
Red Hat Quay 3.11

Deploying the Red Hat Quay Operator on
OpenShift Container Platform

Deploying the Red Hat Quay Operator on OpenShift Container Platform

Last Updated: 2024-09-03

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift
Container Platform

Deploying the Red Hat Quay Operator on OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Deploy the Red Hat Quay Operator on an OpenShift Container Platform cluster

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. INTRODUCTION TO THE RED HAT QUAY OPERATOR
1.1. RED HAT QUAY OPERATOR COMPONENTS
1.2. USING MANAGED COMPONENTS
1.3. USING UNMANAGED COMPONENTS FOR DEPENDENCIES
1.4. CONFIG BUNDLE SECRET
1.5. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM

1.5.1. OpenShift Container Platform cluster
1.5.2. Resource Requirements
1.5.3. Object Storage
1.5.4. StorageClass

CHAPTER 2. INSTALLING THE RED HAT QUAY OPERATOR FROM THE OPERATORHUB

CHAPTER 3. CONFIGURING RED HAT QUAY BEFORE DEPLOYMENT
3.1. PRE-CONFIGURING RED HAT QUAY FOR AUTOMATION

3.1.1. Allowing the API to create the first user
3.1.2. Enabling general API access
3.1.3. Adding a superuser
3.1.4. Restricting user creation
3.1.5. Enabling new functionality in Red Hat Quay 3.11
3.1.6. Suggested configuration for automation

3.2. CONFIGURING OBJECT STORAGE
3.2.1. Using unmanaged storage

3.2.1.1. AWS S3 storage
3.2.1.2. Google Cloud storage
3.2.1.3. Microsoft Azure storage
3.2.1.4. Ceph/RadosGW Storage
3.2.1.5. Swift storage
3.2.1.6. NooBaa unmanaged storage

3.2.2. Using an unmanaged NooBaa instance
3.2.3. Managed storage

3.2.3.1. Leveraging the Multicloud Object Gateway Component in the Red Hat OpenShift Data Foundation
Operator for Red Hat Quay

3.2.3.1.1. Installing the Local Storage Operator on OpenShift Container Platform
3.2.3.1.2. Installing Red Hat OpenShift Data Foundation on OpenShift Container Platform
3.2.3.1.3. Creating a standalone Multicloud Object Gateway using the OpenShift Container Platform UI
3.2.3.1.4. Create A standalone Multicloud Object Gateway using the CLI

CHAPTER 4. CONFIGURING TRAFFIC INGRESS
4.1. CONFIGURING SSL/TLS AND ROUTES

4.1.1. Creating the config bundle secret with the SSL/TLS cert and key pair

CHAPTER 5. CONFIGURING RESOURCES FOR MANAGED COMPONENTS ON OPENSHIFT CONTAINER
PLATFORM

5.1. CONFIGURING RESOURCE REQUESTS BY USING THE OPENSHIFT CONTAINER PLATFORM UI
5.2. CONFIGURING RESOURCE REQUESTS BY EDITING THE QUAYREGISTRY YAML

CHAPTER 6. CONFIGURING THE DATABASE
6.1. USING AN EXISTING POSTGRESQL DATABASE

6.1.1. Database configuration
6.1.1.1. Database URI

4

5
5
6
7
7
7
7
8
8
8

9

10
11
11
11
11
11

12
12
12
12
12
13
13
14
14
14
15
15

16
17
17
18
21

24
24
24

26
26
28

29
29
29
29

Table of Contents

1

. .

. .

. .

6.1.1.2. Database connection arguments
6.1.1.2.1. PostgreSQL SSL/TLS connection arguments
6.1.1.2.2. MySQL SSL/TLS connection arguments

6.1.2. Using the managed PostgreSQL database
6.1.2.1. PostgreSQL database recommendations

6.2. CONFIGURING EXTERNAL REDIS
6.2.1. Using an unmanaged Redis database
6.2.2. Using unmanaged Horizontal Pod Autoscalers

6.2.2.1. Disabling the Horizontal Pod Autoscaler
6.2.3. Disabling the Route component
6.2.4. Disabling the monitoring component
6.2.5. Disabling the mirroring component

CHAPTER 7. DEPLOYING RED HAT QUAY USING THE OPERATOR
7.1. DEPLOYING RED HAT QUAY FROM THE COMMAND LINE

7.1.1. Using the API to create the first user
7.1.2. Viewing created components using the command line
7.1.3. Horizontal Pod Autoscaling
7.1.4. Monitoring and debugging the deployment process

7.2. DEPLOYING RED HAT QUAY FROM THE OPENSHIFT CONTAINER PLATFORM CONSOLE
7.2.1. Using the Red Hat Quay UI to create the first user

CHAPTER 8. VIEWING THE STATUS OF THE QUAYREGISTRY OBJECT
8.1. VIEWING THE REGISTRY ENDPOINT
8.2. VIEWING THE VERSION OF RED HAT QUAY IN USE
8.3. VIEWING THE CONDITIONS OF YOUR RED HAT QUAY DEPLOYMENT

CHAPTER 9. CUSTOMIZING RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM
9.1. EDITING THE CONFIG BUNDLE SECRET IN THE OPENSHIFT CONTAINER PLATFORM CONSOLE
9.2. DETERMINING QUAYREGISTRY ENDPOINTS AND SECRETS
9.3. DOWNLOADING THE EXISTING CONFIGURATION

9.3.1. Using the config bundle secret to download the existing configuration
9.4. USING THE CONFIG BUNDLE TO CONFIGURE CUSTOM SSL/TLS CERTS

30
30
31
31
32
32
32
33
33
34
35
35

36
36
38
39
40
41

43
44

47
47
47
47

48
48
49
50
50
51

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

2

Table of Contents

3

PREFACE
Red Hat Quay is an enterprise-quality container registry. Use Red Hat Quay to build and store container
images, then make them available to deploy across your enterprise.

The Red Hat Quay Operator provides a simple method to deploy and manage Red Hat Quay on an
OpenShift cluster.

With the release of Red Hat Quay 3.4.0, the Red Hat Quay Operator was re-written to offer an
enhanced experience and to add more support for Day 2 operations. As a result, the Red Hat Quay
Operator is now simpler to use and is more opinionated. The key difference from versions prior to Red
Hat Quay 3.4.0 include the following:

The QuayEcosystem custom resource has been replaced with the QuayRegistry custom
resource.

The default installation options produces a fully supported Red Hat Quay environment, with all
managed dependencies, such as database, caches, object storage, and so on, supported for
production use.

NOTE

Some components might not be highly available.

A new validation library for Red Hat Quay’s configuration.

Object storage can now be managed by the Red Hat Quay Operator using the
ObjectBucketClaim Kubernetes API

NOTE

Red Hat OpenShift Data Foundation can be used to provide a supported
implementation of this API on OpenShift Container Platform.

Customization of the container images used by deployed pods for testing and development
scenarios.

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

4

CHAPTER 1. INTRODUCTION TO THE RED HAT QUAY
OPERATOR

Use the content in this chapter to execute the following:

Install Red Hat Quay on OpenShift Container Platform using the Red Hat Quay Operator

Configure managed, or unmanaged, object storage

Configure unmanaged components, such as the database, Redis, routes, TLS, and so on

Deploy the Red Hat Quay registry on OpenShift Container Platform using the Red Hat Quay
Operator

Use advanced features supported by Red Hat Quay

Upgrade the Red Hat Quay registry by using the Red Hat Quay Operator

1.1. RED HAT QUAY OPERATOR COMPONENTS

Red Hat Quay has many dependencies. These dependencies include a database, object storage, Redis,
and others. The Red Hat Quay Operator manages an opinionated deployment of Red Hat Quay and its
dependencies on Kubernetes. These dependencies are treated as components and are configured
through the QuayRegistry API.

In the QuayRegistry custom resource, the spec.components field configures components. Each
component contains two fields: kind (the name of the component), and managed (a boolean that
addresses whether the component lifecycle is handled by the Red Hat Quay Operator).

By default, all components are managed and auto-filled upon reconciliation for visibility:

Example QuayRegistry resource

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
 spec:
 configBundleSecret: config-bundle-secret
 components:
 - kind: quay
 managed: true
 - kind: postgres
 managed: true
 - kind: clair
 managed: true
 - kind: redis
 managed: true
 - kind: horizontalpodautoscaler
 managed: true
 - kind: objectstorage
 managed: true
 - kind: route
 managed: true

CHAPTER 1. INTRODUCTION TO THE RED HAT QUAY OPERATOR

5

1.2. USING MANAGED COMPONENTS

Unless your QuayRegistry custom resource specifies otherwise, the Red Hat Quay Operator uses
defaults for the following managed components:

quay: Holds overrides for deployment of Red Hat Quay on OpenShift Container Platform, for
example, environment variables and number of replicas. This component is new as of Red Hat
Quay 3.7 and cannot be set to unmanaged.

postgres: For storing the registry metadata, As of Red Hat Quay 3.9, uses a version of
PostgreSQL 13 from Software Collections.

NOTE

When upgrading from Red Hat Quay 3.8 → 3.9, the Operator automatically
handles upgrading PostgreSQL 10 to PostgreSQL 13. This upgrade is required.
PostgreSQL 10 had its final release on November 10, 2022 and is no longer
supported.

clair: Provides image vulnerability scanning.

redis: Stores live builder logs and the Red Hat Quay tutorial. Also includes the locking
mechanism that is required for garbage collection.

horizontalpodautoscaler: Adjusts the number of Quay pods depending on memory/cpu
consumption.

objectstorage: For storing image layer blobs, utilizes the ObjectBucketClaim Kubernetes API
which is provided by Noobaa or Red Hat OpenShift Data Foundation.

route: Provides an external entrypoint to the Red Hat Quay registry from outside of OpenShift
Container Platform.

mirror: Configures repository mirror workers to support optional repository mirroring.

monitoring: Features include a Grafana dashboard, access to individual metrics, and
notifications for frequently restarting Quay pods.

tls: Configures whether Red Hat Quay or OpenShift Container Platform handles SSL/TLS.

clairpostgres: Configures a managed Clair database. This is a separate database than the
PostgreSQL database used to deploy Red Hat Quay.

The Red Hat Quay Operator handles any required configuration and installation work needed for Red
Hat Quay to use the managed components. If the opinionated deployment performed by the Red Hat
Quay Operator is unsuitable for your environment, you can provide the Red Hat Quay Operator with

 - kind: mirror
 managed: true
 - kind: monitoring
 managed: true
 - kind: tls
 managed: true
 - kind: clairpostgres
 managed: true

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

6

https://www.softwarecollections.org/en/

unmanaged resources, or overrides, as described in the following sections.

