode The virtual machine mode.
This represents the
host/guest ABI
(application binary
interface) used for the
virtual machine.

hvm-Fully virtualized. This is the
mode used by QEMU and KVM.

Specific to Key Description Supported values

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

53

libvirt API driver hw_cdrom_bu
s

Specifies the type of disk
controller to attach CD-
ROM devices to.

scsi, virtio, ide, or usb. If you
specify iscsi, you must set the
hw_scsi_model parameter to
virtio-scsi.

libvirt API driver hw_disk_bus Specifies the type of disk
controller to attach disk
devices to.

scsi, virtio, ide, or usb. Note that if
using iscsi, the hw_scsi_model
needs to be set to virtio-scsi.

libvirt API driver hw_firmware_
type

Specifies the type of
firmware to use to boot
the instance.

Set to one of the following valid
values:

bios

uefi

libvirt API driver hw_machine_t
ype

Enables booting an ARM
system using the specified
machine type. If an ARM
image is used and its
machine type is not
explicitly specified, then
Compute uses the virt
machine type as the
default for ARMv7 and
AArch64.

Valid types can be viewed by using
the virsh capabilities command.
The machine types are displayed in
the machine tag.

libvirt API driver hw_numa_no
des

Number of NUMA nodes
to expose to the instance
(does not override flavor
definition).

Integer.

libvirt API driver hw_numa_cpu
s.0

Mapping of vCPUs N-M to
NUMA node 0 (does not
override flavor definition).

Comma-separated list of integers.

libvirt API driver hw_numa_cpu
s.1

Mapping of vCPUs N-M to
NUMA node 1 (does not
override flavor definition).

Comma-separated list of integers.

libvirt API driver hw_numa_me
m.0

Mapping N MB of RAM to
NUMA node 0 (does not
override flavor definition).

Integer

libvirt API driver hw_numa_me
m.1

Mapping N MB of RAM to
NUMA node 1 (does not
override flavor definition).

Integer

Specific to Key Description Supported values

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

54

libvirt API driver hw_pci_numa
_affinity_polic
y

Specifies the NUMA
affinity policy for PCI
passthrough devices and
SR-IOV interfaces.

Set to one of the following valid
values:

required: The Compute
service creates an instance
that requests a PCI device
only when at least one of
the NUMA nodes of the
instance has affinity with the
PCI device. This option
provides the best
performance.

preferred: The Compute
service attempts a best
effort selection of PCI
devices based on NUMA
affinity. If affinity is not
possible, then the Compute
service schedules the
instance on a NUMA node
that has no affinity with the
PCI device.

legacy: (Default) The
Compute service creates
instances that request a PCI
device in one of the
following cases:

The PCI device has
affinity with at least one
of the NUMA nodes.

The PCI devices do not
provide information
about their NUMA
affinities.

libvirt API driver hw_qemu_gue
st_agent

Guest agent support. If set
to yes, and if qemu-ga is
also installed, file systems
can be quiesced (frozen)
and snapshots created
automatically.

yes / no

Specific to Key Description Supported values

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

55

libvirt API driver hw_rng_mode
l

Adds a random number
generator (RNG) device to
instances launched with
this image.

The instance flavor
enables the RNG device by
default. To disable the
RNG device, the
administrator must set
hw_rng:allowed to
False on the flavor.

The default entropy source
is /dev/random. To
specify a hardware RNG
device, set rng_dev_path
to /dev/hwrng in your
Compute environment file.

virtio, or other supported device.

libvirt API driver hw_scsi_mod
el

Enables the use of VirtIO
SCSI (virtio-scsi) to
provide block device
access for compute
instances; by default,
instances use VirtIO Block
(virtio-blk). VirtIO SCSI is a
para-virtualized SCSI
controller device that
provides improved
scalability and
performance, and supports
advanced SCSI hardware.

virtio-scsi

libvirt API driver hw_tpm_mod
el

Set to the model of TPM
device to use. Ignored if
hw:tpm_version is not
configured.

tpm-tis: (Default) TPM
Interface Specification.

tpm-crb: Command-
Response Buffer.
Compatible only with TPM
version 2.0.

libvirt API driver hw_tpm_versi
on

Set to the version of TPM
to use. TPM version 2.0 is
the only supported version.

2.0

Specific to Key Description Supported values

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

56

libvirt API driver hw_video_mo
del

The video device driver for
the display device to use in
virtual machine instances.

Set to one of the following values to
specify the supported driver to use:

virtio - (Default)
Recommended Driver for
the virtual machine display
device, supported by most
architectures. The VirtIO
GPU driver is included in
RHEL-7 and later, and Linux
kernel versions 4.4 and later.
If an instance kernel has the
VirtIO GPU driver, then the
instance can use all the
VirtIO GPU features. If an
instance kernel does not
have the VirtIO GPU driver,
the VirtIO GPU device
gracefully falls back to VGA
compatibility mode, which
provides a working display
for the instance.

qxl - Deprecated Driver for
Spice or noVNC
environments that is no
longer maintained.

cirrus - Legacy driver,
supported only for backward
compatibility. Do not use for
new instances.

vga - Use this driver for IBM
Power environments.

gop - Not supported for
QEMU/KVM environments.

xen - Not supported for
KVM environments.

vmvga - Legacy driver, do
not use.

none - Use this value to
disable emulated graphics or
video in virtual GPU (vGPU)
instances where the driver is
configured separately.

libvirt API driver hw_video_ram Maximum RAM for the
video image. Used only if a
hw_video:ram_max_m
b value has been set in the
flavor’s extra_specs and
that value is higher than
the value set in
hw_video_ram.

