
Red Hat OpenStack Services on
OpenShift 18.0

Validating and troubleshooting the deployed
cloud

Validating and troubleshooting a deployed Red Hat OpenStack Services on
OpenShift environment

Last Updated: 2024-08-29

Red Hat OpenStack Services on OpenShift 18.0 Validating and
troubleshooting the deployed cloud

Validating and troubleshooting a deployed Red Hat OpenStack Services on OpenShift environment

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to validate and troubleshoot the deployed Red Hat OpenStack Services on OpenShift
cloud.

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. COLLECTING DIAGNOSTIC INFORMATION FOR SUPPORT
1.1. COLLECTING DATA ON THE RHOSO CONTROL PLANE
1.2. COLLECTING DATA ON THE RHOSO DATA PLANE NODES

CHAPTER 2. RUNNING TEMPEST TESTS USING TEST OPERATOR
2.1. TEMPEST CUSTOM RESOURCES CONFIGURATION FILE
2.2. INSTALLING TEST OPERATOR
2.3. RUNNING TEMPEST TESTS
2.4. FINDING TEMPEST LOGS
2.5. GETTING LOGS FROM INSIDE THE POD
2.6. RE-RUNNING TEMPEST TESTS
2.7. INSTALLING EXTERNAL PLUG-INS
2.8. FIXING POD IN PENDING STATE
2.9. USING DEBUG MODE
2.10. USING PUDB TO DEBUG TEMPEST TESTS

3

4
4
5

6
6
9
9

10
10
11

12
13
14
15

Table of Contents

1

Red Hat OpenStack Services on OpenShift 18.0 Validating and troubleshooting the deployed cloud

2

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation for Red Hat OpenStack Services
on OpenShift (RHOSO) or earlier releases of Red Hat OpenStack Platform (RHOSP). When you create
an issue for RHOSO or RHOSP documents, the issue is recorded in the RHOSO Jira project, where you
can track the progress of your feedback.

To complete the Create Issue form, ensure that you are logged in to Jira. If you do not have a Red Hat
Jira account, you can create an account at https://issues.redhat.com.

1. Click the following link to open a Create Issue page: Create Issue

2. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

3. Click Create.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

3

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

1

2

CHAPTER 1. COLLECTING DIAGNOSTIC INFORMATION FOR
SUPPORT

Use the Red Hat OpenStack Services on OpenShift (RHOSO) must-gather tool to collect diagnostic
information about your Red Hat OpenShift Container Platform (RHOCP) cluster, including the RHOSO
control plane and the deployed RHOSO services. Use the RHOCP sosreport tool to collect diagnostic
information about your RHOSO data plane.

1.1. COLLECTING DATA ON THE RHOSO CONTROL PLANE

You can use the Red Hat OpenStack Services on OpenShift (RHOSO) must-gather tool to collect the
following information about your Red Hat OpenShift Container Platform (RHOCP) cluster to
troubleshoot service failures:

The RHOSO control plane service logs.

The configuration of RHOSO control plane services, such as the RHOCP Secrets and
ConfigMaps.

Status of the services that are deployed in the RHOSO control plane.

The RHOSO generated Custom Resource Definitions (CRDs).

The RHOSO control plane applied Custom Resources (CRs).

The openstack and openstack-operators namespaces.

RHOCP Events that are related to the RHOSO namespaces.

Prerequisites

Access to the cluster as a user with cluster-admin privileges.

Procedure

1. Navigate to the directory where you want to store the must-gather data.

2. Pass one or more images or image streams to the must-gather tool to specify the data to
collect. For example, the following command gathers both the default cluster data and the
information that is specific to the deployed RHOSO control plane:

$ oc adm must-gather \
 --image-stream=openshift/must-gather \ 1
 --image=registry.redhat.io/rhoso-operators/openstack-must-gather-rhel9:1.0 2

The default RHOCP must-gather image that is used to gather RHOCP cluster
information.

The RHOSO must-gather image.

This command creates a local directory that stores the logs, services configuration, and the
status of the RHOSO control plane services.