1.3. USING UNMANAGED COMPONENTS FOR DEPENDENCIES

If you have existing components such as PostgreSQL, Redis, or object storage that you want to use with
Red Hat Quay, you first configure them within the Red Hat Quay configuration bundle, or the
config.yaml file. Then, they must be referenced in your QuayRegistry bundle as a Kubernetes Secret
while indicating which components are unmanaged.

NOTE

If you are using an unmanaged PostgreSQL database, and the version is PostgreSQL 10,
it is highly recommended that you upgrade to PostgreSQL 13. PostgreSQL 10 had its final
release on November 10, 2022 and is no longer supported. For more information, see the
PostgreSQL Versioning Policy.

See the following sections for configuring unmanaged components:

Using an existing PostgreSQL database

Using unmanaged Horizontal Pod Autoscalers

Using unmanaged storage

Using an unmanaged NooBaa instance

Using an unmanaged Redis database

Disabling the route component

Disabling the monitoring component

Disabling the mirroring component

1.4. CONFIG BUNDLE SECRET

The spec.configBundleSecret field is a reference to the metadata.name of a Secret in the same
namespace as the QuayRegistry resource. This Secret must contain a config.yaml key/value pair.

The config.yaml file is a Red Hat Quay config.yaml file. This field is optional, and is auto-filled by the
Red Hat Quay Operator if not provided. If provided, it serves as the base set of config fields which are
later merged with other fields from any managed components to form a final output Secret, which is
then mounted into the Red Hat Quay application pods.

1.5. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT CONTAINER
PLATFORM

Consider the following prerequisites prior to deploying Red Hat Quay on OpenShift Container Platform
using the Red Hat Quay Operator.

1.5.1. OpenShift Container Platform cluster

To deploy the Red Hat Quay Operator, you must have an OpenShift Container Platform 4.5 or later

CHAPTER 1. INTRODUCTION TO THE RED HAT QUAY OPERATOR

7

https://www.postgresql.org/support/versioning/

To deploy the Red Hat Quay Operator, you must have an OpenShift Container Platform 4.5 or later
cluster and access to an administrative account. The administrative account must have the ability to
create namespaces at the cluster scope.

1.5.2. Resource Requirements

Each Red Hat Quay application pod has the following resource requirements:

8 Gi of memory

2000 millicores of CPU

The Red Hat Quay Operator creates at least one application pod per Red Hat Quay deployment it
manages. Ensure your OpenShift Container Platform cluster has sufficient compute resources for these
requirements.

1.5.3. Object Storage

By default, the Red Hat Quay Operator uses the ObjectBucketClaim Kubernetes API to provision
object storage. Consuming this API decouples the Red Hat Quay Operator from any vendor-specific
implementation. Red Hat OpenShift Data Foundation provides this API through its NooBaa component,
which is used as an example throughout this documentation.

Red Hat Quay can be manually configured to use multiple storage cloud providers, including the
following:

Amazon S3 (see S3 IAM Bucket Policy for details on configuring an S3 bucket policy for Red Hat
Quay)

Microsoft Azure Blob Storage

Google Cloud Storage

Ceph Object Gateway (RADOS)

OpenStack Swift

CloudFront + S3

For a complete list of object storage providers, the Quay Enterprise 3.x support matrix .

1.5.4. StorageClass

When deploying Quay and Clair PostgreSQL databases using the Red Hat Quay Operator, a default
StorageClass is configured in your cluster.

The default StorageClass used by the Red Hat Quay Operator provisions the Persistent Volume Claims
required by the Quay and Clair databases. These PVCs are used to store data persistently, ensuring
that your Red Hat Quay registry and Clair vulnerability scanner remain available and maintain their state
across restarts or failures.

Before proceeding with the installation, verify that a default StorageClass is configured in your cluster
to ensure seamless provisioning of storage for Quay and Clair components.

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

8

https://access.redhat.com/solutions/3680151
https://access.redhat.com/articles/4067991

CHAPTER 2. INSTALLING THE RED HAT QUAY OPERATOR
FROM THE OPERATORHUB

Use the following procedure to install the Red Hat Quay Operator from the OpenShift Container
Platform OperatorHub.

Procedure

1. Using the OpenShift Container Platform console, select Operators → OperatorHub.

2. In the search box, type Red Hat Quay and select the official Red Hat Quay Operator provided
by Red Hat. This directs you to the Installation page, which outlines the features, prerequisites,
and deployment information.

3. Select Install. This directs you to the Operator Installation page.

4. The following choices are available for customizing the installation:

a. Update Channel: Choose the update channel, for example, stable-3.11 for the latest
release.

b. Installation Mode:

i. Choose All namespaces on the cluster if you want the Red Hat Quay Operator to be
available cluster-wide. It is recommended that you install the Red Hat Quay Operator
cluster-wide. If you choose a single namespace, the monitoring component will not be
available by default.

ii. Choose A specific namespace on the cluster if you want it deployed only within a
single namespace.

Approval Strategy: Choose to approve either automatic or manual updates.
Automatic update strategy is recommended.

5. Select Install.

CHAPTER 2. INSTALLING THE RED HAT QUAY OPERATOR FROM THE OPERATORHUB

9

CHAPTER 3. CONFIGURING RED HAT QUAY BEFORE
DEPLOYMENT

The Red Hat Quay Operator can manage all of the Red Hat Quay components when deployed on
OpenShift Container Platform. This is the default configuration, however, you can manage one or more
components externally when you want more control over the set up.

Use the following pattern to configure unmanaged Red Hat Quay components.

Procedure

1. Create a config.yaml configuration file with the appropriate settings. Use the following
reference for a minimal configuration:

2. Create a Secret using the configuration file by entering the following command:

3. Create a quayregistry.yaml file, identifying the unmanaged components and also referencing
the created Secret, for example:

Example QuayRegistry YAML file

$ touch config.yaml

AUTHENTICATION_TYPE: Database
BUILDLOGS_REDIS:
 host: <quay-server.example.com>
 password: <strongpassword>
 port: 6379
 ssl: false
DATABASE_SECRET_KEY: <0ce4f796-c295-415b-bf9d-b315114704b8>
DB_URI: <postgresql://quayuser:quaypass@quay-server.example.com:5432/quay>
DEFAULT_TAG_EXPIRATION: 2w
DISTRIBUTED_STORAGE_CONFIG:
 default:
 - LocalStorage
 - storage_path: /datastorage/registry
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: []
DISTRIBUTED_STORAGE_PREFERENCE:
 - default
PREFERRED_URL_SCHEME: http
SECRET_KEY: <e8f9fe68-1f84-48a8-a05f-02d72e6eccba>
SERVER_HOSTNAME: <quay-server.example.com>
SETUP_COMPLETE: true
TAG_EXPIRATION_OPTIONS:
 - 0s
 - 1d
 - 1w
 - 2w
 - 4w
USER_EVENTS_REDIS:
 host: <quay-server.example.com>
 port: 6379
 ssl: false

$ oc create secret generic --from-file config.yaml=./config.yaml config-bundle-secret

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

10

Example QuayRegistry YAML file

4. Enter the following command to deploy the registry by using the quayregistry.yaml file:

3.1. PRE-CONFIGURING RED HAT QUAY FOR AUTOMATION

Red Hat Quay supports several configuration options that enable automation. Users can configure
these options before deployment to reduce the need for interaction with the user interface.

3.1.1. Allowing the API to create the first user

To create the first user, users need to set the FEATURE_USER_INITIALIZE parameter to true and call
the /api/v1/user/initialize API. Unlike all other registry API calls that require an OAuth token generated
by an OAuth application in an existing organization, the API endpoint does not require authentication.

Users can use the API to create a user such as quayadmin after deploying Red Hat Quay, provided no
other users have been created. For more information, see Using the API to create the first user .

3.1.2. Enabling general API access

Users should set the BROWSER_API_CALLS_XHR_ONLY configuration option to false to allow
general access to the Red Hat Quay registry API.

3.1.3. Adding a superuser

After deploying Red Hat Quay, users can create a user and give the first user administrator privileges
with full permissions. Users can configure full permissions in advance by using the SUPER_USER
configuration object. For example:

3.1.4. Restricting user creation

After you have configured a superuser, you can restrict the ability to create new users to the superuser

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: <config_bundle_secret>
 components:
 - kind: objectstorage
 managed: false
...

$ oc create -n quay-enterprise -f quayregistry.yaml

...
SERVER_HOSTNAME: quay-server.example.com
SETUP_COMPLETE: true
SUPER_USERS:
 - quayadmin
...

CHAPTER 3. CONFIGURING RED HAT QUAY BEFORE DEPLOYMENT

11

After you have configured a superuser, you can restrict the ability to create new users to the superuser
group by setting the FEATURE_USER_CREATION to false. For example:

3.1.5. Enabling new functionality in Red Hat Quay 3.11

To use new Red Hat Quay 3.11 functions, enable some or all of the following features:

3.1.6. Suggested configuration for automation

The following config.yaml parameters are suggested for automation:

3.2. CONFIGURING OBJECT STORAGE

You need to configure object storage before installing Red Hat Quay, irrespective of whether you are
allowing the Red Hat Quay Operator to manage the storage or managing it yourself.

If you want the Red Hat Quay Operator to be responsible for managing storage, see the section on
Managed storage for information on installing and configuring NooBaa and the Red Hat OpenShift Data
Foundations Operator.

If you are using a separate storage solution, set objectstorage as unmanaged when configuring the
Operator. See the following section. Unmanaged storage, for details of configuring existing storage.

3.2.1. Using unmanaged storage

This section provides configuration examples for unmanaged storage for your convenience. Refer to the
Red Hat Quay configuration guide for complete instructions on how to set up object storage.

3.2.1.1. AWS S3 storage

...
FEATURE_USER_INITIALIZE: true
BROWSER_API_CALLS_XHR_ONLY: false
SUPER_USERS:
- quayadmin
FEATURE_USER_CREATION: false
...

...
FEATURE_UI_V2: true
FEATURE_UI_V2_REPO_SETTINGS: true
FEATURE_AUTO_PRUNE: true
ROBOTS_DISALLOW: false
...

...
FEATURE_USER_INITIALIZE: true
BROWSER_API_CALLS_XHR_ONLY: false
SUPER_USERS:
- quayadmin
FEATURE_USER_CREATION: false
...

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

12

1

Use the following example when configuring AWS S3 storage for your Red Hat Quay deployment.

3.2.1.2. Google Cloud storage

Use the following example when configuring Google Cloud storage for your Red Hat Quay deployment.