Integer in MB (for example, 64)

Specific to Key Description Supported values

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

57

libvirt API driver hw_watchdog
_action

Enables a virtual hardware
watchdog device that
carries out the specified
action if the server hangs.
The watchdog uses the
i6300esb device
(emulating a PCI Intel
6300ESB). If
hw_watchdog_action is
not specified, the
watchdog is disabled.

disabled-The device is not
attached. Allows the user to
disable the watchdog for the
image, even if it has been
enabled using the image’s
flavor. The default value for
this parameter is disabled.

reset-Forcefully reset the
guest.

poweroff-Forcefully power
off the guest.

pause-Pause the guest.

none-Only enable the
watchdog; do nothing if the
server hangs.

libvirt API driver os_command
_line

The kernel command line
to be used by the libvirt
driver, instead of the
default. For Linux
Containers(LXC), the
value is used as arguments
for initialization. This key is
valid only for Amazon
kernel, ramdisk, or machine
images (aki, ari, or ami).

Specific to Key Description Supported values

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

58

libvirt API driver os_secure_bo
ot

Use to create an instance
that is protected with UEFI
Secure Boot.

Set to one of the following valid
values:

required: Enables Secure
Boot for instances launched
with this image. The
instance is only launched if
the Compute service
locates a host that can
support Secure Boot. If no
host is found, the Compute
service returns a "No valid
host" error.

disabled: Disables Secure
Boot for instances launched
with this image. Disabled by
default.

optional: Enables Secure
Boot for instances launched
with this image only when
the Compute service
determines that the host
can support Secure Boot.

libvirt API driver
and VMware API
driver

hw_vif_model Specifies the model of
virtual network interface
device to use.

The valid options depend on the
configured hypervisor.

KVM and QEMU: e1000,
ne2k_pci, pcnet, rtl8139, and
virtio.

VMware: e1000, e1000e,
VirtualE1000,
VirtualE1000e,
VirtualPCNet32,
VirtualSriovEthernetCard,
and VirtualVmxnet.

Xen: e1000, netfront,
ne2k_pci, pcnet, and rtl8139.

VMware API
driver

vmware_adapt
ertype

The virtual SCSI or IDE
controller used by the
hypervisor.

lsiLogic, busLogic, or ide

Specific to Key Description Supported values

CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)

59

VMware API
driver

vmware_ostyp
e

A VMware GuestID which
describes the operating
system installed in the
image. This value is passed
to the hypervisor when
creating a virtual machine.
If not specified, the key
defaults to otherGuest.

For more information, see Images
with VMware vSphere.

VMware API
driver

vmware_imag
e_version

Currently unused. 1

XenAPI driver auto_disk_co
nfig

If true, the root partition on
the disk is automatically
resized before the instance
boots. This value is only
taken into account by the
Compute service when
using a Xen-based
hypervisor with the XenAPI
driver. The Compute
service will only attempt to
resize if there is a single
partition on the image, and
only if the partition is in
ext3 or ext4 format.

true / false

libvirt API driver
and XenAPI
driver

os_type The operating system
installed on the image. The
XenAPI driver contains
logic that takes different
actions depending on the
value of the os_type
parameter of the image.
For example, for
os_type=windows
images, it creates a
FAT32-based swap
partition instead of a Linux
swap partition, and it limits
the injected host name to
less than 16 characters.

linux or windows

Specific to Key Description Supported values

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

60

https://docs.openstack.org/nova/train/admin/configuration/hypervisor-vmware.html#images-with-vmware-vsphere

CHAPTER 4. PERFORMING OPERATIONS WITH THE OBJECT
STORAGE SERVICE (SWIFT)

The Object Storage service (swift) stores its objects, or data, in containers. Containers are similar to
directories in a file system although you cannot nest them. You can store any kind of unstructured data
in containers. For example, objects can include photos, text files, or images. Stored objects are not
compressed.

You can create pseudo-folders in containers to organize data. Pseudo-folders are logical devices for
containing objects and creating a nested structure in containers. For example, you might create an
Images folder in which to store pictures and a Media folder in which to store videos.

You can create one or more containers in each project, and one or more objects or pseudo-folders in
each container.

NOTE

To execute openstack client commands on the cloud, you must specify the name of the
cloud detailed in your clouds.yaml file. You can specify the name of the cloud by using
one of the following methods:

Use the --os-cloud option with each command:

$ openstack flavor list --os-cloud <cloud_name>

Use this option if you access more than one cloud.

Create an environment variable for the cloud name in your bashrc file:

`export OS_CLOUD=<cloud_name>`

Prerequisites

The administrator has created a project for you, and they have provided you with a clouds.yaml
file for you to access the cloud.

You have installed the python-openstackclient package.

4.1. CREATING PRIVATE AND PUBLIC CONTAINERS

You can create private or public containers to store data in the Object Storage service (swift):

Private: Limits access to a member of a project.

Public: Permits access to anyone with the public URL.

New containers use the default storage policy. If your Red Hat OpenStack Services on OpenShift
(RHOSO) deployment has multiple storage policies defined, for example, a default policy and another
policy that enables erasure coding, you can configure a container to use a non-default storage policy.

Procedure

1. Create a private or public container:

CHAPTER 4. PERFORMING OPERATIONS WITH THE OBJECT STORAGE SERVICE (SWIFT)

61

Create a private container to allow members of a project to list the objects in the container,
upload, and download objects. Project members include an Identity service (keystone)
token for the project in their requests:

$ openstack container create <container> \
 --read-acl "<project_id>":*" \
 --write-acl "<project_id>:*"

Replace <container> with the name of your container.

Replace <project_id> with the ID of the project.

Create a public container to allow anyone with the public URL to list objects in the container
and download objects from the container:

$ openstack container create <container> \
 --read-acl ".r:*,.rlistings"

2. Configure the container to use a non-default storage policy:

$ openstack container set -H "X-Storage-Policy:<policy>" <container>

Replace <policy> with the name or alias of the policy you want to use for the container.

4.2. CREATING PSEUDO-FOLDERS IN CONTAINERS

You can create pseudo-folders to organize data in a container in the OpenStack Object Storage service
(swift). You create a pseudo-folder by prefixing the names of the objects with the name of the pseudo-
folder and a forward slash character (/).