Red Hat OpenStack Services on OpenShift 18.0 Validating and troubleshooting the deployed cloud

4

1.2. COLLECTING DATA ON THE RHOSO DATA PLANE NODES

The data plane nodes are RHEL nodes where the Compute service (nova) runs, and where the Ceph
daemons run in an HCI environment. You can use the must-gather tool to collect diagnostic information
about your Red Hat OpenStack Services on OpenShift (RHOSO) deployment, such as SOS reports for
Red Hat OpenShift Container Platform (RHOCP) and RHOSO data plane and control plane nodes, and
specific information related to a particular deployed service. You can provide SOS reports to Red Hat
Support to help diagnose and troubleshoot issues in your deployment.

For information on how to use the SOS report tool, see Getting the most from your Support experience .

CHAPTER 1. COLLECTING DIAGNOSTIC INFORMATION FOR SUPPORT

5

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/getting_the_most_from_your_support_experience/index

CHAPTER 2. RUNNING TEMPEST TESTS USING TEST
OPERATOR

Use the Red Hat OpenStack Services on OpenShift (RHOSO) test-operator when working with
Tempest tests.

Prerequisites

A deployed RHOSO environment.

Ensure that you are in the OpenStack project:

$ oc project openstack
Now using project "openstack" on server "https://api.crc.testing:6443".

2.1. TEMPEST CUSTOM RESOURCES CONFIGURATION FILE

This test-v1beta1-tempest.yaml file is an example of a Tempest custom resource (CR) that you can
edit and use to execute Tempest tests with test-operator.

apiVersion: test.openstack.org/v1beta1
kind: Tempest
metadata:
 name: tempest-tests
 namespace: openstack
spec:
 containerImage: ""
 # storageClass: local-storage
 # parallel: false
 # debug: false

 # configOverwrite
 # ---------------
 # An interface to overwrite default config files like e.g. logging.conf But can also
 # be used to add additional files. Those get added to the service config dir in
 # /etc/test_operator/<file>
 #
 # configOverwrite:
 # file.txt: |
 # content of the file

 # SSHKeySecretName
 # ----------------
 # SSHKeySecretName is the name of the k8s secret that contains an ssh key. The key is
 # mounted to ~/.ssh/id_ecdsa in the tempest pod. Note, the test-operator looks for
 # the private key in ssh-privatekey field of the secret.
 #
 # SSHKeySecretName: secret_name
 tempestRun:
 # NOTE: All parameters have default values (use only when you want to override
 # the default behaviour)
 includeList: | # <-- Use | to preserve \n
 tempest.api.identity.v3.*
 concurrency: 8

Red Hat OpenStack Services on OpenShift 18.0 Validating and troubleshooting the deployed cloud

6

 # excludeList: | # <-- Use | to preserve \n
 # tempest.api.identity.v3.*
 # workerFile: | # <-- Use | to preserve \n
 # - worker:
 # - tempest.api.*
 # - neutron_tempest_tests
 # - worker:
 # - tempest.scenario.*
 # smoke: false
 # serial: false
 # parallel: true
 # externalPlugin:
 # - repository: "https://opendev.org/openstack/barbican-tempest-plugin.git"
 # - repository: "https://opendev.org/openstack/neutron-tempest-plugin.git"
 # changeRepository: "https://review.opendev.org/openstack/neutron-tempest-plugin"
 # changeRefspec: "refs/changes/97/896397/2"
 # extraImages:
 # - URL: https://download.cirros-cloud.net/0.6.2/cirros-0.6.2-x86_64-disk.img
 # name: cirros-0.6.2-test-operator
 # flavor:
 # name: cirros-0.6.2-test-operator-flavor
 # RAM: 512
 # disk: 20
 # vcpus: 1