Optional. The time, in seconds, until a timeout exception is thrown when attempting to read from a
connection. The default is 60 seconds. Also encompasses the time, in seconds, until a timeout
exception is thrown when attempting to make a connection. The default is 60 seconds.

3.2.1.3. Microsoft Azure storage

Use the following example when configuring Microsoft Azure storage for your Red Hat Quay
deployment.

DISTRIBUTED_STORAGE_CONFIG:
 s3Storage:
 - S3Storage
 - host: s3.us-east-2.amazonaws.com
 s3_access_key: ABCDEFGHIJKLMN
 s3_secret_key: OL3ABCDEFGHIJKLMN
 s3_bucket: quay_bucket
 s3_region: <region>
 storage_path: /datastorage/registry
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: []
DISTRIBUTED_STORAGE_PREFERENCE:
 - s3Storage

DISTRIBUTED_STORAGE_CONFIG:
 googleCloudStorage:
 - GoogleCloudStorage
 - access_key: GOOGQIMFB3ABCDEFGHIJKLMN
 bucket_name: quay-bucket
 secret_key: FhDAYe2HeuAKfvZCAGyOioNaaRABCDEFGHIJKLMN
 storage_path: /datastorage/registry
 boto_timeout: 120 1
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: []
DISTRIBUTED_STORAGE_PREFERENCE:
 - googleCloudStorage

DISTRIBUTED_STORAGE_CONFIG:
 azureStorage:
 - AzureStorage
 - azure_account_name: azure_account_name_here
 azure_container: azure_container_here
 storage_path: /datastorage/registry
 azure_account_key: azure_account_key_here
 sas_token: some/path/
 endpoint_url: https://[account-name].blob.core.usgovcloudapi.net 1
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: []
DISTRIBUTED_STORAGE_PREFERENCE:
 - azureStorage

CHAPTER 3. CONFIGURING RED HAT QUAY BEFORE DEPLOYMENT

13

1 The endpoint_url parameter for Microsoft Azure storage is optional and can be used with
Microsoft Azure Government (MAG) endpoints. If left blank, the endpoint_url will connect to the

As of Red Hat Quay 3.7, you must use the Primary endpoint of your MAG Blob service. Using the
Secondary endpoint of your MAG Blob service will result in the following error:
AuthenticationErrorDetail:Cannot find the claimed account when trying to GetProperties for
the account whusc8-secondary.

3.2.1.4. Ceph/RadosGW Storage

Use the following example when configuring Ceph/RadosGW storage for your Red Hat Quay
deployment.

3.2.1.5. Swift storage

Use the following example when configuring Swift storage for your Red Hat Quay deployment.

3.2.1.6. NooBaa unmanaged storage

Use the following procedure to deploy NooBaa as your unmanaged storage configuration.

Procedure

1. Create a NooBaa Object Bucket Claim in the Red Hat Quay console by navigating to Storage →
Object Bucket Claims.

DISTRIBUTED_STORAGE_CONFIG:
 radosGWStorage: #storage config name
 - RadosGWStorage #actual driver
 - access_key: access_key_here #parameters
 secret_key: secret_key_here
 bucket_name: bucket_name_here
 hostname: hostname_here
 is_secure: 'true'
 port: '443'
 storage_path: /datastorage/registry
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: []
DISTRIBUTED_STORAGE_PREFERENCE: #must contain name of the storage config
 - radosGWStorage

DISTRIBUTED_STORAGE_CONFIG:
 swiftStorage:
 - SwiftStorage
 - swift_user: swift_user_here
 swift_password: swift_password_here
 swift_container: swift_container_here
 auth_url: https://example.org/swift/v1/quay
 auth_version: 1
 ca_cert_path: /conf/stack/swift.cert"
 storage_path: /datastorage/registry
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: []
DISTRIBUTED_STORAGE_PREFERENCE:
 - swiftStorage

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

14

2. Retrieve the Object Bucket Claim Data details, including the Access Key, Bucket Name, Endpoint
(hostname), and Secret Key.

3. Create a config.yaml configuration file that uses the information for the Object Bucket Claim:

For more information about configuring an Object Bucket Claim, see Object Bucket Claim .

3.2.2. Using an unmanaged NooBaa instance

Use the following procedure to use an unmanaged NooBaa instance for your Red Hat Quay deployment.

Procedure

1. Create a NooBaa Object Bucket Claim in the console at Storage → Object Bucket Claims.

2. Retrieve the Object Bucket Claim Data details including the Access Key, Bucket Name,
Endpoint (hostname), and Secret Key.

3. Create a config.yaml configuration file using the information for the Object Bucket Claim. For
example:

3.2.3. Managed storage

If you want the Red Hat Quay Operator to manage object storage for Red Hat Quay, your cluster needs
to be capable of providing object storage through the ObjectBucketClaim API. Using the Red Hat
OpenShift Data Foundation Operator, there are two supported options available:

DISTRIBUTED_STORAGE_CONFIG:
 default:
 - RHOCSStorage
 - access_key: WmrXtSGk8B3nABCDEFGH
 bucket_name: my-noobaa-bucket-claim-8b844191-dc6c-444e-9ea4-87ece0abcdef
 hostname: s3.openshift-storage.svc.cluster.local
 is_secure: true
 port: "443"
 secret_key: X9P5SDGJtmSuHFCMSLMbdNCMfUABCDEFGH+C5QD
 storage_path: /datastorage/registry
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: []
DISTRIBUTED_STORAGE_PREFERENCE:
 - default

DISTRIBUTED_STORAGE_CONFIG:
 default:
 - RHOCSStorage
 - access_key: WmrXtSGk8B3nABCDEFGH
 bucket_name: my-noobaa-bucket-claim-8b844191-dc6c-444e-9ea4-87ece0abcdef
 hostname: s3.openshift-storage.svc.cluster.local
 is_secure: true
 port: "443"
 secret_key: X9P5SDGJtmSuHFCMSLMbdNCMfUABCDEFGH+C5QD
 storage_path: /datastorage/registry
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: []
DISTRIBUTED_STORAGE_PREFERENCE:
 - default

CHAPTER 3. CONFIGURING RED HAT QUAY BEFORE DEPLOYMENT

15

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_hybrid_and_multicloud_resources/index#object-bucket-claim

A standalone instance of the Multi-Cloud Object Gateway backed by a local Kubernetes
PersistentVolume storage

Not highly available

Included in the Red Hat Quay subscription

Does not require a separate subscription for Red Hat OpenShift Data Foundation

A production deployment of Red Hat OpenShift Data Foundation with scale-out Object Service
and Ceph

Highly available

Requires a separate subscription for Red Hat OpenShift Data Foundation

To use the standalone instance option, continue reading below. For production deployment of Red Hat
OpenShift Data Foundation, please refer to the official documentation.

NOTE

Object storage disk space is allocated automatically by the Red Hat Quay Operator with
50 GiB. This number represents a usable amount of storage for most small to medium
Red Hat Quay installations but might not be sufficient for your use cases. Resizing the
Red Hat OpenShift Data Foundation volume is currently not handled by the Red Hat
Quay Operator. See the section below about resizing managed storage for more details.

3.2.3.1. Leveraging the Multicloud Object Gateway Component in the Red Hat OpenShift
Data Foundation Operator for Red Hat Quay

As part of a Red Hat Quay subscription, users are entitled to use the Multicloud Object Gateway
component of the Red Hat OpenShift Data Foundation Operator (formerly known as OpenShift
Container Storage Operator). This gateway component allows you to provide an S3-compatible object
storage interface to Red Hat Quay backed by Kubernetes PersistentVolume-based block storage. The
usage is limited to a Red Hat Quay deployment managed by the Operator and to the exact
specifications of the multicloud Object Gateway instance as documented below.

Since Red Hat Quay does not support local filesystem storage, users can leverage the gateway in
combination with Kubernetes PersistentVolume storage instead, to provide a supported deployment. A
PersistentVolume is directly mounted on the gateway instance as a backing store for object storage
and any block-based StorageClass is supported.

By the nature of PersistentVolume, this is not a scale-out, highly available solution and does not replace
a scale-out storage system like Red Hat OpenShift Data Foundation. Only a single instance of the
gateway is running. If the pod running the gateway becomes unavailable due to rescheduling, updates or
unplanned downtime, this will cause temporary degradation of the connected Red Hat Quay instances.

Using the following procedures, you will install the Local Storage Operator, Red Hat OpenShift Data
Foundation, and create a standalone Multicloud Object Gateway to deploy Red Hat Quay on OpenShift
Container Platform.

NOTE

The following documentation shares commonality with the official Red Hat OpenShift
Data Foundation documentation.

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

16

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html/deploying_openshift_data_foundation_using_bare_metal_infrastructure/deploy-standalone-multicloud-object-gateway#doc-wrapper

3.2.3.1.1. Installing the Local Storage Operator on OpenShift Container Platform

Use the following procedure to install the Local Storage Operator from the OperatorHub before
creating Red Hat OpenShift Data Foundation clusters on local storage devices.

1. Log in to the OpenShift Web Console.

2. Click Operators → OperatorHub.

3. Type local storage into the search box to find the Local Storage Operator from the list of
Operators. Click Local Storage.

4. Click Install.

5. Set the following options on the Install Operator page:

For Update channel, select stable.

For Installation mode, select A specific namespace on the cluster.

For Installed Namespace, select Operator recommended namespace openshift-local-
storage.

For Update approval, select Automatic.

6. Click Install.

3.2.3.1.2. Installing Red Hat OpenShift Data Foundation on OpenShift Container Platform

Use the following procedure to install Red Hat OpenShift Data Foundation on OpenShift Container
Platform.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin and
Operator installation permissions.

You must have at least three worker nodes in the OpenShift Container Platform cluster.

For additional resource requirements, see the Planning your deployment guide.

Procedure

1. Log in to the OpenShift Web Console.

2. Click Operators → OperatorHub.

3. Type OpenShift Data Foundation in the search box. Click OpenShift Data Foundation.

4. Click Install.

5. Set the following options on the Install Operator page:

For Update channel, select the most recent stable version.

For Installation mode, select A specific namespace on the cluster.

CHAPTER 3. CONFIGURING RED HAT QUAY BEFORE DEPLOYMENT

17

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.12/html-single/planning_your_deployment/index

For Installed Namespace, select Operator recommended Namespace: openshift-storage.

For Update approval, select Automatic or Manual.
If you select Automatic updates, then the Operator Lifecycle Manager (OLM)
automatically upgrades the running instance of your Operator without any intervention.