For example, if you have a container called container, and you want to organize objects in a pseudo-
folder called folder, you add folder/ at the beginning of the name of the object data file:
folder/object.ext. You can create nested pseudo-folders in the same way, by including the name of the
nested folder and a forward slash at the beginning of the object name, for example,
folder/nested_folder/object.ext.

The URL of the object will end with container/folder/object.ext or
container/folder/nested_folder/object.ext. You can use the GET method with prefix and delimiter
parameters to navigate pseudo-folders.

Procedure

1. Upload an object and create a pseudo-folder in a container:

$ openstack object create <container> <pseudo_folder>/<object_filename>

Replace <container> with the name of your container.

Replace <pseudo_folder> with the name of the pseudo-folder you want to create.

Replace <object_filename> with the name of your object data file.

2. Upload an object and create a nested pseudo-folder:

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

62

$ openstack object create <container> <pseudo_folder>/<nested_folder>/<object_filename>

Replace <nested_folder> with the name of your nested pseudo-folder.

3. View a list of objects, including nested pseudo-folders, in a pseudo-folder:

$ curl -X GET -i -H "X-Auth-Token: $token" \
 $publicurl/v1/<account>/<container>?prefix=<folder>&delimiter=/

Replace <account> with your namespace for containers, for example, your Red Hat
OpenStack Services on OpenShift (RHOSO) project or tenant.

4.3. DELETING CONTAINERS FROM THE OBJECT STORAGE SERVICE

If you want to delete a container from the Object Storage service (swift), ensure that you delete all
objects in the container first. For more information, see Deleting objects from the Object Storage
service.

Procedure

Delete a container:

$ openstack container delete <container>

Replace <container> with the name of the container you want to delete.

4.4. UPLOADING OBJECTS TO CONTAINERS

You can upload object data files to a container or pseudo-folder in the Object Storage service (swift).
Alternatively, you can create an object as a placeholder in a container or pseudo-folder, and upload the
file to the object later.

Procedure

Upload an object to a container:

$ openstack object create <container> <object_filename>

Replace <container> with the name of the container.

Replace <object_filename> with the name of the object data file.

4.5. COPYING OBJECTS BETWEEN CONTAINERS

You can copy an object from a source container or pseudo-folder to a destination container or pseudo-
folder in the Object Storage service (swift).

NOTE

If you do not specify a unique name for the destination object, it keeps the same name as
the source object. If you use a name that already exists in the destination, the new object
overwrites the contents of the previous object.

CHAPTER 4. PERFORMING OPERATIONS WITH THE OBJECT STORAGE SERVICE (SWIFT)

63

Procedure

Copy an object from one container to a destination container:

$ openstack copy --destination </container/object> \
 <container> <object> \
 [<object>] [...]

Replace </container/object> with the container and name of the destination object.

Replace <container> with the name of the container you want to copy the object from.

Replace <object> with the name of the object you want to copy. You can specify multiple
objects to copy.

4.6. DELETING OBJECTS FROM THE OBJECT STORAGE SERVICE

Delete an object from a container in the Object Storage service (swift).

Procedure

Delete an object from a container:

$ openstack object delete [--all] <container> <object> [...]

Replace <container> with the name of the container you are deleting the object from.

Replace <object> with the name of the object you are deleting. You can specify multiple
objects to delete.

Optional: To delete all objects in the container, use the --all command option.

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

64

CHAPTER 5. PERFORMING OPERATIONS WITH THE SHARED
FILE SYSTEMS SERVICE (MANILA)

You can create and manage shares from the available share types in the Shared File Systems service
(manila).

NOTE

To execute openstack client commands on the cloud, you must specify the name of the
cloud detailed in your clouds.yaml file. You can specify the name of the cloud by using
one of the following methods:

Use the --os-cloud option with each command:

$ openstack flavor list --os-cloud <cloud_name>

Use this option if you access more than one cloud.

Create an environment variable for the cloud name in your bashrc file:

`export OS_CLOUD=<cloud_name>`

Prerequisites

The administrator has created a project for you, and they have provided you with a clouds.yaml
file for you to access the cloud.

You have installed the python-openstackclient package.

5.1. LISTING SHARE TYPES

You must specify a share type when you create a share, and you can only create shares that match the
available share types. The configured share types define the type of service that the Shared File
Systems service scheduler uses to make scheduling decisions and that drivers use to control share
creation.

Procedure

List the available share types:

$ openstack share type list

The command output lists the name and ID of the available share types.

5.2. CREATING NFS, CEPHFS, OR CIFS SHARES

You can create CephFS-NFS, native CephFS, or CIFS shares to read and write data.

When you create a share, you must specify the share protocol and the size of the share in gigabytes. You
can also include the share-type, share-network and name command options:

CHAPTER 5. PERFORMING OPERATIONS WITH THE SHARED FILE SYSTEMS SERVICE (MANILA)

65

$ openstack share create [--share-type <share_type>] \
 [--share-network <share_network>] \
 [--name <share_name>] <share_protocol> <GB>

In the command example, replace the following values:

Value Description Required or optional

<share_type> Applies settings
associated with the
specified share type

Optional. If you do not specify a share type, the
default share type is used.

<share_network> The name of the share
network Required if the share type has

driver_handles_share_servers set to
true.

Unsupported if the share type has
driver_handles_share_servers set to
false.

Unsupported for CephFS-NFS and native
CephFS. These protocols do not support
share types that have
driver_handles_share_servers set to
true.

<share_name> The name of the share Optional. Shares are not required to have a name,
and the name does not need to be unique.

<share_protocol> The share protocol you
want to use For CephFS-NFS, replace

<share_protocol> with nfs.

For native CephFS, replace
<share_protocol> with cephfs.

For other storage back ends that support
NFS or CIFS protocols, for example, NetApp
or Dell EMC storage back ends, replace
<share_protocol> with nfs or cifs.