 # extraRPMs:
 # ----------
 # A list of URLs that point to RPMs that should be installed before
 # the execution of tempest. WARNING! This parameter has no efect when used
 # in combination with externalPlugin parameter.
 # extraRPMs:
 # - https://cbs.centos.org/kojifiles/packages/python-sshtunnel/0.4.0/12.el9s/noarch/python3-
sshtunnel-0.4.0-12.el9s.noarch.rpm
 # - https://cbs.centos.org/kojifiles/packages/python-whitebox-tests-
tempest/0.0.3/0.1.766ff04git.el9s/noarch/python3-whitebox-tests-tempest-0.0.3-
0.1.766ff04git.el9s.noarch.rpm

 tempestconfRun:
 # NOTE: All parameters have default values (use only when you want to override
 # the default behaviour)
 # create: true
 # collectTiming: false
 # insecure: false
 # noDefaultDeployer: false
 # debug: false
 # verbose: false
 # nonAdmin: false
 # retryImage: false
 # convertToRaw: false
 # out: ./etc/tempest.conf
 # flavorMinMem: 128
 # flavorMinDisk: 1
 # timeout: 600
 # imageDiskFormat: qcow2
 # image: https://download.cirros-cloud.net/0.5.2/cirros-0.5.2-x86_64-disk.img

CHAPTER 2. RUNNING TEMPEST TESTS USING TEST OPERATOR

7

 # The following text will be mounted to the tempest pod
 # as /etc/test_operator/deployer_input.yaml
 # deployerInput: |
 # [section]
 # value1 = exmaple_value2
 # value2 = example_value2

 # The following text will be mounted to the tempest pod
 # as /etc/test_operator/accounts.yaml
 # testAccounts: |
 # - username: 'multi_role_user'
 # tenant_name: 'test_tenant_42'
 # password: 'test_password'
 # roles:
 # - 'fun_role'
 # - 'not_an_admin'
 # - 'an_admin'

 # The following text will be mounted to the tempest pod
 # as /etc/test_operator/profile.yaml
 # profile: |
 # collect_timing: false
 # create: false
 # create_accounts_file: null

 # createAccountsFile: /path/to/accounts.yaml
 # generateProfile: /path/to/profile.yaml
 # networkID:
 # append: | # <-- Use | to preserve \n
 # section1.name1 value1
 # section1.name1 value2
 # remove: | # <-- Use | to preserve \n
 # section1.name1 value1
 # section1.name1 value2
 # overrides: | # <-- Use | to preserve \n
 # overrides_section1.name1 value1
 # overrides_section1.name1 value2

 # Workflow
 # --------
 # Workflow section can be utilized to spawn multiple test pods at the same time.
 # The commented out example spawns two test pods that are executed sequentially.
 # Each step inherits all configuration that is specified outside of the workflow
 # field. For each step you can overwrite values specified in the tempestRun and
 # tempestconfRun sections.
 #
 # workflow:
 # - stepName: firstStep
 # tempestRun:
 # includeList: |
 # tempest.api.*
 # - stepName: secondStep
 # tempestRun:
 # includeList: |
 # neutron_tempest_plugin.*

Red Hat OpenStack Services on OpenShift 18.0 Validating and troubleshooting the deployed cloud

8

2.2. INSTALLING TEST OPERATOR

Install the test-operator in the openstack-operators project.

Procedure

1. Create a subscription.yaml file:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: test-operator
 namespace: openstack-operators
spec:
 name: test-operator
 source: openstack-operator-index
 sourceNamespace: openstack-operators

2. Apply the subscription.yaml file:

$ oc apply -f subscription.yaml

Verification

When the test-operator-controller-manager pod successfully spawns and the pod is running,
you can communicate with the operator using the custom resources (CRs) that the test-
operator accepts:

$ oc get pods -n openstack-operators

2.3. RUNNING TEMPEST TESTS

Select and run an image to use for Tempest tests. The following file names are examples and might vary
from your environment.

Procedure

1. Edit the Tempest test configuration file, for example with vim:

$ vim <Tempest_config>

Replace <Tempest_config> with the name of your Tempest test configuration file, such as
test_v1beta1_tempest.yaml.

2. Add the appropriate value for the containerImage parameter:

registry.redhat.io/rhoso/openstack-tempest-all-rhel9:18.0

The openstack-tempest-all:current-podified image in this example contains all the default
supported plug-ins.