If you select Manual updates, then the OLM creates an update request. As a cluster
administrator, you must then manually approve that update request to update the Operator
to a newer version.

For Console plugin, select Enable.

6. Click Install.
After the Operator is installed, a pop-up with a message, Web console update is available
appears on the user interface. Click Refresh web console from this pop-up for the console
changes to reflect.

7. Continue to the following section, "Creating a standalone Multicloud Object Gateway", to
leverage the Multicloud Object Gateway Component for Red Hat Quay.

3.2.3.1.3. Creating a standalone Multicloud Object Gateway using the OpenShift Container Platform
UI

Use the following procedure to create a standalone Multicloud Object Gateway.

Prerequisites

You have installed the Local Storage Operator.

You have installed the Red Hat OpenShift Data Foundation Operator.

Procedure

1. In the OpenShift Web Console, click Operators → Installed Operators to view all installed
Operators.
Ensure that the namespace is openshift-storage.

2. Click Create StorageSystem.

3. On the Backing storage page, select the following:

a. Select Multicloud Object Gateway for Deployment type.

b. Select the Create a new StorageClass using the local storage devices option.

c. Click Next.

NOTE

You are prompted to install the Local Storage Operator if it is not already
installed. Click Install, and follow the procedure as described in "Installing the
Local Storage Operator on OpenShift Container Platform".

4. On the Create local volume set page, provide the following information:

a. Enter a name for the LocalVolumeSet and the StorageClass. By default, the local volume

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

18

a. Enter a name for the LocalVolumeSet and the StorageClass. By default, the local volume
set name appears for the storage class name. You can change the name.

b. Choose one of the following:

Disk on all nodes
Uses the available disks that match the selected filters on all the nodes.

Disk on selected nodes
Uses the available disks that match the selected filters only on the selected nodes.

c. From the available list of Disk Type, select SSD/NVMe.

d. Expand the Advanced section and set the following options:

Volume Mode Filesystem is selected by default. Always
ensure that Filesystem is selected for Volume
Mode.

Device Type Select one or more device type from the
dropdown list.

Disk Size Set a minimum size of 100GB for the device
and maximum available size of the device that
needs to be included.

Maximum Disks Limit This indicates the maximum number of PVs
that can be created on a node. If this field is
left empty, then PVs are created for all the
available disks on the matching nodes.

e. Click Next
A pop-up to confirm the creation of LocalVolumeSet is displayed.

f. Click Yes to continue.

5. In the Capacity and nodes page, configure the following:

a. Available raw capacity is populated with the capacity value based on all the attached disks
associated with the storage class. This takes some time to show up. The Selected nodes
list shows the nodes based on the storage class.

b. Click Next to continue.

6. Optional. Select the Connect to an external key management service checkbox. This is
optional for cluster-wide encryption.

a. From the Key Management Service Provider drop-down list, either select Vault or Thales
CipherTrust Manager (using KMIP). If you selected Vault, go to the next step. If you
selected Thales CipherTrust Manager (using KMIP), go to step iii.

b. Select an Authentication Method.
Using Token Authentication method

Enter a unique Connection Name, host Address of the Vault server

CHAPTER 3. CONFIGURING RED HAT QUAY BEFORE DEPLOYMENT

19

Enter a unique Connection Name, host Address of the Vault server
('https://<hostname or ip>'), Port number and Token.

Expand Advanced Settings to enter additional settings and certificate details based on
your Vault configuration:

Enter the Key Value secret path in Backend Path that is dedicated and unique to
OpenShift Data Foundation.

Optional: Enter TLS Server Name and Vault Enterprise Namespace.

Upload the respective PEM encoded certificate file to provide the CA Certificate,
Client Certificate, and Client Private Key.

Click Save and skip to step iv.
Using Kubernetes authentication method

Enter a unique Vault Connection Name, host Address of the Vault server
('https://<hostname or ip>'), Port number and Role name.

Expand Advanced Settings to enter additional settings and certificate details based on
your Vault configuration:

Enter the Key Value secret path in Backend Path that is dedicated and unique to
Red Hat OpenShift Data Foundation.

Optional: Enter TLS Server Name and Authentication Path if applicable.

Upload the respective PEM encoded certificate file to provide the CA Certificate,
Client Certificate, and Client Private Key.

Click Save and skip to step iv.

c. To use Thales CipherTrust Manager (using KMIP) as the KMS provider, follow the steps
below:

i. Enter a unique Connection Name for the Key Management service within the project.

ii. In the Address and Port sections, enter the IP of Thales CipherTrust Manager and the
port where the KMIP interface is enabled. For example:

Address: 123.34.3.2

Port: 5696

iii. Upload the Client Certificate, CA certificate, and Client Private Key.

iv. If StorageClass encryption is enabled, enter the Unique Identifier to be used for
encryption and decryption generated above.

v. The TLS Server field is optional and used when there is no DNS entry for the KMIP
endpoint. For example,kmip_all_<port>.ciphertrustmanager.local.

d. Select a Network.

e. Click Next.

7. In the Review and create page, review the configuration details. To modify any configuration

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

20

7. In the Review and create page, review the configuration details. To modify any configuration
settings, click Back.

8. Click Create StorageSystem.

3.2.3.1.4. Create A standalone Multicloud Object Gateway using the CLI

Use the following procedure to install the Red Hat OpenShift Data Foundation (formerly known as
OpenShift Container Storage) Operator and configure a single instance Multi-Cloud Gateway service.

NOTE

The following configuration cannot be run in parallel on a cluster with Red Hat OpenShift
Data Foundation installed.

Procedure

1. On the OpenShift Web Console, and then select Operators → OperatorHub.

2. Search for Red Hat OpenShift Data Foundation, and then select Install.

3. Accept all default options, and then select Install.

4. Confirm that the Operator has installed by viewing the Status column, which should be marked
as Succeeded.

WARNING

When the installation of the Red Hat OpenShift Data Foundation Operator
is finished, you are prompted to create a storage system. Do not follow this
instruction. Instead, create NooBaa object storage as outlined the following
steps.

5. On your machine, create a file named noobaa.yaml with the following information:



apiVersion: noobaa.io/v1alpha1
kind: NooBaa
metadata:
 name: noobaa
 namespace: openshift-storage
spec:
 dbResources:
 requests:
 cpu: '0.1'
 memory: 1Gi
 dbType: postgres
 coreResources:
 requests:
 cpu: '0.1'
 memory: 1Gi

CHAPTER 3. CONFIGURING RED HAT QUAY BEFORE DEPLOYMENT

21

1

2

This creates a single instance deployment of the Multi-cloud Object Gateway .

6. Apply the configuration with the following command:

Example output

7. After a few minutes, the Multi-cloud Object Gateway should finish provisioning. You can enter
the following command to check its status:

Example output

8. Configure a backing store for the gateway by creating the following YAML file, named noobaa-
pv-backing-store.yaml:

The overall capacity of the object storage service. Adjust as needed.

The StorageClass to use for the PersistentVolumes requested. Delete this property to
use the cluster default.

9. Enter the following command to apply the configuration:

$ oc create -n openshift-storage -f noobaa.yaml

noobaa.noobaa.io/noobaa created

$ oc get -n openshift-storage noobaas noobaa -w

NAME MGMT-ENDPOINTS S3-ENDPOINTS IMAGE
PHASE AGE
noobaa [https://10.0.32.3:30318] [https://10.0.32.3:31958] registry.redhat.io/ocs4/mcg-
core-
rhel8@sha256:56624aa7dd4ca178c1887343c7445a9425a841600b1309f6deace37ce6b8678d
Ready 3d18h

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: noobaa-pv-backing-store
 namespace: openshift-storage
spec:
 pvPool:
 numVolumes: 1
 resources:
 requests:
 storage: 50Gi 1
 storageClass: STORAGE-CLASS-NAME 2
 type: pv-pool

$ oc create -f noobaa-pv-backing-store.yaml

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

22

Example output

This creates the backing store configuration for the gateway. All images in Red Hat Quay will be
stored as objects through the gateway in a PersistentVolume created by the above
configuration.

10. Run the following command to make the PersistentVolume backing store the default for all
ObjectBucketClaims issued by the Red Hat Quay Operator:

backingstore.noobaa.io/noobaa-pv-backing-store created

$ oc patch bucketclass noobaa-default-bucket-class --patch '{"spec":{"placementPolicy":
{"tiers":[{"backingStores":["noobaa-pv-backing-store"]}]}}}' --type merge -n openshift-storage

CHAPTER 3. CONFIGURING RED HAT QUAY BEFORE DEPLOYMENT

23

CHAPTER 4. CONFIGURING TRAFFIC INGRESS

4.1. CONFIGURING SSL/TLS AND ROUTES

Support for OpenShift Container Platform edge termination routes have been added by way of a new
managed component, tls. This separates the route component from SSL/TLS and allows users to
configure both separately.

EXTERNAL_TLS_TERMINATION: true is the opinionated setting.

NOTE

Managed tls means that the default cluster wildcard certificate is used.

Unmanaged tls means that the user provided key and certificate pair is be
injected into the route.

The ssl.cert and ssl.key are now moved to a separate, persistent secret, which ensures that the key and
certificate pair are not regenerated upon every reconcile. The key and certificate pair are now
formatted as edge routes and mounted to the same directory in the Quay container.

Multiple permutations are possible when configuring SSL/TLS and routes, but the following rules apply:

If SSL/TLS is managed, then your route must also be managed.

If SSL/TLS is unmanaged then you must supply certificates directly in the config bundle.

The following table describes the valid options:

Table 4.1. Valid configuration options for TLS and routes

Option Route TLS Certs provided Result

My own load
balancer handles
TLS

Managed Managed No Edge route with default
wildcard cert

Red Hat Quay
handles TLS

Managed Unmanaged Yes Passthrough route with
certs mounted inside the
pod

Red Hat Quay
handles TLS

Unmanaged Unmanaged Yes Certificates are set inside
of the quay pod, but the
route must be created
manually

4.1.1. Creating the config bundle secret with the SSL/TLS cert and key pair

Use the following procedure to create a config bundle secret that includes your own SSL/TLS
certificate and key pair.

Procedure

Enter the following command to create config bundle secret that includes your own SSL/TLS

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

24

Enter the following command to create config bundle secret that includes your own SSL/TLS
certificate and key pair:

$ oc create secret generic --from-file config.yaml=./config.yaml --from-file ssl.cert=./ssl.cert --
from-file ssl.key=./ssl.key config-bundle-secret

CHAPTER 4. CONFIGURING TRAFFIC INGRESS

25

CHAPTER 5. CONFIGURING RESOURCES FOR MANAGED
COMPONENTS ON OPENSHIFT CONTAINER PLATFORM

You can manually adjust the resources on Red Hat Quay on OpenShift Container Platform for the
following components that have running pods:

quay

clair

mirroring

clairpostgres

postgres

This feature allows users to run smaller test clusters, or to request more resources upfront in order to
avoid partially degraded Quay pods. Limitations and requests can be set in accordance with Kubernetes
resource units.