<GB> The size of the share in
gigabytes

Required.

5.2.1. Creating NFS or CIFS shares with DHSS=true

When the share type extra specification, driver_handles_share_servers is set to true, you can add
your own security services to a share network to create and export NFS or CIFS shares. The native
CephFS protocol does not support share networks.

To add a security service, you must create a share network first. If you are creating CIFS shares, you must
also create a security service resource to represent your Active Directory server. You then associate the
security service to the share network.

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

66

If you are creating NFS shares, you do not require a security service unless you want to use Kerberos or
LDAP authorization on your shares.

Procedure

1. Create a share network:

$ openstack share network create --name <network_name> \
 --neutron-net-id <25d1e65c-d961-4f22-9476-1190f55f118f> \
 --neutron-subnet-id <8ba20dce-0ca5-4efd-bf1c-608d6bceffe1>

Replace <network_name> with the share network name that you want to use for your NFS
or CIFS shares.

Replace the neutron-net-id and neutron-subnet-id with the correct values for your share
network.

2. Create a security service resource to represent your Active Directory server:

$ openstack share security service create <active_directory> \
 --dns-ip <192.02.12.10> \
 --domain <domain_name.com> \
 --user <administrator> \
 --password <password> \
 --name <AD_service>

Replace the values in angle brackets <> with the correct details for your security service
resource.

3. Associate the security service resource to the share network:

$ openstack share network set --new-security-service \
 <AD_service> <network_name>

4. Create an NFS or CIFS share:

10 GB NFS example:

$ openstack share create --name <nfs_share> --share-type <netapp> \
 --share-network <nfs_network> nfs 10

20 GB CIFS example:

$ openstack share create --name <cifs_share> --share-type dhss_true \
 --share-network <cifs_network> cifs 20

Replace the values in angle brackets <> with the correct details for your NFS or CIFS
share.

5.2.2. Creating NFS, CephFS, or CIFS shares with DHSS=false

When the share type extra specification, driver_handles_share_servers, is set to`false`, you cannot
use custom security services because security services have been configured directly on the storage
system. Because CIFS shares require an Active Directory server along with the storage system to

CHAPTER 5. PERFORMING OPERATIONS WITH THE SHARED FILE SYSTEMS SERVICE (MANILA)

67

manage access control, your administrator must pre-create an Active Directory server and associate it
with the storage system to use CIFS shares.

When DHSS=false, you can create shares without using the share-network command option because
the shared storage network is pre-configured.

Procedure

Create an NFS, native CephFS, or CIFS share when DHSS=false. These examples specify a
name, but they do not specify the share-type or share-network. They use the default share
type and the configured shared storage network:

Create a 10 GB NFS share named share-01.

$ openstack share create --name share-01 nfs 10

Create a 15 GB native CephFS share named share-02:

$ openstack share create --name share-02 cephfs 15

Create a 20 GB CIFS share named share-03:

$ openstack share create --name share-03 cifs 20

5.3. LISTING SHARES AND EXPORTING INFORMATION

To verify that you have successfully created NFS, CephFS, or CIFS shares in the Shared File Systems
service (manila), you can list the shares and view their export locations and parameters.

Procedure

1. List the shares:

$ openstack share list

2. View the export locations of the share:

$ openstack share export location list <share>

Replace <share> with either the share name or the share ID.

3. View the parameters for the share:

$ openstack share export location show <share_id>

Replace <share_id> with the share ID.

NOTE

You use the export location to mount the share, as described in
Section 5.8.2, “Mounting NFS, native CephFS, or CIFS shares” .

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

68

5.4. CREATING A SNAPSHOT OF DATA ON A SHARED FILE SYSTEM

A snapshot is a read-only, point-in-time copy of data on a share. You can use a snapshot to recover data
lost through accidental data deletion or file system corruption. Snapshots are more space efficient than
backups, and they do not impact the performance of the Shared File Systems service (manila).

Prerequisites

The snapshot_support parameter must equal true on the parent share. You can run the
following command to verify:

$ openstack share show | grep snapshot_support

Procedure

1. Create a snapshot of a share:

$ openstack share snapshot create [--name <snapshot_name>] <share>

Replace <share> with the name or ID of the share for which you want to create a snapshot.

Optional: Replace <snapshot_name> with the name of the snapshot.

2. Confirm that you created the snapshot:

$ openstack share snapshot list --share <share>

Replace <share> with the ID of the share from which you created the snapshot.

5.4.1. Creating a share from a snapshot

You can create a share from a snapshot. If the parent share that the snapshot was created from has a
share type of driver_handles_share_servers set to true, the new share is created on the same share
network as the parent, and you cannot change this share network for the new share.

Prerequisites

The create_share_from_snapshot_support share attribute is set to true.

The status attribute of the snapshot is set to available.

Procedure

1. Retrieve the ID of the share snapshot that contains the data that you require for your new share:

$ openstack share snapshot list

2. A share created from a snapshot can be larger, but not smaller, than the snapshot. Retrieve the
size of the snapshot:

$ openstack share snapshot show <snapshot_id>

Replace <snapshot_id> with the ID of the snapshot you want to use to create a share.

CHAPTER 5. PERFORMING OPERATIONS WITH THE SHARED FILE SYSTEMS SERVICE (MANILA)

69

3. Create a share from a snapshot:

$ openstack share create <share_protocol> <size> \
 --snapshot-id <snapshot_id> \
 --name <name>

Replace <share_protocol> with the protocol, such as NFS.

Replace <size> with the size of the share to be created, in GiB.

Replace <name> with the name of the new share.

4. List the shares to confirm that the share was created successfully:

$ openstack share list

5. View the properties of the new share:

$ openstack share show <name>

Verification

After you create a snapshot, confirm that the snapshot is available.

List the snapshots to confirm that they are available:

$ openstack share snapshot list

5.4.2. Deleting a snapshot

When you create snapshots of a share, you cannot delete the share until you delete all of the snapshots
created from that share.