3. Save and close the Tempest test configuration file.

CHAPTER 2. RUNNING TEMPEST TESTS USING TEST OPERATOR

9

4. Create the pod and run your Tempest tests:

$ oc apply -f <Tempest_config>

Replace <Tempest_config> with the name of your Tempest test configuration file, such as
test_v1beta1_tempest.yaml.

Verification

Check that the pod is running:

$ oc get pods | grep -i <pod_name>

Replace <pod_name> with the name that you specified in your Tempest Custom Resources
configuration file, for example tempest-tests, or you can just use $ oc get pods and search for
the relevant pod.

2.4. FINDING TEMPEST LOGS

You can access the Tempest logs, for example for a test that successfully completed, or to troubleshoot
a pod that has failed.

Procedure

1. Get the name and status of the relevant pod:

$ oc get pods | grep -i <pod_name>

Replace <pod_name> with the name that you specified in your Tempest Custom Resources
configuration file, for example tempest-tests, or you can just use $ oc get pods and search
for the relevant pod.

2. Get the logs:

$ oc logs <pod_name>

Replace <pod_name> with the name of the pod that you got in the previous step.

Verification

View the logs.

2.5. GETTING LOGS FROM INSIDE THE POD

You can access the Tempest logs, for example, for a test that successfully completed, or to
troubleshoot a pod that has failed. You can access specific and more detailed Tempest logs from inside
the pod.

Procedure

1. Get the name and status of the relevant pod:

$ oc get pods | grep -i <pod_name>

Red Hat OpenStack Services on OpenShift 18.0 Validating and troubleshooting the deployed cloud

10

Replace <pod_name> with the name that you specified in your Tempest Custom Resources
configuration file, for example tempest-tests, or you can just use $ oc get pods and search
for the relevant pod.

2. Access the pod:

$ oc debug <pod_name>

Replace <pod_name> with the name of the pod that you got in the previous step.

3. View available log files inside the pod:

sh-5.1$ ls -lah /var/lib/tempest/external_files

4. View available log files in the required directory:

sh-5.1$ ls -lah /var/lib/tempest/external_files/<tempest-tests>

Replace <tempest-tests> with the name of the relevant directory that you want to view
logs in, for example tempest-tests.

Verification

View the logs.

2.6. RE-RUNNING TEMPEST TESTS

Modify the Tempest configuration file and re-run the Tempest tests.

Procedure

1. Get the name and status of the relevant pod:

$ oc get pods | grep -i <pod_name>

Replace <pod_name> with the name that you specified in your Tempest Custom Resources
configuration file, for example tempest-tests, or you can just use $ oc get pods and search
for the relevant pod.

NOTE

If the pod is still active, you can wait for the test to complete before
proceeding to the following step.

2. Get the name of the Tempest custom resource (CR):

$ oc get tempest

3. Delete the Tempest CR:

$ oc delete tempest <tempest_cr>

CHAPTER 2. RUNNING TEMPEST TESTS USING TEST OPERATOR

11

Replace <tempest_cr> with the name of the Tempest CR that you got in the previous step.

4. Verify that you deleted the pod:

$ oc get pods | grep -i <pod_name>

Replace <pod_name> with the name that you specified in your Tempest Custom Resources
configuration file, for example tempest-tests, or you can just use $ oc get pods and search
for the relevant pod.

5. Edit the Tempest test configuration file, for example with vim:

$ vim <Tempest_config>

Replace <Tempest_config> with the name of your Tempest test configuration file, such as
test_v1beta1_tempest.yaml.

6. Make the required edits to the Tempest test configuration file, for example you can modify the
excludeList: parameter:

excludeList: | # <-- Use | to preserve \n
<excludeList_value>

Replace <excludeList_value> with the excludeList value that you want to test, such as
tempest.api.identity.v3.*.

7. Save and close the Tempest test configuration file.

8. Create the pod for your Tempest tests:

$ oc apply -f <Tempest_config>

Replace <Tempest_config> with the name of your Tempest test configuration file, such as
test_v1beta1_tempest.yaml.