The following components should not be set lower than their minimum requirements. This can cause
issues with your deployment and, in some cases, result in failure of the pod’s deployment.

quay: Minimum of 6 GB, 2vCPUs

clair: Recommended of 2 GB memory, 2 vCPUs

clairpostgres: Minimum of 200 MB

You can configure resource requests on the OpenShift Container Platform UI, or by directly by updating
the QuayRegistry YAML.

IMPORTANT

The default values set for these components are the suggested values. Setting resource
requests too high or too low might lead to inefficient resource utilization, or performance
degradation, respectively.

5.1. CONFIGURING RESOURCE REQUESTS BY USING THE OPENSHIFT
CONTAINER PLATFORM UI

Use the following procedure to configure resources by using the OpenShift Container Platform UI.

Procedure

1. On the OpenShift Container Platform developer console, click Operators → Installed
Operators → Red Hat Quay.

2. Click QuayRegistry.

3. Click the name of your registry, for example, example-registry.

4. Click YAML.

5. In the spec.components field, you can override the resource of the quay, clair, mirroring

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

26

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#resource-units-in-kubernetes

1

2

5. In the spec.components field, you can override the resource of the quay, clair, mirroring
clairpostgres, and postgres resources by setting values for the .overrides.resources.limits
and the overrides.resources.requests fields. For example:

Setting the limits or requests fields to {} uses the default values for these resources.

Leaving the limits or requests field empty puts no limitations on these resources.

spec:
 components:
 - kind: clair
 managed: true
 overrides:
 resources:
 limits:
 cpu: "5" # Limiting to 5 CPU (equivalent to 5000m or 5000 millicpu)
 memory: "18Gi" # Limiting to 18 Gibibytes of memory
 requests:
 cpu: "4" # Requesting 4 CPU
 memory: "4Gi" # Requesting 4 Gibibytes of memory
 - kind: postgres
 managed: true
 overrides:
 resources:
 limits: {} 1
 requests:
 cpu: "700m" # Requesting 700 millicpu or 0.7 CPU
 memory: "4Gi" # Requesting 4 Gibibytes of memory
 - kind: mirror
 managed: true
 overrides:
 resources:
 limits: 2
 requests:
 cpu: "800m" # Requesting 800 millicpu or 0.8 CPU
 memory: "1Gi" # Requesting 1 Gibibyte of memory
 - kind: quay
 managed: true
 overrides:
 resources:
 limits:
 cpu: "4" # Limiting to 4 CPU
 memory: "10Gi" # Limiting to 10 Gibibytes of memory
 requests:
 cpu: "4" # Requesting 4 CPU
 memory: "10Gi" # Requesting 10 Gibi of memory
 - kind: clairpostgres
 managed: true
 overrides:
 resources:
 limits:
 cpu: "800m" # Limiting to 800 millicpu or 0.8 CPU
 memory: "3Gi" # Limiting to 3 Gibibytes of memory
 requests: {}

CHAPTER 5. CONFIGURING RESOURCES FOR MANAGED COMPONENTS ON OPENSHIFT CONTAINER PLATFORM

27

5.2. CONFIGURING RESOURCE REQUESTS BY EDITING THE
QUAYREGISTRY YAML

You can re-configure Red Hat Quay to configure resource requests after you have already deployed a
registry. This can be done by editing the QuayRegistry YAML file directly and then re-deploying the
registry.

Procedure

1. Optional: If you do not have a local copy of the QuayRegistry YAML file, enter the following
command to obtain it:

2. Open the quayregistry.yaml created from Step 1 of this procedure and make the desired
changes. For example:

3. Save the changes.

4. Apply the Red Hat Quay registry using the updated configurations by running the following
command:

Example output

$ oc get quayregistry <registry_name> -n <namespace> -o yaml > quayregistry.yaml

 - kind: quay
 managed: true
 overrides:
 resources:
 limits: {}
 requests:
 cpu: "0.7" # Requesting 0.7 CPU (equivalent to 500m or 500 millicpu)
 memory: "512Mi" # Requesting 512 Mebibytes of memory

$ oc replace -f quayregistry.yaml

quayregistry.quay.redhat.com/example-registry replaced

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

28

CHAPTER 6. CONFIGURING THE DATABASE

6.1. USING AN EXISTING POSTGRESQL DATABASE

If you are using an externally managed PostgreSQL database, you must manually enable the pg_trgm
extension for a successful deployment.

Use the following procedure to deploy an existing PostgreSQL database.

Procedure

1. Create a config.yaml file with the necessary database fields. For example:

Example config.yaml file:

2. Create a Secret using the configuration file:

$ kubectl create secret generic --from-file config.yaml=./config.yaml config-bundle-secret

3. Create a QuayRegistry.yaml file which marks the postgres component as unmanaged and
references the created Secret. For example:

Example quayregistry.yaml file

Next steps

Continue to the following sections to deploy the registry.

6.1.1. Database configuration

This section describes the database configuration fields available for Red Hat Quay deployments.

6.1.1.1. Database URI

With Red Hat Quay, connection to the database is configured by using the required DB_URI field.

The following table describes the DB_URI configuration field:

DB_URI: postgresql://test-quay-database:postgres@test-quay-database:5432/test-quay-
database

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: config-bundle-secret
 components:
 - kind: postgres
 managed: false

CHAPTER 6. CONFIGURING THE DATABASE

29

Table 6.1. Database URI

Field Type Description

DB_URI
(Required)

String The URI for accessing the
database, including any
credentials.

Example DB_URI field:

postgresql://quayuser:quaypas
s@quay-
server.example.com:5432/quay

6.1.1.2. Database connection arguments

Optional connection arguments are configured by the DB_CONNECTION_ARGS parameter. Some of
the key-value pairs defined under DB_CONNECTION_ARGS are generic, while others are database
specific.

The following table describes database connection arguments:

Table 6.2. Database connection arguments

Field Type Description

DB_CONNECTION_ARGS Object Optional connection arguments
for the database, such as
timeouts and SSL/TLS.

.autorollback Boolean Whether to use thread-local
connections.
Should always be true

.threadlocals Boolean Whether to use auto-rollback
connections.
Should always be true

6.1.1.2.1. PostgreSQL SSL/TLS connection arguments

With SSL/TLS, configuration depends on the database you are deploying. The following example shows
a PostgreSQL SSL/TLS configuration:

The sslmode option determines whether, or with, what priority a secure SSL/TLS TCP/IP connection
will be negotiated with the server. There are six modes:

Table 6.3. SSL/TLS options

DB_CONNECTION_ARGS:
 sslmode: verify-ca
 sslrootcert: /path/to/cacert

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

30

Mode Description

disable Your configuration only tries non-SSL/TLS
connections.

allow Your configuration first tries a non-SSL/TLS
connection. Upon failure, tries an SSL/TLS
connection.

prefer
(Default)

Your configuration first tries an SSL/TLS connection.
Upon failure, tries a non-SSL/TLS connection.

require Your configuration only tries an SSL/TLS connection.
If a root CA file is present, it verifies the certificate in
the same way as if verify-ca was specified.

verify-ca Your configuration only tries an SSL/TLS connection,
and verifies that the server certificate is issued by a
trusted certificate authority (CA).

verify-full Only tries an SSL/TLS connection, and verifies that
the server certificate is issued by a trusted CA and
that the requested server hostname matches that in
the certificate.

For more information on the valid arguments for PostgreSQL, see Database Connection Control
Functions.

6.1.1.2.2. MySQL SSL/TLS connection arguments

The following example shows a sample MySQL SSL/TLS configuration:

DB_CONNECTION_ARGS:
 ssl:
 ca: /path/to/cacert

Information on the valid connection arguments for MySQL is available at Connecting to the Server
Using URI-Like Strings or Key-Value Pairs.

6.1.2. Using the managed PostgreSQL database

With Red Hat Quay 3.9, if your database is managed by the Red Hat Quay Operator, updating from Red
Hat Quay 3.8 → 3.9 automatically handles upgrading PostgreSQL 10 to PostgreSQL 13.

IMPORTANT

CHAPTER 6. CONFIGURING THE DATABASE

31

https://www.postgresql.org/docs/current/libpq-connect.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

IMPORTANT

Users with a managed database are required to upgrade their PostgreSQL
database from 10 → 13.

If your Red Hat Quay and Clair databases are managed by the Operator, the
database upgrades for each component must succeed for the 3.9.0 upgrade to
be successful. If either of the database upgrades fail, the entire Red Hat Quay
version upgrade fails. This behavior is expected.

If you do not want the Red Hat Quay Operator to upgrade your PostgreSQL deployment from
PostgreSQL 10 → 13, you must set the PostgreSQL parameter to managed: false in your
quayregistry.yaml file. For more information about setting your database to unmanaged, see Using an
existing Postgres database.

IMPORTANT

It is highly recommended that you upgrade to PostgreSQL 13. PostgreSQL 10
had its final release on November 10, 2022 and is no longer supported. For more
information, see the PostgreSQL Versioning Policy.

If you want your PostgreSQL database to match the same version as your Red Hat Enterprise Linux
(RHEL) system, see Migrating to a RHEL 8 version of PostgreSQL for RHEL 8 or Migrating to a RHEL 9
version of PostgreSQL for RHEL 9.

For more information about the Red Hat Quay 3.8 → 3.9 procedure, see Upgrading the Red Hat Quay
Operator overview.

6.1.2.1. PostgreSQL database recommendations

The Red Hat Quay team recommends the following for managing your PostgreSQL database.

Database backups should be performed regularly using either the supplied tools on the
PostgreSQL image or your own backup infrastructure. The Red Hat Quay Operator does not
currently ensure that the PostgreSQL database is backed up.

Restoring the PostgreSQL database from a backup must be done using PostgreSQL tools and
procedures. Be aware that your Quay pods should not be running while the database restore is
in progress.

Database disk space is allocated automatically by the Red Hat Quay Operator with 50 GiB. This
number represents a usable amount of storage for most small to medium Red Hat Quay
installations but might not be sufficient for your use cases. Resizing the database volume is
currently not handled by the Red Hat Quay Operator.

6.2. CONFIGURING EXTERNAL REDIS

Use the content in this section to set up an external Redis deployment.