Procedure

1. Identify the snapshot you want to delete and retrieve its ID:

$ openstack share snapshot list

2. Delete the snapshot:

$ share snapshot delete <snapshot>

Replace <snapshot> with the name or ID of the snapshot you want to delete.

NOTE

Repeat this step for each snapshot you want to delete.

3. After you delete the snapshot, run the following command to confirm that you deleted the
snapshot:

$ share snapshot list

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

70

5.5. CONNECTING TO A SHARED NETWORK TO ACCESS SHARES

When the driver_handles_share_servers parameter (DHSS) equals false, shares are exported to the
shared provider network that your administrator has made available. You must connect your client, such
as a Compute instance, to the shared provider network to access your shares.

In this example procedure, the shared provider network is called StorageNFS. StorageNFS is configured
when the Shared File Systems service (manila) is deployed with a CephFS-NFS back end. Follow similar
steps to connect to the available network in your Red Hat OpenStack Services on OpenShift (RHOSO)
deployment.

NOTE

The steps in the example procedure use IPv4 addressing, but the steps are identical for
IPv6.

Procedure

1. Create a security group for the StorageNFS port that allows packets to egress the port but does
not allow ingress packets from unestablished connections:

$ openstack security group create no-ingress -f yaml
created_at: '2018-09-19T08:19:58Z'
description: no-ingress
id: 66f67c24-cd8b-45e2-b60f-9eaedc79e3c5
name: no-ingress
project_id: 1e021e8b322a40968484e1af538b8b63
revision_number: 2
rules: 'created_at=''2018-09-19T08:19:58Z'', direction=''egress'', ethertype=''IPv4'',
 id=''6c7f643f-3715-4df5-9fef-0850fb6eaaf2'', updated_at=''2018-09-19T08:19:58Z''
 created_at=''2018-09-19T08:19:58Z'', direction=''egress'', ethertype=''IPv6'',
 id=''a8ca1ac2-fbe5-40e9-ab67-3e55b7a8632a'', updated_at=''2018-09-19T08:19:58Z''

2. Create a port on the StorageNFS network with security enforced by the no-ingress security
group.

$ openstack port create nfs-port0 \
 --network StorageNFS \
 --security-group no-ingress -f yaml

admin_state_up: UP
allowed_address_pairs: ''
binding_host_id: null
binding_profile: null
binding_vif_details: null
binding_vif_type: null
binding_vnic_type: normal
created_at: '2018-09-19T08:03:02Z'
data_plane_status: null
description: ''
device_id: ''
device_owner: ''
dns_assignment: null
dns_name: null
extra_dhcp_opts: ''

CHAPTER 5. PERFORMING OPERATIONS WITH THE SHARED FILE SYSTEMS SERVICE (MANILA)

71

fixed_ips: ip_address='198.51.100.160', subnet_id='7bc188ae-aab3-425b-a894-
863e4b664192'
id: 7a91cbbc-8821-4d20-a24c-99c07178e5f7
ip_address: null
mac_address: fa:16:3e:be:41:6f
name: nfs-port0
network_id: cb2cbc5f-ea92-4c2d-beb8-d9b10e10efae
option_name: null
option_value: null
port_security_enabled: true
project_id: 1e021e8b322a40968484e1af538b8b63
qos_policy_id: null
revision_number: 6
security_group_ids: 66f67c24-cd8b-45e2-b60f-9eaedc79e3c5
status: DOWN
subnet_id: null
tags: ''
trunk_details: null
updated_at: '2018-09-19T08:03:03Z'

NOTE

In this example, the StorageNFS subnet on the StorageNFS network assigned IP
address 198.51.100.160 to nfs-port0.

3. Add nfs-port0 to a Compute instance.

$ openstack server add port instance0 nfs-port0
$ openstack server list -f yaml
- Flavor: m1.micro
 ID: 0b878c11-e791-434b-ab63-274ecfc957e8
 Image: manila-test
 Name: demo-instance0
 Networks: demo-network=198.51.100.4, 10.0.0.53; StorageNFS=198.51.100.160
 Status: ACTIVE

In addition to its private and floating addresses, the Compute instance is assigned a port with
the IP address 198.51.100.160 on the StorageNFS network. You can use this IP address to mount
NFS shares when access is granted to that address for the shares.

NOTE

You might need to adjust the networking configuration on the Compute instance,
and then restart the services for the Compute instance to activate an interface
with this address.

5.6. CONFIGURING AN IPV6 INTERFACE BETWEEN THE NETWORK
AND AN INSTANCE

When the shared network to which shares are exported uses IPv6 addressing, you might experience an
issue with DHCPv6 on the secondary interface. If this issue occurs, configure an IPv6 interface manually
on the instance.

Prerequisites

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

72

Prerequisites

Connection to a shared network to access shares

Procedure

1. Log in to the instance.

2. Configure the IPv6 interface address:

$ sudo ip address add fd00:fd00:fd00:7000::c/64 dev eth1

3. Activate the interface:

$ sudo ip link set dev eth1 up

4. Ping the IPv6 address in the export location of the share to test interface connectivity:

$ ping -6 fd00:fd00:fd00:7000::21

5. Alternatively, verify that you can reach the NFS server through Telnet:

$ sudo dnf install -y telnet
$ telnet fd00:fd00:fd00:7000::21 2049

5.7. GRANTING SHARE ACCESS FOR END-USER CLIENTS

Before you mount a share on a client, such as a Compute instance, you grant end-user clients access to
the share so that users can read data from and write data to the share.

The type of access depends on the protocol of the share:

For CIFS shares, use the CIFS user or group name.

For NFS shares, use the IP address of the Compute instance where you plan to mount the
share.

For native CephFS shares, use Ceph client usernames for cephx authentication.