Verification

Get the name of the pod that you created in the previous step:

$ oc get pods | grep -i <pod_name>

Replace <pod_name> with the name that you specified in your Tempest Custom Resources
configuration file, for example tempest-tests, or you can just use $ oc get pods and search for
the relevant pod.

Check in the logs for the expected changes:

$ oc logs <pod_name> | grep <excludeList_value> --context=4

Replace <pod_name> with the name of the relevant pod that you got in the previous step and
replace <excludeList_value> with the excludeList value that you added to the Tempest test
configuration file, such as tempest.api.identity.v3.*.

2.7. INSTALLING EXTERNAL PLUG-INS

Red Hat OpenStack Services on OpenShift 18.0 Validating and troubleshooting the deployed cloud

12

You can install external plug-ins, such as barbican-tempest-plugin.

NOTE

The barbican-tempest-plugin is included with the image
registry.redhat.io/rhoso/openstack-tempest-all-rhel9:18.0 and is shown in the
following procedure as an example. If you are using external plug-ins that are
unsupported, ensure that you proceed with caution.

Procedure

1. Edit the Tempest test configuration file, for example with vim:

$ vim <Tempest_config>

Replace <Tempest_config> with the name of your Tempest test configuration file, such as
test_v1beta1_tempest.yaml.

2. Add externalPlugin option, or uncomment the relevant lines in your Tempest test configuration
file:

 externalPlugin:
 - repository: "https://opendev.org/openstack/barbican-tempest-plugin.git"

3. Save and close the Tempest test configuration file.

4. Create the new pod for the Tempest tests:

$ oc apply -f <Tempest_config>

Replace <Tempest_config> with the name of your Tempest test configuration file, such as
test_v1beta1_tempest.yaml.

Verification

Get the name and status of the pod that you created in the previous step:

$ oc get pods | grep -i <pod_name>

Replace <pod_name> with the name that you specified in your Tempest Custom Resources
configuration file, for example tempest-tests, or you can just use $ oc get pods and search for
the relevant pod.

2.8. FIXING POD IN PENDING STATE

You can use the following procedure to fix a pod that is in a Pending state caused by a lack of available
persistent volumes.

Procedure

1. Get the name of the relevant pod and verify it has a status of Pending:

$ oc get pods | grep -i <pod_name>

CHAPTER 2. RUNNING TEMPEST TESTS USING TEST OPERATOR

13

Replace <pod_name> with the name that you specified in your Tempest Custom Resources
configuration file, for example tempest-tests, or you can just use $ oc get pods and search
for the relevant pod.

2. Confirm that the Pending status is caused by a lack of available persistent volumes:

$ oc describe pod <pod_name>

Replace <pod_name> with the name of the pod that you got in the previous step.

3. List all persistent volumes that are associated with Tempest:

$ oc get pv | grep -i tempest

4. Edit one of the persistent volumes to change the claim reference value to null:

$ oc patch pv <name_of_volume> -p '{"spec":{"claimRef":null}}'

Replace <name_of_volume> with the name of one of the Tempest volume that you got
from the previous step.

Verification

Confirm that the volume that you edited has changed from Released to Bound:

$ oc get pv | grep -i tempest

Confirm that status of the pod has changed from Pending:

$ oc get pods | grep -i <pod_name>

Replace <pod_name> with the name that you specified in your Tempest Custom Resources
configuration file, for example tempest-tests, or you can just use $ oc get pods and search for
the relevant pod.

2.9. USING DEBUG MODE

With debug mode, you can keep the pod running if the test finishes or in case of a failure, and use a
remote shell to get more information and detail.

Procedure

1. Edit the Tempest test configuration file, for example with vim:

$ vim <Tempest_config>

Replace <Tempest_config> with the name of your Tempest test configuration file, such as
test_v1beta1_tempest.yaml.

2. Change the value of debug: parameter to true, or add the line debug: true to the configuration
file:

apiVersion: test.openstack.org/v1beta1

Red Hat OpenStack Services on OpenShift 18.0 Validating and troubleshooting the deployed cloud

14

kind: Tempest
metadata:
 name: tempest-tests
 namespace: openstack
spec:
 containerImage: registry.redhat.io/rhoso/openstack-tempest-all-rhel9:18.0
 debug: true

3. Save and close the Tempest test configuration file.

4. Create the new pod for the Tempest tests:

$ oc apply -f <Tempest_config>

Replace <Tempest_config> with the name of your Tempest test configuration file, such as
test_v1beta1_tempest.yaml.