6.2.1. Using an unmanaged Redis database

Use the following procedure to set up an external Redis database.

Procedure

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

32

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/configure_red_hat_quay/index#operator-unmanaged-postgres
https://www.postgresql.org/support/versioning/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/using-databases#migrating-to-a-rhel-8-version-of-postgresql_using-postgresql
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_using_database_servers/using-postgresql_configuring-and-using-database-servers#migrating-to-a-rhel-9-version-of-postgresql_using-postgresql
https://access.redhat.com/documentation/en-us/red_hat_quay/3.9/html-single/upgrade_red_hat_quay/index#operator-upgrade

1. Create a config.yaml file using the following Redis fields:

2. Enter the following command to create a secret using the configuration file:

3. Create a quayregistry.yaml file that sets the Redis component to unmanaged and references
the created secret:

4. Deploy the Red Hat Quay registry.

Additional resources

Redis configuration fields

6.2.2. Using unmanaged Horizontal Pod Autoscalers

Horizontal Pod Autoscalers (HPAs) are now included with the Clair, Quay, and Mirror pods, so that they
now automatically scale during load spikes.

As HPA is configured by default to be managed, the number of Clair, Quay, and Mirror pods is set to
two. This facilitates the avoidance of downtime when updating or reconfiguring Red Hat Quay through
the Operator or during rescheduling events.

6.2.2.1. Disabling the Horizontal Pod Autoscaler

To disable autoscaling or create your own HorizontalPodAutoscaler, specify the component as
unmanaged in the QuayRegistry instance. For example:

...
BUILDLOGS_REDIS:
 host: <quay-server.example.com>
 port: 6379
 ssl: false
...
USER_EVENTS_REDIS:
 host: <quay-server.example.com>
 port: 6379
 ssl: false
...

$ oc create secret generic --from-file config.yaml=./config.yaml config-bundle-secret

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: config-bundle-secret
 components:
 - kind: redis
 managed: false
...

apiVersion: quay.redhat.com/v1

CHAPTER 6. CONFIGURING THE DATABASE

33

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/configure_red_hat_quay/index#config-fields-redis

6.2.3. Disabling the Route component

Use the following procedure to prevent the Red Hat Quay Operator from creating a route.

Procedure

1. Set the component as managed: false in the quayregistry.yaml file:

2. Edit the config.yaml file to specify that Red Hat Quay handles SSL/TLS. For example:

If you do not configure the unmanaged route correctly, the following error is returned:

NOTE

kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 components:
 - kind: horizontalpodautoscaler
 managed: false
...

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 components:
 - kind: route
 managed: false

...
EXTERNAL_TLS_TERMINATION: false
...
SERVER_HOSTNAME: example-registry-quay-quay-enterprise.apps.user1.example.com
...
PREFERRED_URL_SCHEME: https
...

{
 {
 "kind":"QuayRegistry",
 "namespace":"quay-enterprise",
 "name":"example-registry",
 "uid":"d5879ba5-cc92-406c-ba62-8b19cf56d4aa",
 "apiVersion":"quay.redhat.com/v1",
 "resourceVersion":"2418527"
 },
 "reason":"ConfigInvalid",
 "message":"required component `route` marked as unmanaged, but `configBundleSecret` is
missing necessary fields"
}

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

34

NOTE

Disabling the default route means you are now responsible for creating a Route, Service,
or Ingress in order to access the Red Hat Quay instance. Additionally, whatever DNS you
use must match the SERVER_HOSTNAME in the Red Hat Quay config.

6.2.4. Disabling the monitoring component

If you install the Red Hat Quay Operator in a single namespace, the monitoring component is
automatically set to managed: false. Use the following reference to explicitly disable monitoring.

Unmanaged monitoring

To enable monitoring in this scenario, see Enabling monitoring when the Red Hat Quay Operator is
installed in a single namespace.

6.2.5. Disabling the mirroring component

To disable mirroring, use the following YAML configuration:

Unmanaged mirroring example YAML configuration

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 components:
 - kind: monitoring
 managed: false

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 components:
 - kind: mirroring
 managed: false

CHAPTER 6. CONFIGURING THE DATABASE

35

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/deploy_red_hat_quay_on_openshift_with_the_quay_operator/index#monitoring-single-namespace

CHAPTER 7. DEPLOYING RED HAT QUAY USING THE
OPERATOR

Red Hat Quay on OpenShift Container Platform can be deployed using command-line interface or from
the OpenShift Container Platform console. The steps are fundamentally the same.

7.1. DEPLOYING RED HAT QUAY FROM THE COMMAND LINE

Use the following procedure to deploy Red Hat Quay from using the command-line interface (CLI).

Prerequisites

You have logged into OpenShift Container Platform using the CLI.

Procedure

1. Create a namespace, for example, quay-enterprise, by entering the following command:

2. Optional. If you want to pre-configure any aspects of your Red Hat Quay deployment, create a
Secret for the config bundle:

3. Create a QuayRegistry custom resource in a file called quayregistry.yaml

a. For a minimal deployment, using all the defaults:

quayregistry.yaml:

b. Optional. If you want to have some components unmanaged, add this information in the
spec field. A minimal deployment might look like the following example:

Example quayregistry.yaml with unmanaged components

$ oc new-project quay-enterprise

$ oc create secret generic quay-enterprise-config-bundle --from-file=config-
bundle.tar.gz=/path/to/config-bundle.tar.gz

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 components:
 - kind: clair
 managed: false
 - kind: horizontalpodautoscaler

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

36

c. Optional. If you have created a config bundle, for example, init-config-bundle-secret,
reference it in the quayregistry.yaml file:

Example quayregistry.yaml with a config bundle

d. Optional. If you have a proxy configured, you can add the information using overrides for
Red Hat Quay, Clair, and mirroring:

Example quayregistry.yaml with proxy configured

 managed: false
 - kind: mirror
 managed: false
 - kind: monitoring
 managed: false

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: init-config-bundle-secret

 kind: QuayRegistry
 metadata:
 name: quay37
 spec:
 configBundleSecret: config-bundle-secret
 components:
 - kind: objectstorage
 managed: false
 - kind: route
 managed: true
 - kind: mirror
 managed: true
 overrides:
 env:
 - name: DEBUGLOG
 value: "true"
 - name: HTTP_PROXY
 value: quayproxy.qe.devcluster.openshift.com:3128
 - name: HTTPS_PROXY
 value: quayproxy.qe.devcluster.openshift.com:3128
 - name: NO_PROXY
 value:
svc.cluster.local,localhost,quay370.apps.quayperf370.perfscale.devcluster.openshift.com
 - kind: tls
 managed: false
 - kind: clair
 managed: true
 overrides:
 env:
 - name: HTTP_PROXY
 value: quayproxy.qe.devcluster.openshift.com:3128

CHAPTER 7. DEPLOYING RED HAT QUAY USING THE OPERATOR

37

4. Create the QuayRegistry in the specified namespace by entering the following command:

5. Enter the following command to see when the status.registryEndpoint is populated:

Additional resources

For more information about how to track the progress of your Red Hat Quay deployment, see
Monitoring and debugging the deployment process .

7.1.1. Using the API to create the first user

Use the following procedure to create the first user in your Red Hat Quay organization.

Prerequisites

The config option FEATURE_USER_INITIALIZE must be set to true.

No users can already exist in the database.

PROCEDURE

This procedure requests an OAuth token by specifying "access_token": true.

1. Open your Red Hat Quay configuration file and update the following configuration fields:

 - name: HTTPS_PROXY
 value: quayproxy.qe.devcluster.openshift.com:3128
 - name: NO_PROXY
 value:
svc.cluster.local,localhost,quay370.apps.quayperf370.perfscale.devcluster.openshift.com
 - kind: quay
 managed: true
 overrides:
 env:
 - name: DEBUGLOG
 value: "true"
 - name: NO_PROXY
 value:
svc.cluster.local,localhost,quay370.apps.quayperf370.perfscale.devcluster.openshift.com
 - name: HTTP_PROXY
 value: quayproxy.qe.devcluster.openshift.com:3128
 - name: HTTPS_PROXY
 value: quayproxy.qe.devcluster.openshift.com:3128

$ oc create -n quay-enterprise -f quayregistry.yaml

$ oc get quayregistry -n quay-enterprise example-registry -o jsonpath="
{.status.registryEndpoint}" -w

FEATURE_USER_INITIALIZE: true
SUPER_USERS:
 - quayadmin

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

38

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/deploying_the_red_hat_quay_operator_on_openshift_container_platform/index#operator-monitor-deploy-cli

2. Stop the Red Hat Quay service by entering the following command:

3. Start the Red Hat Quay service by entering the following command:

4. Run the following CURL command to generate a new user with a username, password, email,
and access token:

If successful, the command returns an object with the username, email, and encrypted
password. For example:

If a user already exists in the database, an error is returned:

If your password is not at least eight characters or contains whitespace, an error is returned:

5. Log in to your Red Hat Quay deployment by entering the following command:

Example output

7.1.2. Viewing created components using the command line

Use the following procedure to view deployed Red Hat Quay components.

Prerequisites

You have deployed Red Hat Quay on OpenShift Container Platform.

Procedure

$ sudo podman stop quay

$ sudo podman run -d -p 80:8080 -p 443:8443 --name=quay -v $QUAY/config:/conf/stack:Z
-v $QUAY/storage:/datastorage:Z {productrepo}/{quayimage}:{productminv}

$ curl -X POST -k http://quay-server.example.com/api/v1/user/initialize --header 'Content-
Type: application/json' --data '{ "username": "quayadmin", "password":"quaypass12345",
"email": "quayadmin@example.com", "access_token": true}'

{"access_token":"6B4QTRSTSD1HMIG915VPX7BMEZBVB9GPNY2FC2ED",
"email":"quayadmin@example.com","encrypted_password":"1nZMLH57RIE5UGdL/yYpDOHL
qiNCgimb6W9kfF8MjZ1xrfDpRyRs9NUnUuNuAitW","username":"quayadmin"} #
gitleaks:allow

{"message":"Cannot initialize user in a non-empty database"}

{"message":"Failed to initialize user: Invalid password, password must be at least 8
characters and contain no whitespace."}

$ sudo podman login -u quayadmin -p quaypass12345 http://quay-server.example.com --tls-
verify=false

Login Succeeded!