You can grant access to the share by using a command similar to the following command:

$ openstack share access create <share> <access_type> \
 --access-level <access_level> <client_identifier>

Replace <share> with the share name or ID of the share you created.

Replace <access_type> with the type of access you want to grant to the share, for example,
user for CIFS, ip for NFS, or cephfx for native CephFS.

Optional: Replace <access_level> with ro for read-only access. The default value is rw for
read-write access.

Replace client_identifier with the IP address of the instance for NFS, user or group name for
CIFS, or Ceph client username for native CephFS. For CIFS and native CephFS, you can use the
same client_identifier across multiple clients.

CHAPTER 5. PERFORMING OPERATIONS WITH THE SHARED FILE SYSTEMS SERVICE (MANILA)

73

5.7.1. Granting access to an NFS share

You can provide access to NFS shares by using the IP address of the client Compute instance where you
plan to mount the share.

NOTE

You can use the following procedure with IPv4 or IPv6 addresses.

Procedure

Retrieve the IP address of the client Compute instance where you plan to mount the share.
Make sure that you select the IP address that corresponds to the network that can reach the
shares. In this example, it is the IP address of the StorageNFS network:

$ openstack server list -f yaml
- Flavor: m1.micro
 ID: 0b878c11-e791-434b-ab63-274ecfc957e8
 Image: manila-test
 Name: demo-instance0
 Networks: demo-network=198.51.100.4, 10.0.0.53;
 StorageNFS=198.51.100.160
 Status: ACTIVE

$ openstack share access create <share> ip 198.51.100.160

Replace <share> with the name or ID of the share you are granting access to.

NOTE

Access to the share has its own ID, id.

+-----------------+---------------------------------------+
| Property | Value |
+-----------------+---------------------------------------+
| access_key | None
| share_id | db3bedd8-bc82-4100-a65d-53ec51b5cba3
| created_at | 2018-09-17T21:57:42.000000
| updated_at | None
| access_type | ip
| access_to | 198.51.100.160
| access_level | rw
| state | queued_to_apply
| id | 875c6251-c17e-4c45-8516-fe0928004fff
+-----------------+---------------------------------------+

Verification

Verify that the access configuration was successful:

$ openstack share access list <share>

+--------------+-------------+--------------+--------------+--------+ ...

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

74

| id | access_type | access_to | access_level | state | ...
+--------------+-------------+--------------+--------------+--------+
| 875c6251-... | ip | 198.51.100.160 | rw | active | ...
+--------------+------------+--------------+--------------+---------+ ...

5.7.2. Granting access to a native CephFS share

You can provide access to native CephFS shares by using Ceph client usernames for cephx
authentication. The Shared File Systems service (manila) prevents the use of pre-existing Ceph users
so you must create unique Ceph client usernames.

To mount a share, you need a Ceph client username and an access key. You can retrieve access keys by
using the Shared File Systems service API. By default, access keys are visible to all users in a project
namespace. You can provide the same user with access to different shares in the project namespace.
Users can then access the shares by using the CephFS kernel client on the client machine.

IMPORTANT

Use the native CephFS driver with trusted clients only.

Procedure

1. Grant users access to a native CephFS share:

$ openstack share access create <share> cephx <user>

Replace <share> with either the share name or share ID.

Replace <user> with the Ceph client username.

2. Collect the access key for the user:

$ openstack share access list <share>

5.7.3. Granting access to a CIFS share

You can grant access to CIFS shares by using the usernames in the Active Directory service. The Shared
File Systems service (manila) does not create new users on the Active Directory server. It only validates
usernames through the security service, and access rules with invalid usernames result in an error
status.

If the value of the driver_handles_share_servers (DHSS) parameter is set to true, then you can
configure the Active Directory service by adding a security service. If the DHSS parameter is set to false,
then your administrator has already configured the Active Directory service and associated it with the
storage network.

To mount a share, you must specify the user’s Active Directory username and password. You cannot
obtain this password through the Shared File Systems service.

Procedure

Grant users access to a CIFS share:

$ openstack share access create <share> user <user>

CHAPTER 5. PERFORMING OPERATIONS WITH THE SHARED FILE SYSTEMS SERVICE (MANILA)

75

Replace <share> with either the share name or the share ID.

Replace <user> with the username of the Active Directory user.

5.7.4. Revoking access to a share

The owner of a share can revoke access to the share. Complete the following steps to revoke access
that was previously granted to a share.

Procedure

1. View the access list for the share to retrieve the access ID:

$ openstack share access list <share_01>

Replace <share_01> with either the share name or share ID.

2. Revoke access to the share:

$ openstack share access delete <share_01> <875c6251-c17e-4c45-8516-fe0928004fff>

Replace <875c6251-c17e-4c45-8516-fe0928004fff> with the access ID of the share.

3. View the access list for the share again to verify the share has been deleted:

$ openstack share access list <share_01>

NOTE

If you have a client with read-write access to the share, you must revoke their access to
the share, and then add a read-only rule if you want the client to have read-only access.

5.8. MOUNTING SHARES ON COMPUTE INSTANCES

When you grant share access to clients, then the clients can mount and use the shares. Any type of
client can access shares as long as there is network connectivity to the client.

The steps used to mount an NFS share on a virtual Compute instance are similar to the steps to mount
an NFS share on a bare-metal Compute instance. For more information about how to mount shares on
OpenShift containers, see Product Documentation for Red Hat OpenShift Container Platform .

NOTE

Client packages for the different protocols must be installed on the Compute instance
that mounts the shares. For example, for the Shared File Systems service with CephFS
through NFS, the NFS client packages must support NFS 4.1.

5.8.1. Listing share export locations

Retrieve the export locations of shares so that you can mount a share.

Procedure

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

76

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.16/

Retrieve the export locations of a share:

$ openstack share export location list <share_01>

Replace <share_01> with either the share name or share ID.
When multiple export locations exist, choose one for which the value of the preferred
metadata field equals True. If no preferred locations exist, you can use any export location.