Verification

1. Get the name of the pod that you created in the previous step:

$ oc get pods | grep -i <pod_name>

Replace <pod_name> with the name that you specified in your Tempest Custom Resources
configuration file, for example tempest-tests, or you can just use $ oc get pods and search
for the relevant pod.

2. Access the pod remotely:

$ oc rsh <pod_name>

Replace <pod_name> with the name of the pod that you got in the previous step.

3. Make changes or check errors in the running pod:

$ sh-5.1$ ls –lah /var/lib/tempest

2.10. USING PUDB TO DEBUG TEMPEST TESTS

You can use pudb to create and customize breakpoints that you can use to debug your Tempest tests.

Prerequisites

You have configured debug mode. For more information about debug mode, see Section 2.9,
“Using debug mode”.

Procedure

1. Get the name of the pod that you want to use pudb with:

$ oc get pods | grep -i <pod_name>

Replace <pod_name> with the name that you specified in your Tempest Custom Resources

CHAPTER 2. RUNNING TEMPEST TESTS USING TEST OPERATOR

15

Replace <pod_name> with the name that you specified in your Tempest Custom Resources
configuration file, for example tempest-tests, or you can just use $ oc get pods and search
for the relevant pod.

2. Access the pod remotely:

$ oc rsh <pod_name>

Replace <pod_name> with the name of the pod that you got in the previous step.

3. Navigate to the correct directory:

sh-5.1$ cd /var/lib/tempest/openshift

4. Create a Python3 lightweight virtual environment:

sh-5.1$ python3 -m venv --system-site-packages .venv

5. Activate the Python3 lightweight virtual environment:

sh-5.1$. .venv/bin/activate

6. Download and install pudb in the Python3 lightweight virtual environment:

(.venv) sh-5.1$ pip install pudb

7. Find the path to the file that you want to debug, for example test_networks.py:

(.venv) sh-5.1$ find / -name test_networks.py 2> /dev/null

8. Open your chosen file for editing:

(.venv) sh-5.1$ sudo vi /usr/lib/python3.9/site-
packages/tempest/api/network/test_networks.py

9. Insert the line import pudb; pu.db into the file where you want to create a pudb breakpoint,
and save and close the file.

10. Change the ownership:

(.venv) sh-5.1 $ sudo chown -R tempest:tempest /var/lib/tempest/.config

11. Run the test with the pudb breakpoint:

(.venv) sh-5.1 $ python -m testtools.run
tempest.api.network.test_networks.NetworksTest.test_list_networks

Verification

The pudb interface opens. You can interact with the pudb interface before the test completes.

Red Hat OpenStack Services on OpenShift 18.0 Validating and troubleshooting the deployed cloud

16

CHAPTER 2. RUNNING TEMPEST TESTS USING TEST OPERATOR

17

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. COLLECTING DIAGNOSTIC INFORMATION FOR SUPPORT
	1.1. COLLECTING DATA ON THE RHOSO CONTROL PLANE
	1.2. COLLECTING DATA ON THE RHOSO DATA PLANE NODES

	CHAPTER 2. RUNNING TEMPEST TESTS USING TEST OPERATOR
	2.1. TEMPEST CUSTOM RESOURCES CONFIGURATION FILE
	2.2. INSTALLING TEST OPERATOR
	2.3. RUNNING TEMPEST TESTS
	2.4. FINDING TEMPEST LOGS
	2.5. GETTING LOGS FROM INSIDE THE POD
	2.6. RE-RUNNING TEMPEST TESTS
	2.7. INSTALLING EXTERNAL PLUG-INS
	2.8. FIXING POD IN PENDING STATE
	2.9. USING DEBUG MODE
	2.10. USING PUDB TO DEBUG TEMPEST TESTS