CHAPTER 7. DEPLOYING RED HAT QUAY USING THE OPERATOR

39

1. Enter the following command to view the deployed components:

Example output

7.1.3. Horizontal Pod Autoscaling

A default deployment shows the following running pods:

Two pods for the Red Hat Quay application itself (example-registry-quay-app-*`)

One Redis pod for Red Hat Quay logging (example-registry-quay-redis-*)

One database pod for PostgreSQL used by Red Hat Quay for metadata storage (example-
registry-quay-database-*)

Two Quay mirroring pods (example-registry-quay-mirror-*)

Two pods for the Clair application (example-registry-clair-app-*)

One PostgreSQL pod for Clair (example-registry-clair-postgres-*)

Horizontal PPod Autoscaling is configured by default to be managed, and the number of pods for Quay,
Clair and repository mirroring is set to two. This facilitates the avoidance of downtime when updating or
reconfiguring Red Hat Quay through the Red Hat Quay Operator or during rescheduling events. You
can enter the following command to view information about HPA objects:

Example output

$ oc get pods -n quay-enterprise

NAME READY STATUS RESTARTS AGE
example-registry-clair-app-5ffc9f77d6-jwr9s 1/1 Running 0 3m42s
example-registry-clair-app-5ffc9f77d6-wgp7d 1/1 Running 0 3m41s
example-registry-clair-postgres-54956d6d9c-rgs8l 1/1 Running 0 3m5s
example-registry-quay-app-79c6b86c7b-8qnr2 1/1 Running 4 3m42s
example-registry-quay-app-79c6b86c7b-xk85f 1/1 Running 4 3m41s
example-registry-quay-app-upgrade-5kl5r 0/1 Completed 4 3m50s
example-registry-quay-database-b466fc4d7-tfrnx 1/1 Running 2 3m42s
example-registry-quay-mirror-6d9bd78756-6lj6p 1/1 Running 0 2m58s
example-registry-quay-mirror-6d9bd78756-bv6gq 1/1 Running 0 2m58s
example-registry-quay-postgres-init-dzbmx 0/1 Completed 0 3m43s
example-registry-quay-redis-8bd67b647-skgqx 1/1 Running 0 3m42s

$ oc get hpa -n quay-enterprise

NAME REFERENCE TARGETS MINPODS MAXPODS
REPLICAS AGE
example-registry-clair-app Deployment/example-registry-clair-app 16%/90%, 0%/90% 2
10 2 13d
example-registry-quay-app Deployment/example-registry-quay-app 31%/90%, 1%/90% 2
20 2 13d
example-registry-quay-mirror Deployment/example-registry-quay-mirror 27%/90%, 0%/90% 2
20 2 13d

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

40

Additional resources

For more information on pre-configuring your Red Hat Quay deployment, see the section Pre-
configuring Red Hat Quay for automation

7.1.4. Monitoring and debugging the deployment process

Users can now troubleshoot problems during the deployment phase. The status in the QuayRegistry
object can help you monitor the health of the components during the deployment an help you debug
any problems that may arise.

Procedure

1. Enter the following command to check the status of your deployment:

Example output

Immediately after deployment, the QuayRegistry object will show the basic configuration:

$ oc get quayregistry -n quay-enterprise -o yaml

apiVersion: v1
items:
- apiVersion: quay.redhat.com/v1
 kind: QuayRegistry
 metadata:
 creationTimestamp: "2021-09-14T10:51:22Z"
 generation: 3
 name: example-registry
 namespace: quay-enterprise
 resourceVersion: "50147"
 selfLink: /apis/quay.redhat.com/v1/namespaces/quay-enterprise/quayregistries/example-
registry
 uid: e3fc82ba-e716-4646-bb0f-63c26d05e00e
 spec:
 components:
 - kind: postgres
 managed: true
 - kind: clair
 managed: true
 - kind: redis
 managed: true
 - kind: horizontalpodautoscaler
 managed: true
 - kind: objectstorage
 managed: true
 - kind: route
 managed: true
 - kind: mirror
 managed: true
 - kind: monitoring
 managed: true
 - kind: tls
 managed: true
 - kind: clairpostgres

CHAPTER 7. DEPLOYING RED HAT QUAY USING THE OPERATOR

41

2. Use the oc get pods command to view the current state of the deployed components:

Example output

3. While the deployment is in progress, the QuayRegistry object will show the current status. In
this instance, database migrations are taking place, and other components are waiting until
completion:

 managed: true
 configBundleSecret: example-registry-config-bundle-kt55s
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

$ oc get pods -n quay-enterprise

NAME READY STATUS RESTARTS AGE
example-registry-clair-app-86554c6b49-ds7bl 0/1 ContainerCreating 0 2s
example-registry-clair-app-86554c6b49-hxp5s 0/1 Running 1 17s
example-registry-clair-postgres-68d8857899-lbc5n 0/1 ContainerCreating 0 17s
example-registry-quay-app-upgrade-h2v7h 0/1 ContainerCreating 0 9s
example-registry-quay-database-66f495c9bc-wqsjf 0/1 ContainerCreating 0 17s
example-registry-quay-mirror-854c88457b-d845g 0/1 Init:0/1 0 2s
example-registry-quay-mirror-854c88457b-fghxv 0/1 Init:0/1 0 17s
example-registry-quay-postgres-init-bktdt 0/1 Terminating 0 17s
example-registry-quay-redis-f9b9d44bf-4htpz 0/1 ContainerCreating 0 17s

 status:
 conditions:
 - lastTransitionTime: "2021-09-14T10:52:04Z"
 lastUpdateTime: "2021-09-14T10:52:04Z"
 message: all objects created/updated successfully
 reason: ComponentsCreationSuccess
 status: "False"
 type: RolloutBlocked
 - lastTransitionTime: "2021-09-14T10:52:05Z"
 lastUpdateTime: "2021-09-14T10:52:05Z"
 message: running database migrations
 reason: MigrationsInProgress
 status: "False"
 type: Available
 lastUpdated: 2021-09-14 10:52:05.371425635 +0000 UTC
 unhealthyComponents:
 clair:
 - lastTransitionTime: "2021-09-14T10:51:32Z"
 lastUpdateTime: "2021-09-14T10:51:32Z"
 message: 'Deployment example-registry-clair-postgres: Deployment does not have
minimum availability.'
 reason: MinimumReplicasUnavailable
 status: "False"
 type: Available
 - lastTransitionTime: "2021-09-14T10:51:32Z"
 lastUpdateTime: "2021-09-14T10:51:32Z"
 message: 'Deployment example-registry-clair-app: Deployment does not have minimum

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

42

4. When the deployment process finishes successfully, the status in the QuayRegistry object
shows no unhealthy components:

7.2. DEPLOYING RED HAT QUAY FROM THE OPENSHIFT CONTAINER
PLATFORM CONSOLE

1. Create a namespace, for example, quay-enterprise.

2. Select Operators → Installed Operators, then select the Quay Operator to navigate to the
Operator detail view.

3. Click 'Create Instance' on the 'Quay Registry' tile under 'Provided APIs'.

4. Optionally change the 'Name' of the QuayRegistry. This will affect the hostname of the
registry. All other fields have been populated with defaults.

5. Click 'Create' to submit the QuayRegistry to be deployed by the Quay Operator.

6. You should be redirected to the QuayRegistry list view. Click on the QuayRegistry you just
created to see the details view.

7. Once the 'Registry Endpoint' has a value, click it to access your new Quay registry via the UI. You
can now select 'Create Account' to create a user and sign in.

availability.'
 reason: MinimumReplicasUnavailable
 status: "False"
 type: Available
 mirror:
 - lastTransitionTime: "2021-09-14T10:51:32Z"
 lastUpdateTime: "2021-09-14T10:51:32Z"
 message: 'Deployment example-registry-quay-mirror: Deployment does not have
minimum availability.'
 reason: MinimumReplicasUnavailable
 status: "False"
 type: Available

 status:
 conditions:
 - lastTransitionTime: "2021-09-14T10:52:36Z"
 lastUpdateTime: "2021-09-14T10:52:36Z"
 message: all registry component healthchecks passing
 reason: HealthChecksPassing
 status: "True"
 type: Available
 - lastTransitionTime: "2021-09-14T10:52:46Z"
 lastUpdateTime: "2021-09-14T10:52:46Z"
 message: all objects created/updated successfully
 reason: ComponentsCreationSuccess
 status: "False"
 type: RolloutBlocked
 currentVersion: {producty}
 lastUpdated: 2021-09-14 10:52:46.104181633 +0000 UTC
 registryEndpoint: https://example-registry-quay-quay-enterprise.apps.docs.quayteam.org
 unhealthyComponents: {}

CHAPTER 7. DEPLOYING RED HAT QUAY USING THE OPERATOR

43

7.2.1. Using the Red Hat Quay UI to create the first user

Use the following procedure to create the first user by the Red Hat Quay UI.

NOTE

This procedure assumes that the FEATURE_USER_CREATION config option has not
been set to false. If it is false, the Create Account functionality on the UI will be
disabled, and you will have to use the API to create the first user.

Procedure

1. In the OpenShift Container Platform console, navigate to Operators → Installed Operators,
with the appropriate namespace / project.

2. Click on the newly installed QuayRegistry object to view the details. For example:

3. After the Registry Endpoint has a value, navigate to this URL in your browser.

4. Select Create Account in the Red Hat Quay registry UI to create a user. For example:

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

44

5. Enter the details for Username, Password, Email, and then click Create Account. For example:

CHAPTER 7. DEPLOYING RED HAT QUAY USING THE OPERATOR

45

After creating the first user, you are automatically logged in to the Red Hat Quay registry. For example:

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

46

CHAPTER 8. VIEWING THE STATUS OF THE QUAYREGISTRY
OBJECT

Lifecycle observability for a given Red Hat Quay deployment is reported in the status section of the
corresponding QuayRegistry object. The Red Hat Quay Operator constantly updates this section, and
this should be the first place to look for any problems or state changes in Red Hat Quay or its managed
dependencies.

8.1. VIEWING THE REGISTRY ENDPOINT

Once Red Hat Quay is ready to be used, the status.registryEndpoint field will be populated with the
publicly available hostname of the registry.

8.2. VIEWING THE VERSION OF RED HAT QUAY IN USE

The current version of Red Hat Quay that is running will be reported in status.currentVersion.

8.3. VIEWING THE CONDITIONS OF YOUR RED HAT QUAY
DEPLOYMENT

Certain conditions will be reported in status.conditions.

CHAPTER 8. VIEWING THE STATUS OF THE QUAYREGISTRY OBJECT

47

CHAPTER 9. CUSTOMIZING RED HAT QUAY ON OPENSHIFT
CONTAINER PLATFORM

After deployment, you can customize the Red Hat Quay application by editing the Red Hat Quay
configuration bundle secret spec.configBundleSecret. You can also change the managed status of
components and configure resource requests for some components in the spec.components object of
the QuayRegistry resource.