5.8.2. Mounting NFS, native CephFS, or CIFS shares

When you create NFS, native CephFS, or CIFS shares and grant share access to end-user clients, you
can then mount the shares on the client to enable access to data, as long as there is network
connectivity.

Prerequisites

To mount NFS shares, the nfs-utils package must be installed on the client machine.

To mount native CephFS shares, the ceph-common package must be installed on the client
machine. Users access native CephFS shares by using the CephFS kernel client on the client
machine.

To mount CIFS shares, the cifs-utils package must be installed on the client machine.

Procedure

1. Log in to the instance:

$ openstack server ssh demo-instance0 --login user

2. Mount an NFS share. Refer to the following example for sample syntax:

$ mount -t nfs \
 -v <198.51.100.13:/volumes/_nogroup/e840b4ae-6a04-49ee-9d6e-67d4999fbc01> \
 /mnt

Replace <198.51.100.13:/volumes/_nogroup/e840b4ae-6a04-49ee-9d6e-67d4999fbc01>
with the export location of the share.

Retrieve the export location as described in Section 5.8.1, “Listing share export locations” .

3. Mount a native CephFS share. Refer to the following example for sample syntax:

$ mount -t ceph \
 <192.0.2.125:6789,192.0.2.126:6789,192.0.2.127:6789:/volumes/_nogroup/4c55ad20-9c55-
4a5e-9233-8ac64566b98c> \
 -o name=<user>,secret='<AQA8+ANW/<4ZWNRAAOtWJMFPEihBA1unFImJczA==>'

Replace
<192.0.2.125:6789,192.0.2.126:6789,192.0.2.127:6789:/volumes/_nogroup/4c55ad20-
9c55-4a5e-9233-8ac64566b98c> with the export location of the share.

Retrieve the export location as described in Section 5.8.1, “Listing share export locations” .

CHAPTER 5. PERFORMING OPERATIONS WITH THE SHARED FILE SYSTEMS SERVICE (MANILA)

77

Replace <user> with the cephx user who has access to the share.

Replace the secret value with the access key that you collected in Section 5.7.2, “Granting
access to a native CephFS share”.

4. Mount a CIFS share. Refer to the following example for sample syntax:

$ mount -t cifs \
 -o user=<user>,pass=<password> \
 <\\192.0.2.128/share_11265e8a_200c_4e0a_a40f_b7a1117001ed>

Replace <user> with the Active Directory user who has access to the share.

Replace <password> with the user’s Active Directory password.

Replace <\\192.0.2.128/share_11265e8a_200c_4e0a_a40f_b7a1117001ed> with the
export location of the share.

Retrieve the export location as described in Section 5.8.1, “Listing share export locations” .

Verification

Verify that the mount command succeeded:

$ df -k

5.9. DELETING SHARES

The Shared File Systems service (manila) provides no protection to prevent you from deleting your data.
The service does not check whether clients are connected or workloads are running. When you delete a
share, you cannot retrieve it.

WARNING

Back up your data before you delete a share.

Prerequisites

If you created snapshots from a share, you must delete all of the snapshots and replicas before
you can delete the share. For more information, see Deleting a snapshot .

Procedure

Delete a share:

$ openstack share delete <share>

Replace <share> with either the share name or the share ID.



Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

78

5.10. LISTING RESOURCE LIMITS OF THE SHARED FILE SYSTEMS
SERVICE

You can list the current resource limits for the Shared File Systems service (manila) in a project to plan
workloads and prepare for any operations based on resource consumption.

Procedure

List the resource limits and current resource consumption for the project:

$ openstack share limits show --absolute

5.11. TROUBLESHOOTING OPERATION FAILURES

In the event of an error when you create or mount shares, you can run queries from the command line
for more information about the error.

5.11.1. Viewing error messages for shares

You can use the command line to retrieve user support messages if a share shows an error status.

Procedure

1. When you create a share, run the following command to view the status of the share:

$ openstack share list

2. If the status of your share shows an error, run the share message list command. You can use
the --resource-id option to filter to the specific share you want to find out about:

$ openstack share message list [--resource-id]

3. Check the User Message column in the share message list command output for a summary of
the error.

4. To view more details about the error, run the message show command, followed by the
message ID from the message list command output:

$ openstack share message show <id>

Replace <id> with the message ID from the message list command output.

5.11.2. Debugging share mounting failures

You can use these verification steps to identify the root cause of an error when you mount shares.

Procedure

1. Verify the access control list of the share to ensure that the rule that corresponds to your client
is correct and has been successfully applied:

$ openstack share access list <share_01>

CHAPTER 5. PERFORMING OPERATIONS WITH THE SHARED FILE SYSTEMS SERVICE (MANILA)

79

Replace <share_01> with either the share name or share ID.
In a successful rule, the state attribute equals active.

2. If the share type parameter is configured to driver_handles_share_servers=false, copy the
hostname or IP address from the export location and ping it to confirm connectivity to the NAS
server:
Example:

$ ping -c 1 198.51.100.13
PING 198.51.100.13 (198.51.100.13) 56(84) bytes of data.
64 bytes from 198.51.100.13: icmp_seq=1 ttl=64 time=0.048 ms--- 198.51.100.13 ping
statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 7.851/7.851/7.851/0.000 ms

3. If you are using the NFS protocol, you can verify that the NFS server is ready to respond to NFS
RPC calls on the correct port:

$ rpcinfo -T tcp -a 198.51.100.13.8.1 100003 4
program 100003 version 4 ready and waiting

NOTE

The IP address is written in universal address format (uaddr), which adds two
extra octets (8.1) to represent the NFS service port, 2049.

If these verification steps fail, there might be a network connectivity issue or an issue with the back-end
storage for the Shared File Systems service (manila). Collect the log files and contact Red Hat Support.

Red Hat OpenStack Services on OpenShift 18.0 Performing storage operations

80

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. PERFORMING STORAGE OPERATIONS IN RED HAT OPENSTACK SERVICES ON OPENSHIFT
	1.1. BLOCK STORAGE (CINDER)
	1.2. IMAGES (GLANCE)
	1.3. OBJECT STORAGE (SWIFT)
	1.4. SHARED FILE SYSTEMS (MANILA)
	1.5. CUSTOMIZING AND MANAGING RED HAT CEPH STORAGE

	CHAPTER 2. PERFORMING OPERATIONS WITH THE BLOCK STORAGE BACKUP SERVICE
	2.1. USING THE BLOCK STORAGE BACKUP SERVICE
	2.1.1. Authenticating volume owners for access to volume backups
	2.1.2. Creating backups
	2.1.2.1. Creating a full volume backup
	2.1.2.2. Creating a full backup of a snapshot
	2.1.2.3. Creating a backup of an in-use volume
	2.1.2.4. Incremental backups
	2.1.2.5. Creating an incremental backup
	2.1.2.6. Canceling a backup

	2.1.3. Protecting your backups
	2.1.3.1. Exporting backup metadata
	2.1.3.2. Importing backup metadata

	2.1.4. Restoring backups
	2.1.4.1. Restoring a backup to a specific volume
	2.1.4.2. Restoring a backup to a new volume
	2.1.4.3. Canceling restoring a backup

	2.2. TROUBLESHOOTING THE BLOCK STORAGE BACKUP SERVICE
	2.2.1. Troubleshooting backups
	2.2.2. Examining the Block Storage backup service log file
	2.2.3. Volume backup workflow
	2.2.4. Volume restore workflow

	CHAPTER 3. PERFORMING OPERATIONS WITH THE IMAGE SERVICE (GLANCE)
	3.1. CREATING OS IMAGES
	3.1.1. Virtual machine image formats
	3.1.2. Creating RHEL KVM images
	3.1.2.1. Using a RHEL KVM instance image
	3.1.2.2. Creating a RHEL-based root partition image for bare-metal instances
	3.1.2.3. Creating a RHEL-based whole-disk user image for bare-metal instances

	3.1.3. Creating instance images with RHEL or Windows ISO files
	3.1.3.1. Prerequisites
	3.1.3.2. Creating a Red Hat Enterprise Linux 9 image
	3.1.3.3. Creating a Windows image

	3.1.4. Creating an image for UEFI Secure Boot
	3.1.5. Metadata properties for virtual hardware

	3.2. UPLOADING, IMPORTING, AND MANAGING IMAGES
	3.2.1. Uploading images to the Image service
	3.2.2. Image service image import methods
	3.2.2.1. Importing an image from a remote URI
	3.2.2.2. Importing an image from a local volume

	3.2.3. Converting the format of an image
	3.2.3.1. Converting an image to RAW format manually
	3.2.3.2. Storing an image in RAW format

	3.2.4. Updating image properties
	3.2.5. Hiding or unhiding images
	3.2.6. Deleting images from the Image service

	3.3. IMPORTING AND COPYING IMAGES TO SINGLE OR MULTIPLE STORES
	3.3.1. Importing image data to a single store
	3.3.2. Importing image data to multiple stores
	3.3.3. Importing image data to all stores without failure
	3.3.4. Checking the progress of the image import operation
	3.3.5. Managing image import failures
	3.3.6. Copying an image to specific stores
	3.3.7. Copying an image to multiple stores
	3.3.8. Copying an image to all stores
	3.3.9. Deleting an image from a specific store
	3.3.10. Listing image locations and location properties

	3.4. IMAGE SERVICE COMMAND OPTIONS AND PROPERTIES
	3.4.1. Image service command options
	3.4.2. Image properties and property keys

	CHAPTER 4. PERFORMING OPERATIONS WITH THE OBJECT STORAGE SERVICE (SWIFT)
	4.1. CREATING PRIVATE AND PUBLIC CONTAINERS
	4.2. CREATING PSEUDO-FOLDERS IN CONTAINERS
	4.3. DELETING CONTAINERS FROM THE OBJECT STORAGE SERVICE
	4.4. UPLOADING OBJECTS TO CONTAINERS
	4.5. COPYING OBJECTS BETWEEN CONTAINERS
	4.6. DELETING OBJECTS FROM THE OBJECT STORAGE SERVICE

	CHAPTER 5. PERFORMING OPERATIONS WITH THE SHARED FILE SYSTEMS SERVICE (MANILA)
	5.1. LISTING SHARE TYPES
	5.2. CREATING NFS, CEPHFS, OR CIFS SHARES
	5.2.1. Creating NFS or CIFS shares with DHSS=true
	5.2.2. Creating NFS, CephFS, or CIFS shares with DHSS=false

	5.3. LISTING SHARES AND EXPORTING INFORMATION
	5.4. CREATING A SNAPSHOT OF DATA ON A SHARED FILE SYSTEM
	5.4.1. Creating a share from a snapshot
	5.4.2. Deleting a snapshot

	5.5. CONNECTING TO A SHARED NETWORK TO ACCESS SHARES
	5.6. CONFIGURING AN IPV6 INTERFACE BETWEEN THE NETWORK AND AN INSTANCE
	5.7. GRANTING SHARE ACCESS FOR END-USER CLIENTS
	5.7.1. Granting access to an NFS share
	5.7.2. Granting access to a native CephFS share
	5.7.3. Granting access to a CIFS share
	5.7.4. Revoking access to a share

	5.8. MOUNTING SHARES ON COMPUTE INSTANCES
	5.8.1. Listing share export locations
	5.8.2. Mounting NFS, native CephFS, or CIFS shares

	5.9. DELETING SHARES
	5.10. LISTING RESOURCE LIMITS OF THE SHARED FILE SYSTEMS SERVICE
	5.11. TROUBLESHOOTING OPERATION FAILURES
	5.11.1. Viewing error messages for shares
	5.11.2. Debugging share mounting failures