9.1. EDITING THE CONFIG BUNDLE SECRET IN THE OPENSHIFT
CONTAINER PLATFORM CONSOLE

Use the following procedure to edit the config bundle secret in the OpenShift Container Platform
console.

Procedure

1. On the Red Hat Quay Registry overview screen, click the link for the Config Bundle Secret.

2. To edit the secret, click Actions → Edit Secret.

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

48

3. Modify the configuration and save the changes.

4. Monitor the deployment to ensure successful completion and that the configuration changes
have taken effect.

9.2. DETERMINING QUAYREGISTRY ENDPOINTS AND SECRETS

Use the following procedure to find QuayRegistry endpoints and secrets.

Procedure

1. You can examine the QuayRegistry resource, using oc describe quayregistry or oc get
quayregistry -o yaml, to find the current endpoints and secrets by entering the following
command:

Example output

$ oc get quayregistry example-registry -n quay-enterprise -o yaml

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 ...
 name: example-registry
 namespace: quay-enterprise
 ...
spec:
 components:
 - kind: quay
 managed: true
 ...

CHAPTER 9. CUSTOMIZING RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM

49

1

2

The config bundle secret, containing the config.yaml file and any SSL/TLS certificates.

The URL for your registry, for browser access to the registry UI, and for the registry API
endpoint.

9.3. DOWNLOADING THE EXISTING CONFIGURATION

The following procedures detail how to download the existing configuration using different strategies.

9.3.1. Using the config bundle secret to download the existing configuration

You can use the config bundle secret to download the existing configuration.

Procedure

1. Obtain the secret data by entering the following command:

Example output

2. Enter the following command to decode the data:

Example output

9.4. USING THE CONFIG BUNDLE TO CONFIGURE CUSTOM SSL/TLS

 - kind: clairpostgres
 managed: true
 configBundleSecret: init-config-bundle-secret 1
status:
 currentVersion: 3.7.0
 lastUpdated: 2022-05-11 13:28:38.199476938 +0000 UTC
 registryEndpoint: https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org
2

$ oc get secret -n quay-enterprise init-config-bundle-secret -o jsonpath='{.data}'

{
 "config.yaml": "RkVBVFVSRV9VU0 ... MDAwMAo="
}

$ echo 'RkVBVFVSRV9VU0 ... MDAwMAo=' | base64 --decode

FEATURE_USER_INITIALIZE: true
BROWSER_API_CALLS_XHR_ONLY: false
SUPER_USERS:
- quayadmin
FEATURE_USER_CREATION: false
FEATURE_QUOTA_MANAGEMENT: true
FEATURE_PROXY_CACHE: true
FEATURE_BUILD_SUPPORT: true
DEFAULT_SYSTEM_REJECT_QUOTA_BYTES: 102400000

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

50

9.4. USING THE CONFIG BUNDLE TO CONFIGURE CUSTOM SSL/TLS
CERTS

You can configure custom SSL/TLS certificates before the initial deployment, or after Red Hat Quay is
deployed on OpenShift Container Platform. This is done by creating or updating the config bundle
secret.

If you are adding the certificates to an existing deployment, you must include the existing config.yaml
file in the new config bundle secret, even if you are not making any configuration changes.

Use the following procedure to add custom SSL/TLS certificates.

Procedure

1. In your QuayRegistry YAML file, set kind: tls to managed:false, for example:

2. Navigate to the Events page, which should reveal that the change is blocked until you set up
the appropriate config. For example:

3. Create the secret using embedded data or by using files.

a. Embed the configuration details directly in the Secret resource YAML file. For example:

custom-ssl-config-bundle.yaml

 - kind: tls
 managed: false

 - lastTransitionTime: '2022-03-28T12:56:49Z'
 lastUpdateTime: '2022-03-28T12:56:49Z'
 message: >-
 required component `tls` marked as unmanaged, but `configBundleSecret`
 is missing necessary fields
 reason: ConfigInvalid
 status: 'True'

apiVersion: v1
kind: Secret
metadata:
 name: custom-ssl-config-bundle-secret
 namespace: quay-enterprise
data:
 config.yaml: |
 FEATURE_USER_INITIALIZE: true
 BROWSER_API_CALLS_XHR_ONLY: false
 SUPER_USERS:
 - quayadmin
 FEATURE_USER_CREATION: false
 FEATURE_QUOTA_MANAGEMENT: true
 FEATURE_PROXY_CACHE: true
 FEATURE_BUILD_SUPPORT: true
 DEFAULT_SYSTEM_REJECT_QUOTA_BYTES: 102400000
 extra_ca_cert_my-custom-ssl.crt: |
 -----BEGIN CERTIFICATE-----
 MIIDsDCCApigAwIBAgIUCqlzkHjF5i5TXLFy+sepFrZr/UswDQYJKoZIhvcNAQEL

CHAPTER 9. CUSTOMIZING RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM

51

b. Create the secret from the YAML file:

$ oc create -f custom-ssl-config-bundle.yaml

..

4. Alternatively, you can create files containing the desired information, and then create the secret
from those files.

a. Enter the following command to create a generic Secret object that contains the
config.yaml file and a custom-ssl.crt file:

$ oc create secret generic custom-ssl-config-bundle-secret \
 --from-file=config.yaml \
 --from-file=extra_ca_cert_my-custom-ssl.crt=my-custom-ssl.crt

b. Create or update the QuayRegistry YAML file, referencing the created Secret, for
example:

Example QuayRegistry YAML file

c. Deploy or update the registry using the YAML file by entering the following command:

$ oc apply -f quayregistry.yaml

Next steps

Red Hat Quay features

BQAwbzELMAkGA1UEBhMCSUUxDzANBgNVBAgMBkdBTFdBWTEPMA0GA1UEBwwG
R0FM

 -----END CERTIFICATE-----

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: custom-ssl-config-bundle-secret

Red Hat Quay 3.11 Deploying the Red Hat Quay Operator on OpenShift Container Platform

52

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_operator_features/

	Table of Contents
	PREFACE
	CHAPTER 1. INTRODUCTION TO THE RED HAT QUAY OPERATOR
	1.1. RED HAT QUAY OPERATOR COMPONENTS
	1.2. USING MANAGED COMPONENTS
	1.3. USING UNMANAGED COMPONENTS FOR DEPENDENCIES
	1.4. CONFIG BUNDLE SECRET
	1.5. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM
	1.5.1. OpenShift Container Platform cluster
	1.5.2. Resource Requirements
	1.5.3. Object Storage
	1.5.4. StorageClass

	CHAPTER 2. INSTALLING THE RED HAT QUAY OPERATOR FROM THE OPERATORHUB
	CHAPTER 3. CONFIGURING RED HAT QUAY BEFORE DEPLOYMENT
	3.1. PRE-CONFIGURING RED HAT QUAY FOR AUTOMATION
	3.1.1. Allowing the API to create the first user
	3.1.2. Enabling general API access
	3.1.3. Adding a superuser
	3.1.4. Restricting user creation
	3.1.5. Enabling new functionality in Red Hat Quay 3.11
	3.1.6. Suggested configuration for automation

	3.2. CONFIGURING OBJECT STORAGE
	3.2.1. Using unmanaged storage
	3.2.1.1. AWS S3 storage
	3.2.1.2. Google Cloud storage
	3.2.1.3. Microsoft Azure storage
	3.2.1.4. Ceph/RadosGW Storage
	3.2.1.5. Swift storage
	3.2.1.6. NooBaa unmanaged storage

	3.2.2. Using an unmanaged NooBaa instance
	3.2.3. Managed storage
	3.2.3.1. Leveraging the Multicloud Object Gateway Component in the Red Hat OpenShift Data Foundation Operator for Red Hat Quay

	CHAPTER 4. CONFIGURING TRAFFIC INGRESS
	4.1. CONFIGURING SSL/TLS AND ROUTES
	4.1.1. Creating the config bundle secret with the SSL/TLS cert and key pair

	CHAPTER 5. CONFIGURING RESOURCES FOR MANAGED COMPONENTS ON OPENSHIFT CONTAINER PLATFORM
	5.1. CONFIGURING RESOURCE REQUESTS BY USING THE OPENSHIFT CONTAINER PLATFORM UI
	5.2. CONFIGURING RESOURCE REQUESTS BY EDITING THE QUAYREGISTRY YAML

	CHAPTER 6. CONFIGURING THE DATABASE
	6.1. USING AN EXISTING POSTGRESQL DATABASE
	6.1.1. Database configuration
	6.1.1.1. Database URI
	6.1.1.2. Database connection arguments

	6.1.2. Using the managed PostgreSQL database
	6.1.2.1. PostgreSQL database recommendations

	6.2. CONFIGURING EXTERNAL REDIS
	6.2.1. Using an unmanaged Redis database
	6.2.2. Using unmanaged Horizontal Pod Autoscalers
	6.2.2.1. Disabling the Horizontal Pod Autoscaler

	6.2.3. Disabling the Route component
	6.2.4. Disabling the monitoring component
	6.2.5. Disabling the mirroring component

	CHAPTER 7. DEPLOYING RED HAT QUAY USING THE OPERATOR
	7.1. DEPLOYING RED HAT QUAY FROM THE COMMAND LINE
	7.1.1. Using the API to create the first user
	7.1.2. Viewing created components using the command line
	7.1.3. Horizontal Pod Autoscaling
	7.1.4. Monitoring and debugging the deployment process

	7.2. DEPLOYING RED HAT QUAY FROM THE OPENSHIFT CONTAINER PLATFORM CONSOLE
	7.2.1. Using the Red Hat Quay UI to create the first user

	CHAPTER 8. VIEWING THE STATUS OF THE QUAYREGISTRY OBJECT
	8.1. VIEWING THE REGISTRY ENDPOINT
	8.2. VIEWING THE VERSION OF RED HAT QUAY IN USE
	8.3. VIEWING THE CONDITIONS OF YOUR RED HAT QUAY DEPLOYMENT

	CHAPTER 9. CUSTOMIZING RED HAT QUAY ON OPENSHIFT CONTAINER PLATFORM
	9.1. EDITING THE CONFIG BUNDLE SECRET IN THE OPENSHIFT CONTAINER PLATFORM CONSOLE
	9.2. DETERMINING QUAYREGISTRY ENDPOINTS AND SECRETS
	9.3. DOWNLOADING THE EXISTING CONFIGURATION
	9.3.1. Using the config bundle secret to download the existing configuration

	9.4. USING THE CONFIG BUNDLE TO CONFIGURE CUSTOM SSL/TLS CERTS

